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ABSTRACT  

Land use and land cover change (LULCC); also known as land change is a general term for 

the human modification of Earth's terrestrial surface. LULCC are the direct and indirect 

consequence of human actions to secure essential resources. It has become necessary to 

analyse these land changes for the management of natural resources and maintenance of the 

environment.   

The rate of urbanization and industrialization in Prestea is causing rapid change to LULC. 

Mining activities, especially surface mining in the area is creating pressure on the land cover, 

influencing other activities such as, deforestation, building of houses and industries, farming 

and other anthropogenic activities. In view of this problem of land cover change, this project 

was aimed at mapping, monitoring and analysing the spatio-temporal LULCC patterns using 

multi-temporal satellite images from 1990 - 2010 within the study area (Prestea and its 

environs).   

Modelling and analysis of these multispectral images were performed using Erdas Imagine 

software and Idrisi selva. Seven LULC classes were identified including; high density forest, 

sparse forest, farmland, built-up, barren land, water and mine site. The results showed that 

during the period under review (1990-2010) there have been losses in high density forest and 

sparse forest, while farmland, built-up and mine site have seen some increase. Also the annual 

rate of change within this period was found to be 2.25%.  

A LULC map for 2030 was generated for the study area using the 1990 to 2010 LULC map 

assuming that the transmission mechanisms stay the same, to project areas under risk of 

invasion in future. The results of the projection revealed an expansion of all land cover classes 

except high density forest and sparse forest, indicating an increase of 2.11%, 1.56% and  

1.35% in farmland, built-up and mine site respectively.   
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CHAPTER ONE  : INTRODUCTION  

1.1 Background  

Land use and land cover change (LULCC); also known as land change is a general term for 

the human modification of Earth's terrestrial surface (Ellis and Pontius, 2007). Land has been 

modified by human activities to obtain food and other necessities for living and economic 

development. Human dependency on land has resulted in changes in land and other 

environmental processes worldwide. (Ellis, 2007). Changes made to land is of great 

environmental concern to human population, including water, soils, air (Ellis, 2010).  

Changes in LULC has occurred far back in history. LULCC occur as a result of direct and 

indirect human activities, with the purpose of securing essential resources. Changes in the 

earth's surface occur naturally in a gradual way, but sometimes they may occur rapidly due to 

anthropogenic activities (Coppin et al., 2004). In order to manage and use resources 

effectively on the surface of the earth, the timely and accurate land cover change detection of 

the earth’s surface features provides an understanding of the interactions between human and 

natural phenomena (Lu et al., 2004). In recent times, human population within urban areas 

has increased as a result of increased industrialization. This increase in urbanization has led 

to depopulation of rural areas. The effects of urbanization is observable around the world 

today.  

LULC change dynamics can be investigated by the combined use of Remote Sensing, 

Geographical Information Systems (GIS) and Stochastic Modelling technologies. Remote 

sensing is an essential tool for land change science. As a tool, it facilitates observations across 

larger levels of Earth’s surface than can be observed by ground-based observations. The use 

of GIS technology offers a flexible environment for storing, analysing, and displaying digital 

data necessary for change detection and database development (Demers, 2005).  
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In order to attain rapid economic development, many countries exploit their natural resources 

by various activities. Mining has been identified as one of such activities. Therefore, mining 

is an important economic activity which has the potential of contributing to the development 

of areas endowed with the resource. Ghana’s colonial name, Gold Coast, gives an indication 

of the importance of mining to the economic development of Ghana (Akabzaa and Darimani, 

2001).  

Ghana has been successful as Africa’s second largest gold producer. International investors 

has contributed to the success of gold mining in Ghana and has been a boost to the country’s 

economy (Addy, 1998). As a country, Ghana, has to consider how the rush for gold has 

affected the livelihood and environment of citizens (Agbesinyale, 2003; Akabzaa and  

Darimani, 2001). Several studies made concerning Ghana’s environment and economy  

indicates that Ghana stand the risk of facing problems as a result of improper management of 

resources available to the nation: as a result of lack of economic diversification and the rate 

of the nation’s dependency on the export of mineral resources to grow its revenue (Adler and 

Berke, 2006; Aryee, 2001).  

Gold mining in Ghana is carried out in two ways. One of these two ways is the small scale 

miners (also galamsey operators) are mostly operated in open pits. The other way gold is 

mined in Ghana is the large scale surface and underground mining.  The difference in small 

scale mining and large scale mining is based on the social and environmental effects (Hilson, 

2002). There has been indication by several researchers on the consequences of small-scale 

mining on the environment, such as the effects of chemicals , such as mercury used during the 

gold refining process, and the rivalry between large scale miners and small  scale miners 

(Amankwah and Anim-Sackey, 2003; Hilson, 2002). As much as small scale mining searves 
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as a means of employment to some Ghanaians, this economic development of individuals is 

achieved to the disadvantage of the environmental (Amankwah and Anim-Sackey, 2003).   

There are some environmental issues that all of us must agree cannot be tolerated; such as 

Galamsey operations. As citizens of the state, we have an obligation towards the efficient and 

effective management of our environment for the sake of posterity. Galamsey operations 

contradict Article 257 clause 6, of the 1992 constitution, which states that ‘every mineral in 

its natural state - in, under or upon any land in Ghana’s rivers, streams, water course 

throughout Ghana, the exclusive economic zone and area covered by the territorial sea or 

continental shelf is the property of Ghana, and shall be vested in the President on behalf, and 

in trust for the people of Ghana’. Image classification is the most widely used method for 

obtaining information from remotely sensed data. From the time when Landsat - 1 

multispectral scanner (MSS) data became available, research has been conducted in the aspect 

of land cover classification using multispectral remotely sensed data (Kumara and Minb, 

2008). Classification techniques such as the parallelepiped, minimum distance to mean and 

maximum likelihood methods were developed. Classification in digital image processing has 

traditionally been concerned with the assignment of a specific and definite land-cover class to 

each pixel in the image. A decision rule is thus developed such that a hard, or crisp, assignment 

can be made for each pixel based on its spectral characteristics. It has always been understood 

that uncertainty surrounds this process, with the decision rule being designed to minimize the 

impact of such ambiguity. Recently, interest has focused on the nature of this uncertainty, 

with the explicit intention of extracting additional information based on its character. Soft 

classification is one approach that evaluates and utilizes this uncertainty.   

Soft classification defers a hard decision in preference for some intermediate statement of 

class (set) membership. The reasons for doing so vary, including the explicit intention to 
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assess classification uncertainty and the possibility of incorporating additional knowledge 

before a final hardening of the decision. The primary focus, however, has been its potential 

for subpixel classification; the determination of constituent classes that fall below the 

resolution of the pixel (Eastman and Lane, 2002).  

1.2 Problem Statement  

The rate of urbanization and industrialization in Prestea is causing rapid change to LULC.  

Mining activities, especially surface mining in the area is creating pressure on the land cover. 

This has also influenced other activities such as, deforestation, building of houses and 

industries, farming and other anthropogenic activities.  

Some companies in Ghana have been permitted to operate open cast mining and as a result 

large portions of high density forests have been cleared for the purpose of mining. Although 

the mining companies make an effort in reclaiming the land by replanting, the natural 

ecosystem of the area is altered, and thus cause destruction to biodiversity. This condition is 

worsened by small scale miners who clear forest and dig large channels leaving them bare. 

The area that has been left is prone to erosion also serving as breeding grounds for mosquitoes 

as water stays in the channels that have been left by these miners (Wassa West District 

Assembly Medium Term Development Plan 2002- 2004). Kyei-Boateng, (2005), noted 

that,the nation’s forest depleted annually at a rate of 1.7% between 1990 and 2000. This 

problem comes more to light by the cries of the people in Prestea during a demonstration 

staged by the Human Prestea stakeholders coalition in the Western region on 28th January,  

2014, when some of the placards carried by the demonstrators read “surface mining will kill 

us”, “ we want underground mine and not surface mine”(Ghana news agency, 2014).  

Authorities in charge of protecting the environment, do not seem to give a clear statement 

against the problems and changes caused by surface mining activities, especially registered 
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mining companies. All what these authorities do is to try to solve conflict between these 

mining companies and the people in the community and also negotiate for compensations, 

which does not change the harm instigated to the environment as a result of their method of 

mining (surface mining). This is evident in a statement by Rolexi, 2008; The government of 

Ghana made one of its worst mistake by allowing surface mining of gold to be practised in 

the country This has led to the destruction of the natural environment.  

 It is therefore necessary for a study such as ‘Assessing land cover change resulting from 

surface mining development’ to be carried out, in other to analyse and quantify the amount of 

change and also do certain predictions in LULC changes to 2030, that will be useful to 

planners and decision makers in making strategic policies to curb problems that might result 

from these changes.  

1.3 Research Questions  

• How has open cast/ surface mining system in the study area affected LULCC.   

• What are the trends, the rate of expansion or reduction, and the locations of LULCC 

that have occurred in the study area?  

• What is the relation between mining activities; urbanisation and its resultant land use 

and land cover change?  

1.4 Aims and Objectives  

1.4.1 Aim  

This project aims at mapping, monitoring and analysing the spatio-temporal LULC change 

patterns using multi-temporal satellite images from 1990 - 2010 within the study area (Prestea 

and its environs). Below are the specific objectives;  
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1.4.2 Objectives  

1. Identify land cover types and their spatial distribution.  

2. Identify the trend / key drivers of LULC change.  

3. Project areas under risk of invasion in future.  

4. Produce some form of information for local governments in their effort to sustain 

decision making and land use.  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

CHAPTER TWO: LITERATURE REVIEW  
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2.1 Land Change Science  

Among the methods for management of natural resources and urban development including 

land, one of these processes is change detection. This is because it offers a means of 

recognising differences in the state of an object or phenomenon at different times (Singh, 

1989). The earth surface is made up of a combination of cultural and natural landscapes. Each 

cover is made up of different landscapes which are interconnected, ranging from virgin natural 

ecosystems to human dominated urban and industrial areas. The surface of the earth has 

undergone changes as a result of fire, bad weather, glaciations, and other natural causes that 

have occurred.  

Human existence on the earth has resulted in natural landscapes been affected by human 

activities, such as for settlement, cultivation and other economic activities. The range of 

changes in landscape is between local (conversion of a farm into a suburb) to regional 

(conversion of tall grass prairie ecosystems to agriculture) to global (climate change). Climate 

change is recognised to have the potential of transforming both ecological and cultural 

landscapes (USGA/climate_landuse, 2013).  

Several researchers have expressed interest in studies in the area of landscape change, which 

has as a result led to the development of a new field of study; land change science. Scientist 

in the area of land change science, develop new concepts and approaches for better 

understanding of land resources. (Turner et al., 2007)  

Land is an essential natural resource, both for the survival and prosperity of humanity, and for 

the preservation of all terrestrial ecosystems. Over a couple of years, people have become 

expert in developing land resources for their own welfares and developments. These resources 

are definite but there is unlimited demand on these resources by humans. The increase in 

demand on resources is evident as shown in the deprivation of land quality and quantity for 
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crop production and other social activities, and competition for land. Land does not simply 

refer to the soils and surface topography, but also certain underlining superficial deposits, 

climate and water resources. Also, human activities, reflected by changes reflected by changes 

in vegetative cover or structures, are also regarded as features of the land. Changes in land use 

has potential impacts on factors such as flora and fauna, soils, climate, etc.  

2.1.1 Land Cover and Land Use  

The terms land cover and land use are the two main components of land change. Land cover 

is more easy to notice than land use. As the term land cover denotes the surface cover over 

the land. Land cover refers to the physical and biological cover over the surface of land, 

including vegetation, water and bare soil; some workers also include artificial structures as 

land cover. On the other hand, land use is more intricate as it is interpreted differently by 

different scientists. Natural scientists, refers to the term as the use of the land surface for 

human activities such as agriculture, forestry and building of structures, whilst the social 

scientists define land use as the manner in which the land is managed in terms of 

socioeconomic purposes (Ellis, 2009). According to Meyer and Turner, (1994), the concepts 

of land cover and land use are distinct but they are closely related in terms of their 

characteristics on the earth’s surface. Land cover is easily observed directly, however, land 

use is different in that a single land cover type can be used in many ways. For instance, forest 

can be used for many purposes such as logging, hunting, firewood collection and recreation, 

to mention a few.  

Changes in land cover result from land use; and changes in land cover affect land use. 

However, land cover may change if land use remains unaltered. Several environmental 

impacts such as biodiversity loss, soil erosion and degradation, water flow, water quality and 
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climate change are considered to result from alteration in the physical state of the earth’s 

surface.  In return, these environmental changes have an impact on the land cover.  

2.2 Gold mining in Ghana  

Gold prices have been very attractive during the last decade, which caused a number of people 

to invest in the sector (Hammond et al., 2007). As the second largest gold producer in Africa, 

international investors in gold mining in Ghana, has been a success both to the economy of 

Ghana and the international investors (Addy, 1998). There is the need for Ghana as a nation 

to be on the lookout in facing a resource dilemma due to the total dependence on mineral 

resource export as a means of growing the nation’s economy (Adler and Berke, 2006; Aryee, 

2001).   

The two ways of mining gold in Ghana are by; small scale miners (sometimes called 

‘galamsey’), mostly gold mined are sold in regional markets, whilst  large scale surface mining 

and underground mining operators work with structured production chains and have direct 

links to international markets. The difference between the two ways in which gold is mined 

can be seen in their social and environmental implications (Hilson, 2002).   

2.2.1 Surface Mining  

Surface Mining, is a method of extracting mineral resources from the ground by their digging 

into pits or borrows. Its operation requires a large area of land (Wikipedia, 2008). This has 

resulted in conflict of interest between land to be used for mining and land for other uses, such 

as farming and housing. Surface mining causes several effects to the community and 

environment such as, loss of vegetation and soil cover, and interrupts ecosystem service flows. 

Also, poisonous waste substances that causes pollution in water and some health problems, 

may be attributed to surface mining in areas where surface mining is practised (Akabzaa and  
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Darimani, 2001; Habashi, 1996). Similarly, pollution from dust is caused as a result of 

vehicular traffic on dusty mining roads affecting neighbouring communities (Ayine, 2001).  

Another common environmental effect caused is soil erosion around mines (Akabzaa and 

Darimani, 2001). In generally, sin the developing world, surface mining often wear away 

livelihood foundations, causing people to relocate and also farmers to develop alternative 

income strategies (Kumah, 2006). There has consequently been conflicts between people in 

mining communities and mining companies  over the right to land use worldwide (Hilson,  

2002) and this poses a risk to development and security of people in such communities 

(Maconachie and Binns, 2007).  

2.3.2 Surface Mining in Prestea and its resulting impact on the Land Use and Land Cover of 

the area  

Gold mining in Bogoso-Prestea area has been taken place for over a century. Following the 

technological development in mineral processing  and the authorisation of the Ghana Mining 

and Mineral law 1986 (Anon, 1986 and Sraku Lartey, 1993), surface mining became popular 

in Ghana during the mid-eighties. Land use changes become noticeable with the development 

of surface mining (Edward et al., 2009). Most areas that has been for Gold surface mining 

concessions dominated by settlements and farmland, which has led to the rise in conflict 

among the locals in the community and the mining companies (Aidara, 2008; National 

Coalition on Mining, 2006). To better understand the effects of gold mining on local lifestyle  

and land use systems, Bogoso Prestea, Tarkwa, and Damang offer unique understanding, due 

to the region’s extended (30 years) history in mining gold.  Surface mining led to farmland 

loss, which is evident in the loss of about 5,000 ha of farmland (representing about 5% of the 

district’s total farmland), affecting about 6.8% of the total agricultural labour force  (Wassa 

West District Assembly, 2004). Prestea, a highly galamsey-prone area has always suffered 

serious flooding anytime it rained. This is as a result of the galamsey operations which has 
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impeded the free flow of water through the drains. Bolaekyire, a suburb of Prestea, is one 

place that comes under severe attack from the floods.   

2.4 Land Use/ Land Cover Change – The Role of Remote Sensing and Geographic 

Information Systems (GIS) Applications  

In assessing the magnitude and environmental impacts of mining activities on landscapes, 

remote sensing serves as an adequate tool for that purpose. Correspondingly, deforestation 

and flooding can be measured by multi-date land cover change mapping (Akiwumi and Butler, 

2008). Remote sensing has become one key technological means for checking land use 

changes (Turner et al., 2007). One study conducted in the Western region of Ghana, used 

remote sensing to indicate the rate of deforestation and urban expansion (Kusimi, 2008). In 

the study, rapidly changing land use types in the Wassa West District were identified to be 

farmland and built up/surface mines.   

The rates and spatial patterns of land change can be mapped using remote sensing (Turneret 

al., 2007). In order to increase understanding in land use systems, carefully collected data 

gathered from participatory mapping and household surveys are useful. (Liu et al., 2003; 

Müller et al., 2009; Reenberg, 2001). There is no easy means of relating land cover 

information with socio-economic data, because socio-economic data does not possess spatial 

layers (Liverman et al., 1998; Veldkamp and Lambin, 2001). To overcome the problem of 

spatial layers, for instance, linking people and land by means of participatory approaches or 

comparing measures of land change and socioeconomic data (Castella and Verburg, 2007; 

Lambin, 2003).   

2.5 Image Classification Techniques  

The land cover themes is extracted by classification, which plays a major role in this type of 

study. Lillesand and Kiefer (2008) described Image Classification as a means of sorting image 
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pixels into their various land cover classes depending on the spectral response pattern within 

the data (Adu-Poku, 2010). The two main types of classification method are, supervised and 

unsupervised approach. These techniques can be combined to form what is termed as Hybrid 

classification which is performed to improve the accuracy or efficiency of the classification 

(Lillesand and Kiefer, 2008, pp. 484). Any of the two methods, either supervised or 

unsupervised approach may be used to perform either hard or soft classification. Hard 

classification allocates one class to each pixel which may not give the correct results for 

classification, especially for coarse spatial resolution images. On the other hand, soft 

classification is able to detect class proportion within a pixel and the results is a more accurate 

classification.   

Classification systems are useful in representing land cover using remotely sensed imagery. 

The classes of interest are mostly perceived and so supervised image classification techniques 

are used by most researchers (Campbell, 1996). The supervised classification technique 

allocates each pixel to the land cover class which is similar to the training set created. For 

example, the maximum likelihood classification, which is commonly used assigns each pixel 

to the class which has the highest probability of membership. This type of classification 

assumes the membership of a class, which is a typical description of a ‘hard’ classifier. It is 

therefore suitable to use hard classification when the area represented has similar coverage. 

Hard classification might not be suitable for remotely sensed images (Campbell, 1996).   

Pixels can have multiple or partial membership, this provides a means of solving the problem 

of mixed pixel in remotely sensed image (Smith et al., 1990; Wang, 1990).   

Soft classifiers defer the decision about the class membership of a pixel in favour of an 

expression of the degree of membership it exhibits in each of the land-cover classes under 

consideration. The reasons for using a ‘soft’ classifier include the examination of 
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classification uncertainty, but are most commonly directed to the potential of uncovering the 

proportional constituents of mixed pixels-a process called sub-pixel classification.  

2.5.1 Sub-Pixel Image Classification  

The basis for sub-pixel classification resides with the fact that a solid-state detector integrates 

the intercepted radiance within its instantaneous field of view (IFOV). Regardless of the 

effective resolution of a detector, it is inevitable that the IFOV will frequently intercept 

reflected energy from more than one land-cover class. Such cases will be uncertain, with the 

expectation that the pixel will exhibit spectral characteristics that are inter- mediate between 

those characteristics of each of the end-member (true constituent) classes. Thus, for example, 

a pixel equally occupied by conifers and open water should exhibit reflection characteristics 

that combine the characteristics of the two underlying classes in equal proportion. Given the 

integrating nature of the detector itself, one would expect the pixel to exhibit spectral 

characteristics that represent an area-weighted average of these constituent parts (Eastman 

and Lane, 2002).  

