New Cone Metrics on the Sphere

dc.contributor.authorBoadi, Richard Kena
dc.date.accessioned2012-12-13T02:05:39Z
dc.date.accessioned2023-04-21T07:36:53Z
dc.date.available2012-12-13T02:05:39Z
dc.date.available2023-04-21T07:36:53Z
dc.date.issued2011-06-13
dc.descriptionA Thesis submitted to the Department of Mathematics, Kwame Nkrumah University of Science and Technology, Kumasi in partial fulfillment of the requirements for the degree of Doctor of Philosophy, June-2011en_US
dc.description.abstractWe give an explicit construction of lattices in P U (1, 2). A family of these lattices was originally constructed by Livn´e [15]. Parker [19] constructed these lattices of Livn´e as the modular group of certain Euclidean cone metrics on the sphere. In this work we give a construction of these lattices which includes that of Parker’s as the modular group of certain Euclidean cone metrics on the sphere. Our cone metrics on the sphere had five cone points with cone angles (π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ) Where θ > 0, φ > 0 and θ + φ < π. These corresponds to a group of five tuples lattices generated by Thurston [27] in his paper Shapes of Polyhedra and Triangulations of the Sphere . Hence our choice of θ and φ in order to obtain discreteness are as follows: θ 2π/3 2π/3 2π/3 2π/4 2π/4 (2π/5) 2π/5 2π/6 φ π/4 π/5 π/6 π/3 π/4 (2π/5) π/3 π/3 Certain automorphisms which we considered on our cone metrics yielded unitary matrices R1, R2 and I1. Using these matrices, we obtained our fundamental polyhe- dron D by constructing our vertices, edges and faces to define the polyhedron. Our vertices were obtained by the degeneration of certain cone metrics. The polyhedron D is contained in bisectors whose intersection give us the edges of the polyheron. The faces are also contained in the bisectors. Then finally we proved using Poincar´e’s polyhedron theorem that the group Γ generated by the side pairings of D is a dis- crete subgroup of P U (1, 2) with fundamental domain D and presentation: J 3 = Rp = Rp = (P −1J )k = I , \ 1 2 Γ = J, P, R1, R2 : R2 = P R1P −1 = J R1J −1, P = R1R2en_US
dc.description.sponsorshipKNUSTen_US
dc.identifier.urihttps://ir.knust.edu.gh/handle/123456789/4719
dc.language.isoenen_US
dc.titleNew Cone Metrics on the Sphereen_US
dc.typeThesisen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Richard Kena Boadi.pdf
Size:
1.66 MB
Format:
Adobe Portable Document Format
Description:
Full Thesis
License bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed to upon submission
Description:
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: