
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY

COLLEGE OF ENGINEERING

A Security Shield for Internet of Things (IoT) Devices

Justice Owusu Agyemang

(BSc. Telecommunication Engineering)

A THESIS SUBMITTED TO THE DEPARTMENT OF

ELECTRICAL/ELECTRONIC ENGINEERING, KWAME NKRUMAH

UNIVERSITY OF SCIENCE AND TECHNOLOGY, IN PARTIAL

FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MPhil.

TELECOMMUNICATION ENGINEERING

June 2019

Declaration

I hereby declare that this submission is my own work towards the award of the

MPhil degree and that, to the best of our knowledge, it contains no material pre-

viously published by another person or material which has been accepted for the

award of any other degree of the university, except where due acknowledgment

has been made in the thesis.

Justice Owusu Agyemang .

Student (20532486) Signature Date

Certified by:

Ing. Dr. Jerry John Kponyo .

Supervisor Signature Date

Certified by:

Ing. Dr. Abdul-Rahman Ahmed .

Head of Department Signature Date

i

Abstract

The Internet of Things (IoT) is a new paradigm that enables the convergence of

smart objects and the internet. It is an intelligent network that connects all things

to the Internet for the purpose of exchanging information and communicating

through the information sensing devices in accordance with agreed protocols.

Aside the various benefits IoT provides, it also presents challenges related to

security and privacy. The direct connection of IoT devices to the internet makes

them susceptible to several security threats.

Some ongoing projects for enhancing IoT security include methods for pro-

viding data confidentiality and authentication, access control within the IoT net-

work, privacy and trust among users and things, and the enforcement of security

and privacy policies. However, even with these mechanisms, IoT networks are

vulnerable to multiple attacks aimed to disrupt the network. For this reason,

another line of defense, designed for detecting attackers is needed. Intrusion

Detection Systems (IDSs) fulfill this purpose.

Previous resarch works propose IDSs in relation to IPv6 over Low-power

Wireless Personal Area Network (6LoWPAN). However, since IoT will be used

in many application domains with different technologies (WiFi, BLE, NFC and

Z-Wave), development of IDSs only for 6LoWPAN is insufficient to meet the

security needs of every IoT system.

This research work focuses on IDSs for IoT devices that use WiFi technology.

No previous works address IDSs for IoT devices that use WiFi technology. The

research proposes lightweight intrusion detection algorithms that addresses Man-

In-The-Middle (MITM) and Rogue Access Points (RAP) attacks. It goes further

to propose an orchestration framework for IoT devices which can be used to

logically isolate these devices in instances where vulnerabilities are found on them.

ii

Contents

List of Algorithms . v

List of Figures . viii

1 INTRODUCTION . 1

1.1 Background of Study . 1

1.2 Problem Statement . 3

1.3 Research Objectives . 4

1.3.1 General Objective . 4

1.3.2 Specific Objectives . 4

1.4 Research Contributions . 5

2 LITERATURE REVIEW . 6

2.1 Introduction . 6

2.2 Security Threat Model . 6

2.3 Man-In-The-Middle (MITM) Attack 7

2.4 Rogue Access Point (RAP) Detection 10

2.5 Orchestration Frameworks . 11

2.6 Summary . 13

3 METHODOLOGY . 14

3.1 Threat Model . 14

3.2 MITM Attack Detection . 15

3.2.1 Packet Analyzer . 16

3.2.2 MITM Detection Algorithm 18

iii

3.2.3 MITM Defense Algorithm 19

3.3 Rogue Acces Point (RAP) Detection 21

3.3.1 Lightweight Rogue Access Point(RAP) Detection Algorithm 22

3.3.2 Experimental Setup . 26

3.3.3 RAP Detection Scenarios 27

3.4 Orchestration Framework . 28

3.4.1 Orchestration Framework Architecture 29

3.4.2 Flow of Communication 30

3.4.3 End-to-End Encryption Algorithm for the Orchestration

Framework . 32

3.4.4 Communication Protocol 33

3.4.5 Message Format . 33

3.4.6 Evaluation of Proposed Orchestration Framework 34

4 RESULTS . 35

4.1 Threat Model . 35

4.1.1 OpenWrt . 35

4.1.2 PfSense . 40

4.1.3 MikroTik RouterOS . 46

4.2 MITM . 51

4.3 Rogue Access Point (RAP) Detection 54

4.4 Orchestration Framework . 63

5 CONCLUSION AND RECOMMENDATION 67

References . 75

iv

List of Algorithms

1 Packet Decoding Algorithm . 18

2 Detection Algorithm . 20

3 Defense Algorithm . 20

4 RAP Detection algorithm using iwlist parser 22

5 RAP Detection algorithm using Beacon Frame decoding 24

6 Channel Hopping Algorithms . 29

7 RSA (Priv, Pub) Key Generation 33

8 RSA with OAEP (Priv, Pub) Key Generation 33

v

List of Figures

1.1 The future of connected devices [2]. 2

1.2 IoT Can Be Viewed as a Network of Networks [3]. 2

2.1 Security Threat Model . 7

2.2 MITM Attack . 8

3.1 Experimental setup . 14

3.2 MITM Attack Detection and Defense Mechanism 15

3.3 EAPOL Decoded Frame . 16

3.4 ARP Decoded Frame . 17

3.5 DHCP Decoded Frame . 17

3.6 IP Decoded Frame . 18

3.7 Architecture for evaluating MITM Attack 20

3.8 A Sample Decoded Beacon Frame from a legitimate AP 25

3.9 A Sample Decoded Beacon Frame from a rogue AP 26

3.10 Experimental Setup for evaluating the RAP Detection Algorithm 27

3.11 Scenarios . 28

3.12 Orchestration Framework Architecture 29

3.13 Signature Generation and Verification [50] 31

3.14 Communication between Fleets and Fleet Managers 31

3.15 Communication between Fleet Managers and Controller 32

3.16 Message Format . 34

4.1 OpenWrt: Information Gathering 35

4.2 OpenWrt: Management Interface 36

vi

4.3 OpenWrt: Credentials Capture 37

4.4 OpenWrt: Authentication Token 37

4.5 OpenWrt: Cookie Script . 37

4.6 OpenWrt: Authentication Bypass 38

4.7 OpenWrt: Hosts Identification . 39

4.8 OpenWrt: Hosts Traffic . 40

4.9 pfSense: Version 2.4.3-RELEASE-p1 41

4.10 pfSense: Information Gathering 41

4.11 pfSense: Management Interface 42

4.12 pfSense: Harvested Credentials 43

4.13 pfSense: Session Hijacking . 44

4.14 pfSense: Information Retrieval through Session Hijacking 44

4.15 pfSense: Client Nodes . 45

4.16 pfSense: Credentials stored in XML file 46

4.17 pfSense: Default credentials stored in plain text 46

4.18 MikroTik: v6.40.8 . 47

4.19 MikroTik: Information Gathering 47

4.20 MikroTik: JS proxy encrypted data 48

4.21 MikroTik: Cookie Hijacking . 48

4.22 MikroTik: FTP Credentials Harvesting 49

4.23 MikroTik: Telnet Requesting for Username 49

4.24 MikroTik: Telnet Credentials Harvesting 50

4.25 MikroTik: Telnet Requesting for Password 50

4.26 MikroTik: Telnet Credentials Harvesting 51

4.27 Performance Overhead . 52

4.28 Detection Time . 53

4.29 Round Trip Time . 54

4.30 Graph showing the detection time using Algorithm 1 (Scenario 1) 55

4.31 Graph showing the CPU usage using Algorithm 1 (Scenario 1) . . 56

vii

4.32 Graph showing the detection time using Algorithm 2 with random

channel hopping (Scenario 2) . 57

4.33 Graph showing the CPU usage using Algorithm 2 with random

channel hopping (Scenario 2) . 58

4.34 Graph showing the detection time using Algorithm 2 with iterative

channel hopping (Scenario 3) . 59

4.35 Graph showing the CPU usage using Algorithm 2 with iterative

channel hopping (Scenario 3) . 60

4.36 Graph showing the comparison of the detection time in all three

scenarios . 61

4.37 Graph showing the comparison of the CPU usage in all three sce-

narios . 62

4.38 Comparison of the average detection time and CPU usage of all

three scenarios . 63

4.39 Benchmark Performance of RSA and RSA with OAEP 64

4.40 CPU Utilization when algorithm was implemented on an IoT Device 65

4.41 Revocation and Restoration Time 66

viii

Chapter 1

INTRODUCTION

1.1 Background of Study

The Internet revolution has reinvented business-to-customer (B2C) industries

such as media, retail and financial services. This revolution has led to the emer-

gence of Internet of Things (IoT); an ubiquitous global computing network where

everyone and everything are connected to the Internet. In an IoT ecosystem, ob-

jects in the physical world are embedded with sensors and are connected to the

Internet through wireless or wired communication media. These sensors can use

various types of local area connections such as RFID, NFC, Wi-Fi, Bluetooth,

and Zigbee. Sensors can also have wide area connectivity such as GSM, GPRS,

3G, and LTE. IoT is expected to offer advanced connectivity of devices, systems,

and services using a variety of protocols, domains, and applications.

Factors that have led to the rapid development of IoT include: advanced

networking capabilities, advancement in connectivity, improvement in cloud com-

puting, availability of low-cost devices and low memory costs [1]. The number

of networked devices keeps increasing daily. It is estimated that about 50 billion

devices will be connected by the year 2020 (shown in Figure 1.1).

1

Figure 1.1: The future of connected devices [2].

As of now, IoT is comprised of a collection of purpose-built, disparate net-

works as shown in Figure 1.2.

Figure 1.2: IoT Can Be Viewed as a Network of Networks [3].

This new paradigm is perceived as a standout among the most critical actors

in the Information and Communication Technology(ICT) industry [4]. It has led

2

to significant improvements in domains such as public safety, home automation

and health care [5].

1.2 Problem Statement

The convergence of IoT devices and the Internet makes them susceptible to being

compromised by attackers in situations where vulnerabilities are found on these

devices and are not patched. These threats include firmware cloning, firmware re-

placement, extraction of security information, eavesdropping, Man-in-The-Middle

(MITM) attack, routing attack and Denial of Service (DoS) attack [6].

In 2016, the Mirai botnet, also known as Dyn attack, took the Internet by

storm when it overwhelmed several endpoints with massive Distributed Denial-of-

Service (DDoS) attacks [7]. Furthermore, it was reported in 2017 that St. Jude’s

cardiac devices had vulnerabilities that could allow an attacker to access a device.

The battery of these devices could be depleted and also incorrect pacing or shocks

can be administered when compromised by an attacker. Devices like pacemakers

and defibrillators are used to monitor and control patients’ heart functions and

prevent heart attacks [8]. The Owlet WiFi baby heart monitor was demonstrated

to have a poor IoT security. The base station of the device encrypts data sent

to and received from the manufacturer’s servers, which contact parents’ phones

if needed. But the Ad-Hoc WiFi network linking the base station to the sensor

device is completely unencrypted and doesn’t require any form of authentication

to access. This allows an attacker to snoop on the wireless data if he’s within

the connectivity range. The base station creates its own unlocked WiFi network

that the sensor (and anyone else) can join. A single unauthenticated command

over HTTP can make the Owlet base station leave its current Wi-Fi network and

join a malicious one. Hence an attacker can compromise the system and monitor

a stranger’s baby and prevent alerts from being sent out[9].

Some ongoing projects for enhancing IoT security include methods for pro-

viding data confidentiality and authentication, access control within the IoT net-

3

work, privacy and trust among users and things, and the enforcement of security

and privacy policies [10]. However, even with these mechanisms, IoT networks

are vulnerable to multiple attacks aimed to disrupt the network. For this rea-

son, another line of defense, designed for detecting attackers is needed. Intrusion

Detection Systems (IDSs) fulfill this purpose.

IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) is often

cited as a typical IoT network technology. However, since IoT will be used in many

application domains with different technologies (WiFi, Bluetooth Low Energy

(BLE), Z-Wave, NFC), development of IDSs only for 6LoWPAN is insufficient to

meet the security needs of every IoT system.

Most IoT devices use WiFi technology[11]; hence susceptible to conventional

wireless attacks. It has been demonstrated that IoT devices are susceptible to

MITM attack [12]. This emphasizes the need for measures to be put in place to

protect these devices; the development of Intrusion Detection Systems (IDSs).

Conventional techniques used in detecting wireless attacks are not applica-

ble in an IoT scenario due to resource constraints; hence the need for lightweight

detection algorithms. Current IoT platforms do not provide a means through

which manufacturers can logically isolate devices in instances where vulnerabili-

ties are found on them and need to be patched.

1.3 Research Objectives

1.3.1 General Objective

To develop an Intrusion Detection System (IDS) for WiFi-enabled IoT devices.

1.3.2 Specific Objectives

1. Develop a threat model for WiFi-connected IoT devices.

2. Develop lightweight Intrusion Detection algorithms using the threat model.

4

3. Test the validity of the proposed algorithm with respect to Man-In-The-

Middle (MITM) and Rogue Access Point detection.

4. Develop an orchestration framework for WiFi-enabled IoT devices for logical

isolation of vulnerable IoT devices.

1.4 Research Contributions

1. Threat model for WiFi-enabled IoT devices.

2. A lightweight MITM detection algorithm.

3. A lightweight Rogue Access Point (RAP) detection algorithm.

4. An orchestration framework for WiFi-enabled IoT devices.

5

Chapter 2

LITERATURE REVIEW

2.1 Introduction

It is required that IoT products have the protection of interaction between IoT

entities as a concern in order to improve the security of IoT systems. Auxiliary

lines of defense like intrusion detection systems (IDSs) are essential to prevent

attackers who may attempt to exploit vulnerabilities in IoT devices. This chapter

presents the adopted security model and also reviews works related to MITM,

Rogue Access Point detection and existing orchestration frameworks.

2.2 Security Threat Model

The threat model that was used is shown in Figure 2.2. The model presents

threats at each layer of the Transmission Control Protocol / Internet Protocol

(TCP/IP) stack in reference to WiFi-enabled IoT devices. This model was vali-

dated through an experimental analysis of the security and privacy issues of WiFi

gateways; described in Section 3.1.

Attack at the physical layer occurs when IoT devices are forced to connect

to an illegitimate Access Point (AP) after being disassociated from a legitimate

AP. The disassociation of IoT devices from the AP occurs at the data link layer.

Spoofing of Media Access Control (MAC) addresses leads to MITM attacks which

occurs at the network layer. Teardrop attack occurs at the transport layer. In

this kind of attack, an IoT devices is flooded with a large number of Transmission

Control Protocol (TCP) and User Datagram Protocol (UDP) packets; which leads

to a Denial of Service (DoS). Most IoT devices are also prone to malware attacks

due to exploited vulnerabilities; this occurs at the application layer.

6

Figure 2.1: Security Threat Model

This research addresses Rogue Access Points (RAP) and MITM attacks

which occur at the physical and network layers respectively. The orchestration

framework addresses attacks at the application layer through its logical isolation

mechanism.

2.3 Man-In-The-Middle (MITM) Attack

MITM is an attack where an attacker impersonates a client node. Considering a

communication process between two clients devices A and B, the attacker deceives

A by pretending to be B. This enables the attacker to read or modify messages

sent from A to B (shown in Figure 2.2). This kind of attack is possible due to

a flaw in the Address Resolution Protocol (ARP). The mapping of IP Address

to MAC addresses by the data link layer is made possible through ARP[13]. In

forwarding a packet from one endpoint to another, the host sending the packet

needs to know the recipient’s MAC address. Given the IP address of a host,

to find its MAC address, the source node broadcasts an ARP request packet to

inquire the MAC address of the owner of the IP address. This request is received

by all the host devices in the network. The host device that owns that IP address

7

replies with its MAC address (unicast) [14].

Figure 2.2: MITM Attack

Due to ARP being a stateless protocol and also lacking security in its caching

system[15], it accepts ARP replies without considering if an ARP request was

sent. This weakness can be exploited by an attacker to initiate MITM attack. A

denial of service (DoS) attack can occur if the attacker drops the received packet

without forwarding it to the appropriate destination.

Researchers have developed a number of conventional ARP spoofing MITM

detection mechanisms. A low-cost embedded IDS capable of detecting and pre-

venting ARP spoofing attacks automatically and efficiently has been proposed

[16]. This targets wired Local Area Nework (LAN) environments hence not ap-

plicable in a wireless IoT scenario.

A unicast ARP request was proposed instead of the broadcast ARP request

by assigning IP addresses via DHCP [17]. The IP/MAC mappings are resolved

via DHCP without the need for broadcast. This approach is not applicable for

statically assigned IP addresses.

A backward compatible extension to ARP that relies on public-key cryp-

tography to authenticate ARP replies was proposed [18]. All host devices create

8

public and private key pairs during the initial contact with the network. These

keys are then sent to the Authoritative Key Distributor(AKD). This technique

leads to performance overhead and it is also not feasible in a wireless network.

A Ticket-based ARP (TARP) that implements security by distributing cen-

trally issued secure IP/MAC ticket via DHCP was proposed [19]. TARP imple-

ments security by distributing centrally issued IP/MAC ticket via DHCP. These

tickets are sent to the clients when they join the network and are subsequently

distributed through existing ARP messages. It leads to performance overhead

in generating the public/private key pairs. It is also not suitable for dynamic

networks where hosts can join and leave the network anytime.

An approach to prevent ARP cache poisoning in wireless LAN by imple-

menting the defense mechanism in the access point (AP) was proposed [20]. The

AP constructs the list of correct IP-to-MAC address mapping by monitoring

DHCP ACK messages or referring to the DHCP leases file, and blocks all the

ARP packets with a false mapping based on the constructed list.

MR-ARP, which is the first voting-based ARP spoofing resistant protocol

was proposed [21]. When the MR-ARP endpoint receives an ARP request or

reply declaring an (IP, MAC) mapping for a new IP address, it requests neighbour

endpoints to vote for the new IP Address. In this mechanism, the voting can be

fair only when the voting traffic rates of the responding endpoints are almost the

same. This condition can be satisfied in the Ethernet, but may not be valid in

the 802.11 network due to the traffic rate adaptation based on the signal-to-noise

ratio (SNR).

To overcome the limitation of MR-ARP, EMR-ARP was proposed [22]. This

new protocol improves the voting procedure through the implementation of com-

putational puzzles. This mechanism requires too much computational time from

devices.

GMR-ARP which is an improvement over EMR-ARP was proposed [23].

It decreased the voting traffic overhead (lower than MR-ARP and EMR-ARP).

9

Since voting requests are issued in broadcast, this approach can also cause addi-

tional overhead.

2.4 Rogue Access Point (RAP) Detection

Rogue access point detection is an import aspect in wireless security. It can be

considered as an initial phase of wireless intrusion detection.

