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Abstract 

 

In this thesis we focus on a decision model for a real world problem. The problem reveals itself 

as assignment of vehicles to routes by Latex Foam Rubber Products Limited-Kumasi. 

This study addresses the problem of finding efficient assignments of the limited number of trucks 

at the company’s disposal to the routes they ply while serving the company’s customers outside 

the metropolis. The thesis seeks to minimize the total number of gallons of fuel needed for the 

assignments using the Munkres Assignment algorithm, a modified form of Kuhn’s Hungarian 

algorithm.  
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CHAPTER 1 

INTRODUCTION 

The problem of distributing goods from depots to final consumers plays an important role 

in the management of many distribution systems, and its adequate programming may 

produce significant savings.  

In a typical distribution system, vehicles provide delivery, pick-up or repair and 

maintenance services to customers that are geographically dispersed in a given area. In its 

numerous applications, the common objective of distribution is to find a set of routes for 

the vehicles to satisfy a variety of constraints so as to minimize the total fleet operation 

cost.  

Most of the manufacturing companies in Ghana utilize vehicles (trucks) to transport their 

products to their customers. The general problem in such a situation is how to assign a 

particular vehicle to a route to minimize the total transportation cost whilst satisfying 

route and the available constraints to serve their customers with the demand for some 

commodity. 

The Vehicle Assignment Problem, which is one of the logistics network problems, 

concerns the determination of the type of vehicle to assign to a particular route to 

minimize the total transportation cost.  

 In this thesis we use a solution procedure based on Munkres Assignment Algorithm for 

optimal assignment of non-homogenous fleet of vehicles to a given set of routes, where 

Latex Foam Rubber Products Limited-Kumasi, distributes its products to its customers.  
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1.1 THE ASSIGNMENT POROBLEM 

The problem of assigning resources such as vehicles to task over time arises in a number 

of applications in transportation. In the field of freight transportation, truckload motor 

carriers, railways and shipping companies have to manage fleets of containers (trucks, 

boxcars) that move one load at a time, with orders arriving continuously over time. In the 

passenger arena, taxi companies and companies that manage fleets of business jets have 

to assign vehicles (taxicabs or jets) to move customers from one location to the next. 

 Ahuja, Magnanti and Orhin in Hartvigsen et al., (1999) provide an excellent review of 

applications of the assignment problem. Among the applications they listed are personnel 

assignments, scheduling on parallel machines, pairing stereo speakers and vehicle and 

crew scheduling. Other applications include posting military servicemen, airline 

commuting and classroom assignment. 

 

 

 1.1.2  PRODUCTION AND DISTRIBUTION IN EALIER TIME 

The term Production is defined by Economists as the total physical and mental efforts 

which satisfy human wants. That is, production covers virtually all activities which 

directly or indirectly satisfy human wants. However, the term as used in production 

management refers to the transformation of raw materials into finished or semi-finished 

products (Mahmoud, 1996). 

Distribution on the other hand concerns the series of activities and institutions which 

ensure the transfer of goods from the producer to the market. It basically involves the 
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transfer or movement of goods from the producer to the consumer at the right time and at 

the appropriate place. 

Before the Industrial Revolution (Clark et al, 1998), most goods were produced either by 

household or by guilds (Wiesner-Hanks, 2006). There were many households involved in 

the production of marketable goods. Most of the goods that were produced by these 

households were things that involved cloth, textiles, clothing, as well as art (Wiesner-

Hanks, 2006) and tapestries (Jardine, 1996). These would be produced by the households, 

or by their respective guilds. It was even possible for guilds and merchants to outsource 

into more rural areas, to get some of the work done. These merchants would bring the 

raw materials to the workers, who would then make the goods. For example, young girls 

would be hired to make silk, because they were the only people believed to have hands 

dexterous enough to make the silk properly. Other occupations such as knitting, a job that 

was never organized into guilds, could easily be done within the household (Wiesner-

Hanks, 2006) 

Guild work could be contracted to the households for women and children, as well as the 

men would be involved with production of goods. The income of the household became 

dependent upon the quality and the quantity of everyone's work (De Vries, 1994). Even if 

people were not working for an individual guild they could still supply and make items 

not controlled by the guilds. These would be small, but necessary items like wooden 

dishes, or soaps (Wiesner-Hanks, 2006). So, basically, much of production was done by, 

or for, guilds. This would indicate that much of what was done was not done for one 

individual household, but for a larger group or organization. 
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Before the Industrial Revolution the household was the major site of production, and 

could be comparable to a factory. 

 However, things were to change a bit during the Industrial Revolution. There was a shift 

in the running of the household. The everyday goods and products used by the household 

would slowly shift from mostly home-made to mostly "commercially produced goods”. 

At the same time, the women would obtain jobs outside the household (De Vries, 1994). 

This is also seen within the context of the Industrial Revolution where women would 

often find small jobs to help supplement their husband's wages (Ross, 1993).This would 

demonstrate the gradual movement away from the household as a centre of production. 

 

1.1.3  INDUSTRIAL REVOLUTION 

The Industrial Revolution was a period in the late 18th and early 19th centuries when 

major changes in agriculture, manufacturing, production, and transportation had a 

profound effect on the socioeconomic and cultural conditions in Britain. The changes 

subsequently spread throughout Europe, North America, and eventually the world. 

In the later part of the 1700s there occurred a transition in parts of Great Britain's 

previously manual-labor-based economy towards machine-based manufacturing. It 

started with the mechanization of the textile industries, the development of iron-making 

techniques and the increased use of refined coal. Trade expansion was enabled by the 

introduction of canals, improved roads and railways.  
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The introduction of steam power fuelled primarily by coal, wider utilization of 

waterwheels and powered machinery (mainly in textile manufacturing) underpinned the 

dramatic increases in production capacity. The development of all-metal machine tools in 

the first two decades of the 19th century facilitated the manufacture of more production 

machines for manufacturing in other industries. The effects spread throughout Western 

Europe and North America during the 19th century, eventually affecting most of the 

world. The impact of this change on society was enormous (Wikipedia, 2009). 

 The Industrial Revolution marked a major turning point in human society; almost every 

aspect of daily life was eventually influenced in some way. 

 

1.1.4  PRODUCTION AND DISTRIBUTION TODAY 

The revolutions in transportation and communications technologies have increased the 

extent of the U.S. domestic markets over the last two centuries. Moreover, the expansion 

of markets is associated with major changes in the course of American economic history. 

The introduction of canals in the late eighteenth and the early nineteenth centuries is 

credited with increasing the levels of inventive activity and triggering industrialization 

(Sokoloff, 1988). Households became less self-sufficient and became specialized 

consumer-labourers; firms that specialized in the production of various goods emerged in 

great numbers. The division of labour within firms led to a re-organization of production 

and increased levels of productivity (Sokoloff, 1984a, 1984b).  
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In the late 18th and the early 19th centuries, the expansion of the U.S. domestic markets 

and industrialization caused a rapid decline in household production and a proliferation of 

specialized manufacturing firms in the American economy (Kim, 2000). In this period, 

the industrial structure was composed of single-unit firms who specialized in the 

production of manufacturing goods and wholesale merchants and retail store owners who 

distributed these goods. Since the manufacturing firms typically specialized in a narrow 

line of products, it was simply too costly for them to market their products directly to 

consumers. In this setting, the wholesale merchants, who bought and sold sufficient lines 

of products, were able to lower the costs of transactions more efficiently. The wholesale 

merchants were not only able to collect information on various manufacturers by locating 

in major cities but were also able to collect information on rural consumer demand 

through the use of sales agents who traveled to rural country stores. In this period, most 

consumers were able to judge the quality of most products upon visual inspection. 

However, according to Kim, for some goods, they relied on the local producers’ and 

retail merchants’ reputation for honesty. 

In the late nineteenth century, with advances in science and technology, it became 

increasingly difficult for consumers to discern the quality of products which they 

consumed. As incomes rose, consumers purchased a growing number of products for 

which they lacked basic knowledge to discern quality. Moreover, Kim indicated that, 

even the manufacturing processes of the most basic of products such as food became so 

sophisticated that consumers no longer had enough knowledge to discern whether a 

product was healthy or poisonous. 
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Finally, as regional domestic markets became increasingly integrated between the late 

19th and the early 20th centuries, geographic specialization in economic activities 

increased (Kim, 1995).  

 

1.1.4.1  CHANNELS OF DISTRIBUTION IN GHANA  

Distribution could be broadly classified into Direct and Indirect distributions. There is 

direct distribution if the producer supplies the product directly to the consumer without 

the use of an intermediary or middle man. Indirect distribution involves the use of 

intermediaries or middlemen and retailers to make the product available to the consumer. 

According to Mahmoud (1996) there are three main channels of distribution of goods in 

Ghana. These are from the 

i.  Producer to Consumer, where the producer sells directly to the consumer,  

ii. Producer to the Retailer and from the Retailer to  the Consumer, where 

the wholesaler is by passed and the producer deals directly with the 

retailer, and 

iii. Producer to the Wholesaler, from the Wholesaler to the Retailer and from 

the Retailer to the Consumer, where the wholesaler buys in bulk from the 

producer and stores the goods for later resale to retailers. 
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1.1.4.2  CHANNELS OF DISTRIBUTION USED FOR INDUSTRIAL PRODUCTS IN 

GHANA 

 Industrial producers or sellers in Ghana today use four main channels to distribute their 

products in the country (Mahmoud, 1996). These are from the 

i. Producer to Consumer: Most industrial producers such as Tema Steel Works, the 

Timber Processing organizations and Vehicle or Machine component manufacturing 

companies use this channel of distribution 

ii. Producer to Industrial distributor (customer): Some producers of industrial products 

use industrial distributors to market their products in Ghana. 

iii. Producer to an Agent, and from the Agent to the Customer: This is the most popular 

method foreign organizations use when entering the Ghanaian market. Most of the 

organizations deal in office equipment, machines, vehicles installations and industrial raw 

material. Their Ghanaian counterparts provide after-sales service, training and installation 

services on behalf of their principals. 

iv. Producer to an Agent, from the Agent to an Industrial distributor and from the 

Industrial distributor to the Customer: A good example of organizations involved in this 

sort of channel is Mechanical Lloyd- an agent of Yokohama tires in the country which 

markets these tires through a wide network of industrial distributors.  
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1.2  LATEX FOAM RUBBER PRODUCTS GHANA LIMITED 

Latex Foam Rubber Products Limited was incorporated on March 8, 1969 in Accra to 

produce quality foam products for the Bedding and Furniture Industry in Ghana. 

The company entered the Ghanaian market using the Dunlop Technology under license 

from the Dunlop Company. The technology gave Latex Foam the desired push in quality 

in a rather traditional market at the time. Since then the company has not relented in its 

efforts to assert itself in the Foam Industry. 

In 1972, three years after its inception, Latex Foam started the production of Spring 

Interior Mattresses. Today the company has stood the test of time and is the oldest in the 

industry in Ghana. It is also the leading manufacturer of quality foam products such as 

(i) Foam Mattresses (e.g. Ultraflex, Ultrafirm and High Density Honeymoon 

mattresses)  

(ii) Pillows (e.g. Orthopedic pillows, Dona pillows and Venus pillows),  

(iii) Mattress Accessories (Divan Bed, Comforter and Protection Pad),  

(iv) Sofa beds, Students mattresses, Upholstery and  

(v) Therapeutic products, such as Reader’s Pillow and Back Care Cushion, in 

Ghana and West Africa. 

In 2007, because of the high quality of its products, the company was chosen to provide 

the mattresses for the houses that hosted the visiting Heads of States for the Ghana@50 

celebrations. That year, the company became the first to produce high resilient foam for 

the Ghanaian market when they introduced the Ultra flexes Mattress which provides 

excellent relaxation and body support. 
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1.3 BACKGROUND OF THE STUDY 

Having consolidated its expansion program in Accra, Latex Foam on 12th September, 

1996 established another factory in Kumasi in the premises of GIHOC Shoe Factory at 

Atonsu- Agogo, with the aim of increasing its proximity to its numerous customers in the 

northern sector of Ghana. 

 The main objective of the company is to continue to be the leading manufacturer of 

quality foam products and also satisfy its numerous customers in the northern sector and 

parts of Eastern and Western regions of Ghana by providing them with quality and 

innovative foam products. 

  The factory occupies an area of about 6000 square feet. At the moment, the company 

has about one hundred and fifty workers for the production and distribution of its 

cherished products. The structure that houses the machines of the company has three 

sections: the offices of the Personnel and Sales Managers of the company are on the left, 

the various manufactured products are stacked on the right, with the manufacturing 

machines at the extreme end of the shed, when you enter the shed through the main gate. 

Close to where the products are packed is a wooden structure which serves as a sales 

point for customers.   

The company (Kumasi branch) has three KIA and four TATA trucks, a DAF cargo and a 

BENZ cargo trucks and five articulator trucks (one Renault, one DAF, one TATA and 

two BENZ) to distribute their products. These vehicles ply sixteen major routes in the 

distribution process outside Kumasi metropolis. These routes are indicated in Table 1.0 

below.  
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Table 1.0: Major routes Latex Foam Rubber Products Limited-Kumasi ply in 

supplying products 

ORIGIN                              ROUTE                           DESTINATION    

1.Kumasi  →                  Sefwi Bekwai →                       Sefwi Juabeso 

2.Kumasi  →                   Dunkwa →                             Asankraguaa 

3.Kumasi  →                   Tamale →                               Yendi 

4.Kumasi   →                  Asante Bekwai →                  Assin Fosu 

5.Kumasi   →                  Techiman →                           Kintampo 

6.Kumasi   →                   Atebubu →                             Kwame Danso 

7.Kumasi   →                    Boodee →                              Bogoso 

8.Kumasi  →                    Sunyani →                              Osei Kojokrom 

9.Kumasi  →                    Zebilla →                                Bawku 

10.Kumasi  →                  Brekum →                               Drobo 

11.Kumasi  →                  Tepa →                                    Goaso 

12.Kumasi  →                  Ejura →                                   Yeji 

13.Kumasi  →                  Bolgatanga →                          Lawra 

14.Kumasi  →                  Juaso →                                   Obogu 

15.Kumasi  →                  Asankare →                             Nkawkaw 

16.Kumasi  →                  Savlugu →                                Gushiegu 
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1.4 PROBLEM STATEMENT 

The aim of every business set-up is to optimize cost (to maximize profit or minimize the 

cost of operation) while meeting certain constraints. In order to satisfy the demand of its 

customers, Latex Foam Rubber Products Limited has to arrange the limited number 

(fourteen) of vehicles at its disposal to send their products to their various depots. The 

assignments of these vehicles are made depending on the time an order is placed for the 

products and the truck available at that time.  