The mixed pixel problem, which is a limitation of coarse resolution imagery is reduced /solved 

by subpixel classification techniques. The sub-pixel classification is most often appreciated 

by means of the linear mixture model or neural networks. Both the linear mixture model oror 

the neural networks can be useful either in high resolution or low resolution images (Kavzoglu 

and Mather, 2003; Lobell and Asner, 2004; Eerens and Dong, 2005).  

Generally, algorithms used for classification are statistical in nature and each pixel is 

represented by a unique value. A pixel containing more than one class is referred to as a mixed 

pixel. As the remote sensing images become courser, the problems of mixed pixel increases, 

leading to erroneous classification. Information in a mixed pixel can be analysed by assessing 

the proportion of classes represented within each pixel.   
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The sub pixel classification algorithms can be characterised as statistical, fuzzy set theory and 

some neural network based. The Linear Mixture Model (LMM), can be implemented using 

data with equal dimensionality plus one.  

 Mostly, one or two soft classifiers are implemented in some of the commercial software. The 

Fuzzy C- Means is available in PCI Geomatica Software, Linear Mixture Model is available 

in ERDAS Imagine Software. The software gaining popularity in remote sensing analyst are 

not based on the SVM (Kumar et al., 2007). In this study, the IMAGINE Subpixel classifier 

in later software mentioned above is used.  

IMAGINE Subpixel Classifier is designed to identify materials that are smaller than an image 

pixel, using multispectral imagery. It can also be used in detecting materials that are covered 

by a larger area but is mixed up with other materials that affect accuracy of the classification  

(IMAGINE Subpixel Classifier User’s Guide, 2008). There are four required processing 

functions and three optional processing function used in the sub pixel classifier. The four 

required functions in this study were: Pre-processing, Environmental Correction, Signature 

Derivation, MOI Classification.  

2.5.2 Pre-processing  

In the pre-processing, a list of backgrounds are identified which are used in the MOI 

classification. It is necessary to remove all other materials leaving only the candidate MOI 

spectrum (IMAGINE Subpixel Classifier User’s Guide 2008).  

2.5.3 Environmental Correction   

The automatic environmental correction is necessary to prepare the image for the signature 

derivation process. The correction factors obtained are necessary when performing scene to 
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scene transfer. The final output for this process is a file containing environmental correction 

factors. (IMAGINE Subpixel Classifier User’s Guide 2008).  

2.5.4 Signature Derivation  

This signature derivation function develops a signature which is used to classify an image. In 

developing a signature, training set can be defined by the AOI tool in the erdas imagine 

software from pixels in your source image. A signature can be derived from a training set in 

two ways: Manual and Automatic Signature Derivation. Manual Signature Derivation can be 

useful to develop a whole pixel signature from a whole pixel training set. It is a good practise 

to use Automatic Signature Derivation to derive a signature from a subpixel training set. A 

high quality signature is often derived testing and refining the signature. The automatic 

signature derivation simplifies the generating the material pixel fraction (IMAGINE Subpixel 

Classifier User’s Guide 2008).  

2.5.5 MOI Classification  

The results for the classification are displayed using an ERDAS IMAGINE Viewer. The 

classification is performed by the MOI classifier module in the sub pixel classifier in the 

ERDAS IMAGINE software. A default tolerance value is one and the result is eight MOI 

classes between 0.20 to 1.0 with increments of 0.1 (IMAGINE Subpixel Classifier User’s 

Guide 2008).   

2.5.3 Linear Mixture Model  

The Linear Mixture Model (LMM) approach considers the spectrum measured by a sensor as 

a linear combination of the spectra of all elements within the pixel (Roberts et al., 1998; Ustin 

et al., 1998). The mathematic model of LMM is be expressed as  
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where:  

i= 1, m (number of spectral bands);        k=1, n (number of endmembers);   

Ri is the spectral reflectance of band i of a pixel, which contains one or more endmembers;  fk 

is the proportion of endmember k within the pixel;   

Rik is known as the spectral reflectance of endmember k within the pixel on band i, and ɛi is 

the error for band i.   

The RMS error was used to assess the fit of the model. The RMS was computed using  

  

Root Mean Square (RMS) error is computed for the individual image pixels. A greater RMS 

error, affects the fit of the model (Mather, 1999).   

Different methods can be used to determine endmembers. Endmembers can be obtained from; 

a spectral library, as used in ERDAS IMAGINE and ENVI software packages and laboratory 

or field reflectance measurements (Quarmby et al., 1992; Settle and Drake, 1993). Image 

endmembers are easy to obtain and are therefore used for many applications of LMM (Roberts 

et al., 1998).   

Endmembers varies in their number and types with precise applications (Ustin, Smith, and 

Adams, 1993). Generally, the number of endmembers can be determined by making account 

for most of the variation in data.   
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2.6 Accuracy Assessment  

An error matrix is an array of numbers ordered in rows and columns which expresses the 

number of sample units (i.e. pixels and clusters of pixels) which will be assigned to a particular 

category relative to the actual category as shown by reference data (Congalton, 1996). The 

general acceptance of the error matrix as the standard descriptive reporting tool for accuracy 

assessment of remotely sensed data has significantly improved the use of such data.  

Accuracy is obtained by averaging all accuracies for each class. The overall accuracy for a 

class is determined by the quantity of samples to be tested for that class (Yang, 2001). Kappa 

analysis is important because of the possibility to test for the quality of a LULC map compared 

to if the map had been generated by randomly assigning labels to areas (Congalton, 1996). 

The proportion of agreement achieved after removing the proportion of agreement that could 

be expected to occur by chance is represented by the kappa coefficient (Foody, 1992). This 

Kappa coefficient is represented on a scale between 0 (no reduction in error) and 1 (complete 

reduction of error). A coefficient of 1 shows complete agreement, and is mostly multiplied by 

100 to give a percentage measure of the accuracy of the classification. A measure of agreement 

between model predictions and reliability can be determined by the kappa value, (Congalton, 

1991) and also to determine if the values contained in an error matrix represent a result 

significantly better than random (Jensen, 1996). Kappa is computed as,   

 

Where   

N is the total number of sites in the matrix, r is the number of rows in the matrix,   

is the number in row i and column i,   
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𝑥+𝑖 is the total for row i, and   

𝑥𝑖+ is the total for column i             (Jensen, 1996).  

2.6 Normalized Difference Vegetation Index (NDVI)  

Normalized Difference Vegetation Index (NDVI) is a numerical indicator which uses the 

visible and near-infrared bands of the electromagnetic spectrum. It is adopted in analysing 

remote sensing measurements and assess whether the target being observed contains live 

green vegetation or not. NDVI has been applied in many vegetative studies. It has been used 

in many areas of studies, such as; to estimate pasture performance, crop yields and rangeland 

carrying capacities and so on. Many time, it is directly related to other ground parameters such 

as percentage of ground cover, surface water, photosynthetic activity of the plant, leaf area 

index and the amount of biomass.   

NDVI was first used by Rouse et al. in 1973 from the Remote Sensing Centre of Texas A&M  

University. Since the behaviour of plants across the electromagnetic spectrum is known, 

NDVI information can be derived by focusing on most sensitive satellite bands in response to 

vegetation information (near-infrared and red). Generally, healthy vegetation absorb most of 

the visible light that falls on it, and reflects a large portion of the near-infrared light. Unhealthy 

or scattered vegetation reflects more visible light and less near-infrared light. On the other 

hand, bare soils reflect reasonably in both the red and infrared portion of the electromagnetic 

spectrum (Holme et al 1987). The greater the difference between the near-infrared and the red 

reflectance, the more vegetation there has to be. The NDVI algorithm subtracts the red 

reflectance values from the near-infrared and divides it by the sum of near-infrared and red 

bands.   
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Where; NIR = the spectral reflectance measurements acquired in the near-infrared 

region(band) R = the spectral reflectance measurements acquired in the red region (band). In 

using the Landsat Thematic Mapper remote sensing data, the formula is   

  

Where;   

TM4 = near infrared band                                 TM3 = red band  

The NDVI produces a single-band dataset, mostly representing greenness, where any negative 

values are mainly generated from clouds, water, and snow, and values near zero are mainly 

generated from rock and bare soil. The outputs values between -1.0 and 1.0. Very low values 

of NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow. Moderate values 

represent shrub and grassland (0.2 to 0.3), while high values indicate temperate and tropical 

rainforests (0.6 to 0.8) (http://earthobservatory.nasa.gov/Features/MeasuringVegetation).  

2.7 Review of Previous Related Research Works  

Many researchers have conducted studies to detect land use/land cover changes across sector 

such as forest cover, landscape, urban development, just to mention a few using multispectral 

remotely sensed data. Research has been conducted throughout the world in an attempt to 

understand major shifts  in land use and land cover and to relate them to changing 

environmental  conditions. According to Baulies and Szejwach (1998), during the next 

decades, land-use dynamics will play a major role in driving the changes of the global 

environment. Generally, agriculture is found to be the major driver of land cover change in 

tropical regions (Lambin et al., 2001; Daniels et al., 2008).   



 

20  

An analysis of land use and land cover changes using the combination of MSS Landsat and 

land use map of Indonesia (Dimyati, 1995) reveals that land use land cover change were 

evaluated by using remote sensing to calculate the index of changes which was done by the 

superimposition of land use land cover images of 1972, 1984 and land use maps of 1990. This 

was done to analyze the pattern of change in the area.   

Kahsay, (2004) in his study to understand the dynamics of Land Use and Land Cover in and 

around Yerer Mountain and analyse implications of Land Use and Land Cover changes in 

terms of soil erosion and nutrition of both human and livestock. Landsat ETM + imagery and 

other remotely sensed data were used. In addition to the biophysical data, Kahsay also used 

socio-economic characteristics of households to interpret the biophysical feature occurring in 

the study area.   

Matsa, and Muringaniza, (2011) used Geographic Information System and remote sensing 

techniques to establish the current status of land use and land cover changes for Shurugwi 

district as well as to determine the extent of these changes. Three satellite images for three 

different years (1991, 2000 and 2009) were used to come up with a land use/land cover map 

classification for Shurugwi district. Degraded land is mainly a result of agriculture and mining 

activities.   

Rasim, (2004), in Assessing land cover change resulting from large surface mining 

development, a remote sensing based approach for quantifying primary and secondary 

impacts of surface mining is used. Affected areas were identified as the difference between 

land cover maps derived from LANDSAT data (30 m resolution) acquired in 1992 and 2001. 