A rogue device detection system using techniques such as site survey, Media

Access Control (MAC) address list checking, noise checking and wireless traffic

analysis has been proposed [24]. The author focused on internal rogue device

detection such as wireless devices used by employees in a corporate network. The

author used client devices to do periodical scanning to detect rogue access point

instead of using dedicated scanning devices. His setup consisted of client devices

which communicate with an access point (AP) and the access point communicates

to a central server. Captured wireless network traffic is sent by clients through the

AP to the central server. Clients transfer the captured data to the AP via hyper-

text transfer protocol (HTTP) response. The mode of data transmission between

the AP and the central server is via eXtensible Markup Language (XML). The

central server is responsible for analyzing the received data and upon detecting

an intrusion, logs the intrusion to be analyzed by a system administrator. The

approach used in this scenario cannot be applied to embedded IoT devices due

to resource constraints. Besides, the various client devices used in the periodic

scanning are also susceptible to rogue attacks. There is no defense mechanism to

protect the client devices used in the periodic scanning of wireless traffic. Fur-

thermore, in situations where client devices are unable to communicate to the

central server through the access points, that means rogue access points cannot

be detected.

A conventional rogue access point detection system [25] similar to [24] was

also proposed. In their approach, wireless access points are manually set to

normal operation or sniffing mode. Captured wireless traffic is then stored in a

10

centralized server and analyzed to detect rogue access points. This approach has

limitations similar to that of [24]. Furthermore, it does not incorporate autonomy

in its mode of operation, due to the option of manually switching wireless devices

modes of operation.

Rogue access point detection based on Received Signal Strength (RSS) was

proposed [26]. In this they measured the correlated RSS sequences from nearby

APs so as to determine whether the sequences are legitimate or fake. This method

works in three phases: The first phase involves the collection of all the RSS

from nearby APs. In second phase all these collected RSS are normalized and it

estimates the missed RSSs, caused by some external factors and then estimated

RSSs are normalizes for generalization of variety of wireless environment. In the

last phase, it is determined which RSSs are highly correlated, which is based

on some empirical threshold value. The highly correlated RSS sequences are

considered as fake signals from a single device.

Mehndi et al. [27], proposed an approach which includes the MAC address,

SSID and signal strength of access point in order to decide whether the access

point is rogue or not. In detecting authorized access points, the MAC addresses

of all visible access points are matched against a list of authorized access points.

Tools like Ettercap[28], Wireshark[29] and Snort[30] are further used for filtering

in instances where the MAC address is spoofed.

2.5 Orchestration Frameworks

Currently, several IoT frameworks have been developed in order to make it easy

to deploy and maintain IoT applications.

Amazon Web Services (AWS) IoT [31] is a cloud-based IoT platform devel-

oped by Amazon for easy connection of smart devices to the cloud and also facil-

itate interaction among these devices. It supports mutual authentication at all

points using mechanisms such as X.509 certificates and cognito identities. AWS

IoT cloud assigns a private home directory for each legitimate user. All private

11

data are stored using symmetric key cryptography such as Advanced Encryption

Standards (AES)[32].

ARM mbed [33] IoT platform through its ecosystem, provides all require-

ments needed to develop IoT applications for ARM microcontrollers. It uses

Transport Layer Security (TLS)/Datagram Transport Layer Security (DTLS) for

communication and authentication purposes.

Azure IoT Suite [34], released by Microsoft, provides a set of services that

enables end-users to interact with their IoT devices. It uses TLS for secure

communications and SHA-256 for authentication purposes.

Google released Brillo/Weave [35] platform for the development of IoT

applications. Brillo is an android operation system for lower power embedded

devices where Weave is the communication shell for interactions and message-

parsing. Link-level security is provided by Weave through the use of SSL/TLS

protocol.

Calvin [36], an open source IoT platform developed by Ericsson, enables

the development and management of distributed applications for IoT devices.

Authentication can be done locally or through an external machine and also using

a RADIUS server. Secure communication is done using TLS/DTLS protocol.

HomeKit [37] is an IoT framework developed by Apple. It facilitates man-

aging and controlling connected accessories and appliances. Securing communi-

cation is achieved using TLS/DTLS with AES-28-GCM and SHA-256.

Kura [38] is an Eclipse IoT project that provides a Java-based framework for

IoT gateways that run M2M applications. It consists of security components such

as a security service, a certificate service, a Secure Socket Layer (SSL) manager

and a cryptography service. All communications are secured using SSL/TLS

protocol.

Orchestration systems aimed at providing automated workflow to physical

resources (deployment and scheduling) and workload execution management with

Quality of Service (QoS) control [39; 1] have been proposed.

12

Other researchers have also proposed an architecture that allows the orches-

tration of objects that are part of the Internet of things based on Simple Busi-

ness Modeling Notation (SBMN) [40] and also orchestration frameworks based

on Software-Defined Networking (SDN) [41; 42; 43].

2.6 Summary

From the related works, it can be inferred that the conventional approach used

in detecting MITM attacks and Rogue Access Points (RAP) are not applicable

to IoT devices due to resource constraints [44]; hence the need for a lightweight

MITM detection algorithm. Also, current IoT frameworks that have been devel-

oped or proposed do not provide a logical isolation of IoT devices when they have

been compromised due to an exploited vulnerability.

13

Chapter 3

METHODOLOGY

3.1 Threat Model

In developing the threat model, three WiFi network Operating Systems were an-

alyzed to determine the extent of their security; OpenWrt, PfSense and Mikrotik

Router Operating System(OS). A virtualized network consisting of two client

nodes connected to a router as shown in Fig 3.1.

Figure 3.1: Experimental setup

The virtualized router consisted of two network interfaces, the Wide Area

Network(WAN) interface and the local network interface. The WAN interface

14

was configured as a Domain Host Configuration Protocol (DHCP) Client. The

router’s local network interface was configured as a DHCP Server. Client node 1

acted as a legitimate user and client node 2 acted as a malicious user.

3.2 MITM Attack Detection

The proposed MITM detection and defense algorithm comprises of three sub-level

processes coordinated by an InterProcess Controller (IPC) (shown in Figure 3.2).

Figure 3.2: MITM Attack Detection and Defense Mechanism

The three sub-level processes consists of the packet analyzer, the detection

subprocess and the defense subprocess. The default request and response for

HTTP/1.0 is synchronous; hence not appropriate for multiple requests processing.

Asynchronous Method Dispatch(AMD) is used in the interprocess communication

to enable multiple requests processing.

The algorithm works by first detecting (IP,MAC) mappings of the client

nodes connected to the gateway. Legitimate (IP,MAC) mappings are added to

15

the ARP cache of the gateway which in this case is the AP.

3.2.1 Packet Analyzer

The packet analyzer subprocess is responsible for capturing and decoding wireless

traffic. The following packets are captured and analyzed:

• EAPOL/EAP (Extensible Authentication Protocol). The EAP frame is

generated as a result of key exchange between client nodes and the AP. The

source and destination MAC addresses of the AP and client node are shown

in Figure 3.3.

• DHCP. The DHCP frame is generated when the AP issues out an IP address

to a client node. The source IP and source MAC address as well as the

destination IP and destination MAC address are shown in Figure 3.5.

• IP packet (shown in Figure 3.6).

• ARP. The ARP packet maps client IP addresses to MAC address (shown

in Figure 3.4).

For each of the packet frames decoded, the IP and MAC mappings, together

with the time the frame was received, are filtered and passed to the detection

subprocess via the interprocess controller.

Ethernet
e0 f8 47 2c ff 16

dst e0:f8:47:2c:ff:16

c4 e9 84 df 3c 98

src c4:e9:84:df:3c:98

88 8e

type 0x888e

EAPOL

02

version 802.1X-2004

03

type EAPOL-Key

00 5f

len 95

Raw

02 00 8a 00 10 00 00 00 00 00 00 00 01 44
73 de fe 1e 59 b6 71 00 f8 13 d2 25 71 d1 df 89
f2 13 79 69 a2 d6 3b 30 45 24 07 bc ab 48 90 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00

load ’\x02\x00\x8a\x00\[...]

Figure 3.3: EAPOL Decoded Frame

16

Ethernet
68 d9 3c 3d c5 ce

dst 68:d9:3c:3d:c5:ce

c4 e9 84 df 3c 98

src c4:e9:84:df:3c:98

08 06

type 0x806

ARP

00 01

hwtype 0x1

08 00

ptype 0x800

06

hwlen 6

04

plen 4

00 01

op who-has

c4 e9 84 df 3c 98

hwsrc c4:e9:84:df:3c:98

ac 18 01 01

psrc 172.24.1.1

00 00 00 00 00 00

hwdst 00:00:00:00:00:00

ac 18 01 41

pdst 172.24.1.65

Figure 3.4: ARP Decoded Frame

Ethernet
e0 f8 47 2c ff 16

dst e0:f8:47:2c:ff:16

c4 e9 84 df 3c 98

src c4:e9:84:df:3c:98

08 00

type 0x800

IP
version 4

45

ihl 5

c0

tos 0xc0

01 48

len 328

f9 53

id 63827
flags

00 00

frag 0

40

ttl 64

11

proto udp

25 10

chksum 0x2510

ac 18 01 01

src 172.24.1.1

ac 18
01 50

dst 172.24.1.80
options []

UDP

00 43

sport bootps

00 44

dport bootpc

01 34

len 308

9c 04

chksum 0x9c04

BOOTP

02

op BOOTREPLY

01

htype 1

06

hlen 6

00

hops 0

a1 7e
99 09

xid 2709428489

00 02

secs 2

00 00

flags

00 00 00 00

ciaddr 0.0.0.0

ac 18 01 50

yiaddr 172.24.1.80

ac 18
01 01

siaddr 172.24.1.1

00 00 00 00

giaddr 0.0.0.0

e0 f8 47 2c ff 16 00 00 00 00
00 00 00 00 00 00

chaddr ’\xe0\xf8G,\xff\x1[...]