This thesis seeks to address the problem of finding efficient assignments of these fourteen 

vehicles to the sixteen major routes linking the factory to the termini destinations so as to 

minimize the total cost(number of gallons of diesel) required for transporting the 

company’s products to its customers along these routes. 

 

1.5 OBJECTIVE OF STUDY 

The main objectives of the study are; 

1. To determine the type of vehicle to assign to each of the routes leading to the 

final destinations ( mostly district capitals) where Latex Foam Rubber Limited 

(Kumasi) has its depots or sales points, and 

2.   To minimize the total cost (number of gallons of diesel) needed to transport 

the products while satisfying routing constraints to serve their customers with 

the demand for the commodity. 
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1.6 METHODOLOGY 

Data on the types of vehicles, number of gallons of diesel used per trip by each of the 

vehicles to transport latex foam products, and final destinations of these vehicles, will be 

obtained from the sales manager of the company through questioning.  

The Munkres Assignment algorithm, which best solves assignment problems, will be 

employed. The algorithm takes the cost matrix of the assignment problem as input and 

proceeds by manipulating rows and columns through addition and subtraction to find the 

optimal assignment. 

 The problem will be solved using MATLAB computer program. 

Search on the internet will be used to obtain the related literature. Books from the main 

Library at KNUST and the Mathematics Department’s library will be read in the course 

of the project.  

 

1.7 THESIS ORGANIZATION  

Chapter one covers the historical background of the Vehicle Assignment Problem and 

how and when production and distribution of goods started. Chapter two contains the 

Literature Review and Methods. Chapter three covers data collection, analysis and 

discussion. The last chapter covers conclusion and recommendations. 
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CHAPTER 2 

LITERATURE REVIEW AND METHODS 

2.0 REVIEW OF LITERATURE 

2.1 The Vehicle Routing Problem (VRP) 

 The VRP, in broad terms, deals with the optimal assignment of a set of transportation 

orders to a fleet of vehicles and the sequencing of stops for each vehicle. The VRP was 

first introduced by Dantzig and Ramser (1959), and was developed by Clarke and Wright 

(1964). 

 The main objective of the VRP is to minimize the distribution costs for the individual 

carriers, and can be described as the problem of assigning a collection of routes from a 

depot to a number of geographically distributed customers, subject to certain constraints. 

The most basic version of the VRP has also been called vehicle scheduling, truck 

dispatching or simply the delivery problem (Joubert, 2007). It has a large number of real 

life applications and comes in many forms, depending on the type of operation, the time 

frame for decision making, the objective and the type of constraint that must be adhered 

to. It is a computationally hard discrete optimization problem. The VRP has been a main 

subject for thousands of researchers since it was introduced by Dantzig and Ramser 

because of its important economic importance and has, therefore, gained much attention 

in recent years. 

 

2.1.1 Definition of the VRP 

The basic problem can be defined with G = (V, A) being a directed graph where

1 2{ , ,... }NV v v v= is a set of vertices representing N customers and 1v representing the depot 
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where M identical vehicles, each with capacity Q, are located.

{( , ) | , , }i j i jE v v v v V i j= ∈ ≠ is the edge set connecting the vertices. Each vertex, except 

for the depot ( 1\{ }V v ), has non negative demand iq and non negative service time is .A 

matrix ( )ijC c= is defined on A. In some contexts, ijc can be interpreted as travel cost, 

travel time or travel distance for any of the identical vehicles. The basic VRP is to route 

the vehicles one route per vehicle, each starting and finishing at the depot, so that all 

customers are supplied with their demands and the total travel cost is minimized.  

The figure below illustrates how a solution to a VRP would look like after routes are 

generated. The sketch shows the vertices to be served (customers), the edges (route 

segments) and the depot. 

 

 

 

 

 

 

 

 

 

 Figure 1: General representation of the Vehicle Routing Problem 

 

 

 

 

Depot 

Routes 

Customers 
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2.1.1.1 Variants of the VRP 

Several versions of the problem may be defined depending on the number of factors, 

constraints and the objective function addressed in the problem context. Some of the 

variants are 

(i). VRP with Time Windows (VRPWT): In the VRPWT, a number of vehicles is located 

at a central depot and has to serve a set of geographically dispersed customers with a 

demand within a specific time window. 

(ii). Stochastic VRP: The stochastic vehicle routing problems arise when considering 

demands and travel times as stochastic variables. Other variants include heterogeneous 

vehicle fleet, simultaneous pick-up and delivery and periodic visits. 

 

2.1.2  The Transportation Problem 

The transportation problem is one of the subclasses of the linear programming problems 

for which simple and practical computational procedures have been developed that take 

advantage of the special structure of the problem. 

  

 Hitchcock (1941) was the first person to present, along with a constructive solution, the 

formulation of the transportation problem. 

 

Koopman (1947) independently spearheaded research on the potentialities of linear 

programs for the study of problems in economics. Due to the fact that Kooprman’s work 

was based on the work done earlier by Hitchcock, the classical case of the transportation 

problem is often referred to as Hitchcock-Koopman’s transportation problem. The 
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problem may be expressed as minimization of transport costs for moving a single 

commodity from m origins (sources) to n destinations (sinks) while operating within 

supply and demand constraints. 

 

Hammer (1969) introduced the time-minimizing or bottleneck transportation problem, 

and the algorithm for solving the problem. Rather than minimizing cost, the objective is 

to minimize the maximum time to transport all supply to the destinations. 

 

Sharma and Swarup (1978) and Bhatia et al. (1974) have given iterative methods for the 

solution of time-minimizing transportation problem. 

 

Williams (1963) and Szwarc (1964) have discussed the stochastic transportation 

problems, i.e., problems with stochastic demand and penalties for over supply and under 

supply. The objective in such problems is to minimize total transportation cost plus 

expected penalty costs.  

 

 Wilson (1972, 1973, and 1975) showed that a linear approximation can be used in order 

to solve the stochastic transportation problem as a capacitated transportation problem. 

 Toth and Vigo (1997) examined the problem of determining an optimal schedule for a 

fleet of vehicles used to transport handicapped persons in an urban area, by using a Tabu 

Threshold procedure to the starting solution obtained by insertion algorithm. 
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2.1.3 The Assignment Problem 

Assignment problems deal with the question of how to assign n number of items (e.g. 

jobs) to n number of machines (or workers) in the best possible way.  

 

 Michael and Powell (2004) addressed a simpler dynamic assignment problem, where a 

resource (container, vehicle, or driver) serves only one task at a time, using the language 

of Markov decision processes. 

 

Woeginger et al (1995) used a branch and bound procedure to solve minimax assignment 

problems on tree networks. The problem involved the minimization of the maximum 

intermediate traffic by optimizing the message routing pattern and the embedding of 

communication centers.  

 

 Anshuman et al. (2007) solved the generalized “Assignment problem” using two non-

traditional methods; genetic algorithm and simulated annealing. The generalized 

assignment problem is basically the “N men- N jobs” problem where a single job is 

assigned to only one person in such a way that the overall cost of assignment is 

minimized. While solving the problem through genetic algorithm (GA), a unique 

encoding scheme was used together with Partially Matched Crossover (PMX). In the 

simulated annealing (SA) method, an exponential cooling schedule based on Newtonian 

cooling process was employed. 
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 Ye and Xu (2008) also developed a fuzzy chance-constrained model of vehicle routing 

assignment model according to fuzzy theory. In the model, they considered the total costs 

which included preparing costs of each type of vehicle and the transportation costs as the 

objective function and the preparing costs and the commodity flow demand as fuzzy 

variables, and minimized the total costs at a predetermined confidence level, α. They 

converted the fuzzy constraints into their crisp equivalents by using fuzzy theory and 

used a priority-based genetic algorithm to solve the problem. 

 

 

2.2 REVIEW OF METHODS 

2.2.1 The Transportation Problem 

The transportation problem arises frequently in planning for the distribution of goods and 

services from several supply locations to several demand locations. Usually, the quantity 

of goods available at each supply location (origin) is fixed or limited and there is a 

specified amount needed (demand) at each user location (destination). With a variety of 

shipping routes and differing costs for the routes, the objective is to determine how many 

units should be shipped from each origin to each destination so that all destination 

demands are satisfied and the total transportation costs are minimized (David et al., 1988) 

 

2.2.1.1 General Formulation of a Transportation Problem  

Let Z be the total distribution cost and ijx  the number of units to be distributed from 

source i  to destination j . Let also  andis  jd denote respectively the number of units being 
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supplied by source i and the number of units being received by destination j and ijc the 

unit cost of supplying is units from source i  to destination j . 

 

The transportation problem is generally formulated as 

1 1
   Z= .....................(1)

m n

ij ij
i j

Minimize c x
= =
∑∑  

1

j    
1

        ( 1, 2,..., )..............(2)

                    ( 1, 2,..., )................(3)

                         0     ( 1, 2,..., ; 1, 2,..., ).........(4)

n

ij i
j

m

ij
i

ij

subject to x s i m

x d j n

x i m j n

=

=

≤ =

≥ =

≥ = =

∑

∑ (Demand constraints) 

 

 The objective function (1) is the total cost of transportation. 

Constraint (2) requires that the total amount of commodity 
1

n

ij
j

x
=

 
 
 
∑ leaving source is must 

not exceed the production capacity of source is  

Constraint (3) requires that the total amount of commodity 
1

m

ij
i

x
=

 
 
 
∑ arriving at destination

jd must not be less than the demand at destination .jd Table 2.0 below shows the 

objective function Z =
m n

ij ij
i j

c x∑∑ as the total sum of elements in matrix table. 

 

 

 

 

(Supply constraints) 
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Table 2.0: Matrix of objective function  

 

 

 

 

 

 

  

Table 2.1 shows the format of the transportation tableau. The row sum 'ijx s is less than or 

equal to is  for each row and the column sum of each ijx is greater than or equal to jd for 

each column. The table is called the transportation tableau. 

 

Table 2.1: Format of a transportation tableau 
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2.2.1.2  A Balanced Transportation Problem 

In a “balanced transportation” problem, the total supply is equal to the total demand at 

any instant. 

1 1

m n

i j
i j

s d
= =

=∑ ∑
 

 

 

2.2.1.3 The Feasible Solutions Property of Transportation Problems 

According to Hiller and Lieberman (2005), a transportation problem will have a feasible 

solution if and only if 

1 1

m n

i j
i j

s d
= =

=∑ ∑
  

 

 

 

2.2.1.4 Integer Solutions Property of Transportation Problems 

For transportation problems, where every  and  has an integer value, all the basici js d  

variables (allocations) in every basic feasible solution (BFS) (including an optimal one) 

also have integer values (Hiller and Lieberman, 2005). 

 

 

2.2.2 METHODS OF SOLVING TRANSPORTATION PROBLEMS 

There are several methods for solving transportation problems. Two of such methods are 

the Stepping stone Method and Lagrangian Relaxation based methods. 
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These methods are variants of the Simplex Method. The methods use an initial BFS 

computed from methods like the Northwest corner rule or Vogel’s Approximation 

Method, and improve upon the initial basic feasible solution to obtain an optimal 

solution.   

Definitions 

Cell: It is a small compartment in the transportation tableau. 

Circuit: A circuit is a sequence of cells (in the balanced transportation tableau) such that 

(i) It starts and ends with the same cell. 

(ii) Each cell in the sequence can be connected to the next member by a horizontal 

or vertical line in the tableau. 

Allocation: The number of units of items transported from a source to a destination which 

is recorded in a cell in the transportation tableau. 

Basic Variables: The variables in a basic solution whose values are obtained as the 

simultaneous solution of the system of equations that comprise the functional constraints. 

Basic Feasible Solution: A solution is called a basic feasible solution if 

i. It involves (m + n -1) cells with non-negative allocations. 

ii. There are no circuits among the cells in the solution. 
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2.2.2.1  FINDING INITIAL BASIC FEASIBLE SOLUTION OF BALANCED 

TRANSPORTATION PROBLEMS 

2.2.2.1.1 The Northwest Corner Rule  

The North West corner rule is a method for computing an initial basic feasible solution of 

a transportation problem where the basic variables are selected from the North – West 

corner (i.e., succeeding top left corner) of the transportation tableau. 

Given a balanced transportation problem in a transportation tableau, 

(1)  (i). Begin in the upper left (or northwest) corner of the transportation tableau. 

(ii). Set 11x as large as possible. 11 1 1Clearly min{ , }x s d= . 

(iii). If 11 1x s= , cross out row 1 of the transportation tableau; no more basic variables will 

come from row 1. Also set 1 1 1.d d s= −  

(iv). If 11 1x d= , cross out column 1 of the transportation tableau; no more basic variables 

will come from column 1. Also set 1 1 1s s d= − . 

(v). If 11 1 1x s d= = , cross out either row 1 or column 1 (but not both). 

 If you cross out row 1, set 1 0d =  

 If you cross out column 1, set 1 0.s =  

(2). Continue applying this procedure to the most northwest corner cell in the tableau that 

does not lie in the crossed-out row or column until you eventually reach a point where 

there is only one cell that can be assigned a value. Assign this cell a value equal to its row 

or column demand, and cross out the cell’s row and column. 

(3) A BFS has now been obtained. 
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Remark 

In cases of Degeneracy, the solution obtained by the Northwest Corner method is not a 

basic feasible solution because it has fewer than (m + n – 1) cells in the solution. This 

happens because at some point during the allocation, when a supply is used up, there is 

no cell with unfulfilled demand in the column. 

 To resolve degeneracy a zero allocation is assigned to one of the unused cell. 

Although there is a great deal of flexibility in choosing the unused cell for the zero 

allocation, the general procedure, when using the northwest corner rule, is to assign it to a 

cell in such a way that it maintains an unbroken chain of allocated cells.  

 

Example 1: Consider the balanced transportation problem in Table 2.2 below, where the

'ijx s initially put to be 0ijx = or blank. 

 

Table 2.2: A balanced transportation problem 
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Applying the Northwest Corner Rule, we obtain the ordered allocations shown in Table 

2.3 below. The number of circled allocation is 6 (that is 3 + 4 – 1 = 6) which gives the 

initial basic feasible solution. The arrows have been added to show the order in which the 

basic variables (allocations) were selected. 

 

Table 2.3: Initial BF solution from the Northwest Corner Rule 

 

 

 

 

 

 

 

 

 

 

  

Hence the initial BFS is given by

             

11 12

22 23

33 34

30, 10
10, 30
5, 20

x x
x x
x x

= = 
 = = 
 = = 

 

 

Cost Z ij ijc x=∑∑ (30 6) (10 5) (10 2) (30 4) (5 9) (20 5)= × + × + × + × + × + ×  

         = 515 
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2.2.2.1.2 Vogel’s Approximation Method (VAM)  

Vogel’s approximation method has been a popular criterion for many years. VAM usually 

yields a better initial solution than the other initial basic feasible solution methods (Mathirajan 

and Meenakshi, 2004).  

VAM is not quite as simple as the Northwest corner approach, but it facilitates a very 

good initial solution—as a matter of fact, one that is often the optimal solution.  

Vogel’s approximation method tackles the problem of finding a good initial basic feasible 

solution by taking into account the costs associated with each route alternative. This is 

something that the northwest corner rule does not do. To apply the VAM, the steps below 

are followed: 

 

1. For each row and each column of the transportation tableau, we find the 

difference between the two lowest unit shipping costs. These numbers represent 

the difference between the distribution costs on the best route in the row or 

column and the second best least cost route in the row or column. It is also the 

opportunity cost. 

2. We then identify the row or column with the greatest opportunity cost and assign 

the least of supply or demand capacities to the cell with the least cost of this row 

or column. Ties are broken arbitrarily. 

3. We eliminate any row or column that has just been completely satisfied by the 

assignment just made and subtract the assignment from the supply or demand of 

row or column of the relevant assigned cell. 
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4. We re-compute the cost differences for the new transportation tableau, omitting 

rows or columns crossed out in the preceding step. 

5. We then return to step 2 and repeat the steps until an initial feasible solution is 

obtained. 

 

The method is illustrated by applying it to the balanced transportation problem in 

Table 2.3 of section 2.2.2.1.1 above; Table 2.4 shows the processes of obtaining 

solution. 

 

Table 2.4a: Row and Column differences leading to elimination of column 4 
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Table 2.4b: Row and Column differences leading to elimination of column 2 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.4c: Row and Column difference leading to elimination of row 2 
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Table 2.4d: Row and column differences leading to elimination of column 3 

 

 

 

 

 

 

 

 

 

 

Table 2.4e: Selection of column 1 for being the only column left 
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Hence, the initial BFS is given by
11 13

21 24

31 32

5, 35
20, 20
5, 20,

x x
x x
x x

= = 
 = = 
 = = 

 

 

Cost, Z (20 1) (20 3) (20 3) (35 7) (5 7) (5 6)ij ijc x= = × + × + × + × + × + ×∑∑  

         = 450 

 

 

2.2.3 METHODS FOR SOLVING TRANSPORTATION PROBLEMS TO 

OPTIMALITY  

2.2.3.1 The Stepping Stone Method 

This method determines the alternate cell with no allocation that would reduce cost if 

used. 

Consider the balanced transportation problem shown in Table 2.2.  

Suppose that the BFS of this problem consists of (m + n – 1) non negative allocations 

(occupied) cells. Let the cells that are not in the BFS be known as unoccupied cells. 

The stepping Stone method uses the steps below to obtain an optimal solution to the 

transportation problem; 

1. Test for optimality: For each of the unoccupied cells, form a circuit of horizontal 

and vertical lines, beginning with a plus (+) sign at the unoccupied cell. 

Thereafter place alternate minus (-) and plus (+) signs on each corner cell of the 

closed path traced, with the unoccupied cell being a corner cell and the other 

corners cells being occupied cells. 
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2.  Using the unit cost of each cell, a closed path is formed for the unoccupied cell. 

We sign each unit cost by the relevant plus or minus. The total change in cost for 

the unoccupied cell that was used to form the circuit is computed. This change in 

cost is called improvement index of the unoccupied cell. 

3. (i) If the improvement index of each unoccupied cell in the BFS is non negative, 

then the current BFS is optimal since any re-allocation increases the cost. 

(ii) If there is at least one unoccupied cell with a negative improvement index, 

then a re-allocation to produce a new BFS with a lower cost is possible. Go to 

step 4. 

4.  Improvement to optimality. To get a new BFS, 

i.  We find the unoccupied cell whose circuit produced the most negative 

improvement index.  

ii. Using the above circuit, we find the smallest allocation in the cells of the 

circuit with the “ – “ sign and denote this smallest allocation by m. 

Subtract m from the allocations in all the cells in the circuit with “ – “ sign 

and add to all the allocations in the cells in the circuit with “ + “ sign. This 

has the effect of satisfying the constraints on demand and supply in the 

transportation tableau. 

iii.  Since the cell which carried the allocation m now has a zero allocation, it 

is deleted from the solution and is replaced by the cell in the circuit which 

was originally unoccupied and now has an allocation m.  

iv. The result of the re- allocation is a new basic feasible solution. The cost of 

this new basic feasible solution is m less than the cost of the previous BFS. 
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v.  Using the new BFS, go to step 1. 

 

Example 

Consider the balanced transportation problem in Table 2.2 above. 

From the Northwest Corner Rule, the initial basic feasible solution is shown circled in 

Table 2.5 below and with the cost Z = 515 

 

 

Table 2.5: Northwest Corner rule BFS 
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6 5 7 9 

3 2 4 1 

7 3 9 5 

30 20 35 20 

40 

40 

25 

Supply 1 2 3 4 

1 

2 

3 

Demand 

30 10 

10 30 

5 20 

Destination 

Source 



34 
 

First Iteration 

Test for Optimality 

The unoccupied cells are (1, 3), (1, 4), (2, 1), (2, 4), (3, 1) and (3, 2). 

Computing improvement indices for the unoccupied cells: 

For (1, 3):  

The circuit is (1, 3) → (2, 3) → (2, 2) → (1, 2) → (1, 3) 

                         +               -            +            -            +   

Improvement index = 7 – 4 + 2 – 5 = 0 

For (1, 4): 

The circuit is (1, 4) → (3, 4) → (3, 3) → (2, 3) → (2, 2) → (1, 2) → (1, 4) 

                         +              -             +             -            +             -             +  

Improvement index = 9 – 5 + 9 – 4 + 2 – 5 = 6 

For (2, 1): 

The circuit is (2, 1) → (2, 2) → (1, 2) → (1, 1) → (2, 1) 

                          +            -              +            -            + 

Improvement index = 3 – 2 + 5 – 6 = 0 

For (2, 4): 

The circuit is (2, 4) → (2, 3) → (3, 3) → (3, 4) → (2, 4) 

                         +             -              +             -            + 

Improvement index = 1 – 4 + 9 – 5 = 1 
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For (3, 1):  

The circuit is (3, 1) → (1, 1) → (1, 2) → (2, 2) → (2, 3) → (3, 3) → (3, 1) 

                          +             -             +            -              +            -             + 

Improvement index = 7 – 6 + 5 – 2 + 4 – 9 = - 1 

 

For (3, 2): 

The circuit is (3, 2) → (3, 3) → (2, 3) → (2, 2) → (3, 2) 

                           +           -              +            -             + 

Improvement index = 3 - 9 + 4 – 2 = - 4 

 

Improvement to optimality 

The unoccupied cell with the most negative improvement index is (3, 2). 

The least allocation to the cells in the circuit of (3, 2) with minus sign is 5. Subtracting 

this from the allocation of cells with the sign “-“, in the circuit and adding it to the 

allocations in the cells in the circuit with the sign “+”, we obtain the following new basic 

feasible solution as shown in Table 2.6 
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Table 2.6: New BFS obtained from Stepping Stone Method 

 

 

 

 

 

 

 

 

 

 

The new BFS is 11 12 22 23 32 3430, 10, 5, 35, 5 and 20x x x x x x= = = = = =  

 

 

Second Iteration 

Test for Optimality 

The unoccupied cells in the new solution are (1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 3). The 

improvement indices are shown in Table 2.7 

 

Table 2.7: Improvement indices of unoccupied cells in Table 2.6 

Cell (1, 3) (1, 4) (2, 1) (2, 4) (3, 1) (3, 3) 

Improvement Index 0 2 0 -3 3 4 
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Since there is an unoccupied cell with a negative improvement index, it follows that the 

current BFS is not optimal. 

 

Improvement to optimality 

The unoccupied cell with the most negative improvement index is (2, 4). The least 

allocation in the cells in its circuit with the sign “-“is 5. Subtracting it from the allocation 

in the other cell in the circuit with the sign “-“ and adding to the allocations in the cells in 

the circuit with the sign “+”, we obtain the new feasible solution in Table 2.8. 

 

 

Table 2.8: Second BFS using Stepping Stone method 

 

 

 

 

 

 

 

  

 

 

The new BFS is 11 12 23 24 32 3430, 10, 35, 5, 10 and 15.x x x x x x= = = = = =  
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Third Iteration 

Test for Optimality 

The unoccupied cells in the current basic feasible solution are (1, 3), (1, 4), (2, 1), (2, 2), 

(3, 1) and (3, 3).The improvement indices are shown in Table 2.9. 

 

Table 2.9: Improvement indices of unoccupied cells in Table 2.8 

Cell (1, 3) (1, 4) (2, 1) (2, 2) (3, 1) (3, 3) 

Improvement Index -3 2 3 3 3 1 

 

 

Since there is an unoccupied cell with a negative improvement index, it follows that the 

current basic feasible solution is not optimal. 

The unoccupied cell with the most negative improvement index is (1, 3). The least 

allocation to the cells in this circuit with the sign “-“ is 10. . Subtracting it from the 

allocation in the other cell in the circuit with the sign “-“ and adding to the allocations in 

the cells in the circuit with the sign “+”, we obtain the  new feasible solution in Table 

2.10. 
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Table 2.10: Optimal solution from Stepping Stone method 

 

 

 

 

  

 

 

 

 

 

The new BFS is 11 13 23 24 32 3430, 10, 25, 15, 20 and 5.x x x x x x= = = = = =  

 

Fourth Iteration 

Test for optimality 

The unoccupied cells in the current basic feasible solution are (1, 2), (1, 4), (2, 1), (2, 2), 

(3, 1) and (3, 3). The improvement indices are shown in Table 2.11.  

 

Table 2.11: Improvement indices of unoccupied cells in Table 2.10 

Cell (1, 2) (1, 4) (2 , 1) (2, 2) (3, 1) (3, 3) 

Improvement Index 3 5 0 3 0 1 

 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 20 35 20 

40 

40 

25 

Supply A B C D From 
To 

1 

2 

3 

Demand 

30 10 

15 25 

20 5 
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Since there is no unoccupied cell with a negative improvement index, it follows that the 

current basic feasible solution is optimal. The optimal solution is given by 

11 13 23 24 32 3430, 10, 25, 15, 20 and 5x x x x x x= = = = = = with the minimum cost of 450. 

 

2.2.3.2 Lagrangian Relaxation Based Methods 

One of the most computationally useful ideas of the 1970s is the observation that many 

hard problems can be viewed as easy problems complicated by a relatively small set of 

side constraints. Making the side constraints dual produces a Lagrange problem that is 

easy to solve, and whose optimal value is a lower bound (for minimization problems) on 

the optimal value of the original problem. 

The “birth” of Lagrangian approach as it exists today occurred in 1970 when Held and 

Karp (1970, 1971) used a Lagrangian problem based on minimum spanning trees to 

devise a dramatically successful algorithm for the traveling salesman problem. Motivated 

by Held and Karp’s success, Lagrange methods were applied in the early 1970s to 

scheduling problems (Fisher, 1973). Lagrangian methods had gained considerable 

currency by 1974 when Geoffrion (1974) coined the perfect name for this approach – 

“Lagrangian Relaxation”. 

 

2.3.2.1 Equality Constraints for Lagrangian Function 

Given the problem 1:     minimize ( )P f x  

subject to ( ) ,    g x b x X= ∈ . 

 The Lagrangian function is defined to be 

( , ) ( ) ( ( )).TL x f x b g xλ λ= + −  
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The components 1( ,..., )mλ λ λ= are known as the Lagrange multipliers.  

 

2.3.2.2 Inequality Constraints and Complementary Slackness 

When the functional constraints in the problem P1 are in inequality form the problem 

becomes 

2 :  minimize ( )
subject to ( ) ,   . 
P f x

g x b x X≤ ∈
 

 

It may be expressed in the previous form with equality constraints using slack variables 

as 

P3:minimize ( ),
subject to ( ) ,  and z 0.

f x
g x z b x X+ = ∈ ≥

 

The Lagrangian now becomes 

( , , ) ( ) ( ( ) )TL x z f x b g x zλ λ= + − − , 

 and it must be minimized over  and 0x X z∈ ≥ . 

Consider the term in the Lagrangian involving ;  if 0i i izλ λ− > then letting iz become 

arbitrarily large shows that this term can be made to approach−∞which implies that

, 0
inf ( , , )

x X x
L x z λ

∈ ≥
= −∞ . Thus, for a finite minimum of the Lagrangian we require that

0iλ ≤ , in which case the minimum of the term i izλ− is 0, since we could take 0iz = . 

Thus, with the inequality constraints in the problem, minimizing the Lagrangian always 

leads to sign conditions on the Lagrange multipliers, in this case 0λ ≤ . There is also a 

joint condition on the Lagrange multipliers and the slack variables in that

0    for each 1,..., ,  or equivalently, 0.T
i iz i m zλ λ= = =  
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This condition is known as a complementary slackness condition; at least one of the 

variables  and i izλ must be zero (at the optimum solution) for each .i  

 

2.3.2.3  Lagrange Multipliers and the Transportation Problem 

A classical optimization problem is the transportation problem in which there are m 

sources of supply of a particular good 1{ ,..., },mS S with amounts 1{ ,..., }ms s available, and n 

destinations 1{ ,..., }nD D at which there are demands 1{ ,..., }nd d , respectively for the good. 

For each pair{ , }i jS D , there is a cost ijc per unit for shipping from  to i jS D . 

 

Assumption:
1 1

m n

i j
i j

s d
= =

=∑ ∑ , that is, total supply equals total demand. 

 

The objective is to satisfy the demand from the supplies with the minimal transportation 

cost. Let ijx denote the flow from  to i jS D . 

The transportation problem is the linear programming problem formulated as 

1 1
   Z= .....................(1)

m n

ij ij
i j

Minimize c x
= =
∑∑  

1

j    
1

        ( 1, 2,..., ) ..............(2)

                    ( 1, 2,..., ) ................(3)

                         0     ( 1, 2,..., ; 1, 2,..., ) .......(4)

n

ij i
j

m

ij
i

ij

subject to x s i m

x d j n

x i m j n

=

=

= =

= =

≥ = =

∑

∑ (Demand constraints) 

 

Let  and i jvλ be the Lagrange multipliers. 

