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 ABSTRACT 

 

In this thesis, we study sustainable harvesting strategies for tilapia fish farming. Modified logistic 

growth models with constant harvest rate as well as periodic harvesting have all been studied. Modified 

logistic growth model is applied to fishery systems and animal production where overcrowding and 

competition of resources are considered. Although, tilapia fish farming is being done on commercial basis 

in Ghana, there is much less literature in studying sustainable harvesting strategies. Specific objectives of 

this thesis were to develop a modified logistic growth model to include harvesting rates. Finally, to 

determine Maximum Sustainable Yield (MSY) of fish that will ensure the tilapia fish supply is continuous 

and sustainable. Analytical and numerical methods were used to determine the maximum sustainable yield 

of fish population in a pond. The existence of equilibrium solutions and their stabilities of the modified 

logistic growth model were theoretically studied. Periodic harvesting strategy is strongly recommended 

for the selected tilapia fish farm and inland fish harvesters. This thesis will help improve productivity and 

reduce risk from changes in sale price of tilapia fish. 
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CHAPTER ONE 

 

INTRODUCTION 

 Over the last two decades aquaculture have be become an enterprise cherished by the government, 

urban and rural communities and is gaining ground especially in the Volta Lake. it is an alternate income-

generating venture. Fishing in general, provides many benefits to human beings, including food, 

employment, business opportunities and recreational activities. However, overfishing can reduce the fish 

stock or biomass of reproductive age below sustainability. It is desirable that in management of a 

renewable resource, such as fishery a strategy is developed that will allow an optimum harvest rate and yet 

keep the population above a sustainable level. A modified logistic growth model in terms of harvesting 

has been developed to help the fish farming sector and the Fisheries Commission to project the population 

of tilapia fish that is due for harvesting in a given time period. 

 

1.1  BACKGROUND OF THE STUDY 

Fish is one of the chief sources of human diet and the main source of protein and fat. Of late, 

consumers have developed much interest in fish as a healthier alternative meat that prevents the problem 

of overweight and cardiovascular diseases in human. Fishing industry both marine and aquaculture in 

Ghana supports the livelihood of about 10% of the population. The importance of the fishing industry 

stems from the significant contribution of about 60% of the national protein supply and about $87 million 

exports in 2009.  

Historically, marine fishery resources were assumed to be almost limitless, and fishing was taught 

to have little impact on fish biomass and marine ecosystems. However, in recent years, concern about the 
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condition of fisheries has increased. Therefore, many fisheries experts and fishermen now realize that 

fishing can have serious effects on marine fish stocks and the ecosystem they inhibit. However, the 

management of a renewable resource, such as fishery requires a strategy that will allow an optimum 

harvest rate and yet not extinct the population below a sustainable level. Thus, Fisheries management 

policies and practices are usually based on catch effort dynamics with little consideration for the 

ecosystem variations. When fishing effort is increase it has major impact on the short term dynamics and 

sustainability of the fish population. 

According to (Gertjan et al. 2005), tilapia fish farming has been an important source of protein of 

the world and it is well suited for farming, since they are fast growing and hardy. Tilapia fish also can 

establish strong population in a very short time if the environment is conducive.  Aquaculture is becoming 

the most preferred option used by agro-based companies to produce tilapia on commercial quantities in the 

Volta Lake and fish ponds. The sector has commercial hatcheries and various fish farm sizes. The main 

fish species on fish farms are tilapia (Oreochromis niloticus) and catfish (claria gariepinus). According to 

Commission of Fisheries 2010, tilapia forms about 80% of aquaculture production in the country due to its 

fast growth and its resistance against harsh conditions.Various species of tilapia are found in Ghana‘s 

rivers, lakes and Lagoons. One of such species of tilapia unique to southern Ghana and south western of 

Cote d‘Ivoire is the tilapia busumana mainly found in Lake Bosutonneswi, the Pra-Offin, Ankobra, Bia 

and Tano basins. Most Ghanaian tilapia is caught by artisanal fishers and has immense domestic demand 

for both fresh and locally processed variants.  

 

Lake Volta is the largest man-made Lake; it has a surface area of 8,700 km at the maximum 

controlled level of 84.7m. The Lake has a total length of 400km, a shoreline length of 5200km, a 

maximum depth of 90m and an average depth of 18m. Lake Volta and its tributaries drain 70% of the 
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entire area of Ghana (FAO, 2005), covering mostly Northern, Volta, Eastern and Brong Ahafo regions. 

Lake Volta supports the livelihoods of 300 000 people, of whom nearly 80 000 are fishermen and 20 000 

are fish processors or traders. There are 1 000 people involved in the aquaculture subsector, working 

mainly in pond culture (Mensah et al., 2006). Data obtained during the field survey at various cage farms 

in Volta Lake revealed that about 10,000 tonnes of tilapia were produced during 2010.  

 

Tropo Farms has been in pond farming for six years and in 2005 developed a pilot-scale cage site 

on Lake Volta near Akosombo Dam. Tropo farms grow indigenous O. niloticus in ponds (breeding and 

juveniles) and cages (grow-out to market size). Tropo farms for instance, indicated the production of 3000 

tonnes of tilapia with about 25 smaller cage farms producing about 100 tonnes each for the same period in 

consonance with projections made by Blow and Leonard (2007). Figures 1.1 and 1.2 show overview of 

Volta catch/ Tropo farms cages in Lake Volta and pond respectively. 

 

Figure 1.1 Tropo Farms cages in Lake Volta. 
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Figure 1.2 Confinement of fish using hapas, in Tropo farms pond. 

Crystal Lake Fish Ltd was established in the late 1990s in the Asuogyaman District of Ghana‘s 

Eastern Region. Crystal Lake Fish Ltd grows indigenous tilapia (O. niloticus) in ponds and concrete tanks 

(breeding and juveniles) and cages (grow-out to market size). The farm has 24 circular (8 m diameter 

each) tanks for hatchery (8) and nursing (16) purposes. There are about 8 cages installed in circa 25 m 

deep water at Crystal Lake, each with a diameter of 15 m and a depth of 4m. Each cage is stocked with 50 

000 fingerlings of O. niloticus at 30 g that are cultured for six months. Crystal Lake Fish Ltd.‘s annual 

production is around 340 tonnes of whole fish. Figures 1.3 shows Feeding time at Crystal Lake Fish Ltd., 

Lake Volta 
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Figure 1.3 Feeding time at Crystal Lake Fish Ltd., Lake Volta 

 

 

 

The West African Fish Limited also build up tilapia fish farm in Volta Lake about 10 miles away 

from Asikuma in Eastern region of  Ghana in 2008. It has a capacity of producing about 2000 tonnes per 

year. The tilapia is kept in quality cages with the best knowhow. West African Fish ltd. is currently selling 

all of the fish they produce at domestic markets. The fish are sold in fresh condition, to customers such as 

wholesalers and retailers, as well as directly to restaurants, hotels and the like. 

In 2008, the Fishery Commission conducted a regional basis survey and found that the Western 

region has the largest number of fish farmers and ponds followed by the Brong Ahafo and Ashanti region 

as shown in table 1.1 below. 
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Table 1.1   Fish Farm Data (2008) 

 No. of fish 

farmers 

No. of ponds No. of 

functional 

ponds 

Total surface 

area (ha) 

Ashanti 304 746 746 118.71 

Brong  Ahafo 333 761 761 138.63 

Central 253 633 610 39.91 

Eastern 107 311 311 20.35 

Greater Accra 64 233 207 39.5 

Volta 143 308 254 67.35 

Western 1650 2550 2550 59.1 

Upper East 15 25 25 7.52 

 

  Source: Fisheries Commission 

  

The management of a renewable resource, such as fishery requires a strategy that will allow an 

optimum harvest rate and yet not extinct the population below a sustainable level. Thus, Fisheries 

management policies and practices are usually based on catch effort dynamics with little consideration for 

the ecosystem variations. When fishing effort is increase it has major impact on the short term dynamics 

and sustainability of the fish population. 

Mathematical model is a mathematical description(often by means of a function or an equation) of 

a real-world phenomenon such as size of a population, the demand for a product, the speed of a falling 

objects, the life expectancy of person at birth and many instances.   

Mathematical models have been used widely to estimate the population dynamics of animals for so many 

years as well as human population dynamics. Recently, the use of mathematical models has been extended 

to agriculture sector especially in cattle farming to predict continuous and optimum supply. The logistic 

growth model in terms of harvesting has been studied to help the fish farming sector and the Fisheries 
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Commission to project the population of tilapia fish for a given time period. This will enable them to be 

prepared with effective solutions to ensure that the tilapia fish supply can meet the consumer demand. 

 

1.2  PROBLEM STATEMENT 

Fisheries management is a complex process and requires the integration of resources in biology 

and ecology as well as socioeconomic and institutional factors that affect the harvesting in policy- making. 

According to the Food and Agriculture Organization of the United Nations (FOA, 2007), in the year 2005, 

about 50% of the fish stock under observation experienced overexploitation or depletion.  

Even though tilapia fish farming has been commercialized, there is much less literature available in 

studying fish harvesting strategies in Ghana. Thus, mathematical models do not widely feature in studying 

fish harvesting management strategies in Ghana. Hence, the need to use a mathematical model to estimate 

fish harvesting strategies that will ensure the tilapia fish supply is continuous and not gets to extinction.  

 

1.3  OBJECTIVES OF THE THESIS 

The main objective of the thesis is to study two harvesting management strategies (constant and 

seasonal harvesting models) of tilapia fish population in a pond in the Eastern region of Ghana. The 

specific objectives of the thesis include: 

1. To develop a modified logistic growth model to include harvesting rates.  

2. To determine maximum sustainable yield (MSY) of tilapia fish population in a pond. 
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1.4  JUSTIFICATION  

Fishing industry in Ghana supports the livelihood of about 10% of the population and according to 

the Ghana Statistical Service fishing contributed 2.4% of Gross Domestic Product (GDP) in 2010. The 

importance of the fishing industry stems from the significant contribution of about 60% of the national 

protein supply and about $89 million exports in 2010. Due to this significant contribution of fishing 

industry in the economy of Ghana, aquaculture is becoming the most preferred option used by agro-based 

companies to produce tilapia on commercial quantities in the Volta Lake and fish pond. Since tilapia fish 

has been an important source of protein in some areas of the world and it is well suited for farming, 

because they are fast growing and hardy. 

Determining socially acceptable harvesting strategy is undoubtedly one of the most challenging 

and most controversial problems in the management of the renewable resources such as fishery. 

Sustainable harvest of a renewable resource occurs if we remove the resource from the population at a rate 

that can be compensated by the growth of the population and in this situation we can effectively remove 

individuals from the population while allowing the population to exists. Often sustainable practices such 

as harvesting strategies are not carried out in fishing industry.  The use of mathematical models in 

determining sustainable fish harvesting strategy has not been widely applied in Ghanaian fishing industry 

and this has necessitated this study.  

 

1.5  METHODOLOGY 

In this study, a modified logistic model that includes harvesting is developed. The non-linear 

autonomous and non autonomous differential equations that model the harvesting management strategies 

are qualitatively and numerically analyzed. The data for the study is obtained from the following sources; 

Fisheries commission, Tropo Farms, Crystal Lake Fish Ltd and West African Fish Ltd. 
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 1.6  SCPOE OF THE THESIS 

 The study covers some selected tilapia fish ponds and tilapia fish cages in the Eastern region of 

Ghana.  

The study will enable fishermen to use a mathematical model to predict the tilapia fish at maturity 

and use appropriate harvesting management strategy that can ensure that tilapia fish supply is continuous 

throughout the year. A modified logistic model which includes harvesting fish at constant and periodic 

rates will be implemented. 

 

1.7  ORGANISATION OF THE THESIS 

The main body of the thesis includes, Introduction; Literature review; the Model development; 

Findings; Discussions; Conclusions and Recommendations; References and Appendices. 

 Chapter one covers introduction, background, problem statement, objectives of the thesis, 

justification, methodology, scope of the thesis and organization of the thesis.  

In chapter two we shall review the overview of aquaculture and tilapia fish production in Ghana. 

We will also review some related literatures about growth models and harvesting management strategies 

models. Chapter three focuses on the model development and the analysis of non-linear logistic growth 

with harvesting models. In chapter four, we shall deal with model implementation and analysis of results. 

Finally, the conclusions and recommendations of the thesis will be presented in chapter five.  

 In the next chapter, we shall review the origin of fishing, overview of aquaculture in Ghana and 

some mathematical models in fish population growth and harvesting strategies. 
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CHAPTER TWO 

REVIEW  OF FUNDAMENTALS 

In this chapter, we would outline the origin of fishing and overview of aquaculture of tilapia fish 

production in Ghana. The population harvesting and application of mathematical models for fish 

population growth and harvesting strategies would also be reviewed. 

 

2.1  ORIGIN OF FISHING 

According to Graham (1956), fisheries science took its characteristic form from around 1890 

onwards with a blend of zoology and statistics but each with a new form and function. He further said ‗the 

form was knowledge like that of a fisherman, and function was guidance to better use of the stocks of 

fish‘. Indications of fishing have been found in archeological sites as early as the Late Paleolithic period, 

some 50000 years ago, revealing a long history of the use of fish by humans. More recently, fish and 

fishing have been depicted in rock carvings in southern Africa and southern Europe dating from 25000 

years ago. Based on this, Sahrhage and Lundbeck noted that fishing is one of the oldest professions, along 

with hunting. Unlike hunting, however, fishing continued to be an important occupation even to modern 

times, and fishing methods have been repeatedly improved over the millennia.  

 

The development of fishing on all continents and in most cultures can be more clearly traced since 

the early Mesolithic period, 10 000 BC, and can be seen in archaeological artefacts such as kitchen 

middens, paintings and fishing gear. Forn example, in the port city of Ginnosar on Lake Kinneret, where 

St Peter lived, excavations have revealed consistent occupation and evidence of fishing since the Bronze 

Age. By 4000 BC in some areas the archaeological record is complete enough to reveal the evolution of 
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fishing gear. For example, the evolution from simple to compound fish hooks has been demonstrated for 

the cultures on Lake Baikal in this period. 

 

Anon (1921) revealed that in Asia the importance of fishing can be traced back for thousands of 

years, especially in the Yellow River in China and in the Inland Sea off Japan. Fishing in China was 

primarily in fresh water, and tended towards the development of fish farming rather than catching 

technology. However, illustrations of Chinese fishing methods showed them frequently to be unique: for 

example multiple lines of hooks in complex arrays and trained cormorants with neck rings. Chinese 

methods were subsequently used in Japan, initially in the Sea of Japan. In the Americas fishing appears to 

have been imported with the colonizing peoples, with rock paintings of fish and fishing as early as 10000 

BC in Patagonia. In the northern regions sealing and whaling developed, along with more traditional 

fishing, at least as early as 2000BC. The practice of aquaculture started in Asia, Ancient Egypt and in 

Central Europe. In Asia, it was around 500 BC by a Chinese politician (Ling, 1977). In Egypt (Africa), 

tilapia as a native, was raised in ponds around 2500 BC.  

(Ling, 1977) have found that, the earliest species of fish cultured was the common carp (Cyprinus 

carpio), by a native of China. In addition, Indian carp culture existed in the 11th Century AD (Pillay, 

1990). Similarly, aquaculture started in Europe from the middle Ages with the introduction of common 

carp culture in monastic ponds. Subsequently, during the 14th century, the propagation of trout was 

introduced in France and the monk Don Pinchot and, discovered in the same period; the method of 

artificial impregnation of trout eggs (Davies, 1956). Furthermore, commercial trout culture in freshwater 

was developed in France, Denmark, Japan, Italy and Norway (Pillay, 1990).  

Specifically, the British introduced trout as sport fisheries in their Asian and African Colonies. 

Moreover, the development of fish culture in North America became possible through the propagation of 
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trout Salmon and Black bass. In the Czech Republic, these fishes were cultured in large ponds which were 

built from around 1650 and are still in use (Wikipedia, 2009). 

(Hecht, 2006; Lazard et al. 1991) have pointed out that aquaculture started in Sub-Saharan Africa 

in the 1950s with the main objectives of food security, income and creation of jobs for the rural poor 

families. Eventually, it began to drop after 4 decades as compared with Asia. The proof was that, Africa 

realized a sum of US $72.5 million from 1978 to 1984 while Asia and the Pacific recovered US $171.3 

million (Lazard et al. 1991).  

However,  (Ridler and Hishamunda, 2001) also discovered that the African continent is 

environmentally friendly with the farming of tilapia, African catfish and carps. Despite the potential, the 

Region contributes less than 1% to world aquaculture production. Consequently, this has caused a high 

pressure on capture fishery due to the growing population of Africa that depends on fish protein. 

