Repository logo
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of DSpace
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Iddrisu, Mohammed"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    An improved man-in-the-middle (MITM) attack detections using convolutional neural networks
    (Multidiciplainary Science Journal, 2024-08) Iddrisu, Mohammed; Takyi, Kate; Gyening, Rose-Mary Owusuaa Mensah; Peasah, Kwame Ofosuhene; Banning, Linda Amoako; Agyemang, Kwabena Owusu; 0000-0002-8087-5207
    The increasing reliance on digital communication networks has made information security a critical concern for individuals, organizations, and governments worldwide. Man-in-the-middle (MITM) attacks are significant, prevalent, and damaging concerning cyber-attacks. Detecting MitM attacks is complex due to their stealthy nature and the sophisticated methods employed by attackers. There is the need for researchers to address this issue using current and novel methods like artificial intelligence. In this paper, an improved MitM attack detection approach using the Convolutional Neural Network (CNN) deep learning algorithm is developed, resulting in an overall detection accuracy of 0.986%. The results confirms that the proposed model is very efficient in comparision to other proposed solutions by other authors.

Kwame Nkrumah University of Science and Technology copyright © 2002-2025