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ABSTRACT 
The characterization of black holes by means of classical event horizon is a global 

concept since one need to have the knowledge of the whole spacetime in order to 

locate a black hole region and the event horizon. To surmount these issues, we 

investigate alternative approach based on the concept of trapped surfaces in a 

variety of spacetimes. Specifically, to compute the expansions of the appropriate 

null vectors in both spherically and axiallysymmetric spacetimes and thus explicitly 

determine the existence of trapped and marginally trapped surfaces in their 

respective black hole regions.  
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Chapter 1 

INTRODUCTION 

1.1 Background to the Study 

One of the most striking results of General Relativity is its prediction of black holes 

which are spacetime regions from which no signal can be seen by an observer 

located sufficiently far from the matter sources (Frolov and Zelnikov (2011); 

Page1). Black holes in the universe form as the final state of gravitational collapse 

of sufficiently massive objects, such as massive stars demonstrated by the work of 

Chandrasekhar (1983). General relativity shows that black holes are remarkably 

simple objects characterized by just a few numbers. As Chandrasekhar put it ”the 

black holes of nature are the most perfect macroscopic objects there are in the 

universe”: the only elements in their construction are our concepts of space and 

time (Hartle (2003)). The very possibility of the existence of black holes was first 

discussed by Michell and Laplace within the framework of the Newtonian theory at 

the end of the 18th century, (Frolov and Zelnikov (2011); Page 8). They viewed as 

a star which has strong gravitational field such that the Newtonian escape velocity 

p 
2GM/R (where M and R are respectively the mass and radius of the star) is greater 

than the speed of light. The inequality R ≤ 2GM/C2 for escape velocity also holds in 

general relativity (Penrose (2004); Page 707; Krishnan (2013); Page 1). 

The history of black holes started just after general relativity was discovered. 

Schwarzschild in 1916 discovered the first exact (spherically symmetric) solution 

of the Einstein equations in vacuum and it was named after him was in fact, a black 

hole. This solution describes the gravitational field of spherically compact objects. 

Apart from the singularity at the center of symmetry (at r = 0), this solution had 

another singularity on the gravitational radius surface (at r = 2M). It was soon 



 

2 

understood that the latter singularity is quite different from singularity at the 

region. The nature of this Schwarzschild singularity was a mystery for many years. 

However its properties were fully appreciated after four decades. Many scientists 

contributed to the solution of this problem (Frolov and Zelnikov (2011); Page 8). 

Kerr discovered a solution of the Einstein equation, which describes the 

gravitational field of a stationary rotating black hole in 1963 (Jakobsson (2017)). 

This solution has a gravitational radius which describes the position of the event 

horizon (Frolov and Zelnikov (2011); Page 8). Carter in (1966) explained its global 

properties. The charged spinning black holes which represent the Kerr-Newman 

solution was discovered in1965. The term black hole was introduced in 1967 by 

John Wheeler (Frolov and Zelnikov (2011); Page 10); Krishnan (2012); Page 1). 

There were seminal developments at that very time to understand the general 

properties of black holes. These include the study of the global properties of black 

hole spacetimes, the event horizon definition, the singularity theorems of Penrose 

and 

Hawking and the introduction of trapped surfaces by Penrose (Krishnan (2012); 

Page 1). In the 1980s, Robinson and Carter established the uniqueness of the Kerr 

metric for the description of the black holes of nature. This theorem states that; 

stationary axiallysymmetric solutions of Einstein’s equation for the vacuum, which 

have a smooth convex event horizon, are asymptotically flat and are non-singular 

outside of the horizon are uniquely specified by the two parameters the Mass and 

the Angular Momentum and these two parameters only (Chandrasekhar (1983); 

Page 298).These theorems assert that, given a matter model (for example vacuum), 

a static or a stationary black hole spacetime belongs to a specific class of spacetimes 

(in the vacuum case, they are Schwarzschild in the static regime and Kerr for the 

stationary case) which are characterized by a few parameters that describe the 

fundamental properties of the black hole (for vacuum these parameters are the 

mass and the angular momentum of the black hole). The Kerr solution represents 

the unique solution which the general theory of relativity provides for the 
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description of all black holes that can occur in the astronomical universe by the 

gravitational collapse of stellar masses; and it is the only physical theory that 

provides an exact description of a macroscopic object (Chandrasekhar (1983); Page 

273). The study of black holes has for many years depended on event horizons as 

the boundary of the region of the black hole from where one can send signals to 

infinity (Senovilla (2011); Page 1). However, the study of black holes based on the 

concept of classical event horizon has the following drawbacks: to determine the 

event horizon requires the knowledge of the entire future null infinity, the 

definition has no direct relation with the notion of strong gravitational field as 

shown by (Ashtekar and Krishnan (2004); Page 9) and (Krishnan (2013); Page 16) 

on an example based on the Vaidya metric, event horizon can form in a flat region 

of spacetime. Another non-local feature of event horizons is their teleological 

nature (Gourgoulhon and Jaramillo (2008); Page 2). The classical black hole 

boundary, i.e. the event horizon, responds in advance to what will happen in the 

future. This is shown by (Booth (2005); Page 4), on the explicit example of a black 

hole formed by the collapse of two successive matter shells: after the first shell has 

collapsed to form the event horizon, the latter remains stationary for a while and 

then starts to grow before the second collapsing shell reaches it (Gourgoulhon and 

Jaramillo (2008); Page 2). If we consider black holes as ”ordinary” physical objects, 

for instance in quantum gravity or numerical relativity, the above mentioned non-

local behaviour of the event horizon would be problematic (Gourgoulhon and 

Jaramillo (2008); Page 2). To circumvent these problems, the seminal notion of a 

trapped surface could play a crucial role, capturing as it does the idea that all light 

rays emitted from the surface locally converge. Through the Hawking and Penrose’s 

singularity theorems and weak cosmic censorship, the existence of a black hole 

region is indicated. In fact, in the so-called strongly predictable spacetimes which 

satisfies proper energy conditions, these trapped surfaces are guaranteed to lie 

inside the black hole region. Moreover; to locate these trapped surfaces does not 

involve a whole future spacetime development (Jaramillo (2011); Page 2). 
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1.2 Problem Statement 

Characterizing black holes by means of classical event horizon is a global concept 

which has the following drawbacks: It is a teleological concept, i.e. we need to know 

the whole spacetime in order to locate event horizon and black hole region. The 

event horizon can enter into flat spacetime regions. This has motivated the need to 

use local approach as a complementary means of characterizing black holes. 

Specifically, to compute using appropriate null vectors the covariant divergences 

and the fluxes in spherically symmetric spacetime (Schwarzschild and Vaidya 

spacetimes) and axially symmetric spacetime (Kerr and Kerr Vaidya spacetimes) 

which Text books and Journals have not used. 

1.3 Research Objective 

The objective of this study is as follows: 

To demonstrate the existence of black hole region by showing the existence of trapped and 

marginally trapped surfaces in spherically symmetric spacetime (Schwarzschild metric), 

the Vaidya spacetime, axially symmetric spacetime (Kerr metric) and the Kerr Vaidya 

spacetime. 

1.4 Methodology 

Using covariant divergence and Gauss divergence theorems in spherically 

symmetric spacetime and axiallysymmetric spacetime to exploit the definitions of 

trapped 

surfaces. 

1.5 Structure of the Thesis 

This thesis is organized as follows; the Background of the study, the Problem 

Statement and research objectives. This is followed by Methodology, structure of 
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the thesis, Notations. Review of literature is done in chapter two. Chapter three 

discusses several properties of spacetime including the classification of various 

components of the curvature tensor and Killing vectors. These Killing vectors play 

important role in spacetimes. For example a spacetime is static if it possesses a 

timelike Killing vector field and spherically symmetric if it possesses a full set of 

three rotational (hence spacelike) Killing vectors. 

In chapter four, we discuss a hypersurface which is the main ideas related to null 

vectors and curves. We will define a non-affinely parameterized geodesic in terms 

of parallel transport and properties of non-affinely parameterized geodesics will 

also be discussed. This chapter also discusses the celebrated Raychaudhuri 

equation for timelike geodesic congruences and affine null geodesic congruences. 

By Raychaudhuri equation, we obtain the expansion of null vectors which play a 

very important role in the singularity theorems of general relativity (where the 

trapped surfaces are characterized by negative expansions for both ingoing and 

outgoing null vectors), and in the study of (black holes and the laws governing the 

evolution of the surface of the black hole). Another important property that is 

discussed is the surface gravity. This property does not change over the horizon 

except for a bifurcation two-sphere where the Killing vector vanishes and can 

change in sign. As an example we show that the surface gravity of the Schwarzschild 

black hole is non-degenerate. 

In this same chapter we discuss how various spacetimes can be classified in terms 

of their curvature and introduce several quasi-local definitions of mass in curved 

spacetimes that are used to assign a mass to a black hole. Various definitions of 

black hole horizons that have been proposed in the literature are also discussed in 

this chapter. Some properties of trapped surfaces under deformations and time 

evolution are also discussed in chapter four, and this leads naturally to the notions 

of marginally trapped tubes, trapping and dynamical horizons. 
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In chapter five, we discuss the spherically symmetric Schwarzschild spacetime 

which happens to be the simplest black hole, and investigate the properties of its 

black hole region. This will eventually lead to the notions of event horizons and 

trapped surfaces, and the boundary of the trapped region. We will see that, the 

different definitions of the black hole horizon are the same in Schwarzschild black 

hole but will be different in more general situations. Perhaps the simplest example 

we shall discuss is the dynamic black hole (Vaidya spacetime) in the same chapter. 

We shall see in this simple spherically symmetric black hole that, the locations of 

trapped surfaces are different. 

In chapter six, we investigate axiallysymmetric spacetimes in different coordinate 

systems to locate trapped surfaces for Kerr in advanced Eddington-Finkelstein 

coordinates, Doran coordinates, Kerr Vaidya coordinates and non extreme Kerr 

black hole. We shall see that, for the extreme Kerr black hole i.e. when a = M, there 

are no trapped surfaces. We use metric signature (- + ++) throughout and geometric 

units C = G = 1. 

Finally, chapter seven provides a summary and some open issues. 

Chapter 2 

LITERATURE REVIEW 
The traditional way of approaching black holes involves global spacetime concepts, 

in particular to have a good control of the notion of infinity (Jaramillo (2011); Page 

2). Given a strongly asymptotically predictable spacetime M, the black hole region 

B is defined as B = M − J−(p+) where J−(p+) is the causal past of future null infinity p+. 

That is, B is the spacetime region that cannot communicate with p+ (Jaramillo 

(2011); Page 2; Wald (2001); Page 6; Hawking and Ellis (1973); Page 312). In terms 

of spacetime the boundary of a black hole is its event horizon 

(Bengtsson et al. (2013); Page 1; Hayward (2000); Page 2; Booth (2005); Page 
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2). In this global context, the event horizon E, defined by the boundary of B, is E = ∂J 

−(p+)∩M (Bengtsson et al. (2013); Page 1), or the boundary of the region from 

where one can send signals to a far away asymptotic external region (Senovilla 

(2011); Page 1). The most interesting geometric and physical properties of the 

event horizon are: E is a null hypersurface in M; it satisfies an Area Theorem 

(Jaramillo (2011); Page 2; Hayward (2000); Page 2); Booth (2005); Page 2) so that 

the area of spatial sections S of E does not decrease in the evolution and, beyond 

that, a set of black hole mechanics laws are fulfilled (Jaramillo (2011); Page 2; 

Bardeen et al. (1973); Page 167). 

It is very unfortunate that, the event horizon is essentially a global object because it 

depends on the whole future evolution of the spacetime (Gourgoulhon and 

Jaramillo (2008); Page 2): it is a teleological concept (Hawking and Hartle (1972); ) 

given in the work of (Gourgoulhon and Jaramillo (2008); Page 2) i.e. the knowledge 

of the full future spacetime is needed in order to locate the event horizon and the 

black hole region. Also the event horizon can enter into flat spacetime regions 

(Jaramillo (2011); Page 2). Moreover, this black hole definition does not have direct 

relation with the notion of strong gravitational field: as shown by (Ashtekar and 

Krishnan (2004); Page 9) on an example based on the Vaidya metric, an event 

horizon can form in a flat region of spacetime, where by flat it means a vanishing 

Riemann tensor, i.e. no gravitational field at all. As noticed also by Demianski and 

Lasota (1973) long time ago (Gourgoulhon and Jaramillo (2008); Page 2), this 

definition is also not applicable to cosmology, for usually a cosmological spacetime 

(M,g) is not asymptotically flat. 

This global approach requires controlling structures that are not accessible during 

the evolution (Jaramillo (2011); Page 2). One possible alternative is to use the 

notion of trapped surfaces introduced by (Penrose (1965a), Helou (2015), page 3). 

These trapped Surfaces are closed spacelike 2-surfaces (usually topological spheres) 
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which are such that their area decreases locally along any possible future direction, 

(Senovilla (2011); Page 2, Senovilla and Garfinkle (2015)). Trapped surfaces 

according to the singularity theorems and weak cosmic censorship, are local 

characterization of black holes (Bengtsson et al. (2013); Page 1). Moreover, their 

location does not involve a whole future spacetime development (Jaramillo (2011); 

Page 2). Since trapped surfaces are closed spacelike surfaces, they provide a quasi-

local alternative which an observer could in principle locate in order to detect the 

presence of a black hole. Trapped surfaces therefore lead to quasi-local horizons 

such as isolated, dynamical and trapping horizons (Krishnan (2013); Page 2). 

However, not all quasi-local horizon definitions are the same. Most of them depend 

on a choice of foliation for the spacetime. This dependence on the foliation is a 

crucial aspect of their definition (Senovilla (2011); Page 2). For instance, Wald and 

Iyer (1991) showed that certain foliations of the Schwarzschild spacetime do not 

contain apparent horizon. (Eardley (1997); Page 4), showed that, under certain 

conditions, marginally outer trapped surfaces can be perturbed outwards by 

choosing a new foliation and it was conjectured that the outer boundary of all 

marginally trapped surfaces was actually the event horizon. This conjecture was 

supported numerically by (Schnetter et al. (2006); Page 5), in the context of 

marginal surfaces and analytically was shown to be true for Vaidya spacetime by 

(Ben-Dov (2007); Page 6). In situations without spherical symmetry, it may not be 

clear what a foliation should be and in many situations the areas of the various 

quasi-locally defined horizons do not coincide (Ben-Dov (2007); Page 6). Chapter 

four of this thesis investigates the various definitions of horizons and their 

properties. 

The concept of trapped surfaces was originally formulated in terms of the signs or 

the vanishing of the null expansions and has remained as such for many years 

(Senovilla (2011); Page 2). In a general spacetime (M,gµ,ν) with the metric gµ,ν having 

signature (− + ++), one can define two future directed null vectors lµ and nµ whose 
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expansion scalars θl and θn are given by θl = qµν∇µlν and θn = qµν∇µnν where qµν = gµν + 

lµnν + nµlν is the metric induced by gµν on the two dimensional spacelike surface 

formed by spatial foliation of the null hypersurface generated by lµ and nµ. Then a 

two dimensional spacelike surface S is said to be trapped if both θl < 0 and θn < 0, 

and S is marginally trapped surface if one of the two null expansions vanishes i.e. θl 

= 0 or θn = 0 (Pradhan and Majumdar (2011); Page 17). The set of all points in M 

contained in at least one trapped surface is called the trapped region. 

In flat space, the expansion of S along l is always positive: θl > 0, whereas that along 

n is negative: θn (Gourgoulhon and Jaramillo (2008); Page 3). A trapped surface may 

also be characterized by θlθn > 0 (Jaramillo (2011); Page 3). In the black hole 

context, in which the singularity occurs in the future, we refer to S as a future 

trapped surface (TS) if θl < 0, θn < 0 and as future marginally trapped surface (MTS) 

if one of the expansions, say θl, vanishes: θl = 0, θn ≤ 0. If a notion of naturally 

expanding direction for the light rays exists (e.g. in isolated systems, the outer null 

direction lµ pointing to infinity), a related notion of outer trapped surface is given 

by θl < 0 (Hawking and Ellis (1973); Page 319). A particular case of weakly outer 

trapped surfaces, the so-called marginally outer trapped surfaces (MOTS) (defined 

as compact surfaces without boundary with vanishing outer null expansion i.e. θl = 

0), are widely considered as the best quasi-local replacements for the event horizon 

(Coley et al. (2017); page 1). It is worth noticing that in the work by Demianski and 

Lasota (1973), the ”local event horizon” defines nothing but a marginally trapped 

surface. A classical result by Hawking and Ellis (1973); (Page 320) states that the 

apparent horizon is a marginally outer trapped surface; 

(see also the recent study by Demianski and Lasota (1973), Andersson and Metzger 

(2008)). A theorem by (Hawking and Ellis (1973); Page 320) states that, provided 
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that the cosmic censorship conjecture holds, if the spacetime contains a trapped 

surface S, then it necessarily contains a black hole. 

According to Penrose (1965a) in his singularity theorem (Hawking and Penrose 

(2010); Page 28) the notion of trapped surfaces, captures the idea that in a 

sufficiently strong gravitational field, as in gravitational collapse, even outgoing 

light rays are bent inwards. Indeed, in numerical relativity, the signal for a black 

hole is the presence of outer trapped surfaces on a given spatial slice (Baumgarte 

and Shapiro, 2010). In a dynamical situation these lie inside the event horizon, but 

by considering all possible slicings outer trapped surfaces can probably be found 

passing through every point inside the event horizon (Eardley (1997); Page 4) 

while trapped surfaces cannot (Ben-Dov (2007); Page 27). The distinction between 

trapped and outer trapped surfaces arise because the latter are required to be 

weakly trapped, that is, to have negative future null expansions both outwards and 

inwards to obviate the need for using a spatial hypersurface to provide the meaning 

of outer. It is remarkably difficult to determine the boundary of the region which 

contains trapped surfaces (Bengtsson et al. (2013); Page 2). This is also true for the 

simplest possible models of matter collapsing to form black holes, the 

Oppenheimer-Snyder (OS) and Vaidya solutions. Both of them are spherically 

symmetric and can be constructed by matching regions with collapsing matter to 

vacuum regions. In both cases they have a central world line surrounded by a tube 

of round marginally trapped surfaces (MTS) (Bengtsson et al. (2013); Page 2). In 

the case of the Vaidya model, this tube is spacelike and composed of outermost 

stable MTS and also lies outside the causal past of the central world line. But for the 

OS model, the tube is timelike, it is composed of unstable MTS, and is visible from 

the central world line (Bengtsson et al. (2013); Page 2). 

In physically reasonable black hole spacetimes, trapped surfaces, marginally 

trapped surfaces and marginally trapped tubes (MTTs) always lie inside the black 

hole region, but MTTs act as a boundary between the regular space and the trapped 
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region (Williams (2007); Page 3). Some of the MTTs have special names: a 

dynamical horizon (DH) is a MTT which is simply spacelike, while an isolated 

horizon (IH) is a MTT which is null (Ashtekar and Galloway (2005); Page 3). 

Dynamical and isolated horizons are likely to be good models of the surfaces of 

dynamical and equilibrium black holes respectively (Ashtekar and Galloway 

(2005); Page 3; Williams (2007): Page 3). In fact in numerical simulations of black 

holes, many people use DHs and IHs and some of those developing loop quantum 

gravity have found them to be well-suited for quantum considerations (Ashtekar 

and Krishnan (2004); Page 11; Schnetter et al. (2006); Page 3; Williams (2007): 

Page 3). 

In this thesis, we investigate how black holes can be described in the frame work of 

quasi-local horizons, which takes trapped and marginally trapped surfaces as its 

starting point, provides a unified approach for studying various aspects of black 

hole physics. An important theme in this discussion is not to base our 

understanding of black holes on stationary spacetimes alone. We look at dynamical 

situations which have essential different features (Coley et al. (2017); page 1). We 

illustrate this by the Schwarzschild spacetime and Vaidya spacetime. We also 

investigate local horizons in axiallysymmetric spacetimes by considering the Kerr 

and KerrVaidya spacetimes. The eventual goal of these studies (from a physics 

viewpoint) is to explicitly demonstrate the existence of trapped surfaces and 

marginally trapped surfaces in black hole regions by computing the covariant 

divergences and the fluxes of null vectors in spherically and axisymmetric 

spacetimes. We discussed the inadequacy of event horizons for this purpose due to 

its teleological properties and it is desirable to find a suitable replacement. 

Penrose’s trapped surfaces and the boundary of the trapped region seem ideally 

suited for this task and lead naturally to the various definitions of quasi-local 

horizons.  
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Chapter 3 

PRELIMINARY NOTIONS IN DIFFERENTIAL 

GEOMETRY 
The mathematical representation of spacetime in theoretical physics would 

presumably be with some set M whose elements representing ‘spacetime points’. In 

practice, M should be a topological space whose open sets represent certain 

privileged regions in the spacetime. However, the topological spaces that have 

actually been used historically to represent spacetime (or space and time 

separately) are of a very special type. Namely, they have the property that it is 

possible to uniquely label any particular spacetime point by specifying the values 

of a finite set of real numbers, the number of which is identified as the ‘dimension’ 

of the space. Thus, in Newtonian physics, three-dimensional physical space is 

represented mathematically by the Euclidean space R3, and one-dimensional time 

is represented by R1; in special relativity, the combined notion of ‘spacetime’ is 

represented by the Euclidean space R4. 

The use of such familiar mathematical models has an important implication that 

differentiation can be defined, thus opening up the very fruitful idea that the 

dynamical evolution of a physical system can be modeled by differential equations 

defined on the spacetime. Also, there is an explicit underlying topology on such 

spaces: namely, the metric-space topology induced by the usual metric function. 

However, one of Einstein’s major contributions to physics was his realization that, 

it is possible to generalize the mathematical model of spacetime whilst keeping the 

basic ideas of (i) being able to locate a spacetime point via the values of a set of real 

numbers; and (ii) being able to describe the dynamical evolution of a system using 

differential equations. Specifically, in general relativity a spacetime is modeled by a 

‘differentiable manifold’, of which the Euclidean space R4 of special relativity is just 
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a special example. This remains one of the major motivations for studying 

differential geometry. However, differential geometry enters into many other areas 

of modern theoretical physics, and it has become an indispensable tool for many 

scientists who work in these fields. We can now proceed to give the formal 

definition of a differentiable manifold. For convenience, and unless stated 

otherwise, it will be assumed that M is a connected Hausdorff topological space. 

3.1 The Elements of Differential Geometry 

Differential geometry deals with manifolds. A manifold, generally speaking is a 

topological space which is locally Euclidean. An Euclidean space of n-dimension, Rn, 

is the set of all n-topples, (x1 ...xn)(−∞ < xi < +∞), with open and close sets or 

neighbourhoods defined in the usual way (Chandrasekhar (1983); Page 3); 

Hawking and Ellis (1973); Page 11). A manifold M, is locally identical to Euclidean 

space because M is covered i.e. a union of neighbourhoods, uα and that associated 

with each uα there is a one-one map φα, which images each point p ∈ uα to a point in 

an open neighbourhood of Rn onto which uα is imaged by φα with coordinates 

). Moreover, if two neighbourhoods, uα and vα of M, intersect and 

have points in common i.e. uα ∩vα 6= {}, and if φα and ψα are the associated maps 

onto neighbourhoods in Rn, then the map  images a point ψα(p), p ∈ uα∩vα 

with the coordinates ) then as a part of the definition of M, it is 

required that xi(i = 1,...,n) are smooth functions of x−1 (i = 1,...,n) ) (Chandrasekhar 

(1983); Page 3). Smooth functions are functions which have continuous partial 

derivatives of all orders. Cartesian product M ×N of two manifolds M and N is the 

ordered pair of points, (p,q), where p ∈ M and q ∈ N; moreover if uα and vα are 

neighbourhoods in M and in N especially, φ and ψ are the associated maps, and 

) and ) where m is not 
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necessarily equal to n, then the map 

 φα × ψβ(p,q) = (x1,...,xn)(y1,...,ym) (3.1) 

Suffices to complete the definition of M × N as a manifold of (m + n)-dimensions. The 

study of differential manifolds involves topology, since differentiability implies 

continuity. The set Rn of n-tuples of real numbers is not only a vector space, but also 

a topological space and the vector operations are continuous with respect to the 

topology (Schutz (1980); Page 3). 

Definition 3.1.1 A topological space X is locally Euclidean of dimension n if for 

each x ∈ X, there exists an open set U ⊂ X and a map φ : U → Rn such that φ : U → φ(U) 

is a homeomorphism (in particular, φ(U) is an open subset of Rn) 

Definition 3.1.2 A topological space X is Hausdorff if for any two points p,q ∈ X such 

that p 6= q, there exist open neighborhoods U,V such that p ∈ U, q ∈ V and 

U ∩ V = ∅. 

A Hausdorff space M is called a topological if each point of M has a neighborhood 

homeomorphic to an open set in Rn (Schutz (1980); Page 3). An n-manifold is 

locally Rn. 

Examples: Rn and n−sphere Sn are n−manifolds. A 2−dimensional manifold 

is called a surface. 

Definition 3.1.3 A topological space X is second countable if it has a countable basis 

for the topology, i.e. there exists a countable collection of open sets {Uα}α∈N such that 

for any open set U ⊂ X containing a point x, there exists β ∈ N such that x ∈ Uβ ⊆ U 

(Schutz (1980); Page 3) 
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Definition 3.1.4 (Topological Manifold) A topological space M is a manifold of 

dimension n if 

(i) M is Hausdorff 

(ii) M is second countable 

(iii) M is locally Euclidean of dimension n 

Definition 3.1.5 (Charts) A chart on M is a pair (U,φ) where U is an open set in M 

and φ : U → φ(U) ⊆ Rn is homeomorphism onto it image. The set U is 

called a coordinate domain or coordinate neighborhood or coordinate patch. If φ(U) 

is a ball in Rn, U is called coordinate ball. A coordinate is (U,φ) is centered at P if φ(P) 

= 0. Given two charts (U1,φ1) and (U2,φ2) then we get overlap or transition maps 

 (3.2) 

 (3.3) 
Definition 3.1.6 (Atlas) An atlas for M is a collection of coordinate charts {Uα, φα},α 

∈ I such that 

(i) M is covered by the {Uα},α ∈ I 

(ii) For each α,β ∈ I,φα(Uα,Uβ) is open in Rn 

(iii) The map φβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ) is C∞ with C∞ inverse. 

Since a chart is a pair consisting of a neighborhood and its overlap, it is easy to see 

that these open neighborhoods must have overlaps if all points of M are to be 

included in at least one. It is these overlaps which enable us to give further 

characteristics of the manifold (Schutz (1980); Page 24). 

Definition 3.1.7 (Differentiable Manifold) If the partial derivatives of order k or 

less of all these functions {yi} with respect to all the {xi} exist and are continuous, then 

the maps f and g are strictly, the charts (U,f) and (V,g) are said to be Ck-related. If it is 

possible to construct a whole system of charts called appropriately enough, an atlas in 
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such a way that every point of M is in at least one neighborhood and every chart is Ck-

related to every other one it overlaps with, then the manifold M is said to be a Ck-

manifold. The differentiability of a manifold endows it with an enormous amount of 

structure: the possibility of defining tensors differential forms and Lie derivatives 

(Schutz (1980); Page 26). 

Definition 3.1.8 A curve or path in a manifold or affine space M is a (smooth unless 

otherwise stated) map c : J → M, where J is an interval on the real line. The interval 

may be open or closed, finite or infinite at either end (O’Neill (1995); page 4). 

If for all choices of x,y ∈ M, there is a curve from x to y, M is path connected. (R\{0} for 

instance is not path-connected as by the intermediate value theorem there is no path 

from −1 to +1). 

Definition 3.1.9 (Tangent Vectors) Tangent vectors are equivalent classes of curves 

that are tangent at a given point. That is, they have the same time derivative in a chart 

at that point. 

Definition 3.1.10 (Tangent Space) If M is an n-manifold, and p ∈ M, then the tangent 

space at p is the set Tp of all tangent vectors at p or the tangent space TpM is the space 

of all tangent vectors at point p (Schutz (1980); Page 34). 

3.1.1 Basis Vectors and Basis Vector Fields 

At any point P, the space Tp is a vector space with the same dimension n as the 

manifold. Any collection of n linearly independent vectors in Tp is a basis for Tp. If 

we have a coordinate system {xi} in a neighborhood U of P, then the coordinates 

define the coordinate basis  at all points in U. But one need not use the 

coordinate basis: we could refer vectors to some arbitrary basis {e¯i} where the 

subscript i is used as a label to distinguish one basis vector from another. At a point 

P, an arbitrary vector V¯ can be written as 
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  (3.4) 

(i) The numbers {V i} are the components of  and related to V i by 

the usual vector transformation laws. 

(ii) If V¯ and the basis {∂x∂
i } and ¯e are regarded as vector fields then the 

components {V i} and {V j} of the field V are functions on M. 

(iii) A vector field is said to be differentiable if these functions are differentiable 

(Schutz (1980); Page 3). 

Definition 3.1.11 (Tangent Bundles) A particular manifold is formed by combining 

a manifold M with all its tangent spaces Tp. The simplest case: a onemanifold M (a 

curve) and its tangent spaces (lines tangent to it at each point) (Schutz (1980); Page 

35) 

Definition 3.1.12 (One forms) Let Tp be the space of all tangent vectors at P. we 

define a one-form as a linear real-valued function of the vectors. This means that a one 

form at P associates with a vector V¯ at P a real number which we call ω˜(Schutz 

(1980); Page 55). 

3.2 Lie Derivatives 

In the concept of dragging the definition of a derivative along the congruence is 

permitted. Covariant differentiation introduces a rule that transports a tensor from 

one point to another at which the derivative is evaluated. This rule then introduces 

connection as a new structure on the manifold. In this section, we define Lie 

derivative as another type of derivative which does not introduce any additional 

structure (Schutz (1980); page 73). 

Definition 3.2.1 (Lie Derivatives) is the derivative along the congruence of a 
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vector field. 

When we compare vectors at points λ and λ + 4λ on a certain curve, we can Lie drag 

the vector at λ+4λ back to the point λ. This defines a new vector at λ, which can be 

subtracted from the old one to define the deference between them. Notice that this 

is a unique difference and hence a unique derivative given the congruence. 

To derive the analytic expression for this, first consider a scalar function say f. 

Evaluate the scalar at the point λ0 + 4λ, drag it back to λ0, subtract the value of the 

scalar at λ0, divide by 4λ and take the limit 4λ → 0. Its value at λ0 + 4λ is f(λ0 + 4λ). 

By dragging, we define a new scalar field f∗, whose value is defined by the rule = 

0. Therefore its value at λ0 is the same as at λ0 + 4λ: f∗(λ0) = f(λ0 + 4λ). The derivative 

so defined is 

  (3.5) 

There is a special notation for the Lie derivative operator £V¯ where V¯ is the vector 

field generating the mapping  in this case . So that the analytic expression is 

 £  (3.6) 

In the same way, for a vector field U¯ of tangent vector  its Lie derivative is £

. Since a vector is defined by its effect on functions, we use an 

arbitrary function f in the following. At λ0 the field U¯ gives derivative  

while at λ0 + 4λ it gives . By dragging U¯(λ0 + 4λ), we get a new field 

 defined by = 0 and by U¯∗(λ0 +4λ) = U¯(λ0 +4λ). The vanishing 

of the commutator implies 

  (3.7) 

everywhere. Therefore for analytic vector fields, we have by Taylor’s expansion 
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The Lie derivative £V¯ U¯ is defined as the vector field which operates on f to give 

 

Now the difference between µ∗ and µ is clearly a term of first order in 4λ, which 

means we can replace µ∗ by µ in the last equation above. Since this equation is true 

for all f, we have 

 £  (3.12) 

The Lie derivative along some vector fields is a very important concept in geometry 

because it tells us how that geometric object changes as it is pushed along the 

congruence of curves that have the tangent vector V¯ (Schutz (1980); Page 77). 

Theorem 3.2.1 (Properties of Lie Derivatives) 

1. [£V¯ ,£W¯ ] = £[V ,¯ W¯ ] also £V¯ + £W¯ = £V¯+£W¯ 

2. [[£X¯,£Y¯ ],£Z¯] + [[£Y¯ ,£Z¯],£X¯] + [[£Z¯,£X¯],£Y¯ ] = 0 Jacobi’s Identity 

3. £V¯ (A ⊗ B) = (£V¯ A) ⊗ B + A ⊗ (£V¯ B) Leibniz rule 

4. £V¯ W¯ = (V iWij − WiVij)∂x∂
j Coordinate basis 

5. £V¯ W¯ = (V ie¯i(Wj) − Wie¯i(V j))¯ej + V iWj£e¯ie¯j General basis 
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6.  

 £  (Chandrasekhar (1983); Page 14) 

Coordinate free partial derivative 

(Chandrasekhar (1983); Page 14) 

3.2.1 Lie Derivative of a one-form 

Fields of one-forms and tensors of higher rank are defined in terms of vector fields 

and scalar functions, so we can deduce the Lie derivatives of one-forms from the Lie 

derivatives of vectors and scalars (Schutz (1980); Page 78). 

Conceptually, the definition is the same. That is a one-form field is said to be Lie 

dragged if its value on many Lie dragged vector fields is constant. The derivative is 

found by dragging the one-form at λ0+4λ back λ0 and taking the difference. The 

result is that if ˜ω is a one-form, and then £V¯ ω˜ is the one-form field which is the Lie 

derivative of ˜ω along V¯ defined by the product rule (the Leibniz rule for 

first order derivative). 

 £  (3.13) 

for all vector fields W¯ . Since ˜ω(W¯ ) is simply a function, this defines £V¯ ω˜ in terms 

of known operations, the Lie derivative of functions and vectors. 

3.3 Curvature 

Curvature is a very important concept in general relativity, and how it can be 

described in tensorial terms. It is a mathematical quantity involving the second 

derivative of the metric which represents the essence of a curved space: the space 

is curved if the curvature does not vanish. 
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3.3.1 Covariant Derivative 

A derivative operator ∇, (sometimes called a covariant derivative) on a manifold M 

is a map which takes each smooth (or merely differentiable) tensor filed of type 

(k,l) to a smooth tensor field of type (k,l+1) having the following properties 

1. Linear: ∇(T + S) = ∇T + ∇S 

2. Leibniz (product) rule: ∇(T ⊗ S) = ∇T ⊗ S + T ⊗ (∇S) 

If the operator ∇ obeys Leibniz rule, then it can be written as the partial derivative 

plus some linear transformation (Carroll (2004); page 95). So, to take the covariant 

derivative, take the partial derivative first and then apply a correction to make the 

result covariant. Consider the covariant derivative of a vector V ν. For each direction 

µ, the covariant derivative ∇µ will be given by the partial derivative ∂µ 

plus a correction term given by the matrix Γ  matrix, where n is the 

dimensionality of the manifold, for each µ). We therefore have 

 ∇µV ν = ∂µV ν + ΓνµλV λ (3.14) 

Since equation (3.14) is the covariant derivative of a vector in terms of the partial 

derivative, we can determine the transformation properties of Γνµλ by demanding 

that the left hand side be a type (1,1) tensor. We can therefore write the 

transformation law as 

  (3.15) 

Expanding the left hand side of equation (3.15) using equation (3.14) and doing the 

necessary transformation, we have 

 
Expanding the right hand side of equation (3.15) we have 
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  (3.17) 

Equating equations (3.16) and (3.17) the first terms being identical will cancel, we 

have 

  (3.18) 

Here, the dummy index ν has been changed to λ. Equation (3.18) should be true for 

all V λ. The Christoffel symbols (connection coefficients) in the primed coordinates 

may be isolated by multiplying each side by , we have 

  (3.19) 

This can be put in the form 

 ) (3.20) 

This is not defined as a tensor transformation law because the second term on the 

right spoils it. This is true because the Christoffel symbols or connection coefficients 

are not components of a tensor. They are constructed purposely to be non-tensorial 

but in a way that the combination (3.14) transforms like a tensor. The extra terms 

in the transformation of the partials and the Γ’s exactly cancel (Carroll (2004); Page 

95). 

3.4 Covariant Derivative of a one-form 

One-form also has covariant derivative expressed as a partial derivative plus some 

linear transformation. Let us write something like 

  (3.21) 

where is a new set of matrices for each µ. 
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In addition to properties (1) and (2) above, covariant derivative has the following 

properties 

(2) Commutes with contraction: ∇µ(Γλλρ) = (∇Γ)µλλρ 

(3) Reduces to the partial derivative on scalars: ∇µφ = ∂µφ 

Let us look at the implications of these new properties. 

Given a one-form field ωµ and vector field V µ we can take the covariant derivative 

of the scalar defined by ωλV λ to get 

∇µ(ωλV λ) = (∇µωλ)V λ + ωλ(∇νV λ) = (∂µωλ)V λ + Γ˜σµλωσV λ + ωλ(∂µV λ) + ΓµρλV ρ 

Since ωλV λ is a scalar, it can also be given by the partial derivative 

(3.22) 

∇µ(ωλV λ) = ∂µ(ωµV µ) = (∂µωλ)V λ + ωλ(∂µV λ) (3.23) 

This is also true if the terms in (3.22) whose Christoffel symbols or connection 

coefficients cancel each other: equating (3.22) and (3.23) and rearranging dummy 

indices, we have 

 Γ˜σµλ = −Γσµλ (3.24) 

where ωσ and V λ are completely arbitrary. 

The two extra conditions we imposed have allowed us to express the covariant 

derivative of a one-form using the same connection coefficients as were used for 

the vector but with a sign now changed to minus and indices muched up differently. 

Hence, the covariant derivative of a one-form is 

  (3.25) 

We should not be surprise that the connection coefficients encode all the 

information necessary to take the covariant derivative of a tensor of arbitrary rank. 
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The formula is deduced as follows; for each upper index you introduce a term with 

a single +Γ and for each lower index a term with a single index −Γ: 

∇σTνµ11νµ22...ν...µl k = ∂σTνµ11νµ22...ν...µl k + Γµσλ1Tνλµ1ν22...µ...νlk + Γµσλ2Tνµ11νλ...µ2...νlk + ···− 

 Γλσν1Tλνµ12µ...ν2...µl k − Γλσν2Tνµ11λ...νµ2...µl k − ... (3.26) 

(Carroll (2004); Page 96) 

3.5 The Riemann-Christoffel Curvature Tensor 

The second derivatives do not in general commute on a type (p,q)-tensor unless p 

and q are equal. However, the commutator of covariant derivatives which act on a 

vector field say V µ does not involve any derivatives of that vector. We have 

  (3.27) 

In a locally inertial frame Γµαα, equation (3.27) becomes 

  (3.28) 

Interchanging α and β in (3.28) 

  (3.29) 

The commutator of the covariant derivative is  

[∇α,∇β]V µ = ∇α∇βV µ − ∇β∇αV µ = (Γµνβ,α − Γµνα,β)V ν 

In a locally inertial frame Rνα,βµ = Γµνβ,α − Γµνα,β 

(3.30) 

[∇α,∇β]V µ = Rναβµ (3.31) 
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This is a tensor equation and since it is valid in a given reference frame, it will be 

valid in any frame. Equation (3.31) implies that in curved spacetime covariant 

derivatives do not commute and therefore the order in which they appear is 

important. The commutator [∇α,∇β]V µ does not depend on derivatives of V . This 

implies we can express the commutator purely algebraically in terms of V . Since 

the dependence on V is clearly linear, the commutator of covariant derivatives acts 

as a linear transformation. By calculating the commutator explicitly, one can 

confirm the structure displayed in (3.30) as the Riemann-Christoffel Curvature 

Tensor or Riemann tensor is given by 

  (3.32) 

The above can be extended to an action of the commutator [∇α,∇β] on arbitrary 

tensors (Carroll (2004); Page 122). 

For covectors, since we can raise and lower the indices with the metric so we have 

 [∇α,∇β]Vρ = gρλ[∇α,∇β]V λ = gρλRσσβλ V σ = RρσσβV σ = Rρσβσ Vσ (3.33) 

Since the Riemann tensor is anti-symmetric in its first two indices, we can also write 

  (3.34) 

When we extend to arbitrary tensor of type (p,q), it follows the usual pattern, with 

one Riemann curvature tensor, contracted as a vector, appearing for each of the p 

upper indices, and one Riemann curvature tensor, contracted as a convector, for 

each of the q lower indices. This implies, for a tensor of type (2,0) or Tαβ 

 [∇α,∇β]Tµν = Rγσβσ Tγν + Rγσβν Tαγ (3.35) 
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And for (1,1)-tensor , we have 

  (3.36) 

3.5.1 The Algebraic Properties of Riemann Tensor 

A type (0,4)-tensor Rνλαβ can be constructed from the Riemann Christoffel curvature 

tensor Rναβµ by taking its inner product with the metric tensor gλµ i.e. 

 gλµRναβµ = Rνλαβ (3.37) 

This type of (0,4)-tensor is usually called the covariant curvature tensor which is 

given by 

 ) (3.38) 

Using equation (3.38) it is very simple to read off all the symmetries in a different 

way (Carroll (2004); Page 126). However, we can also derive these symmetries in 

a different way which will also make clear why Riemann tensor has these 

symmetries 

1. Anti-symmetry in the second pair of indices Rνλαβ = −Rνλβα = −Rλναβ = 

−Rλνβα 

2. Symmetry Rνλαβ = Rαβνλ 

3. First Bianchi identities 

 Rν[λαβ] = 0 ⇔ Rνλαβ + Rνβλα + Rναβλ = 0 (3.39) 

This Bianchi identity is due to no torsion 

4. Rνλαβ has 1) independent components. 
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3.5.2 The Covariant Divergence of a Vector Field 

The covariant divergence of a vector field means the scalar defined by 

 divV¯ = ∂iV i + ΓiiV k (3.40) 

This is a scalar in all frames and reduces to the familiar form in a Cartesian system. 

Consider the Christoffel symbol 

  (3.41) 

Interchange i and k in the last two terms, equation (3.41) becomes 

  (3.42) 

Relating (3.42) to the determinant of gij, we have . Where Gik is the 

cofactor of gik but Gik = gikg, we have 

  (3.43) 

Substituting (3.43) into (3.42), we obtain 

  (3.44) 

Substituting (3.44) into (3.40), the covariant divergence can be written compactly 

as 

div  

(3.45) From this equation, to calculate the covariant divergence of a vector 

field, we just have to calculate g and its derivative, not the Christoffel symbols 

(Carroll (2004); 

Page 101). 

¯ V = ∇ i V i = 
∂V i 

∂x i 
+ 

1 
√ 

g 

∂ 
√ 

g 

∂x j 
V i = 

1 
√ 

g 

 √ 
g 

∂V i 

∂x i 
+ 

∂ 
√ 

g 

∂x j 
V i 

 
= 

1 
√ 

g 

∂ ( 
√ 

gV i ) 

∂x i 
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This formula is very useful and provides the quickest way to write the ordinary flat 

space divergence of a vector calculus on R3 for example, cylindrical or polar 

coordinates. 

The divergence of a 3-vector V¯ in Cartesian coordinates (x1,x2,x3), is given by the 

expression 

i 

div(3.46) 

 √ 2 sinθ, the divergence 

In spherical polar coordinates (r,θ,φ), using (3.45) and g = r is 

given 

div  

3.6 Killing Vector Fields 

General relativity is one of the fields of physics in which solutions with symmetry 

are needed. This is due to the fact that the nonlinear nature of Einstein’s equation 

makes it hard to find any exact solutions. In the context of curved spacetime, 

however, we need to be more careful about what exactly is meant by symmetry. In 

this section we develop some useful tools for studying symmetry. A manifold M is 

said to possess a symmetry if the geometry is invariant under a certain 

transformation that maps M to itself; that is, if the metric is the same, in some sense, 

from one point to another. In fact different tensor fields may possess different 

symmetries; symmetries of the metric are called isometries (Carroll (2004); Page 

134). Sometimes the existence of isometries is obvious; for example, in the four-

dimensional Minkowski space, ds2 = ηµνdxµdxν, several isometries of this space are 

known; these include translations (xµ → xµ + aµ with aµ fixed) and Lorentz 

transformation (xµ → Λµνxν with Λµν a Lorentz matrix). The fact that the metric is 
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invariant under transformations is made immediately apparent by the fact that the 

coefficients of the metric are not dependent of the individual coordinate functions 

xµ (Carroll (2004); Page 134). The solution of a physical problem can be 

considerably simplified if it allows some symmetry. If we consider for example the 

equations of Newtonian gravity, it is easy to find a solution which is spherically 

symmetric, but it may be difficult to find the analytic solution for an arbitrary mass 

distribution. 

In Euclidean space, symmetry is related to invariance with respect to some 

operation. For example plane symmetry implies invariance of the physical variables 

with respect to translations on a plane, spherically symmetric solutions are 

invariant with respect to translation on a sphere, and the equations of Newtonian 

gravity are symmetric with respect to time translations t0 → t + τ. Thus, symmetry 

corresponds to invariance under translations along certain lines or over certain 

surfaces. This definition can be applied and extended to Riemannian geometry. A 

solution of Einstein’s equations has symmetry if there exist an n-dimensional 

manifold, with 1 ≤ n ≤ 4, such that the solution is invariant under translations which 

bring a point of this manifold into another point of the same manifold. For example, 

for spherically symmetric solutions the manifold is the 2-sphere, and n = 2. This is 

a simple example, but there exist more complicated four-dimensional symmetries. 

These definitions can be made more precise by introducing the notion of Killing 

vectors. 

A Killing vector field (often just Killing field), named after Wilhelm Killing, is a 

vector field on a Riemannian manifold or pseudo-Riemannian manifold that 

preserves the metric. Killing fields are the infinitesimal generators of isometries; 

that is, flows generated by Killing fields are continuous isometries of the manifold. 

More simply, the flow generates symmetry, in the sense that moving each point on 
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an object the same distance in the direction of the Killing vector field will not distort 

distances on the object. 

Consider a vector field ξ¯(xµ) defined at every point xα of a spacetime region. ξ¯ 

identifies a symmetry if an infinitesimal translation along ξ¯ leaves the line-element 

unchanged i.e. 

 £ξ¯gαβ = 0 (3.48) 

Killing vectors are intimately related to the symmetries of the spacetime. The 

existence of a Killing vector tells us immediately about the symmetries of the 

metric. If, for instance, ξα = ∂q is a Killing vector for some manifold, then it is always 

possible to arrange a coordinate system, with q as one of the coordinates, so that 

the metric components with respect to that coordinate basis do not depend on q 

(Schutz (1980); page 88). To see this, let us assume ξα = ∂q and consider 

 

Therefore, if the metric is independent of q, ξα = ∂q (which is always possible), then 

the metric will be independent of q in that system. The physical meaning of the 

Killing’s equation (3.48) is that when the metric is dragged along some congruence 

of curves then it is unchanged, thereby telling us that the paths to which this vector 

is tangent constitute symmetry of the manifold, at least locally (Schutz (1980); page 

88). 

3.6.1 Relationship Between Curvature Tensor and Killing Vectors 

The relationship between symmetries and geometry in (pseudo-) Riemannian 

geometry is reflected in the relation between the curvature tensor and Killing 
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vectors of a metric. In this section, we explore some of these relations and their 

consequences. 

The defining relation in Riemann curvature tensor is given by (Poisson (2002); page 

8), 

  (3.49) 

By the cyclic permutation symmetry (or first Bianchi identity) we can deduce that 

for a Killing vector Kµ 

∇(µKν) = ∇µKν + ∇νKµ = 0 

By definition of the Riemann tensor, we have 

(3.50) 

∇µ∇νKλ − ∇ν∇µKλ = Rµνλα Kρ 

By Killings equation (3.50), we can write equation (3.51) as 

(3.51) 

  (3.52) 

By writing down the same equation with cyclic permutations of the indices (µνλ) 

and then add the (µνλ) equation to the (νλµ) equation and subtract the (λµν) 

equation, we obtain 

  (3.53) 

Where the symmetry property of the Riemann tensor was used in obtaining (3.53). 

Hence, for a Killing field Kµ, we have the equation 

  (3.54) 

The quantity ∇νKλ is anti-symmetric so the total anti-symmetrization is equivalent 

to cyclic permutation, and we therefore have 



 

32 

∇µ∇νKλ + ∇ν∇λKµ + ∇λ∇µKν = 0 

Applying the Killing property in the second term, we can write 

(3.55) 

 ∇λ∇µKν − [∇µ,∇λ]Kλ = Rλµνρ Kρ (3.56) 

This identity implies the Lie derivative of the Christoffel symbols of a metric along 

a Killing vector of the metric vanishes. Indeed, we can see that under a general 

variation of the metric, the induced variation of the Christoffel symbol can be 

written as follows 

 ) (3.57) 

In deed, this shows the fact that the metric variation of the Christoffel symbols is a 

tensor and moreover provides us with an explicit expression for this tensor. 

Taking variation δgµν = Lξgµν as the Lie derivative, i.e. the variation in the metric 

induced by an infinitesimal coordinate transformation δxµ = ξµ, one can write this 

as 

 ) (3.58) 

By adopting this definition and using Lξgµν = ∇µξν + ∇νξµ, the right-hand side of (3.58) 

an be written using the definition and cyclic symmetry of the Riemann 

tensor 

LξΓµνλ = ∇λ∇νξµ − Rνλρµ ξρ = ∇ν∇λξµ − Rλρνµ ξρ 

In particular, if ξµ = Kµ is a Killing vector, one has 

(3.59) 

LKgµν = 0 ⇒ LKΓµνλ = 0 ⇔ ∇λ∇νKµ = RµνλρKρ (3.60) 

Contracting (3.54) over λ and ν we obtain a very useful and frequently used identity 

 ∇ν∇µKν = KνRµν (3.61) 
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One immediate consequence of identity (3.54) is by contracting with Kµ ”integrating 

by parts” and using the anti-symmetry of ∇µKν we have 

 RµνKµKν = (∇µKν)(∇µKν) + ∇ν(Kµ∇µKν) (3.62) 

3.6.2 Lie Derivative of Type (0,2)-tensor 

The variation of a tensor under an infinitesimal translation along the direction of a 

vector field ξ¯ is the Lie-derivative (ξ¯ must not necessarily be a Killing vector), and 

it is indicated as £ξ¯. The Lie derivative of type (0,2)-tensor is given by 

 £  (3.63) 

The Lie derivative of a metric gµν is given by 

 Lξgµν = gλν∇µξλ + gµν∇νξλ (3.64) 

By lowering the index of ξ with the metric, we can write this more compactly as 

 Lξgµν = ∇µξν + ∇νξµ (3.65) 

The vector field ξ¯ which satisfies this equation is called a Killing vector Since they 

are associated with symmetries of space time, and since symmetries are always of 

fundamental importance in physics, Killing vectors will play an important role in 

conserved quantities in geodesic motion, Killing vectors and the choice of 

coordinate systems, Generalization of the notion of Killing vector fields etc. 

3.6.3 Killing Vectors and the Choice of Coordinate Systems 

The existence of Killing vectors remarkably simplifies the problem of choosing a 

coordinate system appropriate to solve Einstein’s equations. For instance, if we are 
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looking for a solution which admits a timelike Killing vector ξ¯, it is convenient to 

choose, at each point of the manifold, the timelike basis vector ¯e0 aligned with ξ¯, 

with this choice, the time coordinate lines coincide with the worldlines to which ξ¯ 

is tangent, i.e. with the congruence of worldlines of ξ¯, and the components of ξ¯ are 

ξα = (ξ0,0,0,0) If we parameterize the coordinate curves associated to ξ¯ in such a 

way that ξ0 is constant or equal unity, then ξα = (1,0,0,0) and 

 = 0 (3.66) 

This means that if the metric admits a timelike Killing vector, with an appropriate 

choice of the coordinate system it can be made independent of time (Poisson 

(2002); page 8). 

A similar procedure can be used if the metric admits a spacelike Killing vector. In 

this case, by choosing one of the spacelike basis vectors, say the vector ¯e1, parallel 

to ξ¯ and by a suitable reparameterization of the corresponding congruence of 

coordinate lines, one can write ξα = (0,1,0,0) and with this choice the metric is 

independent of 

 = 0 (3.67) 

If the Killing vector is null, starting from the coordinate basis vectors ¯e0,e¯1,e¯2,e¯3 

it is convenient to construct a set of new basis vectors ¯  such that the 

vector is a null vector. Then, the vector ¯e0 can be chosen to be parallel to ξ¯at each 

point of the manifold, and by a suitable reparameterization of the corresponding 

coordinate lines ξα = (1,0,0,0) and the metric is independent of x0. 

 = 0 (3.68) 



 

35 

The map ft : M → M under which the metric is unchanged is called an isometry, and 

the Killing vector field is the generator of the isometry. The congruence of 

worldlines of the vector ξ¯ can be found by integrating the equations  

3.7 Conserved Quantities in Geodesic Motion 

In Newtonian mechanics conservation laws are connected to symmetries. To 

conserve energy, for example, the force must be conserved and derivable from a 

potential and that potential must be time independent. To conserve linear 

momentum along a particular direction, the potential must be constant along that 

direction. To conserve angular momentum, the potential must be spherically 

symmetric. In short, energy is conserved when there is symmetry under 

displacements in time, linear momentum is conserved when there is symmetry 

under displacements in space, and angular momentum is conserved when there is 

symmetry under rotations. 

Conserved quantities for the motion of test particles cannot be expected in a general 

spacetime that has no special symmetries. A general spacetime metric is time 

dependent, angle dependent, position dependent, etc. 

However, when the spacetime has symmetry, then there is an associated 

conservation law. For example, if spacetime geometry is independent of time, there 

is a conserved energy for test particles. How does one tell if spacetime geometry has 

symmetry? One case is if the metric is not dependent of one of the coordinates, say, 

then the transformation x1 → x1 + const leaves the metric unchanged. The vector ξα = 

(0,1,0,0) lies along a direction in which the metric does not change. The vector ξα is 

called the Killing vector associated with the symmetry x1 → x1 + const. A Killing vector 

is a general way of characterizing symmetry in any coordinate system. Killing vector 

is used to find constants of the motion for particles following geodesics. This can be 
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seen by considering some geodesic trajectory with 4-velocity , where τ is 

improper time such that uαuα = −1. Now, consider 

 

Here, the last step follows from the geodesic equation. Hence, uα∇βα = 0 is the same 

as the geodesic equation. One of the most useful properties of Killing vector fields 

is given by the following proposition 

Proposition 3.7.1 Let ξα be a Killing vector field and let γ be a geodesic with tangent 

uα. Then uαξα is constant along γ 

Proof 1 

uα∇β(ξαuα) = uβuα∇βξα + ξαuβ∇βuα 

Since the first term of the right hand side vanishes by geodesic equation (3.69) and the 

second term vanishes by the geodesic equation. Hence, ξαuα is conserved along the 

trajectory. 

Since in general relativity timelike geodesics represent the spacetime motions of 

freely falling particles and null geodesics represent the path of light rays, 

proposition 3.7.1 can be interpreted as saying that every one-parameter family of 

symmetries give rise to a conserved quantity for particles and light rays. This 

conserved quantity enables one to determine the gravitational red shift in 

stationary spacetimes and is extremely useful for integrating the geodesic equation 

when symmetries are present (Carroll (1997); page 140). 

In Einstein gravity all event horizons of stationary black holes are Killing horizons. 

In higher derivative gravity one can show that event horizons are killing horizons 

if the black hole is static or if it is stationary, axisymmetric and possesses discrete 

reflection symmetry, called t−φ reflection symmetry. In the following it is 
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understood that event horizons are killing horizons and in particular that 

stationary black holes in higher derivative gravity are required to be in addition 

axisymmetric and to have t − φ reflection symmetry. 

3.7.1 Parallel Transport and Geodesics 

Local horizons are usually defined in terms of the properties of null congruence and 

in particular geodesics congruence. The surface gravity is one of the important 

properties of the horizon and to define it we will need the idea of a non-affinely 

parameterized geodesic. We can always assume that geodesics are affinely 

parameterized, a choice which is always allowed. However, this choice depends on 

a parameterization of the curve and we show below that certain non-affine 

parameterizations are appropriate for defining the surface gravity. To see how the 

inaffinity comes about, we will first consider the derivation of the geodesic 

equation. A geodesic is defined as a path that parallel transports its own tangent 

vector, , i.e. a 

curve that satisfies 

 ∇U¯U¯ = 0 (3.70) 

Let λ be the parameter of the curve and {xi} be any coordinate system in which 

 then the component version of equation (3.70) is given by 

 = 0 (3.71) 

 = 0 (3.72) 

The geodesic equation (3.72) is invariant under the linear transformation µ → aλ+b. 

Where a and b are constants, λ is therefore an affine parameter. Parallel transport 

can be defined in analogy with the flat space case of a curve that keeps the 
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components of a tensor the same (Hobson et al. (2006); page 76). In flat space and 

in Cartesian coordinates, a tensor is constant along a curve xα(λ), with parameter λ 

if its components are constant, 

 = 0 (3.73) 

We can define a tensor to be parallel transported along a curve if we write this 

equation in covariant form as 

 = 0 (3.74) 

This definition of parallel transport depends on a choice of connection. It is 

meaningless to talk about parallel transport without specifying a connection. 

However, the metric on the spacetime can be used to pick out a unique connection 

and we say a connection is metric compatible if ∇ρgµλ = 0. Thus there is a unique 

connection that parallel propagates the metric, namely Riemannian connection or 

Levi-Civita connection or Christoffel connection. For geodesics, we require the 

tensor being transported to be the tangent to the curve . If we change the 

parameter of the curve by a different parameter µ instead of λ, we have 

 

From equation (3.72) 
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(3.79) 

(3.80) 

(3.81) 

Hence, the most general form of the geodesic equation which dose not elect out a 

particular form of parameterization is 

  (3.82) 

where . From this equation we see that the new curve is a geodesic, 

i.e. has the form of equation (3.72), only if the new parameter is related to old 

parameter by a linear transformation µ = aλ + b (Hobson et al. (2006); page 77). A 

parameter for which κ = 0 is called affine parameter and for κ 6= 0 is known as 

non-affine parameter. The surface gravity of a black hole is often defined in terms 

of the value of κ on the horizon for certain null geodesics that define the horizon. 

This shows that the value of depends on the choice of parameterizations of the null 

geodesics. If κ = 0, it means the surface gravity is zero and that the black hole is 

degenerate. 

3.7.2 Killing Vectors in R3 

It is always not simple to solve Killing’s equation in any given spacetime but it is 

frequently possible to write some Killing vectors by inspection. Of course a generic 

metric has no Killing vectors at all, but to keep things simple we often deal with 

metrics with high degrees of symmetry. For example, in R3 with metric ds2 = dx2 + 

dy2 + dz2, independence of the metric components with respect to x,y, and z 

immediately yields three Killing vectors 

 xµ = (1,0,0), yµ = (0,1,0), zµ = (0,0,1) (3.83) 
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These clearly represent the three translations. There are also three rotational 

symmetries in R3, which are not quite as simple. These symmetries can be found 

first by considering the following parametric equations 

x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ 

Where the metric takes the form 

(3.84) 

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2 (3.85) 

This metric is manifestly independent of φ so R = ∂φ is a Killing vector. Transforming 

back to Cartesian coordinates, this becomes 

 R = −y∂x + x∂y (3.86) 

The Cartesian components Rµ of all the three rotational Killing vectors are 

 Rµ = (−y,x,0), Sµ = (z,0,−x), Tµ = (0,−z,y) (3.87) 

These represent rotations about the z,y and x axis respectively. These equations do 

solve Killings equation. This can lead to the Killing vectors for the two-sphere S2 

with metric 

 ds2 = dθ2 + sin2 θdθ2 (3.88) 

Since the sphere can be thought of as the locus of points at unit distance from the 

origin in R3, and the rotational Killing vectors all rotate such a sphere into itself, 

they also represent symmetries of S2. The explicit coordinate-bases representations 

for the rotational Killing vectors are 

 R = ∂φ, S = cosφ∂θ − cotθ sinφ∂φ, T = −sinφ∂θ − cotθ cos∂φ (3.89) 

We notice that there are no components along ∂, which makes sense for a rotational 

isometry (Hamilton (2014)). Therefore, the expressions (3.89) for the three 
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rotational Killing vectors in R3 are exactly the same as those of S2 in spherical polar 

coordinates. In n ≥ 2 dimensions, there can be more Killing vectors than the 

dimensions. This is because a set of Killing vector fields can be linearly independent, 

even though at any one point on the manifold the vectors at that point are linearly 

dependent. Also the commutator of two Killing vector fields is a Killing vector field 

but it may be possible that the commutator gives a vector field that is not linearly 

independent or it may simply vanish. So the problem of finding all of the Killing 

vectors of a metric is very tricky, as it is not always clear when to stop looking. 

3.7.3 Killing Vectors on the Schwarzschild Manifold 

In a particularly suitable set of coordinates, the line element summarizing the 

Schwarzschild geometry is given by 

 ) (3.90) 

(i) The Metric is independent of t: there is a Killing vector ξ associated with this 

symmetry under displacements in the coordinate time which has components 

 

(ii) Spherically symmetric: the geometry of a two dimensional surface of constant 

t and r in the four-dimensional geometry (3.83) is given by the line element 

 dΩ2 = r2(dθ2 + sin2 θdφ2) (3.91) 

This describes the geometry of a sphere of radius of in a flat three-dimensional 

space. The Schwarzschild geometry thus has the symmetries of a sphere with 

regards to changes in the angles θ and φ. This is clear in equation (3.91) because 

the metric is independent of φ and it is invariant under rotations about the z-axis. 

The Killing vector associated with this symmetry is 

 1) (3.92) 
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Since the geometry is also invariant under rotations about x and y axis, so there are 

two other Killing vectors: 

  (3.93) 

These four Killing vectors are also found in flat spacetime and the corresponding 

symmetries lead to the conservation of energy and the three components of angular 

momentum. The existence of these Killing vectors make the definitions of 

stationary, static and spherical symmetry more concrete. 

Definition 3.7.1 A spacetime is said to be stationary if there exists a one-parameter 

group of isometries φt, whose orbits are timelike curves. This group of isometries 

expresses the time translation symmetry of the spacetime. Equivalently, a stationary 

spacetime is one which possesses a timelike Killing vector field ξα (where we normalize 

it such that ξ2 → −1). That is outside a possible horizon,  where t is a time 

coordinate. The general stationary metric in these coordinates is therefore 

 ds2 = g00(x¯¯)dt2 + 2g0i(¯x)dtdxi + gij(¯x)dxidxj (3.94) 

Definition 3.7.2 A spacetime is said to be static if it is stationary and if it is also 

invariant under time-reversal. This requires g0i = 0, so the general static metric can be 

written as 

 ds2 = g00(¯x)dt2 + gij(¯x)dxidxj (3.95) 

for a static spacetime outside a possible horizon. 

Definition 3.7.3 A spherically symmetric spacetime is a spacetime whose isometry 

group contains a subgroup which is isomorphic to the rotation group SO(3) and the 

orbits of this group are 2-spheres (ordinary 2-dimensional spheres in 3-dimensional 

Euclidean space). 
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The study of geodesics in the Schwarzschild geometry is considerably aided by the 

laws of conservation of energy and momentum that hold because the metric is 

independent of time and it is also spherically symmetric. The first step we will take 

to understand the Schwarzschild metric more fully is to consider the behavior of 

geodesics. The nonvanishing Christofel symbols for Schwarzschild metric are 

 

 

 

The geodesic equation therefore gives the following four equations, where is an 

affine parameter 

 = 0 (3.96) 

 

 = 0 (3.98) 

 = 0 (3.99) 

There does not seem to be much hope for simply solving this set of coupled 

equations by inspection. Fortunately our task is greatly simplified by the high 

degree of symmetry of the Schwarzschild metric. We know that there are four 

Killing vectors: three for the spherical symmetry, and one for time translations. 

Each of these will lead to a constant of the motion for a free particle; if ξµ is a Killing 

vector, we know that 
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  (3.100) 

There is another constant of the motion that we always have for geodesics; metric 

compatibility implies that along the path the quantity 

  (3.101) 

is constant. In particular, therefore, one can choose  for timelike (spacelike) 

geodesics, and λ can then be identified with proper time (proper distance), while 

the choice  = 0 sets the initial conditions appropriate to massless particles (for 

which λ is then not related to proper time or proper distance. 

Notice that, the symmetries the four conserved quantities associated with Killing 

vectors represent are also present in flat spacetime, where the conserved quantities 

they lead to are very familiar. 

Invariance under time translations leads to conservation of energy, while 

invariance under spatial rotations leads to conservation of the three components of 

angular momentum. Essentially the same applies to the Schwarzschild metric 

(Carroll (1997); page 173). We can think of the angular momentum as a three-

vector with a magnitude (one component) and direction (two components). 

Conservation of the direction of angular momentum means that the particle will 

move in a plane. We can choose this to be the equatorial plane of our coordinate 

system; if the particle is not in this plane, we can rotate coordinates until it is. Thus, 

the two Killing vectors which lead to conservation of the direction of angular 

momentum imply . The two remaining Killing vectors correspond to energy 

and the magnitude of angular momentum. The energy arises from the timelike 

Killing vector K = ∂t or 

  (3.102) 
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The Killing vector whose conserved quantity is the magnitude of the angular 

momentum is L = ∂φ or 

Lµ = (0,0,0,r2 sin2 θ) (3.103) 

Since, , the two conserved quantities are 

  (3.104) 

  (3.105) 

For massless particles these can be thought of as the energy and angular 

momentum; for massive particles they are the energy and angular momentum per 

unit mass of 

the particle. 

3.8 Hypersurfaces 

Hypersurfaces play important roles in general relativity, appearing in many 

different contexts, e.g. in the form of hypersurfaces of constant time (for some 

choice of time coordinate), or as boundaries of space-time regions over which one 

would like to integrate some quantity. Moreover, some basic familiarity with this 

subject is required to better understand certain advanced aspects of general 

relativity like the Hamiltonian formulation of general relativity or the event horizon 

of the Schwarzschild black hole geometry which turns out to be a null hypersurface. 

3.8.1 Description of Hypersurfaces 

A hypersurface is an (n−1)-dimensional submanifold Σ of an n-dimensional 

manifold M (Poisson (2002)). One way to specify a hypersurface Σ is by setting a 

single function to a constant i.e. f(x) = f∗.The vector field denoted by 

 ξµ = gµν∇νf (3.106) 
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will be normal to the surface, in the since that it is orthogonal to all vectors in TpΣ ⊂ 

TpM. If ξµ is timelike, the hypersurface is said to be spacelike; if ξµ is spacelike, the 

hypersurface is timelike and if ξµ is null the hypersurface is also null. Any vector 

field proportional to a normal vector field 

 ξµ = h(x)∇µf (3.107) 

in some function h(x), will itself be a normal vector field; since the normal vector is 

unique up to scaling, any normal vector can be written in this form. For timelike and 

spacelike hypersurface we can therefore define a normalized vector of the normal 

vector 

  (3.108) 

Then nµnµ = −1 for spacelike surfaces and nµnµ = +1 for timelike surfaces; up to an 

overall orientation, such a normal vector field is unique (Poisson (2002); page 48). 

For spacelike surfaces the sign is typically chosen so as to make nµ be future 

oriented. Normal surfaces have a special feature: they can be divided into a set of 

null geodesics, called generators of the hypersurface. Let us see how this works. We 

note that the normal vector ξµ is tangent to Σ as well as normal to it, since null 

vectors are orthogonal to themselves. Therefore the integral curves x(λ), satisfying 

 (3.109) 

will be null curves contained in the hypersurface. These curves x(λ) necessarily turn 

out to be geodesics, although λ might not be an affine parameter (Poisson (2002); 

page 48). This claim can be verified by recalling that the general form of the 

geodesic equation can be expressed as 

 ξµ∇µξµ = η(λξν) (3.110) 
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where η(λ) is a function that will vanish if λ is an affine parameter. By substitution 

of (3.97), we have 

(3.111) (3.112) 

Note that, even though ξµξµ = 0 on Σ, we cannot be sure that ∇ν(ξµξµ) vanishes, since 

ξµξµ might be nonzero off the hypersurface. 

Chapter 4 

EVENT HORIZONS, KILLING HORIZONS 

AND TRAPPED SURFACES IN SPACETIMES 

4.1 Event horizon 

Event horizon defined by Hawking and Ellis (1973) (Page 312) is the boundary of 

the region from which particles or photons can move out to infinity in the future 

direction. Hawking in DeWitt and DeWitt (1973), defines event horizon as the 

boundary of the region from which it is not possible to escape to infinity. (Carroll 

(2004); Page 240)): defines event horizon as the boundary of the closure of the 

causal past of future null infinity. By this definition, it is clear that the event horizon 

is a null hypersurface. A more detailed description of the structure of the event 

horizon is provided by a theorem proved by Penrose (1965a). According to this 

theorem, the event horizon is formed by null geodesics (generators) that have no 

end points in the future (Frolov and Novikov (1997); Page 356). Traditionally, the 

black hole surface is defined using event horizons. However the event horizon, 

could never be observed, as it is defined, in any way. But with a known infinite 

future, the location of the event horizon can be established. Neither in a real 

physical situation, nor in a numerical evolution of spacetime can any event horizon 

be located exactly as quoted by (Hayward (1994); Page 1), Ashtekar and Corichi 

(2000)) The event horizon does not have any physical effect. Such a horizon could 
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be passing through you, gentle reader, at any given instant; no one would notice 

Krishnan (2013) (Page 16) also stated that: an event horizon could be formed and 

grown in the room you are reading this article right now, because of the posibility 

of events which may occur a billion years to come. A typical example is an observer 

in the flat region of the Vaidya spacetime. The fact that the precise locality of an 

event horizon at a particular time will not be possible to be determined without 

complete knowledge of the entire future evolution of spacetime is clear that the 

event horizon is very teleological and global. However, there may be hints that a 

black hole has been formed. In this context trapped surfaces (Ashtekar et al., 2001) 

become interesting. 

4.1.1 Killing horizon 

Killing horizon is a null hypersurface where a global Killing vector is null (Carroll 

(2004); Page 244). Event horizon and Killing horizon are closely related. Carter has 

shown that for static black holes, the event horizon is a Killing horizon for the time 

translational Killing field (Nielson (2007); Page 45). Hawking and Ellis have shown 

(Hawking and Ellis (1973); Page 331), that in electrovac General relativity, the 

event horizon of a stationary black hole must be a Killing horizon. In stationary 

spacetimes, the event horizon of a black hole is a Killing horizon and foliated by 

surfaces with vanishing outward null expansion: marginally outer trapped surface 

(MOTS) (Booth et al. (2017); page 1). However, Killing horizon do not always 

coincide with event horizon. For example Minkowski space has Killing horizons for 

non-geodesic observers but no event horizon. In the Boyer-Lindquist form of the 

Kerr solution, the timelike Killing vector ∂t becomes null along a timelike 

hypersurface, the stationary limit surface, called the ergosphere but this is not the 

event horizon. The Killing horizon occurs where ∂t + ΩH∂φ becomes null. Hawking 

and Ellis (Hawking and Ellis (1973); Page 331) have shown that no Killing horizons 

exist inside the event horizon for linear combinations of the time-translational and 

axisymmetric Killing vectors. In other words, outer trapped surfaces imply light 



 

49 

cannot escape outwards, with a global timelike Killing vector this means they will 

never reach future null infinity and we have an event horizon. 

4.1.2 Killing Horizons as Event Horizons of Stationary Black Hole 

The Schwarzschild horizon which serves as a black hole horizon or the event 

horizon is a null hypersurface whose normal vector is a Killing vector ξ = ∂t. In the 

same way, the event horizon of the Kerr black hole also has this property, but with 

respect to a different Killing vector ξ = ξ + Ωhη. The fact that in both cases the event 

horizons have this property is due to the rigidity theorems in which the global 

causal notion of an event horizon relates to the local. A Killing horizon is a null 

hypersurface which has a Killing vector field as normal vector field. These rigidity 

theorems state that under rather general conditions, and in a variety of 

circumstances, the event horizon of a stationary black hole must be a Killing horizon 

(Carroll (2004); Page 244). A very important result we realize is that in the static 

case the event horizon is a Killing horizon for the asymptotically timelike and 

hypersurface-orthogonal Killing vector ξ. Killing horizons therefore provide a fairly 

satisfactory characterization and description of stationary black holes. 

4.1.3 Killing Horizons and Surface Gravity κ 

A Killing horizon is a null hypersurface which has a Killing vector field as normal 

vector field. A Killing vector field, ξα satisfying the Killing equation ∇αξβ +∇βξα = 0 

defines a Killing horizon, H, of the spacetime (M,gαβ) which is a null hypersurface 

that is every where tangent to Killing vector field, ξα, which becomes null, ξαξα < 0, 

in a spacetime region that has H as the boundary. Stationary event horizons in 

General relativity are Killing horizons: for example, in Schwarzschild geometry, the 

event horizon r = 2M is also a Killing horizon i.e., a place where the signature of a 

Killing vector changes and the timelike Killing vector  in the r > 2M region 

outside the event horizon becomes null at r = 2M and spacelike for r < 2M. An event 

horizon in a locally static spacetime is also a Killing horizon for the Killing vector
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 associated with the time symmetry (Wald (2001); Page 7; Carroll 

(2004); Page 244). In a wide variety of cases of interest, the event horizon H of a 

stationary black hole must be a Killing horizon. In stationary spacetimes, the event 

horizon of a black hole is a Killing horizon (Booth et al. (2017); page 1). Carter 

(1973), states that for a static black hole the static Killing field  must be 

normal to the horizon, whereas for a stationary-axisymmetric black hole with the t 

− φ; orthogonality property there exists a Killing field ξα of the form 

  (4.1) 

Which is a linear combination of the vectors associated with time and rotational 

symmetries, where is the angular velocity at the horizon and it is normal to the 

event horizon (Wald (2001); Page 7). Hawking proved in (Hawking and Ellis 

(1973)), that in vacuum the event horizon of any stationary black hole must be a 

Killing horizon. A Killing horizon, when present defines a notion of surface gravity. 

The concept of the Killing horizon is useless in spacetimes that do not admit 

timelike Killing vectors. Now, let K be any Killing horizon (not necessarily required 

to be the event horizon H of a black hole), with normal Killing field ξα. Since ∇α(ξαξα) 

also is normal to K, these vectors must be proportional at every point on K. Hence, 

there exists a function, κ on K, known as the surface gravity of K. To every Killing 

horizon we can associate a quantity called the surface gravity (the gravitational 

acceleration experienced at the surface of an object). Let ξµ be a Killing vector field 

with Killing horizon Σ. Because ξµ is normal to Σ, along the Killing horizon, it obeys 

the geodesic equation 

 ξµ∇µξν = κξµ (4.2) 

Where the right-hand side arises because the integral curves of ξµ may not be 

affinely parameterized. The parameter κ is called the surface gravity; it will be 
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constant over the horizon, except for a bifurcation two-sphere where the Killing 

vector vanishes and κ can change in sign. This happens, for example at the center of 

Kruskal diagram in the Schwarzschild solution. 

4.2 Raychaudhuri Equation for Timelike Geodesic 

Congruences and Affine Null Geodesic Con- 

gruences 

Raychaudhuri-Landau equation categorizes the evolution of systems of non-

intersecting geodesics; called geodesic congruences. This allows us to see the 

evolution of a family of geodesic curves due to their expansion, shear, rotation, and the 

effect of the stress-energy tensor. It also occurs as a fundamental lemma in the 

Penrose-Hawking singularity theorems (Hawking and Penrose (1970); Page 12), 

where, through formalizing the idea of a surface parameterized by geodesic 

congruences, it governs the evolution and collapse of integral curves of geodesics into 

“closed trapped surfaces”. The Raychaudhuri equation is intimately related to surface 

behavior in the membrane paradigm and fluid/gravity correspondence. 

Here, we derive an equation for the rate of change of the divergence ∇αuα of a family 

of geodesics along the geodesics. This simple result, known as the Raychaudhuri 

equation, has important implications in general relativity, especially in Penrose and 

Hawking singularity theorems. Thus uα now denotes a tangent vector field to an 

affinely parameterized geodesic congruence, uα∇αuβ = 0 (and uαuα = −1 or uαuα = 0 

everywhere for a timelike or null congruence). Introducing the tensor 

Bℵβ 

 Bαβ = ∇βuα = 0 (4.3) 

and therefore only has components in the directions transverse to uα. Its trace 
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 = 0 (4.4) 

is the divergence of uα and is known as the expansion of the (affinely parameterized) 

geodesic congruence. The equation governing the evolution of Bαβ along the integral 

curves of the geodesic vector field is 

  (4.5) 

If the trace of this equation taken, we obtain an evolution equation for the expansion 

θ given by 

  (4.6) 

For affinely parameterized congruence, Bαβ is automatically a spatial or transverse 

tensor 

  (4.7) 

Using the elasticity theory, equation (4.7) can be decomposed into its anti-symmetric, 

symmetric traceless and trace part as 

  (4.8) 

where 

 

(4.9

) The quantities ωαβ, being the antisymmetric part of the linear map Bαβ measures 

their rotation, and σασ measures their shear, and θ which measures the average 

expansion of the infinitesimally nearby surrounding geodesics uα (Wald (1984); 

Page 217). The expansion θ can be written as 
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where Lu is the Lie derivative along the vector field u. Substituting gαβ = hαβ − uαuβ, 

one finds 

  (4.11) 

A null geodesic congruence is now considered, with tangent vector field denoted by 

lα. These null geodesics are initially chosen to be affinely parameterized in order to 

 lαlα = 0, lα∇αlβ = 0 (4.12) 

Here nα is an auxiliary null vector field and lαlα = −1, as associated projectors. If bαβ 

is the projection of the tensor Bαβ = ∇βlα, then 

  (4.13) 

The spatial projection bαβ is given by  

bαβ = SαβSβδBγδ = Bαβ + lαnγBγδ + nγnδBγδ (4.14) 

In this equation the spatial trace of bαβ with respect to Sαβ is equal to the space-time 

trace of Bαβ with respect to gαβ 

gαβBαβ = gαβbαβ = Sαβbαβ 

And the square of bαβ is identical to that of Bαβ 

(4.15) 

BαβBαβ = bαβbαβ (4.16) 

We can decompose bαβ orthogonally into its trace, symmetric traceless and 

antisymmetric 

 
θl = σαβbαβ = σαβ∇αlβ = ∇αuα 

The expansion θl is given by 

(4.18) 

  (4.19) 
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The quantities θ, σαβ and ωαβ in the null geodesic congruence have the physical 

interpretation as, respectively, the expansion, shear, and twist of the congruence. 

The change in the numerical factor in the term  as compared with in the 

timelike case arises simply because the relevant vector space is now two-

dimensional 

rather than three-dimensional. Equation (4.19) shows that θl measures the change 

√ 

in the cross-sectional area element S of the congruence 

  (4.20) 

As a typical example, the radial outgoing light rays l = ∂ν, ν = t+r in Minkowski space 

have expansion 

 0 (4.21) 

while the expansion of the radial ingoing light rays n = ∂u, u = t − r, is 

 0 (4.22) 

This shows that the outgoing light rays expand and the ingoing light rays contract. 

As r → 0, both expansions diverge, but this does not mean a pathology of Minkowski 

space-time. 

The expansions of null vectors play important role in the singularity theorems 

(where trapped surfaces are characterized by negative expansions for both ingoing 

and outgoing null vectors) and in the study of black holes and the laws governing 

the evolution of their event horizons. In particular, in the latter case the 

Raychaudhuri equation is a very important ingredient in the proof of Hawkins’s 

theorem (that under reasonable conditions the cross-sectional area of the event 

horizon of a black hole cannot decrease). 
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4.3 Principal Null Vectors of the Schwarzschild and the 

Kerr Metrics 

Here, we give the principal null vectors of both the Schwarzschild spacetime and 

the Kerr spacetime. These two examples will serve as a testing ground for various 

ideas when searching for apparent horizons defined in terms of the expansions of 

vectors. In the Schwarzschild coordinates, the metric is given by 

 ) (4.23) 

The components of the two future directed radial null vectors can be given as 

  (4.24) 

  (4.25) 

With this, one can easily show that 

  (4.26) 

  (4.27) 

The eigenvalues are the same since the eigenvalues are just Cabcdlanblcnd and their 

value does not depend on the normalization of either lα or nα. In the boyerLindquist 

coordinates, we have 

 

(4.28

) 
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The components of the two future directed radial null vectors can be given as 

(4.29) 

(4.30) 

And one can easily show that 

  (4.31) 

  (4.32) 

Since both lα and nα are repeated principal null directions, both the Schwarzschild 

and the Kerr metrics are double null principal directions. 

4.4 Causal Structure 

The idea that future events can be understood as consequences of initial conditions 

plus the laws of physics is causality (Carroll (2004); Page 78). The causal structure 

of spacetime is illustrated by figure 4.1 below. Associated with each event p in 

spacetime is a light cone. Half of the cone is labelled future and the other half past. 

Those events that can be reached by a material particle from p lie in the interior of 

the future light cone; these comprise the chronological future of p. The 

chronological future of p together with events lying on the cone itself comprises the 

causal future of p; physically, it represents events which in principle can be 

influenced by a signal emitted from p. The causal structure in general relativity is 

locally of the same qualitative nature as in flat spacetime of special relativity. But 

the main differences can occur globally because of nontrivial topology, spacetime 

singularity or the twisting of the directions of light cones as moves from point to 

point (Wald (1984); Page 188). 



 

57 

Definition 4.4.1 A causal curve is any smooth curve that is nowhere spacelike i.e. it is 

timelike or null everywhere (Carroll (2004); Page 79). 

Definition 4.4.2 Given any subset S of a manifold M, the causal future of S denoted 

J+(S), is the set of points that can be reached from S by following a futuredirected 

causal curve (Carroll (2004); Page 79). 

Definition 4.4.3 The chronological future I+(S) is the set of points that can be reached 

by following a future-directed timelike curve (Wald (1984); Page 189; Hawking and 

Ellis (1973); Page 182; Carroll (2004); Page 79). 

A curve of zero length is achronal but not causal; so a point p will always be in its 

own causal future J+(p), but not necessarily its own chronological future I+(p). The 

causal past J+(p) and chronological past I− are defined analogously. 

A subset S ⊂ M is called achronal if no two points in S are connected by a timelike 

curve; for example, any edgeless spacelike hypersurface in Minkowski spacetime is 

achronal (Carroll (2004); Page 79). 

4.5 Local Characterizations of Black Holes 

This section discusses some of the definitions of local horizons that have appeared 

in the Literature. Characterizing black holes by means of classical event horizon is 

a global concept which has the following drawbacks; it is a teleological concept, i.e. 

the knowledge of the whole spacetime is needed in order to locate event horizon 

and black hole region, the event horizon can enter into flat spacetime regions. This 

has made local characterization of black holes very important. In this context, 
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Figure 4.1: Light cone at p 

the seminal notion of trapped surface plays a crucial role, capturing the idea that all 

light rays emitted from the surface locally converge (Jaramillo (2011); Page 2). The 

presence of a closed trapped surface is a very useful criterion that provides a 

sufficient indication that a region of spacetime lies within a black hole. Such a local 

criterion is valuable view of the awkward teleological nature of the black hole 

horizon, i.e. the fact that its precise locality at a given time on a given spacelike 

hypersurface cannot be determined without complete knowledge of the entire 

future evolution of spacetime (Hawking and Israel, 1979). It is for this reason that 

Hawking (Hawking and Ellis (1973); Page 320) refers to the outer boundary of the 

region containing closed trapped surfaces on a given spacelike hypersurface as the 

apparent horizon relative to that hypersurface: it may not coincide with the 

intersection of the true horizon with the hypersurface but it is at least guaranteed 

not to lie outside 

it. 

Definition 4.5.1 (Gourgoulhon and Jaramillo 2008; page 1) defined a black hole 

as B := M − J−(p+). Where M is a 4-dimensional manifold endowed with a Lorentzian 

metric g such that (M,g) is asymptotically flat, p+ is the future null infinity and J−(p+) 

is the causal past of p+. In other words, a black hole in asymptotically flat spacetime is 

defined as a region such that no causal signal from it can reach future null infinity p+ 
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and the event horizon is the boundary of B (Gourgoulhon and Jaramillo (2008); page 

1) 

4.5.1 Trapped Surface 

A two-dimensional surface S in a four dimensional spacetime has two null 

directions normal to the surface at each point. Thus we can distinguish two future 

directed families of null geodesics emerging from the surface. If we denote the in-

going and out-going null normals to the surface S by lα and nα respectively, then θl 

and θn are their respective expansions. For a sphere in flat space, the out-going light 

rays are diverging and the ingoing ones are converging, i.e. θl > 0 and θn < 0. The 

surface S is said to be trapped if both expansions are negative: θl < 0 and θn < 0 or a 

trapped surface S according to Penrose is a compact, space-like 2-dimensional 

submanifold of space-time on which θlθn > 0, where lα and nα are the two null 

normals to S. Trapped surfaces are 2-dimensional spacelike surfaces whose area 

decrease locally along any future directions. The notion of trapped surface due to 

Penrose singularity theorem (Penrose (1965b); Page 211) captures the idea that in 

a strong gravitational field like the gravitational collapse, the outgoing light rays 

converge. For stationary black holes, the event horizon and the Killing horizon are 

equal and characterizes the boundary of the region which contains trapped surfaces 

(Booth et al., 2017). In dynamical black holes, trapped surfaces are generally 

dissociated from the event horizon and located inside the apparent horizon (Ben-

Dov (2007); Page 3). These trapped surfaces are very important in the singularity 

theorem and their presence indicates the formation of singularity and therefore 

black holes. (Senovilla (2011); Page 2). It is therefore important to explore the 

relationship between The rate of increase of an infinitesimal transverse 2-

dimensional crosssectional area δA carried along with the geodesics 

 , (4.33) 
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is the expansion of a congruence of null geodesics. 

The traditional Black Hole solutions in General relativity, constituted by the Kerr- 

Newman family of metrics, have closed trapped surfaces in the region inside the 

Event Horizon (Senovilla (2011); Page 2). 

4.5.2 Marginally Trapped Surface 

The surface is said to be marginally trapped (MTS) if θl = 0 and θn < 0. The singularity 

theorems of (Penrose (1965a); Hawking and Penrose (1970); Senovilla (1998)) 

found in (Senovilla (2011); Page 2) have shown that the signature of a spacetime 

containing a black hole is the presence of such surfaces. (Hayward (1994)), page 5; 

defines marginal surface as a spatial 2-surface S on which one null expansion 

vanishes. Note however that this is not necessarily a signature of strong 

gravitational field; they are present even for large black holes which have 

correspondingly small tidal forces at the horizon. It can be shown that trapped 

surfaces must lie inside the event horizon, and that cross-sections of the event 

horizon for stationary black holes are MTSs. 

An outer trapped surface defined by Hawking as a compact spacelike 2-dimensional 

submanifold in (M,gab) such that the expansion of the outgoing null geodesics 

orthogonal to the surface is non-positive (Ashtekar and Krishnan (2004); Page 20. 

This definition does not matter whether the ingoing null geodesics are converging 

or not but it includes for convenience the case θ = 0. 

Trapped Region: Hawking defines the trapped region T(M) in a surface M as the 

set of all points in M, through which there passes an outer-trapped surface, lying 

entirely in M. The spacetime region T containing trapped surface is called the 

trapped region (Ashtekar and Krishnan (2004); Page 20). (Schnetter et al. (2006); 

Page 2), defines a trapped region as the region where trapped surfaces exist, it can 

be in the full spacetime or on a Cauchy surface. (Hayward (1994); Page 
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4), defines a trapped region as a subset of space-time through each point of which 

there passes a trapped surface. (Hayward (1994); Page 4) defines trapping 

boundary as a connected component of the boundary of an inextendible trapped 

region. Under certain assumptions (which appear to be natural intuitively but 

technically are quite strong), he was able to show that the trapping boundary is 

foliated by marginally trapped surfaces (MTSs), i.e., compact, space-like 2-

dimensional submanifolds on which the expansion of one of the null normals, say lµ 

vanishes and that of the other, nµ is everywhere non-positive, (Ashtekar and 

Krishnan, 2004; 

Page 21). A trapping horizon is defined as a hypersurface of M foliated by spacelike 

2-surfaces S such that the expansion scalar θl of one of the two families of null 

geodesics orthogonal to S vanishes. A trapping horizon can be either spacelike or 

null (Hayward (1994); Page 1). 

4.5.3 Apparent Horizon (AH) 

Given a spacelike 3-surface, outer boundary of region containing outer trapped 

surfaces that lie in the 3-surface is called the apparent horizon (Ben-Dov (2007), 

page 2). On a given spatial hypersurface, all (marginally) outer trapped surfaces can 

be found. Here, the outermost marginally outer trapped surface on the spatial slice 

is called the apparent horizon. In the practice of numerical relativity, the apparent 

horizon serves as the definition of the boundary of a black hole. The importance of 

trapped surfaces in numerical relativity thus constitutes a strong motivation for the 

study of these. 

Both of the above definitions of apparent horizon are highly dependent on the given 

spatial slicing of the spacetime. There may exist trapped surfaces lying not in one 

of the given spatial slices that extend beyond the apparent horizon. For instance, 

there are slicings of the Schwarzschild spacetime, reaching the singularity, which 

fail to include a trapped surface in any spatial slice (Wald and Iyer, 1991), even 
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though the whole interior of the Schwarzschild black hole is filled with trapped 

surfaces. In general, the apparent 3-horizon is neither unique nor continuous 

because a different foliation of the spacetime into spacelike surfaces can result in a 

different location of the apparent horizon through the spacetime (Ben-Dov (2007), 

page 2). 

4.5.4 Marginally (outer) Trapped Tube (MOTT) 

Many important horizons are built from marginally (outer) trapped surfaces. A 

hypersurface foliated by marginally (outer) trapped surfaces is referred to as a 

marginally (outer) trapped tube (Jakobsson (2017); page 28). It is defined by 

(Hawking and Ellis (1973); Page 319), as a component of the boundary of the 

trapped region. It is a two-surface where the expansion of the outgoing null 

geodesic normal to the surface is zero. (Hayward (1994); Page 5), calls it a two-

surface on which one expansion vanishes a marginal surface without it necessarily 

being outgoing. (Schnetter et al. (2006); Page 2), a marginally trapped surface is a 

closed two-surface for which one, or both of the future directed null normals has 

zero expansion, without the other necessarily being specified. 

4.5.5 Isolated Horizon (IH) 

An isolated horizon by (Ashtekar and Krishnan (2004); Page 14), is a null 

hypersurface foliated by marginally outer trapped surfaces, with extra conditions 

imposed. It is isolated in the sense that it does not interact with its surroundings. In 

a dynamical situation the area of a black hole is expected to grow. Thus, the notion 

of an isolated horizon may be complemented by that of a dynamical horizon 

(Hayward (1994); Page 7), which is intended to model an evolving black hole. The 

event horizons of the stationary Schwarzschild and Reissner-Nordstr¨om solutions 

are isolated horizons (Jakobsson (2017); page 29). In fact, every Killing horizon 

with the required topology is an isolated horizon. A Killing horizon is not 
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necessarily a black hole horizon, and neither is an isolated horizon. The concept of 

isolated horizons thus applies to a wider class of horizons, not only event horizons. 

4.5.6 Dynamical Horizon (DH) 

A dynamical horizon is a spacelike marginally trapped tube. According to (Ashtekar 

and Krishnan (2004); page 20), a dynamical horizon has the following properties 

i. it is a three-dimensional, spacelike hypersurface that can be foliated by closed 

spacelike 2-surface. 

ii. The expansion of one null normal to the foliations nα is negative θn < θ. iii. The 

expansion of the other null normal lα vanishes i.e. θl = 0 

From this definition, it basically tells us that a dynamical horizon is a space-like 

hypersurface which is foliated by closed, marginally trapped two-surface. The 

requirement of the expansion of the incoming null normal to be strictly negative is 

because we want to study a black hole (future horizon) rather than a white hole. 

Ashtekar uses a 2+1 decomposition on a three dimensional space-like surface. The 

Cauchy data on the dynamical horizon must satisfy the scalar and vector 

constraints. After doing the decomposition, (Ashtekar and Krishnan (2004); page 

26), obtained the energy flux cross the dynamical horizon. Their fluxes are local and 

the energy flux is positive. The change in the horizon area is related to these fluxes. 

However, this kind of approach does not tell us the gravitational free data near 

horizon when considering the full 4-dimensional space-time. 

4.5.7 A Trapping Horizon 

A trapping horizon defined by (Hayward (1994); Page 3), as the closure of a three-

surface foliated by marginal surfaces, for which θl = 0, and that also satisfies the 

non-degeneracy conditions θn 6= 0 and Lnθl 6=. It is either spacelike or null. 



 

64 

A trapping horizon may be future trapped or past trapped, depending on if it is 

foliated by future or past marginally trapped surfaces. If the congruence of light 

rays having zero expansion on the horizon diverges just outside the horizon and 

converges just inside, the trapping horizon is said to be outer, and vice versa for an 

inner trapping horizon. Applying these concepts to the Reissner-Nordstr¨om 

solution, we find that the event horizon is a future outer trapping horizon; the inner 

horizon is a future inner trapping horizon, while the white hole horizons are past 

outer/inner trapping horizons. The existence of a black hole could very well be 

defined by the presence of a future outer trapping horizon. 

4.5.8 Future Outer Trapping Horizon 

A future, outer, trapping horizon (FOTH) defined by (Ashtekar and Krishnan 

(2004); Page 20), is a smooth 3-dimensional sub-manifold H of space-time, foliated 

by closed 2-manifolds S, such that 

i. the expansion of one future directed null normal to the foliation, say lα, 

vanishes, θl = 0 

ii. the expansion of the other future directed null normal nθ is negative i.e. θn < 0 

(to distinguish between white holes and black holes) (Krishnan (2013); page 

20) 

iii. the directional derivative of θl along nα is negative, Lnθl < 0 (to distinguish 

between inner and outer horizons of, the Kerr solution). 

4.6 Existence of Trapped and Marginally Trapped 

Surfaces using Gauss’s Divergence Theorem 

The divergence theorem only applies to closed surface S. By a closed surface S, we 

mean a surface consisting of one connected piece which does not intersect itself and 

which completely encloses a single finite region D of space called its interior. The 
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closed surface S is then said to be the boundary of D; we include S in D. A sphere, a 

cube and a torus are examples of closed surfaces. 

4.6.1 Gauss’s Divergence Theorem 

This theorem states that the integral of the divergence of a vector field over a region 

V equals the flux of the field through the surface S bounding V provided the field is 

suitably smooth inside V and S (Borisenko and Tarapov (1979); page 157). Consider 

region V, in which a vector field ¯g is continuous and differentiable, the divergence 

of this vector field is given by 

 Z I 

 ∇ · gdV¯ = g¯ndS¯ (4.34) 

 V S 

Where the surface S is a closed surface that completely surrounds a very small 

region V at point r. 

Definition 4.6.1 The flux of a vector field measures “how much” vector field crosses a 

given surface. The divergence theorem relates the total flux of a vector field out of a 

closed surface S to the integral of the divergence of the vector over the enclosed volume 

V . 

Definition 4.6.2 The divergence basically indicates the amount of vector field g¯ that 

is converging to or diverging from a given point. For example, consider the following 

vector fields in the region of a specific point. 

 

Figure 4.2: Showing positive and negative divergence 
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The field fig A is converging to a point and therefore the divergence of a vector field 

at that point is negative. Conversely, the vector field fig B is diverging from a point. 

As a result, the divergence of the vector field at that point is positive. 

 

Figure 4.3: Showing zero divergence 

For each of these vector fields, the divergence is zero. Over some portions of the 

surface, the normal components is positive, where as on the other portions, the 

normal component is negative. But if there is a massive source inside the surface, 

its gravitational field has an attractive or converging effect. Close enough to a 

massive source; the outgoing null vectors converge and the divergence becomes 

negative i.e. ∇ · ¯l < 0. A surface S is said to be trapped if and only if both divergences 

are negative: ∇ · ¯l = θl < 0 and ∇ · n¯ = θn < 0. The surface where the divergence of 

outgoing null vector becomes zero and the divergence of ingoing null vector is less 

than zero is said to be marginally trapped (MTS) i.e. ∇ · ¯l = θl = 0 and ∇·n¯ = θn = 0. 

Since the divergence theorem applies to close surface, it can also be used to proof 

the existence of trapped and marginally surfaces in black holes. 

4.7 Gravitational Singularity 

Gravitational field of a point mass is 

  (4.35) 
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This field is defined everywhere except at r = 0 where it blows up to infinity; there 

is a singularity there. How do we treat this singularity? According to Gauss’s law; if 

you draw a spherical surface or any closed shape around a mass M and measure the 

flux through that surface, the flux will be the same no matter how the mass inside 

is distributed, as it only depends on the quantity of mass enclosed. As far as real 

world measurement is concern, it does not matter that a point mass has an infinite 

gravitational field at the center or at the distance point of measurement, the 

gravitational field is finite and the same as if the mass were diffused into a cloud 

without a singularity. The singularity matters in showing how the usual 

mathematical approach fails, thereby indicating a more sophisticated approach is 

needed to handle that case. This may be done by applying Gauss’s theorem to the 

gravitational field to derive the gravitational flux. Equation (4.34) presents us with 

an interesting paradox when we consider the vector field equation (4.35). On one 

hand, the divergence of this vector field is given by 

 = 0 (4.36) 

From equation (4.34), the left hand side vanishes i.e. R ∇ · gdV¯ = 0. On the other 
V 

hand, choosing V to be a sphere of radius r and denoting its surface as S, we have 

  (4.37) 

We immediately notice that, according to the divergence theorem, we have a big 

problem i.e. 0 = −4πGM. This paradox is resolved by noting that  

0 is valid only at r 6= 0. To reconcile the two sides of the divergence theorem, we 

therefore introduce a singular function known as the delta distribution δ3(r) 

defined by the identity 
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  (4.38) 

with the property that   

 

 3 0, 

δ (r) = 

∞, 

r 6= 0 

r = 0 

(4.39) 

Additional property of the delta distribution is 

 , if a is located inside V 

(4.40) 

if a is located outside V 

Using the delta distribution δ3(r), we can write  

∇ · g¯ = −4πGMδ3(r) 

And thus, 

(4.41) 

 Z Z (4.42) 

 ∇ · gdV¯ = −4πGM δ3(r)dV = −4πGM 

 V V 

4.8 Discussion of result 

We can now investigate the various definitions of black holes that have appeared in 

the Literature. (Gourgoulhon and Jaramillo (2008); page 1) defined a black hole as 

B := M − J−(p+). Where M is a 4-dimensional manifold endowed with a Lorentzian 

metric g such that (M, g) is asymptotically flat, p+ is the future null infinity and J−(p+) 

is the causal past of p+ In other words, a black hole in asymptotically flat spacetime 

is defined as a region such that no causal signal from it can reach future null infinity 

p+ and the event horizon is the boundary of B (Gourgoulhon and Jaramillo (2008); 

page 1). The region outside the black hole is called the domain of outer 

communications. This is the most common definition of a black hole and captures 

the essential part of a region of spacetime that cannot ever causally influence the 

region outside of itself. However, if we consider the processes that are possible 

during the formation of a black hole or in the course of its subsequent evolution, it 
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becomes clear that this definition actually does not describe quite what it was 

meant to do (Frolov and Novikov (1997); page 356). The boundary of the black hole, 

H+, is thus determined not only by some specifics of the spacetime at a given 

moment (say, a strong field in some region) but also by the entire future history. 

The problem of finding the event horizon H+ is a problem with final, not initial, 

conditions. This property is usually referred to as the teleological nature of the 

horizon. The boundary H+ thus bounds not so much a region with a especially 

strong gravitational field (although this field is certainly necessary, or H+ would not 

appear at all) but rather a region with very specific global properties; namely, no 

rays escape from this region to infinity. It is this property - the invisibility from 

infinity, the impossibility for particles and light rays to escape - that justifies the 

name “black hole” for this region. In addition, the event horizon is formed by null 

geodesics, for which a number of strong theorems can be formulated.  
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Chapter 5 

MAIN RESULT 1: GLOBAL AND LOCAL 

CHARACTERIZATION OF SCHWARZSCHILD 

BLACK HOLE 

5.1 Spherically Symmetric Black Holes 

A black hole usually refers to a region of no escape. In physical terms a region of 

spacetime where gravity is so strong that any particle or light ray entering that 

region can never escape from it (Wald (1984); Page 299). To the more 

mathematical relativist, a black hole is characterized by the existence of an event 

horizon which is a boundary of future null infinity or surface inside which no point 

is connected to future infinity by photon trajectories. The term black hole was 

coined by Wheeler in 1960’s as understanding of these exotic objects grew. A black 

hole has two singularities; a physical singularity is present at r = 0 and a coordinate 

singularity at r = 2M (where M is the mass of the spherically symmetric body)in the 

Schwarzchild spacetime. In 1960’s Kruskal and Szekeres independently examined 

the mathematical structure of the Schwarzschild spacetime and found a coordinate 

which removed coordinate singularities and revealed the nature of the solution as 

having two asymptotically flat universes, one of which is not accessible in standard 

Schwarzschild coordinates (Poisson (2002); page 126). 

5.2 Schwarzschild Black Holes 

The simplest of all stationary black-hole solutions of the source-free Einstein 

equations is that for the static spherically symmetric spacetime, asymptotically flat 

at spatial infinity, described in the Literature by Schwarzschild (1916). This 

solution can be derived by making full use of the symmetries and their connection 
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to Killing vectors. In view of the spherical symmetry we introduce polar coordinates 

(r,θ,φ) in three-dimensional space and add a time coordinate t, measuring 

asymptotic Minkowski time at r → ∞. The Schwarzschild solution is obtained by 

requiring that there exists at least one coordinate system parameterized like this in 

which the following two conditions hold: the metric components are independent 

on time t and the line element is invariant under the three-dimensional rotation 

group SO(3) acting on three vectors r in the standard linear way. The metric can be 

derived as follows (Carroll (2004); page 194) 

The Schwarzschild metric is a metric which is static and spherically 

symmetric. Because it is a spherically symmetric spacetime, it can be put in the form 

 ds2 = gaa(a,b)da2 + gab(a,b)(dadb + dbda) + gbb(a,b)db2 + r2(a,b)dΩ2 (5.1) 

where r(a,b) is an undetermined function to which we have merely given a sugges- 

tive label. 

Now, we can change the coordinates from (a,b) to (a,r) by inverting r(a,b) unless r 

were a function of a alone; in this case we could just as easily switch to (b,r). 

The metric (5.1) is then given by 

 ds2 = gaa(a,b)da2 + gar(a,b)(dadr + drda) + grr(a,r)db2 + r2(a,r)dΩ2 (5.2) 

Next, we want to find a function t(a,r) such that in the (t,r)coordinates system, there 

will be no cross terms in the metric. Now, since 

  (5.3) 

We can therefore write 
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  (5.4) 

Replacing the first three terms in the metric (5.2) by  

mdt2 + ndr2 

for some functions m and n. This is equivalent to the requirements 

(5.5) 

  (5.6) 

  (5.7) 

and 

  (5.8) 

This means, we have three equations for the three unknowns t(a,r), m(a,r) and 

n(a,r) just enough to determine precisely up to initial conditions for t. They are 

determined in terms of the unknown functions gaa,gar and grr which are still 

undetermined. Therefore the metric can be put in the form 

 ds2 = m(t,r)dt2 + n(t,r)dr2 + r2dΩ2 (5.9) 

Here, the difference between the two coordinates t and r is that, r has been chosen 

to be the one that multiplies the metric for the two sphere. This choice was 

motivated by what we know about the metric for the flat Minkowski space which is 

written as 

 ds2 = −dt2 + dr2 + r2dΩ2 (5.10) 

Notice that as r → ∞, the (5.9) becomes Minkowskian so the metric under 

consideration is indeed asymptotically flat spacetime (this is known as pseudo-

Riemannian). 
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We therefore choose m(t,r) to be negative. With this choice, we can replace the 

functions m and n with new functions α and β and put the metric in the form 

 ds2 = −e2α(t,r)dt2 + e2β(t,r)dr2 + r2dΩ2 (5.11) 

This is what can be done for a general metric in a spherically symmetric spacetime. 

The next step is to solve Einstein’s equation for α(t,r) and β(t,r). Using the metric 

(5.11), the non-vanishing Christoffel symbols are as follows 

(5.12) 

= cotθ 

Using these non-vanishing Christoffel symbols, the non-vanishing components of 

the Riemann tensor are 

  (5.13) 

and we have the Ricci tensors as 

 

(5.14) 
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Now, we need to solve Einstein’s equation in vacuum, Rµν = 0. From Rtr = 0, we 

have  

∂tβ = 0 

If we take the time derivative of Rθθ = 0 and using (5.15), we get 

(5.15) 

∂t∂rα = 0 

which can be written as 

(5.16) 

 β = β(r) (5.17) 

 α = f(r) + g(t) (5.18) 

(5.19) 

The first term in the metric (5.11) is thus −e2f(r)e2g(t)dt2. But we can redefine our time 

coordinate by replacing dt → e−g(t)dt; in other words, we can choose t such that g(t) 

= 0, hence α(t,r) = f(r). We can therefore write 

 ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 (5.20) 

We notice from metric (5.11) that none of the metric components is dependent on 

the time coordinate t. We have therefore proven an important result; any 

spherically symmetric vacuum metric possesses a timelike Killing vector. This is a 

very interesting property and it gets its own name; a metric that possesses a Killing 

vector that is timelike near infinity is called stationary. There is also a more 

restrictive property: a metric is called static if it possesses a timelike Killing vector 

which is orthogonal to a family of hypersurfaces. A hypersurface in an n-

dimensional manifold is simply an (n − 1) dimensional sub-manifold. The metric 

(5.20) is not only stationary but also static. The Killing vector ∂t is orthogonal to the 

surfaces t = const since there are no cross terms such as dtdr and so on. We can 

therefore say that a static metric is a metric in which nothing is moving, while a 
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stationary metric allows things to move but only in a symmetric way. For instance, 

the static spherically symmetric metric (5.20) will describe non-rotating stars or 

black holes while rotating systems which keep rotating in the same way at all times 

will be described by metrics that are stationary but not static. 

Now, since bothRtt and Rrr vanish, we can write 

 ) (5.21) 

which implies α = −β + c where c is a constant. We can set this constant c equal to 

zero by rescaling our coordinates by t → e−ct, so we have 

α = −β 

Next using Rθθ = 0, we have 

(5.22) 

e2α(2r∂rα + 1) = 1 

This is equivalent to ∂r(re2α) = 1 which is solved to obtain 

(5.23) 

  (5.24) 

where Rs is some undetermined constant. Using (5.22) and (5.24) our metric 

becomes 

  (5.25) 

The only thing left to do is to find the constant Rs. However, fortunately, it is 

straightforward to check that for any value of this metric solves the two equations 

Rtt = 0 and Rrr = 0. 

Lastly, we assign a physical interpretation to the constant Rs. The most important 

use of a spherically symmetric vacuum solution is to represent the spacetime 
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outside a star or planet. In that case, we apply the weak field limit as r → ∞. In this 

limit (5.25) implies 

 (5.26) On the other hand, the weak field limit is 

gtt(r → ∞) = −(1 + 2φ) 

(5.27) 

grr(r → ∞) = (1 − 2φ) 

where the potential . Hence, the metric do agree in this limit, setting 

, our final result is the celebrated Schwarzschild metric given by 

  (5.28) 

which can be written as 

  (5.29) 

where M is a constant (typically interpreted as the mass of the spherically 

symmetric body), and dΩ2 = dθ2 + sin2 dφ2 is the usual metric on S2 . Notice that as 

r → ∞ 

 ds2 = −dt2 + dr2 + r2dΩ2 (5.30) 

the Minkowski metric, so dS2 is indeed asymptotically flat spacetime. In equation 

(5.29) we have chosen units such that C = G = 1. Stationary spacetimes (M;g) are 

defined to be spacetimes which have a time-like Killing vector field K. This means 

that observers moving along the integral curves of K do not notice any change. This 

definition implies that we can introduce coordinates in which the components gµγ 

of the metric do not depend on time. To see that, suppose we choose a spacelike 

hypersurface Σ ⊂ M and construct the integral curves of K through Σ. A spacetime 

is said to be static if it is stationary and if in addition, there exists a spacelike 

hypersurface Σ which is orthogonal to the orbits of the isometry. Furthermore, the 
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spatial hypersurfaces Σ are expected to be spherically symmetric. This means that 

the group SO(3) (i.e. the group of rotations in three dimensions) must be an 

isometry group of the metric dΩ2. The orbits of SO(3) are two-dimensional 

spacelike surfaces on Σ. Thus, SO(3) isometries may then be interpreted physically 

as rotations and thus spherically symmetric spacetime is one whose metric remains 

invariant under rotations (Wald (1984); page 120). 

The striking feature of the Schwarzschild solution is that the metric components 

become singular at both r = 2M and r = 0. This singular behaviour of the components 

could be due to (i) a breakdown of the coordinates used to obtain the general form 

of the metric equation (5.29), because the Killing vector field K = 0 or ∇ar = 0(or K 

and ∇ar become collinear) or (ii) a true singularity of the spacetime structure. The 

singularity at r = 2M is caused by a breakdown of the coordinates while the 

singularity at r = 0 is a true physical singularity (Wald (1984); page 132). The metric 

is well-behaved for r > 2M (exterior Schwarzschild) and r = 2M is called the 

Schwarzschild radius. 

One way to understand the geometry of a spacetime is to explore its causal 

structure, as defined by light cones. We therefore consider radial null curves, those 

for which θ 

and φ are constant and ds2 = 0. From equation (5.29), we have . 
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Figure 5.1: In Schwarzschild coordinates, light cones appear to close up as we 

approach r = 2M 

This measures the slope of the light cones on a spacetime diagram of t − r plane. For 

large r the slope is ±1, as it will be in flat space, while as we approach r = 2M, we get 

 and the light cones close up as shown in figure (5.1). Thus a light ray that 

approaches r = 2M never seems to get there, at least in this coordinate system; 

instead it seems to asymptote this radius (Carroll (2004); page 218). At r = 2M then 

the metric becomes degenerate since the dt term disappears. 

5.3 The Singularities of Schwarzschild Solution 

When we examine the metric (5.29) in some more detail, we immediately see that 

there is a problem when r → 2M : g00 → 0 and grr → ∞. Moreover, when r → 0, g00 → 

∞ and grr → 0. In both cases we say that there is a singularity, but of a different 

nature. In order to check whether a singularity is a genuine curvature singularity, 

we should compute the scalars which we can construct from the Riemann tensor 

and see if they diverge. To check whether the Riemann tensor is well-behaved is not 

enough, in fact for the Schwarzschild metric the components of Rθγδα are 

 

 

and they diverge both at r = 0, and at r = 2M. However, if we compute the scalar 

invariants, like , we find that they diverge only at r = 0. We 

conclude that r = 0 is a true curvature singularity, while r = 2M is only a coordinate 

singularity, due to an inappropriate choice of the coordinates (Carroll (1997); page 

172). 
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5.4 Birkhoff’s Theorem 

Birkhoff’s theorem establishes that Schwarzschild metric is the unique solution to 

the Einstein field equations that describes the vacuum spacetime outside a 

spherically symmetric body of mass M. This theorem implies that a spherical mass 

distribution cannot emit gravitational waves (Poisson (2002); Page 125). Spherical 

symmetry guarantees that we can introduce coordinates r and t such that the 

surfaces of constant r and t have the structure of a sphere with radius r. On one such 

surface we can introduce colatitude and longitude coordinates θ and θ. The (θ,φ) 

coordinates can be extended in a natural way to other values of r by choosing the 

radial lines to lie in the direction of the covariant derivative vector ∇ar, and this 

ensures that the metric will not have any nonvanishing terms in drdθ or drdφ, which 

could only arise if our choice had broken the symmetry between positive and 

negative values of dθ and dφ. 

5.5 Kruskal-Szekeres Coordinates 

The difficulties of the Schwarzschild metric because of its singular nature at r = 2M, 

the coordinates (t,r,θ,φ) are not as useful for understanding the nature of the event 

horizon of a black hole. However, a non singular coordinate system like the 

KruskalSzekeres (KS) coordinates introduced in this section is used to remove the 

coordinate singularity at the horizon (Hartle (2003); Page 269). Such a 

representation was constructed independently by Kruskal (1960) and Szekeres 

(1960). The KruskalSzekeres (KS) coordinates discuss the continuation of the 

Schwarzschild solution across the event horizon and produce a metric that is 

manifestly regular at r = 2M (Poisson (2004); Page 164). Introducing Kruskal-

Szekeres coordinates (v,u,θ,φ), where θ and φ are the same as the Schwarzschild 

polar angles but the new variables u and v are defined according to the following 

coordinates transformations: 
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(5.31) 

r > 2M 

(5.32) 

r < 2M 

Differentiating any of the two pairs r > 2M or r < 2M, first with respect to t 

(5.33) 

(5.34) 

Squaring, we obtain 

(5.35) 

(5.36) 

Subtracting (5.35) from (5.36), we obtain 

  (5.37) 

Thus 

 ) (5.38) 

Also differentiating with respect to r 

 

  (5.40) 

Squaring and arranging, we have 



 

81 

  (5.41) 

Similarly 

  (5.42) 

Subtracting (5.42) from (5.41) we have  

dr2 = 0 (5.43) 
Substituting (5.37) and (5.43) into the Schwarzchild metric equation (5.29), the line 

element obtained for carrying out these transformations is 

 ) (5.44) 

Where r = (u,v) defined implicitly by the relation 

  (5.45) 

This metric is totally regular at r = 2M. There is simply no trace of singular 

behaviour on equation (5.44) which allows us to finally conclude that the Killing 

horizon is merely a coordinate singularity in the original Schwarzschild coordinates 

(Hartle (2003); Page 270). However, the curvature singularity at r = 0 persist. 

No coordinate transformation can reduce the divergent behaviour of the curvature 

scalars there. A very important property of Kruskal-Szekeres coordinates is that 
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Figure 5.2: The analytic extension of the Schwarzschild spacetime by Kruskal 

coordinates. 

light rays and timelike trajectories always lie within a two-dimensional light cone 

bounded by 450 lines. A radial moving light ray travels on a trajectory v = constant 

or u = constant. A non-radially directed light ray or timelike trajectory always lies 

inside the two-dimensional light cone. By these properties, the causal properties of 

the black hole geometry can easily be understood. 

Considering a point P1 in Region I, a radially outgoing light ray from P1 will escape 

falling into the singularity as shown in Figure (5.2). An infalling light ray from P1 

will eventually cross the horizon H+ and then hit the future singularity. This means 

an observer in Region I can send messages to infinity as well as into Region II. 

Consider Region II. From any point P2 any signal must eventually hit the singularity. 

Furthermore, no signal can ever escape to Region I. Thus no observer who stays 

outside r = 2M can ever be influenced by events in Region II. For this reason Region 

II is said to be behind the horizon. From Region III no signal can ever get to Region 

I, and so it is also behind the horizon. Points in Region IV can communicate with 

Region I but Region I however cannot communicate with Region 

IV. We can therefore say that Regions II and III are behind the future horizon while 

Regions III and IV are behind the past horizon (Suskind and Lindesay (2005); Page 

13). We had in spherical coordinates the isometry t → t + c with Killing vector 

; this expresses the stationary character of the Schwarzschild solu- 

tion. In Kruskal coordinates this Killing vector field becomes  

We also see that the point (U,V ) = (0,0) is a fixed point of ξ and this point 

corresponds to a 2-sphere. One could think that the geodesically incomplete 

character of solutions could be due to the spherically symmetric collapse, but 

(Hawking and Ellis (1973); Page 258), showed with their singularity theorems that 

this incompleteness is a general feature of gravitational collapse. 
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5.6 Eddington-Finkelstein Coordinates 

The Kruskal-Szekeres approach has several drawbacks. First, the explicit 

construction of the coordinates is relatively complicated, and must be carried out 

in a fairly long series of steps. Second, the fact that r is only implicitly defined in 

terms of these coordinates makes working with them rather difficult. Third, the 

manifold covered by these coordinates, with its two copies of each surface r = 

constant, is unnecessarily large for most practical applications; while the extension 

across the event horizon is desirable, the presence of another asymptotic region 

(for which r = 2M) often is not. Despite these drawbacks the KS coordinates are not 

to be dismissed out of hand because they do play important role in black-hole 

physics: we would advocate, for pedagogical purposes, the construction of simpler 

coordinate systems for extending the Schwarzschild spacetime across the event 

horizon. 

A useful alternative are the Eddington-Finkelstein (EF) coordinates systems (v,r,θ,φ) 

that is regular on the Schwarzschild horizon. It is a pair of coordinate systems which 

are adapted to radial null geodesics for Schwarzschild geometry. It is rarely necessary 

to employ coordinates that cover all four regions of the Kruskal diagram although it 

is often desirable to have coordinates that are well behaved at r = 2M. 

In such a situation we choose v and r or u and r as coordinates. These coordinate 

systems are called ingoing and outgoing Eddington-Finkelstein coordinates 

respectively (Poisson (2004); page 167). 

For radial light rays, we have dθ = dφ = 0 and ds2 = 0, the Schwarzchild metric 

equation (5.29) takes the form 

  (5.46) 

Simplifying, we have 
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(5.47) 

(5.48) 

We have a change of coordinates to derive a new metric. Here, we keep r,θ and φ 

but replace the time component t with 

  (5.49) 

and differentiating and squaring, we have 

  (5.50) 

where r,t, and M have their usual meanings in the Schwarzschild metric, and θ and 

φ are assumed to be unchanged. For either r > 2M or r < 2M, insertion into the 

standard Schwarzschild line element (5.29) gives 

 ) (5.51) 

Equation (5.51) is the ingoing Eddington-Finkelstein coordinates. The 

Schwarzschild metric expressed in this new coordinate is manifestly non-singular 

at r = 2M. The singularity at r = 0 remains. Thus the singularity at the Schwarzschild 

radius is a coordinate singularity that can be removed by a new choice of coordinate 

systems (Hartle (2003); Page 258). Figure (5.3) is a spacetime diagram showing the 

world lines of the Schwarzschild geometry’s radial light rays plotted in 

EddingtonFinkelstein coordinates. 

Null lines of constant v have been plotted 450 angle as they would usually be in flat 

space using t˜= v − r as vertical coordinate. The light rays at r = 2M are indicated by 

heavy solid line. Future light cones at a few intersections indicated. These tip 

further and further toward r = 0 as that radius approached. Radial light rays behave 
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qualitatively differently outside the Schwarzschild radius r = 2M than inside it. At 

every point with r > 2M, one radial ray (the v = const) is moving inward to smaller 

and smaller values of r. The other radial ray is moving outward to larger and larger 

values of r. In contrast, for r > 2M, both radial light rays are moving inward to 

smaller and smaller values of r and eventually to the singularity at r = 0. At the 

boundary r = 2M separating the two regions, one radial ray moves inward while the 

other remains stationary, hovering at the Schwarzschild radius. The surface r = 2M 

divides spacetime into two regions: the region outside r = 2M from which light can 

escape to infinity and the region inside r = 2M, where gravity is so strong that not 

even light can escape. This is the defining feature of black hole geometry. The 

surface is called the event horizon or in short the horizon of the black hole (Hartle 

(2003); Page 258). No event that occurs inside the horizon can ever be seen by an 

observer that is outside. The properties of the event horizon are: It is a null 

hypersurface which is generated by null geodesic segments which have no future 

end points but which do have past end points (at the point of emission of the 

flushes); the divergence of these null geodesic generators is positive during the 

collapse phase and is zero in the final time independent state (DeWitt and DeWitt 

(1973); Page 9). It is never negative: the area of a 2-dimensional cross-section of 

the horizon increases monotonically from zero to a final value 16πr2. The event 

horizon at r = 2M may also be described as a Killing horizon in the sense that it is a 

null hypersurface on which the norm of the Killing vector ∂t vanishes. In this case it 

is timelike on one side and spacelike on the other. It has constant area given by 

integrating the square root of the determinant of the metric over all θ and φ. That 
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Figure 5.3: Radial null geodesic in Eddington-Finkelstein coordinates with θ and φ 

constant. Ingoing null geodesics are represented by lines on which t¯+ r = const., 

while null geodesics propagating in the opposite direction have increasing values 

of r for r > 2M, but decreasing values for r < 2M 

5.7 Collapse of a Spherically Symmetric Star 

The basic features of such a collapsing spherically symmetric homogeneous dust 

cloud configuration are summarized in Figure (5.4). The gravitational collapse 

starts when the star surface is outside its Schwarzschild radius r = 2M, and a light 

ray emitted from the surface of the star can escape to infinity. However, once the 

star has collapsed below r = 2M, a black hole, that is a region of no escape, develops 

in the spacetime, which is bounded by the event horizon at r = 2M. Any point in this 

is 
√ 

r 4 sin 2 θ .Therefore A = R 2 π 
0 dφ R π 

0 r 2 sin θdθ =2 πr 2 [ − cos] π 
0 =4 πr 2 =16 πm 2 . 
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empty region below the surface r = 2M represents a trapped surface (which is a two-

dimensional sphere in spacetime) in that both the outgoing and in going families of 

null geodesics emitted from this point converge, and hence no light ray comes out 

of this region bounded by r = 2M (Hawking and Ellis (1973); page 30). Then, the 

collapse to an infinite density and curvature singularity at the origin becomes 

inevitable in a finite proper time, as measured by an observer on the surface of the 

star. In this case, the black hole region in the resulting vacuum Schwarzschild 

spacetime is given by 0 < r < 2M and the outer boundary of this region, r = 2M, is 

called the event horizon. On the event horizon, only the radial outwards photons 

stay where they are, but all the rest of the photons move inwards. No information 

from this black hole region can propagate outside the r = 2M boundary to any 

outside observer. In the Schwarzschild geometry, for a source situated outside r = 

2M, part of the photon trajectories emitted with decreasing r values will go towards 

the black hole and fall into the singularity (Hawking and Ellis (1973); page 29). All 

the other null geodesics will escape to infinity and they intersect the future null 

infinity. If a source is located below r = 2M, no null geodesic would come out of the 

black hole and they necessarily end up in the singularity in the future. The final state 

of a complete gravitational collapse, either spherically symmetric or otherwise, 

could possibly be a vacuum spacetime that incorporates the rotation, and possibly 

also the electromagnetic fields associated with the object. 

5.8 Penrose-Carter Diagram of the Schwarzschild 

Spacetime 

In this thesis the spacetimes we will be working with are typically of dimensions 

higher than two, it is therefore important to compactify them into a two-

dimensional picture that captures the causal structure of the original spacetime by 

using the so 
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Figure 5.4: Homogeneous dust cloud collapse. The trapped surfaces form when the 

star enters r = 2M radius. The event horizon forms prior to the singularity, creating 

a black hole as the collapse end state. 

called Penrose-Carter diagram. This means that it is possible to attach a boundary 

to this picture which captures the idea of asymptotically flat spacetimes. For such 

spacetimes we can get what is sometimes a useful global picture of the causal 

structure (i.e. which events can be causally connected by using the Penrose-Carter 

diagrams). These make it possible to draw pictures of what is happening at infinity 

by changing the coordinates to bring infinity to a finite coordinate value. This 

distortion is carried out in such a way that the relationship between light rays is 

maintained. We say that these diagrams show the causal structure of spacetimes 

(Raine and Edwin (2009); Page 57). 

Penrose diagrams are a useful way to represent the causal structure of spacetimes, 

especially if they have spherical symmetry, like the Schwarzschild black hole. They 

represent the geometry of a two-dimensional surface of fixed angular coordinates. 

Furthermore they “compactify” the geometry so that it can be drawn in total on the 

finite plane. We first consider Penrose diagram for Minkowski space. 

5.8.1 The Penrose-Carter Diagram of Minkowski 2-dimensional Space 



 

89 

We start with the metric in polar coordinates 

 ds2 = −dt2 + dr2 + r2dΩ (5.52) 

Where dΩ = dθ2 + sin2 θφ2 is a metric on a unit two-sphere and ranges of timelike 

and spacelike coordinates are: −∞ < t < ∞, 0 ≤ r < ∞ 

In order to get coordinates with finite ranges, let us switch to null coordinates: 

 ) and ) (5.53) 

With corresponding ranges −∞ < u < ∞, −∞ < v < ∞, u ≤ v 

By means of straightforward calculations we find that in the new variables the flat 

metric becomes 

  (5.54) 

The conformal factor of the new metric, 4cos )blows up at 

|T ±X| = π which makes the boundary of the compact (T,X) space-time infinitely far 

away from any of its internal point. This fact allows one to map the compact (T,X) 

space-time onto the non-compact (t,r) space-time. Furthermore, we can see that 

equality dt2 − dr2 = 0 implies also that dT2 − dX2 = 0 and vise versa. Hence, the 

conformal factor is irrelevant in the study of the properties of the light-like world-

lines - those which obey, ds2 = 0. Then, we drop off the conformal factor and draw 

the compact (T,X) space-time as shown on the Figure 5.5. On this diagram we show 

light-like rays by arrowed straight lines. The arrows on them show the direction of 

the light propagation, as t → +∞. Furthermore, on this diagram I± represent the 

entire space, r ∈ (−∞,+∞) at t = ±∞. These are space-like past and future infinities. 

Also I0 is the entire time line, r ∈ (−∞,+∞) at t = ±∞, i.e. this is time-like space 
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infinity. And finally J± are light-like past and future infinities, i.e. these are the curves 

on which light-like world-lines originate and terminate, correspondingly. 

 

Figure 5.5: The Penrose-Carter diagram of Minkowski 2-dimensional space 

5.8.2 Penrose-Carter Diagram for Schwarzschild Spacetime 

One advantage of the double-null Kruskal coordinates is the fact that they make the 

causal structure of the Schwarzschild spacetime very clear. Another useful set of 

double-null coordinates is obtained by applying the transformation 

 U˜ = arctanU, V˜ = arctanV (5.55) 

By this transformation, the Kruskal metric becomes 

 ) (5.56) 

The rescaling of the null coordinates does not affect the appearance of radial light 

rays which propagate at 450 in the spacetime diagram based on the new 
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coordinates, figure (5.6). However, while the range of the initial coordinates was 

infinite i.e. 

−∞ < U < ∞, −∞ < V < ∞ it is finite for the new coordinates  

. The entire spacetime is therefore mapped into a finite domain of 

the U˜ − V˜ plane. Even though, this Compactification of manifold introduces bad 

coordinate singularities at the boundaries of the new coordinate system, these are 

of no concern when the purpose is simply to construct a compact map of the entire 

spacetime (Poisson (2004); Page 169). 

 

Figure 5.6: Compactify coordinates for the Schwarzschild spacetime 

In the new coordinates, the surfaces r = 2M are located at U˜ = 0 and the singularities 

at r = 0, or UV = 1 which is equivalent to tanU˜ tanV˜ and using 

, we obtain  The space- 

time is also bounded by the surfaces  and . The four points 

 are singularities of the coordinate transformation. It is very 

important to assign names to the various boundaries of the compactified spacetime 

figure (5.7). The surfaces  and  are called future null infinity and 

labeled `+. The diagram makes it clear that `+ contains the future endpoints of all 

outgoing null geodesics (those along which r increases). Similarly, the surfaces 
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 and  are called past null infinity and are labeled `+. These contain the 

past end points of all ingoing null geodesics (those along which r decreases). 

The points at which `+ and `− meet are called spacelike infinity and are labeled i0. 

These contain the end points of all spacelike geodesics. The points (U, 

and (U,   are called future timelike infinity and are labeled i+. These 

contain the future endpoints of all timelike geodesics that do not terminate at r = 0. 

Finally, the points (U,  and (U,   are 

called past time- 

like infinity and are labeled i−. These contain the past endpoints of all timelike 

geodesics that do not originate at r = 0. Compactified maps such as the one 

displayed in figure (5.7) are called Penrose-Carter diagrams. They display, at a 

glance, the complete causal structure of the spacetime under consideration 

(Poisson (2004); Page 169). 

 

Figure 5.7: Penrose-Carter diagram of the Schwarzschild spacetime 

5.9 Reissner-Nordstro¨m Solutions 

The Reissner-Nordstrom (RN) solution represents the space-time outside a 

spherically symmetric charged body which carries an electric charge without spin 

or magnetic dipole so this is not a good representation of the field outside an 

electron. Therefore the energy-momentum tensor is that of the electromagnetic 
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field in the space-time which results from the charge on the body. It is the unique 

spherically symmetric asymptotically flat solution of the Einstein-Maxwell 

equations which is locally similar to the Schwarzschild solution (Hawking and Ellis 

(1973); page 156). It has coordinates in which the metric takes the form 

  (5.57) 

Where M is the total Arnowitt, Deser, Misner (ADM) mass of spacetime and Q is the 

electric charge of the black hole. The electromagnetic-field tensor takes the form 

  (5.58) 

From equation (5.57), = 0 has zeros at r = r±, where 

r± = M±pM2 − Q2. The roots are both real and the RN spacetime truly contains a black 

hole, when Q2 ≤ M2. The metric has singularities at r+ and r− where r± = 

M ± pM2 − Q2; it is regular in the regions defined by r+ < r < ∞, r− < r < r+ and 0 < r < 

r−. The special case of a black hole with Q2 = M2 referred to as an extreme RN black 

hole is regular in the regions r+ < r < ∞ and 0 < r < r−. The Reissner-Nordstro¨m (RN) 

geometry has two horizons, the outer horizon r+ and an inner horizon r−. The 

Reissner-Nordstro¨m time coordinate t is timelike outside the outer horizon, r > r+ , 

spacelike between the horizons r− < r < r+, and again timelike inside the inner 

horizon r < r+. Conversely, the radial coordinate r is spacelike outside the outer 

horizon, r > r+, timelike between the horizons r− < r < r+, and spacelike inside the 

inner horizon r < r−. In the special case that the charge and mass are equal, Q = M, 

the inner and outer horizons merge into one, r+ = r− = M and the metric becomes 

  (5.59) 
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This special case describes the extremal Reissner-Nordstro¨m geometry. The 

extremal Reissner-Nordstro¨m geometry proves to be of particular interest in 

quantum gravity because its Hawking temperature is zero, and in string theory 

because extremal black holes arise as solutions under certain duality 

transformations. The singularities of the RN metric may be removed by introducing 

suitable coordinates extending the manifold to obtain a maximal analytic extension 

as in the Schwarzschild case. 

We also observe that when Q2 > M2, r± turn imaginary and there would be no 

horizon. This case is not much important to our study because we are only 

interested in spacetimes with horizons. Just as for the Schwarzschild metric, the 

singularity at r = 0 is the curvature singularity. The Killing vector fields for the RN 

black hole are the same as that of the Schwarzschild black hole. The major 

differences that arise are due to the existence of two zeros in the factor in front of 

dt2 in equation (5.57), rather than one as in the Schwarzschild case (Hawking and 

Ellis (1973); page 156). In particular this implies that the regions r+ < r < ∞ and 0 < 

r < r− are both static, whereas the region r+ < r < r− (when it exists) is 

spatially homogeneous but is not static. 

5.10 Trapped and Marginally Trapped Surfaces in 

Schwarzschild Black Hole. 

The behaviour of light rays for r = 2M and r < 2M can be written invariantly 

and geometrically in terms of θl of a null geodesic congruence which measures the 

√ 
change in the cross-sectional area element S of the congruence by introducing the 

null vector. 

  (5.60) 
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From the vector fields lα and nα defined in equation (5.60), we see that they are 

manifestly orthogonal to the constant (v,r) spheres and their expansions must 

involve area elements on these spheres so it is easy to calculate their expansions. 

These two future-pointing vector fields are both null, i.e. nαnα = lαlα and are cross-

normalized to nαlα = −1. 

Analysis of trapped and marginally trapped surfaces in Schwarzschild 

black hole applying covariant divergence of a vector field 

√ 

With S = r2 sinθ it is easy to calculate the covariant divergences as follows Covariant 

divergence of outgoing null vector is given by 

  (5.61) 

Covariant divergence of Ingoing null vector is given by 

  (5.62) 

From (5.61) and (5.62), we have, 

  (5.63) 

  (5.64) 

In general, the divergence of a vector field results in a scalar field that is positive in 

some regions in space, negative in other regions and zero elsewhere. In flat space, 

the outgoing null vectors diverge so the divergence is positive ∇·¯l = θl > 0 whereas 

the ingoing null vectors converge so the divergence is negative ∇ · n¯ = θn < 0. But if 

there is a massive source inside the surface, its gravitational field has an attractive 

or converging effect. Close enough to a massive source; the outgoing null vectors 
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converge and the divergence becomes negative i.e. . The surface S where both 

divergences are negative i.e. ∇ · ¯l = θl < 0 and ∇ · n¯ = θn < 0 are said to be trapped. 

The surface where the divergence of outgoing null vector becomes zero and the 

divergence of ingoing null vector is less than zero is said to be marginally trapped 

(MTS) i.e. ∇ · ¯l = θl = 0 and ∇ · n¯ = θn < 0. This marginal surface is defined by 

(Hayward (1994); page 5), as a spatial 2-surface S on which one null expansion 

vanishes. The singularity theorems of (Penrose (1965a); Hawking and Penrose 

(1970); (Senovilla (2011); Page 6) have shown that the presence of such surfaces is 

the signature of a spacetime containing a black hole. These definitions clearly 

constitute a local concept and are related to very strong gravitational fields, since 

for weak fields, one has clearly θl = ∇ · ¯l > 0. As we have just seen, for a 

Schwarzschild black hole, all the natural definitions of the surface of a black hole 

agree. Thus, the r = 2M surface is both the boundary of the trapped region and also 

the event horizon. This means the event and apparent horizons of the 

Schwarzschild spacetime coincide. This coincidence, however, is a consequence of 

the fact that the spacetime is stationary (Poisson (2004); Page 172). Matters are 

however not so simple in dynamical situations which will be looked at below and it 

is perhaps the simplest example of a dynamical black hole, namely the spherically 

symmetric Vaidya spacetime (Poisson (2004); Page 172). 

5.10.1 Trapped and Marginally trapped surfaces in Schwarzschild black 

hole applying the flux of a vector field 

The flux of outgoing null vector. 

The field ¯  is radial and orthogonal to the surface and . The flux 

 

  (5.65) 

The flux of ingoing null vector 



 

97 

The field ¯  is radial and orthogonal to the surface and n = −rˆ. The flux 

  (5.66) 

From equations (5.65) and (5.66), we have the flux of outgoing null vector l 

  (5.67) 

Flux of ingoing vector field n φn = −4πGM. 

From these equations, for r > 2M, i.e. in flat space, the flux of S along the outgoing 

null vector is positive: φl > 0 whereas that along ingoing null vector is negative: φn 

< 0. 

However, in the black hole region i.e. r < 2M, we get both fluxes to be negative. Such 

surfaces are known as trapped surfaces and play a fundamental role in black hole 

theory and, in particular, in the singularity theorems. 

For r = 2M hypersurface, φl = 0, φn < 0, is called marginally trapped surfaces. Thus, 

we see that the r = 2M hypersurface separates the region where the spherically 

symmetric trapped surfaces live and are a signature of a black hole spacetime. Since 

Gauss’s divergence theorem applies to closed surfaces, it means that we can use it 

to define trapped and marginally surfaces in Schwarzschild black hole. 

5.11 Vaidya Spacetime 

We have so far considered stationary balck holes, where the event and apparent 

horizon coincide in the Schwarzschild spacetime (Poisson (2004); Page 173). For 

more general black hole spacetimes the event and apparent horizons are distinct 
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hypersurfaces. We therefore consider dynamical balck holes such as the Vaidya 

spacetime. The ingoing Vaidya metric is obtained by replacing M by M(v) in the 

ingoing Eddington-Finkelstein metric as follows (Poisson (2004); Page 173). 

  (5.68) 

The stress-energy tensor for this metric 

  (5.69) 

Now in this metric, the vector  

kα = −∂αv, kα = −∂r, k · k = 0, kα∇αkβ = 0 (5.70) 

is tangent to ingoing null geodesics. Hence the Vaidya stress-energy tensor is 

  (5.71) 

If kα were timelike, we would interpret this as the stress-energy tensor of dust with 

density . However, kα is actually null so we say that the ingoing Vaidya 

metric is sourced by radially infalling null dust (Poisson (2004); Page 173). We 

require that the null dust has positive density: ρ > 0 implies 0. Since v = t−r, 

this implies that the black-hole mass increases in time. Conversely, working with 

the outgoing Eddington-Finkelstein coordinates with M = M(u), we can derive the 

outgoing Vaidya metric sourced by radially outgoing null dust. The positivity of the 

density in that case requires a decreasing black hole mass  

Trapped and Marginally trapped surfaces in Vaidya spacetime 

The null normal vectors orthogonal to the sphere 

  (5.72) 

and their covariant divergences are respectively given by (5.73) and (5.74) 
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  (5.73) 

  (5.74) 

Trapped and marginally trapped surfaces in Vaidya spacetime applying 

covariant divergence of a vector field 

 

Covariant divergence of Ingoing null vector is given by 

  (5.76) 

Thus, just like the Schwarzschild metric, the r = 2M(v) is marginally trapped surface. 

However, with r < 2M(v) (the black hole region), both divergences are negative and 

the surface is said to be trapped. 