00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

sname ’\x00\x00\x00\x00\[...]

00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00

file ’\x00\x00\x00\x00\[...]

63 82 53 63

options ’c\x82Sc’

DHCP options

35 01 05 36 04 ac
18 01 01 33 04 00 00 a8 c0 3a 04 00 00 54 60 3b
04 00 00 93 a8 01 04 ff ff ff 00 1c 04 ac 18 01
ff 03 04 ac 18 01 01 06 04 ac 18 01 01 ff 00 00
00 00 00 00 00 00

options [message-type=ack [...]

Figure 3.5: DHCP Decoded Frame

17

Ethernet
c4 e9 84 df 3c 98

dst c4:e9:84:df:3c:98

e0 f8 47 2c ff 16

src e0:f8:47:2c:ff:16

08 00

type 0x800

IP
version 4

45

ihl 5

00

tos 0x0

00 20

len 32

f6 f2

id 63218
flags

00 00

frag 0

40

ttl 64

11

proto udp

29 59

chksum 0x2959

ac 18 01 50

src 172.24.1.80

ac 18
01 01

dst 172.24.1.1
options []

UDP

fe 6c

sport 65132

00 c0

dport 192

00 0c

len 12

9b 16

chksum 0x9b16

Raw

08 01 03 10

load ’\x08\x01\x03\x10’

Figure 3.6: IP Decoded Frame

Algorithm 1 Packet Decoding Algorithm

1: while True do
2: if sniff(interface) then
3: if packet.hasLayer(EAPOL) then
4: ← IP, MAC, Time-Seen
5: else if packet.hasLayer(DHCP) then
6: ← IP, MAC, Time-Seen
7: else if packet.hasLayer(IP) then
8: ← IP, MAC, Time-Seen
9: else if packet.hasLayer(ARP) then

10: ← IP, MAC, Time-Seen
11: end if
12: end if
13: end while

3.2.2 MITM Detection Algorithm

The detection subprocess keeps a virtual ARP cache entries of legitimate IP and

MAC mappings and the last time seen. When a new ARP reply is received, the

detection subprocess checks the virtual ARP cache to verify if such (IP,MAC)

18

entry exits. If the entry does not exist, the new (IP,MAC) mapping is added to

the virtual ARP cache and also to the ARP cache of the gateway.

If the received (IP,MAC) of an ARP reply contains the same IP and MAC

address as one of the entries in the virtual ARP cache, the time seen value of that

entry is updated. If the MAC address of an ARP reply is the same as one of the

entries in the virtual ARP cache but the IP address varies, the detection subpro-

cess performs an inverse ARP to determine whether the host which previously

had the associated MAC address is alive. If the host is alive, then it is flagged as

an MITM attack. If the host is not alive, two tests are performed. The first test

is to determine the number of hop counts by performing a traceroute to the host

IP address. If the hop count is greater than 1, that means the traffic is being

intercept by an unauthorized client. This is flagged as an MITM attack. If the

hop count is 0, then it is possible the host has been denied of service. A second

test is performed to validate whether this is MITM attack. The time difference

between the last seen MAC address entry in the virtual ARP cache and the in-

coming ARP reply’s time is computed. The incoming ARP reply is flagged as

MITM attack if the resulting time difference is less than the ARP cache entry’s

time-to-live (TTL).

3.2.3 MITM Defense Algorithm

When a particular ARP reply is flagged as MITM attack, the defense subprocess

deletes the IP address of the host performing the spoofing attack from the ARP

entry and blocks all traffic originating from that host.

The algorithm was implemented on a Raspberry Pi [45] acting as a gateway

for seven IoT devices (NodeMcu[46]) with one of client nodes acting as a malicious

client (shown in Figure 3.7).

19

Algorithm 2 Detection Algorithm

1: if arpData then
2: exists, res = arp.findMac(arpData.mac)
3: if exists then
4: if arpData.ip != res.ip then
5: if InvARP(res.ip) then
6: ← Host alive, MITM detected
7: else
8: if hopCount(res.ip) != 1 then
9: tDiff = (arpData.t - res.t)

10: if tDiff < ARPTTL then
11: ← MITM leading to DoS
12: end if
13: end if
14: end if
15: else
16: ← Update Last Seen
17: end if
18: else
19: ← New ARP Entry
20: end if
21: end if

Algorithm 3 Defense Algorithm

1: if mitmData then
2: deleteARPEntry(mitmData.IP)
3: dropPackets(mitmData.IP)
4: end if

Figure 3.7: Architecture for evaluating MITM Attack

20

3.3 Rogue Acces Point (RAP) Detection

The rogue AP detection algorithm works by profiling the legitimate access point

using the following characteristics:

• Basic Service Set Identifier (BSSID)

• Channel

• Frequency

• Protocol

• Cipher

• Supported bit rate(s)

The entropy of the legitimate access point is computed using equation 3.1.

H(S) = −
N∑

n=0

pi log2 pi (3.1)

Each of the characteristics is assigned a probability by applying the principle of

indifference(Bayesian non-informative prior).

Pi =
1

N
,N > 1 (3.2)

N is the number of characteristics under consideration. The entropy is used to

quantify the authenticity of an AP based on the characteristics. The algorithm

identifies a particular AP as rogue or not by computing its entropy using the same

characteristics and comparing the computed entropy with that of the legitimate

AP.

21

3.3.1 Lightweight Rogue Access Point(RAP) Detection

Algorithm

The RAP detection algorithm was implemented in two modes. The first mode

uses a parser[47] that uses a Linux operating system utility called iwlist [48]. The

tool enables scanning using a wireless interface and the parser is able to filter the

desired characteristics based on the results obtained from the scan. The second

mode uses a monitoring wireless interface in capturing the wireless traffic. The

captured data is analyzed in realtime to determine whether a particular AP found

is rogue or legitimate.

Algorithm 4 RAP Detection algorithm using iwlist parser

1: while True do
2: if scan(interface) then
3: analyze(res)
4: end if
5: end while
6:

7: procedure scan(interface)
8: ← res
9: end procedure

10:

11: procedure entropy(AP)
12: entropy = 0
13: for i← 0, n do
14: entropy + = −pi ∗ log2(pi)
15: end for
16: ← entropy
17: end procedure
18:

19: procedure analyze(res)
20: if res.ssid == ap.ssid then
21: if entropy(res) >= entropy(ap) then
22: ← rogue
23: else
24: ← legitimate
25: end if
26: end if
27: end procedure

In Algorithm 4, a scan is initiated using the iwlist utility. The captured

22

wireless traffic is then analyzed; indicated by the procedure (line 19). If the SSID

of the captured traffic matches the SSID of the legitimate AP, the entropy of the

detected AP is computed using the procedure on line 11. The decision rule to

flag a particular AP as rogue or not is represented as a unit step function of the

form

1 newEntropy < deviceEntropy

0 newEntropy >= deviceEntropy

where deviceEntropy is the threshold.

In Algorithm 5, the RAP detection works by scanning and detecting beacon

frames that bears the same SSID as the legitimate AP. It decodes the beacon

frame and matches the entropy of its characteristics to that of the legitimate AP.

A sample decoded packet of a legitimate and rogue AP is shown in Figure 3.8

and 3.9 respectively. The addr1 field represents a broadcast address, the addr2

and addr3 are the MAC address of the AP. The info field of the first 802.11

Information Element contains the SSID of the AP.

23

Algorithm 5 RAP Detection algorithm using Beacon Frame decoding

1: while True do
2: if sniff(mon) then
3: analyze(res)
4: end if
5: end while
6:

7: procedure sniff(mon)
8: ← pkt
9: end procedure

10:

11: procedure analyze(res)
12: pkt = sniff(mon)
13: if DecodeFrame(pkt) then
14: if DecodeFrame.ssid == ap.ssid then
15: if ent(frame) != ent(dev.ssid) then
16: ← rogue
17: else
18: ← legitimate
19: end if
20: end if
21: end if
22: end procedure
23:

24: procedure DecodeFrame(pkt)
25: if pkt.hasLayer(Dot11Beacon) then
26: ← decodePacket
27: else
28: ← None
29: end if
30: end procedure
31:

24

RadioTap dummy
00

version 0

00

pad 0

12 00

len 18

2e 48 00 00

present Flags+Rate+Channel[...]

00 02 85 09 a0 00 e9 01
00 00

notdecoded ’\x00\x02\x85\t\xa[...]

802.11
subtype 8L
type Management

80

proto 0L

00

FCfield

00 00

ID 0

ff ff ff ff ff ff

addr1 ff:ff:ff:ff:ff:ff

50 2b 73 dc
6d 76

addr2 50:2b:73:dc:6d:76

50 2b 73 dc 6d 76

addr3 50:2b:73:dc:6d:76

40 e4

SC 58432
addr4

802.11 Beacon

72 d1 f0 84 00 00
00 00

timestamp 2230374770

64 00

beacon interval 100

11 04

cap short-slot+ESS+pri[...]