Maps produced from remote sensing data provide information for subsequent impact 

assessments from surface mining development on land cover.   
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Wang and Paul (2009), used multitemporal subpixel analysis to identify cypress canopies from 

Landsat 7 ETM+ imagery during their study on the Detection of Cypress Canopies in the 

Florida Panhandle Using Subpixel Analysis and GIS. Their results indicated that 

multitemporal subpixel analysis greatly improved the classification accuracy and signatures 

developed from one scene could be used to the subpixel classification of another scene with 

caution. In conclusion, this project demonstrated the potential of subpixel analysis in specific 

materials such as detecting cypress trees.  

Hussin et al. (2003), Classified Landsat image using maximum likelihood and sub-pixel 

classification in their research on identifying illegal logging and mapping tropical rain forest 

cover types in East Kalimantan, Indonesia. It was noted that more accurate detection of single 

tree felling can be achieved using the sub-pixel classifier and Landsat-7 ETM+ image. The 

sub-pixel classification had a higher than the maximum likelihood classification of the 30 m 

resolution image with an overall accuracy and kappa of 89% and 0.75 versus 79 % and 0.57 

respectively.  

Adu-Poku, (2010), in land-cover change monitoring in Obuasi, sought to identify and quantify 

the land cover changes that have taken place in the area and to project the likely land cover 

map in the future. An integration of Remote Sensing, Geographical Information System (GIS) 

and Stochastic Modelling was used to assess and map this land cover changes. 

PostClassification Change Detection was employed using three multi-spectral Landsat images 

of the years 1986, 2002 and 2008 to detect changes that have taken place within the past 

twentytwo year period. Subsequently, Markov Chain Analysis was used to predict the land 

cover distributions that are likely to occur by 2020.   

Kumi-Boateng et al.(2010), used spatial information from remotely sensed data as a means of 

providing an effective solution to land use/ land cover change detection in Tarkwa 
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municipality. Remote sensing technique was used for this change detection and to assess its 

implications for the management of future urban development.  

There have also been researches that have been done in mining communities all around 

including Ghanaian communities such as, Obuasi, Prestea, Tarkwa etc. to identify and detect 

land cover changes caused by mining activities and other human activities on land.   

Schueler et al. (2011), conducted a study to assess land cover change due to gold surface 

mining in Western Ghana. Satellite images were used to carry out a multi-temporal 

classification, in order to map mining related land cover changes. According to them, this 

approach resulted in a more vigorous and precise change maps than post-classification map 

evaluation. This study concluded that, land use systems in the Wassa West District of Ghana 

has been affected as a result of gold surface mining. It was shown from the analyses of landsat 

images that  farmland loss and deforestation were the most evident mining related land cover 

changes.  

In a similar study on Open Pit Mining and Land Use Changes: An Example From 

BogosuPrestea Area, Duncan et al. (2009), land use flows methods were used over a twenty 

year period (1986 – 2006) to estimate areas within the study area that have experienced land 

use change as a result of mining.  

A look at these studies, it can be seen that most of the authors used traditional classification 

approaches to detect changes. Some few papers have been reviewed in this research where 

other authors used subpixel classification for different analysis.  
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CHAPTER THREE: STUDY AREA AND MATERIALS USED  

This chapter describes the study area and data used for the study. A description of the study 

area is given to demonstrate the characteristics of the area in terms of geography, land cover 

and general narrative. It also illustrates the technical details of the various data used for the 

study.  

3.1 Study Area  

The Prestea-Huni-Valley District Assembly, with Bogoso as its capital, is one of the 

twentytwo (22) administrative authorities in the Western Region.  The District was carved out 

of the erstwhile Wassa West District Assembly in 2008 as a result of the creation of more 

Districts and rising of some Districts to Municipal status.  It was established under the 

Legislative Instrument 1844.  

3.1.1 Location and Size  

The District is located at about 33 Kilometres east of Tarkwa, in the Prestea-Huni-Valley 

District. It is a mining District which lies within the South  Western Equatorial zone and 

covers an area of about 1376 sq/km. Bogoso/Prestea is located between Latitude 5°0’N and  

5°40’N and Longitudes 1° 45’W and 2° 10’W. It shares boundaries on the North West with 

Wassa-Amenfi  East District, on the West with Axim Municipal Assembly, on the south with 

Tarkwa-Nsuaem Municipal Assembly and the North by Wassa-Amenfi West District. It lies 

on the west bank of the Ankobra River (Oduro, 2011).  



 

24  

 

  

Figure 3.1: Map of study area- Map A: Ghana, Map B: Western Region and Map C: 

Prestea and environs  

  

3.1.2 Population  

Giving the 2010 Population and Housing Census, the total population of the Prestea Huni- 

Valley District was 159,304. The District’s population comprise of 80,493 (50.5%) and 

78,811(49.5%) of male and females respectively. The District is predominantly rural and has 

its rural population of 62.9% exceeding the regional average of 57.6%.   

3.1.3 Climate and Vegetation  

The District is located in the rain forest zone of Ghana and enjoys a wet equatorial climate. It 

has two rainfall patterns usually from March to July (major season) and from September to 
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November (minor season). The District experiences high rainfall with a mean annual rainfall 

of 187.83mm. The annual average temperatures range between 26oC and 30oC .   

The vegetation of the District is tropical rainforest, with the height of trees ranging between 

15-40 metres high. The forest is full of climbers and lianas, which are able to reach into the 

upper tree layer. Economic trees include mahogany, Wawa, odum, and sapele among others.  

Food crops like cassava, rice, maize and plantain are also grown. The District’s major forest 

reserve is the Bonsa Reserve (Aboso) with 160.58 square kilometres. There are other two 

reserves; Ben West (Huni-Valley) with 26.00 square kilometres and Nkontoben (Hun-Valley) 

with 49.98 square kilometres.  

Activities of illegal mining and other illegal logging are posing a threat to the natural 

vegetation. Cocoa, oil palm, coffee, rubber, coconut and citrus are some of the major cash 

crops grown (GSBPL EMP, 2008).  

3.1.4 Geology and Soil  

The District forms part of the Birimian and Tarkwain geological formations. The birimian 

rocks is an important rock due to its mineral potential. The area is covered by deep soils, acidic 

in many places. They are mainly forest oxysoils developed over a wide range of highly 

weathered parent materials including Tarkwaian and Birimian rocks. The acidic nature 

reduces amount of soil phosphorus, calcium and magnesium (GSBPL EMP, 2008).  

    

3.2 Dataset used in the study  

The study is based on several data types listed in the Table 3.1. These data types have been 

grouped into remote sensing (RS) and reference data. Time series satellite images were used 

in this study. Landsat images – Thematic Mapper™ and Enhanced Thematic Mapper Plus  
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(ETM+) as remote sensing data acquired in the years 1990 and 2000, and an Advanced Land 

Observing Satellite (ALOS) acquired in 2010. These satellite data were downloaded from the 

U.S. Geological Survey (USGS) database based on the availability and suitability due to cloud 

cover (which is problematic when it comes to detecting changes). One or more images 

between the years 1990 and 2000 would have aided a better understanding of the trends of 

land cover change. However, all the available 1990s images have cloud cover of more than 

the acceptable 10%.   

Table 3.1: Table showing the data required for the study  

Data Used  Acquisition Date  Resolution  Sources  

Landsat TM  January, 1990  30m  USGS EROS Centre  

Landsat ETM  April, 2000  30m  Forestry Department, Ghana  

ALOS  January, 2010  10m  Forestry Department, Ghana  

Orthophoto  2010  50cm  Town and Country Planning, 

Bogoso  

Land Cover Map  2000, 2010    Forestry Department, Ghana  

Google earth images  2011      

  

3.2.1 Landsat Imagery   

Landsat imagery has been in existence since 1972, from six satellites in the Landsat series. 

These satellites have been a major component of NASA's Earth observation program, with 

three primary sensors evolving over thirty years: MSS (Multi-spectral Scanner), TM 

(Thematic Mapper), and ETM+ (Enhanced Thematic Mapper Plus). The goal of distributing 

appropriate range of imagery for land cover analysis is achieved through the GLCF.   

The Landsat data covering the study area were downloaded from the USGS database with 

194/56 as the path/row scene.  
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3.2.2 Advanced Land Observing Satellite (ALOS) Image  

The Advanced Land Observing Satellite (ALOS) is developed by the Japan Aerospace 

Exploration Agency (JAXA). It was first launched in 2006. The satellite is made of three 

sensors i.e., two optical imagers (PRISM and AVNIR-2) and an L-band Synthetic Aperture 

(PALSAR). ALOS was developed cartographic purpose and other observations and  

monitoring. By its design, it has a short revisit capacities. ALOS has been designed to be able 

to capture images of the disaster area with AVNIR-2 or PALSAR within a few days (JAXA, 

2007).  

3.2.3 Reference Data  

High resolution ortho photographs acquired in 2010 were obtained from the Department of 

Town and Country Planning, Bogoso in the Western region of Ghana at 50cm resolution. This 

was used to obtain ground truth to ascertain the accuracy of the image classification. In 

addition, a land cover map obtained from the Forestry Department of Ghana was used to aid 

in image classification. The 2011 Google earth image of the study area and personal 

knowledge about the study area helped in classifying the data.  

    

3.3 Software Used  

In this project the software used was based on the image processing procedures and the 

prediction of future land cover change. This project employed Erdas Imagine 2010 to perform 

image processing which includes pre-processing, image classification, accuracy assessment, 

and production of a change map. IDRISI Selva was used to handle the modelling and 

prediction aspect of this study. Arcgis 10.1 was used to generate the output maps.  
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CHAPTER FOUR - METHODOLOGY  

4.0 Methods  

The main tool for the analysis of this study is to use image classification schemes to obtain an 

idea of the impact of surface mining on the land use land cover dynamics of the study area. In 

this study, post classification comparison upon subpixel classification, is used as a quantitative 

technique of analysis.  