According to Asmah (2008), an increment of fish supply, from 6.2 to 9.3 million tonnes per year 

will help to reduce the pressure and  Muir (2005) further explained that more than 8.3% of the total 

tonnage is needed from aquaculture on annual average productions in 2010 in Sub- Saharan Africa alone. 

In support of this, FAO, UNDP, World Bank and France funded projects in countries like Cameroon, Cote 

d‗voire, Kenya, Madagascar and Zambia (Lazard et al. 1991). 

 

In West Africa, the Gambia started aquaculture in the 1970‘s in the form of trials using tilapia 

culture in rice fields (Jawo, 2007; Jallow, 2009). Later on, in 1982, a company known as West African 

Aquaculture limited started the culture of Peneaus monodon in the coastal region (Jallow, 2009). This 

company became well established in The Gambia in 2000. Similarly in 1988, two fish farms were 

operated in Western Region by Scan Gambia limited (Jallow, 2009). 
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2.2  OVERVIEW OF AQUACULTURE IN GHANA  

Fish farming have begun in Ghana in 1953 by the then Department of Fisheries. Thus, it served as 

hatcheries to support the then culture-based reservoir fishery development programme of the colonial 

administration. In 1957, the government of Ghana adopted a policy to develop fish ponds for farming 

within all irrigation schemes in the country (FAO, 2000, 2009). Aquaculture also called fish farming was 

taken up enthusiastically in the late 1970‘s by the Accra Metropolitan Assembly (AMA) as an alternate 

income-generating venture. Efforts were made to develop fish farms on suitable lands near urban centres, 

where water is readily available. Few fish farmers were successful, but most of them faced management 

problems due to inadequate training and information. Thus, the fish farming program meant to reduce 

poverty in the urban towns failed. There was a boost in early 1980s, following a nation-wide campaign by 

then military government. Subsequently, the first experimental fish farm was established in the Upper 

West Region in 1985. During the period of 1982 to 1985, the number of fish ponds increased from 578 to 

1,390. Gradually, the number rose to 1,400 in 1986; covering an average surface area of 685 m square 

(Amisah and Quagrainie, 2007).  

In order to increase further, research collaboration between International Centre for Living Aquatic 

Resources Management (ICLARM) and the Institute of Aquatic Biology (IAB), Accra, Ghana, began in 

1991 to investigate the development of aquaculture on small holder farms (Pullin and Prein, 1994). In the 

period between 1990 and 2004, the technology of fingerlings production improved tremendously but there 

were neither marine nor brackish water aquaculture establishment in the country. The major species grown 

were Oreochromis niloticus, Clarias gariepinus and Heterotis niloticus. The majority of farmers were 

small-scale operators using extensive fish farming systems (FAO, 2000, 2009). 

In the last decade, fish farming or aquaculture became an enterprise cherished by the government, 

urban and rural communities and gaining ground especially in the Volta Lake. On regional basis, a survey 

by the Commission in 2008 revealed that the Western region has the largest number of fish farmers and 
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ponds followed by Brong Ahafo and Ashanti regions. Recently, aquaculture is becoming the most 

preferred option used by agro-based companies to produce tilapia on commercial lines in the Volta Lake.  

According to (FAO, 2006), Aquaculture provides 50% of the world fish production and is an 

alternate seafood to wild fisheries and generate income and employment. Traditionally, there are three 

forms of aquaculture in Ghana, namely acadjas or brush-parks in lagoons and reservoirs; hatsis (fish 

holes) and whedos(mini-dams) in the coastal lagoons; and freshwater clams (Egeria radiata) in the lower 

Volta, young clams are collected and ―planted‖ in ―Owned areas of the river(Perin and Ofori, 1996). 

Intensive system of culture is used by the major farms having cage culture technology. Dams, ponds and 

small reservoirs are fished out and stocked regularly in the extensive system of aquaculture.  

According to (Awity, 2005), a single commercial cage farm contributed about 21% (200 tons of 

950 tons) to total aquaculture production in 2004.  

(Ofori et al. 2010 ), suggested that if cage farmers in Ghana can produce yields of 50-150kg/m
3
 per 

9 months as done elsewhere in Africa, less than 100 hectares of fish cages can produce yields matching 

the current capture fisheries production of 90000 metric tons. Braimah (1995) addressed fisheries of Lake 

Volta. Estimated yield was 42-52 kg/ha/year based on catch statistics, and 12 kg/ha/year based on the 

morphedaphic index, MEI, (Ryder et al., 1974). Tilapia is a major component of the harvest, with catches 

influenced by water level (higher catches when water level is low). During reservoir drawdown, standing 

timber is harvested for firewood and to facilitate beach seining. However, standing timber in the reservoir 

basin is important for periphyton production.  

Braimah (1995) estimated that 52% of the fish caught were dependant on invertebrates exploiting 

this periphyton. Removal of standing timber, in conjunction with overfishing, has negatively impacted the 

fish stocks. He noted that Tilapia fish farming has been an important source of income in some areas of 

the world and it is well suited for farming, since they are fast and hardy. Tilapia fish also can establish 
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strong population in very short time duration if the environment is right (Gertjan, et al. 2005). This has 

made tilapia fish a very important protein source. 

  According to (Thomas & Michael,1999), the period of maturity for the tilapia fish is 6 months and 

estimates that 80% of will survive to maturity. Department of fisheries in Ghana‘s survey revealed that 

tilapia forms 80% of aquaculture production. Most Ghanaian fish is caught by artisanal fishers and most of 

the catch is salted and dried or smoked and it heads to the domestic market. 

 In 2010, tilapia production from fish farms was about 10000 tons. This figure was gotten during 

the field survey at various cage farms in the Volta Lake. Tropo farms for instance, produce 3000 tons of 

tilapia in 2010, with about 25 smaller cage farms producing about 100 tons each for the same year in 

consonance with projections made by Blow and Leonard (2007).  

Capture fishery may produce an average of 100 tons per year from major landing sites of Dzemeni, 

Abotaose, Kpando, Kete Krachi, Yeji, Kpong, and Asutuare.  

According to(Blow & Leonard, 2007), the capture of other desirable species such as catfishes can also be 

expanded through cage aquaculture in addition to Nile tilapia( Oreochiromis Niloticus) which is currently 

the only species cultured in Ghana.  

The West African Fish Limited has tilapia farm in Lake Volta near Asikuma (10 miles), started to 

build up the facility in 2008 and has a capacity of producing about 2000 tons per year. The farm‘s tilapia 

is kept in quality cages with best knowhow. Tilapia is a good fish for warm water aquaculture. They are 

easily spawned, use a wide variety of natural foods as well as artificial feeds, tolerate poor water quality, 

and grow rapidly at warm temperatures. These attributes, along with relatively low input costs, have made 

tilapia the most widely cultured freshwater fish in tropical and subtropical countries. Consumers like 

tilapia firm flesh and mild flavor, so markets have expanded rapidly in the U.S. during the last 10 years, 

mostly based on foreign imports. 
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A flurry of media activity has centered on fisheries issues in the past year prompted by the release 

of several studies and reports that point to growing crises and controversy in both wild fisheries and 

aquaculture. A recent report from a panel of fishermen, scientists, business leaders, and government 

officials pointed to overfished and depleted stocks in U.S. waters, along with severe habitat degradation 

(Pew Oceans Commission 2003). The report argued that the restoration of U.S. fisheries requires a major 

overhaul of policy, including the introduction of ecosystem-based management and stronger regulations.  

(Myers and Worm 2003) did a much-publicized study in Nature and have reported that the 

population of large predatory marine fish has been reduced by 90 percent since preindustrial times.  

Another recent study by (Watson and Pauly 2001) argued that correcting reported Chinese fisheries 

statistics to levels that better fit estimates of biophysical potential renders global catch trends far less 

favorable (Watson and Pauly 2001). The Food and Agriculture Organization of the United Nations (FAO), 

particularly in its State of World Fisheries and Aquaculture publications, has consistently sounded the 

alarm over threatened stocks of wild fish (FAO 1995, 1998, and 2000a). 

The rapidly growing field of aquaculture, which now accounts for 30 percent of the world‘s food 

fish, has also pushed its way into the media spotlight. For some years now, aquaculture has been seen as a 

possible savior for the overburdened wild fisheries sector, and an important new source of food fish for 

the poor (FAO 1995; Williams 1996). However, there are some problems with the industry. A recent 

report from the World Wildlife Fund argued that some forms of aquaculture place pressure on wild 

fisheries through demand for wild-caught fish as feed (Tuominen and Esmark 2003). 
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2.3   POPULATION HARVESTING 

Miner & Wicklin, (1996) have defined population harvesting as the removal of constant number of 

individual from a population during each time period. 

