Browsing by Author "Larbi, Amma"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ItemBlood collection tubes impact expression of activated CD4+ and CD8+ T cells in human whole blood assay(Scientific African, 2023) Kwarteng, Alexander; Osei-Poku, Priscilla; Antwi-Berko, Daniel; Sylverken, Augustina Angelina; Larbi, Amma; Nsiah, Kwabena; 0000-0002-0893-2908; 0000-0002-9187-2503; 0000-0001-8994-1349; 0000-0002-7691-914X; 0000-0002-3814-6924; 0000-0001-8500-0963Background T-lymphocyte subsets CD4 and CD8 play important role in host immune responses. However, little attention has been given to the impact of time lapse and the various anticoagulant blood collection tubes on the expression frequency and activation status of CD4+ and CD8+ T cells. To this end, we explore the impact of time (t<1 h and t=4 h) and collection tubes (EDTA and heparin) on the expression frequency and activation status of CD4+ and CD8+ T cells among healthy Ghanaian individuals. Methods A cohort of healthy individuals (n=9) is recruited, and blood samples obtained in Ghana for the frequency of CD4+and CD8+ T cells at various time points (<1 h and 4 h). The proportions of activation of these immune markers were profiled using immunophenotyping. Results Significant statistical differences in the activation frequency of CD69 expressing CD4+T cells (t < 1 h and t=4 h; p=0.02) and CD69 expressing CD8+ T cells from EDTA tubes at times (t < 1 h and t=4 h; p=0.05) was observed. No significant difference were observed with CD69 expressing cells in Heparin tubes. Notably, CD8+ T cell activation frequency was observed to be consistently higher than that of CD4+ T cell at the various study time points and in the collection tubes used. No marked alterations were observed witth the proportion of CD4+ and CD8+ T cells in the samples collected at the time points; <1 h and at 4 h. Conclusion The study shows that activation of CD4+ and CD8+ T cells in EDTA tubes differed significantly between both time points (t <1 h and t=4 h) but not in the heparin collection tubes. Therefore, it is important to take into account the elapsed time and the type of blood collection tubes when performing phenotypic characterization of activated immune markers.
- ItemMolecular characterization of interactions between the D614G variant of SARS-CoV-2 S-protein and neutralizing antibodies: A computational approach(Infection, Genetics and Evolution, 2021) Kwarteng, Alexander; Asiedu, Ebenezer; Sylverken, Augustina Angelina; Larbi, Amma; Sakyi, Samuel Asamoah; Asiedu, Samuel Opoku; 0000-0002-0893-2908; 0000-0003-2867-1984; 0000-0002-7691-914X; 0000-0002-3814-6924; 0000-0001-5168-4762; 0000-0002-0352-3195The D614G variant of SARS-CoV-2 S-protein emerged in early 2020 and quickly became the dominant circulating strain in Europe and its environs. The variant was characterized by the higher viral load, which is not associated with disease severity, higher incorporation into the virion, and high cell entry via ACE-2 and TMPRSS2. Previous strains of the coronavirus and the current SARS-CoV-2 have demonstrated the selection of mutations as a mechanism of escaping immune responses. In this study, we used molecular dynamics simulation and MM-PBSA binding energy analysis to provide insights into the behaviour of the D614G S-protein at the molecular level and describe the neutralization mechanism of this variant. Our results show that the D614G S-protein adopts distinct conformational dynamics which is skewed towards the open-state conformation more than the closed-state conformation of the wild-type S-protein. Residue-specific variation of amino acid flexibility and domain specific RMSD suggest that the mutation causes an allosteric conformational change in the RBD. Evaluation of the interaction energies between the S-protein and neutralizing antibodies show that the mutation may enhance, reduce or not affect the neutralizing interactions depending on the neutralizing antibody, especially if it targets the RBD. The results of this study have shed insights into the behaviour of the D614G S-protein at the molecular level and provided a glimpse of the neutralization mechanism of this variant.