(Supply constraints) 
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 The Lagrangian for the balanced transportation problem is 

1 1 1 1 1 1

1 1 1

( , , )

               ( )

m n m n n m

ij ij i i ij j j ij
i j i j j i

m n m n

ij i j ij i i j j
i j i j

L x v c x s x v d x

c v x s v d

λ λ

λ λ

= = = = = =

= = =

   
= + − + −   

  

= − − + +

∑∑ ∑ ∑ ∑ ∑

∑∑ ∑ ∑
 

 

The minimum of the Lagrangian over 0ijx ≥ will be finite provided: 

0,           for each ,      (dual feasibility)ij i jc v i jλ− − ≥   

and at the optimum 

( ) 0,       for each , .      (complementary slackness)ij i j ijc v x i jλ− − =
  

The steps for Lagrangian procedure for solving balanced transportation problems are then 

indicated as follows; 

1. Initial assignment. We start the algorithm by choosing an initial basic feasible 

solution (BFS) by the Northwest method. 

2. Assign the Lagrangian multipliers. Next, we choose the values for the Lagrange 

multipliers ( ), ( )i jvλ so that 0ij i jc vλ− − = for the basic cells; this ensures that the 

complementary slackness holds. Since only the sum i jvλ + enter into all the 

calculations one of these multipliers may be chosen arbitrarily, 1 0λ = , say. 

3. Test for optimality. We identify the non-basic cells for which 0ij i jc vλ− − < ; if 

all cells have 0ij i jc vλ− − ≥ then the current solution is optimal. Otherwise go to 

step 4. 
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4. Pivoting. Choose the non-basic cell with the most negative value of

(Pivote cell)ij i jc vλ− − . Put an amount є > 0 units of flow into the pivot cell. At 

the same time, add or subtract from the basic cells to maintain feasibility. Now 

choose the largest є possible such that the flow is feasible. 

5. The algorithm now returns to step 2 with this flow as the basic feasible flow. 

 

 

Let us apply these steps to the initial BFS obtained from the Northwest method in Table 

2.5 with the total cost of flow of 515. 

 

First Iteration 

Step 2: We choose values for the Lagrange multipliers ( ), ( )i jvλ so that 0ij i jc vλ− − =  for 

the basic cells. We obtain the following equations; 

1 1

1 2

2 2

2 3

3 3

3 4

6 0
5 0
2 0
4 0
9 0
5 0

v
v
v
v
v
v

λ
λ
λ
λ
λ
λ

− − =
− − =
− − =
− − =
− − =
− − =

 

Letting 1 1 2 2 3 3 40,  we obtain 6, 5, 3, 7, 2 and 3v v v vλ λ λ= = = = − = = =  

 

The values for  and i jvλ obtained for the basic cells are as shown in Table 2.12. 
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Table 2.12: Lagrange multipliers of basic cells 

 

 

 

 

 

 

 

 

Step 3: Check for optimality: For each non-basic (unoccupied) cell we compute

ij i jc vλ− −  and identify those with 0ij i jc vλ− − < . The non-basic cells and their

ij i jc vλ− − values are shown in Table 2.13 below 

Table 2.13:Non-basic cells and their cij - λi - vj values 

Non-basic cell Value of ij i jc vλ− −  

(1,3) 7 - 0- 7 = 0 

(1,4) 9 – 0 – 3 = 6 

(2,1) 3 – (- 3) – 6 = 0 

(2,4) 1 – (- 3) – 3 = 1 

(3,1) 7 – 2 – 6 = - 1 

(3,2) 3 – 2 – 5 = - 4 

 

Since some of the ij i jc vλ− − values are negative, it means that the solution is not optimal 

and therefore the pivot operation must occur. 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 10 

10 30 

5 20 

iλ  
jv  

0 

-3 

2 

6 5 7 3 
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Step 4: The non basic cell with the most negative  value isij i jc vλ− −  (3, 2). We increase 

the solution in this cell byε  and form a loop as shown in Table 2.14(a) 

 

Table 2.14(a): New allocation with ε  adjustment for first iteration 

 

 

 

 

 

 

 

We then increase ε  until the allocation in one of the basic cells becomes zero; in this 

case when ε  = 5, and this gives a new basic feasible solution as shown in Table 2.14(b) 

below. 

 

Table 2.14(b): New BFS for First Iteration using Lagrange Multipliers 

 

 

 

 

 

 

 

5 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 10 

5 35 

 20 

ε  

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 10 

10 - ε  30 + ε  

5 - ε  20 
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The solution is 11 12 22 23 32 3430, 10, 5, 35, 5 and 20.x x x x x x= = = = = =  

Total cost of flow, (6 30) (5 10) (2 5) (4 35) (3 5) (5 20) 490Z = × + × + × + × + × + × =  

 

Second Iteration 

The algorithm returns to step 2 with the current solution as the basic feasible solution. 

Following the steps in the first iteration we get λ = [0, -3, -2] and v = [6, 5, 7, 7]. An (X) 

has been placed in the non-basic cell for which 0ij i jc vλ− − < . The numerical difference (

ij i jc vλ− − ) of this non basic cell is - 3. Table 2.15(a) shows the new allocation with ε  

adjustment. 

 

Table 2.15(a): New allocation with є adjustment for Second Iteration 

 

 

 

 

 

 

 

 

 

Table 2.15(b) below shows the new BFS with total cost 485. 

 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 10 

5 - ε  35 

20 - ε  

iλ  
jv  

0 

-3 

- 2 

6 5 7 7 

5 + ε  

Х (- 3) 

ε   
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Table 2.15(b): New BFS for second iteration 

 

 

 

 

 

 

 

The new BFS is 11 12 23 24 32 3430, 10, 35, 5, 10 and 15.x x x x x x= = = = = =  

 

Third Iteration 

The algorithm returns to step 2 with the current solution as the basic feasible solution. 

Following the steps in the first iteration we get λ = [0, -6, -2] and v = [6, 5, 10, 7].  An 

(X) has been placed in the non-basic cell for which 0ij i jc vλ− − < . The numerical 

difference ( ij i jc vλ− − ) of the cell (i.e., (1, 3)) is – 3. 

 

Table 2.16(a) shows the new allocation with є adjustment. 

 

 

 

 

 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 10 

35 

15 10 

5 
Total cost = 485 



49 
 

 

Table 2.16(a): New allocation with є adjustment for Third Iteration 

 

 

 

 

 

 

 

 

 

The table below shows the new BFS with the total cost 450. 

 

 

 

Table 2.16(b): New BFS for Third Iteration 

 

 

 

 

 

 

 

Total cost = 450, 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 

 
35 - ε  

15 - ε  

iλ  
jv  

0 

-6 

-2 

6 5 10 7 

10 + є 

5 + ε  

10 - ε  
  ε  

X (-3) 

6 5 7 9 

3 2 4 1 

7 3 9 5 

30 

 
25 

5 20 

15 

10 
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Since the all the non-basic cells in the above tableau satisfy the dual feasibility condition 

(i.e., 0ij i jc vλ− − ≥  ), it means that the current basic feasible solution 

11 13 2330, 10, 25x x x= = = 32 3420, 5x x= =  is optimal. The cost associated Z = 450. 

 

 

2.3 THE ASSIGNMENT PROBLEM 

The matching or assignment problem is one of the fundamental classes of combinatorial 

optimization problems. It is a special type of linear programming problem where agents 

are being assigned to perform tasks. The agents might be employees who need to be 

given work assignments. Assigning people to jobs is a common application of the 

assignment problem. However, the agents need not be people. They could be machines, 

vehicles, plants, or even time slots to be assigned tasks. 

In its most general form, the assignment problem can be stated as follows: A number of 

m agents and a number of n tasks are given, possibly with some restrictions on which 

agent can perform which particular task. A cost is incurred for each agent performing 

some task, and the goal is to perform all tasks in such a way that the total cost of the 

assignment is minimized. Figure 2 shows the network representation of the assignment 

problem. 
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Figure 2: Network representation of assignment problem: ijc denotes the cost of 

assigning agent i  to task j . 

 

2.3.1  The Linear Assignment Problem (LAP) 

In the Linear Assignment Problem (LAP), the number of agents and tasks is the same and 

any agent can be assigned to perform any task. LAP is thus equivalent to the problem of 

finding an optimum weight vertex matching in an n × n cost-weighted complete bipartite 

graph. 

 

2.4.2 Formulation of Linear Assignment Problem 

 Formally, LAP can be formulated as follows: 

 Given a set of agents A = 1 2{ , ,..., }na a a  and a set with the same number of tasks  

T = 1 2{ , ,..., }nt t t  and the cost function :C A T R× →  

Find a matching :m A T→  such that the cost function 

1,1c  

,m nc
 

Agents Task 

.

.

.
 

.

.

.
 

1 

2 

3 

m
 

1 

2 

3 

n  
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( ), ( )
a A

C a m a
∈
∑ , is minimized. 

Usually the weight function (i.e. the cost function) is viewed as a square real-valued 

matrix C with elements ( , )ij i jC c a t= . 

 

This problem can be expressed as an integer linear program with the objective function 

  Minimize Z =
1 1

.............(4)
n n

ij ij
i j

C x
= =
∑∑ , 

 subject to the constraints 

1
1,  for all j {1,2,..., }

n

ij
i

x n
=

= ∈∑  

1
1,  for all {1,2,..., }

n

ij
j

x i n
=

= ∈∑  

{0,1},  for all , {1,2,..., }ijx i j n∈ ∈  

The variable ijx represents the assignment of agent  to task i j , taking value 1 if the 

assignment is done and 0 otherwise. 

 Constraint (5) requires that every agent is assigned to exactly one task, and constraint (6) 

requires that every task is assigned exactly one agent. 

Except for the assumed integrality of the decision variable ijx , the assignment problem is 

just a balanced transportation problem in which  

• the number of supply and demand nodes are equal 

• supply from every supply node (agent) is one 

•  the demand at every demand node (task) is also one, and 

• solution is required to be all integers. 

(5) 

(6) 
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The table below is a parameter table for the general assignment problem formulated as a 

transportation problem. 

 

Table 2.17: Parameter table for assignment problem formulated as a transportation 

problem 

 

 

 

 

 

 

 

 

 

For any linear assignment problem with n assignments to be made, the tableau shown in 

Table 2.17 has m = n, that is, both the number of agents (n) and the number of task (n) in 

this formulation equal the number of assignments (n). 

Transportation problems in general have m + n – 1 basic variables (allocations), so every 

basic feasible solution of linear assignment problems has 2n - 1 basic variables, but 

exactly n of these ijx  variables equals 1(corresponding to the n assignments being made). 

Therefore, since all the variables are binary variables, there are always (n – 1) degenerate 

variables 0ijx = . 

 

Task 

Resource 

1 

1 

1 

1 
1 1 

......  

.....  

11c  12c  

21c  22c  

1, 1nc −  
1,nc  

2, 1nc −  

1, 1m nc − −  

, 1m nc −  

2,nc  

1,m nc −  

,m nc  ,2mc  
1,1mc −  1,2mc −  

,1mc  

1 1 

. 

. 

. 

. 

. 

. 

. 

. 

Agent 

Activity 

1 

2 
. 

. 

. 

m  

. 

. 

1 2 1n −  n  

. . . 
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2.3.3 The Vehicle Assignment Problem 

 In its simplest form, the assignment problem can be formulated in terms of linear 

programming and solved with a help of simplex method, network algorithms (Cooke, 

1985) or assignment method (Lotfi and Pegels, 1989).Some authors (Löbel, 1998), 

(Rushmeier and Kantogiorgis, 1997) formulate the vehicle assignment problem in terms 

of the linear, integer programming. Some others (Beaujon and Turnquist, 1991)   

transform the linear, discrete model into a non-linear, continuous form. Many models are 

based on the queuing theory (Green and Guha, 1995), (Whitt, 1992). The proposed 

models consider either the same capacity (Beaujon and Turnquist, 1991) or different 

capacity fleet (Ziarati et al., 1999). Some of the models combine the vehicle assignment 

problem with other fleet management problems, such as fleet sizing (Beaujon and 

Turnquist, 1991) or fleet scheduling (Rushmeier and Kantogiorgis, 1997). 

The models usually refer to specific transportation environments, such as: urban 

transportation (Löbel, 1998), rail transportation (Ziarati et al., 1999) or air transportation 

(Rushmeier and Kantogiorgis, 1997). Zeleny (1992) proposes an extended multi-criteria 

model for the vehicle assignment problem and a solution procedure based on an 

assignment algorithm – Hungarian method (Bradley et al., 1977).  The most popular 

solution procedures are decomposition techniques, such as: Frank-Wolfe’s, Benders’ or 

Dantzig-Wolfe’s decomposition algorithms (Bradley et al., 1977). Heuristics and branch-

and-bound algorithm are also utilized. 
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2.3.4  Variants of Assignment Problem 

i. Multiple Optimum Solutions  

This is a situation whereby more than one optimal solution is obtained and we, therefore, 

have elasticity in decision making. Here one can choose any of the solutions by 

experience or by using further considerations. 

ii. Maximization case in Assignment Problem  

Some assignment problems entail maximizing the profit, effectiveness, or layoff of an 

assignment of agents to tasks or jobs to machines. 

 

2.3.4.1  Unbalanced Assignment Problem  

It is an assignment problem where the number of agents is not equal to the number of 

tasks.  

If the number of agents is less than the number of tasks then we introduce one or more 

dummy agents (rows) with zero cost values to make the assignment problem balanced. 

Likewise, if the number of tasks is less than the number of agents then we introduce one 

or more dummy tasks (columns) with zero cost values to make the assignment problem 

balanced.  

 

 2.3.4.2 Prohibited Assignment  

Sometimes it may happen that a particular resource (say a man or machine) cannot be 

assigned to perform a particular activity. In such cases, the cost of performing that 
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particular activity by a particular resource is considered to be very high (written as M or 

∞) so as to prohibit the entry of this pair of resource-activity into the final solution. 

 

2.4 METHODS FOR SOLVING ASSIGNMENT PROBLEMS 

Methods such as the Stepping Stone method and the Lagrange multipliers for solving 

transportation problems can be used to solve the assignment problem. However, due to its 

special characteristics, the Hungarian Method or Munkres Assignment Algorithm is 

usually used to solve such assignment problems. 

 

2.4.1    Introduction to the Hungarian Method 

A high degree of degeneracy in an assignment problem may cause the above mentioned 

methods to be inefficient in solving assignment problems. For this reason, and the fact 

that the algorithm is even much simpler than solution methods mentioned above, the 

Hungarian method is usually used to solve assignment problems. 

The Hungarian Method was invented and published in 1955 by Harold Kuhn. The 

algorithm developed by Kuhn was largely based on the earlier works of two Hungarian 

mathematicians: Dénes König and Jenö Egerváry (Andras, 2004). 

The main merit of Kuhn’s Hungarian Method is that in the past half a century it has 

become the starting point of a fast developing area of efficient combinatorial algorithms. 