According to Idels and Wang (2008) constant harvesting is where a fixed number of fish were 

removed each year, while periodic harvesting is usually thought of as a sequence of periodic closure and 

openings of different fishing grounds.  Advocates of population harvesting have pointed out that stable 

populations of deer, fish, and other game animals, harvesting can be used to reduce the number of animals 

who needlessly die from starvation or other natural causes. On the other hand, unregulated harvesting can 

lead a population to the brink of extinction, as is evidenced by well-known examples such as the North 

American Bison (Bison bison) and several populations of whales. Harvesting policy has been used to 

stabilize population in an environment with limited resources or carrying capacity.  

 Aanes et al. (2002) siad the most important for successful management of harvested population is 

that, harvesting strategies are sustainable, not leading to instabilities or extinctions and produces great 

results for the year with little variation between the years. Thus, it can supply the market demand 

throughout the year. Harvesting has been an area under discussion in population as well as in community 

dynamics (Murray, 1993).  

C.W. Clark, et al. 2005 and many other authors stress that optimal management of renewable 

resources has an important relationship to long term sustainability. In addition, they have extensively 

studied the optimal harvesting policies for harvesting that is constant or proportional to the resource 

abundance and have proposed that continuous proportional harvest is optimal when compared to other 

forms of harvesting, or that their optimal harvesting policy is nearly that of a continuous harvest policy.  

In (C.S. Lee and P. Ang, Jr., 1991), Lee and Ang investigated a logistic type seaweed growth 

model in which the growth and death rates of seaweed are known periodic functions of time, and they 

deduced an optimal periodic harvesting strategy which maximizes the average accumulated yield of an 
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unspecified but periodic seaweed biomass having the same period as that of the growth and death rates. 

They noted, however, that in practice, a constant harvest rate is more practical, and hence, preferable to a 

time-varying one. 

M.S. Boyce et al. (2005), have considered five different exploitation strategies on a single 

population that grows logistically with a seasonal carrying capacity. They conclude that the optimal 

harvest should be timed during the period of maximal decline in the carrying capacity. They investigate 

the maximum annual yield and population persistence as a function of both the seasonality and the 

intrinsic rate of increase. They compare these harvest strategies under certain combinations of 

environmental variability and intrinsic growth rate values. Among the five different harvesting strategies 

considered (constant exploitation, linear exploitation, 6-month open/closed harvest, time dependent 

harvest and pulse harvest), pulse harvesting was found to be optimal (in the sense of maximum annual 

yield) in all situations where they varied the intrinsic rate of increase and environment. 

 

The Harvest Control Rule is a variable over which the management strategy has some direct 

control and describes how the harvest is intended to be controlled by management in relation to the state 

of some indicator of stock status. For example, a harvest control rule can describe the various values of 

fishing mortality which will be aimed at for various values of the stock abundance.Harvest tactics are the 

regulatory tools (e.g., quotas, seasons, gear restrictions) used to implement a harvest strategy. Harvest 

tactics are quite diverse, and almost all fisheries employ gear restrictions, area restrictions, and some 

limitation of seasons. Quotas are increasingly employed in large-scale commercial fisheries, whereas 

closed seasons and closed areas are common in recreational fisheries. Management procedures represent 

the combination of data collection, assessment procedure, harvest strategy, and harvest tactics 

(Washington, D.C. 2001). Harvesting has been considered a factor of stabilization, destabilization, 
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improvement of mean population levels, induced fluctuations, and control of non-native predators 

(Michel, 2007).  

Recently, Braverman and Mamadani (2008) have considered both autonomous and non 

autonomous population models and found that constant harvesting is always superior to impulsive 

harvesting even though impulsive harvesting can sometimes do as good as constant harvesting. But 

Ludwig D, (1980) studied models with random fluctuations and found that constant effort harvesting does 

worse than other harvesting strategies.  

Constant rate depletion on the discrete Ricker model was studied by Sinha.S,and Parthasarathy. S (1996), 

where it was numerically shown, that populations exhibiting chaotic oscillations are not necessarily 

vulnerable to extinction. 

Xu et al. (2005) have investigated harvesting in seasonal environments of a population with 

logistic growth and found that pulse harvesting is usually the dominant strategy and that the yield depends 

dramatically on the intrinsic growth rate of population and the magnitude of seasonality. Furthermore, for 

large intrinsic growth rate and small environmental variability, several strategies such as constant 

exploitation rate, pulse harvest, linear exploitation rate, and time-dependent harvest are quite effective and 

have comparable maximum sustainable yields. However, for populations with small intrinsic growth rate 

but subject to large seasonality, none of these strategies is particularly effective, but still pulse harvesting 

provides the best maximum sustainable yield.  

According to European Union (2006), Maximum Sustainable Yield (MSY) is theoretically, the 

largest catch that can be taken from a fishery stock over an indefinite period. Under the assumption of 

logistic growth, the MSY will be exactly at half the carrying capacity of a species, as this is the stage at 

when population growth is highest.  In fisheries terms, maximum sustainable yield (MSY) is the largest 

average catch that can be captured from a stock under existing environmental conditions (National 
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Research Council (NRC). 1998). MSY aims at a balance between too much and too little harvest to keep 

the population at some intermediate abundance with a maximum replacement rate. 

 Fisheries Act (1996) studied maximum sustainable yield‘ in relation to any stock, means the 

greatest yield that can be achieved over time while maintaining the stock‘s productive capacity, having 

regard to the population dynamics of the stock and any environmental factors that influence the stock  

However, the MSY has been widely criticized as ignoring several key factors involved in fisheries 

management and has led to the devastating collapse of many fisheries. As a simple calculation, it ignores 

the size and age of the animal being taken, its reproductive status, and it focuses solely on the species in 

question, ignoring the damage to the ecosystem caused by the designated level of exploitation and the 

issue of by-catch.  

2.4   HISTORICAL PERSPECTIVE OF LOGISTIC GROWTH MODEL 

  Robert Malthus was the first to formulate theoretical treatment of population dynamics in 1798 and 

P.F Verhulst formed the Malthus theory into a mathematical model called logistic equation that led to non-

linear differential equation in 1838 (Alan, 1992). However, Verhulst‘s work went unappreciated until in 

1920, when Raymond Pearl and Lowell Reed rediscovered the logistic equation and made it famous (F. 

Brauer, et al. 2001). This model was used to estimate population of humans, animal and fish production. 

The logistic growth model accounts for the limitations of resources having an impact on the growth of 

populations. These limitations are expressed as a saturation level or population carrying capacity that 

exists as populations get larger. The carrying capacity represents the population size that available 

resources can continue to support and is unique for different species. The following are the assumptions 

for the logistic growth model. We assume a closed population of a single species in a specified region, 

where there are no time lags, nor stochastic or chance events. We also assume that population growth rates 
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respond instantaneously to any changes and this rate is only influenced by the population abundance. In 

addition, the population abundance at which the per capita growth rate is zero, occurring at the carrying 

capacity, does not vary in time. The model should be regarded as a metaphor for populations that have a 

tendency to grow from zero up to some carrying capacity N. Originally a much stricter interpretation was 

proposed, and the model was argued to be a universal law of growth (Pearl, 1927).  

The logistic equation was tested in laboratory experiments in which colonies of bacteria, yeast or 

other simple organisms were grown in conditions of constant climate, food supply, and the absence of 

predators. These experiments often yielded sigmoid (S-shaped) growth curves, in some senses with an 

impressive match to the logistic equation. On the other hand, the agreement was much worse for fruit 

flies, flour beetles, and other organisms that have complex life cycles, involving eggs, larvae, pupae, and 

adults. In these organisms, the predicted asymptotic approach to a steady carrying capacity was never 

observed—instead the populations exhibited large, persistent fluctuations after an initial period of logistic 

growth. 

 

2.5   SOME HARVESTING MODELS 

There are many other mathematical models that were used to model fish population that is 

undergoing harvesting. The following sections describe some of the models. 

 

2.5.1   GOMPERTZ GROWTH MODEL 

Similar to the logistic growth model, is the Gompertz growth model introduced by Benjamin 

Gompertz in 1825. It has been used to describe the growth of many tumors, as well as biological and 

economical growth ( Kot M.et al .2001).  

