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A B S T R A C T   

Despite decades of research and advancements in diagnostics and treatment, tuberculosis remains a major public 
health concern. New computational methods are needed to interrogate the intersection of host- and bacterial 
genomes. Paired host genotype datum and infecting bacterial isolate information were analysed for associations 
using a multinomial logistic regression framework implemented in SNPTest. A cohort of 853 admixed South 
African participants and a Ghanaian cohort of 1359 participants were included. Two directly genotyped variants, 
namely rs529920 and rs41472447, were identified in the Ghanaian cohort as being statistically significantly 
associated with risk for infection with strains of different members of the MTBC. Thus, a multinomial logistic 
regression using paired host-pathogen data may prove valuable for investigating the complex relationships 
driving infectious disease.   

1. Introduction 

Tuberculosis (TB), a disease primarily affecting the lungs, is caused 
by pathogenic members of the Mycobacterium tuberculosis complex 
(MTBC) such as M. africanum (M. africanum) and M. tuberculosis (M. tb). 
Infection alone, however, is not sufficient to cause disease [3,28,39]. 
Each branch of the MTBC comprises several clades of specific strains 
with variable virulence and disease-causing mechanisms [5,19,23]. 
While M. africanum is the main cause of TB in West-African countries 
including Ghana, M. tb is responsible for TB cases in most other parts of 
the world, including South Africa [20]. In addition to socio-economic- 
and environmental factors [46,55], predisposing diseases [9,31], and 

the genetic make-up of the human host [10,28,40,45,51,66,67] have 
been shown to play pivotal roles in determining susceptibility to the 
disease. 

Several associations between genomic loci and susceptibility to in-
fectious diseases such as TB [3,21,67], malaria [49] and HIV [43] have 
been reported using candidate-gene association studies, linkage studies, 
and genome-wide association studies (GWAS). Using these approaches, 
a number of genes encoding proteins of the host immune system have 
been associated with susceptibility to TB, including human leukocyte 
antigens (HLAs), NRAMP1, mannose binding lectin (MBL), IFN-gamma 
(IFN-ƴ), and Vitamin D Receptor (VDR) [3,51,58,71]. While several 
studies have investigated the genetic association with TB 
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[10,23,24,28,53], few have investigated the association between gene 
variants and susceptibility to particular strains of the MTBC [37,41]. 

Candidate gene studies compare allelic and genotyping frequencies 
of a specific genetic marker between a group of unrelated cases and 
controls. In a large cohort of 1916 sputum-positive Ghanaian TB patients 
genotyped for the ALOX5 g.760G > A variant, individuals who were 
heterozygous for the polymorphism were found to be at increased risk 
for developing TB [21]. Furthermore, patients harboring the exonic 
variant (g.760A) had a greater association (OR = 1.70; [95% CI: 
1.2–2.6]) with infection caused by M. africanum West Africa-2 [21]. 
Modelling a recessive mode of inheritance, a protective association (OR 
= 0.60; [95% CI: 0.4–0.9]) was identified between the occurrence of TB 
and the MBL2 G57E variant in another cohort of Ghanaian patients [65]. 
TB patients belonging to the Ewe population were significantly more 
likely to be infected with M. africanum (OR = 3.02; [95% CI: 1.67–5.47]) 
and further stratification by lineage revealed that the association was 
strongly driven by infection with members of M. africanum West Africa-1 
[2]. 

HLA types are also known to be important in the immune response to 
pathogens. In a South African candidate-gene association study of HLA 
alleles and the M. tb strain responsible for active TB, the HLA-B27 allele 
was found to decrease risk for an additional disease episode due to a 
Beijing strain, following multiple episodes of disease caused by a Beijing 
strain [51]. In addition, specific HLA types were found to be associated 
with disease caused by the different strains investigated [51]. Finally, 
Caws and colleagues investigated the susceptibility of the human host to 
different M. tb strains. Using a candidate-gene approach, a cohort of 237 
adult Vietnamese TB patients were analysed. The authors concluded that 
for this cohort, individuals carrying the C allele of the toll-like receptor-2 
(TLR2) T597C polymorphism were significantly more likely to develop 
TB caused by mycobacteria belonging to the East-Asian/Beijing strain 
family (OR = 1.57 [95% CI 1.15–2.15]) [7]. 

A limitation of the candidate-gene study design however, is that it 
requires an a priori hypothesis regarding which genes to target in the 
association analysis. To address this limitation, GWAS have become a 
popular alternative for identifying genetic associations with disease. 
Through genotyping of many common genetic variants, GWA studies 
enable a global interrogation of a host’s genome for associations to 
disease, without the limitation of predefined candidate genes [22]. 
While genome-wide associations between the human host and TB have 
been extensively studied in several populations, the susceptibility of the 
host to different members of the MTBC has only in recent years gained 
some attention. 

The first GWAS to investigate genetic susceptibility to strains of 
different MTBC lineages aimed to identify genome-wide associations 
with TB onset, stratifying a Thai cohort by infecting MTBC lineage, and 
the age at onset [41]. The study initially attempted to identify age- 
related associations between five MTBC lineages and two age- 
stratified groups of TB participants, namely 219 young cases (under 
the age of 45), and 467 old cases (over the age of 45). To reduce the 
complexity of the association tests, the MTBC lineages were tested as one 
lineage versus a collective of all other lineages. After applying Bonfer-
roni corrections, none of the genotyped single nucleotide poly-
morphisms (SNPs) reached genome-wide significance for association 
with either of the age-groups for any of the five MTBC lineages. How-
ever, when reducing the five lineages to two groups consisting only of 
‘Beijing’ and ‘non-Beijing’ cases, and testing for age-related association 
to TB, the authors identified a single SNP on chromosome 1p13, 
rs1418425, reported to have a significant association to non-Beijing 
infected cases classified in the “old” age category (P = 1.58 × 10− 7; 
OR = 1.62 [95% C.I.: 1.35–1.93]). The authors were able to replicate the 
SNP in two independent cohorts, further demonstrating the importance 
of performing GWAS with a specific focus on pathogen lineage [41]. 

Another study investigated the coevolution of M. tb and it’s human 
host, with the hypothesis that the longstanding coexistence between the 
human genome and M. tb lineage may reduce the risk of progressing to 

active TB or minimize the severity of disease. The authors investigated 
TB severity (as measured by the TBScore) in two cohorts from Uganda 
with paired M. tb-human DNA available to determine if interactions 
between M. tb lineage and human genetic variants exist. Although no 
association was found between lineage and disease severity, an inter-
action between a SNP in SLC11A1 and the L4-Ugandan lineage were 
identified in both cohorts. In addition several IL12B polymorphisms 
were found to be associated with disease severity [37]. 

In order to improve our understanding of the genetic susceptibility to 
the MTBC clades, this study leveraged genome-wide genotyping data 
from the host and pathogen data to perform a genome-wide screen for 
clade-specific genetic associations in cohorts originating from two 
distinct populations. 