802.11 Information Element

00

ID SSID

0a

len 10

73 70 65 72 69 78 6c 61
62 73

info ’sperixlabs’

802.11 Information Element

01

ID Rates

08

len 8

82 84 8b 96 0c 12 18 24

info ’\x82\x84\x8b\x96\[...]

802.11 Information Element

03

ID DSset

01

len 1

06

info ’\x06’

802.11 Information Element

05

ID TIM

04

len 4

00 01 00 00

info ’\x00\x01\x00\x00’

802.11 Information Element

2a

ID ERPinfo

01

len 1

04

info ’\x04’

802.11 Information Element

32

ID ESRates

04

len 4

30 48 60 6c

info ’0H‘l’

802.11 Information Element

30

ID RSNinfo

14

len 20

01 00 00 0f ac 04 01 00 00 0f ac 04 01 00 00 0f
ac 02 0c 00

info ’\x01\x00\x00\x0f\[...]

802.11 Information Element

2d

ID 45

1a

len 26

2c 10 1f ff ff 00 00 00 00 00
00 00 00 2c 01 01 00 00 00 00 00 00 00 00 00 00

info ’,\x10\x1f\xff\xff[...]

802.11 Information Element

3d

ID 61

16

len 22

06 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00

info ’\x06\x00\x00\x00\[...]

802.11 Information Element

7f

ID 127

04

len 4

00 00 00 02

info ’\x00\x00\x00\x02’

802.11 Information Element

dd

ID vendor

18

len 24

00 50 f2 02 01 01 80 00 03 a4 00 00 27 a4 00 00
42 43 5e 00 62 32 2f 00

info ”\x00P\xf2\x02\x01[...]

Figure 3.8: A Sample Decoded Beacon Frame from a legitimate AP

25

RadioTap dummy
00

version 0

00

pad 0

12 00

len 18

2e 48 00 00

present Flags+Rate+Channel[...]

00 02 6c 09 a0 00 b5 01
00 00

notdecoded ’\x00\x02l\t\xa0\x[...]

802.11
subtype 8L
type Management

80

proto 0L

00

FCfield

00 00

ID 0

ff ff ff ff ff ff

addr1 ff:ff:ff:ff:ff:ff

a8 7d 12 20
3a 23

addr2 a8:7d:12:20:3a:23

a8 7d 12 20 3a 23

addr3 a8:7d:12:20:3a:23

e0 20

SC 8416
addr4

802.11 Beacon

85 71 37 03 00 00
00 00

timestamp 53965189

64 00

beacon interval 100

31 04

cap short-slot+ESS+pri[...]

802.11 Information Element

00

ID SSID

0a

len 10

73 70 65 72 69 78 6c 61
62 73

info ’sperixlabs’

802.11 Information Element

01

ID Rates

04

len 4

82 84 8b 96

info ’\x82\x84\x8b\x96’

802.11 Information Element

03

ID DSset

01

len 1

01

info ’\x01’

802.11 Information Element

05

ID TIM

09

len 9

00 02 00
00 00 00 00 00 00

info ’\x00\x02\x00\x00\[...]

802.11 Information Element

2a

ID ERPinfo

01

len 1

00

info ’\x00’

802.11 Information Element

32

ID ESRates

08

len 8

0c 12 18 24 30
48 60 6c

info ’\x0c\x12\x18$0H‘l[...]

802.11 Information Element

30

ID RSNinfo

14

len 20

01 00 00 0f ac 04 01 00 00 0f ac
04 01 00 00 0f ac 02 0c 00

info ’\x01\x00\x00\x0f\[...]

802.11 Information Element

2d

ID 45

1a

len 26

2c 01 03 ff 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00

info ’,\x01\x03\xff\x00[...]

802.11 Information Element

3d

ID 61

16

len 22

01 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00

info ’\x01\x00\x00\x00\[...]

802.11 Information Element

dd

ID vendor

18

len 24

00
50 f2 02 01 01 81 00 03 a4 00 00 27 a4 00 00 42
43 5e 00 62 32 2f 00

info ”\x00P\xf2\x02\x01[...]

Figure 3.9: A Sample Decoded Beacon Frame from a rogue AP

3.3.2 Experimental Setup

The experimental setup consisted of an IoT device built using a Raspberry Pi 3,

a TP-Link AP and a virtualized RAP (shown in Fig. 3.10).

26

Figure 3.10: Experimental Setup for evaluating the RAP Detection Algorithm

The virtualized RAP was setup using a Debian Linux operating system

with a Tenda wireless usb adapter. The driver for the wireless usb adapter was

recompiled to work with the Linux kernel 4.15.0 [49].

3.3.3 RAP Detection Scenarios

Three scenarios were considered in testing the performance of the RAP detection

algorithm. The first scenario implements Algorithm 4 whilst the second and third

scenarios implement Algorithm 5 (shown in Fig 3.11).

27

Figure 3.11: Scenarios

In the second and third scenarios, a channel hopping technique (Algorithm

6) is introduced. In scenario 2, a random channel hoping algorithm (Algorithm

6, line 1) was used whereas in scenario 3, an iterative channel hoping algorithm

was used (Algorithm 6, line 12).

The detection time and the CPU utilization efficiency was measured while

varying the distance between the rogue AP and the legitimate AP. In reference

to Figure 3.10, the distance between the legitimate AP and the Rogue AP was

varied relative to the position of the IoT device. This was done to verify if the

detection algorithm will be able to detect rogues that dynamically change their

positions relative to the legitimate AP.

3.4 Orchestration Framework

The orchestration framework employs the use of Public Key Infrastructure in

providing logical isolation of IoT devices in instances where these devices are

compromised.

28

Algorithm 6 Channel Hopping Algorithms

1: procedure randomhop(iface)
2: n = 1
3: while True do
4: changeChannel(n, iface)
5: temp = int(random.random() ∗ 14)
6: if temp != 0 and temp != n then
7: n = temp
8: end if
9: end while

10: end procedure
11:

12: procedure iterative(iface)
13: while True do
14: for n ∈ (1, 14) do
15: changeChannel(n, iface)
16: end for
17: end while
18: end procedure

3.4.1 Orchestration Framework Architecture

The entire architecture for the orchestration framework is shown in Figure 3.12.

Figure 3.12: Orchestration Framework Architecture

29

The architecture consists of IoT devices which together form a fleet and are

connected to a fleet manager. The various fleet managers are also connected to a

main controller. The flow of communication downstream is from the controller to

the fleet managers then to the fleet devices. The reverse takes place for upstream

communication.

The fleet managers are responsible for authorizing IoT devices belonging to

a particular fleet. The controller coordinates and authorizes the various fleet man-

agers. The authorization and management functions of both the fleet managers

and the controller can be chained together through Network Function Virtualiza-

tion (NFV).

3.4.2 Flow of Communication

Communication from one endpoint to another is secured using public key cryp-

tography. A pair of asymmetric keys (Priv, Pub) keys are generated at each

endpoint. The (Pub) keys are used in encrypting data between endpoints where

as (Priv) is used for decrypting received data and also verifying a received data

as valid or not (shown in Figure 3.13).

When a fleet manager wants to communicate to an IoT device belonging

to its fleet, it encrypts the data using the (Pub) key of the IoT device. The

reverse goes for communication between an IoT device and a fleet manager. This

is illustrated in Figure 3.14.

30

Figure 3.13: Signature Generation and Verification [50]

Figure 3.14: Communication between Fleets and Fleet Managers

When a fleet manager wants to communicate to the controller, it encrypts

31

the data with the controllers (Pub) key. The received data is decrypted by the

controller using its (Priv) key. The reverse goes for communication between the

controller and fleet managers. This is shown in Figure 3.15.

Figure 3.15: Communication between Fleet Managers and Controller

3.4.3 End-to-End Encryption Algorithm for the Orches-

tration Framework

The orchestration framework implements Rivest-Shamir-Adleman(RSA) cryptog-

raphy system with Optimal Asymmetric Encryption Padding (OAEP).

RSA cryptosystem generates (Priv, Pub) keys based on the practical diffi-

culty of the factorization problem of the product of two large prime numbers; with

a modular exponentiation for all integers m (0 ≤ m ≤ n) , (me)d ≡ m (mod n),

knowing e and n or even m it is extremely difficult to find d.

32

We employ OAEP because it adds an element of randomness into the RSA

algorithm. Also, OAEP prevents partial decryption of ciphertext by ensuring

an adversary cannot recover any portion of the plaintext without being able to

invert the one-way permutation function. The algorithm for (Priv, Prub) keys

generation using RSA and RSA with OAEP is shown in Algorithm 7 and 8

respectively.

Algorithm 7 RSA (Priv, Pub) Key Generation

1: randomSeed = Random.generate()
2: rsa = RSA.generate(keyLength, randomSeed)
3: pubKey = rsa.publicKey()
4: privKey = rsa

Algorithm 8 RSA with OAEP (Priv, Pub) Key Generation

1: randomSeed = Random.generate()
2: rsa = RSA.generate(keyLength, randomSeed)
3: pubKey = PKCS1 OAEP.new(rsa.publicKey())
4: privKey = PKCS1 OAEP.new(rsa)

3.4.4 Communication Protocol

The framework uses HyperText Transport Protocol (HTTP) with Transport

Layer Security (TLS). To overcome the limitation of HTTP being synchronous,

we employ the use of websocket for asynchronous requests and responses. This

enables a two-way communication process with faster request and response times

and also minimal performance overhead.

3.4.5 Message Format

The message format consists of a message token/identifier, a signature verification

field and the payload (shown in Figure 3.16).