The model can be described with the ordinary differential equation and initial condition 
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The solution to this initial value problem can be solved as a first order separable differential equation and 

can be written as 

                                          
  
 
                                                                                      

 

The pattern of the solution is similar to that of logistic growth model, however, in this model the inflection 

point is smaller than that of the logistic equation and occurs at  
 

 
.  One difference between the two models 

occurs when we consider the per capita growth rates. In the case of the logistic growth model, the per 

capita growth of the population decreases linearly as a function of population abundance whereas in the 

case of Gompertz growth, this rate decreases exponentially. 

In a closed population, there can be many forms of mortality to individuals in the population, one 

such example being harvesting. The effects of harvesting usually pose negative impacts to target and non-

target populations. There have been many examples of species that have gone extinct or been near to 

going extinct partly or wholly as a direct/indirect consequence of harvesting. To avoid disastrous 

consequences onto the population, it is natural to devise a management plan that can allow the population 

to be sustained while harvesting occurs. There are many forms of harvesting that can be imposed on a 

population. Gompertz modified his model to include harvesting rate and this is governed by the 

differential equation with initial condition 

                                                     
  

  
                                                                               

          



xxxiii 
 

where          describes the growth function for the population and         describes the mortality due 

to harvesting. Two specific harvesting functions,             and                  with effort E, 

represent constant and proportional harvesting, respectively. In the simplest cases, E is constant. Models 

with these forms of harvesting can be found in numerous references including (F. Brauer, et al. 2001).  

 

2.5.2  THE RICKER’S GROWTH MODEL 

W. E. Ricker (1958), model fish population without harvesting and the model is used to predict the 

number of fish that will be present in a fishery. The Ricker model is a classic discrete population model 

which gives the expected number (or density) of individuals Nt + 1 in generation t + 1 as a function of the 

number of individuals in the previous generation, 

The model assumptions are as follows: 

 

1. Valuable fish are those above a certain age, so we exclude juvenile fish, 

2. Salmon spawn once per year, 

3. Upon spawning, the adult fish die, 

4. Valuable fish must replace their parents in order to maintain a viable. 

The model can be described with the ordinary differential equation (2.04). 

 

                                                      
  

  
     

                                                                             

 

where     is the original number of juvenile fish,   is the mortality rate of the fish  and N is the population 

of the fish,     is the rate of cannibalism per adult.  

 

http://en.wikipedia.org/wiki/Ricker_model
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  The Ricker added harvesting component to his model as a factor affecting fish population, based 

on the claim that;  

1. Harvesting is periodic, 

2. Harvesting does not occur during mating season. 

Hence, he modeled the fish harvesting with an oscillatory sine function. 

                     

In this function,   is a harvesting rate limit,   modifies the frequency of fishing cycles per unit time. 

Ricker added 1 to insure a positive quantity for the sine term: 

Thus, the final factor affecting fish population is this harvesting function, so our model becomes: 

          

              
  

  
     

                                                                                  

 

2.5.2  THE SAECHER’S SURPLUS PRODUCTION MODEL 

The surplus production model was used to estimate the sustainable yield of sergestid shrimp in the 

southwestern Taiwan based on an assumption of a unit stock. 

A discrete deterministic form of stock dynamics is expressed as: 

 

                                            
  
 
                                                                        

 

where      is the biomass for year         is intrinsic population growth rate,    is carrying capacity(Saecher 

M.B.1954). Extending the model to include catch becomes Schaefer‘s model: 
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where     is the catch during year t. 

Schaefer model can be connected to the catch rates to the stock biomass and hatchability coefficient (q). 

       
  
  

 

where     is the index catch per unit effort of the relative abundance for year t,    is the catch during year t, 

   is the fishing effort during year t (Haddon, M., 2001) 

 

2.5.3  YIELD MODELS 

 

From a global perspective, large river ecosystems are the critical lotic resources with respect to 

Fisheries (Dodge, 1989).  

Welcomme (1985) developed yield models for large rivers relating river basin area and length of 

the main channel to catches. For river basin area the relationship is: 

 

                                                                                                                                                 

 

Where       annual yield in tons, and     river basin area in    . 

For length of the main channel, the relationship is: 

 

                                                                                                                                               

 

where   C = annual yield in tons, and  L = channel length in km. 
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Welcomme (1985) estimated that yield potentials from African river and floodplain fisheries ranged from 

5 to           /year.  

The general model estimates that fishery yield for a      segment is            year. However, 

considering cumulative influences upstream to downstream and using the model developed by Welcomme 

(1985), we note that at a distance of       from the river‘s source, a      section of river yields 

         year and at a distance of        downstream from the source, a      section of the river 

yields           year. If dams were constructed at a distance of        from the river‘s source, and 

resulted in loss of a      section of the river at that point, the reservoir would need to compensate for 

          year. This could be accomplished, for example, with tropical reservoirs having mean depth of 

  , TDS of        l and a surface area of somewhat more than         . Temperate reservoirs with 

the same mean depth and TDS could compensate for this loss of river fishery yield with a surface area of 

         .  

Although the distance compensating model for this exercise was developed for African rivers, it has been 

used successfully for rivers in other regions (e.g. the Mekong, Danube and Magdalena rivers) 

(Welcomme, 1985). 

 

2.5.4 THE BEVERTON–HOLT GROWTH MODEL 

The Beverton – Holt (1957) model, introduced in the context of fisheries in 1957, is a classic 

discrete-time population model which gives the expected number      (or density) of individuals in 

generation t + 1 as a function of the number of individuals in the previous generation. 

 

 

http://en.wikipedia.org/wiki/Beverton%E2%80%93Holt_model
http://en.wikipedia.org/wiki/Beverton%E2%80%93Holt_model
http://en.wikipedia.org/wiki/Expected_value
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The Beverton–Holt is given as 

 

                            
     

          
                                                                                    

 

where     is the population growth rate and    is the population carrying capacity at time n. 

Equation (3.09) was studied under periodic and conditional harvesting and has found that in a constant 

capacity environment, constant rate harvesting is the optimal strategy. 

In the next chapter, sustainable harvesting models are developed and their equilibrium solutions 

studied. 
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CHAPTER THREE 

 

MODEL DEVELOPMENT 

In this chapter, we would derive population dynamic models for fishery system that will include 

harvesting management strategies. An exponential population growth is outlined first. Next, a modified 

logistic growth model of recruitment and spawning stock biomass that takes account of the limiting factors 

of fish population growth is described. This is followed by a description of harvesting strategies such as 

constant harvesting and seasonal harvesting models.      

 

3.1  POPULATION DYNAMICS MODEL 

 

In fishery management, it is important to determine the maximum rate at which fish can be 

harvested given a certain fish population. So given a fish population Y0, then we want to find the 

maximum harvest rate that does not kill off the population. We first develop a differential equation that 

model the natural fish population growing at an indefinite exponential rate. This differential equation will 

later be modified to include factors limiting the extent to which fish population can grow, hence the 

derivation of a modified Logistic growth model. We would extend the modified logistic growth model by 

incorporating constant harvesting model and seasonal (periodic) harvesting model and we will study how 

the demise (fishing) of certain number of fish will affect the fish supply. Our models would allow fish 

harvesters to insert the parameters specific to their fish population to determine what frequency of 

harvesting their fish population can tolerate and yet not gets to extinction. To examine systematically the 

consequences of these harvesting strategies, we shall use numerical simulations and qualitative methods in 

analyzing the constant and seasonal harvesting models.  
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Fish population can be model using the Balance Law. The Balance Law states that the change in 

the amount of substance in a compartment can be determined by the difference between the rates at which 

that substance is leaving the compartment, and the rate at which the substance is entering the 

compartment. We can express this relationship mathematically as follows: 

 

                                           

which is called the balance law. 

Applying the balance law to model fish populations, the compartment represents the Lake or the pond and 

the birth and mortality rates correspond to the ―rate in‖ and the ―rate out.‖ In view of the above, the 

balance law in fish population becomes: 

 

The rate of change in the fish population                                          

 

where the death rate specifically implies ―natural‖ causes of death, and the harvest rate is the amount of 

fish caught by humans.  

 

Biology tells us that birth rates and death rates in a fish population are proportional to the 

population‘s size. If we let the population of fish in the lake or pond at any time t, be represented by the 

function y(t), then the birth rate can be described as           where, b is a proportionality constant.  

The death rate in a fish population is affected by two factors, which are  

1.  Fish dying of ―old age‖, and  

2. Fish dying due to a scarcity of food, oxygen and other resources required for survival.  

The second of these two factors is referred to as overcrowding and it is proportional to the population of 

the fish. 
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3. 2  EXPONENTIAL GROWTH MODEL.  