In view of the above, this section divides the methodology into four steps which include Image  

Pre-processing, Image Classification, Change Detection Method and Modelling and 

Prediction of land cover change. The methodology adopted in this study is summarised in the 

flow chart (Figure 4.1).  
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Figure 4.1: Flow chart showing the methodology of this study  
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4.1 Image Preprocessing  

Preprocessing of satellite images is an essential step prior to image classification and change 

detection. In this study, preprocessing operations carried out include: atmospheric correction, 

geometric corrections, radiometric corrections, stacking of image bands.  

The landsat images obtained for the study area were recorded in bands ranging from 1 to 8. A 

single band do not have colour (ie Panchromatic) that will help in analysing the data, visually. 

Individual bands were therefore combined to form multispectral images which can therefore 

be viewed in different colour combination (RGB combination). Upon careful examinations, 

band combination 5, 3, 2 was used as it revealed clearly all the land cover classes 

distinguishable on the images.  

In order to subset the study area from each of the individual images, a vector polygon shape 

file as area of interest (AOI) was used for subsetting the study area.  

4.2 Subpixel Image Classification  

IMAGINE Subpixel Classifier was used in classifying individual images into their respective 

classes. The three multi spectral images; 1990 Landsat TM, 2000 Landsat ETM and 2010  

ALOS images were subjected to subpixel classification using Imagine Sub-Pixel module in 

Erdas Imagine 2010. Environmental correction was applied for the image using the 

Environmental correction tool in Imagine Sub-Pixel package. Sub-pixel classification reports 

the fraction of Material of Interest(MOI) present at pixel level, as percentage of impervious 

surface present. Signatures were developed for the class impervious surface as containing 

different percentage of material of interest from 20 to 80 percentages as different Area of 

Interest (AOI) file. The output continuous map consisted of eight classes as having impervious 

surfaces from less than 20 percentages to greater than 80 percentages with 80 percentage 

confidence.   
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In line with the objectives of the study, to identify land cover types and their spatial 

distribution using the subpixel classifier, seven classes were identified. Due to inefficiency in 

the use of the signature combiner, each image representing a land cover type produced seven 

MOI classified images. With each image, the sixth, seventh and eighth classes with MOI 

fraction 0.7-0.8, 0.8-0.9 and 0.9-1.0 were identified as true representation of the particular 

land cover type.   

The resultant image for each land cover type was combined using the overlay function, to 

produce a final image with seven land cover classes for each years’ image of the study area. 

For visualization purpose sub-pixel classification image was overlaid with the supervised  

MLC classified map. LULC classes were based on the Anderson classification scheme 

(Anderson et al., 1976) and the descriptions shown in Table 4.1.  

Table 4.1: Description of the Land use/Landover classification scheme  

LAND USE/COVER  DESCRIPTION  

Built-up   Comprised of areas of intensive use with much of the land covered by 

structures. Included in this category are, residential, industrial, 

transportation, utilities.  

Farmland  Land used primarily for production of food and fibre, Cropland, pasture 

and other commercial and horticultural crops.  

Mine site  Areas where both small scale and large scale mining activities are taken 

place. Extractive mining activities that have significant surface 

expression.   

Sparse Forest  These are sparsely scattered of trees of all ages, plants, and underbrush 

covering the large area within the study area.  

High Density Forest   Areas where a tree-crown areal density (crown closure percentage) of 10 

percent or more, are stocked with trees capable of producing timber or 

other wood products  

Barren land  This comprises of bare rock surface and land area of exposed soil surface 

resulting from human activities or natural causes  

Water  This includes the main river in the study area and other ponds created as 

a result of abandoned mine pits.  
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4.2.2 Accuracy Assessment  

It is important to test the result, before using the outcome of the classification from satellite 

images for change detection. Accurate classifications are imperative to ensure precise 

changedetection results (Foody, 2002).   

This process evaluates the accuracy of a derived thematic map. In this study all the checkpoints 

data were extracted from the 2010 ortho-photographs and GPS points of the area to perform 

Accuracy Assessment using the Classifier toolbar of Erdas Imagine. In all, sixty five random 

reference points were extracted from the orthophotographs, and were used to assess the 

accuracy of the classified images of 2000 and 2010. The error matrix compares the 

relationship between known reference data (ground truth) and the corresponding results of an 

automated classification (Lillesand and Kiefer, 2000).   

4.3 Post-Classification Change Detection  

Change detection have different meaning to different users (Singh, 1989; J. R. Jenson, 1996; 

Lu et al., 2004). Change detection in general is defined as a process to detect differences in 

the state of an object or phenomenon by observing it at different dates. The most common 

understanding of the Change Detection application is its ability to provide information on 

changes in terms of the location, extent, trend and spatial distribution of change. A 

PostClassification approach to Change Detection was employed in this project. As the main 

aim of this study was to map out, monitor and analyse the spatio-temporal LULC change and 

also to project areas under risk of invasion in future, Idrisi package was used to make these 

analysis of land cover changes. All the three classified images in Erdas format (.img) were 

exported to raster format (.rst) which is recognized by the Idrisi software. The following 

processes below were performed.  
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4.3.1 Land Cover Modeler (LCM)  

LCM is a vertical application (a vertical application is directed towards a specific application) 

that sits within IDRISI. Land Cover Modeler (LCM) was used in analysing the land cover 

changes that have occurred between the various land cover classes in the periods 1990 – 2000, 

2000 – 2010 and 1990 - 2010. Through the LCM, graphs of gains and losses, net change, 

contributors to the net change by each land cover category were generated from two thematic 

maps of the same dimensions. In addition to these results, it generated a change map to address 

the spatial distribution of change patterns within the given time interval (Eastman, 2006). 

Using the 1990 – 2000, 2000 – 2010 and 1990 – 2010 thematic maps as inputs in LCM 

modeler, all the above-mentioned outputs were generated. Subsequently, calculation of area 

in hectares (ha) was performed to ascertain the amount of land cover change.  

4.3.2 Cross-tabulation  

CROSSTAB module embedded in Idrisi performs a cross-tabulation analysis that compares 

images containing categorical variables of two types. Cross Tabulation provides the 

information on the frequencies with which each land cover classes remained either unchanged 

or has changed to one of the other classes, using two thematic maps of different dates. Three 

cross-tabulation Tables were generated from thematic maps 1990 – 2000, 2000 – 2010 and 

1990 – 2010 using the CROSSTAB module. In the contingency matrix, elements in the 

diagonal represent the land cover classes that remain unchanged and those in the off-diagonal 

are the changed land cover classes. The column element j represents land cover class in the 

earlier date and the row element i represents land cover class in the later date.  

4.4 Change Projection   

The Change Prediction module in Idrisi provides the controls for a dynamic land cover change 

prediction process. This study adopted Markov Chain analysis and Cellular Automata (CA) 
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as modelling techniques in predicting land cover change in the future. A Markov chain 

analysis (MARKOV) is used to estimate the transition matrix between the two past and 

documented dates (date 1 and date 2) and to estimate probabilities of change for the third date 

(date 3) to be predicted. A Cellular automata predicting model (CA_MARKOV) estimates the 

spatial distribution of land cover at a later date (date 3). (Eastman 2008).  

Markov Chain analysis was implemented using the Markov module embedded in Idrisi. The 

use of the Markov module produced a transition matrix and a set of conditional probability 

images between two dates of thematic maps. The transition matrix and the suitable images 

generated from Markov module were later loaded in the CA_Markov module in the software 

and a contiguity filter of 5x5 was applied to generate the predicted map. This contiguity filter 

serves as a transition rule on which the prediction is based. For this study, the two land cover 

maps 1990 – 2000 were first used to generate a predicted land cover map of 2010. Afterward, 

the predicted land cover map was compared with actual land cover map of 2010 for validation.  

Once the validation was done, the 1990 – 2010 land cover maps were used to predict that of 

2030.  

    

CHAPTER FIVE – RESULTS AND DISCUSSIONS  

5.1 Results   

This chapter seeks to present the findings of the project and make analyses on these findings.  

5.1.2 Classification and Accuracy Assessment Results  

Three land cover maps were obtained through the analysis of the three multi-temporal images  

(1990, 2000 and 2010) of the study area, using Imagine subpixel classification approach in 

Erdas. For the purpose of visualisation, the imagine sub pixel classification was overlaid on 

the maximum likelihood classified image. Table 4.1 in chapter 4 depicts land use/cover of the 
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study area in seven categories. The resultant land cover maps are shown in Figures 5.1, 5.2 

and 5.3 respectively.   
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Figure 5.1: 1990 LULC map of study area  
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Figure 5.2: 2000 LULC map of study area  

 
Figure 5.3: 2010 LULC map of study area   

An account of the results of the land use/cover maps obtained from the sub pixel classification 

is discussed below. Critical examination of these three land use/ cover maps revealed the four 

main forest reserves covered by the forestry commission. Two of these forest reserves are 

found at the North-eastern side, one at the south- eastern side and another one at the south- 

western side of the study area. These constitute the highest portion of the high density forest. 

The rest of the high density forest are found around the southern part of the area with a few 

patches scattered around the north. The sparse forest is seen as the dominant land cover 

scattered all over the study area. Farmland is seen to have increased along the north- eastern 

and south- eastern part of the study area during the period under review. The other land cover 

classes: mine site, built-up, ponds and barren lands are seen to be interrelated. The pond which 

is a category under the land cover ‘water’, are always found to be part of the mine site.   
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The Table 5.1 shows the extent of the area of the individual land cover categories in hectares 

(ha) and the percentage they occupied and Figure 5.4 is the graph depicting the trends of land 

cover changes in the three years 1990, 2000 and 2010.  

Table 5.1: Table of area covered by land use / cover categories  

Land use / 

cover class  

1990  2000  2010  

Area(ha)  Area(%)  Area(ha)  Area(%)  Area(ha)  Area(%)  

High  

Density  

Forest  

33119.8  29.25  21390.1  18.89  16417.4  14.50  

Sparse 

Forest  

74438.8  65.74  75268.7  66.48  66728.4  58.93  

Farmland  4656.78  4.11  12080.4  10.67  22297.3  19.69  

Barren land  120.96  0.11  522.36  0.46  129.51  0.11  

Built-up  521.73  0.46  909.45  0.80  3463.83  3.06  

Water  276.66  0.24  255.69  0.23  516.69  0.46  

Mine area  90.27  0.08  2798.73  2.47  3671.28  3.24  

Total Area  113225  100  113225  100  113225  100  

  

 

Figure 5.4: Graph showing the extent of area occupied by land cover categories in the years 

1990, 2000, 2010.  
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5.1.3 LCM Modeler Results  

The LCM model generated from 1990 – 2000 land cover map is shown in Figure 5.4. Graph 

A in Figure 5.5 revealed the degree of changes (Gains + and Losses -) in the study area 

resulting from the land cover conversions, with water experiencing very minimal change 

compared to other classes. It can be seen that all the land cover classes experienced some form 

of transition either gain or loss.  