From (5.75) and (5.76) , the field ¯  is radial and orthogonal to the sur- 

face 

  (5.77) 

The flux 

  (5.78) 

 

  (5.79) 
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In the same way like the Schwarzschild metric, for r > 2M(v), i.e. in flat space, the 

flux of S along the outgoing null vector is positive: φl > 0 whereas that along ingoing 

null vector is negative: φn < 0. But if r < 2M(v) (the black hole region), both fluxes 

are negative. Such surfaces are known as trapped surfaces. For r = 2M(v) 

hypersurface, φl = 0, φn < 0 is called marginally trapped surface. 

 

Figure 5.8: Penrose-Carter conformal diagram for Vaidya spacetime. Region I is flat 

and II is the Vaidya spacetime region. Region III is the Schwarzschild spacetime 

region. The event horizon EH is seen to be distinct from the r = 2M(v) surface. The 

two agree only in the final Schwarzschild region. The Apparent Horizon (Marginally 

trapped tube) AH is described by r = 2M(v). Trapped surface lies inside the apparent 

horizon. 

5.12 Discussion of Result 

From the above analysis, we notice that local horizon can be found easily in 

spherical spacetimes. In the Schwarzschild spacetime, the event horizon and 

apparent horizon coincide. This is due to the fact that the spacetime is stationary. 

For a more general spacetime like the Vaidya spacetime (the dynamic spacetime), 

the event horizon and apparent horizon are distinct hypersurfaces. From figure 
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(5.8), the two are equal in the Schwarzschild region. The three dimensional 

boundary of the region of the spacetime that contains trapped surfaces - the 

trapped region is the trapping horizon and its two dimensional intersection with a 

spacelike hypersurface is called the apparent horizon. The apparent horizon is 

therefore a marginally trapped surface- a closed two surface on which one of the 

congruences has a zero expansion. Unless the null energy condition is violated, the 

apparent horizon always lies in the event horizons in the dynamic situations like 

the Vaidya spacetime (Poisson (2002); page 155). This implies the boundary of the 

region containing trapped surfaces is not in general, the event horizon as shown by 

(Ben-Dov (2007); Page 27). 

Chapter 6 

MAIN RESULT 2: GLOBAL AND LOCAL 

CHARACTERIZATION OF THE KERR 

BLACK HOLE 

6.1 Axially Symmetric Spacetime 

So far we have studied two exact solutions of the Einstein equations which describe 

black holes (Schwarzschild metric and the Reissner-Nordstr¨om metric) 

We therefore look at the Kerr metric which is stationary and axially symmetric. In 

general, astronomical bodies are rotating and so one would not expect the solution 

outside them to be exactly spherically symmetric. The standard relativistic model 

of the gravitational field of a rotating star is the Kerr spacetime. This spacetime is 

fully revealed only when the star collapses, leaving a black hole- otherwise the bulk 

of the star blocks exploration (O’Neill (1995); page 55). The importance of the Kerr 

metric stems from the black hole uniqueness theorems, which establish uniqueness 

of Kerr black holes under suitable global conditions (Chrusciel et al. (2012); Page 
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20). Axisymmetry is also likely to play a key role in describing black hole formation. 

Investigating axisymmetric spacetimes will enable us to see what properties of the 

spherically symmetric case are unique to axisymmetric case. 

6.2 Kerr metric in Boyer-Lindquist Coordinates 

The Kerr solutions are the only known family of exact solutions which could 

represent the stationary axisymmetric asymptotically flat field outside a rotating 

massive object (Hawking and Ellis (1973); Page 161). The Kerr metric which 

describes a rotating black hole depends on two parameters, its mass M and its rate 

of rotation (angular momentum J). The most interesting case is the slow rotation. It 

reduces entirely to the Schwarzschild spacetime if rotation stops (O’Neill (1995); 

Page 55). The metric looks very simple in the Boyer-Lindquist coordinate system. 

These coordinates are particularly useful in that they minimize the number of off-

diagonal components of the metric. These coordinates help particularly in 

analyzing the asymptotic behaviour and in trying to understand the key difference 

between an “event horizon” and an “ergosphere”. In these coordinates the metric 

has only one off-diagonal component and takes the form 

 + (6.1) 

  (6.2) 

where a = J/M, ρ2 = r2 +a2 cos2 θ, 4 = r2 −2Mr+a2, Σ = (r2 +a2)2 −a24sin2 θ, 

 

The components of the inverse metric are 
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The coordinates (t,r,θ,φ) are called Boyer-Lindquist coordinates. The parameter a, 

termed the Kerr parameter, has units of length in geometrized units just like the 

mass. The parameter J will be interpreted as angular momentum and the parameter 

M as the mass for the black hole. The Kerr metric has the following properties. It is 

not static implies it is not invariant for time reversal. It is stationary and does not 

depend explicitly on time t. It is axisymmetric and does not depend explicitly on φ. 

This metric form is clearly invariant under simultaneous inversion of t and φ, i.e. 

under the transformation t → −t, φ → −φ although it is not invariant under inversion 

of t alone (except when a = 0). It is a vacuum solution of the Einstein equations, valid 

in the absence of matter. If the black hole is not rotating i.e. a = J/M = 0, the Kerr 

spacetime reduces to the Schwarzschild spacetime (Chandrasekhar (1983); Page 

289; O’Neill (1995); Page 58) then; 

 ) (6.3) 

The Kerr family thus includes the Schwarzschild black hole in the special case of 

zero angular momentum. 

In the limit M → 0 with a 6= 0, the metric reduces to 

 

This is flat Minkowski space in so-called “oblate spheroidal” coordinates, and you 

can relate them to the usual Cartesian coordinates of Euclidean 3-space by defining 

(Carroll (2004); Page 262). 

 ds2 = −dt2 + dx2 + dy2 + dz2 (6.5) 

where 

 √  √  
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 x = r2 + a2 sinθ cosφ, y = r2 + a2 sinθ sinφ, z = r cosθ (6.6) 

6.3 Symmetries of the Kerr metric 

Being stationary and axisymmetric, the Kerr metric admits two Killing vector fields, 

both of which are manifest; since the metric coefficients are independent of t and 

φ, both K∂t and r = ∂φ are Killing vectors. The Killing vector Rµ expresses the axial 

symmetry of the solution (Carroll, 2004; Page 262). The vector Kµ is not orthogonal 

to t = const hypersurfaces, and in fact is not orthogonal to any hypersurfaces; this 

means the metric is stationary but not static. This makes sense because the black 

hole is spinning and so not static. It is stationary because it is spinning at exactly the 

same way at all times. In other words, the metric cannot be static because it is not 

time-reversal invariant, since that would reverse the angular momentum of the 

black hole (Carroll (2004); Page 262). 

6.4 Singularity of the Kerr metric 

The Kerr metric (6.1) is singular for 4 = 0 and for ρ = 0. By computing the 

curvature invariants 

 

one finds that they are regular at 4 = 0, and singular at ρ = 0. Thus ρ = 0 is a true, 

curvature singularity of the manifold, whereas 4 = 0 is a coordinate singularity 

(Gourgoulhon (2017); page 174). Notice that in the Schwarzschild limit (a = 0) ρ = 

r2 = 0 gives the curvature singularity, while (for r 6= 0) 4 = r(r − 2M) = 0 gives the 

coordinate singularity at the horizon. The metric takes the form 
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  (6.7) 

where 

  (6.8) 

The inverse of this metric is 

  (6.9) 

where 

  (6.10) 

The curvature singularity at  

ρ2 = r2 + a2 cos2 θ = 0 (6.11) 

occurs only in the equatorial plane = 0. If we interpret the Boyer- 

Lindquist coordinates (t,r,θ,φ) as spherical polar coordinates, like in the Schwarzschild 

spacetime, we are restricted to only = 0 but what if = 0 This 

has no meaning in polar coordinates so we need a coordinate system which has not 

the coordinate singularity r = 0 to be able to distinguish and analyze the curvature 

singularity. The Kerr-Schild coordinates can make sense of this statement 

(Chandrasekhar (1983); Page 308). In order to understand the singularity 

structure, we now change coordinate frame, to the so-called Kerr-Schild 
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coordinates, which are well defined in r = 0. The metric in Kerr coordinates (t,r,θ,φ¯ 

) is given by 

 

The Kerr-Schild coordinates (t,x,y,z¯ ) are defined by 

  (6.13) 

From these relations, we have 

 x2 + y2 = (r2 + a2)sin2 θ, z2 = r2 cos2 θ (6.14) 

Thus 

 = 1 (6.15) 

The surfaces with constant r are ellipsoids figure (6.1) and 

 = 1 (6.16) 

Then the surfaces with constant θ are half-hyperboloids figure (6.2) 

 

Figure 6.1: r = const ellipsoidal surfaces in the Kerr-Schild frame; the thick line 

represents the r = 0 disk 
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Concerning the singularity in the Kerr space-time, the non-vanishing 

components of the Riemann tensor diverge only for r = 0 and θ = π/2 and it is the 

only singularity that we have there. The divergence at r = 0 occurs only for θ = π/2 

and it is clear that its nature cannot be the same as the singularity r = 0 of the 

Schwarzschild and Reissner-Nordstrom space-times (Chandrasekhar (1983); Page 

308). The real nature of the singularity of the Kerr spacetime can be well 

understood by first eliminating the inherent ambiguity in the coordinate system 

(r,θ,φ) at r = 0. This ambiguity can be abolished by the choice of the Cartesian 

coordinate system (x,y,z). In these coordinates, r2 is implicitly defined in terms of x,y 

and z as (x2 + y2) = (r2 + a2)sin2 θ. The surfaces of constant r are confocal 

 

Figure 6.2: θ = const half-hyperboloidal surfaces in the Kerr-Schild frame; the thick 

ring represents the r = 0, θ = π/2 singularity 

ellipsoids whose principal axes coincide with the coordinate axes. These ellipsoids 

degenerate, for r = 0, to the disc x2 +y2 ≤ a2, z = 0. The point, (r = 0, θ = π/2), 

corresponds to the ring x2 + y2 = a2, z = 0 and the singularity along this ring is the 

only singularity of the Kerr space-time (Chandrasekhar (1983); Page 309). See 

figure (6.2). 
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6.5 The Event Horizon of the Kerr metric 

The Kerr metric is stationary and axially symmetric, unlike the Schwarzschild 

metric which is static or spherically symmetric The Kerr metric is the important 

exact solution of the Einstein equations in astrophysics. Kerr metric is stationary 

because it has a time-translation Killing vector ξ = ∂t, and axially symmetric because 

it has rotational Killing vector η∂φ. In general the Killing vector of the Kerr metric is 

of the form K = aξ + bη (Carroll (2004); Page 269). In the Schwarzschild and 

Reissner-Nordstro¨m solutions, the Killing vector Kα which is timelike at large 

values of r is timelike everywhere in the region I, (figure (6.3) below) becoming null 

on the surfaces r = 2M and r = r+ respectively. These surfaces are null. This means 

that a particle which crosses one of these surfaces in the future direction cannot 

return again to the same region. They are the boundary of the region of the solution 

from which particles can escape to the infinity and are called the event horizons 

(Carroll (2004); Page 258). 

The event horizon of the Kerr spacetime is a null 3-dimensional surface. Its spatial 

slices have the geometry of a 2-dimensional distorted sphere. The rotating black 

hole exists for a ≤ M. For a > M, the Kerr solution does not have a horizon and 

it describes a naked singularity. It is generally believed that such a singularity does 

not arise in real physical processes, like gravitational collapse, (Frolov and Novikov 

(1997); Page 248). The collapse with a formation of a black hole is possible when 

the system loses enough of its angular momentum so that the condition a/M ≤ 1 is 

satisfied. The event horizon is the inner boundary of the ergosphere. The infinite 

redshift surface is located outside the horizon and touches it only at two points, the 

north and south poles. 
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6.6 Types of Rotations and their Event Horizons in the 

Kerr Spacetime 

If we consider the mass M > 0 to be constant and vary the angular momentum per 

unit mass a, the following types of rotations are found: 

1. a2 = 0 gives Schwarzschild spacetime 

2. 0 < a2 < M2 gives slow rotating Kerr spacetime (slow Kerr) 

3. a2 = M2 gives extreme Kerr spacetime 

4. a2 > M2 gives rapidly rotating Kerr spacetime ( fast Kerr) 

The difference between these rotation types is given by the horizon function 

4 = r2 − 2Mr + a2: 

For the Schwarzschild spacetime 4 has two roots 0 and 2M. For the slow Kerr, 4 

 

Figure 6.3: In the Kerr solution with 0 < a2 < m2, the ergosphere between the 

stationary limit surface and the horizon at r = r+ is a region in which it is possible to 

enter and leave again but not to remain stationary. Particles can escape to infinity 

from region I (outside the event horizon r = r+) but not from region II (between r < 

r+ and r < r−) and region III (r < r− ; this region contains the ring singularity) (O’Neill 

(1995); Page 63 

) 
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has two roots  . For extreme Kerr, 4 = (r − M)2 so 

r = M is a double root. For fast Kerr, 4 has no real root. 

These zeros of 4 give horizons which are crucial features of relativistic gravitation 

On the horizon H: 4 = 0. The cases above show that, for fast Kerr spacetime, there is 

no horizon; for extreme Kerr spacetime, there is a single horizon H: r = M; and for 

slow Kerr spacetime there are slow two horizons H+: r = r+ and H−: r = r− 

(Chandrasekhar (1983); Page 62). 

6.7 Null directions 

The standard way of treating problems in the general theory of relativity used to be 

to consider the Einstein’s field-equation in a local coordinate basis adapted to the 

problem on hand. But in recent years, it has appeared advantageous, in some 

contexts, to proceed somewhat differently by choosing a suitable tetrad basis of 

four linearly independent vector-fields, projecting the relevant quantities on to the 

chosen basis and considering the equations satisfied by them. A tetrad is a field 

which consists of a set of four orthonormal vectors at each point of spacetime. In 

the applications of the tetrad formalism, the choice of the tetrad basis depends on 

the underlying symmetries of the space-time we wish to grasp and is, to some 

extent, a part of the problem. Besides, it is not always clear what the relevant 

equations are, and what the relations among them may be. Considering the 

axisymmetric spacetime, the orbits of the isometry group are spacelike curves 

rather than spacelike two surfaces. Because any spacelike two-surface is a 

candidate for a horizon, one may ask whether there are two-surfaces selected by 

null vectors, expansions of which will select out the event horizon in the Kerr 

solution, which we can use to select out horizons in dynamical situations. The only 

place to start in the Kerr metric is the two principal null vectors of the Kerr solution. 
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In the Boyer-Lindquist coordinates (t,r,θ,φ), (Chandrasekhar (1983); Page 299) 

gives real null vectors i and n of the Newman Penrose formalism in terms of null 

geodesics and adjoining to them a complex null-vector m, orthogonal to them and 

thus well pose at the past horizon. The principal null congruences are geodesic and 

shear-free. In Boyer-Lindquist coordinates these geodesics are defined by the 

equations 

 

where λ is an affine parameter and the null vectors are given by 

  OR 

  (6.17) 

OR 

(6.18) 

OR 

(6.19) 

Where ¯ρ = r + iacosθ, ρ¯∗ = r − iacosθ The correct normalization for the null 

vectors lαlα = nαnα = 0, lαnα = −1 and mµm¯ µ = 1. The covariant forms of 

the basis vectors are 

) (6.20) ) (6.21) 

 ) (6.22) 

The only nonvanishing Weyl 

scalar is 
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  (6.23) 

This implies that r = 0 and π/2 is a true curvature singularity whose shape is a ring 

with coordinate radius a. It also follows from equation (6.23) that the Kerr solution 

belongs to the type D metric in the algebraic classification of the Weyl tensor 

(Chandrasekhar (1983); Page 299). 

6.8 Kerr in Advanced Eddington-Finkelstein 

Coordinates 

The system of Boyer-Lindquist coordinates (t,r,θ,φ) breaks down when 4 = 0 i.e. on 

a possible horizon. In order to express the Kerr metric in a system of coordinates 

which remains regular there, we define a generalization of the familiar advanced 

time (or ingoing) Eddington-Finkelstein coordinates (v,r,θ,φ) which are well 

behaved on the future horizon but singular on the past horizon (Gourgoulhon 

(2017); page 175). We introduce new coordinates 

  (6.24) 

Squaring and expanding, we have 

  (6.25) 

  (6.26) 

 

Inserting equations (6.25, 6.26, and 6.27) into (6.1) we obtain the following line 

element for the improved Kerr metric in ingoing Eddington-Finkelstein coordinates 
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These coordinates produce an extension of the Kerr metric across the future 

horizon. 

The corresponding explicit form of the metric is 

 1 0 

(6.29) 

Carter has given two principal null vectors of the Weyl tensor for the Kerr metric in 

Eddington-Finkelstein coordinates as shear-free null geodesic congruences as 

(6.30) 

(6.31) 

The normalization for null vectors are lαlα = nαnα = 0 and nαlα = −ρ2 

Here, an extra factor  is needed. Using 

 nµ = (0,−1,0,0) (6.32) 

(6.33) 

(6.34) 

(6.35) 

(6.36

) 

We find lαlα = nαnα = 0 and nαlα = −1 The important differences from the 



 

114 

spherically symmetric space are as follows: the hypersurfaces of constant v are not 

in general null hypersurfaces since the normal one-form to these surfaces nα with 

components nℵ = (1,0,0,0) has norm 

  (6.37) 

This only vanishes on the axis of rotation θ = 0 and θ = π. This norm is positive so 

the hypersurfaces of constant v are in general timelike hypersurfaces. This means 

that the nα given above is tangent but not normal to the hypersurfaces of constant 

v. Furthermore, neither lα nor nα are normal to the orbits of the isometry φα since 

(6.38) 

(6.39) 

although lα is normal to the isometry orbits on the horizon 4 = 0. However, if we 

calculate the expansion of lα and nα, we have 

(6.40) 

(6.41) 

So the expansion of the ingoing congruence θn will be negative everywhere and the 

expansion of the outgoing congruence θl will change sign at the horizon 4 = 0. Thus 

the surface 4 = 0 will be a marginal outer trapped surface. In the region for r− < r < 

r+, θl for 4 < 0 and θn < 0.This implies that trapped surfaces exist for Kerr in advanced 

Eddington-Finkelstein coordinates. 



 

115 

6.9 Surface Gravity of the Kerr Spacetime 

Wald (1984; 313) and Poisson Eric (2004; Page 187) use the Killing vector ξα and 

the fact that the horizon is a Killing horizon to define the surface gravity. This vector 

is null at the event horizon and is in fact tangent to the horizon’s null generators. If 

ξα does not coincide with the stationary Killing field tα, we obtain an axial Killing 

field ψα in the spacetime by taking a linear combination of ξα and tα. This can be 

written as 

 ξα = tα + ΩHψα (6.42) 

Where ΩH is called the angular velocity of the horizon. Since the horizon is a null 

surface and the vector ξα is normal to the horizon, we have ξαξα = 0 on the horizon, 

so, in particular, ξαξα is constant on the horizon. Hence ∇α(ξαξβ) also is normal to the 

horizon, so on the horizon there exists a function κ such that 

 ∇α(ξαξβ) = −2κξα (6.43) 

Taking the Lie derivative of equation (6.43) with respect to the Killing field ξα, we 

find 

 Lξκ = 0 (6.44) 

This shows that κ is a constant on the orbits of ξα. In fact, the gravity is constant over 

the horizon. In other words, its value does not change from orbit to orbit. Using 

equation (6.43), we can calculate the surface gravity by taking the norm of ξα as 

  (6.45) 

and differentiating yields 

  (6.46) 

on the horizon, at which ω = ΩH and 4 = 0 

We have 4,α = 2(r+ −M)∂αr and ξα = (1−aΩH sin2 θ)∂αr on the horizon and the 
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surface gravity can be calculated as 

  (6.47) 

We notice that κ = 0 for extreme Kerr black hole and in the limit a → 0, κ reduces to 

, this is the Schwarzschild case. We also notice that in the general case κ does not 

depend on θ and the surface gravity is uniform on the event horizon. 

6.10 Trapped Surface and Marginally Trapped Surface 

for Kerr in Doran Coordinates 

Introduced by (Doran (2000); Page 3), here we obtain another coordinate system 

for Kerr metric which reduces Schwarzschild geometry in Painleve-Gullstrand form 

when a = 0. The metric in Doran coordinate is given by 

 

  (6.48) 

This is obtained from the advanced Eddington-Finkelstein form via the coordinate 

transformation 

(6.49) 

(6.50) 

This transformation is well-defined for all r, though the integrals involved do not 

appear to have a single closed form. The key features of the line element (6.48) are 

i. As a → 0 one obtains 

 ) (6.51) 

Which simply is Schwarzschild geometry in Painleve-Gullstrand form 
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ii. As M → 0 one obtains 

  (6.52) 

This is flat Minkowski space in oblate spheroidal coordinates. The metric (6.48) 

lends itself very naturally to the tetrad formation. 

Trapped surface and marginally trapped surface for Kerr in Doran 

coordinates applying the covariant divergence of a vector field 

The null tetrad expressed in (t,r,θ,φ) coordinates in Doran (2000) is 

(6.53) 

(6.54) 

(6.55) 

This gives the correct normalization lαlα = nαnα = 0, nαlα = −1 The covariant 

divergence of the outgoing null vector field is given by 

 

 

From (6.54) we also have 
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The covariant divergence of the ingoing null vector field 

is given by 

 

  (6.58) 

Equation (6.56) has the property of vanishing when 4 = 0, positive for 4 > 0 and 

negative when if we always choose the positive roots which follows from (6.53) and 

the requirement that lα should be outgoing. Thus the surface 4 = 0 will be a marginal 

trapped surface. In the region r− < r < r+, θl < 0 for 4 < 0 and θn < 0 is always negative. 

This implies that trapped surfaces exist for Kerr in Doran coordinates. 

Trapped surface and marginally trapped surfaces for Kerr in Doran 

coordinates applying the flux of a vector field 

The field ¯  is radial and orthogonal to the surface and The flux of outgoing 

null vector  is given by 
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The flux of ingoing null vector field  is given by 

 

The surface 4 = 0 is the marginally trapped surface. For 4 < 0, θl < 0 and 

θn < 0. This implies applying the flux of a vector field; trapped surface exist in the 

region r− < r < r+ in the Doran coordinates. 

6.11 Trapped surface and Marginally Trapped Surface in 

Kerr Vaidya Solution 

The Kerr-Vaidya solution is an explicitly dynamic solution to Einstein’s equations 

that can either model a rotating radiating star or a rotating collapsing null fluid 

(Nielsen (2009), page 129). The Kerr-Vaidya solution is normally given in terms of 

Eddington-Finkelstein coordinates (v,r,θ,φ) as 

 1 0 

  (6.60) 



 

120 

The only difference is that M is a function of v and 4(v,r) = r2 + a2 − 2M(v)r. The 

solution still has two principal null vectors whose vanishing expansion can be used 

to locate the horizon which is located at 4(v,r) = 0. These null vectors are given by 

(6.61) 

(6.62) 

Trapped surface and marginally trapped surfaces in Kerr Vaidya solution 

applying the covariant divergence of a vector field 

Applying the null vectors (6.61) and (6.62) their covariant divergences are given by 

 

Here, we have a marginally trapped surface when 4(v,r) = 0. In the region r− < r < r+, 

θl < 0 for 4(v,r) < 0 and θn < 0 is always negative. This im- 

plies that trapped surfaces and marginally trapped surfaces exist in Kerr-Vaidya 

solution. 