We first develop a standard exponential growth/decay model that describes quite well the 

population of species becoming extinct or the short-term behavior of a population growing in an 

unchecked fashion. The differential equation that models the natural fish population growth is based on 

the following assumptions. 

 

3.2.1  MODEL ASSUMPTIONS. 

The following are the assumptions of the exponential growth model: 

1.  The rate of change of population is directly proportional to the current population size. 

2. For small populations the growth rate is positive.  

 

 The parameters involved are t, Y, and  r , where 

t :    time of harvest in months. 

Y:  fish population in tons  

r :  proportionality constant or growth-rate coefficient. 

3.2.2  MODEL FORMULATION 

Following the assumption that the rate of change of population is directly proportional to the 

current population size, a model for a single population that obeys Malthusian theory of growth or 

Gompertz growth in the absence of harvesting is developed as follows.  
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 leading to the following differential equation model 

                                                         
    

  
                                                                                           

where   r   is constant.  

 Solving the differential equation (3.01) by the method of separation of variable and integration, we have 

   

 
            

 
  

 
         

           

        
   

where                                                       

with initial condition 

        

 the solution of the equation (3.01) is given as 

 

                                                             
                                                                        

 

where   is the population at time t = 0.  
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Equation (3.02) predicts that the fish population would grow exponentially for      , and it is known as 

Malthusian model of population growth. 

 

3.2.3    ANALYSIS OF EXPONENTIAL GROWTH MODEL 

        The solution pattern of the equation (3.02) is dependent on the various values of growth rate  r.                                                                                                                                 

 For              

  the total population remain constant over time, as shown in figure 3.1 

          

   

 

 Figure 3.1, shows that when growth rate is zero, the population remains at the same level throughout the 

period. 

 

 For   r       
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Figure 3.1 Exponential growth with growth rate r = 0 

Y(t) 
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 the entire population will tend to extinction at an exponential rate since individuals cannot replace 

themselves due to some environmental factors. 

 

 

                       

 

From figure 3.2, we can see that when the growth rate is negative, the population Y(t) decreases as time t 

increases. Negative growth rate may be as a result of diseases, lack of food.  This is not physically 

meaningful because negative population or decreasing fish population is not beneficial to fishermen.   

 

 For            

 individuals are able to replace themselves each generation and as a result the entire population will grow 

indefinitely at an exponential rate. At this point, there are no mechanisms limiting the population from 

growing so it will continue to grow ( figure 3.3). 
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Figure 3.2 Exponential growth with growth rate r < 0 
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  Figure 3.3 shows that as time t increases fish population Y(t) also increases indefinitely without 

bound. This indefinite growth is not feasible since the environment and other resources are not unlimited 

in the real world. Hence, the differential equation (3.01) does not provide a very accurate model for fish 

population when the population is very large. In view of this a modified logistic growth model would be 

developed in the next section. 

 

3.3  A MODIFIED LOGISTIC GROWTH MODEL 

In real life, some populations do grow exponentially provided that the population is small. But in 

most large populations individual members eventually do compete with each other for food, living space, 

air and other basic natural resources needed for growth. When, populations start by increasing in an 

exponential manner, the population levels off when it approaches its carrying capacity (living space) or 

decreases towards the carrying capacity.  
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Figure 3.3 exponential growth with growth rate r  > 0 
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3.3.1    MODEL ASSUMPTIONS 

In general, the following are the assumptions of our modified logistic growth model.  

1 .   The supply of resources such as food, oxygen and space are limited.  

2.     Growth rate decreases as the population is sufficiently large. 

3 .   Growth rate increases as the population is sufficiently small. 

 

3.3.2  MODEL FORMULATION 

Let us consider that the proportionality factor r, measuring the population growth rate in equation (3.01), 

is now a function of the population f(Y). As the population increases and gets closer to carrying capacity 

C, the rate r decreases. One simple sub model for r is the linear 

 

        
 

 
  

Substituting this function into equation (3.01) leads to the modified logistic growth model 

 

                                                              
  

  
      

 

 
                                                                        

 

where, the variable Y can be interpreted as the size of the fish population in tonnes.  

C  is referred to as the carrying capacity of the environment and the parameter r is called the growth rate. 
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Equation (3.03) is a more realistic model that describes the growth of species subject to constraints 

of space, food supply, and competitors/predators. This equation is called the modified logistic population 

growth model by P.F Verhulst.  

 

Figure 3.4 is the graph of the modified logistic growth model (equation 3.03). 

 

 

 

 

 

 

 

 

 

The modified logistic growth graph, displayed in Figure 3.4, crosses the Y-axis at the two points Y = 0 and 

Y = C, and represent critical points. 

For             , we have 
  

  
    . Hence slopes are positive at any point and solutions must increase in 

this region. When                   we have 
  

  
     and so solutions must decrease. 

 

One way we can analyse the predictions of modified logistic model thus, equation (3.03) is to 

solve it. The following section describes the solution process. 

 

 

Figure 3.4:   Graph of a modified logistic growth model 

C 0 

  

  
 

    
 

 
  

Y 



xlvii 
 

3.3.3   SOLUTION OF THE MODIFIED LOGISTIC GROWTH MODEL 

The following is the process of solving equation (3.03) 

 

Given  

 

 

  

  
      

  

 
  

Let 

  
 

 
 

By the separation of variables, we have 

 

  

      
     

 

By partial fraction resolving, and integrating we have 

 

   
 

   
       

Replacing   and simplifying, we have  

     
     

       
 

 

Evaluating with the initial condition         , we found that 
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Using this, the solution of equation (3.03) is given as 

 

                                                                   
   

             
                                                            

              

 

3.3.3.1      ANALYSIS OF SOLUTION OF THE MODIFIED LOGISTIC     

                 GROWTH MODEL 

 

                     In fishery production, if the initial population is less than the environmental carrying 

capacity, the fish will grow quickly to fill the living space (carrying capacity). 

 

 For    if       

the population will monotonically increase toward the carrying capacity C and remain there (figure 3.4).  
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From the logistic curve in figure 3.4, we observed that as time increases from t =0 to t =7 months, fish 

population Y(t) increases to the carrying capacity C. The population remains there as time increases (t >7 

). This implies that in fishery production; if the pond surface area is very large and few f fingerlings were 

put in it, the fingerlings would grow and reproduce quickly to fill the pond.  

 

For        

the population will monotonically decrease toward the carrying capacity C and remain there (figure 3.5).  
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Figure 3.5: Logistic growth model with initial population less than carrying capacity (y0 < C )  

                      

Figure 3.6:  Logistic growth model with carrying capacity more than initial population (         

 

Y(t) 

Y(t) 



l 
 

 

Similarly, figure 3.6 shows that at time t = 0, the fish population Y(t) = 100, but after six month the 

population Y(t), decreases to carrying capacity C = 80 and  remains constant at that level as time 

increases. Hence, we can conclude that if fish population is more than the pond surface area, some will die 

off, until the population is at the level of the pond carrying capacity.  

Another way, we could, analyse equation (3.03) is to find the equilibrium solutions. The next 

section presents the equilibrium solutions and their analyses. 

 

3.3.3.2   EQUILIBRIUM SOLUTIONS OF THE MODIFIED LOGISTIC  

             GROWTH MODEL 

The equilibrium solution is also called critical point or stationary point. At this point fish 

population remains unchanged. The equilibrium solutions are given as follows: 

 

 

  

  
      

 

 
    

     
 

 
    

     

           

                     and 
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That is         and      are the equilibrium solutions. These equilibria solutions are represented in 

figure 3.6.  

 

 

 

 

 

 

 

 

  

   

The equilibrium solution        is unstable equilibrium point because solutions move away from it and 

        is asymptotically stable equilibrium point because solutions move towards it, as shown in Figure 

3.7.  Thus, we can conclude that when we stock population anywhere between 0 and C, it increases to 

asymptotically to the level of  C. But when the population is stock above C, it decreases towards C. The 

solutions below the axis, that is      , Do not have any physical significant. 

 The following section presents the modified logistic growth model with harvesting. 

 

 

Figure 3.7: Equilibrium solutions of logistic growth model 
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 3.4   MODIFIED LOGISTIC GROWTH MODEL WITH HARVESTING  

      

In this section, the modified logistic growth model would be adjusted to take into account 

harvesting of the population. This will enable fish harvesters to determine what frequency of harvesting 

rate their population can tolerate. These harvesting models are the constant harvesting and seasonal 

(periodic) harvesting. 