Graph B in the figure explained the net change under the period of review. It can be deduced 

that with the exception of High Density Forest which suffered a very high loss of 11740ha 

(7.08%) of land cover area and water also losing a very minimal of 21ha (0.01) within the 

period of review to other classes, all the other land classes experienced gains, with mine area 

having the second highest gain of 2708ha. Figure 5.5 is summarised in Table 5.2.   

Since we would like to understand the correlation between the land cover classes and also to 

access the impact of mining activity on land cove changes, Figure 5.5 revealed how all the 

other classes have contributed to change in high density forest, farmland, built-up and mine 

area during the period under review. This also gives an idea as to how other classes are 

changing dues to changes in the mine site. The correlation between mine area and other classes 

can also be understood. It is evident that within the period under review, these classes, high 

density forest, farmland and built-up have all lost to mine area, losing 205ha, 102ha and 

117ha, respectively. We can also see that mine site is gaining from all the other classes.  
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Figure 5.5: LCM of 1990-2000 (Area units are in hectares).  

  

  

  

  

  

  

  

  

  

Table 5.2: Table showing the net change of land cover transitions from 1990-2000  

LAND  
COVER  
CLASS  

GAIN (+)  LOSS(-)   NET CHANGE  ANNUAL  
RATE  OF  
CHANGE  Area(ha)  Area(%)  Area(ha)  Area(%)  Area(ha)  Area(%)  

High  
Density  
Forest  

3141  1.89  14882  8.98  -11740  

  

-7.08  -0.708  

Sparse 

Forest  
16568  9.99  15721  9.48  847  0.51  0.051  

Farmland  9851  5.94  2434  1.47  7417  4.48  0.448  
Barren land  508  0.31  107  0.06  401  0.24  0.024  
Built-up  523  0.32  135  0.08  388  0.23  0.023  
Water  48  0.03  69  0.04  -21  -0.01  -0.001  
Mine area  2728  1.65  20  0.01  2708  1.63  0.163  
Total 

change  
33367  20.13  33367  20.12  0  0    

  

  Graph A   Graph B   
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Figure 5.6: Contribution to net change of the selected land cover between 1990 and 2000. 

(Area units are in hectares)  

  

The LCM model for 2000 – 2010 is shown in the Figure 5.7 indicating the overall changes in 

the various land cover classes during the eight year period. Within this period, it can be noticed 

that all the land cover classes experienced both types of changes in the study area, either gains 

or losses. Graph B in the Figure 5.7 revealed that mine site, water, built-up, and farmland did 

appreciate in the context of net change during the period under review. Table 5.3 is used to 

summarise the figure below. It can be inferred from the Table that land use / cover experienced 

equal amount of change during this period.  
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Figure 5.7: LCM of 2000-2010(Area units in hectares)  

  

Table 5.3: Table showing the net change of the selected land cover between 2000 and 2010. 

(Area units are in hectares)  

LAND  
COVER  
CLASS  

GAIN (+)   LOSS(-)   NET CHANGE  ANNUAL  
RATE OF  
CHANGE  Area(ha)  Area(%)  Area(ha)  Area(%)  Area(ha)  Area(%)  

High  
Density  
Forest  

5059  3.05  -10119  -6.10  -5060  -3.05  -0.31  

Sparse 

Forest  
14764  8.90  -23226  -14.01  -8463  -5.10  -0.51  

Farmland  17306  10.44  -7082  -4.27  10224  6.18  0.62  
Barren land  129  0.08  -522  -0.31  -393  -0.24  -0.02  
Built-up  2587  1.56  -33  -0.02    2554  1.54  0.15  
Water  313  0.19  -52  -0.03  261  0.16  0.02  
Mine area  2006  1.21  -1129  -0.68  877  0.53  0.05  
Total 

change  
42164  25.43  42164  25.43  0  0    

  

In order to further understand the trends of changes, figure 5.8 revealed the contributions to 

these net changes of mine site and the other land cover classes between 2000 and 2010.  

    

        Graph A   Graph B   
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Figure 5.8: Contribution to net change of the selected land cover between 2000 and 2010. 

(Area units are in hectares)  

Taking a critical look at the two models (1990-2000 and 2000-2010) it can be seen that the 

land cover changes do not follow a regular pattern. It was therefore necessary to quantify and 

observe the changes that have taken place by the various land cover classes within the twenty 

year period, the period between 1990-2010.  

 

  

    

  Graph A   Graph B   
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Figure5.9: LCM of 1990-2010 (Area units are in hectares)  

From graph A in figure 5.9 it can be deduced that all the land cover classes had experienced 

some changes either gains or losses. Graph B revealed the net change of individual classes 

and it can be inferred from it that farmland, mine site and built-up land cover classes had 

experienced expansion within the period of review. Even though minimal, it must be noted 

that water and barren land experienced little expansion. High Density Forest and sparse forest 

are seen to have experienced losses at the expense of other land cover class as summarised 

Table 5.4.  

Table 5.4: Table showing the net change of the selected land cover between 1990 and 2010. 

(Area units are in hectares)  

LAND  
COVER  
CLASS  

GAIN (+)  LOSS(-)   NET CHANGE  ANNUAL  
RATE OF  
CHANGE  Area(ha)  Area(%)  Area(ha)  Area(%)  Area(ha)  Area(%)  

High  
Density  
Forest  

3879  2.34  -20662  -12.46  -16783  -10.12  -1.01  

Sparse 

Forest  
19379  11.69  -27005  -16.29  -7626  -4.60  -0.46  

Farmland  20561  12.39  -2924  -1.76  17638  10.64  1.06  
Barren land  130  0.08  -121  -0.07  9  0.01  0.01  

Built-up  3058  1.84  -116  -0.07  2942  1.77  0.18  
Water  312  0.19  -72  -0.04  239  0.14  0.01  
Mine area  3611  2.18  -30  -0.02  3581  2.16  0.22  

Total 

change  
50932  30.71  50930  30.71  0  0    

  

Analysis on the contributions to the land cover changes is very important to this study, 

especially the contribution of mine site to other land cover classes. Figure5.10 shows the net 

contribution to land cover classes. Within the period under review, the figure reveals that high 

density forest and sparse forest has experienced high amount of losses as a result of expansions 

in farmland, mine site, and built-up. Sparse forest particularly is seen to have given way to 

farmland, built-up and mine site.  
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Figure5.10: Contribution to net change of the selected land cover between 1990 and 2010. 

(Area units are in hectares)  

  

To understand the land cover changes in terms of the amount of change, rate of change, the 

location of change and whether the changes follow specified trends within the period of 

review, the CROSSTAB module embedded in Idrisi was used to generate transition matrices 

and change maps between periods 1990 – 2000, 2000 – 2010 and 1990 – 2010; which explain 

the cross correlation between the land cover transitions. It can be noted from Tables 5.5, 5.6 

and 5.7 that the columns represent the land cover classes of the earlier date and the rows 

represent that of the later date.  

Table 5.5, 5.6 and 5.7 show the transition area matrix produced by running CROSSTAB 

module for the periods 1990 – 2000, 2000 – 2010 and 1990 – 2010 respectively. The off 

diagonal elements indicate the number of cells that have changed from existing land cover 
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class in earlier date to other new class in later date. However, the diagonal elements of the 

matrix represent the unchanged cover class.  

It was revealed from the tables that 79864.62ha, 71037.83ha and 62270.68ha of land cover 

area remained unchanged within periods 1990 – 2000, 2000 – 2010 and 1990 – 2010 

respectively. It can therefore be deduced that the amount of change for the three periods were  

29.46%, 37.26% and 45.00% within the study area respectively.  

Table 5.5: Transition matrix of 1990 – 2000 (Area units in hectares)  

  

  

  

  

  

  

  
2000  

1990     

Class  High  
Density  
Forest  

Sparse 

Forest  
Farmland  Barren 

land  
Builtup  Water  Mine  

site  
Total  

High  
Density  
Forest  

18350.43    3113.26        7.47   0           0         26.91       1.8  21499.87  

Sparse 

Forest  
14283.47  58614.12      2246.4          3.15         0  26.19       3.15  75176.48  

Farmland  288.81  9553.59    2221.56         1.89        0  2.16      0  12067.74  
Barren 

land  
59.04   435.33    12.24  14.31        0  0.54      0.81  522.27  

Built-up  16.2     421.38      63.45       8.55   386.37     0  13.5  909.45  
Water  23.4        18.72      0.45    0.54     4.5     207.27     0.45  255.33  
Mine area  206.55       2177.28        102.33        92.52        130.86     13.5    70.56  2793.6  
Total  33227.9  74333.68  4653.9  120.96  521.73  276.57  90.27  113225  

  

Table 5.6: Transition matrix of 2000 – 2010 (Area units in hectares).  

  

  

  

  

  

  

  
2010  

 2000   

Class  High  
Density  
Forest  

Sparse 

Forest  
Farmland  Barren 

land  
Builtup  Water  Mine  

site  
Total  

High 

density 

forest  

11370.71    4490.12      156.15       159.57     0.72      4.95     258.75  16440.97  

Sparse 

Forest  
8446.43  51933.51    6019.2   69.48      4.05      9.36       231.66  66713.69  

Farmland  1141.02      16043.94    4988.34    31.32       0           0.81    85.41  22290.84  
Barren 

land  
7.74  94.14      19.26  0.72  0           0          7.65  129.51  

Built-up  235.26  1217.52     584.82      57.24       876.15     15.48      476.64  3463.11  
Water  33.39  180.9     15.21       12.69       1.98        203.4        68.49  516.06  
Mine area  274.32  1207.35      285.03      191.25     26.55       21.33      1665  3670.83  
Total  21508.87  75167.48  12068.01  522.27  909.45  255.33  2793.6  113225  
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Table 5.7: Transition matrix of 1990 – 2010 (Area units in hectares).  