33

Figure 3.16: Message Format

The message token/identifier is generated using the operating system’s ran-

dom number generation algorithm. For operating systems that do not implement

the (os.urandom) random number generation algorithm, WichmannHill’s ran-

dom number generation algorithm can be implemented. The computational time

between the two is quite insignificant (shown in Figure 4.39). WichmannHill’s

algorithm averages 0.0000751 seconds whereas the System Random algorithm

averages 0.0000597 seconds. The message token/identifier guards against mes-

sage replay attacks between endpoints. The signature field is used to validate the

endpoints. The payload contains the data to be received by the endpoint; which

can be encrypted using the (Pub) key of the receiving node.

3.4.6 Evaluation of Proposed Orchestration Framework

The entire orchestration framework was implemented using a RaspberryPi [45]

as an IoT device belonging to a particular fleet. The fleet manager and the con-

troller were implemented in the cloud using NFV. The following key performance

indicators were used in measuring the efficiency of the orchestration framework:

• The computational time of the public key cryptographic algorithm.

• The performance overhead of the algorithm on endpoints (IoT devices).

• The time it takes to revoke and restore an IoT device’s access.

34

Chapter 4

RESULTS

4.1 Threat Model

In reference to the architecture in 3.1, the following router firmwares were used

in the vulnerability assessment: OpenWrt, PfSense and Mikrotik

4.1.1 OpenWrt

The OpenWrt Project is a Linux operating system targeting embedded devices.

It provides a fully writable filesystem with package management[51]. The version

used was Chaos Chalmer 15.05.1.

Information Gathering

Device fingerprinting was done using Nmap, which is a free security scanner, port

scanner and network exploration tool. Figure 4.1 shows the services running on

the OpenWrt firmware router.

Figure 4.1: OpenWrt: Information Gathering

From the information gathered, it was found out that the firmware had

services such as Secure Shell(ssh) service, Telnet service, Domain Name System

service and an HTTP service running. An initial setup of the firmware required

35

the use of the telnet service. This allowed the default password to be set. The

Telnet service disables automatically after the user password is set.

Authentication Bypass

The administrative page for OpenWrt was not encrypted. It used the standard

Hypertext Transport Protocol(HTTP). The user management user interface is

shown in Fig 4.2.

Figure 4.2: OpenWrt: Management Interface

By default the username was root which is the superuser in a linux system.

The entire network was sniffed for packet data using Wireshark. It was

realized that when a user logs in through the management interface, the login

credentials can be sniffed since the HTTP service is unencrypted. This is shown

in Fig 4.3.

36

Figure 4.3: OpenWrt: Credentials Capture

When the user is successfully authenticated, the system generates a token

together with a cookie which is stored in the user’s browser. This was sniffed and

captured as shown in Fig 4.4.

Figure 4.4: OpenWrt: Authentication Token

The authentication was bypassed using the cookie and token generated.

This was done by creating a script that sets a cookie with an attribute called

sysauth and with its value the same as the one captured (shown in Fig 4.5).

Figure 4.5: OpenWrt: Cookie Script

Once the script was executed, the token url was pasted in a browser and

37

the management interface loaded without any authentication. This is shown in

Figure 4.6. The session remains active until the legitimate user logs out.

Figure 4.6: OpenWrt: Authentication Bypass

Hosts Discovery

The OpenWrt firmware exposes the identity of client nodes; hostname, Internet

Protocol(IP) address and Media Access Control (MAC) address. This can been

seen in Fig 4.7 which shows a JavaScript Object Notation(JSON) format of the

clients information.

38

Figure 4.7: OpenWrt: Hosts Identification

The firmware also exposes network traffic and communication protocol of

each client node as shown in Fig 4.8.

39

Figure 4.8: OpenWrt: Hosts Traffic

4.1.2 PfSense

PfSense is an open source firewall/router computer software distribution based

on FreeBSD. It is installed on a physical computer or a virtual machine to make a

dedicated firewall/router for a network[52]. The version used in the experimental

setup was 2.4.3-RELEASE-p1 4.9.

40

Figure 4.9: pfSense: Version 2.4.3-RELEASE-p1

Information Gathering

Fig 4.10 shows the various services running on the pfSense router.

Figure 4.10: pfSense: Information Gathering

41

The management system was running on port 80 and 443. Also a DNS

system was running on port 53.

Authentication Bypass

The default management interface for pfsense(shown in Fig. 4.11) uses HTTP

Secure(HTTPS) hence all the transport layer data frames were encrypted.

Figure 4.11: pfSense: Management Interface

In order to verify how secure the authentication mechanism was, a man-

in-the-middle attack was generated between the client node 1 and the router.

Data exchange between the client node 1 and the router were routed through the

client node 2. This allowed the client node 2 to strip the HTTPS header from

the browser request. Hence all requests and responses received by client node 1

were purely HTTP.

Sniffing network traffic on the local network exposed the credentials used

by the network administrator to log in into the management interface. Since the

entire traffic was now HTTP, the credentials were harvested as plain text (shown

in Fig. 4.12).

42

Figure 4.12: pfSense: Harvested Credentials

Also, the firmware stored cookies after the log in credentials had been val-

idated(shown in Fig 4.13). Hijacking this cookie can enable an attacker send

requests to the router and retrieve certain details such as system uptime etc

(shown in Fig 4.14).

43

Figure 4.13: pfSense: Session Hijacking

Figure 4.14: pfSense: Information Retrieval through Session Hijacking

Hosts Discovery

With the hijacked session, connected nodes can be identified through a

without performing an entire scan of the network. This is shown in Fig 4.15.

44

Figure 4.15: pfSense: Client Nodes

Review of PfSense Management System

In reviewing the management software of pfSense, it was discovered that the man-

agement interface credentials was stored in an eXtensible Markup Language(XML)

file. Also the password hashing function used was bcrypt. This is not an efficient

way of storing user credentials since it can be bruteforced using rainbow tables

(shown in Fig. 4.16).

45

Figure 4.16: pfSense: Credentials stored in XML file

Also the default credentials is stored on the device in plain text format

(shown in Fig. 4.17).

Figure 4.17: pfSense: Default credentials stored in plain text

4.1.3 MikroTik RouterOS

RouterOS is a routing operating system which provides features such as routing,

firewall, bandwidth management, wireless access point, backhaul link, hotspot

gateway and Virtual Private Network(VPN) server. The version used in the

experiment was v6.40.8 as shown in Fig 4.18.

46

Figure 4.18: MikroTik: v6.40.8

Information Gathering

The following services(shown in Fig 4.19) were found to be running on the

RouterOS,

1. File Transfer Protocol(FTP) service.

2. Secure Shell(SSH) service.

3. Telnet service.

4. HTTP service.

Two other services were running on port 2000 and 8291. These were service ports

used by the WinBox application client to communicate to the RouterOS.

Figure 4.19: MikroTik: Information Gathering

47

Authentication Bypass

The default protocol for the management interface is HTTP. The system routes

its connection through a Javascript(JS) proxy which tends to obfuscate the data

being transmitted (shown in Fig 4.20).

Figure 4.20: MikroTik: JS proxy encrypted data

It makes session hijacking impossible. It was found out that the system sets

a cookie in the browser once a user is authenticated (shown in Fig 4.21).

Figure 4.21: MikroTik: Cookie Hijacking

48

The system could not be bypassed using the hijacked cookie due to the

Javascript proxy (JS Proxy) implemented in the web service; the JS Proxy obfus-

cates session parameters. Due to this, different attack measures were considered.

The system was exploited for vulnerability in the FTP service and the Telnet

service. It was possible to sniff the username and password through the FTP

service since it was unencrypted (shown in Fig 4.22).

Figure 4.22: MikroTik: FTP Credentials Harvesting

User credentials was sniffed through the Telnet service (shown in Fig).

Figure 4.23: MikroTik: Telnet Requesting for Username

49

Figure 4.24: MikroTik: Telnet Credentials Harvesting

Figure 4.25: MikroTik: Telnet Requesting for Password

50

Figure 4.26: MikroTik: Telnet Credentials Harvesting

4.2 MITM

In reference to Figure 3.7 and the methodology described in Section 3.2, three key

performance indicators were used in determining the efficiency of the proposed

algorithm: CPU utilization efficiency, detection time and network latency (using

the round trip time (RTT)). Outliers of the data acquired are as a result of the

threading effect on the CPU.

Figure 4.27 shows the performance overhead when the algorithm was im-

plemented; averages 0.9545%. It outperforms that of [20] which was 1.65%.

51

0 2 4 6 8 10
Attempts

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pe

rc
en

ta
ge

 O
ve

rh
ea

d
(%

)

Figure 4.27: Performance Overhead

The average time (shown in Figure 4.28) for detecting MITM attack is

0.1686 seconds.

52

0 5 10 15 20
Attempts

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
De

te
ct
io
n
Ti
m
e
(S
ec

on
ds
)

Figure 4.28: Detection Time

The round trip time, which is a measure of latency in a network, for the

instance where the algorithm was not implemented is 1.298 seconds whereas

when the algorithm is implemented it is 1.335 seconds. This shows that the

MITM detection and defense algorithm does not affect the latency of the network

(shown in Figure 4.29).

53

0 2 4 6 8 10
Attempts

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Ro

un
d
Tr
ip
 T
im

e
(S
ec

on
ds

)

Default Mode
MITM Algo

Figure 4.29: Round Trip Time

4.3 Rogue Access Point (RAP) Detection

The detection time together with the CPU usage was measured in all scenarios.

The distance between the legitimate AP and the RAP was varied from 1 to 30

meters.

The detection time in Scenario 1 is shown in Fig. 4.30. The detection time

averages 2.15064 seconds (shown in Fig. 4.38).

54

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

2.05

2.10

2.15

2.20

2.25

2.30
De

te
ct
io
n
Ti
m
e
(s
)

Figure 4.30: Graph showing the detection time using Algorithm 1 (Scenario 1)

The CPU usage of Scenario 1 is shown in Fig 4.31. The CPU usage averages

0.31835% (Fig 4.38).

55

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

0.314

0.316

0.318

0.320

0.322
CP

U
Us
ag
e
(%

)

Figure 4.31: Graph showing the CPU usage using Algorithm 1 (Scenario 1)

In Scenario 2, the random channel hoping algorithm is applied after the

decoding of the beacon frame in RAP detection. The detection time is shown in

Fig 4.32. The detection time averages 0.13182 seconds.

56

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
De

te
ct
io
n
Ti
m
e
(s
)

Figure 4.32: Graph showing the detection time using Algorithm 2 with random

channel hopping (Scenario 2)

The CPU usage in Scenario 2 (shown in Fig 4.33), averages 2.3049%(Fig.

4.38).

57

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

2.300

2.302

2.304

2.306

2.308

2.310
CP

U
Us
ag
e
(%

)

Figure 4.33: Graph showing the CPU usage using Algorithm 2 with random

channel hopping (Scenario 2)

Scenario 3 employs iterative channel hopping technique. The detection time

(shown in Fig. 4.34) averages 0.20465 seconds.

58

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
De

te
ct
io
n
Ti
m
e
(s
)

Figure 4.34: Graph showing the detection time using Algorithm 2 with iterative

channel hopping (Scenario 3)

The CPU usage if Scenario 3 (shown in Fig. 4.35) averages 2.3051%.

59

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

2.3000

2.3025

2.3050

2.3075

2.3100

2.3125

2.3150

2.3175
CP

U
Us

ag
e
(%

)

Figure 4.35: Graph showing the CPU usage using Algorithm 2 with iterative

channel hopping (Scenario 3)

Fig 4.36 shows the comparison of the detection time of Scenarios 1, 2 and

3 over the measured distance. It can be observed that Scenarios 2 and 3 have a

better detection time as compared to Scenario 1.

60

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
De

te
ct
io
n
Ti
m
e
(s
)

Scenario 1
Scenario 2
Scenario 3

Figure 4.36: Graph showing the comparison of the detection time in all three

scenarios

In Fig. 4.37, Scenario 1 performs better with respect to CPU utilization as

compared to Scenarios 2 and 3.

61

0 5 10 15 20 25 30
Distance between legitimate AP and rogue AP (m)

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25
CP
U
us
ag
e
(%
)

Scenario 1
Scenario 2
Scenario 3

Figure 4.37: Graph showing the comparison of the CPU usage in all three sce-

narios

In Fig. 4.38, Scenario 2 and 3 outperform Scenario 1 with respect to the

detection time. On the other hand, Scenario 1 outperforms Scenarios 2 and 3 in

terms of efficient CPU utilization.

62

 Scenario 1 Scenario 2 Scenario 3
Scenarios

0.0

0.5

1.0

1.5

2.0
De

te
ct
io
n
Ti
m
e
(s
)

0.0

0.5

1.0

1.5

2.0

CP
U
Us

ag
e
(%

)

Figure 4.38: Comparison of the average detection time and CPU usage of all

three scenarios

From the above results, Algorithm 4 can be implemented on embedded

IoT devices that do not transmit data at very short intervals i.e. intervals >

2.5 seconds. For embedded IoT devices that transmit data at very short intervals,

Algorithm 5 can be implemented since a CPU usage of 2.3% is quite efficient.

4.4 Orchestration Framework

A benchmark performance on the two algorithms was conducted on a RaspberryPi[45]

to determine which of the two is less computationally intensive and what length

of bits will be appropriate for use. This is shown in Figure 4.39.

63

2000 4000 6000 8000 10000
Key Length

0

5

10

15

20

25

30

35
Av

er
ag

e
Co

m
pu

ta
tio

na
l T

im
e
(s
)

RSA with OAEP
RSA with no OAEP

Figure 4.39: Benchmark Performance of RSA and RSA with OAEP

Key lengths from 1024 to 4096 for both RSA and RSA with OAEP pro-

duce an average computational time of 0.147 seconds and 0.408 seconds as

compared to fast Elliptic Curve Digital Signature Algorithm (ECDSA) with an

average computational time of 9.085 seconds[53]. A key length of 2048 was

used in the orchestration in the RSA-OAEP algorithm. This offers both low

computational overhead together with secure communication process.

The average CPU utilization of the framework implemented on an IoT de-

vice averages 0.8% (shown in Figure 4.40).

64

0 2 4 6 8 10
Attempts

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
Pe

rc
en

ta
ge

 O
ve

rh
ea

d
(%

)

Figure 4.40: CPU Utilization when algorithm was implemented on an IoT Device

Revoking and restoring an IoT device’s access was done at the controller

(described in Figure 3.12) and the duration was measured. The revocation and

restoration time averaged 4.225 seconds and 4.272 seconds (shown in Figure).

65

2 4 6 8 10

3.8

3.9

4.0

4.1

4.2

4.3

4.4

Re
vo

ca
tio

n/
Re

st
or
at
io
n
Ti
m
e
(s
)

Revocation
Restoration

Figure 4.41: Revocation and Restoration Time

66

Chapter 5

CONCLUSION AND RECOMMENDATION

This research has proposed lightweight MITM and RAP Detection algorithms

and an orchestration framework. The proposed MITM detection algorithm out-

performs the conventional approach suggested by [24] (shown in Table 5.1).

Table 5.1: Comparison of MITM Detection Algorithms
KPIs (Avg.) Proposed Algorithm Related Works

CPU Utilization (%) 0.9545 1.65 (Ibrahim et al.)
Detection Rate (Sec.) 0.1686 -
Network Latency 1.298 / 1.335 -

Previous research works do not address RAP detection for IoT devices,

hence the proposed RAP detection algorithms. All three scenarios have minimal

performance overhead and good detection rates (shown in Table 5.2).

Table 5.2: Comparison of RAP Detection Algorithms
KPIs (Avg.) Proposed Algorithm

(S1 / S2 / S3)
Related Works

CPU Utilization (%) 0.31835 / 2.3049 / 2.3051 -
Detection Rate (Sec.) 2.15064 / 0.13182 / 0.20465 -

The proposed orchestration framework also has minimal performance over-

head and good revocation and restoration time (shown in Table 5.3). This frame-

work can be used by IoT device manufacturers to deliver firmware updates to

IoT devices as a means of patching identified vulnerabilities.

Table 5.3: Comparison of Orchestration Framework Algorithms
KPIs (Avg.) Proposed Algorithm Related Works

CPU Utilization (%) 0.8 -
Revocation (Sec.) 4.225 -
Restoration (Sec.) 4.272 -

Future works will consider providing a cross-proxy between the framework

67

and other existing protocols such as Constrained Application Protocol (CoAP);

which is used by resource constrained IoT devices.

It is recommended that a lightweight Denial of Service (DoS) detection

and defense mechanism be implemented for resource-constrained IoT devices.

Intrusion detection systems that address other technologies such as Bluetooth

Low Energy (BLE), Z-Wave and Near-Field Communication (NFC) should be

addressed. The entire source code for the research work can be found at [54].

68

REFERENCES

[1] I. Lee and K. Lee, The internet of things (iot): Applications, investments,

and challenges for enterprises, Business Horizons, vol. 58, no. 4, pp. 431-440,

2015.

[2] Dave Evans, The Internet of Things: How the Next Evolution of the Internet

Is Changing Everything, Cisco Internet Business Solutions Group (IBSG),

pp. 3, April 2011.

[3] Dave Evans, “The Internet of Things: How the Next Evolution of the In-

ternet Is Changing Everything” Cisco Internet Business Solutions Group

(IBSG) , pp. 4, April 2011.

[4] D. Miorandi , S. Sicari , F. De Pellegrini, I. Chalmatac, Internet of Things:

vision, applications and research challenges, Ad Hoc Network 10(7), 1497 -

1516, 2012.

[5] E. Borgia, The Internet of Things vision: key features, applications and open

issues. Comput. Commun. 54, 1-31, 2014

[6] Garcia-Morchon O., Kumar S., Struik R., Keoh S., Hummen R., Security

considerations in the IP-based Internet of Things, IETF Internet-Draft, 2013.

[7] Manos Antonakakis, Tim April et al, “Understanding the Mirai Botnet”,

26th USENIX Security Symposium, pp. 1, August 2017.

[8] Selena Larson, “FDA confirms that St. Jude’s cardiac devices can be

hacked”,http://money.cnn.com/2017/01/09/technology/fda-st-jude-cardiac-

hack/, [Accessed Online], 8th July, 2018.

[9] Lain Thompson, “Wi-Fi baby heart monitor may have the worst IoT security

of 2016”, www.theregister.co.uk/2016/10/13/possibly worst iot security

failure yet/?mt=1476453928163, [Accessed Online] 8th June, 2018.

69

[10] Sicari S., Rizzardi A., Grieco L., Coen-Porisini A., Security, privacy and

trust in Internet of Things: the road ahead, Comput. Netw. 76 (0), 146-164,

2015.

[11] Notra S., Siddiqi M., Gharakheili H., Sivaraman V., Boreli R., An experimen-

tal study of security and privacy risks with emerging household appliances.