2. Results 

2.1. Defining MTBC clades and superclades 

2.1.1. South Africa 
The MTBC strains obtained in the South African cohort contained 

strains of eight of the 12 lineages, namely Beijing, CAS (represented as 
CAS1 in the infection database), Haarlem, Haarlem-like, Low-copy 
Clade (LCC), T, Quebec, and “Other” (Fig. 2A). During the grouping 
strategy, Beijing and CAS were clustered to form the “BeijingCAS1” 
superclade (Fig. 2B). Similarly, Haarlem, Haarlem-like, and LCC cases 
were clustered to form the “HaarlemsLCC” superclade (Fig. 2B). A clade 
denoted as “Other” was also present in the South African cohort but does 
not appear on the phylogenetic tree (Fig. 1) and thus was kept as a 
distinct member during the grouping strategy. The T superclade was 
excluded from subsequent analysis due to low frequency in the cohort 
after clustering into superclades, leaving five superclades represented by 
this cohort (Fig. 2B). MTBC clade distributions were dominated by the 
LAM clade and closely followed by Beijing. Superclade distributions 
showed similar frequencies for LAM, BeijingCAS1, and HaarlemsLCC, 
while the Quebec and “Other” clades were the least abundant (Fig. 2B). 
After grouping the clades into superclades, the strains of the LAM, 
HaarlemsLCC, and BeijingCAS1 superclades occurred most frequently in 
the cohort with all three superclades having a frequency greater than 
125 in the dataset (Fig. 2B), while the “Other” and Quebec superclades 
were in least abundance, with frequencies of 60, and 45, respectively 
(Fig. 2D). 

2.1.2. Ghana 
The strains obtained in the Ghanaian cohort contained 12 clade 

annotations obtained from spoligotyping. The afri-181 and afri-438 
clades were represented by M. africanum on the phylogenetic tree and 
were subsequently grouped with EAI at the point of divergence, and 
named as the EAI_afri superclade (Fig. 1). Beijing and CAS were merged, 
as were Haarlem and X, into the “BeijingCAS’, and “HaarlemX” super-
clades, respectively. T and U clades were also clustered (Fig. 1). The 
“Ghana-2′′ clade was kept as a distinct superclade, while LAM and CAM 
were grouped based on the similarity in their spoligotyping patterns as 
illustrated in [60]. This cohort thus contained 12 clades and six super-
clades after clustering (Fig. 2C, and Fig. 2D, respectively). 

After grouping the clades into superclades, the strains of the EAI_afri 
and LAM_CAM superclades occurred most frequently in the cohort with 
both superclades having a frequency greater than 400 in the dataset 
(Fig. 2D). The HaarlemX, and T_U superclades had a frequency of 
approximately 160, and 250 in the cohort, respectively, while the Bei-
jingCAS and Ghana-2 superclades were in least abundance, with fre-
quencies less than 50 (Fig. 2D). 

2.2. Genotype data quality control, haplotype phasing, and genotype 
imputation 

For the South African cohort, analysis using Genotype Harmonizer 
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Fig. 1. Clustering of MTBC clades on the SNP–based phylogenetic tree (adapted from original tree sourced with permission from [17]). MTBC clades were grouped 
into superclades near a point of divergence on the phylogenetic tree. Clustering reduced 12 distinct clades into seven closely related superclades. TB cases identified 
to be due to infection with the East African Indian (EAI) and M. africanum clades (green bracket), were merged into the “EAI_afri” superclade. Similarly, CAS and 
Beijing clades were merged into the “BeijingCAS1” superclade (red bracket). The LCC, Pre-Haarlem, Haarlem-like, and Haarlem clades merged into one superclade 
designated as “HaarlemsLCC” (orange bracket), while the Quebec, Latin-American Mediterranean (LAM), T, and Lineage 7 clades remained unchanged due to the 
lack of a common progenitor on the red dotted line, were subsequently treated as individual superclades and are indicated by black brackets. The clades denoted as 
LCC 1 bander (F110) and ‘unknown (F32)’ were not clustered into superclades. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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yielded a dataset of 947 participants with 356,165 variants. After 
quality control filters were applied, 919 participants and 239,612 vari-
ants remained. For the Ghanaian cohort, similar analysis yielded a 
dataset of 3311 participants with 713,223 variants, and genotype QC 
filters resulted in a further reduction to 617,409 variants. No additional 
QC steps were used for the IH protocol, while the results of the addi-
tional data preparation steps for both cohorts imputed using the MIS tool 
are detailed in Table 2. 

2.3. Selection of high-quality imputed genotype data 

Imputation results are presented for Chromosomes 1, and X for the 
South African cohort, while for the Ghanaian cohort, Chromosome X 
data was not available, and thus the imputation of two autosomes are 
reported Table 3. For the South African cohort, the SIS workflow using 
the AGR resource imputed the highest proportion of SNPs, whereas for 
the Ghanaian cohort, the MIS workflow using the CAAPA resource 
imputed the greatest proportion of SNPs with a quality metric greater 
than 0.45 (Table 3). 

For the South African cohort, genotype datum imputed with the AGR 
reference panel was selected as the dataset with the highest imputation 
quality across all reference panels assessed. After removal of mono-
morphic sites and filtering on the INFO or Rsq score, 28,566,283 SNPs 
for 919 participants remained. After removing the 136 related in-
dividuals identified prior to imputation, and filtering for SNP- and 
sample missingness, and MAF, a dataset of 7,145,406 variants for 783 
participants remained. Of the 525 clade-matched samples, 445 were 
extracted from the dataset of samples passing QC and used in the asso-
ciation analysis. 

For the Ghanaian cohort, despite the CAAPA resource imputing the 
greatest SNP density (Fig. 3D and Fig. 4D), the IH workflow using the 
1000G reference panel imputed the highest quality of SNPs per MAF bin 

but was very closely followed by the other workflows and reference 
panels from the 20–30% MAF bin upwards (Fig. 5). Thus, the IH dataset, 
imputed with the 1000G reference panel was selected as the best dataset. 
After filtering monomorphic SNPs, INDELS, and variants not reaching 
the INFO score threshold, 25,968,622 SNPs remained for 3239 samples. 
After filtering for MAF, SNP- and sample missingness, and removal of 93 
related individuals identified pre-imputation, the Ghanaian dataset 
comprised of 5,275,890 variants for 1273 clade-matched samples. 

2.4. Covariable data 

For the South African cohort, the covariables age, sex, and ancestry 
proportions were available for all samples. Ancestry proportions were 
for the European, African, San, South-Asian, and East-Asian ancestries. 
Of the 445 clade-matched samples that passed the post-imputation QC, 
ancestry proportions were available for 357 samples as generated pre-
viously using the Affymetrix genotype datum for this cohort and 
ADMIXTURE software [13]. For the remaining 88 samples, ancestry 
proportions were calculated from genotype datum generated by the 
MEGA array using ADMIXTURE. The East-Asian ancestry, being the 
smallest contributing ancestry proportion, was not included as a cova-
riable in the analysis. Variances were calculated for each of the four 
remaining ancestry proportions and determined to be 0.027 (San), 0.035 
(African), 0.014 (European), and 0.009 (South-Asian). As the variances 
were greater than the minimum cut-off of 0.001, they were included as 
covariables in the analysis. 