Trapped surface and marginally trapped surfaces in Kerr Vaidya solution 

applying the flux of a vector field 

The flux of outgoing null vector field is given by The field ¯  is radial and 

orthogonal to the surface and  

 

(6.63) 

The flux of ingoing null vector field is given by 

The field ¯  is radial and orthogonal to the surface and ¯n = −rˆ 

  (6.64) 

Thus the surface 4(v,r) = 0 will be a marginally trapped surface. 
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For 4(v,r) < 0, θl < 0 and θn < 0. This implies trapped surfaces exist in the region r− < 

r < r+ in the Kerr Vaidya black hole. 

6.12 Trapped Surface and Marginally Trapped Surface in 

the Kerr Spacetime 

In a general spacetime (M,gµν) with the metric gµν having signature (-+++), one can 

define two future directed null vectors nµ and lµ whose expansion scalars are given 

by 

  (6.65) 

where qµν = gµν +lµnν +mµlν is the metric induced by gµν on the two dimensional 

spacelike surface formed by spatial foliation of the null hypersurface generated by 

lµ and nν. Then (i) a two dimensional spacelike surface S is said to be a trapped 

surface if both θl < 0 and θn < 0; (ii) S is said to be a marginally trapped surface if one 

of the two null expansions vanishes i.e. θl = 0 or θn = 0. 

Trapped surface in Kerr black hole applying the covariant divergence of a 

vector field 

Krishnan (2013); Page 25, gives a suitable choice of the ingoing and outgoing future 

directed null vectors for non-extremal Kerr black hole in his paper by 

(6.66) 

(6.67) 

The covariant versions are 

 

√  
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where 4 = (r − r+)(r − r−) and r± = M ± M2 − a2 The null vectors satisfy the 

following conditions lµnµ = −1, lµlµ = nµnµ = 0. 

Covariant divergence of outgoing null vector field 

 

Covariant divergence of ingoing null vector field 

 

So the expansion of the ingoing congruence θn will be negative everywhere and the 

expansion of the outgoing congruence θl will change sign at the horizon 4 = 0. Thus 

the surface 4 = 0 will be a marginally trapped surface. In the region r− < r < r+, θl < 0 

for 4 < 0 and θn < 0. This implies that trapped surfaces exist for non extreme Kerr 

black hole in this region. In contrast, for the extreme Kerr black hole i.e. when a = 

M, we have the outgoing and ingoing expansions to be 

  (6.72) 

Here inside or outside extremal horizon r < M or r > M, θl > 0 and θn < 0. This 

implies that there are no trapped surfaces for extremal Kerr black hole beyond the 

event horizon. 

Trapped surface and marginally trapped surface in Kerr black hole applying 

the flux of a vector field 

The flux of outgoing null vector field 

The field ¯  is radial and orthogonal to the surface and  
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The flux of ingoing null vector field 

The field ¯  is radial and orthogonal to the surface and  

 

From equations (6.74) and (6.75), 

The flux of outgoing null vector field  

The flux of ingoing null vector field  

From these equations, the flux of the ingoing null vector φn is negative everywhere 

and that of outgoing null vector φl will change sign at the horizon 4 = 0. Thus the 

surface 4 = 0 will be a marginally trapped surface. 

For θ < 0, θl and θn < 0. This implies trapped surfaces exist in the region r− < r < r+ for 

the Kerr black hole. In contrast, for the extreme Kerr black hole i.e. when a = M, the 

fluxes of outgoing null vector and ingoing null vector are respectively given by 

(6.75) 

(6.76) 

Here inside or outside extremal horizon that is r < M or r > M, φl > 0 and φn < 0. This 

implies that there are no trapped surfaces for extremal Kerr black hole beyond the 

event horizon. 
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Figure 6.4: This figure shows the location of the event horizons, the ring singularity, 

ergosphere and trapped surface which lies in the region r− < r < r+ in Kerr black hole 

Chapter 7 

CONCLUSION AND RECOMMENDATION 

7.1 Conclusion 

We have investigated trapped and marginally trapped surfaces in stationary and 

dynamical spacetimes both in spherically and axially symmetric spacetimes. Using 

the appropriate null vectors, we have demonstrated the conditions under which a 

surface is trapped and marginally trapped. These investigations have revealed that 

a black hole region contains a trapped surface, a closed two-surface S with the 

property that for both ingoing and outgoing null vectors orthogonal to S, the 

expansion is negative everywhere on S. In the Schwarzschild spacetime with r > 2M, 

we have θl > 0 and θn > 0. This is a flat spacetime region. However, for r < 2M (black 

hole region), both expansions of outgoing and ingoing null vectors are negative. 

Such surfaces are said to be trapped. For r = 2M hypersurface, θl = 0, θn < 0. These 

surfaces are said to be marginally trapped. Thus, r = 2M hypersurface is the 
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boundary of the region in which the spherically symmetric trapped surfaces lie and 

are the signature of a black hole region. We also saw that, in a Schwarzschild black 

hole, the definitions of the surface of a black hole are the same. This implies the r = 

2M hypersurface is both the boundary of the trapped region and the event horizon. 

This means the event and apparent horizons of the Schwarzschild spacetime 

coincide. In dynamical situations, however, the apparent horizon lies within the 

black hole region. The dynamical black hole, example the Vaidya spacetime has 

been illustrated. We saw that there are trapped surfaces in the region r < 2M(v) but 

outside the r = 2M(v) surface, there are no trapped surfaces. The hypersurface r = 

2M(v) is foliated by round and marginally trapped spheres. 

Investigating axisymmetric spacetimes in different coordinate systems have 

revealed that trapped surfaces exist in axisymmetric spacetimes where the Kerr in 

advanced Eddington-Finkelstein coordinates, Kerr in Doran coordinates, Kerr 

Vaidya coordinates and non extreme Kerr black hole ware chosen as typical 

examples. But in contrast, for the extreme Kerr black hole i.e. when a = M, there are 

no trapped surfaces. The three-dimensional boundary of the region of spacetime 

that contains trapped surfaces- the trapped region is the trapping horizon and its 

two-dimensional intersection with a spacelike hypersurface is called an apparent 

horizon. The apparent horizon is therefore a marginally trapped surface- a closed 

two-surface on which one of the congruences or null vectors vanishes. Trapped and 

marginally trapped surfaces play a very important role in the analysis of spacetime 

geometry. By the singularity theorems of Hawking and Penrose (Hawking and Ellis 

(1973); Page 266), a spacetime which satisfies suitable energy and causality 

conditions, and which in addition contains a trapped surface, must contain a black 

hole. Marginally trapped surfaces, serve as the quasi-local version of black hole 

boundary. In numerical general relativity, they are used as excision surfaces for the 

evolution of black hole initial data. The goal of these studies is to compute the 

covariant divergences and the fluxes of the appropriate null vectors in both 
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spherically and axisymmetric spacetimes to determine the existence of trapped and 

marginally trapped surfaces as a new contribution to the existing knowledge. In 

doing so, a lot of other ideas were visited to add credence to the concept under 

study. In the end, it was confirmed that trapped and marginally trapped surfaces 

exist in both spherically and axiallysymmetric spacetimes. It is therefore desirable 

to use the notion of trapped surface and marginally trapped surface as a suitable 

complement in studying black holes. What can apparently be considered as a new 

result found is the application of the Gauss’s divergence theorem as a new approach 

for studying black holes. Moreover, using trapped surfaces as local 

characterizations of black holes do not depend on global properties like the classical 

event horizon whose determination requires the knowledge of the entire future 

null infinity and also teleological (responds in advance to what will happen in the 

future). 

7.2 Recommendation 

The researcher highly recommends the use of local approach as a complementary 

means of studying black holes instead of the global concept which is teleological. 

The use of covariant divergence and the Gauss’s divergence theorems are strongly 

recommended since they both apply to closed surfaces and can be used to define 

trapped and marginally trapped surfaces. 

Finally, it is recommended that differential manifolds, Riemannian geometry, Lie 

groups and Lie derivatives could be taken as a course at the graduate and the post-

graduate levels for applied Mathematics students.  
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Appendix A: The components of a curvature tensor or 

Riemann-Christoffel tensor 

Given a vector field U,¯ V ,¯ W¯ ∈ T(M), we define a new tensor which operates on 

 

1 

U,¯ V¯ and W¯ which leads to  tensor R(U,¯ V¯)W¯ . This curvature tensor is of 

 
0 

 

1 type . Let the components of this tensor in a coordinate 
basis be 

 

3 

 and  

We have 

 

Since [∂i,∂j] = 0 

 

Where 

 Rkijl = ∂iΓljk − ∂jΓlik + ΓmjkΓlim − ΓikmΓljm (7.1) 

Equation (7.1) is called the curvature tensor or Riemann-Christoffel tensor of type 

 

1 

. Hence, the components of the Riemann Christoffel tensor can be put in the 
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 3 
for
m 

  (7.2) 

The curvature tensor Rkijl is skew-symmetric in i and j. From its definition, it is clear 

that 

R(U,V ) = −R(V,U) 

That is 

 Rkijl = −Rkjil (7.3) 

In a non-coordinate basis define the commutation coefficients Cjkl by 

 

where Cjkl are differentiable functions which are called the structure coefficients. 

From equation ((7.2)) 

 

Substituting into equation (7.1) 

 

Now, from equation (7.3), the curvature tensor is antisymmetric in i and j it implies 

 = 0 (7.4) 

In normal coordinates at P, Γljk(P) = 0 so that 

Rkijl (P) = Γljk,i − Γlik,j 
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This implies 

 

Therefore 

 = 0 (7.5) 

Number of independent components Rkijl 

The four indices mean that we begin with n4 components. Equation (7.4) is n2 · 

+ 1) separate relations, since l and k are free, while there are 

symmetric pairs. This is the same as the number of independent components of a 

symmetric n × n matrix. Constraint (7.5) is entirely independent of (7.4) since it 

involves only Rkl [ij]. There are 3!1 n(n − 1)(n − 2) different antisymmetric triplets (kij) 

in this equation. The number of independent components of  in an ndimensional 

manifold is given by 

 1) (7.6) 

The Jacobi identity for covariant derivatives 

The Jacobi identity for covariant derivatives is given by 

[∇i,[∇j,∇k]] + [∇j,[∇k,∇i]] + [∇k,[∇i,∇j]] 

Proof 

 [∇i,[∇j,∇k]] = ∇i[∇j,∇k] − [∇j,∇k]∇i = −∇i[∇k,∇j] − [∇j,∇k]∇i 

= −∇i(∇k∇j − ∇j∇k) − (∇j∇k − ∇k∇j)∇i 

= −∇i∇k∇j + ∇i∇j∇k − ∇j∇k∇i + ∇k∇j∇i 

[∇j,[∇k,∇i]] = ∇j[∇k,∇i] − [∇k,∇i]∇j 

 = ∇j(∇k∇i − ∇i∇k) − (∇k∇i − ∇i∇k)∇j 
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 = ∇j∇k∇i − ∇j∇i∇k − ∇k∇i∇j + ∇i∇k∇j 

[∇k,[∇i,∇j]] = ∇k[∇i,∇j] − [∇i,∇j]∇k 

 = −∇k(∇j∇i − ∇i∇j) − (∇i∇j − ∇j∇i)∇k 

 
= −∇k∇j∇i + ∇k∇i∇j − ∇i∇j∇k + ∇j∇i∇k 

Putting the three terms together, we have 

 [∇i,[∇j,∇k]] + [∇j,[∇k,∇i]] + [∇k,[∇i,∇j]] = 0 (7.7) 

The Bianchi identities 

Since in the normal coordinates Γijk = 0 but not necessarily their derivatives, 

equation (7.1) can be written as 

  (7.8) 

Taking covering derivative with respect to m, we have  

 Rkij,ml = ∂m∂iΓljk − ∂m∂jΓlik (7.9) 

Permuting the indices in a i,j,m in a cyclic order we get two more equations as 

follows 

 =  (7.10) 

Rkmi,jl = ∂j∂mΓlik − ∂j∂iΓlmk (7.11) 

Adding equations (7.9), (7.10) and (7.11) we get 

 = 0 (7.12) 

This can be put in a compact form as  

Rkl [ij,m] = 0 (7.13) 

These are called the Bianchi identities. 
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Taking the inner product of (7.12), with ghl, we obtain the covariant form of Bianchi 

identities as follows 

 ghl(Rkij,ml + Rkjm,il + Rkmi,jl ) = 0 

 Rhkij,m + Rhkjm,i + Rhkmi,j = 0 (7.14) 

Now, consider equation (7.15) 

 Rkijl = ∂iΓljk − ∂jΓlik + ΓmjkΓlim − ΓikmΓljm (7.15) 

By permuting the indices k,i,j cyclically, we have two other relation as 

 =  (7.16) 

Rjkil = ∂kΓlij − ∂iΓlkj + Γmij Γlkm − ΓmkjΓlim (7.17) 

Adding equations (7.15), (7.16) and (7.17) 

 Rkijl + Rijkl + Rjkil = 0 (7.18) 

Taking the inner product with glh 

 glh(Rkijl + Rijkl + Rjkil ) = 0 

 Rhkij + Rhijk + Rhjki = 0 

The Ricci tensor 

The inner product of ghi. 

Rkj = ghiRhkij = ghiRijhk = Rjk is called the Ricci tensor. Rkj = Rjk is 

symmetric 

eijhkRihk = 0 

R = ghigkjRhkij = ghiRhi 

(7.19) 

R is known as the curvature scalar. 
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The Einstein’s tensor 

Consider the Bianchi identity equation (7.14), contract with ghi, we have 

ghiRhkij,m + ghiRhkjm,i + ghiRhkmi,j = 0 

Rkj,m + ghiRhkjm,i − ghiRhmki,j = 0 

Rkj,m + ghiRhkjm,i − Rmk,j = 0 

Contract again with gkj 

 
This can also be written as 

  (7.20) 

Gkm,i = 0 where 

  (7.21) 

is called the Einstein’s tensor. 

Einstein’s space 

The space in which the Ricci tensor is proportional to the metric tensor is called the 

Einstein’s space: i.e. 

 Rlm = λglm (7.22) 

Contracting this equation with glm 

glmRlm = glmλglm = λN 

 R = λN and  (7.23) 

Where N is the dimensionality of the space. Substituting (7.23) into (7.22), we have 
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Multiplying through by gil 

 (7.24) Equation (7.21) becomes 

 

R,i = 0 (7.25) 
Equation (7.25) means that, for Einstein’s spaces the curvature scalar is a constant 

Appendix B Geodesic Deviation 
Another important aspect of the Riemann tensor involves geometric deviation, the 

fact that geodesics begun parallel do not stay parallel. 

To measure this precisely, we consider a congruence of geodesics with tangent 

U¯ (∇U¯U¯ = 0) and connecting vector ξ¯ which is Lie dragged by the congruence £U¯ξ¯ 

= 0 (see figure (6.6)) The manner in which ξ¯ changes along U¯ will be the measure 

of geodesic deviation. Its first derivative, ∇U¯ξ¯, depends upon initial conditions 

weather the geodesics are set up initially parallel or not. The geometry enters into 

the second derivative ∇U¯∇U¯ξ¯, which tells how the initial rate of separation of the 

geodesics changes. 

Consider the congruence of geodesics CU defined by ∇U¯U¯ = 0 

Let ξ be a vector field obtained by Lie dragging ξ|p along U¯ i.e. £U¯ξ¯= 0. 

£U¯ξ¯= Uiξ¯,i − ξiU¯,i = Uiξ¯;i − ξiU¯;i = ∇U¯ξ¯− ∇ξ¯U¯ 

We therefore have, since £U¯ξ¯= 0 
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= ∇ξ¯∇U¯U¯ + (∇U¯∇ξ¯)U¯ = [∇U¯,∇ξ¯]U¯ 

since ∇U¯U¯ = 0. This implies 

 ∇U¯∇U¯ξ = R(U,¯ ξ¯)U¯ (7.26) 

where R(U,¯ ξ¯) = [∇U¯,∇ξ¯] − ∇[U,¯ ξ¯] 

[U,¯ ξ¯] = £U¯ξ¯= 0 

In component form, we have 

 

 = R(U,¯ ξ¯) = (Rijlk UiUjξl)¯ek 

Or 

 

Since  

  (7.27) 

Equation (7.27) is called the equation of geodesic deviation.  
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Appendix C Lie derivatives 
Proving some identities 

(a) Proving of the Leibniz rule 

 £V¯ (A ⊗ B) = (£V¯ A) ⊗ B + A ⊗ (£V¯ B) (7.28) 

By definition 

£  

Proving from the left hand side 

 ∗

 ∗

 ∗ 

£ 

 

 = (£V¯ A) ⊗ B + A ⊗ (£V¯ B) 

(b) Proving that, for any two twice-differentiable vector fields V¯ and W¯ on 

functions and fields 

 [£V¯ ,£W¯ ] = £[V ,¯ W¯ ] (7.29) 

On functions say f, proving from the left hand side of equation 

 [£V¯ ,£W¯ ]f = £V¯ £W¯ (f) − £W¯ £V¯ (f) = £V¯ (W¯ (f)) − £W¯ (V¯(f)) 

 = V¯(W¯ (f)) − W¯ (V¯(f)) = (V¯W¯ − W¯ V¯)f 

 = [V ,¯ W¯ ]f = £[V ,¯ W¯ ]f 

On vector fields U¯ the left hand side of equation (7.29) becomes 
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[£V¯ ,£W¯ ]U¯ = £V¯ £W¯ (U¯) − £W¯ £V¯ (U¯) = £V¯ [W,¯ U¯] − £W¯ [V ,¯ U¯] 

 = [V ,¯ [W,¯ U¯]] − [W,¯ [V ,¯ 

U¯]] 

Consider the right hand side of (7.29), we have 

£[V ,¯ W¯ ]U¯ = [[V ,¯ W¯ ]U¯] 

Equating both sides, we obtain 

[V ,¯ [W,¯ U¯]] − [W,¯ [V ,¯ U¯]] − [[V ,¯ W¯ ]U¯] = 0 

Expanding, we have 

V¯[W,¯ U¯] − [W,¯ U¯]V¯ − W¯ [V ,¯ U¯] + [V ,¯ U¯]W¯ − [V ,¯ W¯ ]U¯ + U¯[V ,¯ W¯ ] 

= 0 V¯W¯ U¯ − V¯U¯W¯ − W¯ U¯V¯ + U¯W¯ V¯ − W¯ V¯U¯ + W¯ U¯V¯+ 

V¯U¯W¯ − U¯V¯W¯ − V¯W¯ U¯ + W¯ V¯U¯ + U¯V¯W¯ − U¯W¯ V¯ = 0 

Hence on a vector field U¯ we have [£V¯ ,£W¯ ] = £[V ,¯ W¯ ] 

(c) Proving of the Jacobi identity for Lie derivatives on functions and vector 

fields: that is 

where X,¯ Y ,¯ 

[[£X¯,£Y¯ ],£Z¯] + [[£Y¯ ,£Z¯],£X¯] + [[£Z¯,£X¯],£Y¯ ] = 0 (7.30) Z¯ are any three-

times-differentiable vector fields. 

On functions f we prove the Jacobi identity as follows 

[£[V ,¯ W¯ ]U¯]f = [[V ,¯ W¯ ]U¯]f = [V ,¯ W¯ ]U¯(f) − U¯[V ,¯ W¯ 

](f) 
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 = (V¯W¯ − W¯ V¯)U¯(f) − U¯(V¯W¯ − W¯ V¯)(f) 

 = (V¯W¯ U¯ − W¯ V¯U¯ − U¯V¯W¯ + U¯W¯ 

V¯)(f) 

[£[W,¯ U¯]V¯]f = [[W,¯ U¯]V¯]f = [W,¯ U¯]V¯(f) − V¯[W,¯ U¯](f) 

 = (W¯ U¯ − U¯W¯ )V¯(f) − V¯(W¯ U¯ − U¯W¯ )(f) 

 = (W¯ U¯V¯ − U¯W¯ V¯ − V¯W¯ U¯ + V¯U¯W¯ 

)(f) 

[£[U,¯ V¯]W¯ ]f = 

[[U,¯ V¯]W¯ ]f = [U,¯ V¯]W¯ (f) − W¯ [U,¯ 

V¯](f) 

 = (U¯V¯ − V¯U¯)W¯ (f) − W¯ (U¯V¯ − V¯U¯)(f) 

 
= (U¯V¯V¯ − V¯U¯W¯ − W¯ U¯V¯ + W¯ V¯U¯)(f) 

Adding the three terms, we have 

[£[V ,¯ W¯ ]U¯]f +[£[W,¯ U¯]V¯]f +[£[U,¯ V¯]W¯ ]f = [[W,¯ W¯ ]U¯]f +[[W,¯ U¯]V¯]f +[[U,¯ V¯]W¯ ]f = 

0 

V¯ = X,¯ W¯ = Y¯ and U¯ = Z¯ 

[[£X¯,£Y¯ ],£Z¯] + [[£Y¯ ,£Z¯],£X¯] + [[£Z¯,£X¯],£Y¯ ] = 0 

For any three times-differentiable vector fields V ,¯W,¯ U¯ 

[[X,¯ Y¯]Z¯] + [[Y ,¯ Z¯]X¯] + [[Z,¯ X¯]Y¯] = 0 
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[[X,¯ Y¯]Z¯] = 
[£[X,¯ Y¯],Z¯] = [(£X¯£Y¯ − £Y¯ £X¯),£Z¯] 

 = (£X¯£Y¯ − £Y¯ £X¯)£Z¯ − £Z¯(£X¯£Y¯ − £Y¯ £X¯) 

 = £X¯£Y¯ £Z¯ − £Y¯ £X¯£Z¯ − £Z¯£X¯£Y¯ + £Z¯£Y¯ £X¯ 

[[Y ,¯ Z¯]X¯] = [£[Y ,¯ Z¯],X¯] = [(£Y¯ £Z¯ − £Z¯£Y¯ ),£X¯] 

 = (£Y¯ £Z¯ − £Z¯£Y¯ )£X¯ − £X¯(£Y¯ £Z¯ − £Z¯£Y¯ ) 

 = £Y¯ £Z¯£X¯ − £Z¯£Y¯ £X¯ − £X¯£Y¯ £Z¯ + £X¯£Z¯£Y¯ 

[[Z,¯ X¯]Y¯] = [£[Z,¯ X¯],Y¯] = [(£Z¯£X¯ − £X¯£Z¯),£Y¯ ] 

 = (£Z¯£X¯ − £X¯£Z¯)£Y¯ − £Y¯ (£Z¯£X¯ − £X¯£Z¯) 

 
= £Z¯£X¯£Y¯ − £X¯£Z¯£Y¯ − £Y¯ £Z¯£X¯ + £Y¯ £X¯£Z¯ 

Adding the three terms, we obtain the Jacobi identity as follows [[£X¯,£Y¯ 

],£Z¯] + [[£Y¯ ,£Z¯],£X¯] + [[£Z¯,£X¯],£Y¯ ] = 0 