In: Communications and Network Security (CNS), 2014 IEEE Conference

on, pp. 79-84, 2014.

[12] Kolias, C., Stavrou, A., Voas, J., Bojanova, I., Kuhn, R., Learning Internet-

of-things security “Hands-on“. IEEE Secur. Priv. 20 (February), 2-11.

http://dx.doi.org/10.1109/MSP.2016.4, (January/February).

[13] Plummer, D.C. (1982) An Ethernet Address Resolution Protocol. RFC 826.

[14] AI Sukkar G. , Saifan R., Khwaldeh S., Maqableh M., Jafar I., Address

Resolution Protocol (ARP); Spoofing Attack and Proposed Defense, Commu-

nications and Network, 8, 118-130, 2016.

[15] Mauro Conti, Nicola Dragoni, Viktor Lesyk, A Survey of Man In The Middle

Attacks, IEEE Communications Surveys & Tutorials, Vol. 18, No. 3, 2016.

[16] J. Belenguer, C.T. Calafate, A low-cost embedded IDS to monitor and pre-

vent man-in-the-middle attacks on wired LAN environments, Proc. Int. Conf.

SecureWave Emerging Secur. Inf. Syst. Technol., 2007, pp. 122-127.

[17] Issac B., Secure ARP and Secure DHCP Protocols to Mitigate Security At-

tacks, International Journal of Network Security, 8, 107-118, 2009.

[18] D. Bruschi, A. Ornaghi, E. Rosti, S-ARP: A secure address resolution pro-

tocol, Proc. 19th Annu. Comput. Secur. Appl. Conf., pp. 66-74, 2003.

[19] Lootah W., Enck W., McDaniel P, TARP: Ticket-Based Address Resolution

Protocol, Computer Networks, 51, 4322-4337, 2007.

70

[20] R Philip, Securing Wireless Networks from ARP Cache Poisoning, Master’s

Thesis, San Jose State University, (2007).

[21] S. Y. Nam, D. Kim, J. Kim, Enhanced ARP: Preventing ARP poisoning-

based man-in-the-middle attacks, IEEE Commun. Lett., vol. 14, No. 2. pp.

187-189, 2010.

[22] S. Y. Nam, S. Jurayev, S.-S. Kim, K. Choi, G. S. Choi, Mitigating ARP

Poisoning-Based Man-In-The-Middle Attacks in Wired or Wireless LAN

[23] S. Y. Nam, S. Djuraev, M. Park, Collaborative Approach to Mitigate ARP

Poisoning-Based Man-In-The-Middle Attack, Comput. Netw. vol 57, No. 18.

pp 3866-3884, 2013.

[24] Ibrahim Halil Saruhan, Detecting and Preventing Rogue Devices on the Net-

work, SANS Institute, pp. 5-7 2007.

[25] S.B.Vanjale, Amol K. Kadam, Pramod A. Jadhav, Detecting & Eliminating

Rogue Access Point in IEEE 802.11 WLAN, International Journal of Smart

Sensors and Ad Hoc Networks (IJSSAN) Volume-1, Issue-1, 2011.

[26] T. Kim, H. Park, H. Jung, H. Lee, Online detection of fake access points

using received signal strengths, 2012.

[27] Mehndi Samra, Mehak Mengi, Sparsh Sharma, Naveen Kumar Gondhi, De-

tection and Mitigation of Rogue Access Point, Journal of Scientific and Tech-

nical Advancements, Volume 1, Issue 3, pp. 195-198, 2015.

[28] Ettercap, http://ettercap.github.io/ettercap/ [Accessed Online], January

2019.

[29] Wireshark, http://www.wireshark.org/ [Accessed Online], January 2019

[30] Snort, http://www.snort.org/ [Accessed Online], January 2019.

71

[31] Amazon, “Aws iot framework”, https://aws.amazon.com/iot, [Accessed On-

line], January 2019.

[32] Mahmound Ammar, Giovanni Russello, Bruno Crispo, “Internet of Things,

A Survey on the Security of IoT Frameworks”, Journal of Information Secu-

rity and Applications, pp. 8-27, 2018.

[33] ARM, “Arm mbed iot device platform”, http://www.arm.com/products/iot-

solutions/mbed-iot-device-platform , [Accessed Online], January 2019.

[34] Microsoft, “Tap into the internet of your things with azure iot

suite”, https://www.microsoft.com/en-us/cloud-platform/internet-of-things-

azure-iot-suite, [Accessed Online], January 2019.

[35] MSV J. , “Google brillo vs. apple homekit: The battleground shifts

to iot”, https://www.forbes.com/sites/janakirammsv/2015/10/29/google-

brillo-vs-apple-homekit-the-battleground-shifts-to-iot/, [Accessed Online],

January 2019.

[36] Ericsson, “Open source release of iot app environment calvin”,

https://www.ericsson.com/en/blog/2015/6/open-source-release-of-iot-

app-environment-calvin, [Accessed Online], January 2019.

[37] Apple, “The smart home just got smarter”,

http://www.apple.com/ios/home/, [Accessed Online], January 2019.

[38] Organization E., “Kura framework”, http://www.eclipse.org/kura/, [Ac-

cessed Online], January 2019.

[39] Zhenyu Wen, Renyu Yang, Peter Garraghan, Tao Lin, Jie Xu, and Michael

Rovatsos, Fog Orchestration for IoT Services: Issues, Challenges and Direc-

tions, pp. 1, IEEE Internet Computing - March 2017.

[40] Alejandro G., Manuel A. A., Jordan P. E., Oscar S. M., Juan M. C. L.,

Cristina P. G-B., Introduction to Devices Orchestration in Internet of Things

72

Using SBPMN , International Journal of Interactive Multimedia and Artifi-

cial Intelligence , December 2011.

[41] L. Galluccio, S. Milardo, G. Morabito and S. Palazzo, SDN-WISE: Design,

prototyping and experimentation of a stateful SDN solution for WIreless

SEnsor networks, IEEE Conference on Computer Communications (INFO-

COM) (2015), 513-521.

[42] D. Gante, M. Aslan and A. Matrawy, Smart wireless sensor network man-

agement based on software-defined networking, 27th Biennial Symposium on

Communications (QBSC) (2014), 71-75.

[43] T. Miyazaki, S. Yamaguch, K. Kobayashi, J. Kitamichi, S. Guo, T. Tsuka-

hara and T. Hayashi , A software defined wireless sensor network, Interna-

tional Conference on Computing, Networking and Communications (ICNC)

(2014), 847-852.

[44] Bruno Bogaz Zarpelao, Rodrigo Sanches Miani, Caludio Toshio Kawakani,

Sean Carlisto de Alvarenga, A Survey of Intrusion Detection in Internet of

Things, Journal of Network and Computer Applications, pp. 2-4, 2017.

[45] Raspberry Pi 3 Model B, https://www.raspberrypi.org/products/raspberry-

pi-3-model-b/ [Accessed Online], January 2019.

[46] NodeMcu, “Connect things easy”, http://www.nodemcu.com/index en.html,

[Accessed Online], January 2019.

[47] Jay Lux Ferro, “Iwlist Parser”, https://github.com/jayluxferro/iwlist-parser

[Accessed Online] April 2019.

[48] Iwlist, https://linux.die.net/man/8/iwlist [Accessed Online], January 2019.

[49] Mangle, “Drivers for the rtl8192eu chipset for wireless adapters ”,

https://github.com/Mange/rtl8192eu-linux-driver/ [Accessed Online], Jan-

uary 2019.

73

[50] Digital Signature Standard, Information Technology Laboratory, National

Institute of Standards and Technology, pp. 9, July 2013.

[51] OpenWrt, https://openwrt.org, [Accessed Online] 12th July, 2018.

[52] pfSense, https://pfsense.org, [Accessed Online] 13th July, 2018.

[53] Anton Kueltz, “Python library for fast elliptic curve crypto”,

https://github.com/AntonKueltz/fastecdsa [Accessed Online], 12th January

2019.

[54] Jay Lux Ferro, “Intrusion Detection System for IoT Devices”,

https://github.com/jayluxferro/IoT-IDS/, [Accessed Online], April 2019.

74

Appendix

Research Publications

1. Justice Owusu Agyemang, Jerry John Kponyo, and Griffith Selorm Klogo,

”The State of Wireless Routers as Gateways for Internet of Things (IoT)

Devices.” Information Security and Computer Fraud, vol. 6, no. 1 (2018):

8-18. doi: 10.12691/iscf-6-1-2.

2. Justice Owusu Agyemang, Jerry John Kponyo, and Isaac Acquah, ”Lightweight

Man-In-The-Middle (MITM) Detection and Defense Algorithm for WiFi-

Enabled Internet of Things (IoT) Gateways.” Information Security and

Computer Fraud, vol. 7, no. 1 (2019): 1-6. doi: 10.12691/iscf-7-1-1.

3. Justice Owusu Agyemang, Jerry John Kponyo, and Griffith Selorm Klogo,

”A Lightweight Rogue Access Point Detection Algorithm for Embedded

Internet of Things (IoT) Devices.” Information Security and Computer

Fraud, vol. 7, no. 1 (2019): 7-12. doi: 10.12691/iscf-7-1-2.

4. Justice Owusu Agyemang, Jerry John Kponyo, ”An Orchestration Frame-

work for IoT Devices based on Public Key Infrastructure (PKI)”, Confer-

ence: International Journal of Simulation Systems, Science & Technology,

March 2019: DOI 10.5013/IJSSST.a.20.S1.04.

75