For the Ghanaian cohort, age, sex, and ethnicity were included as 
covariables. Further examination of admixture for the Ghanaian dataset 
revealed that the cohort was not highly admixed, and thus ethnicity in 
the form of principal components (PC) was evaluated. One sample 
passing QC filters did not have one of the covariables and was excluded 
from the dataset leaving 1272 samples for the association analysis. The 

Fig. 2. Frequency distributions of MTBC Clades and Superclades. Frequency distributions of A: MTBC clades and B: superclades for the South African cohort and C: 
clades and D: superclades for the Ghanaian cohort. The South African cohort was dominated by the LAM superclade, while the Ghanaian cohort was dominated by 
the EAI_afri and LAM_CAM superclades. 
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variance in the PCs provided for the cohort was calculated to be 0.0002 
(PC1), 0.0003 (PC2), and 0.0004 (PC3) and therefore determined to be 
insufficient for inclusion in the association analysis as covariables. 

2.5. Multi-phenotype GWAS 

2.5.1. South Africa 
An MLR was conducted for the 445 superclade-matched South Af-

rican samples using SNPTEST under an additive model. All results were 
reported using the LAM superclade as the baseline. Although none of the 
SNPs passed the GWAS cut-off for significance, 4631 SNPs had an LRT p- 
value less than 0.0005 and eleven SNPs had an LRT p-value less than 1 ×
10− 6 (Table 4). Odds ratios are reported (Table 4) and standard errors of 
the odds ratios are shown in Fig. 6A. A single SNP, rs9389610, located 
on chromosome 6, had a p-value of 1.60 × 10− 7. Individuals with the A 
allele of this SNP were twice as likely to be have TB due to infection with 
a member of the BeijingCAS1 superclade (OR: 2.19) than due to either 
the HaarlemsLCC (OR: 1.07) or LAM superclades. Individuals with the A 
allele were only slightly more at risk of being infected with a member of 
the ‘Other’ superclade (OR: 2.78), when compared to the BeijingCAS1 
superclade (OR: 2.19), and were very unlikely to be infected with a 
member of the Quebec superclade (OR: 0.25). 

For the four SNPs located on chromosome 5, individuals with the risk 
allele doubled the chances of being infected with the Quebec superclade 

(OR: ~2) while halving the risk of being infected with a member of the 
“Other” superclade (OR: ~0.5) (Table 4). Lastly, for the six SNPs located 
on chromosome 17, the risk allele was shown to double the risk of being 
infected with a member of the LAM superclade than with the Haar-
lemsLCC (OR: ~0.50) superclade. Individuals with the risk allele of 
these six SNPs were also equally at risk of being infected with a member 
of the BeijingCAS1 or LAM superclade and were twice as likely to be 
infected with the member of the “Other” superclade (OR: ~ 2) when 
compared to the BeijingCAS1 superclade (OR: ~ 1) (Table 4). 

While these SNPs are unlikely to have a direct effect on the gene 
expression itself, the SNP may be in linkage disequilibrium with other 
nearby SNPs which do have a direct effect on the gene. For the South 
African cohort, the most significantly associated SNP was rs9389610 
(g.139039029G > A), located on chromosome 6. This SNP is an imputed 
SNP and its two closest directly genotyped SNPs were rs4896385 
(g.139011266G > T), and rs7742202 (g.139074280A > G). The 
rs4896385 SNP is located in NHSL-1, while the rs7742202 SNP is located 
in GVQW2. Neither of these genes have been previously shown to be 
involved in the pathogenesis of TB. The four SNPs located on chromo-
some 5 (Table 4) were annotated to the StAR Related Lipid Transfer 
Domain Containing 4 gene (STARD4) using the VEP tool, while the six 
SNPs located on chromosome 17 were annotated to the TANC2 gene. 

Fig. 3. SNP density plots for Chromosome 1 of the Ghanaian cohort post-imputation using the five workflows. A: IH with 1000G, B: MIS with 1000G, C: SIS with 
1000G, D: MIS with CAAPA, E: SIS with AGR. The MIS workflow using the CAAPA resource imputed the greatest proportion of SNPs with a quality metric greater 
than 0.45. 
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2.5.2. Ghana 
Using SNPTEST under an additive model, an MLR was also con-

ducted for 1272 superclade-matched Ghanaian samples. For this cohort, 
all association results were reported using the LAM_CAM superclade as 
the baseline. In summary, a total of 32 SNPs had an LRT p-value less than 
1 × 10− 6 (Table 5) and were significantly associated with the MTBC 
superclades. 

Several imputed SNPs were shown to dramatically increase the risk 
of being infected by a particular superclade. For example, the risk allele 
of the SNP rs577800201 (g.20476046C > T) was shown to increase the 
risk of being infected with the EAI_afri superclade by 93 times, 
compared to the baseline LAM_CAM superclade, and was annotated by 
the VEP to map to ACSM2A. The risk allele of the SNP rs374315920 
(g.38496435C > T) located on chromosome 17, was also found to in-
crease an individual’s risk of being infected with the EAI_afri superclade 
by more than 500 times, as compared to the LAM_CAM reference 
superclade, and the MLR specific for this SNP was highly significant with 
an LRT p-value of 1.68 × 10− 255. Using the VEP tool, this SNP was an-
notated to lie within the retinoic acid receptor alpha (RARA) gene. 

Further analysis revealed that of the 32 SNPs identified here, two, 
namely the intergenic variant rs529920 on chromosome 6, and the 
intron variant rs41472447 on chromosome 12, were directly genotyped. 
The risk allele of the SNP rs529920 (g.153835125A > G) was found to 
halve the risk of being infected with a member of the BeijingCAS and 
EAI_afri superclades when compared to the LAM_CAM baseline 

superclade. Individuals with the risk allele for this SNP were also equally 
at risk of being infected with a member of the Ghana2, HaarlemX, or T_U 
superclades (OR: 1.04–1.24) (Table 5). Additionally, this SNP had an 
MAF of 0.4721 in the study cohort, which is similar to the MAF observed 
in African populations in the 1000G (MAF: 0.571) and in gnomAD 
genome (MAF:0.582). However, this SNP has no known gene conse-
quence to date. 

Similarly, the risk allele of the intron variant rs41472447 (g. 
41708761A > G) was found to nearly triple the risk of infection with a 
member of the BeijingCAS superclade (OR: 2.56, C.I.: (1.48–4.41)) or 
the Ghana2 superclade (OR:2.94, C.I.: (1.71–5.08)). In contrast, the risk 
allele halved the risk of infection with the T_U superclade (OR:0.59, C.I.: 
0.44–0.79) and had no effect on the risk for infection with members of 
the EAI_afri or HaarlemX superclades (Table 5). This variant had an MAF 
of 0.2461 in the study dataset which is similar to the MAF observed in 
African populations in the 1000G (MAF: 0.200) and in the gnomAD 
genome (MAF:0.165). Furthermore, rs41472447 maps to the PDZRN4 
gene in dbSNP, but has to date not been linked to susceptibility to 
tuberculosis. 