Its seminal ideas, developed originally for the weighted bipartite matching problem (that 

is, the assignment problem) have been applied by Ford and Fulkerson (1942) to the 

transportation problem and, more generally, to minimize cost flows, as well. 
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The algorithm is used to solve an assignment problem of  n n×  cost matrix where each 

element represents the cost of assigning the ith agent to the jth task. By default, the 

algorithm performs a minimization on the elements in the cost matrix. 

 

2.4.2  The Hungarian Algorithm Due to Kuhn  

Harold W. Kuhn, in his celebrated paper entitled The Hungarian Method for the 

assignment Problem, (Andras, 2004) described an algorithm for constructing a maximum 

weight perfect matching in a bipartite graph. Kuhn explained how the works of two 

Hungarian mathematicians, Dénes Kӧnig and Jenӧ Egervȧry, had contributed to the 

invention of his algorithm, the reason why he named it the Hungarian Method. 

 

Definitions 

• A graph is an ordered pair G = (V, E) consisting of a finite set V and a subset E 

of elements of the form(x, y) where x and y are in V. The elements in set V are 

called the vertices of the graph and those in set E are called the edges. 

• A bipartite graph is a linear graph in which the nodes can be partitioned into two 

groups X and Y such that for every edge (i, j) node i is in X and node j is in Y. 

That is, a graph G = (V,E) is bipartite if there exists a partition

 with  and .V X Y X Y E X Y= ∪ ∩ =∅ ⊆ ×  

• The complete bipartite graph :m nK  is the graph with bipartition {X; Y} where

 and X m Y n= = , and each vertex of X is adjacent to every vertex of Y. 

• A matching M of a general graph G = (V, E) is a subset of the edges with the 

property that no two of the edges of M share the same node. In other words, a 
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matching is a subset  such that M E v V⊆ ∀ ∈ at most one edge in M is incident 

upon v. 

• A matching M is perfect if every vertex in G is incident with an edge in the 

matching. 

• The size of a matching is M  the number of edges in M. 

• A path consists of a sequence of vertices from a starting vertex to an end vertex 

with edges linking successive vertices. 

 

2.4.2.1      Alternating Paths 

Let M be a matching of graph G. Vertex v is matched if it is an endpoint of edge in M; 

otherwise v is free of the matching. If (x, y) is a matched edge, then y is the mate of x. 

Nodes that are not incident upon any matched edges are called exposed (free) nodes. For 

example, in figure 3 below, the matched vertices are 2 3 4 6 2 4 5 6, , , , , , ,  and yx x x x y y y , the 

matched edges (deep black edges) are the set 2 2 3 5 4 4 6 6( , ), ( , ), ( , ), ( , )x y x y x y x y and the 

exposed nodes are 1 5 1 3, , ,  and yx x y .  

 

 

 

 

 

 

Figure 3: Graph showing matched vertices, matched edges and alternating paths 

2x  3x  4x  5x  6x  1x  

1y  2y
 

3y
 

4y
 

5y
 

6y
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A path is alternating if its edges alternate between M and E-M. In figure 3 above the 

alternating paths are 

(i) 1 2 2 4 4 5 3 3x y x y x y x y→ → → → → → →  

(ii) 1 2 2 3 5 6 6 5y x y x y x y x→ → → → → → → and 

(iii) 1 2 2 4 4 5y x y x y x→ → → → →  

 

2.4.2.2    Augmenting Path 

An alternating path is augmenting if both endpoints are free or unsaturated.  An 

augmenting path has one less edge in M than in E-M.  

For example, in figure 4 below, vertices 1 2 2 4 4 5, , , , ,x y x y x y form an augmenting path.  

 

 

 

 

 

Figure 4: Graph showing Augmenting paths 

 

 

Number of edges in M (i.e., number of deep black edges) in the augmenting path

1 2 2 4 4 5, , , , ,x y x y x y  = 2 

Number of edges E (i.e., the number of deep black edges plus the number of light black 

edges) in the augmenting path = 5 

Therefore, the number of edges in E-M = 5 – 2 = 3, which is greater than the number of 

edges in M by 1. 

 

2x  3x  4x  5x  6x  1x  

1y  2y  3y  4y  5y  6y  
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2.4.2.3  Alternating Tree 

An Alternating tree is two or more alternating paths all ending on some free vertex v as 

the root. Considering the matching M in figure 5(a), 5x is the root because at 5x  three 

alternating paths 

(i) 5 6 6, ,x y x , 

(ii) 5 5 3 3, , ,x y x y and 

  (iii) 5 4 4 2 2 1, , , , ,x y x y x y form alternating trees as indicated in figure 5(b). 

 

 

 

 

 

 

 

                                   

2.4.2.4   Weighted Matching Bipartite Graphs     

These are graphs in which each edge ( , )i j has a weight or value ( , )w i j . The weight of a 

matching M is the sum of the weights of the edges in M, 

( ) ( )
e M

w M w e
∈

= ∑  

Each entry ijw represents the weight of the edges between  and yi jx . 

 

Figure 5(a): A matching M 

2x  3x  4x  5x  6x  1x  

1y  2y
 

3y
 

4y
 

5y
 

6y
 

Figure 5(b): An alternating tree 

2x  3x  4x  5x  6x  1x  

1y  2y
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Problem: Given a bipartite weighted graph G (figure 6(a)), find a maximum weight 

matching. 

 

 

      Solution: 

 

 

 

 

 

Figure 6(a): Bipartite weighted graph Figure 6(b): Maximum weight matching 

 

2.5.2.5    Feasible Vertex Labeling  

Let N be a network with each edge e giving an integer weight w (e). A feasible vertex 

labeling for N is a function ℓ: V (N) →   such that ℓ(x) +ℓ(y) ≥ w(x, y) for all

 and x X y Y∈ ∈ . ℓ(x) and ℓ(y) are the labeling of vertices x and y respectively and  

w (x, y) is the maximum edge weight from vertex x to vertex y. 

We define the size of ℓ by size
( )

( ) ( )
v V N

v
∈

= ∑  . 

 

 Lemma 1: Let ℓ be a feasible vertex labeling for N and M be a perfect matching in N. 

Then w (M) ≤ size (ℓ). 

 

 

(By inspection) 

3 

2 

3 

x1 x2 x3 

y1 y2 y3 

3 1 

2 

3 

2 
1 0 

3 2 

x1 x2 x3 

y1 y2 y3 
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Proof: Let M 1 1 2 2{ , ,..., }m mx y x y x y= . 

Then
1 1

( ) ( ) [ ( ) ( )] ( ) ( )
m m

i i i i
i i v V

w M w x y x y v size
= = ∈

= ≤ + = =∑ ∑ ∑     

, since ℓ is a feasible vertex labeling. 

Lemma 1 implies that the maximum weight of a perfect matching in N is less than or 

equal to the minimum size of a feasible vertex labeling of N. 

For example, let N be the weighted 3:3K  with bipartition X = {x1, x2, x3} and Y = {y1, 

y2, y3}, and weights shown in the figure 7 below. 

 

 

 

 

 

 

 

 

 

The weight of the edge (x1 y1) is w(x1 y1) = 3, and the weight of the matching 

1 1 2 2 3 3{ , , }M x y x y x y= is given by w (M) = ( )
e M

w e
∈
∑  = 3 + 2 + 1 = 6.  

We may define an initial feasible vertex labeling ℓ of N by putting ( )ix  equal to the 

maximum weight of an edge incident to ix , and ( )iy  equal to zero for all1 3i≤ ≤ . This 

gives 1( )x  = 3, 2( )x  = 2, 3( )x  = 3, and ( )iy   = 0 for all1 3i≤ ≤ . Thus size (ℓ) = 3 + 2 

+ 3 = 8 > w (M). 

Figure 7: A Feasible Vertex Labeling 
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2 
1 

3 2 

1 

1 

1 

1y  
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2y
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3x  

  2 

2x  

  1 
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2.5.2.6    Equality sub graph 

Let ℓ be a feasible vertex labeling of N.   The equality sub graph (with respect to  ) in N,

( ) ( , )G V E=   is the spanning sub graph of N containing all edges (x, y) for which 

 E {( , ) : ( ) ( ) ( , )}x y x y w x y= + =    

 

Lemma 2: Let ℓ be a feasible vertex labeling for N and M be a perfect matching in the 

equality sub graph G (ℓ). Then w (M) = size (ℓ) and hence M is a maximum weight 

perfect matching in N and ℓ is a minimum size feasible vertex labeling of N. 

 

Proof: Let M 1 1 2 2{ , ,..., }m mx y x y x y= . Since G (ℓ) is the equality sub graph of ℓ in N, we 

have   

( ) ( ) ( ), for all 1i i i ix y w x y i m+ = ≤ ≤  .  

Thus 

1 1 ( )
( ) ( , ) (( ( ) ( )) ( ) ( )

m m

i i i i
i i v V N

w M w x y x y v size
= = ∈

= = + = =∑ ∑ ∑     

 

The facts that M is a maximum weight perfect matching in N and ℓ is a minimum size 

feasible vertex labeling of N now follows from Lemma 2. 

 

 Figure 8 below shows the equality sub graph of the feasible vertex labeling (figure 6) for 

N. 
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Theorem 1(Egerváry, 1931): Let N be a weighted complete bipartite graph. Then the 

maximum weight of a perfect matching in N is equal to the minimum size of a feasible 

vertex labeling of N. 

 

Proof: Let ℓ be a minimum size feasible vertex labeling of N and G = G (ℓ) be the 

equality sub graph for ℓ in N. By Lemma 2 it suffices to show that G has a perfect 

matching. We proceed by contradiction. 

Suppose that G does not have a perfect matching. There exists a set S X⊆ such that

T S< . 

 Let α  = min {ℓ(x) + ℓ(y) - w(x y): x ∈S, y T∉ } 

Note that α > 0 since there are no edges in the equality sub graph from S to Y – T and 

hence we have 

   ℓ(x) + ℓ(y) > w(x y), for all x ∈S, y T∉  

We may now define a feasible vertex labeling ℓ’ of N as follows: 

Figure 8: Equality sub graph ( ) for NG       

3 

2 

3 2 

1 

1y  

 

1 

2y  
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3y  

1x  

  2 

3x  

  2 

2x  

  1 

2 

3 



65 
 

For each ( )v V N∈ , let 

( ) , for 
'( ) ( ) ,  for 

( )         otherwise

v v S
v v v T

v

α
α

− ∈
= + ∈





 



 

Suppose '( )v is not a feasible vertex labeling of N. 

Then, we have  

ℓ’(x) + ℓ’(y) < w(x y) for some  and x X y Y∈ ∈  

 

Since ℓ is a feasible vertex labeling of N, we must have x ∈S, y∈Y – T 

 But then the definition of α implies that 

 ℓ(x) + ℓ(y) - w(x y) ≥ α, and hence  

ℓ`(x) + ℓ`(y) - w(x y) ≥ 0 

Thus ℓ` is a feasible vertex labeling of N. 

Since α > 0 and S T>  we have  

Size (ℓ`) = size (ℓ) - ( ) ( )S T sizeα − <   

 This contradicts the fact that ℓ is a minimum size feasible vertex labeling of N. Thus G 

has a perfect matching. 

 

2.4.2.8    The Kuhn-Munkres Algorithm (Hungarian Method) 

Suppose N is a network obtained from Km:m by giving each edge e an integer weight 

w(e). The algorithm iteratively constructs a sequence of feasible vertex labeling 1 2, ,...   

for N such that size ( 1)i+  < size ( i ), and a sequence of matching iM  such that iM  is a 
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maximum matching in the equality sub graph G ( i ), for all i ≥  1. It stops when it finds a 

feasible vertex labeling i  for which iM  is perfect matching in G ( i ). 

 

Initial Step  

(i) Construct a feasible vertex labeling ℓ1 for N by putting ℓ1(x) = max {w(x y): 

y ∈Y} for each x ∈  X, and ℓ1(y) = 0 for all y ∈ Y.  

(ii)  Construct a maximum matching M1 in G( ℓ1) 

 

Iterative Step: Suppose we have constructed a feasible vertex labeling i of N, and a 

maximum matching iM in G = G ( i ), for some i ≥  1. 

i. If Mi is complete for G (ℓi), then Mi is optimal. Stop. Otherwise, there is 

some unmatched x X∈ . Set { } and S x T= =∅ . 

ii. Let ( ) ( )
iGN S be the neighbour of set S in the equality sub graph G (ℓi), where 

S X⊆ .If ( ) ( )
iGN S T≠ , go to step (iii). Otherwise, ( ) ( )

iGN S T= .Compute

min{ ( ) ( ) ( ); , }c
i ix y w xy x S y Tα = + − ∈ ∈  , where cT denotes the 

complement of T in Y and construct a new labeling 1i+  by 

1

( ) ,  if 
( ) ( ) ,  if 

( )          otherwise,       for each ( ).

i

i i

i

v v S
v v v T

v v V N

α
α+

− ∈
= + ∈
 ∈



 



 

iii. Choose a vertex y in ( ) ( )
iGN S , not in T. If y is matched in Mi, say with z∈X, 

replace S by S∪ {z} and T by T∪ {y}, and go to step (ii). Otherwise, there 
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will be an M – alternating path from x to y, and we may use this path to find a 

larger matching 1iM +  in G (ℓi). Replace iM  by 1iM +  and go to step (i). 

 

Example: A mattress company wishes to introduce a new product to its customers. The 

company has three salespeople and three sales districts to be worked. Based on past sales 

experience the company can estimate the relative sales productivity ratings for each 

salesperson iS in each of the sales districts jD . The ratings are shown in the table below. 

 

 D1 D2 D3 

S1 $ 2 $ 6 $ 3 

S2 $ 5 $ 8 $ 6 

S3 $ 4 $ 3 $ 2 

 

 What is the best way to assign the salespersons for the company to maximize profit? 

 

Solution: The weighted bipartite graph for the assignment is as shown in figure 9(a) 

below.  

 

 

 

District 

Salesperson 
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First Iteration 

(i) We construct a feasible vertex labeling ℓ1 for N by putting ℓ1( iS ) = max {w 

(Si, Dj)} for all iS X∈ , and 1( ) 0jD =  for all jD Y∈  as shown in figure 

9(b). 

 

 

 

 

 

 

 

                                         Figure 9(b): Feasible vertex labeling ℓ1 for N 

 

 

Figure 9(a): Weighted bipartite Graph 

1D  2D  3D  

1S
 

2S
 

3S  

2 

3 

8 

3 

4 

2 
6 

5 
6 

1(0)D  2 (0)D  3 (0)D  

1(6)S  2 (8)S
 

3 (4)S
 

2 

3 

8 

3 

4 

2 
6 

5 6 
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The equality sub graph G (ℓ1) for ℓ1 is shown in figure 9(c). 

 

 

 

 

 

 

 

 

 

(ii) We then choose arbitrary matching M1 = { 3 1 2 2, } inS D S D G (ℓ1) as shown in 

figure 9(d).  

