Validation of TRMM and FEWS Satellite Rainfall Estimates with Rain Gauge Measurement over Ashanti Region, Ghana

dc.contributor.authorAmekudzi, Leonard K.
dc.contributor.authorOsei, Marian A.
dc.contributor.authorAtiah, Winifred A.
dc.contributor.authorAryee, Jeffrey N. A.
dc.contributor.authorAhiataku, Maureen A.
dc.contributor.authorQuansah, Emmanuel
dc.contributor.authorPreko, Kwasi
dc.contributor.authorDanuor, Sylvester K.
dc.contributor.authorFink, Andreas H.
dc.date.accessioned2019-12-11T11:05:25Z
dc.date.accessioned2023-04-19T01:33:38Z
dc.date.available2019-12-11T11:05:25Z
dc.date.available2023-04-19T01:33:38Z
dc.date.issued2016-10-28
dc.descriptionAn article published by Atmospheric and Climate Sciences, 2016, 6, 500-518 and available at DOI: 10.4236/acs.2016.64040en_US
dc.description.abstractSatellite rainfall estimates have predominantly been used for climate impact studies due to poor rain gauge network in sub-Saharan Africa. However, there are limited microscale studies within the sub-region that have assessed the performance of these satellite products, which is the focus of the present study. This paper therefore considers validation of Tropical Rainfall Measuring Mission (TRMM) and Famine Early Warning System (FEWS) satellite estimates with rain gauge measurements over Ashanti region of Ghana. First, a consistency assessment of the two gauge data products, the Automatic Rain Gauge (ARG) and Ghana Meteorological Agency (GMet) Standard Rain Gauge (SRG) measurements, was performed. This showed a very good agreement with correlation coefficient of 0.99. Secondly, satellite rainfall products from TRMM and FEWS were validated with the two gauge measurements. Validation results showed good agreement with correlation coefficients of 0.6 and 0.7 for TRMM and FEWS with SRG, and 0.87 and 0.86 for TRMM and FEWS with ARG respectively. Probability Of Detection (POD) and Volumetric Hit Index (VHI) were found to be greater than 0.9. Volumetric Critical Success Index (VCSI) was 0.9 and 0.8 for TRMM and FEWS respectively with low False Alarm Ratio (FAR) and insignificant Volumetric Miss Index (VMI). In general, relatively low biases and RMSE values were observed. The biases were less than 1.3 and 0.8 for TRMM and FEWSRFE respectively. These indicate high rainfall detection capabilities of both satellite products. In addition, both TRMM and FEWS were able to capture the onset, peak and cessation of the rainy season, as well as the dry spells. Although TRMM and FEWS sometimes under/overestimated rainfall, they have the potential to be used for agricultural and other hydro-climatic impact studies over the region. The Dynamic Aerosol-Cloud-Chemistry Interactions in West Africa (DACCIWA) project will provide an improved spatial gauge network database over the study area to enhance future validation and other climate impact studies.en_US
dc.identifier.citationAtmospheric and Climate Sciences, 2016, 6, 500-518en_US
dc.identifier.issnOnline: 2160-0422
dc.identifier.issnPrint: 2160-0414
dc.identifier.urihttps://ir.knust.edu.gh/handle/123456789/11837
dc.language.isoenen_US
dc.publisherAtmospheric and Climate Sciencesen_US
dc.subjectRain Gaugeen_US
dc.subjectValidationen_US
dc.subjectTRMM and FEWS-RFEen_US
dc.subjectDACCIWA Projecten_US
dc.subjectAshanti Regionen_US
dc.titleValidation of TRMM and FEWS Satellite Rainfall Estimates with Rain Gauge Measurement over Ashanti Region, Ghanaen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Validation of TRMM and FEWS Satellite.pdf
Size:
3.81 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.73 KB
Format:
Item-specific license agreed to upon submission
Description:
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:
Collections