  

  

  

  

  

  

  

  
2010  

1990          

Class  High  
Density  
Forest  

Sparse 

Forest  
Farmland  Barren 

land  
Builtup  Water  Mine 

area  
Total  

High  
Density  
Forest  

12544.87  3793.05  84.6  1.8  0.27  6.84  1.44  16432.87  

Sparse 

Forest  
16886.31  47326.14  2479.14  0.27  3.51  22.05  2.43  66719.85  

Farmland  2799.27  17761.59  1729.62  0  0  1.35  0.36  22292.19  
Barren 

land  
30.69  91.98  6.84  0  0  0  0  129.51  

Built-up  351.18  2447.46  200.52  11.97  405.72  20.97  25.65  3463.45  
Water  35.91  212.94  16.11  31.32  14.85  204.48  0.54  516.15  
Mine area  573.57  2706.75  137.16  75.6  97.38  20.97  59.85  3671.28  
Total  33221.8  74339.91  4653.99  120.96  521.73  276.66  90.27  113225  

Figures 5.11, 5.12 and 5.13 show the spatial distribution (location) of land cover change that 

have taken place between the individual cover types.  
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Figure 5.11: 1990 - 2000 Change map showing land cover transition types  

  
Figure 5.12: 2000 - 2010 Change map showing land cover transition types  
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Figure 5.13: 1990 - 2010 Change map showing land cover transition types  

5.1.1 Normalized Difference Vegetation Index  

Normalized Difference Vegetation Index Using the equation given in section 2.6, NDVI 

images of the study area were generated from the 1990 Landsat TM, 2000 Landsat ETM and 

2010 ALOS  imagery , shown in Figure 5.14.   

  

Figure 5.14: NDVI maps showing vegetative and non-vegetative cover  

  

According to section 2.6, this index outputs values between -1.0 and 1.0. Very low values of 

NDVI (0.1 and below) correspond to barren areas of rock, sand, or snow. Moderate values 

represent shrub and grassland (0.2 to 0.3), while high values indicate temperate and tropical 

rainforests (0.6 to 0.8).   
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The NDVI gave good results in identifying forest areas for subsequent field validation. Also, 

the results of the NDVI gives a reflection of the subpixel classification as differentiating 

portions of the study area covered by vegetation or no vegetation cover.   

5.1.4 Projecting the Change  

To be able to achieve the objectives 4 and 5, project areas under risk of invasion in future, and 

produce some form of useful references for the local governments in their sustainable land 

use planning and decision making, as stated in section 1.4.2, it was necessary to perform 

change prediction. Markov Chain Analysis was used to predict the future land use / cover map 

within a specified period. First the LULC maps of the years 1990 – 2000, were used to predict 

the future land cover map of 2010. The LULC map for 2010 produced was used as a reference 

with which the predicted map of 2010 was compared for validation, before proceeding to use 

this module to predict further into the future, see Figure 5.15.  

  

Figure 5.15: A figure of reference (left) and predicted (right) land use / cover map of 2010  

  

The validation was evaluated by the use of kappa statistic generated from VALIDATE module 

in Idrisi. The Kno which indicates the overall accuracy of prediction was calculated to be  

70%. Other kappa statistics like Klocation and Klocation Strata were computed to be 68%  
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each (Appendix B). Even though these values does not fall within the standard values 

suggested by Monserud and Leamans (1992) that a value of kappa of 75% or greater show a 

very good to excellent classifier performance, while a value less than 40% is poor, according 

to Bell (1974), if the Markov process is found not to be stationary, it does not necessarily 

mean the model has lost all its predictive or descriptive power. The discrepancies between the 

predicted and reference land cover maps of 2010 can be as a result of the fact that the land 

cover changes do not follow a regular pattern as already stated. This model can therefore be 

considered to be good for any future predictions based on these suggestions.  

The land cover map for 2030 was projected using the 1990 and 2010 land cover maps in the 

same way assuming that the transmission mechanisms stay the same. The transition 

probability matrix generated is shown in Table 5.8 and resulting 2030 predicted land cover 

map shown in Figure 5.16.  

Table 5.8: Transition probability matrix between 2010 and 2030  

  2010         

  

  

  

  

  

  
2030  

Land use / 

cover 

class  

High  
Density  
Forest  

Sparse 

Forest  
Farmland  Barren 

land  
Built-up  Water  Mine 

area  

High  
Density  
Forest  

0.3050  0.5064  0.1342  0.0008  0.0276  0.0034  0.0225  

Sparse 

Forest  
0.0774  0.6090  0.2395  0.0013  0.0408  0.0044  0.0276  

Farmland  0.0446  0.5584  0.2788  0.0014  0.0792  0.0035  0.0341  
Barren 

land  
0.2052  0.2737  0.0808  0.0014  0.1781  0.0295  0.2314  

Built-up  0.0042  0.0102  0.0019  0.0001  0.9333  0.0046  0.0458  
Water  0.0357  0.0709  0.0152  0.0003  0.1219  0.6370  0.1190  
Mine area  0.1110  0.1603  0.0537  0.0018  0.2717  0.0350  0.3665  
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Figure 5.16: 2030 Predicted land use / cover map  

  

Table 5.9: Table showing the change analysis between 2010 and predicted 2030  

Land use / 

cover class  
20 10  2030  Net Change  

    

Annual  
Rate of  
Change  

  Area(ha)  Area(%)  Area(ha)  Area(%)  

High  
Density  
Forest  

16417.4  14.50  15009.32  13.26  -1.24%  -0.12%  

Sparse 

Forest  
66728.4  58.93  62362.23  55.08  -3.85%  -0.39%  

Farmland  22297.3  19.69  24692.50  21.80  2.11%  0.21%  
Barren land  129.51  0.11  170.73  0.15  0.04%  0.00%  
Built-up  3463.83  3.06  5232.42  4.62  1.56%  0.16%  
Water  516.69  0.46  559.62  0.49  0.03%  0.00%  
Minesite  3671.28  3.24  5198.58  4.59  1.35%  0.14%  
Total   113225  100  113225  100      

  

The spatial trend of change in the LCM was used to facilitate interpretation of the complex 

land change patterns by providing a means of generalization about transition trends between 
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selected categories. Three spatial trend maps (Figures 5.17, 5.18 and 5.19) were created 

showing the transitions from 1990 to 2010 between categories of interest: high density forest 

to sparse forest, high density forest to mine site, and farmland to mine site. The numeric values 

do not have any special significance (in and of themselves), other than to provide an indication 

of where the change was more intense (higher numbers, redder colours) or less intense (lower 

numbers, darker green to blue colours). The resulting maps depict a simulated surface that 

denotes the generalized locations of transition between these categories, from areas with no 

change to areas with marked change.   

The general trend of transition from high density forest to sparse forest was located in the 

south western and a small portion in the far end of north eastern part of the study area. The 

general location of mine site occurring in high density forest areas was identified around the 

western through the central to the eastern parts of the study area.  The major transition from 

farmland to mine site was detected in the central and eastern portions of the area.  

 
Figure 5.17:  Map showing spatial trend of change from high density forest to sparse forest  
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Figure 5.18: Map showing spatial trend of change from high density forest to mine site  

  

  

Figure 5.19: Map showing spatial trend of change from farmland to mine site  
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5.2 Discussions  

5.2.1 Land Cover Change Analysis  

The main advantage of using Post-Classification change detection is its ability to provide 

detail and comprehensive information on the exchanges of land cover classes, in the context 

of the amount, rate, location and the trends of change (Adu-Poku, 2010). Within the period 

under review (1990 – 2010), the study area has experienced divergent changes in the LULC 

as a result of human / artificial activities.  

The land use / cover maps of 1990, 2000, and 2010 reveals that the most wide spread land 

cover change is from high density forest to sparse forest, and from sparse forest to farmland. 

Surface mining has also resulted in extensive land cover changes in the study area, mainly 

leading to the loss of forests and farmland. The land use / cover maps of the study area shows 

the intense change in land cover around the areas where even mining companies have 

concession. Even though some of these mining companies are now practising land  

reclamation, it is clear that the intense change from sparse forest to farmlands as a result of 

increase in urbanisation in the study area which has been caused by both legal and illegal 

mining activities in the area.  A good look at the land use / cover maps reveals, a substantial 

social and environmental cost, example spill – over effects in together to with direct effects  

such as loss of the rich forest land and also pollution. A look at figures 5.2 and 5.3, reveals 

the pollution made to the main river in the study area, river ankobra. Mining activities and 

settlement have increased causing pollution to this river in the 2000 and 2010 land use / cover 

maps. As a result of this pollution, portions of the river along these areas gives different 

reflectance during classification. This is therefore a great loss of a source of water to the 

community.  
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It can be realised from Table 5.1 that sparse forest cover increased from 1990 to 2000 as a 

result of deforestation and farmlands which are abandoned when the land has been polluted 

as a result of spillage caused by illegal miners. Increase in the indiscriminate act of these 

illegal miners, resulted in a decline of sparse forest to 66728.4ha in 2010, representing 7.55% 

from the year 2000.  

Subsequently, it was also revealed that farmland has increased through the past two decades. 

By 2010, farmland in the study area covered 19.69%. Subsidy and incentives given to cocoa 

farmers by the government since 2000 and also the establishment of fruit processing 

companies are the reasons why there was an increase in farmlands in the area.  

High density forest is noticed as the next most dominant land category after farmland category. 

The area covered by high density forest declined through the past two decades. In 1990, high 

density forest covered 33119.8ha (29.25%), but it declined sharply by about 10% in 2000 and 

further to 16417.4ha (14.50%) in 2010. Even though there has been a rapid change in the high 

density forest cover in the area during the period under review, 1990 – 2010, it can be seen 

from the land cover maps(Figures 5.1, 5.2 and 5.3) that most portions of the main forest 

reserves in the study area are preserved. The decrease in high density forest could be attributed 

to booming in mining activities resulting in fast-paced population growth. The high density 

forest is depleted by people for their livelihoods such as farming, firewood collections, 

mining, construction of houses and roads.   