 

 

 

 

 

 

 

w(M1) = 4 + 8 = 12 

Figure 9(c): Feasible Vertex Labeling ℓ1 + G(ℓ1) 

 

Figure 9(d): Equality sub graph G (ℓ1) + M1 

 

1(0)D  2 (0)D  3 (0)D  

1(6)S  2 (8)S  3 (4)S  

8 

4 

6 

1(0)D  2 (0)D  3 (0)D  

1(6)S  2 (8)S  3 (4)S  

8 

4 

6 
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 Iterative Step 

Since 1 2 3M = < , M1 is not optimal. We construct a new feasible vertex labeling ℓ2 for 

N as follows: 

 

(i) We set 1{ }S S=  andT =∅  

(ii) Because ( 1) 2( ) { }GN S D T= ≠ , we go to step (iii) 

(iii) We choose a vertex
12 ( )GD N S T∈ − which is in Y. Since 2D  is matched in M1, 

we grow tree by adding ( 2 2,D S ). i.e., 1 2{ , }S S S= and 2{ }T D= .  

At this point,
1( ) 2{ } .GN S D T= =  

We compute
1

1 1

1 3

2 1

2 3

6 0 2 (S ,D )
6 0 3 (S ,D )

min
8 0 5 (S ,D )
8 0 6 (S ,D )

α

+ −
 + −=  + −
 + −

      

   = 2 

We then reduce labels of S by 2 and increase labels of T  by 2 to obtain the new equality 

sub graph G (ℓ2) shown in figure 9(e) below. 

 

 

 

 

 

 

Figure 9(e): Equality sub graph G (ℓ2) + M1 

D1 (0)  D2 (2) D3(0)  

S1 (4) S2 (6) S3 (4) 

 

4 

6 

8 
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Now: 

• 1 2 ( 2) 2 3{ , }, { , }GS S S N S D D T= = ≠  

• 
23 ( )Choose  and add it to .GD N S T T∈ −  

• 3D  is NOT matched in M1 so an alternating path 1 2 2 3S D S D→ → → with two 

free ends have been found. We can therefore augment M1 to get a larger matching 

M2 (figure 10(b)) in the new equality graph (figure 10(a)). This matching is 

perfect, so it must be optimal. 

 

 

 

 

 

 

 

 

 

Thus, for the company to maximize profit,  

• Salesperson S1 must be assigned to sales district D2,  

• Salesperson S2 must be assigned to sales district D3, and 

• Salesperson S3 must be assigned to sales district D1. 

The optimal value is w (M2) = 6 + 6 + 4 = 16 > w (M1) = 12, and it is exactly the labels 

in the final feasible vertex labeling for M2 = 4 + 6 + 4 + 2 = 16. 

6 

1(0)D  
2 (2)D

 
3 (0)D  

1(4)S  2 (6)S
 

3 (4)S
 

6 

8 

Figure10 (a): New Alternating 
tree obtained from G (ℓ2) 

Figure 10(b): New matching M2 

6 

1(0)D  
2 (2)D  3 (0)D  

1(5)S  2 (6)S  
3 (4)S  

6 

4 
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2.4.2.9    Correctness of the Method 

• We can always take the trivial labeling   and empty matching M =∅ to start the 

algorithm. 

• If the labeling ℓ in the neighborhood of S is equal toT , we saw that we could 

always update labels to create a new feasible matching ' . 

• If the labeling ℓ in the neighborhood of S is not equal toT , we can by definition, 

always augment the alternating tree by choosing some

 and  such that ( , ) .x S y Y T x y E∈ ∈ − ∈  Note that at some point, the y chosen 

must be free, and in which case we augment M. So, the algorithm always 

terminates and when it does terminate M is a perfect matching in E so by Kuhn- 

Munkres theorem, it is optimal. 

 

 

2.5 MATRIX REDUCTION FORM OF THE HUNGARIAN METHOD 

 One way of looking at the assignment problem and the Hungarian method is in terms of 

a matrix. Given n agents and n tasks, and non negative edges

( , ), 1, 2,..., , 1, 2,...,e i j i n j n= = represented by the cost ijc  of assigning agent i  to task j , 

the problem is to find the cost minimizing assignment. 

The method operates directly on the cost table for the problem. More precisely, it 

converts the original cost table into a series of equivalent cost tables until it reaches one 

where an optimal solution is obtained.  
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The steps of the method as outlined by Hiller and Lieberman (2005) are as follows: 

1. Subtract the smallest number in each row from every number in the row. Enter the 

result in a new table. 

2. Subtract the smallest number in each column of the new table from every number 

in the column. Enter the results in another table. 

3. Test whether an optimal assignment can be made. We do this by counting the 

minimum number of lines needed to cover (i.e., cross out) all zeros. If the number 

of lines equals the number of rows, then an optimal set of assignments is possible. 

In that case, go to step 6. Otherwise, go to step 4. 

4.  If the number of lines is less than the number of rows, modify the table in the 

following way: 

a. Subtract the smallest uncovered number from every uncovered number in the 

table. 

b. Add the smallest uncovered number in 4(a) to the intersections of covering 

lines. 

c. Numbers cross out but not at the intersections of cross-out lines carry over 

unchanged to the next table. 

5. Repeat steps 3 and 4 until an optimal set of assignments is possible. 

6. Make the assignments one at a time in positions that have zero elements. Begin 

with rows or columns that have only one zero. Since each row and each column 

needs to receive exactly one assignment, cross out both the row and the column 

involved after each assignment is made. Then move on to the rows and columns 

that are not yet crossed out to select the next assignment, with reference again 
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given to any such row or column that has only one zero that is not crossed out. 

Continue until every row and every column has exactly one assignment and so 

has been crossed out. 

 

 

Prototype Example 

The Better Products Company has decided to initiate the production of four new 

products, using three plants that currently have excess production capacity. The products 

require a comparable production effort per unit, so the available production capacity of 

the plants is measured by the number of units of any product that can be produced per 

day as given in Table 2.18 below. 

Table 2.18: Data for the Better Products Co. problem 

 

 

 

 

 

 

 

The bottom row gives the required production rate per day to meet the rejected sales. 

Each plant can produce any of these products, except that Plant 2 cannot produce product 

Product 

 

Plant 

Unit cost ($) for product 

1 2 3 4 
41 

40 

37 

 

 

27 

29 

30 

28 

- 

27 

24 

23 

21 

1 

2 

3 

Production rate 20 30 30 40 

Capacity 
Available 

75 

75 

45 
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3. However, the variable costs per unit of each product differ from plant to plant as 

shown in the main body of Table 2.18 above. 

Management now needs to make a decision on how to prohibit product splitting among 

the plants and further specifies that every plant should be assigned at least one of the 

products 

Solution 

Without product splitting, each product must be assigned to just one plant. Therefore, 

producing the products can be interpreted as the tasks for an assignment problem, where 

the plants are the agents. 

Management has specified that every plant should be assigned at least one of the 

products. There are more products (four) than plants (three), so one of the plants will 

need to be assigned two products. Plant 3 has only enough excess capacity to produce one 

product (see Table 2.18), so either Plant 1 or Plant 2 will take the extra product. 

 

To make this assignment of an extra product possible within an assignment problem 

formulation, Plants 1 and 2 each are split into two assignees, as shown in Table 2.19. 
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Table 2.19: Cost table for the assignment problem formulation for the Better Products 

Co. problem 

 

 

 

 

 

 

 

  

 

The reason for M here is that Plant 3 must be assigned a real product (a choice of product 

1, 2, 3 or 4), so the Big M method is needed to prevent the assignment of the fictional 

product to Plant 3. 

For an assignment problem the cost ijc is the total cost associated with assignee i 

performing task j. For Table 2.19, the total cost (per day), for Plant i to produce product j 

is the unit cost of production times the number of units produced (per day). For example, 

consider the assignment of Plant 1 to product 1. By using the corresponding unit cost in 

Table 2.18 ($41) and the corresponding demand (number of units produced per day) in 

Table 2.18 (20), we obtain 

Cost of Plant 1producing one unit of product 1       = $41 

Required (daily) production of product 1           = 20 units 

Assignee 

(Plant) 

1 2 3 4 

820 

820 

800 

800 

740 

 

 

 

810 

810 

870 

870 

900 

840 

840 

M 

M 

810 

960 

960 

920 

920 

840 

1a 

1b 

2a 

2b 

3 

5 

0 

0 

0 

0 

M 

Task (Product) 
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Total (daily) cost of assigning Plant 1to product 1 = 20×$41 = $820, so 820 is entered 

into Table 2.19 for the cost of either Assignee 1a or 1b performing Task 1. 

 

To illustrate the algorithm, let us consider the table below which is the cost table from 

Table 2.19. 

 

Table 2.20: Cost table obtained from Table 2.19 

 

 

 

 

 

 

 

 

Step 1: Subtracting the smallest number in each row from every number in the 

row results in the following equivalent cost table 

 

 

 

 

 

 

1 2 3 4 

820 

820 

800 

800 

740 

 

 

 

810 

810 

870 

870 

900 

840 

840 

M 

M 

810 

960 

960 

920 

920 

840 

1a 

1b 

2a 

2b 

3 

5 

0 

0 

0 

0 

M 

1 2 3 4 

820 

820 

800 

800 

   0 

 

 

 

810 

810 

870 

870 

160 

840 

840 

M 

M 

70 

960 

960 

920 

920 

100 

1a 

1b 

2a 

2b 

3 

5 

0 

0 

0 

0 

M 
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Step 2: Subtracting the smallest number in each column of the above equivalent 

cost table yields the following equivalent cost table. 

 

 

 

 

 

 

 

 

Step 3: We then test whether an optimal assignment can be made by drawing lines to 

cover all the zeros. 

 

 

 

 

 

 

 

 

Since two lines (less than five lines) are required to cover all zeros, it follows that an 

optimal solution has not been obtained. We go to step 4 

1 2 3 4 

820 

820 

800 

800 

0 

 

 

 

650 

650 

710 

710 

  0 

770 

770 

 M 

 M 

0 

860 

860 

820 

820 

0 

1a 

1b 

2a 

2b 

3 

5 

0 

0 

0 

0 

M 

1 2 3 4 
820 

820 

800 

800 

0 

 

 

 

650 

650 

710 

710 

  0 

770 

770 

M 

M 

0 

120 

120 

80 

80 

0 

1a 

1b 

2a 

2b 

3 

    5 
0 

0 

0 

0 

M 
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Step 4: The minimum element not crossed out is 80 (column 4). We subtract 80 from 

every uncovered element in the entire table and add 80 to doubly crossed elements to 

obtain the equivalent cost table below. We then go to step 3 and test for optimality. 

 

 

 

 

 

 

 

  

Step 3: Test for optimality: We obtain the tableau below. 

 

 

 

 

 

 

 

 

 

Since three lines (less than five lines) are required to cover all zeros, it follows that an 

optimal solution has not been obtained. We then go to step 4. 

1 2 3 4 

740 

740 

720 

720 

0 

 

 

 

570 

570 

630 

630 

 0 

690 

690 

M 

M 

0 

40 

40 

0 

0 

0 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 

1 2 3 4 

740 

740 

720 

720 

0 

 

 

 

570 

570 

630 

630 

 0 

690 

690 

M 

M 

0 

40 

40 

0 

0 

0 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 
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Step 4: The minimum element not crossed out is 570 (column 2). We subtract 570 from 

every uncovered element in the entire table and add 570 to doubly crossed elements to 

obtain the equivalent cost table below. 

 

 

 

 

 

 

 

 We then go to step 3. 

 

 

Step 3: Test for optimality 

 

 

 

 

 

 

 

 

1 2 3 4 

170 

170 

150 

150 

0 

 

 

 

 0 

 0 

60 

60 

 0 

120 

120 

M 

M 

0 

40 

40 

0 

0 

570 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 

1 2 3 4 

170 

170 

150 

150 

0 

 

 

 

 0 

 0 

60 

60 

 0 

120 

120 

M 

M 

0 

40 

40 

0 

0 

570 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 
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Since four lines (less than five lines) are required to cover all zeros, it follows that 

an optimal solution has not been obtained. We then go to step 4. 

Step 4: The minimum element not crossed out is 120 (column 3). We subtract 120 from 

every uncovered element in the entire table and add 120 to doubly crossed elements to 

obtain the equivalent cost table below. 

 

 

 

 

We go to step 3. 

 

 

Step 3: Test for optimality 

 

 

 

 

 

 

 

 

Since all the zeros are covered by lines (five in number), it follow that the zeros provide 

an optimal solution to the problem. The zeros are as shown below: 

1 2 3 4 

50 

50 

30 

30 

0 

 

 

 

  0 

  0 

 60 

 60 

 120 

 0 

 0 

M 

M 

0 

40 

40 

0 

0 

690 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 

1 2 3 4 

50 

50 

30 

30 

0 

 

 

 

  0 

  0 

 60 

 60 

 120 

 0 

 0 

M 

M 

0 

40 

40 

0 

0 

690 

1a 

1b 

2a 

2b 

3 

   5 

0 

0 

0 

0 

M 
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This table has several ways of making a complete set of assignments to zero element 

positions (several optimal solutions), including the one shown by the five boxes.  

The resulting total cost is seen in Table 2.19 to be 

   Z = 740 + 810 + 840 + 920 + 0 = 3,310 

 

 

2.6  THE MUNKRES ASSIGNMENT ALGORITHM (MODIFIED HUNGARIAN 

METHOD) 

The Hungarian Method was later revised by James Munkres in 1957 and has since been 

known as the Munkres assignment algorithm or the Kuhn-Munkres algorithm. His 

contribution to Kuhn’s algorithm was that he introduced the procedure for finding 

(i) a minimal set of lines which contain all zeros  

(ii) a maximal set of independent zeros, 

(iii) “starred zeros” and ‘primed zeros” and 

(iv) alternating sequence between “starred zeros” and “primed zeros” 

 

0 

1 2 3 4 
 

 

 

 

 

 

 

 

 

0 

 

 

 

0 

 

 

 

0 

 

 

 

0 

 

 

1a 

1b 

2a 

2b 

3 

5 
0 

0 

0 

 

 

 

0 

0 

0 

0 



83 
 

 By default, the algorithm performs a minimization on the elements in the cost matrix 

The modified Hungarian method on the cost matrix of an assignment problem involves 

the following steps: 

1. Subtract the row minimum from each row. 

2. Find a zero (Z) in the resulting matrix. If there are no starred zeros in its column 

or row, star the zero. Repeat for each zero. 

3. Cover each column that has a starred zero.  

(i) If all the columns are covered, then the assignment is optimal. 

(ii)  Otherwise, go to Step 4. 

4. (a) (i) Find a non-covered zero and prime it. 

(iii) If there is no starred zero in the row containing this primed zero, go to 

Step 5. 

(iv) Otherwise, cover this row and uncover the column containing the starred 

zero. 

 (v)  Continue in this manner until there are no uncovered zeros left. 

(b) Save the smallest uncovered value in the cost matrix and go to Step 6. 

5. Construct a series of alternating primed and starred zeros as follows. Let Z0 

represent the uncovered zero found in Step 4. Let Z1 denote the starred zero in the 

column of Z0 (if any). Let Z2 denote the primed zero in the row of Z1 (there will 

always be one). Continue until the series terminates at a primed zero that has no 

starred zero in its column. Un-star each starred zero of the series, prime each 

starred zero of the series, erase all primes and uncover every line in the matrix. 

Return to Step 3. 



84 
 

6. Add the value found in Step 4 to every element of each covered row, and subtract 

it from every element of each uncovered column. Return to Step 4(b) without 

altering any stars, primes, or covered lines. Return to Step 4 without altering any 

stars, primes or covered lines.   

 

 

Prototype Example  

A building firm possesses three cranes each of which has a distance (km) from three 

different construction sites as shown in the table below:  

 

 

 

 

 

Place the cranes (one for each construction sites) in such a way that the overall distance 

required for the transfer of Cranes to Sites is as small as possible.  

Solution: The cost matrix is as shown below. 

 

 

 

a  

b  

c  

p  q  r  

2 1 3 

2 4 6 

3 6 9 

Construction Site Number 

Crane Number 

2 1 3 

2 4 6 

3 6 9 
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Step1:  The smallest elements of rows 1, 2 and 3 are respectively 1, 2 and 3. We subtract 

each of these numbers from every element in their respective rows and obtain the matrix 

below. 

 

Go to step 2. 

 

 

Step 2: We then find a zero (Z) in the resulting matrix. If there is no starred zero in its 

row or column, then we star that zero. We repeat for each zero in the matrix. 

 

Go to step 3 

 

 

Step 3: We cover the column containing the starred zero (i.e., column one).  

 

 

 

 

 

1 0 2 

0 2 4 

0 3 6 

1 0* 2 

0 2 4 

0 3 6 

1 0* 2 

0 2 4 

0 3 6 
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Since the number of columns covered (one) is less than the total number of columns 

(three), we go to Step 4.  

Step 4: Since all the zeros of the matrix in Step 3 are covered, we save the smallest 

uncovered value (i.e., a (1, 2) = 1) and then go to Step 6. 

 

 

 

 

 

 

Step 6: Since none of the rows of the matrix is covered, we subtract the smallest 

uncovered value found in Step 4 (i.e., 1) from every element of each uncovered column 

and return to Step 4 without altering any stars, primes, or covered lines. 

 

 

 

 

 

 

 

Step 4: (i) The zero in a (1, 2) is not covered so we prime it. 

 

 

1 0* 2 

0 2 4 

0 3 6 

0 0* 1 

0 1 3 

0 2 5 
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(ii). There is a starred zero in the row containing the primed zero. We therefore cover row 

1, uncover column 1 and prime the zero just below the starred zero. 

 

 

 

 

We then go to step 5. 

 

Step 5: We construct a path of alternating primed and starred zeros as follows. Let Z0 

represent the uncovered primed zero found in Step 4 above (i.e., entry (2,1 ). Let Z1 

denote the starred zero in the column of Z0 (i.e., entry (1, 1). Let Z2 denote the primed 

zero in the row of Z1 (there will always be one) (i.e., entry (1, 2). Continue until the 

series terminates at a primed zero that has no starred zero in its column. We then un-star 

starred zero Z1 of the series, star each primed zero (Z0, Z2) of the series, erase all primes 

and uncover every line in the matrix (row 1), and return to Step 3. 

 

01 0* 1 

0 1 3 

0 2 5 

01 0* 1 

01 1 3 

0 2 5 
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Step 3: We cover each column that has a starred zero found in step 5 above. 

 

 

 

 

 Since only two columns are covered with starred zeros we go to step 4. 

 

Step 4 We store the minimum uncovered value (i.e. 1) and go to step 6. 

 

 

 

 

Step 6: We subtract the minimum uncovered value found in step 4 (i.e, 1) from every 

element of each uncovered column.  

0* 0 1 

0* 1 3 

0 2 5 

0* 0 1 

0* 1 3 

0 2 5 

0* 0 1 

0* 1 3 

0 2 5 
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We go to step 4. 

 

 

Step 4: (i) The zero in a (1, 3) is not covered so we prime it. 

 

 

 

 

 

(ii). There is a starred zero in the row containing the primed zero (i.e., column 2) We 

therefore cover row 1 and uncover column 2.  

 

 

 

 

 

0* 0 0 

0* 1 2 

0 2 4 

0* 0 01 

0* 1 2 

0 2 4 

0* 0 01 

0* 1 2 

0 2 4 
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Since all the zeros are covered, we save the minimum uncovered number (i.e., 1) and go 

to step 6 

Step 6: We add the minimum uncovered number (i.e., 1) to the zero at entry (1,1) because 

it is doubly crossed, and subtract it from all the elements that are not covered. 

 

 

We then go to step 4. 

 

 

Step 4: (i) We prime the non-covered zero at entry (2, 2). 

 

 

 

 

 

(ii) We cover row 2, uncover column 1and prime the zero at entry (3, 1). 

 

 

0* 1 01 

0* 0 1 

0 1 3 

0* 1 01 

0* 01 1 

0 1 3 
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We go to step 5. 

 

 

Step 5 

 

                                                                                                We go to step 3. 

 

 

Step 3 

 

All three columns are 

covered. 

 

 

 

 

 

0 1 0* 

0 0* 1 

0* 1 3 

0 1 0* 

0 0* 1 

0* 1 3 

0* 1 01 

0* 01 1 

01 1 3 
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The assignment pairs are indicated by the positions of the starred zeros in the cost matrix 

below. 

 

 

 

 

 

This means that Crane a must be placed at Construction site r, Crane b at Construction 

site q and Crane c at Construction site p 

The cost associated is 3 + 4 + 3 = 10.  

 

 

 

 

 

 

 

 

 

 

0 1 0* 

0 0* 1 

0* 1 3 
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CHAPTER 3 

DATA COLLECTION, ANALYSIS AND DISCUSSION 

3.1  DATA COLLECTION 

Data was collected from the factory site of Latex Foam Company Limited, Kumasi. The 

company operates eight models of vehicles. The list below gives the types of vehicles; 

i. KIA truck (K) 

ii. TATA truck (T) 

iii. Renault (articulator) truck (RA) 

iv. TATA (articulator) truck (TA) 

v. Benz (articulator) truck (BA) 

vi. DAF (articulator) truck (DA) 

vii. DAF (cargo) truck (DC) 

viii. Benz (cargo) truck (BC)  

There are three KIA trucks (K1, K2, and K3), four TATA trucks (T1, T2, T3, and T4) 

and two Benz articulator trucks (BA1, BA2). The rest are single vehicles. 

The vehicles ply routes along which they serve various customers with the final 

destinations mostly being District Capitals. The list of these final destinations is given 

below; 

Sefwi Juaboso (D1), Asankraguaa (D2),Yendi (D3), Assin Fosu (D4), Kintampo (D5), 

Kwame Danso (D6), Bogoso (D7), Osei Kojokrom (D8), Bawku (D9), Drobo (D10), 
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Goaso (D11), Yeji (D12), Lawra (D13), Juaso/Obogu (D14), Nkawkaw (D15), Gushiegu 

(D16). 

The cost of a trip from the factory shed in Kumasi to a destination is measured in gallons 

of diesel used. Table 3.1 shows the cost of a trip when the vehicles are assigned to the 

various destinations. 

Table 3.0: Types of Vehicle and quantity of diesel (in gallons) used per trip 

Type of 
vehicle Se
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K 28 22 40 12 16 25 20 35 - 16 12 20 - 9 10 - 

 
T 29 23 43 13 18 24 22 37 - 18 13 21 - 10 11 - 

 
RA 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 

 
TA 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 

 
BA 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 

 
DA 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 

 
DC 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 

 

BC 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 

                  
                  
                  

 

 

 

 

 

 

 

 

 

 

The cost ( ijc ) of Table 3.2 below was obtained from Table 3.1 for all the fourteen trucks. ijC represent 

 the cost of assigning vehicle i V∈ to rout  where V1 = K1,V2 = K2,V3 = K3,V4 = T1,V5 = T2j D∈  

V6 = T3,V7 = T4,V8 = RA,V9 = TA,V10 = BA1,V11= BA2,V12 = DA,V13 = DC and V14 = BC.
 

 

The KIA and TATA trucks are restricted from going far places and therefore data on the fuel  

consumption for these trucks was not obtained for places like Gushiegu, Lawra and Bawku. 

The M found in Table 3.2 shows that the vehicles involved are prohibited from going to those places 
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  Table 3.1: Cost matrix obtained from Table 3.0 

 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 

 

 

3.2 PROBLEM FORMULATION 

The problem is to find the minimum total cost in assigning each vehicle to a distinct 

destination. The problem is formulated as an assignment problem with the assumption 

that a vehicle is assigned to only one route on which there may be more than depot. 

The mathematical notation and formulation are as follows. 

Let 

  cost coefficients(number of gallons of diesel) of assigning vehicle type  from factory to route .ijC i j=
 Set of all vehicles.
 Set of all destinations

V
D
=
=  

m = Total number of vehicles 

n = number of routes to the final destinations
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The Boolean variables, ijX , representing assignment realization are defined by 

1 If vehicle type  is assigned from factory to route 
0 otherwiseij

i j
X 

= 


 

 

The objective function (Z) can be written as 

 

Minimize  Z= ....................(1)
m n

ij ij
i v j u

c x
∈ ∈
∑∑  

Subject to 

1,  for all ....................(2)
n

ij
j

x i V= ∈∑  

1,  for all ....................(3)
m

ij
i v

x j U
∈

= ∈∑  

0 or 1.............(4)ij ijx x= =  
 

The objective function (1) is to minimize the total cost in terms of number of gallons of 

diesel used for the assignments. 

 Constraint (2) requires that each vehicle is assigned exactly one route to a destination.  

Constraint (3) requires that every route to a destination is assigned to only one vehicle. 

Constraint (4) requires that a particular vehicle i  is assigned to a distinct destination j . 

(i.e. 1ijx = ) or otherwise ( 0ijx = ) 

 

For efficient assignments of these trucks, the cost matrix of Table 3.2 must be a square one. In 

order to obtain a square cost matrix, two vehicles from the six brands (in terms of fuel 

consumption), that is KIA truck, TATA truck, Renault or TATA or DAF (articulator) truck, Benz 

(articulator) truck, DAF (cargo) truck and Benz (cargo) truck, were selected and added in turn to 
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the existing fourteen vehicles to obtain a16 16× matrix. In all, twenty-one cost matrices were 

obtained. Tables 3.3 - 3.21 show these matrices. 

 

Table 3.2: Cost matrix for adding two KIA trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
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Table 3.3: Cost matrix for adding a KIA truck and a TATA truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 

V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 

 

 

Table 3.4: Cost matrix for adding a KIA truck and a Renault, TATA or DAT (articulator) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
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Table 3.5: Cost matrix for adding a KIA truck and a Benz (articulator) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 

 

Table 3.6 Cost matrix for adding a KIA truck and a DAF (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
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Table 3.7: Cost matrix for adding a KIA truck and a Benz (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 

 

 

Table 3.8: Cost matrix for adding two TATA trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
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Table 3.9: Cost matrix for adding a TATA truck and a Renault, TATA or DAF (arti.) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 

                   

Table 3.10: Cost matrix for adding a TATA truck and a Benz (arti.) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
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Table 3.11: Cost matrix for adding a TATA and a DAF (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V1 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
  

 

Table 3.12: Cost matrix for adding a TATA and a Benz (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V13 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
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Table 3.13: Cost matrix for adding two of Renault, TATA or DAF (articulator) trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
  

 

Table 3.14: Cost matrix for adding Renault, TATA or DAT (arti.) truck and a Benz (arti.) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
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Table 3.15: Cost matrix for adding Renault, TATA or DAT (arti.) truck and a DAF (cargo) 

truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 28 38 55 83 25 20 30 75 16 17 76 
  

Table 3.16: Cost matrix for adding Renault, TATA or DAT (arti.) truck and a Benz (cargo) 

truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V8 55 50 85 29 35 55 50 60 110 35 22 45 115 25 19 98 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
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Table 3.17: Cost matrix for adding two Benz (arti.) trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V10 54 49 83 28 34 28 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 28 48 57 108 34 28 43 113 24 18 96 
  

 

Table 3.18: Cost matrix for adding a Benz (arti.) truck and a DAF (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
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Table 3.19: Cost matrix for adding a Benz (arti.) truck and a Benz (cargo) truck 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
  

Table 3.20: Cost matrix for adding two DAF (cargo) trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

 V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
 V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
 V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
 V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
 V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
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Table 3.21: Cost matrix for adding a DAF (cargo) and a Benz (cargo) trucks 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 

 

 

Table 3.22: Cost matrix for adding two Benz (cargo) trucks 

 

 
D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 

V1 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V2 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V3 28 22 40 12 16 25 20 35 M 16 12 20 M 9 10 M 
V4 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V5 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V6 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V7 29 23 43 13 18 26 22 37 M 18 13 21 M 10 11 M 
V8 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V9 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V10 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V11 54 49 83 28 34 53 48 57 108 34 28 43 113 24 18 96 
V12 55 50 85 29 35 55 50 60 110 35 29 45 115 25 19 98 
V13 40 42 73 20 28 30 38 55 83 25 20 30 75 16 17 76 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
V14 39 41 72 19 27 28 37 53 81 23 19 29 73 15 16 74 
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3.3 RESULTS AND DISCUSSION 

A Mat Lab code, written by Buehren (2008), was used to implement the Munkres 

algorithm on a Pentium (IV) computer of processor speed 2.60GHz using the data of 

Tables 3.3 – 3.23. The output of the program for each of the twenty-one cost matrices is 

given in Table 3.23 below. 