 

3.4.1   MODIFIED LOGISTIC GROWTH MODEL WITH CONSTANT  

           HARVESTING. 

Constant harvesting is where a fixed number of fish were removed from the stock at constant time 

rate. We assume that a constant number, H, of tilapia fish are removed from the population. Hence, the 

model is given by 

 

                                                          
  

  
      

 

 
                                                                     

 

where, the variable Y can be interpreted as the size of the fish population in tones, 

r  is called the rate of fish survival at maturity stage , 

 C  is referred to as the carrying capacity of the environment,  

 H  is constant number of fish harvested each time.  
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 The following section presents the equilibrium solutions and their analyses of the logistic growth 

with constant harvesting rate. 

3.4.2 EQUILIBRIUM SOLUTIONS OF CONSTANT HARVESTING 

B y setting equation (3.05) equal to zero, we have two equilibria solutions. These occurs when the 

growth rate of the fish population is equivalent to the harvest rate, thus,  

     
 

 
      

     
 

 
    

   
   

 
   

             

By quadratic formula, we have the equilibrium solutions as follows: 

 

                                                     
                

  
                                                        

 

For maximum sustainable harvesting rate, we let the expression under the radical sign equal zero, as 

follows: 
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Hence, equation (3.07) is the maximum rate of harvesting and this gives us the maximum 

sustainable yield (MSY). The value H = 
  

 
  is called the bifurcation point.   

 Figure 3.8, is the graph of functions       in the three cases of the harvesting rate:  

    
  

 
;       

  

 
   and      

  

 
. 

 

 

 

 

 

 

 

 

 

 

 

We can see that for a harvesting rate that is not too large (    
  

 
 , there exist two equlilbria 

solutions ( 0 and C) as in Figure 3.8.  The lower equilibrium solution      is unstable. Thus, if for 

     
 

 
  

  
  

 
 

  
  

 
 

  
  

 
 

     

Figure 3.8:  The graphs of the function          
 

 
   . 

Y     
Y1 Y2 
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overfishing or disease outbreak, the size of the population Y drops below zero and the population 

eventually die out in a short time. The upper equilibrium solution     is stable. This is the steady state 

toward which the population approaches a constant harvesting C. 

 

 For       
  

 
, 

 there is no critical point or equilibrium solution, and the entire population will be  harvested in a short 

time.  

 

For      
  

 
,  

there is one critical point or equilibrium state that is semi-stable. Thus, it is mathematically possible to 

continue harvesting indefinitely at such rate if the initial population is sufficiently large. However, any 

small change in the equilibrium size of the population will lead to a complete harvest of the population in 

a short time. This is shown in the figure 3.9 below. 

 

 

 

 

 

 

 

 

 

  

Y 
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t 

Figure 3.9:   Solution curves for maximum sustainable harvest      
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It turns out however, that the harvest can be organized so as to obtain in a stable manner a harvest at the 

rate  
  

 
  for one unit time and more than this can be achieved since  

  

 
   is the maximal reproductive rate of 

the un harvested population. 

 

For     
  

 
;    

we have two critical points Y1 and Y2. Y2 is the carrying capacity with human intervention and Y1 is the 

extinction level that means if the population is less than Y1, it will lead to extinction. From figure 3.8 

above, as the harvesting rate H increases Y1 increases and Y2 decreases. 

 

 

 

 

 

 

 

 

 

                    

 

C 

Y2 

Y1 

t 

Y 

Figure 3.10:   Solution curves         
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  In Ghana, there are two seasons, namely, colder (rainy season) and warmer (dry season). The colder 

season is from March to October, whiles the warmer season starts from November to February. Many fish 

species are harvested at a higher rate in warmer seasons than in colder months. In view of this, we would 

assume that the fish population is harvested at a periodic rate in the next session.    

 

3.4.2   LOGISTIC GROWTH WITH PERIODIC HARVESTING     

               Functions or phenomena that repeat or are cyclic in nature are model with sine and cosine 

functions with a period of    . When fish population is harvested periodically, then the harvesting rate is 

models as 

                  

where     represents the coefficient that determines the total rate of periodic harvesting and additional 1 is 

included to insure a positive  quantity for sine term. 

  Hence, we modify the logistic growth model (3.03) to include periodic harvesting, we have  

 

                                    
  

  
      

 

 
                                                                                

 

Equation (3.08) might model extinction for stocks less than some threshold population  , and a stable 

population that oscillates about carrying capacity C with period    
  

 
. 

The variable Y can be interpreted as the size of the fish population in metric tonnes. 
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Its development over time, Y(t) depends on its initial value Y(0) and on the two parameters r and C, where 

r is called the rate of fish survive at maturity stage, C is referred to as the carrying capacity of the 

environment.    

 

3.4.2.1      PERIODIC SOLUTIONS OF PERIODIC HARVESTING 

Equation (3.08) is a non autonomous nonlinear differential equation periodically forced with 

period T = 1 and depends explicitly on time. Also, this differential equation is no longer separable, so we 

cannot generate an analytic formula for its solution using the usual methods from calculus. Hence, we 

introduce the Poincaré Map a more qualitative approach to non autonomous nonlinear differential 

equations. 

 The following describes the process of solving equation (3.08) by Poincaré Map. 

Given  

  

  
             

 

 
                

We let  

        

be the particular solution      satisfying the initial condition        , then we introduce the Poincaré 

Map  

            

The initial condition    will correspond to a periodic solution if and only if    is a fixed point of the 

Poincaré Map,             

For uniqueness of solution of the initial value problem,          satisfies   
  

  
         if 
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then   

                  

if only if at initial time     

                   

So we compute the derivative of      as follows: 

Let  

        
 

   
       

then  

               
  
 
                

differentiating with respect to   , we obtain  

 

   
         

  

 
   

By separation of variables and integration, we compute the solution as follows: 

        
    

  
              

 
 

 

If     , we obtain 

 

                                   
   

  
              

 
  

                                                                              

 

Since                  is increasing. 
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Differentiating equation (3.09) once more we have 

 

                                             
   

 
   

 

 
          

 
                                                       

 

 

Since,          , it shows that the graph of the Poincaré Map is concave down and the graph can 

cross the diagonal line     at most two times. Therefore, the Poincaré Map has at most two fixed points. 

These fixed points give periodic solutions of the differential equation (3.08). Since the differential 

equation (3.08) also depends on the harvesting parameter h, then we differentiate  

 

               
  
 
                

 

with respect to the parameter h, and obtain 

 

                                       
  

  
                                                                                         

 

From equation (3.11), we see that   
  

  
    for all values of   , except    

 

 
.  This implies that 

increasing the harvesting rate, decreases the population for all      . Hence, there is a critical value     

for which the Poincaré Map bifurcates. 

For        , there are no fixed points for  P and so          for all initial values. Intuitively, 

larger harvesting rate should lead to smaller populations and eventually the population becomes extinct in 

a short time. 
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 For       ,  the Poincaré Map has two periodic solutions and For      , Poincaré Map has 

exactly one fixed point or periodic solution. Figure 3.8 shows Poincaré Map for different values of 

harvesting parameter h. 

 

 

 

 

 

 

 

 

 

                                                                                                                        

 

The following chapter presents the data analysis and discussion of results obtained.  
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Figure 3.8:  Poincaré Map for different values of harvesting parameter h. 
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CHAPTER FOUR 

DATA ANALYSIS AND DISCUSSION 

4.1   INTRODUCTION 

In this chapter, we shall deal with models implementation and discussion of results obtained from 

the models implemented. The data for this study has been obtained from the Commission of Fisheries of 

Ghana, Tropo Farms Limited and Crystal Lake Fish Limited, situated near the Volta Lake in the Eastern 

region of Ghana.  

 

4.2  THE MODEL DATA  

According to Ofori et al. 2009, the typical cage size used in the Volta Lake is about     metres 

on sides and 2 metres deep. The Commission of Fisheries of Ghana (2012) claimed that a fish pond can 

sustain 5 tilapia fish for every 1    surface area.  Table 4.1 presents detail data on the selected pond and 

cage for the studies.  

 

Table 4.1:  Data on the Pond and Cage farming. 

DESCRIPTION POND CAGE 

SURFACE AREA OF THE POND            124100     

VOLUME OF THE CAGE  48    

NUMBER OF FINGERLINGS PER 1              5 Fingerlings  

NUMBER OF FINGERLINGS PER  1        188 Fingerlings 

CARRYING CAPACITY             620500  tonnes    9024  metric tones 

 



lxiii 
 

The period of maturity for the tilapia fish is 6 months and about 80% will survive to maturity (Thomas and 

Michael, 1999 & Ofori et al. 2009). 