2.6. Validation of imputed variants and significant associations 

Three SNPs with significant associations (rs73497904, rs77139740, 
rs77641928) from the Ghanaian cohort were successfully genotyped. 
The genotypes of these three SNPs were used to assess the accuracy of 

Fig. 4. SNP density plots for Chromosome 22 of the Ghanaian cohort post-imputation using the five workflows. A: IH with 1000G, B: MIS with 1000G, C: SIS with 
1000G, D: MIS with CAAPA, E: SIS with AGR. 
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Fig. 5. Median quality scores across MAF bins for the Ghanaian cohort, using the five protocols. A: Chromosome 1 B: Chromosome 22. For both these representative 
chromosomes, the IH imputation protocol using the 1000G reference panel outperformed the other four workflows. 

Fig. 6. Standard errors of odds ratios calculated for each superclade against the reference LAM superclade. A: South African cohort B: Ghanaian cohort. For both 
cohorts, the smallest superclades had the largest variation in their standard errors. 
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imputation as well as validate the significant associations. When 
comparing imputed to genotyped alleles for the three variants on an 
individual level, an overall imputation error rate of 2.25% was achieved 
(2320 samples with 1323 cases and 997 controls). While the imputation 
error rate was acceptable, the associations for each variant did not 
replicate and two of the variants, namely rs77139740 and rs77641928, 
had a MAF below 5% (Table 6). A possible reason for the associations not 
replicating is the loss of power as the Ghanaian cohort’s sample size was 
significantly reduced in the original analysis. 

3. Discussion 

TB is a highly infectious disease affecting millions of people each 
year. The genetic susceptibility of the host to disease progression has 
been extensively studied using linkage analysis, candidate gene studies, 
and GWAS. Furthermore, a number of selected genes have been inves-
tigated for their contribution to genetic susceptibility of the host to 
strains of different lineages of the MTBC. However, to date, no genome- 
wide analysis of genetic markers affecting susceptibility to strains of 
different MTBC lineages has been performed. 

3.1. Imputation 

While several reference panels exist to facilitate genotype imputa-
tion, most of these panels focus on representing populations of European 
ancestry, and little representation has been made for African pop-
ulations. Therefore, the present study focused on evaluating the quality 
of imputation attainable for the five-way admixed South African popu-
lation and the Ghanaian cohort using the 1000G, AGR, and CAAPA 
reference panels.The more admixed a population is, the greater the 
heterogeneity in its haplotype block structure. This genetic complexity 
requires large reference panels with suitable ancestry to facilitate ac-
curate genotype imputation [32]. The five-way admixed South African 
population contains genetic contributions from Bantu-speaking Afri-
cans, Europeans, KhoeSan, and South- and East-Asians [13,14]. Impu-
tation was previously performed for this population; however, it was 
done using the 1000G Phase 1 [63] and the HapMap3 release 2 (The 
International HapMap 3 Consortium 2010) reference panels. The 1000G 
panel has been expanded substantially since whereas the HapMap3 
reference panel, representing individuals mostly of European ancestry 
[10], has since been deprecated. However, previous work by Schurz 
et al. [53] showed that a genotype imputation accuracy of at least 88% 
could be achieved when evaluating the five-way admixed South African 
population, providing an alternative resource for obtaining a more 
comprehensive genomic dataset. 

When evaluating the Ghanaian cohort, although imputation of the 
1000G reference panel with the IH method performed the best, there 
was very little difference in the median quality scores for the different 
workflows seen for SNPs with an MAF of 10–50% (Fig. 5). For rare 
variants (MAF 0–5%) however, the IH method outperformed all others 
with a median quality score above 0.75, whereas both analyses with the 
MIS produced a median score below the cut-off of 0.45. Thus, for the 
Ghanaian cohort, all reference panels and methods tested could be 
considered viable options for imputing common variants with an MAF of 
10–50% but should be considered carefully for variants with an MAF 
below 10%. 

In contrast to the AGR which contains no individuals recruited from 
West-African countries, the CAAPA resource contains 88 individuals 
recruited from the West-African country of Nigeria [35]. Thus, it was 
unsurprising that the CAAPA resource performed well when imputing 
SNPs with a MAF above 10% (Fig. 5). From an MAF of 20–50%, the 
CAAPA resource performed similarly to the other three reference panels 
and may thus be considered suitable for imputing cohorts of West- 
African ancestry, such as the Ghanaian cohort used in this study. 

3.2. Multi-phenotype GWAS 

In this study, the MLR functionality within SNPTEST enabled the 
genome-wide investigation of genetic markers for association to a 
number of MTBC superclades. Although none of the SNPs passed the 
GWAS p-value cut-off, the most significant associations for the South 
African cohort imputed with the AGR reference panel were reported. 
This was likely due to the small sample size resulting in a subsequent 
reduction in statistical power. In contrast, 32 SNPs passed the GWAS cut- 
off for the Ghanaian cohort imputed with the 1000G reference panel and 
may be considered as potential targets for further investigation of host- 
directed therapies suitable for individuals of West-African descent. None 
of the SNPs with an LRT p-value less than 0.0005 in either cohort were 
found in the other, demonstrating the population-specific association of 
SNPs with the strains of different MTBC superclades, which has been 
previously shown in the investigation of TLRs and their association with 
cases of TB in populations of different ethnicities [52]. 

3.3. Potential drug targets 

For the Ghanaian cohort, 32 SNPs with significant LRT p-values were 
identified as being associated with the MTBC superclades investigated 
(Table 5). Nine of the SNPs located on chromosome 12 mapped to the 
PDZRN4 gene. For these nine SNPs, the risk allele increased the chances 
of individuals being infected with the BeijingCAS superclades 2.5 times, 
and in the region of three times for the Ghana2 superclade, while the risk 
allele halved the chances of being infected with the T_U superclade. Due 
to the low frequencies of the BeijingCAS and Ghana2 superclades 
observed for this cohort (Fig. 2D), it is possible that these odds ratios 
were inflated because of small sample sizes. Notably, the two SNPs 
which were directly genotyped, and not imputed, were found to be 
significantly associated with infection with particular MTBC super-
clades. This provided crucial evidence that despite the vast amount of 
imputed genotype data included in the MLR, the association analysis 
was able to detect two directly genotyped SNPs with potentially sig-
nificant associations with the MTBC superclades. 

Few studies have described the direct influence of M. tb infection on 
the expression of the STARD4 and RARA genes, and no studies have 
investigated the outcomes of infection with strains belonging to 
different MTBC clades on these genes. The STARD4 encodes the StAR- 
related lipid transfer protein which plays a crucial role in the trans-
membrane trafficking of lipids (such as cholesterol) - an important 
source of energy for M. tb [59]. Infection of macrophages with pathogens 
such as M. tb stimulates the process of lipid droplet formation [11]. It has 
been hypothesised that M. tb initiates this process in order to secure a 
reliable source of carbon to fuel bacterial growth [6]. Additionally, the 
accumulation of cholesterol in the bacterial cell wall drastically reduces 
the permeability of the cell wall, subsequently reducing the penetrating 
capability of the anti-TB drug Rifampicin [6]. However, a recent study 
has contradicted the notion that lipid droplet formation is a bacteria- 
driven process. Instead, it was proposed that the formation of lipids is 
an immune system-activated process, and does not occur as a result of 
direct stimulation by M. tb, but rather via the IFN- ƴ, H1F-alpha- 
dependent pathway of the host immune system [29]. 

All-trans retinoic acid (RARA), the active form of Vitamin A, plays an 
essential role in the normal functioning of the adaptive and innate im-
mune systems. The oral administration of retinoic acid to rats resulted in 
inhibition of the M. tb growth, following in vitro infection [70], thus 
making this gene a potential target for anti-TB therapies. The results of 
this study have highlighted several SNPs which possibly significantly 
increased the risk of individuals with Ghanaian ethnicity to being 
infected with the endemic TB strain of M. africanum. Given the burden of 
disease, and the dominance of M. africanum strains in Ghana, it may be 
worthwhile exploring the functional effect of these SNPs on the bio-
logical processes described. 
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3.4. Recommended improvements for future multi-phenotype GWAS 

Several limitations may have affected this study. Obtaining a suitable 
sample size is a problem inherent in GWA studies making use of logistic 
regression modelling. Furthermore, the many phenotypes being ana-
lysed in this study, demanded a sufficient number of cases for each class. 
The frequency of each MTBC clade however, is dependent not only on 
the host, but is also affected by the virulence of the bacterium. Thus, 
with all these considered, the sample sizes included in the MLR should 
be sufficient for inclusion in the analysis but will likely also reflect the 
distribution in the population. Another limitation of the study is that at 
the time of analysis, the AGR reference panel was not publicly available 
for download to a local machine. Thus, its use in this study could only be 
facilitated via the SIS, a freely accessible online imputation server. 
Through this, we were able to obtain high-quality imputed data for the 
South African dataset, but it was necessary to be mindful when drawing 
comparisons as the other workflows made use of different imputation 
software. 

With the current trajectory of the TB epidemic, novel methods are 
needed to augment current therapies for TB and combat the disease. This 
study provides the groundwork for future GWAS wishing to investigate 
the relationship between the host and the many members of the MTBC 
causing disease. Furthermore, the SNPs identified in this study may be 
evaluated in functional studies to assess their viability as targets for host- 
directed therapies. This study would not have been possible were it not 
for the collection of paired samples of blood and sputum from study 
participants. Thus, future studies of this kind will require that both 
samples be collected from participants in order to perform this associ-
ation analysis. Although it was necessary to exclude low frequency 
MTBC cases at the superclade level to prevent the reduction in statistical 
power of the association test, this may have brought in a weakness in 
interpreting the odds ratios derived from the model. Thus, the odds 
ratios derived may only be interpreted at the superclade level and does 
not provide further granularity to association with specific clades. 
Therefore, future studies employing this method should consider 
excluding low-frequency clades before clustering as well as Bayesian 
analyses that allow inclusion of prior probability distribution for strain 
prevalence. Additionally, incorporation of more diverse reference 
panels, such as the AGR, and new algorithms for imputation could 
improve association results. 

4. Material and methods 

4.1. Study design 

To perform genome-wide association analyses between human host 
genotypes and the infecting member of the MTBC, host genotypes with 
paired MTBC isolate information were sourced for two geographically 
distinct cohorts, namely a South African cohort, and a Ghanaian cohort. 
As these two cohorts are geographically distinct, and possess vastly 
different admixture profiles, we did not aim to replicate our findings 
within these two cohorts. 

The South African cohort consisted of study participants recruited in 
the Western Cape Province of South Africa during the period of January 
1993 through December 2004. Participants were recruited from suburbs 
where the TB incidence was high (28.9% in 2005) and the prevalence of 
HIV was a low 2% [30,57]. All study participants in this cohort self- 
identified as belonging to a five-way admixed South African popula-
tion, were HIV-negative, and provided written informed consent. Blood 
samples were collected for SNP genotyping of the host and sputum 
samples were collected for bacterial culture on Loewenstein-Jensen (L-J) 
media. 

For the Ghanaian cohort, participants were enrolled between 
September 2001 and July 2004 at the Korle Bu Teaching Hospital in 
Accra, Komfo Anokye Teaching Hospital in Kumasi, and at 15 additional 
hospitals and polyclinics in Accra and Kumasi, as well as regional district 

hospitals. All cases were HIV-negative and confirmed to have pulmonary 
TB by sputum microscopy, performing solid mycobacterial cultures 
using L-J media and also by two independent radiologists [66,67]. Of the 
Ghanaian samples included in this study, 1359 were TB cases and 69% of 
the participants were male (Table 1). Principal Component Analysis of 
the Ghanaian cohort showed contributing ethnicities from the Akan, Ga- 
Adangbe, Exe, and several other ethnic groups from northern Ghana 
[66]. All subsequent research was conducted in accordance with the 
principles expressed in the Declaration of Helsinki [69]. 

4.2. Host SNP genotyping 

4.2.1. South Africa 
SNP genotyping was performed using DNA extracted from blood 

samples. All participants in the South African cohort were genotyped 
using the GeneChip Human Mapping 500 K SNP array which contains 
500,000 SNP markers (Affymetrix, California, United States), while a 
subset of this cohort was also genotyped using the Infinium Multi-Ethnic 
Genotyping Array (MEGA), which is comprised of 1.7 million SNP 
markers (Illumina, California, United States). Genotype-calling was 
performed using the Affymetrix Power Tools pipeline (V1.10.0) as pre-
viously described [14,53]. Genotype datum was made available in 
PLINK format (Purcell and Chang, n.d.; [8]). Following standard geno-
typing quality control (QC), ancestry proportions for the South African 
cohort on both the Affymetrix and MEGA arrays were estimated [13,53] 
using the unsupervised algorithm implemented in ADMIXTURE [1]. 

4.2.2. Ghana 
DNA extracted from blood samples was genotyped using the Affy-

metrix SNP 6.0 array at the Affymetrix Services Laboratory in California, 
and at ATLAS Biolabs GmbH in Berlin. Participants were successfully 
genotyped for 783,338 variants (Table 1). Genotype datum was made 
available in PLINK format, genotypes were called using the Birdseed 
version 2 algorithm and ancestry proportions in the form of principal 
components were derived using the Eigenstrat software [66]. 

4.3. Bacterial SNP genotyping 

For the South African cohort, MTBC isolates were genotyped using 
spoligotyping and IS6110 Restriction Fragment Length Polymorphism 
(RFLP) methods as previously described [68]. For the Ghanaian cohort, 
MTBC isolates extracted from sputum samples were cultured on L-J 
media at the Kumasi Centre for Collaborative Research [42] and strains 
were identified using IS6110 RFLP and spoligotyping [62]. All MTBC 
isolate information were captured on manually-curated infection data-
bases for archiving and made available for this study. 

4.4. Defining MTBC clades and superclades 

The term “superclades” was used to describe the grouping of clades 
using a SNP-based phylogenetic tree of the MTBC. Where a common 
progenitor was shared, MTBC clades were grouped into superclades near 
a point of divergence (Fig. 1) [17]. This was performed to reduce the 
number of clades of low frequency, as low frequency groups are known 
to induce an unfavourable collinearity effect on logistic regression 

Table 1 
Summary of patient recruitment for the South African and Ghanaian cohorts.  

Cohort South Africa Ghana 

Cases 853 1359 
Male 516 2087 
Female 431 1224 
Cases + Male 469 (55%) 933 (69%) 
Cases + Female 384 (45%) 426 (31%) 
Total number of participants 947 3311 
Total number of variants 397,337 7838  
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models [4]. Additionally, clustering of clades into superclades mitigated 
the class imbalance which would negatively affect the statistical models. 
Clades not amalgamated with other clades were also referred to as 
“superclades” after clustering and those not represented on the phylo-
genetic tree were kept as distinct superclades and not clustered with any 

of the members on the existing tree, except when a suitable reference 
phylogeny was found. After clustering, superclades with a frequency less 
than ten in the study dataset were excluded from subsequent analyses. 

4.5. Genotype data quality control, haplotype phasing, and genotype 
imputation 

Quality control, haplotype phasing and genotype imputation were 
performed using the methods described in Schurz et al. [54]. Briefly, 
genotype data were iteratively filtered for 2% SNP genotype missing-
ness, 10% sample missingness and 5% SNP minor allele frequency 
(MAF), until no additional samples or variants were removed. Addi-
tionally, variants lacking chromosome or base pair information were 
updated using the 1000 Genomes Phase 3 (1000G) reference panel and 
the dbSNP [56] database. Imputation processes are strengthened by 
sample size. Thus, all available samples, regardless of relatedness or 
whether the sample had matching MTBC information, were included in 
the imputation. Related individuals were noted, but not removed in 
order to maximise the number of haplotypes available for the imputa-
tion process. The genotype QC procedure concluded with a sex 
concordance check as well as strand-alignment to the 1000G reference 
panel [human genome build 37 [61]] using the Genotype Harmonizer 
(version 1.4.15) tool [15]. 

Following the initial QC, haplotype phasing was performed using the 
ShapeITv2 [16] software set at default parameters. Although some 
studies have reported that pre-phasing reduces imputation accuracy 
[50], it is known to significantly speed up the computationally intensive 
process of genotype imputation [25,27]. To maximise the number of 
variants tested in the association analysis, the cleaned genotype data 
were imputed using five protocols - and three different reference panels - 
to determine which panel best served the given dataset in imputing 
missing variants, as detailed in Schurz et al. [54]. In addition, to maxi-
mise the amount of informative genotype datum available, all geno-
typed samples, namely the 947 participants in the South African cohort 
and the 3311 participants in the Ghanaian cohort, were submitted to the 
imputation process. 

The In-House (IH) protocol made use of the 1000G reference panel 
with the IMPUTE2 imputation software [26]. The Sanger Imputation 
Server (SIS) [36] makes use of the Positional Burrows-Wheeler Trans-
formation (PBWT) algorithm [18], with two options for the reference 
panel: the African Genome Resource (AGR) and the 1000G. Lastly, the 
Michigan Imputation Server (MIS) [12] makes use of the Minimac3 al-
gorithm [26] and provides access to imputation using the 1000G and the 
Consortium on Asthma among African-ancestry Populations in the 
Americas (CAAPA) [35] reference panels. Of note, both the CAAPA and 
AGR reference panels were not publicly accessible for download at the 
time of this study and thus could only be accessed using these two online 
imputation server platforms. The key differences between the three 

Table 2 
Summary of data pre–processing on the Michigan Imputation Server.  

Cohort South Africa Ghana 

Reference panel 1000G CAAPA 1000G CAAPA 

Chromosomes 1–23 1–22 1–22 1–22 
Samples 919 919 3239 3239 
Sex undefined 3 0 0 0 
SNPs 239,612 233,309 617,409 617,409 
Alternative allele frequency > 0.5 166 0 0 0 
Reference Overlap 99.49 97.94 99.55 97.23 
Match 164,643 153,863 420,805 412,495 
Allele Switch 74,116 68,912 176,073 172,432 
Strand flip 1 0 0 0 
Strand flip and allele switch 0 0 1 0 
A/T, C/G genotypes 6090 5723 15,683 15,330 
Filtered sites     
Filter flag set 0 0 0 0 
Invalid alleles 0 0 0 0 
Duplicated sites 0 0 0 0 
NonSNP sites 0 0 0 0 
Monomorphic sites 0 0 0 0 
Allele mismatch 54 8 2051 25 
SNPs call rate < 90% 0 0 0 0 
Excluded sites in total 55 8 2052 25 
Sites remaining (before imputation) 239,477 228,498 612,561 600,257 
Samples remaining 916 916 3239 3239  

Table 3 
Percentage proportion of SNPs with a quality metric greater than 0.45.  

Cohort South Africa Ghana 

Chromosome Chr 1 Chr X Chr 1 Chr 22 

IH–1000G1 39 29 38 39 
MIS–1000G2 32 18 49 45 
MIS–CAAPA3 22 – 56 50 
SIS–1000G4 36 32 41 40 
SIS–AGR5 43 40 38 36  

1 IH–1000G: In–House workflow using 1000G reference panel. 
2 MIS–1000G: Michigan Imputation Server workflow using 1000G reference 

panel. 
3 MIS–CAAPA: Michigan Imputation Server workflow using CAAPA reference 

panel. 
4 SIS–1000G: Sanger Imputation Server workflow using 1000G reference 

panel. 
5 SIS–AGR: Sanger Imputation Server workflow using AGR reference panel. 

Table 4 
Top 11 SNPs identified by MLR to be associated with strains of different MTBC superclades in the South African cohort.    

Allele Odd Ratio (95% C.I.)  

Chr SNP ID Refa Risk BeijingCAS1 HaarlemsLCC Quebec Other LRT p–valb 

5 rs17458866 C T 0.34 (0.19–0.61) 0.44 (0.26–0.76) 1.99 (1.07–3.68) 0.46 (0.23–0.95) 10e–07 
5 rs13355101 G A 0.31 (0.17–0.57) 0.46 (0.27–0.79) 2.00 (1.08–3.70) 0.47 (0.23–0.96) 6.43e–07 
5 rs12518239 C A 0.29 (0.15–0.56) 0.39 (0.22–0.70) 1.91 (1.01–3.62) 0.51 (0.25–1.05) 9.41e–07 
5 rs28769614 C T 0.27 (0.13–0.53) 0.37 (0.20–0.68) 1.92 (1.00–3.66) 0.48 (0.23–1.01) 3.03e–07 
6 rs9389610 G A 2.19 (1.35–3.55) 1.07 (0.64–1.76) 0.25 (0.08–0.73) 2.78 (1.52–5.08) 1.60e–07 
17 rs78022196 G A 1.04 (0.60–1.80) 0.59 (0.32–1.09) 5.31 (2.44–11.57) 1.96 (1.03–3.73) 5.13e–07 
17 rs72843143 C T 0.98 (0.57–1.69) 0.57 (0.31–1.04) 4.81 (2.26–10.25) 1.89 (1.00–3.58) 8.18e–07 
17 rs8071332 A G 0.94 (0.55–1.60) 0.59 (0.33–1.06) 4.77 (2.22–10.28) 2.03 (1.08–3.81) 6.54e–07 
17 rs10438776 T C 0.99 (0.58–1.71) 0.55 (0.30–1.01) 4.99 (2.30–10.85) 1.94 (1.02–3.69) 3.93e–07 
17 rs17682747 G A 0.98 (0.57–1.68) 0.56 (0.31–1.03) 4.85 (2.27–10.33) 1.90 (1.01–3.58) 5.93e–07 
17 rs7208461 T C 0.94 (0.55–1.61) 0.54 (0.30–0.98) 4.68 (2.17–10.10) 1.77 (0.94–3.34) 8.64e–07  

a Reference allele. 
b LAM was used as the reference superclade. 
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protocols using the 1000G reference panel was the imputation software 
used, as well as additional strict QC filters imposed on the study dataset 
by the MIS and SIS platforms. 

The three human genome reference panels used in this study offered 
access to a wide variety of genotype datum. Spanning 26 populations 
across the world, the 1000G offers one of the most diverse reference 
panels to have been compiled to date by including samples sourced from 
African, American, European, South- and East-Asian countries. Conti-
nental African populations contributing to the reference panel include 
individuals from the Esan ethnic group in Nigeria, Luhya in Kenya, the 
Yoruban people, as well as participants from The Gambia. Approxi-
mately half of the AGR resource is comprised of samples from the 
1000G, while around 2000 samples were sourced from regions in the 
East-African country of Uganda. Around 100 samples were sourced from 
several regions in Ethiopia, as well as from Egypt, the Zulu people in 
South Africa, and the Nama/Khoesan people in Namibia. Lastly, the 
CAAPA resource [35] is comprised of approximately one third of the 
samples on the 1000G and just over a fifth of the number of samples on 
the AGR reference panel. The resource includes individuals self- 
reporting as having African ancestry and were recruited from nine 

cities in the United States, four populations in the Caribbean, four in 
Central- and South America, and two populations representing West 
Africa. 

4.6. Selection of high-quality imputed genotype data 

The quality control procedure for the imputed data was implemented 
as described in Schurz et al. [54]. Briefly, following five imputation 
protocols, imputed data were filtered using a genotype calling threshold 
of 0.7, and the internal quality metric produced by the imputation 
process [54]. SNPs with an INFO or R-squared (Rsq) value greater than 
0.45 were prioritised for the association analysis and filtered iteratively 
for a maximum of 2% SNP genotype missingness, 10% sample miss-
ingness, and 5% SNP MAF using PLINK. Related individuals identified 
prior to imputation were removed followed by a second round of iter-
ative filters for SNP- and sample missingness and MAF [54]. For both 
chromosomes 1 and X, imputation using either the 1000G or the CAAPA 
resource with the MIS performed the worst for the South African cohort 
[54] with the maximum median quality score only reaching 0.82 at a 
MAF of 50%. In comparison, the SIS-AGR workflow outperformed all 
other workflows, and the result correlated with the AGR imputing the 
highest SNP density for chromosome 1 and chromosome X [54]. Post- 
imputation QC concluded with extracting MTBC clade-matched sam-
ples from the remaining samples which had passed all QC filters. 

4.7. Covariable data 

All available covariables were obtained including sex, and age at 
time of active TB and subsequent recruitment into the study. To correct 

Table 5 
Top 32 SNPs identified by MLR to be significantly associated with strains of different MTBC superclades in the Ghanaian cohort.    

Allele Odd Ratio (95% C.I.)  

Chr SNP ID Refa Risk BeijingCAS EAI_afri Ghana2 HaarlemX T_U LRT p–valb 

6 rs529920* A G 0.40 (0.22–0.70) 0.69 (0.57–0.84) 1.04 (0.60–1.80) 1.10 (0.84–1.44) 1.24 (0.98–1.56) 1.86e–07 
12 rs73418916 A G 0.30 (0.11–0.81) 34.15 (20.00–58.33) 1.38 (0.64–2.96) 0.76 (0.51–1.12) 0.88 (0.63–1.22) 2.31e–97 
12 rs138396290 T C 0.32 (0.13–0.77) 4.59 (3.63–5.82) 1.31 (0.73–2.37) 0.87 (0.63–1.19) 0.91 (0.70–1.19) 3.32e–62 
12 rs75717431 T C 2.46 (1.40–4.35) 0.98 (0.78–1.24) 3.30 (1.88–5.82) 0.95 (0.69–1.31) 0.59 (0.44–0.80) 8.55e–09 
12 rs77428482 G A 2.56 (1.45–4.52) 1.01 (0.81–1.28) 3.20 (1.81–5.64) 0.95 (0.69–1.32) 0.60 (0.45–0.81) 1.93e–08 
12 rs77562721 G A 2.50 (1.42–4.41) 1.04 (0.82–1.30) 3.12 (1.77–5.50) 0.93 (0.68–1.29) 0.60 (0.45–0.81) 2.53e–08 
12 rs41524146 C G 2.38 (1.36–4.18) 1.00 (0.80–1.26) 3.19 (1.82–5.58) 0.97 (0.71–1.34) 0.61 (0.45–0.81) 2.62e–08 
12 rs7299395 G A 2.16 (1.22–3.82) 0.99 (0.80–1.24) 3.12 (1.77–5.52) 0.93 (0.69–1.27) 0.64 (0.48–0.84) 2.50e–07 
12 rs74550821 G A 2.59 (1.47–4.57) 1.05 (0.84–1.32) 3.20 (1.82–5.63) 1.01 (0.74–1.39) 0.63 (0.47–0.84) 2.89e–08 
12 rs144335343 C T 2.33 (1.32–4.11) 1.08 (0.87–1.35) 3.63 (2.05–6.41) 1.00 (0.73–1.36) 0.69 (0.52–0.92) 9.15e–08 
12 rs6582329 A T 2.58 (1.46–4.57) 1.07 (0.85–1.34) 3.42 (1.94–6.02) 1.04 (0.76–1.43) 0.67 (0.50–0.90) 6.00e–08 
12 rs12296167 T G 2.42 (1.25–4.70) 2.03 (1.60–2.59) 3.33 (1.71–6.48) 1.03 (0.74–1.42) 1.41 (1.07–1.85) 2.02e–09 
12 rs544003050 A G 0.5 (0.24–1.05) 4.72 (3.47–6.43) 1.42 (0.68–2.98) 0.75 (0.52–1.07) 0.74 (0.54–1.00) 4.17e–40 
12 rs58262822 C G 0.58 (0.34–0.99) 8.50 (6.29–11.48) 0.75 (0.47–1.20) 0.81 (0.65–1.01) 0.93 (0.78–1.11) 1.96e–124 
12 rs11108508 T C 1.09 (0.56–2.09) 6.61 (5.26–8.32) 1.33 (0.73–2.44) 0.71 (0.48–1.05) 1.11 (0.85–1.46) 1.04e–112 
12 rs41472447* A G 2.56 (1.48–4.41) 0.97 (0.78–1.21) 2.94 (1.71–5.08) 0.92 (0.68–1.26) 0.59 (0.44–0.79) 5.70e–09 
13 rs549053537 A T 0.63 (0.41–0.96) 5.51 (4.12–7.39) 1.23 (0.83–1.82) 0.86 (0.71–1.04) 0.91 (0.78–1.07) 8.12e–79 
13 rs73497904† C G 1.34 (0.69–2.59) 65.39 (40.67–105.13) 1.20 (0.60–2.39) 0.96 (0.67–1.39) 1.23 (0.92–1.65) 2.23e–244 
13 rs9524738 G C 1.88 (0.86–4.14) 0.31 (0.26–0.38) 1.32 (0.68–2.55) 1.34 (0.97–1.84) 1.16 (0.90–1.50) 2.67e–52 
15 rs551641937 G A 0.52 (0.07–3.97) 275.89 (152.64–498.69) 0.52 (0.07–3.98) 0.39 (0.14–1.14) 1.11 (0.59–2.08) 3.61e–236 
15 rs35799802 C T 0.76 (0.36–1.62) 3.08 (2.29–4.13) 0.89 (0.42–1.88) 1.09 (0.75–1.59) 1.19 (0.87–1.64) 3.94e–15 
15 rs55747528 C T 0.53 (0.24–1.15) 28.58 (15.28–53.45) 1.47 (0.66–3.25) 0.72 (0.49–1.05) 0.79 (0.57–1.08) 1.49e–69 
16 rs577800201 C T 0.31 (0.07–1.33) 93.05 (54.17–159.85) 0.87 (0.32–2.36) 0.67 (0.4–1.13) 1.01 (0.68–1.50) 1.20e–167 
16 rs187181146 C T 0.64 (0.35–1.17) 8.65 (6.61–11.31) 0.94 (0.59–1.49) 0.83 (0.66–1.06) 0.92 (0.76–1.12) 9.77e–152 
16 rs35868343 G A 0.72 (0.46–1.11) 10.65 (7.14–15.87) 1.01 (0.66–1.55) 0.91 (0.74–1.12) 0.92 (0.77–1.10) 1.90e–93 
17 rs143309838 G A 0.57 (0.28–1.17) 9.38 (7.20–12.23) 0.93 (0.57–1.53) 0.84 (0.65–1.08) 0.99 (0.81–1.21) 2.08e–165 
17 rs144224512 C G 0.36 (0.05–2.69) 220.49 (118.29–411.01) 0.50 (0.08–3.13) 0.42 (0.17–1.01) 0.74 (0.40–1.36) 1.21e–215 
17 rs374315920 C T 3.52 (0.94–13.13) 548.96 (270.65–1113.45) 1.11 (0.14–8.79) 0.85 (0.27–2.63) 0.93 (0.37–2.36) 1.68e–255 
17 rs77139740† A G 0.34 (0.12–1.01) 44.94 (26.85–75.20) 0.97 (0.43–2.22) 0.73 (0.48–1.12) 0.89 (0.63–1.26) 3.74e–120 
17 rs77641928† G A 1.24 (0.37–4.17) 57.29 (33.69–97.42) 0.46 (0.06–3.62) 0.67 (0.30–1.49) 0.94 (0.53–1.67) 4.98e–282 
22 rs553728019 A C 0.51 (0.23–1.09) 23.66 (12.10–46.25) 1.05 (0.47–2.33) 0.76 (0.52–1.11) 0.79 (0.57–1.09) 2.83e–55 
22 rs60153275 C T 0.93 (0.32–2.71) 61.01 (36.66–101.54) 0.93 (0.32–2.71) 0.70 (0.38–1.28) 0.98 (0.63–1.51) 7.19e–281  

a Reference allele. 
b LAM_CAM was used as the reference superclade. 
* Genotyped SNPs. 
† SNPs successfully genotyped for validation. 

Table 6 
Association testing results for validated variants.  

SNP Refa Risk MAF HWE p-value (controls) OR P-value 

rs73497904 C G 0.15 0.35 0.74 0.18 
rs77139740 A G 0.02 0.59 0.99 0.99 
rs77641928 G A 0.03 0.27 1.06 0.72  

a Reference allele. 
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for differences in ethnicity among participants, either ancestry pro-
portions or principal components were calculated and included as 
covariables. SNPTEST is unable to include covariables when the vari-
ance in the values provided is “too small” as indicated [34]. At the time 
of this study, SNPTEST was still under development, and it had not yet 
been established, or recorded in the software manual, to what degree of 
variance covariable data would not be accepted for inclusion in the lo-
gistic regression. For developing the method, it was established through 
trial and error that if the variance was below 0.001, these covariables 
could not be included. 

4.8. Multi-phenotype GWAS 

For the association analysis, a multinomial logistic regression (MLR) 
analysis using an additive genetic model was performed using SNPTEST 
v2.5.2 [33]. Two discrete variables, namely sex and superclade, as well 
as continuous variables, namely age at TB onset and ancestry pro-
portions or principal components were included in the analysis. The 
phenotype tested was specified as the MTBC superclade. Thus, the MLR 
model specified was the occurrence of the MTBC superclade as a func-
tion of the baseline covariables given, as well as the host genotypes 
supplied. 

The standard genome-wide significance cut-off of alpha = 5 × 10− 8 

was used when reporting significance of SNPs [44,64]. Odds ratios (OR) 
for the multiple phenotypes tested were calculated against a baseline 
phenotype by setting the odds of that phenotype occurring, given the 
genotype, to 1. For this study, the baseline phenotype was specified as 
the dominant superclade in the cohort, or a common superclade of in-
termediate frequency if more than one cohort was being studied. Thus, 
the LAM- and LAM_CAM superclades were used as the baseline pheno-
type for the association analyses of the South African, and Ghanaian 
cohorts, respectively. 

SNPs with a Likelihood Ratio Threshold (LRT) p-value of less than 5 
× 10− 4 were selected and analysed in R (R [48]) and OR’s were calcu-
lated from the beta values generated by SNPTEST. SNPs with a standard 
error greater than 1.5 for their OR’s were excluded and SNPs with an 
LRT p-value less than 1 × 10− 6 were prioritised for further investigation. 
These thresholds were chosen pragmatically to facilitate the completion 
of method development. Finally, the Variant Effect Predictor (VEP) Tool 
[38] was used to retrieve gene annotations for the SNPs of interest. 

4.9. Validation of imputed variants and significant associations 

Selected SNPs with significant associations for a particular cohort 
were genotyped on assays designed using the the ProbeDesign software 
by Roche. The genotypes were used to assess the accuracy of imputation 
as well as to validate the significant associations by comparing imputed 
to genotyped alleles for the variants on an individual level. Logistic 
regression was performed using PLINK [8,47], with the inclusion of age 
and sex as covariables. 
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