Table 3.23(a): Results obtained from Cost Matrices using Mat lab code  

Table 

Number 

Assignments( 1ijx = values) Cost Z
16 16

1 1
ij ij

i j
c x

= =

=∑∑  

3.3 1,10 2,3 3,8 4,2 5,12 6,4 7,1 8,14

9,6 10,11 11,16 12,15 13,13 14,9 15,5 16,7

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

572 

3.4 1,10 2,3 3,8 4,7 5,1 6,12 7,4 8,15

9,11 10,16 11,6 12,14 13,9 14,13 15,5 16,2

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

574 

3.5 1,8 2,3 3,10 4,7 5,2 6,12 7,1 8,4

9,14 10,15 11,16 12,11 13,9 14,13 15,5 16,6

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

590 

3.6 1,8 2,3 3,10 4,7 5,2 6,12 7,1 8,4

9,14 10,15 11,6 12,11 13,9 14,13 15,5 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

589 

3.7 1,8 2,3 3,10 4,7 5,2 6,12 7,1 8,11

9,4 10,14 11,15 12,6 13,13 14,9 15,5 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

569 

3.8 1,10 2,8 3,7 4,5 5,2 6,12 7,1 8,15

9,6 10,4 11,11 12,14 13,9 14,16 15,3 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

567 

3.9 1,8 2,3 3,5 4,2 5,1 6,10 7,4 8,11

9,6 10,14 11,16 12,15 13,9 14,13 15,7 16,12

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

576 

3.10 1,10 2,3 3,5 4,12 5,7 6,8 7,1 8,11

9,4 10,14 11,16 12,15 13,9 14,13 15,2 16,6

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

592 

3.11 1,10 2,3 3,5 4,12 5,7 6,8 7,1 8,11

9,4 10,14 11,15 12,6 13,9 14,13 15,2 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

591 
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Table 

Number 

Assignments( 1ijx = values)
  

Cost Z
16 16

1 1
ij ij

i j
c x

= =

=∑∑  

 

3.12 
1,10 2,3 3,5 4,12 5,7 6,8 7,1 8,11

9,4 10,14 11,15 12,6 13,13 14,9 15,2 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

571 

3.13 1,10 2,3 3,5 4,12 5,7 6,8 7,1 8,11

9,4 10,14 11,15 12,6 13,9 14,16 15,2 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

569 

3.14 1,8 2,3 3,10 4,2 5,7 6,12 7,1 8,5

9,4 10,15 11,16 12,11 13,9 14,13 15,14 16,6

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

609 

3.15 1,8 2,3 3,10 4,2 5,7 6,12 7,1 8,5

9,6 10,15 11,4 12,11 13,9 14,13 15,14 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

608 

3.16 1,10 2,3 3,8 4,7 5,2 6,12 7,1 8,5

9,4 10,14 11,15 12,6 13,16 14,9 15,11 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

588 

3.17 1,10 2,3 3,8 4,7 5,2 6,12 7,1 8,5

9,4 10,14 11,6 12,11 13,9 14,16 15,15 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

586 

3.18 1,8 2,3 3,10 4,2 5,7 6,12 7,1 8,5

9,6 10,15 11,16 12,11 13,9 14,13 15,14 16,4

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

607 

3.19 1,10 2,3 3,8 4,7 5,2 6,12 7,1 8,5

9,4 10,14 11,15 12,6 13,16 14,9 15,11 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

587 

3.20 1,10 2,3 3,8 4,7 5,2 6,12 7,1 8,5

9,4 10,14 11,6 12,11 13,9 14,16 15,15 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

584 

3.21 1,7 2,3 3,8 4,5 5,2 6,12 7,1 8,15

9,4 10,14 11,6 12,11 13,13 14,10 15,16 16,9

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

577 

3.22 1,7 2,3 3,8 4,5 5,2 6,12 7,1 8,11

9,4 10,14 11,15 12,6 13,9 14,13 15,16 16,10

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

576 

3.23 1,7 2,3 3,8 4,5 5,2 6,12 7,1 8,15

9,6 10,14 11,4 12,11 13,9 14,13 15,10 16,16

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =
 

574 

Continuation of Table 3.23:  
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From the Table 3.23 of results, table number 3.8 gives the smallest Z value (567). Hence 

the assignments  

1,10 2,8 3,7 4,5 5,2 6,12 7,1 8,15

9,6 10,4 11,11 12,14 13,9 14,16 15,3 16,13

1, 1, 1, 1, 1, 1, 1, 1
1, 1, 1, 1, 1, 1, 1, 1 is optimal

x x x x x x x x
x x x x x x x x

= = = = = = = =

= = = = = = = =  

 

 

Thus, the assignments made in Table 3.24 below is optimal 

 

Table 3.24: Optimal Assignment of Trucks 

Type of Vehicle Route to be assigned/Final destination 

KIA (4) Drobo, Oseikojokrom, Bogoso and Yendi 

TATA (4) Kintampo, Asankraguaa, Yeji and Sefwi Juabeso 

Renault (art.) Nkawkaw 

TATA (art.) Kwame Danso 

DAF (art.) Obugu 

Benz (art.) (2) Assin Fosu and Goaso 

DAF (Cargo) Bawku 

Benz (Cargo) (2) Lawra and Gushiegu 
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CHAPTER 4 
CONCLUSSION AND RECOMMENDATION 

4.1 CONCLUSION 

This study has found an optimal assignment of trucks to routes in terms of the total number of 

gallons of diesel required to travel to the final destinations. 

 Table 4.0 below shows the assignments of the trucks to the final destinations made in Table 3.24. 

 

Table 4.0: Optimal assignment of trucks obtained from Table 3.24 

Type of Vehicle Route to be assigned/Final destination 

KIA 1 Drobo 

KIA 2 Osei Kojokrom 

KIA 3 Bogoso 

KIA 4 Yendi 

TATA 1 Kintampo 

TATA 2 Asankrguaa 

TATA 3 Yeji 

TATA 4 Sefwi Juabeso 

Renault (art.) Nkawkaw 

TATA (art.) Kwame Danso 

DAF (art.) Obugu 

Benz (art.) 1 Assin Fosu 

Benz (art.) 2 Goaso 

DAF (Cargo) Bawku 

Benz (Cargo) 1 Lawra 

Benz (Cargo) 2 Gushiegu 

The minimum total cost, Z 
16 16

1 1
ij ij

i j
c x

= =

=∑∑  = 567 gallons of diesel. 
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4.2 RECOMMENDATIONS 

It is suggested that Latex Foam Rubber Products Limited-Kumasi implements the Munkres 

assignment algorithm in assigning their trucks. 

Also, to maintain the current set of routes and to avoid multiple assignments of the KIA and Benz 

(cargo) trucks, it is suggested that the company adds one each of these trucks to the existing set of 

fourteen trucks for optimal assignment to avoid delay in supply to customers, because this may 

cause some of their customers to switch to other suppliers of the products, due to the competitive 

nature of market. 
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Appendix 

 

Mat Lab code for implementing Munkres Algorithm  

 
function [assignment, cost] = assignmentoptimal(distMatrix) 
%ASSIGNMENTOPTIMAL    Compute optimal assignment by Munkres algorithm 

http://www.faqs.org/abstracts/Business-international/A-minimax-assignment-problem-in-treelike-communication-networks.html#ixzz0Sg8mXbSH
http://www.faqs.org/abstracts/Business-international/A-minimax-assignment-problem-in-treelike-communication-networks.html#ixzz0Sg8mXbSH
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%       ASSIGNMENTOPTIMAL (DISTMATRIX) computes the optimal assignment 
%(minimum overall costs) for the given cost matrix.  
%The result is a column vector containing the assigned column 
% number to each row (or 0 if no assignment could be done). 
% [ASSIGNMENT, COST] = ASSIGNMENTOPTIMAL(DISTMATRIX) returns the 
%assignment vector and the overall cost (total number of gallons of 
%diesel) 
% The distMatrix may contain infinite values (forbidden assignments). 
%Internally, the infinite values are set to a very large 
% finite number, so that the Munkres algorithm itself works on 
% finite-number matrices. Before returning the assignment, all 
% assignments with infinite distance are deleted (i.e. set to zero). 
% 
%       Code written by Markus Buehren 
%       Last modified 30.01.2008 
  
% save original distMatrix for cost computation 
originalDistMatrix    = distMatrix; 
  
% check for negative elements 
if any(distMatrix(:) < 0) 
    error('All matrix elements have to be non-negative.'); 
end 
  
% get matrix dimensions 
[nOfRows, nOfColumns] = size(distMatrix); 
  
% check for infinite values 
finiteIndex   = isfinite(distMatrix); 
infiniteIndex = find(~finiteIndex); 
if ~isempty(infiniteIndex) 
    % set infinite values to large finite value 
    maxFiniteValue = max(max(distMatrix(finiteIndex))); 
    if maxFiniteValue > 0 
        infValue = abs(10 * maxFiniteValue * nOfRows * nOfColumns); 
    else 
        infValue = 10; 
    end 
    if isempty(infValue) 
        % all elements are infinite 
        assignment = zeros(nOfRows, 1); 
        cost       = 0; 
        return 
    end  
    distMatrix(infiniteIndex) = infValue; 
end 
  
% memory allocation 
coveredColumns = zeros(1,nOfColumns); 
coveredRows    = zeros(nOfRows,1); 
starMatrix     = zeros(nOfRows, nOfColumns); 
primeMatrix    = zeros(nOfRows, nOfColumns); 
  
% preliminary steps 
if nOfRows <= nOfColumns 
    minDim = nOfRows; 



120 
 

     
    % find the smallest element of each row 
    minVector = min(distMatrix,[],2); 
     
    % subtract the smallest element of each row from the row 
    distMatrix = distMatrix - repmat(minVector, 1, nOfColumns); 
     
    % Steps 1 and 2 
    for row = 1:nOfRows 
        for col = find(distMatrix(row,:)==0) 
            if ~coveredColumns(col)%~any(starMatrix(:,col)) 
                starMatrix(row, col) = 1; 
                coveredColumns(col)  = 1; 
                break 
            end 
        end 
    end 
     
else % nOfRows > nOfColumns 
    minDim = nOfColumns; 
     
    % find the smallest element of each column 
    minVector = min(distMatrix); 
     
    % subtract the smallest element of each column from the column 
    distMatrix = distMatrix - repmat(minVector, nOfRows, 1); 
     
    % Steps 1 and 2 
    for col = 1:nOfColumns 
        for row = find(distMatrix(:,col)==0)' 
            if ~coveredRows(row) 
                starMatrix(row, col) = 1; 
                coveredColumns(col)  = 1; 
                coveredRows(row)     = 1; 
                break 
            end 
        end 
    end 
    coveredRows(:) = 0; % was used auxiliary above 
     
end 
  
if sum(coveredColumns) == minDim 
    % algorithm finished 
    assignment = buildassignmentvector__(starMatrix); 
else 
    % move to step 3 
    [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, 
coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows, minDim); %#ok 
end 
  
% compute cost and remove invalid assignments 
[assignment, cost] = computeassignmentcost__(assignment, 
originalDistMatrix, nOfRows); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function assignment = buildassignmentvector__(starMatrix) 
  
[maxValue, assignment] = max(starMatrix, [], 2); 
assignment(maxValue == 0) = 0; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%% 
function [assignment, cost] = computeassignmentcost__(assignment, 
distMatrix, nOfRows) 
  
rowIndex   = find(assignment); 
costVector = distMatrix(rowIndex + nOfRows * (assignment(rowIndex)-1)); 
finiteIndex = isfinite(costVector); 
cost = sum(costVector(finiteIndex)); 
assignment(rowIndex(~finiteIndex)) = 0; 
  
% Step 2: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [assignment, distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows] = step2__(distMatrix, starMatrix, 
primeMatrix, coveredColumns, coveredRows, minDim) 
  
% cover every column containing a starred zero 
maxValue = max(starMatrix); 
coveredColumns(maxValue == 1) = 1; 
  
if sum(coveredColumns) == minDim 
    % algorithm finished 
    assignment = buildassignmentvector__(starMatrix); 
else 
    % move to step 3 
    [assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, 
coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows, minDim); 
end 
  
% Step 3: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [assignment, distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows] = step3__(distMatrix, starMatrix, 
primeMatrix, coveredColumns, coveredRows, minDim) 
  
zerosFound = 1; 
while zerosFound 
     
    zerosFound = 0;      
    for col = find(~coveredColumns) 
        for row = find(~coveredRows') 
            if distMatrix(row,col) == 0 
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                primeMatrix(row, col) = 1; 
                starCol = find(starMatrix(row,:)); 
                if isempty(starCol) 
                    % move to step 4 
                    [assignment, distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows] = step4__(distMatrix, starMatrix, 
primeMatrix, coveredColumns, coveredRows, row, col, minDim); 
                    return 
                else 
                    coveredRows(row)        = 1; 
                    coveredColumns(starCol) = 0; 
                    zerosFound              = 1; 
                    break % go on in next column 
                end 
            end 
        end 
    end 
end 
  
% move to step 5 
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, 
coveredRows] = step5__(distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows, minDim); 
  
% Step 4: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [assignment, distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows] = step4__(distMatrix, starMatrix, 
primeMatrix, coveredColumns, coveredRows, row, col, minDim) 
  
newStarMatrix          = starMatrix; 
newStarMatrix(row,col) = 1; 
  
starCol = col; 
starRow = find(starMatrix(:, starCol)); 
  
while ~isempty(starRow) 
  
    % unstar the starred zero 
    newStarMatrix(starRow, starCol) = 0; 
     
    % find primed zero in row 
    primeRow = starRow; 
    primeCol = find(primeMatrix(primeRow, :)); 
     
    % star the primed zero 
    newStarMatrix(primeRow, primeCol) = 1; 
     
    % find starred zero in column 
    starCol = primeCol; 
    starRow = find(starMatrix(:, starCol)); 
     
end 
starMatrix = newStarMatrix; 
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primeMatrix(:) = 0; 
coveredRows(:) = 0; 
  
% move to step 2 
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, 
coveredRows] = step2__(distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows, minDim); 
  
  
% Step 5: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [assignment, distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows] = step5__(distMatrix, starMatrix, 
primeMatrix, coveredColumns, coveredRows, minDim) 
  
% find smallest uncovered element 
uncoveredRowsIndex    = find(~coveredRows'); 
uncoveredColumnsIndex = find(~coveredColumns); 
[s, index1] = 
min(distMatrix(uncoveredRowsIndex,uncoveredColumnsIndex)); 
[s, index2] = min(s); %#ok 
h = distMatrix(uncoveredRowsIndex(index1(index2)), 
uncoveredColumnsIndex(index2)); 
  
% add h to each covered row 
index = find(coveredRows); 
distMatrix(index, :) = distMatrix(index, :) + h; 
  
% subtract h from each uncovered column 
distMatrix(:, uncoveredColumnsIndex) = distMatrix(:, 
uncoveredColumnsIndex) - h; 
  
% move to step 3 
[assignment, distMatrix, starMatrix, primeMatrix, coveredColumns, 
coveredRows] = step3__(distMatrix, starMatrix, primeMatrix, 
coveredColumns, coveredRows, minDim); 
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