 

4.2  LOGISTIC GROWTH MODEL WITHOUT FISHING. 

The values of the parameters are       or 80%, the estimation of fingerlings that will survive at 

maturity stage and the value of carrying capacity,          fingerlings in tonnes.  The equilibrium 

point is also called critical point or stationary point. At this point fish population remains unchanged. The 

equilibrium points of the logistic growth model without fishing were obtained as follows: Given the 

logistic growth model without fishing, derived in chapter three, 

 

                                                    
  

  
      

 

 
                                                                                    

 

 

At the equilibrium points of the model, we let 

  

  
   

                             
 

 
    

Substituting the values of the parameters, we have 

 

       
 

      
    

  

by the zero property theorem 
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and  

   
 

      
    

 

      
   

          

 

 Thus,     and          are the equilibrium points. Hence, if the initial population of the fish 

started with       , thus no fingerlings were put into the pond, the population of the fish remains 

at       .  

 Similarly, If the initial population of the fish is started with              the population remains at the 

same level.                                                           

The stability of these equilibrium points can be seen from figure 4.1.  These equilibrium points may be either stable 

or unstable. The equilibrium point     is an unstable, because the solutions near this point are repelled or 

asymptotic. This means given an initial population of fish     ,   just above     and the    less than 0, 

the fish population grows away from         . 

The equilibrium point at           is stable, because solutions near this point are attracted to 

it. This means given an initial fish population in the interval (0,      ), the population increases and 

reaches             and remains at the same level.  But, if      is greater than the carrying capacity 

620500, the fish population declines and approach a limiting value        (figure 4.1). 
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From figure 4.1, we can see that population starts increasing exponentially from the first month and 

reaches the carrying capacity in the sixteenth month and remains there.  
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Figure 4.1:   Direction field and solution curves of Logistic growth  
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4.3  LOGISTIC GROWTH MODEL WITH CONSTANT HARVESTING 

The Logistic Growth Model with constant harvesting derived in chapter 3 is as follows: 

Given                                                           

       

                                           
  

  
      

 

 
                                                                                         

  

where the values of                   and H is constant to be determine. 

 

To determine the equilibrium points for constant H, we have: 

 

 

       
 

      
       

     
     

      
      

                            

By comparing with the general quadratic equation: 

            

 

                          

       

    

then 
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We let the expression under the square root sign equal to zero, we have 

                             

                       

  
    

                
 

                     

 

The value          is the maximum sustainable yield (MSY) or the total allowable catch that 

can be harvested from the stock or the biomass. The value H =        is called the bifurcation point and 

at this point we consider three values of harvesting: 

 

1.             

2.             

3.               

 

For            

we have one equilibrium point, thus, 
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From figure 4.2, we can see that if the initial population of fish    is greater than        ; the population 

of the fish will decrease and approach to       . Similarly, for initial population of fish    lower 

than        ; the population of the fish will decrease and gets to extinction, if the harvesting rate is H= 

124100. 
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Figure 4.2:   Direction field and solution curves of Constant harvesting H =124100 
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For            

we assume the harvesting value, H = 130000 and this figure shows the decreasing trends of fish 

population. This means that if we continue to harvest this figure, the fish population will go to extinction 

regardless of the initial population size, as shown in figure 4.3. 
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Figure 4.3:   Direction field and solution curves of Constant harvesting H =130000 
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we assume the harvesting value, H = 110000. There are two equilibrium points exist when the value of 

harvesting is less than 124100. These are 414827 and 205673. The upper equilibrium point is stable and it 

shows the population of the fish is decreased. The lower equilibrium point is unstable because the solution 

near this point is repelled. Thus, we can conclude that the harvest cannot be too large without depleting 

the resource. However, we can see in figure 4.4 that in the interval (205673, 414827), the population of 

the fish is increased. 
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4.3.1  PREDICTIONS OF CONSTANT HARVESTING MODEL 

Our constant harvesting model predicts the following: 

 

( i ).     If the initial fish population is                  , then the fish population will increase 

asymptotically to            as time t tends to infinite (      figure 4.4.  In fact, it will never 

approach          , but for large times it will be close to it and will be increasing gradually. 

 

( ii ).   If the initial fish population is            , then the fish population is below a critical 

threshold and there are not much individual fishes in the pond to reproduce quickly enough to sustain the 

harvest rate. Hence, the population decreases, reaching extinction     in a short period of time ( figure 

4.4) 

 

( iii ).  If the initial population exceeds the maximum sustainable level, that is         , then it 

decreases to 414827 from above, as time tends to infinite (figure 4.4). 

 

4.3 LOGISTIC GROWTH MODEL WITH PERIODIC HARVESTING 

The logistic growth model with periodic harvesting derived in chapter three is as follows 

 

                                                     
  

  
      

 

 
                                                                              

 

where the value of                 , h = 124100 and      . 
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The fish population will not be able to extinct in fishing time since the harvesting rate is a periodic 

function and varies from season to season. The amount of fish might be able to increase again, if the 

fishing activity is stopped. The pond has full carrying capacity of C = 620500 tilapia fish in the pond as an 

initial population. For the first six months 124100 tilapia fish is assumed for harvesting until the 

population of tilapia remains 414827 and followed by no harvesting for the next six (6) months and this 

pattern repeats for several years, as seen in figure 4.5. In figure 4.5, we see that all of the solutions have a 

period of exactly 1. 
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In order to ensure the population of tilapia fish is increasing, there are no harvesting in the next six 

(6) months and the population of tilapia fish will increase until it approaches the carrying capacity, C = 

620500. 

 
  The next Chapter deals with conclusions and recommendations.   
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1  CONCLUSIONS 

 

In this work, we studied the sustainable harvesting strategies of the tilapia fish population in a 

pond. Management of fish populations to sustain catches and abundance levels can be based on several 

alternative means of strategic catch regulation. This thesis is intended to explore harvesting strategies that 

optimizes catch while still maintaining a sustainable tilapia fishing industry. We extend the modified 

logistic growth model developed by P.F Verhulst in 1838 by incorporating two types of harvesting 

strategies into the model and investigate how the demise (catch) of certain number of tilapia fish will 

affect the total population of tilapia fish in the pond. In particular we study the constant harvesting 

strategy model and periodic harvesting strategy model of tilapia fish population in a given pond over a 

period of time.  

In the implementation of the logistic constant harvesting strategy of the selected fish pond with 

carrying capacity of 620500 metre square, the maximum sustainable yield (MSY) or the total allowable 

catch that can be harvested from the population is 124100 tonnes of fish. If this figure (MSY) is constantly removed 

from the population, the fish population does not have enough time to recover the fish population; hence, 

the fish population gets to extinction. However, for  logistic periodic (seasonal) harvesting strategy, 124100 

tonnes tilapia fish is assumed for harvesting for the first six months until the population of tilapia remains 414827 

and this is followed by no harvesting for the next six (6) months to allow the tilapia fish to repopulate  until it 

approaches the carrying capacity, 620500 metre square. This pattern is repeated for several years. 

 So, the harvesting strategy that optimizes the total allowable catch (harvest) while maintaining the 

stable population of tilapia fish is logistic periodic (seasonal) harvesting strategy. A harvesting strategy 
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using logistic periodic (seasonal) harvesting strategy can be used to improve productivity, shorten 

investment return time and reduce risk from changes in sale price of tilapia fish and costs of productions 

of tilapia fish, particularly when comparatively short return periods are used. The development of fish 

harvesting strategy probably can supply the market demand throughout the year. It also can improve the 

commercial return to farmers before harvesting. This study can help in raising the fish such as tilapia fish 

in freshwater ponds for the farmer just like any other agricultural activity. 

 

5.2   RECOMMENDATIONS 

Based on the results of the study, we therefore recommend the following: 

1. A periodic harvesting strategy for fish farmers, since it is a more sustainable technique in fishery 

management practices. 

2. The Government, particularly Fishery Commission is encouraged to use this study as part of its 

guidance for training prospective fisher farmers. 

3. Workshops and seminars should be regularly organized to educate fish harvesters and other 

stakeholders on a more sustainable harvesting strategy and be well monitored to ensure it usage.   

Finally, we recommend for further study, the extension of our models to include issuing of Fishing 

Licenses and oxygen content of the body of water in the pond. 
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