For the minor land cover categories, built-up and mine site covered most of the remaining 

cover in the area. Barren land and water, mainly the ponds, covered a small portion of the area 

but the changes in these two cover was as a result change in area covered by mine site.  

Examining the change maps, Figure 5.10 – 5.12 shows the distribution of exchanges in the 

land cover classes revealing the location of changes in the study area. It can be noticed from 
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the figures that changes occurred all over the study area with most of the changes taken place 

close to built-up areas indicating the influences of human activities on the land cover.  

From the transition matrices generated for the three time series (Tables 5.4 – 5.6) it can be 

deduced that 70.54% (79864.62 ha) of total land cover remained unchanged and the area 

experienced 2.95% annual rate of land cover change within the ten year period (1990 – 2000); 

62.74% (71037.83ha) of the land cover remain unchanged within the next ten years (2000 – 

2010) and the annual rate of land cover change in the area was 3.73%. Taking into account 

this two periods of time series (1990 – 2010), the results from Table 5.6 revealed that 55.00%  

(62270.68 ha) of the study area experienced no change at 4.50% annual rate of change. 

Comparison of these three rates revealed an increase change from the period 2000 – 2010. 

This can be attributed to the fast growing population resulting in activities such as farming, 

construction of houses and roads, firewood collection and mining.  

Within the period between 1990 and 2010, mining activities, urbanisation and farming 

activities have been identified as the main driving forces causing alteration of land cover in 

the study area. This establish the idea that the Earth’s land surface is affected rapidly by the 

presence of humans and their activities (Sherbinin, 2002). This is evident as there has been a 

massive increase of mine area, built-up and farmland in the study area, from 90.27ha in 1990 

to 3671.28ha in 2010, 521.73ha in 1990 to 3463.83 in 2010 and 4656.78ha in 1990 to 

22297.3ha in 2010 respectively, as shown in Table 5.1.  

5.2.2 Land Cover Modelling Analysis  

Figures 5.5 – 5.10, reveals the correlation between mine site to other land use / cover classes. 

It is evident that mine sites increase is directly related to built-up and farmland. This is so 

because in graph B of Figures 5.5, 5.7 and 5.9, these three classes, mine site, built- up and 

farmland are constantly gaining in net change computation.  
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Examining the figures showing contribution to net change of the land use / cover classes calls 

for much concern. From Figure 5.6, between 1990 – 2000, with the exception of high density 

forest that lost 11182ha of land to sparse forest, farmland, built-up and mine site has gained 

hundreds of hectares of land from sparse forest, with the gains of, 7310ha, 421ha and 2179ha 

respectively. Between 2000 – 2010, Figure 5.8 reveals a similar pattern of loss of sparse forest 

to other classes. The loss of forest (high density forest and sparse forest) can also be attributed 

to illegal logging as surface mining expands. Also farmers that are displaced by gold surface 

mining mostly re-established in close forest areas. This is because deforestation at its initial 

stage provides benefits from wood extraction. Previously fallow soils are more fertile than 

areas that have been degraded. It is hard to find a fertile farmland these days (Wassa West 

District office of the Ministry of Lands, Forestry, and Mines). It can be realised from the 

contributors to net change that, farmers are also losing their lands to surface miners, both legal 

and illegal and also to built-up.  

The intention of the spatial trend of change module is to provide a means of generalising the 

pattern of change. The output from the spatial trend of change module is a smooth surface that 

represents gradual trends in the surface (the transition in land cover) over the area of interest. 

The spatial trend of change maps shown above explains the fact that as farmers loss their lands 

to surface miners they in turn move to clear the forests to re-establish their farms.  

5.2.3 Change Projection  

Although the model used in this study was found to be acceptable, it fails to attain a kappa 

value of 75% or more as proposed by Monserud and Leamans (1992) as a model with excellent 

prediction. The reasons could be attributed to inadequate suitability maps used during the 

modelling process and also the contiguity filter applied. In order to efficiently model land 

cover maps in the future; it is convenient to implement adequate suitable maps representing 
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the driving factors information on the degree of impact on the land cover types (Clarke et al., 

1997; Zamyantin and Markov, 2005).   

These suitability maps and the contiguity filter applied act as a transition rule during the 

modelling process and have a great influence on the results of the model. Maps such as 

population data, meteorological data and even policy data were not included in this study. 

Markov chain analysis predicts the future land cover patterns based on known land cover 

patterns of the past (Eastman, 2006; Sun et. al., 2007). The inference that can be drawn from 

this is that Markov chain analysis used to predict 2010 land cover map based on 1990 – 2000 

land cover maps fails to acknowledge the driving factors that took place between 2000 and 

2010, and thus contributing to the discrepancies between the predicted and reference land 

cover maps of 2010.  

From Figure 5.15 and Table 5.8, it is evident that all the land cover classes except high density 

forest and sparse forest will be expanding, with farmland and built-up areas experiencing a 

gain of about 2.11 % and 1.56% respectively. Table 5.7 reveals that in the next ten years, 

built-up and mine site will be increasing at the expense of each other. Built-up is expected to 

gain by 12.4% from mine site, and mine site on the other hand is expected to gain by 19.3% 

from built-up. Sparse forest is expected to increase by 4.6% at the expense of high density 

forest, while farmland will in turn gain by 50.7% from sparse forest. Within this period, barren 

land will be gaining from water and mine site by 28.3% and 70.9% respectively. This is 

alarming because the effect of mining activities on the land is revealed as most lands will be 

left barren due to mining activities in past years.  

    

CHAPTER SIX - CONCLUSIONS  
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6.1 Conclusions  

Based on the objectives of this study, the following conclusions can be made.  

This study used the integration of Remote Sensing techniques to analyse and quantify the land 

cover changes (in terms of the amount, rate, trend and the location) that have occurred within 

the period of 1990 – 2010 in the study area. It can be seen that the study area has witnessed 

widespread land cover changes with the annual rate of change as 4.50%. It can be realised 

from the analysis made in this study that, the slightest increase in mine area has a 

corresponding increase with farmland and built-up (Graph B of figure 5.5, 5.7, 5.9).   

Within the period between 1990 and 2010, mining activities and urbanisation has been 

identified as the main factors behind the alteration of land cover in the study area. This 

confirmed the idea that the Earth’s land surface is rapidly affected by the presence of human 

being and their activities. This is evident as there has been a massive shot up of built-up, mine 

area and farmland in the study area. Also, the trend of land cover losses, mainly the loss of 

vegetation in the study area could be attributed to the LULC conversions to the main drivers 

of change. The rapid growth in mining activities has resulted in the fast-paced in urbanisation 

as the major sources of land cover changes in the area of study.  

The application of sub-pixel classifier was successful, but it is important to point out some 

limitation of the sub pixel classifier; Sub pixel classifier shows low number of classified 

pixels, this is because sub pixel classifier is more suitable for extracting pure material specific 

in nature. For this reason, the classified image obtained from the sub pixel classification was 

over laid on a maximum likelihood classification image for a better visual representation. The 

NDVI classification gave a reflection of the subpixel classification as differentiating portions 

of the study area covered by vegetation or no vegetation cover.   
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Projecting areas under risk of invasion in the future was successful using the Markov Chain 

analysis. The projected LULC map of 2030 reveals that, high density forest and sparse forest 

are under risk of invasion in the future. It must be noted that, the Markov Chain analysis 

predicted the state of each land cover class based on the past history but fails to take into 

account the future trends.  

6.2 Recommendations  

Even though this study has been concluded, it is necessary to make some recommendations, 

since there still remain some unanswered questions due to the limitation of resources.  These 

recommendations include;  

• For an effective application of the subpixel classifier for surface  mining studies where 

mining pits for most of the small scale miners is less than 30m*30m or 10m*10m,High 

resolution images such as IKONOS and QUICKBIRD with resolution of 1m or less  

will be suitable.  

• With the projection of areas under risk of invasion in future for the study area already 

done, it may be helpful and useful to conduct further studies on how to protect the land 

cover types under risk of invasion in future.  
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APPENDIX  

Appendix 1: Error matrix generated from 2000 land cover map  

ACCURACY TOTALS    

Class Name  Reference  

Totals  

Classified  

Totals  

Number  

Correct  

Producers  

Accuracy  

Users  

Accuracy  

Kappa  

Unclassified  0  0  0  ---  ---  0.0000  

High  

Density  

Forest  

6  5  5  83.33%  100.00%  1.0000  

Sparse  

Forest  

11  10  8  72.73%  80.00%  0.7593  

Farmland  22  25  21  95.45%  84.00%  0.7581  

Barren land  4  2  1  25.00%  50.00%  0.4672  

Built-up  8  10  8  100.00%  80.00%  0.7719  

Water  3  3  2  66.67%  66.67%  0.6505  

Minesite  11  10  8  72.73%  80.00%  0.7593  

Totals  65  65  53        

Overall Classification Accuracy =     81.54%  
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Overall Kappa Statistics = 0.7656  

  

  

    

Appendix 2: Error matrix generated from 2010 land cover map  

ACCURACY TOTALS    

Class Name  Reference  

Totals  

Classified  

Totals  

Number  

Correct  

Producers  

Accuracy  

Users  

Accuracy  

Kappa  

Unclassified  0  0  0        ---    ---    

High  

Density  

Forest  

5  5  4  80.00%  80.00%  0.7833  

Sparse  

Forest  

13  11  9  69.23%  81.82%  0.7727  

Farmland  19  21  18  94.74%  85.71%  0.7981  

Barren land  5  2  2  40.00%  100.00%  1.0000  

Built-up  9  12  9  100.00%  75.00%  0.7098  

Water  2  4  2  100.00%  50.00%  0.4841  

Minesite  12  10  8  66.67%  80.00%  0.7547  

Totals  65  65  52       

Overall Classification Accuracy =     80.00%  

Overall Kappa Statistics = 0.7523  
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Appendix 3: Attribute table showing subpixel representation of Material of Interest (MOI)  

   

  

Appendix 4: Showing the kappa statistics for validation performed using the predicted and 

reference land cover maps of 2010.  

  


