KNUSTSpace >
Research Articles >
College of Science >

Please use this identifier to cite or link to this item: http://hdl.handle.net/123456789/12788

Title: Improved yam-baobab-tamarind flour blends: Its potential use in extrusion cooking
Authors: Adams, Zeenatu Suglo
Manu, Faustina Dufie Wireko
Agbenorhevi, Jacob K.
Oduro, Ibok
Keywords: Baobab
Pasting properties
Issue Date: 6-Aug-2019
Publisher: Elsevier B.V.
Abstract: This project was aimed at determining the physicochemical properties of water yam- baobab-tamarind flour composites and its potential use in extrusion cooking. Proximate and mineral composition of Baobab (B), Yam (Y), and Tamarind (T) were determined. Six blends of composite flours were formulated and colour and physicochemical properties were determined. Two of the flour blends were used as trial samples and extruded. Prox- imate composition of B, Y and T were comparable to similar literature reports, however, the mineral compositions were low. Moisture content, pH, water binding capacity, swelling power and bulk density values ranged from 3.01 - 5.61%, 3.90–5.39, 87.50–132.50%, 201.43–237.95% and 0.74–0.93 g/mL, respectively, for the flour blends. Peak, minimum, cooling end, final, breakdown and setback viscosities were in the range of 2.50–291.00bu, 2.20–289.50bu, 11.0 0- 455.0 0bu, 10–440bu, 0.0 0–20.50bu and 69.50–148.00bu, respectively, for flour blends. The addition of tamarind and baobab flours improved the swelling power, water binding capacity and peak viscosity of flour extrudates. Generally the L, a, and b values for extrudates were lower than the flour composites. However, the panelist pre- ferred the appearance. The bulk density and expansion ratio of extruded snacks were low. Generally, panellists preferred extrudates with higher (40%) tamarind kernel powder sub- stitution (E5). The extruded composite flour (E6) had low viscosity values. Incorporation of tamarind and baobab into water yam flour has great potential for development of extruded snacks.
Description: An article published by Elsevier B.V. and also available at https://doi.org/10.1016/j.sciaf.2019.e00126
URI: http://hdl.handle.net/123456789/12788
Appears in Collections:College of Science

Files in This Item:

File Description SizeFormat
1-s2.0-S2468227619306878-main.pdf895.66 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback