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ABSTRACT 

In this work we considered two topologies of a Hilbert space 2l .  The first one was 

its normed vector space topology, which is its natural topology. The second was 

its weak topology. 

Among other properties we show that the closed unit ball S is not compact when 

*
2l  is given its topology as a Banach space. On the other hand S is compact when 

*
2l  is given its weak topology. 
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CHAPTER ONE 

INTRODUCTION 
 

Topology and functional analysis are important areas of mathematics, the study of 

which will not only introduce you to new concepts and theorems but put into 

context old ones like continuous functions. However, to say just this is to understate 

the significance of topology and functional analysis. It is so fundamental that its 

influence is evident in almost every other branch of mathematics. This makes the 

study of topology relevant to all who aspire to be mathematicians whether their first 

love is (or will be) algebra, analysis, dynamics, industrial mathematics, 

mathematical biology, mathematical economics, mathematical finance, 

mathematical modeling, mathematical physics, mathematics of communication, 

number theory, numerical mathematics, operations research or statistics. In their 

study, we have basically the concepts which are usually implied or found in 

theorems. We therefore consider the theorems together with their proofs. It is in this 

regard that we have come to realize the need to have this research work. 

Let R be the field of all real numbers. 

Given a Banach space V over R .  Let *V be the dual of R . *V  is the space of all 

continuous linear functionals on V . There are several ways of defining a topology 

on *V . In this thesis two such topologies will be discussed.  
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If V is a Banach space, the closed unit ball may not be compact. In a finite 

dimensional Banach space the closed unit ball is compact (by the Heine Borel 

theorem). 

However in an infinite dimensional Banach space, when *V  is given the normed 

topology, the closed unit ball in *V  is not compact. 

On the other hand when *V  is given its weak topology the closed unit ball in *V  is 

compact. 

The space 2l of sequences { }nx  of real numbers for which 2

1
n

n
x

∞

=

< ∞∑  will be used 

to illustrate this idea. 
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CHAPTER TWO 

2 LITERATURE REVIEW 
 

Here we define certain concepts which will be used in the course of this research 

work. They are those topological and analytical terms that must be understood 

before one can appreciate this research. 

 

2.1 VECTOR SPACE 

Many of the metric spaces which arise in analysis are endowed with a vector space 

structure, and the metrics are derived from norms related to this structure. 

A vector space V over a field F consists of the set V , a mapping ( ),x y x y→ +  

of 2V  into V , and a mapping ( ),a x ax→  of F V×  into V , such that 

(a) V is an abelian group, 

(b) ( )a b x ax bx+ = +   for each , ,a b R x V∈ ∈ , 

(c)  ( )a x y ax ay+ = +  for every , ,x y V a R∈ ∈ , 

(d)   ( ) ( )a bx ab x=  for every , ,a b R x V∈ ∈ , 

(d) 1x x=  where 1 R∈  and x V∈ . 
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2.1.1 EXAMPLES OF VECTOR SPACES OVER R  

(i) R itself is a vector space over R . In this case, V R=  is the real additive group 

and F R=  is the real field. The operation ax  is multiplication for the real field. 

ii) The set nR  of n -tuples of real numbers ( )1 2, ,..., nx x x x= , with the standard 

operations ( ) ( ) ( )1 2 1 2 1 1 2 2, ,..., , ,..., , ,...,n n n nx x x y y y x y x y x y+ = + + +  and 

( ) ( )1 2 1 2, ,..., , ,...n na x x x ax ax ax= , is a vector space.  

(iii) H the space of all sequences :f N R suchthat→  

( ){ }2

1n
f n

∞

=

< ∞∑ . 

 

2.2 LINEAR INDEPENDENCE AND BASIS 

Let V  be a vector space over a field F  

1. A non-empty subset A of V  is said to be linearly independent over F if for every 

finitely many distinct elements { }1,......, na a of A  and scalars 1,......, n Fλ λ ∈  the 

condition 
1

0
n

j j
j

aλ
=

=∑  implies 1 2 ...... 0nλ λ λ= = = = . 

2.A non-empty subset D  of V  is said to be linearly dependent if is not linearly 

dependent. Thus D  is linearly dependent over F , if , and only if , there exist 

finitely many distinct elements 1,....... qd d D∈ and scalars 1,......, q Fλ λ ∈  such 

that
1

0
q

j j
j

dλ
=

=∑  and at least one of { }1,...... qλ λ is not 0 . 
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3.A non-empty subset S of V is said to span V  if  for every x V∈  there exist  

 
finitely many elements 1,......., mu u S∈  and scalars 1,....., m Fγ γ ∈  such that  
 

1

m

j j
j

x uγ
=

=∑ .Thus a basis B  of a vector space V  is linearly independent subset of 

V  that spans V . 
 
 
2.3 FINITE DIMENSIONAL VECTOR SPACES 
 
A vector space is said to be finite dimensional if there exist many  
 
elements 1,...... tb b V∈  such that the { }1,......, tb b spans V . 
 
A non zero vector space V is said to be infinite dimensional if V is not finite  
 
dimensional. 
 
An example of an infinite dimensional vector space is 2l . Its basis are 1,...., ne e . 

 
 
 
2.4 DIMENSION 
 
When the vector space V is finite dimensional, then there exist a unique positive  
 
integer R such that every basis of V  contains exactly R elements. In this case R is  
 
called the dimension. 
 
 
2.4.1 EXAMPLE 
 

The vector space 3R  has 

1 0 0
0 , 1 , 0
0 0 1

      
      
      
      
      

   as a basis, and therefore we have 

3dim 3R = . 
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2.4.2 PROPOSITION 
 
Every finite dimensional vector space over R is isomorphic in the sense of linear  
 
algebra to nR . 
 
 
 
 
2.5 LINEAR MAPPING 
 
A mapping :T X Y→  is called a linear mapping if  
 
( ) ( ) ( ) , , .T x y T x T y for all x y X and all scalarsα β α β α β+ = + ∈  

         
 If the linear space Y is replaced by the scalar field K , then the linear map T in the  
 
special case is called a linear functional on X  

 

2.5.1 REMARK 

Since linear functionals are special forms of linear maps, any result proved for linear 

maps also holds for linear functionals. 

2.5.2 PROPOSITION 

Let X and Y be two linear spaces over a scalar field K , and let :T X Y→ be a 

linear map. Then 

(i)  ( )0 0T =  

(ii)  The range of ,T  ( ) { |R T y Y Tx y= ∈ =  for some x X∈ }  
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is a linear subspace of Y  

(iii)  T is one-to-one if, and only if ( )0 0T =  implies 0x =  

 (iv)  If T  is one-to-one, then 1T −  exist on ( )R T  and  ( )1 :T R T X− →  is a 

linear map. 

PROOF 

(i)  Since T  is linear, we have ( ) ( )T x T xα α=  for each x X∈  and each scalar 

.α  take 0α =  and (i) follows immediately. 

(ii)  We need to show that for ( )1 2,y y R T∈  and ,α β  scalars, 

( )1 2 .y y R Tα β+ ∈  Now, ( )1 2,y y R T∈  implies that there exist 1 2,x x X∈  

such that ( )1 1T x y= , ( )2 2T x y= . Moreover, 1 2x x Xα β+ ∈  (since X  is a 

linear space). 

Furthermore, by the linearity of ,T  

 ( ) ( ) ( )1 2 1 2 1 2T x x T x T x y yα β α β α+ = + = +Β . Hence 

( )1 2 ,y y R Tα β+ ∈ and so ( )R T  is a linear subspace of .Y  

(iii)  ( )⇒  Assume T  is one-to-one. Clearly  
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0Tx =  ( ) ( )0T x T⇒ =  since T  is linear and so ( )0 0T = . But T  is one-to-one. 

So 0x =  

         ( )⇐  Assume that whenever 0Tu = , then u  must be 0 . We want to prove 

that T  is one-to-one. So let .Tx Ty=  Then, 0Tx Ty− =  and by linearity of 

,T ( ) 0.T x y− =  By hypothesis, 0x y− =  which implies x y= . Hence T  is 

one-to-one. 

(iv) Let :T X Y→  be one-to-one. Then ( )1 :T R T X− →  exists . We prove that 

1T −  is also linear. 

Let , Rα β ∈  and ( )1 2, .y y R T∈  We know ( )R T  is a linear subspace of .Y  

Hence ( )1 2 .y y R Tα β+ ∈  Let 1 2,x x X∈  be such that  1 1,Tx y=  2 2Tx y= . 

We then have : 1
1 1x T y−= ,  !

2 2x T y−= . Moreover, 

( )1 2 1 2 1 2T x x Tx Tx y yα β α β α β+ = + = +   so that  

( )1 1 1
1 2 1 2 1 2T y y x x T y T yα β α β α β− − −+ = + = + . Thus 1T −  is linear. 
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2.6 TOPOLOGICAL SPACE 
 
 
Let X  be a non-empty set. A collection  T  of subsets of X called a topology in 

X if these conditions are  satisfied. 

1. X T∈ , that is X is in the collection T . 

2. Tφ ∈ , that is φ is in the collection T . 

3. 
1

n

j
j

G T
=

∈    for every collection 1,...., nG G of elements of  T  

4. G Tγ
γ∈Γ

∈    for every collection { }|Gγ γ ∈Γ of elements of T  

Under such circumstances the ordered pair ( ),X T  is called a topological space. 

When there is no ambiguity about the topology T , we shall simply say that X  

is a topological space. 

If G T∈  then G  is called an open set in the topological space ( ),X T . 

If  G is an open set in ( ),X T  and a G∈  then G  is called an open 

neighborhood of a in ( ),X T . 
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2.6.1 THEOREM 

Let X  be a topological space. Then these two statements on a subset V  of X  

are equivalent  

(a) V is an open set in X  

(b) for every x V∈  there exist an open set xG in X such that xx G V∈ ⊂  

 

PROOF 

Suppose (a) is true. If x V∈   let xG V=    xx G V∈ ⊂  

Thus (a)⇒ (b) 

Next , suppose (b) is true. For each x V∈  choose an open set xG in V  such that 

xx G V∈ ⊂ then x
x V

V G
∈

=  

It follows that V  is open and follows that V  is open in X . 

 

2.6.2 DEFINITION 

Let X  be a topological space. A subset H of X is said to be closed  if  

X H− is open in X . 
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2.6.3 THEOREM 

Let X  be a topological space. Then  

(1) φ  is a closed set in X  

(2) X is a closed set in X  

(3) 
1

n

j
j

H
=
 is a closed set in X  for every finite collection 1,...., nH H  of closed 

set in X  

(4) Hγ
γ∈Γ
 is a closed set in X  for every collection { }|Hγ γ ∈Γ of closed sets 

in X . 

 

PROOF 

(1) X Xφ− =  and X is open in X . Hence φ is closed. 

(2) X X φ− =  and φ  is open in X . Hence X is closed. 

(3) ( )
1 1

n n

j j
j j

X H X H
= =

− = −   by De Morgan’s rule. jX H−  is open for each 

{ }1,...,j n∈ . Therefore 
1

n

j
j

X H
=

− is open in X . Thus 
1

n

j
j

H
=
 is closed. 

(4) ( )X H X Hγ γ
γ γ∈Γ ∈Γ

− = −   by De Morgan’s rule. X Hγ−  is open in 

X for all γ ∈Γ . Hence X Hγ
γ∈Γ

− is open in X . Thus Hγ
γ∈Γ
 is closed 
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2.6.4 DEFINITION 

Let X be a topological space. A collection F of subsets of X  is called a 

subbasis of the topology of X  if for every open set G  in X and every g G∈  

there exist finitely many elements 1,....., nD D F∈  such that 
1

n

j
j

g D G
=

∈ ⊂ . 

 2.6.5 CONSTRUCTION OF SUBBASIS 

Let X  be a set. Suppose F is a non-empty collection of subset of X  such that  
 

D F

X D
∈

=  . LetT be the set of all subsets G  of X  such that for every a G∈  

there exist finitely many elements 1,......, nD D F∈  such that 
1

n

j
j

a D G
=

∈ ⊂ .  

Then T  is a topology in X . T  is the topology generated by F  on X  or F is         
 
said to be a subbasis of the topology of  X . 

 

 

2.7 NORM ON A VECTOR SPACE  

Let V  be a vector space over R .A norm ,  on V is a real–valued function on V  

which satisfies these conditions: 

1. 0x for all x V≥ ∈  

2. , 0 0,for every w V w iff w the zero in V∈ = =  

3. x x for every x V and Rλ λ λ= ∈ ∈   

4. ,x y x y for every pair x y V+ ≤ + ∈ . 
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2.7.1 EXAMPLES 

1. Let F be the field of all real numbers or the field of all complex numbers. 

Then a norm is defined on F  by the formula z z=    z F∀ ∈  

2. Given any positive integer n , note that nF  is a vector space over F . 

We can define a norm ,  on nF  by two possible methods 

(a) { }1max ,...., nx x x=  if ( )1,....., nx x x=  

(b) 
2

1

n

j
j

x x
=

= ∑  

 

2.8 INNER PRODUCT ON A VECTOR SPACE 

Let V be a vector space over field F . A mapping , :V V F× → is   

called an inner product if these conditions are satisfied: 

1. , ,x y y x=  for all Vyx ∈,  

2. 0, ≥xx  for all Vx∈  

3. VinzerothexiffxxVxFor ,00,, ==∈  

4. VyxandFwheneveryxyx ∈∈= ,,, λλλ  

5. Vzyxallforyzyxyzx ∈+=+ ,,,,,  

A direct consequence of the fourth axiom is the following lemma.  
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2.8.1 LEMMA         

Let ( ),,(V  be an inner product space over .F  

If ,x y V∈  and Fλ∈    then yxyx ,, λλ =  

PROOF  

        xyyx ,, λλ =  

                = xy,λ  

       = xy,λ  

       = yx,λ  

Hence the proof. 

 

 2.9 METRIC SPACE 

Let Y  be a non–empty set. A real–valued function d  on Y Y× is called a metric on 

Y  if these four conditions are satisfied: 

1. ( ), 0 ,d x y for every pair x y Y≥ ∈  

2. ( ), , , 0for every x y Y d x y iff x y∈ = =  

3. ( ) ( ), , ,d x y d y x for every pair x y Y= ∈  

4. ( ) ( ) ( ), , , , , ,for every x y z Y d x y d x z d z y∈ ≤ +  

The ordered pair ( ),Y d is called a metric space.     
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2.9.1 EXAMPLE 

:Let d R R R be defined by× →  

       ( ),
1

x y
d x y

x y
−

=
+ −

, ,for every x y R∈  

  Then d is a metric. 

 

PROOF 

We want to show that d  satisfies the four axioms of a metric space  

1. ,For every x y R∈  

   ( ), 0
1

x y
d x y

x y
−

= ≥
+ −

   by definition  

      Axiom 1 is satisfied. 

2. ( ),
1

x y
d x y

x y
−

=
+ −

 

                                
( )1

1 1
y x

y x
− −

=
+ − −

                      

                    ( ),
1

y x
d x y

y x
−

=
+ −

 

                                   = ( ),d y x  

              Axiom 2 is satisfied. 

3. If ( ), 0
1

x y
d x y

x y
−

= =
+ −

  then 
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                                            0x y− =  

                             ⇒ 0x y− =  

                                 x y=  

                                                                                                                     

Conversely, 

 

           If ,x y then=  

   ( ), 0
1 1

x y y y
d x y

x y y y
− −

= = =
+ − + −

 

             Axiom 3 is satisfied. 

 

 

4. For every , ,x y z R∈ , 

                x y x z z y− ≤ − + −    

          Therefore 
1 1

x y x z z y
x y x z z y
− − + −

≤
+ − + − + −

 

                                  
yz

yz
zx

zx
−+

−
+

−+
−

≤
11

 

       ( ) ( ) ( )yzdzxdyxd ,,, +≤⇒  

Axiom 4 is satisfied. Therefore d  is a metric onY . 
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2.9.2  DEFINITION 

Define :d H H R× →    by 

( ) ( ) ( ){ }2

1
,

n
d f g f n g n

∞

=

= −∑ . Then d is a metric on H  

PROOF 

(i) For every pair ( ) ( ), , ,f g H d f g d g f by definition∈ =  

(ii) For every pair ( ), , 0f g H d f g by definition∈ ≥  

In fact, ( ) ( ) ( ), 1 1 0d f g f g≥ − ≥  

(iii) For  every ( ), , 0f g H d f g∈ =  

( ) ( ){ }2

1
0

n
f n g n

∞

=

⇔ − =∑  

( ) ( ) 0 1f n g n for every n⇔ − = ≥  

f g⇔ =  

(iv) Finally, if , ,f g h H∈   then for every positive integer n  

( ) ( ){ } ( ) ( ) ( ) ( ){ }2 2
f n g n f n h n h n g n− = − + −  

                                   

= ( ) ( ){ } ( ) ( ){ } ( ) ( ){ } ( ) ( ){ }2 2
2f n h n f n h n h n g n h n g n− + − − + −  

Hence by the Schwarz’s inequality 

( ){ } ( ){ } ( ) ( ) ( ){ }2 2 2
, , 2 , , ,d f g d f h d f h d h g d h g≤ + +  

It follows that ( ) ( ) ( ), , ,d f g d f h d h g≤ +  
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2.9.3 DEFINITION AND NOTATION 

Given that ( ),Y d is a metric space, let a collection dT  of subset of Y be defined 

as follows: 

dG T∈  if, and only if for every a G∈  there exist a positive real number δ  

such that ( ){ }| ,y Y d y a Gδ∈ < ⊂ . 

Then dT  is a topology in Y . [ dT  is called the topology induced on Y by d ] 

We proceed to show that dT  is a topology in Y : 

(1) if a Y∈  then ( ){ }| ,y Y d a y Yδ∈ < ⊂ . 

Hence  dY T∈ . 

(2) dTφ ∈  because φ  is empty.  

(3) Suppose 1,...., nG G  are finitely many elements of dT . If 
1

n

j
j

b G
=

∈   choose 

for each { }1,...,j n∈ a positive real number 0jδ >  such that 

( ){ }| , j jy Y d y b Gδ∈ < ⊂ . 

Let { }1min ,.., nδ δ δ= . Then ( ){ }
1

| ,
n

j
j

y Y d y b Gδ
=

∈ < ⊂ . 

Thus 
1

n

j d
j

G T
=

∈  
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(4) Suppose Γ is a set and for every dG Tγγ ∈Γ ∈ . If w Gγ
γ∈Γ

∈   choose 

α ∈Γ  such that Gα  and a positive real number τ  such that 

( ){ }| ,y Y d y w Gγ
γ

τ
∈Γ

∈ < ⊂ . Hence dG Tγ
γ∈Γ

∈ . 

These show that dT  is a topology in Y . 

 

2.10 THE RELATION BETWEEN METRIC, NORM AND   

INNER PRODUCT 

2.10.1 THEOREM 

Given a normed vector space ( , , ) ,V over F define     

  :d V V R× →  by  

  ( , )d x y x y= −  

Then ( ),d x y is a metric on V . d  is called the metric induced on V by ,  

PROOF 

We show that d satisfies the four axioms of a metric. 

 1 For any arbitrary ,x y V∈ . 

  ( )( )1x y y x− = − −  

        1 y x= − −  

Therefore ( , ) ( , )d x y d y x=  
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  Axiom 1 is satisfied. 

1. For every , ,x y V∈  

  ( , ) 0d x y x y= − ≥  

 Axiom 2 is satisfied. 

 

2. For every , , ( , ) 0x y V d x y∈ =  

0x y⇔ − =  

0x y⇔ − =  

x y⇔ =  

    Axiom 3 is satisfied.  

3. , , ,If x y z V then∈  

  ( ) ( )x y x z z y− = − + −  

     x z z y by the Triangle Inequality≤ − + −  

  Therefore ( , ) ( , ) ( , )d x y d x z d z y≤ +  

 Axiom 4 is satisfied. 

 Thus d  is a metric on V . 

     d is called the metric induced on V  by the norm, , . 
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2.10.2 THEOREM 

Given an inner product space ( , , )V define ,  on V  by  

   ,x x x for all x V= ∈    

Then ,  is a norm onV . 

 

PROOF 

1. By definition, 0x ≥ . 

2.  , 0 , 0For x V x x x∈ = ⇔ =  

            , 0x x⇔ =  

     0x⇔ =  

3.  ,Let F and x V thenλ∈ ∈  

  
2 ,x x xλ λ λ=  

  
2 ,x xλ=  

 Therefore xλ  xλ=  

4.  Let  ,x y V∈ , then 

  
2 ,x y x y x y+ = + +  

                  , , , ,x x x y y x y y= + + +  

                         
2 22Re ,x x y y= + +  
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                ≤ 2 22 ,x x y y+ +  

                            
2 22x x y y≤ + +  

                                ( )2
x y= +  

  Therefore  x y x y+ ≤ +  

 

2.11 THEOREM(Schwarz’s Inequality) 

Let ( ), ,V  be an inner product space over the field F . Then  

, , ,x y x x y y≤   for every pair ,x y V∈  

 

PROOF 

Given ,x y V∈  let , , ,A x x B x y= =  and ,D y y= . Then we want to show 

that B A D≤  

If 0,A = then 0x =  and so 0B = . In this case we have 0 .B A D= =  

If 0A >  let 
B
A

λ = .  
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Then 

2

2

2 2

0 ,

, , , ,

, ,

0

x y x y

x x x y y x y y

A x y y x D

BB BBA D
A A

B B
D D

A A

λ λ

λ λ λ λ

λ λ λ

λ

≤ − −

= − − +

= − − +

= − − +

≤ − ⇒ ≤

 

Thus  2B AD≤ .  Hence B A D≤ ,  which is Schwarz’s inequality. 

Schwarz’s inequality is equivalently ,x y x y≤  . 

 

2.12 NORMED TOPOLOGY 

Given a normed vector space ( ), ,V . Let a collection T of subset of V be defined 

as follows: 

G T∈ if and only if for every a G∈  there exist a positive real number δ  such that 

{ }|x V x a Gδ∈ − < ⊂ . Then T is a topology in V . T  is called the topology 

induced on V  by the norm. This is the same as the topology induced on V by the 

metric d . Where ( ),d x y x y= − . 
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Henceforth when we say that ( ), ,V  is a vector space, we mean V is a vector 

space, ,  is a norm on V and there is a topology T induced on V by the norm. 

2.13 PYTHAGORAS THEOREM 

If  ( ), ,V  is an inner product space  ,a b V∈  and , 0a b =  then  

 

2 2 2 2a b a b a b+ = − = + . 

 

PROOF 

2 , , , , ,a b a b a b a a a b b a b b+ = + + = + + +  

                                           
2 2a b= +  

And 

2 , , , , ,a b a b a b a a a b b a b b− = − − = − − + 2 2a b= + . 

 

2.14 PARALLELOGRAM LAW 

Let V  be an inner product space. Then for arbitrary , ,x y V∈  

( )2 2 2 22x y x y x y+ + − = +  
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2.15  BOUNDEDNESS 

A function ( , )f X R∈  is said to be bounded if and only if there exists  

a positive real number M  such that ( )f x M≤  for every x X∈ . 

We say f  that is bounded below if there exist a real number ω  such that 

.x for all x Xω ≤ ∈  

Under such circumstance ω  is called a lower bound of .X  

We say that f  is bounded above if there exist a real number α  such that  

x for all x Xα≤ ∈ . 

Under such circumstance α  is called an upper bound of X . 

 

2.15.1 DEFINITION 

Let S  be a set of real numbers. 

We say that S  is bounded if there exist a positive real number M such that 

.x S for all x S≤ ∈   

 

 

 

 

 



 26 

2.15.2 THEOREM 

These two statements on a non-empty set S  of real numbers are equivalent 

i. S  is bounded. 

ii. S  is bounded above and bounded below. 

 

PROOF 

Suppose i is true. 

Choose a positive real number M such that .x M for all x S≤ ∈  

Then  x x M≤ ≤  and 

  x x M for all x S− ≤ ≤ ∈  

  x M for all x S is bounded aboveδ≤ ∈ ⇒  

And

.x M for all x M x for all x S and S is bounded belowδ− ≤ ∈ ⇒ − ≤ ∈  

Thus iii ⇒  

Suppose ii is true 

Choose real numbers ,u ω  such that 

x u for all x S and x for all x Sω≤ ∈ ≤ ∈  

Then x u u for all x S≤ ≤ ∈   

Also  .x for all x Sω ω− ≤ − ≤ ∈  

Let M u ω= +  
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Then .x M and x M for all x S≤ − ≤ ∈  

Therefore .x M for all x S≤ ∈  

Thus  S  is bounded and so .iii ⇒  

Let X  be a metric space with metric d , and let A X⊂ . 

If x  is a point of X , then the distance from x  to A  is defined by 

  ( ){ }( , ) inf , : ;d x A d x a a A= ∈  

That is, it is the greatest lower bound of the distance from x  to the points of A . 

The diameter of the set A  is defined by  

 ( ){ }1 2 1 2( ) sup , : ,d A d a a a a A= ∈  

The diameter of A  is thus the least upper bound of the distances between pairs of its 

points. A  is said to have finite diameter or infinite diameter according as ( )d A  is a 

real number or .±∞  

We observe that the empty set has infinite diameter, since ( ) .d φ = −∞  

A bounded set is one whose diameter is finite.  

A mapping of non-empty set into a metric space is called a bounded mapping if its 

range is a bounded set.  
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2.15.3 EXAMPLE 

If : 0
1

xY x R and x
x

 = ∈ > + 
 

a. Prove that Y  is bounded. 

b. Find inf .Y  

c. Find sup .Y  

 

SOLUTION 

a. Let y Y∈  then 
1

xy where x is a R
x

+=
+

 

       y yx x⇔ + =  

       y x yx⇔ = −  

       ( )1y x y⇔ = −  

       
1

yx
y

⇔ =
−

 

  First of all 
10 0

1
x and

x
> >

+
 

                       0.y∴ >  

 Also  
11

1 1
x x x

x x
+ −

− =
+ +

 

                               
1 0

1 x
= >

+
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1

1
y x

x
= ⋅

+
 

              1 0
1

x
x

∴ > >
+

 

                      0 1 .y if y Y∴ < < ∈  

  Then Y is bounded above and Y is bounded below. 

  Hence Y is bounded. 

b. If η  is a real number such that  0 1η< <  

Then the equation  

          
1
αη
α

=
+

 

       ( )1η α α⇔ + =  

       
1
ηα
η

⇒ =
−

 

Therefore η  cannot be a lower bound ofY .  

Hence 0 inf .Y=  

( )10 1 12 η< + <  

      Similarly  η  cannot be an upper bound of Y   

     sup 1Y∴ =  
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2.16 BOUNDED LINEAR MAPPINGS 
 
Let X and Y  be normed linear spaces over the scalar field, K , and 
 
 let :T X Y→  be a linear map. Then T  is said to be bounded if there exists some  
 
constant 0k ≥  such that for each x X∈   ( )T x k x≤ . 
 
 
 
2.16.1 THEOREM 
 
Let :T X Y→ be a linear mapping where X ,Y are normed vector spaces. 
 
Then these three statements are equivalent 
 
(1) T is continuous at 0  
 
(2) T is bounded 
 
(3) T is uniformly continuous 
 
 
PROOF 
 
Suppose (1) is true. 
 
Choose a positive real number δ such that for x X∈    
 

( ) ( )0 0 1x T x Tδ− < ⇒ − <  
 
That is ( ) 1x T xδ< ⇒ <  
 
Now suppose z X∈ and 0z ≠  
 
  

Then 

1
1 12
2 2

z z
z z

δ
δ δ δ= = <  
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And so ( ) ( )
1 1

22 21 1
z

T T z T z z
z z

δ δ

δ

 
 

< ⇒ < ⇒ < 
 
 

 

 

Let 
2k
δ

=  

 
Then for every v X∈   ( )T v k v≤  
 
Therefore T is bounded. Thus 1 2⇒  
 

Suppose (2) is true. Given 0ε > , let 
k
εδ =   

 

Then for ,z v X∈    z v
k
ε

− <  

 
( ) ( ) ( )T z T v k T z v ε⇒ − = − <  

 
Therefore T  is uniformly continuous. Thus 2 3⇒  
 
3 1⇒  by definition. 
 
 
 
2.16.2 THEOREM 
 
If X and Y are normed spaces, then ( ),B X Y  the set of all bounded linear  
 
mappings from X  into Y is a normed space with norm defined by 
 

( )
1

sup 1
x

T T x
=

=  

 
 
 
 
 



 32 

PROOF 
 
We will only show that norm 1 satisfies the triangle inequality. 
 
For all ( )1 2, ,T T B X Y∈  and every x X∈   such that 1x =  
 
We have 
 

( ) ( ) ( ) ( )1 2 1 2T x T x T x T x+ ≤ +  
 
 
                            ( ) ( )1 2

1 1
sup sup

x x
T x T x

= =
≤ +  

 
                             1 2T T= +  
 
Hence  
 

( ) ( )( )1 2 1 2 1 2
1

sup
x

T x T x T T T T
=

+ = + ≤ +  

 

2.17 COMPACTNESS 

A  subset of a topological space is said to be compact if every open cover has a 

finite subcover. The definition of compactness can be obtained from the Classical 

Heine-Borel Theorem. It is stated below: 
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2.17.1 HEINE-BOREL THEOREM  

Let n  be a positive integer. Give nR  its Euclidean norm ,  defined by 

2

1

n

j
j

x x
=

= ∑  where ( )1,...., nx x x= . Then a subset B of nR  is compact if and 

only if B is closed and bounded. 

 

2.17.2 EXAMPLES 

1. By the Heine-Borel Theorem, every closed and bounded interval [ ]ba, on 

the real line R  is compact. 

2. Let A  be any finite subset of a topological space X , say 

{ }maaA ...,,.........1= .Then A  is necessarily compact. For if { }iGG =  is an 

open cover of A , then each point in A  belongs to one of the members of  

G , say  .1 .....,,.........1 mimi GaGa ∈∈  

Accordingly, ...................21 miii GGGA ⊂  

Since a set A  is compact iff every open cover of A  contains a finite 

subcover, we only have to exhibit one open of A  with no finite to prove that 

A  is not compact.  
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2.18 BOLZANO- WEIERSTRASS PROPERTY OF 

COMPACT SET IN A NORMED VECTOR SPACE. 

If A is a compact set in a normed vector space ( ), ,V and na  is a sequence 

in A , then there exist b A∈ and the subsequence 
kna of  na  such that 

kna b→   as .k →∞  

We hope that eventually for infinite dimensional Hilbert space, we will be able to  
 
give an example of a closed and bounded subset which is not compact. 
 
 
 
 2.19 CONVERGENT SEQUENCE 
 
A sequence { }nX  in a normed vector space ( ), ,V is said to converge  if there  
 
is a point p V∈  with the following property: For every 0ε >  there is an integer  
 
N  such that  n N≥ implies that nX p ε− <  
 
        In this case we also say that { }nX  converges to p , or that p  is the limit of  
 
{ }nX , and we write nX p→ , or lim nn

X p
→∞

= . 

 
More briefly, a sequence { }nX converges to an element p V∈ if lim 0nn

x p
→∞

− =  
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2.20 CAUCHY SEQUENCE 
 
Let ( ), ,V be a normed vector space. A sequence { }nX in V is called a Cauchy  
 
sequence in ( ), ,V if to every positive real number ε , there corresponds a positive  
 
integer P  such that m P>  and n P>   implies m nX X ε− < . 
 
More briefly, { }nX is a Cauchy sequence if  

,
lim 0m nm n

x x
→∞

− = . 

 
 
 
 
2.20.1 THEOREM 
 
If { }nx  is a convergent sequence in a normed vector space ( ), ,V   then { }nx is  
 
a Cauchy sequence in ( ), ,V . 

 
 
PROOF 
 
Let lim nn

a X
→∞

=  

 
Given a positive real number ε . Choose a positive integer P   such that  
 

2nx a for all n Pε
− < ≥ .Then  

 

m n m nx x x a a x for all m P and for all n Pε− ≤ − + − < ≥ ≥ . 
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2.21 COMPLETENESS 
 
A normed vector space ( ), ,V is said to be complete  if every Cauchy sequence in  
 
( ), ,V  is a convergent sequence in ( ), ,V . 
 
 
 
2.22 BANACH SPACE 
 
A normed vector space ( ), ,V  is called a Banach space if every Cauchy sequence  
 
in it is a convergent sequence.   
 
 
 
 
2.22.1 THEOREM 
 
If  X  is a normed space and Y is a Banach space, then ( ),B X Y  is defined by  
 

( )
1

sup
x

T T x
=

=     is a Banach  space. 

 
 
PROOF 
 
We need to show that ( ),B X Y  is complete. 
 
Let { }nT be a Cauchy sequence in ( ),B X Y , and let x  be an arbitrary element of  
 

1T . Then 
 

( ) ( ) 0 ,m n m nT x T x T T x as m n− ≤ − → →∞  
 
Which shows that { }nT is a Cauchy in Y . 
 
By completeness of Y , there is a unique element y Y∈  such that nT y→  
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Since x is an arbitrary element of X , this defines a mapping T from X  into Y : 
 

( ) ( )lim nn
T x T x

→∞
=  

 
We will show that ( ),T B X Y∈ and 0nT T− →  
 
Clearly, T is a linear mapping. Since Cauchy sequences are bounded, there exist a  
 
constant M such that nT M for all n≤ ∈ . Consequently  
 

( ) ( ) ( )lim limn nn n
T x T x T x M x

→∞ →∞
= = ≤  

 
Therefore, T is bounded and thus ( ),T B X Y∈ .  
 
It remains to show that  
 

0nT T− → . Let 0ε >  and let k be such that  
 

,m nT T for every m n kε− < ≥ . If 1x =    and ,m n k≥ ,  
 
then 
 

( ) ( )m n m nT x T x T T ε− ≤ − < . 
 
By letting ( )n m remains fixed→∞ , 
 
we obtain  
 

( ) ( )mT x T x for every m k and every x Xε− < ≥ ∈  
 
With 1x = . This means that mT T for all m kε− < > , which complete the  
 
proof.  
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2.22.2  DEFINITION 
 
Given a Banach space V  over R . Let *V  be the dual  of R . That is *V  is  the  
 
space of all continuous linear functionals on V .   
 
 
 2.22.3 PROPOSITION 
 

*f V∈  if, and only if :f V R→  is a continuous linear functional. 

 
2.23  HILBERT SPACE 
 
A Banach space ( ), ,V is called a Hilbert space if the norm, , is induced by  
 
an inner product , on V . 
 
Alternatively: Given an inner product space ( ), ,V , let , be the norm induced  
 
on V by the inner product , .Then V is called a Hilbert space if and only  
 
if,every Cauchy sequence in V is a convergent sequence in V .Thus a complete 
 
 inner product space is called a Hilbert space. 
 
 
 2.24 SOME USEFUL EXAMPLES 
 

1.Given a positive integer n  define ,  on nR  by 
1

,
n

j j
j

x y x y
=

=∑  if 

( )1,..., nx x x=  and ( )1,..., ny y y=  
 
Then ,  is an inner product on nR . For each ( )1,..., n

nx x x R= ∈  
 

2

1
,

n

j
j

x x x
=

=∑   and 2

1
,

n

j
j

x x x x
=

= = ∑  
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The Euclidean metric d on nR  is defined by 

( ) ( )2

1
,

n

j j
j

d x y x y x y
=

= − = −∑  of ( )1,..., nx x x=  and ( )1,...., ny y y=  

 
Under such circumstances Schwartz’s inequality is  
 
 

2 2

1 1 1

n n n

j j j j
j j j

x y x y
= = =

≤∑ ∑ ∑  

 
  and it is often referred to as Cauchy-Schwarz inequality. 
 
 
 
2- The Hilbert space H : Let H be the set of all mapping such that  
 

( )
2

1
:

n
N R suchthat n

∞

=

Ψ → Ψ∑  is convergent 

 
Where N  is the set of all positive integers and R  is the set of all real numbers. 
 
If ,f g H∈ then for every positive integer k Cauchy-Schwarz inequality is  
 

( ) ( ) ( ) ( )2 2

1 1 1

k k k

n n n
f n g n f n g n

= = =

≤∑ ∑ ∑  

 
 

 
Similarly  
 

( ) ( ) ( ) ( )2 2

1 1 1n n n
f n g n f n g n

∞ ∞ ∞

= = =

≤∑ ∑ ∑  

 
Let k →∞  
 

Then ( ) ( ) ( ) ( )2 2

1 1 1n n n
f n g n f n g n

∞ ∞ ∞

= = =

≤ < ∞∑ ∑ ∑  

( ) ( ) ( ) ( )2 2

1 1 1

k

n n n
f n g n f n g n

∞ ∞

= = =

≤∑ ∑ ∑
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The conclusion is that ( ) ( )
1n

f n g n
∞

=
∑  is absolutely convergent. That implies  

 

( ) ( )
1n

f n g n
∞

=
∑  is convergent and ( ) ( ) ( ) ( )2 2

1 1 1n n n
f n g n f n g n

∞ ∞ ∞

= = =

≤∑ ∑ ∑  

 
Now if ,f g H∈  
 

Then ( ) ( ) ( ) ( ) ( ) ( )2 2 2

1 1 1 1
2

n n n n
f n g n f n f n g n g n

∞ ∞ ∞ ∞

= = = =

+ = + + < ∞∑ ∑ ∑ ∑  

 
Thus f g H+ ∈ if both of ,f g are in H . This make H a vector space over R . 
 

Next an inner product , is defined on H by ( ) ( )
1

,
n

n
f g f n g n

=

=∑  

 
Finally the norm induced on H by this inner product is given by the formular 
 
 

( ) 2

1n
f f n

∞

=

= ∑ . 

 
 
 
2.25 CONTINUOUS FUNCTIONS 

 Let ( ), ,V  be a normed vector space and :f V R→  a real-valued    

 function onV . Given a V∈ , we say that f  is continuous  

 at a if to every positive real number ε  there corresponds a  

 positive real number δ  such that  

( ) ( )f x f a ε− <   for every x X∈  such that x a δ− < . 
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2.25.1 EXAMPLES 

1. Constant mapping 

   Let X  be a non empty set of real numbers and k  a constant  

   real number define :f S R→  by ( )f x k for all x S= ∈  

  Then f  is continuous at every point on f  

PROOF 

            Let c S∈ .  Given 0ε >  Let 1δ =  

  Then  

( ) ( ) 0f x f c k k ε− = − = <   

for all x S such that x c δ∈ − <  

2. Define ( ):I R R by I x x for all x R→ = ∈  

Then I is the identity mapping of R  onto itself.  

  I is uniformly continuous on R  and so I  is continuous. 
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PROOF 

  Given a positive real number ε  let 

δ ε= .Then ( ) ( )I x I z x z ε− = − < .  

  For every pair ,x z R∈  such that x z δ− < . 

      Therefore I  is uniformly continuous on R . 

3. If f  is continuous at c  then f  is also continuous at c . 

PROOF 

  If nX  is a sequence in S  such that  nX c→  as n →∞  

  Then ( ) ( )nf X f c as n→ →∞  

  Hence   ( ) ( )nf x f x as n→ →∞   

 

4. If ( ) 0f x ≠  for every x S∈  and f  is continuous at c  

  Then 
1
f

 is also continuous at c . 
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PROOF 

  Let nX  be a sequence in S   such that ∞→→ nascXn  

  Then ( ) ( )nf X f c as n→ →∞  

  Hence 
( ) ( )
1 1

n

as n
f X f c

→ →∞  

  Therefore 
1
f

 is continuous at c . 

5. If f  is continuous at c and λ is a constant real number  

  then fλ  is continuous at .c  

PROOF 

  Suppose nX  is a sequence in S  such that nX c as n→ →∞  

  Then ( ) ( )nf X f c as n→ →∞  

  That implies, ( ) ( )nf X f c as nλ λ→ →∞    

  Therefore fλ  is continuous at c .  
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2.25.2 THEOREM  

If f and g  are real-valued functions on S  such that f is   

continuous at c  and g  is continuous at c  then  

• f g+ is continuous at c  

• fg  is continuous at c  

PROOF 

Let nX  be a sequence in S  such that nX c as n→ →∞  

Then ( ) ( )nf X f c as n→ →∞  while 

( ) ( )ng X g c as n→ →∞  

Hence  

i. ( ) ( ) ( ) ( )n nf X g X f c g c as n+ → + →∞  and 

ii. ( ) ( ) ( ) ( )n nf X g X f c g c as n→ →∞   

Thus f g+  is continuous at c  and fg  is continuous at .c  
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2.25.3 THEOREM 

Let ( ),X d and ( ),Y ρ be metric spaces, ,a X∈ and :f X Y→ a map. 

Then these two statements are equivalent 

(1) f is continuous at a  

(2) if  na a→  as n →∞ , then ( ) ( )nf a f a→ as n →∞  

PROOF 

Suppose f  is continuous at a . Let na  be a sequence in X  such that na a→  as 

n →∞ . If ε is a positive real number, let ( ) ( )( ){ }| ,V x X f x f aρ ε= ∈ < . 

Then V is an open neighborhood of a in X . Choose a positive integer P  such that 

na V∈  for every n P≥  . 

Given ( ) ( )( ),nf a f aρ ε<  for every n P≥ . 

Therefore  ( ) ( )nf a f a→  as n →∞ . This proves 1 2⇒  

Conversely suppose f  is not continuous at a  . Choose 0η >  such that there exist 

no 0δ >  satisfying for x X∈  ( ) ( ) ( )( ), ,d x a f x f aρ η⇒ < .  
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For every positive integer n . Choose nw X∈  such that ( ) 1,nd w a
n

<  but 

( ) ( )( ),nf w f aρ η≥  then nw a→   as n →∞  but ( )nf w  does not converge 

to ( )f a . This proves 2 is false if 1 is false . Hence 2 1⇒ . 

 

2.26 UNIFORM CONTINUITY 

Let ( ),S d and ( ),Y ρ be metric spaces and :f S Y→ a mapping. We say that 

f is uniformly continuous if to every positive real number ε , there corresponds 

a positive real number δ such that ( ) ( )( ),f x f vρ ε<  for every pair 

,x v S∈ such that ( ),d x v δ< . 

 

2.26.1 EXAMPLE 

Let ( ),S d be a metric space 

 Given a S∈ define  

:f S R→  by ( ) ( ),f x d a x= .Then f is uniformly continuous. 
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PROOF 

For every pair ,x y S∈  

( ) ( ) ( ) ( ) ( ) ( ), , , ,f x d a x d a y d x y f y d x y= ≤ + = +  and 

( ) ( ) ( ) ( ) ( ) ( ), , , ,f y d a y d a x d x y f x d x y= ≤ + = +  

Hence ( ) ( ) ( ),f x f y d x y− ≤  

Given a positive real number ε , let δ ε=  

Then ( ) ( )f x f y ε− <   for every pair ,x y S∈  such that ( ),d x y δ< . 

 
 
2.27 ORTHOGONAL AND ORTHONORMAL SETS 
 
A set S  in an inner product space E  is called an orthogonal  set if  
 

, 0x y =  for each , ,x y S x y∈ ≠ .  
 
The set S  is called orthonormal  if it is an orthogonal set and 1x =  for each  
 
x S∈ . 
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2.27.1 THEOREM 
 
Orthogonal systems are linearly independent. 
 
PROOF 
 

Let S be an orthogonal system. Suppose 
1

0
n

k k
k

xα
=

=∑  for some 1,...., nx x  and  

 

scalars 1,...., nα α . Then 
1 1 1

0 0, ,
n n n

m m k k m m
m m k

x x xα α α
= = =

= =∑ ∑ ∑  

 
 

                                                                        
2

1

n

m m
m

xα
=

=∑    

 
This implies that 0mα =  for each m N∈ , where N is a positive integer. Thus  
 

1,...., nx x  are linearly independent. 
 
 
 
 
2.27.2 ORTHONORMAL SEQUENCE 
 
A sequence of vectors which constitute an orthonormal system is called an  
 
orthonormal sequence  
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2.27.3 PROPERTIES OF ORTHONORMAL SYSTEMS 
 
 
2.27.4 THEOREM (Pythagorean Formula) 
 
If 1,....., nx x  are orthogonal vectors in an inner product space, then 
 

2
2

1 1

n n

k k
k k

x x
= =

=∑ ∑ . 

 
PROOF 
 
If 1 2x x⊥ , then 

2 2 2
1 2 1 2x x x x+ = + .  

 
Thus, the theorem is true for 2n = .  
 
Assume now that the theorem hold for 1n − , that is 
 

 
21 1

2

1 1

n n

k k
k k

x x
− −

= =

=∑ ∑  

 
 

Set 
1

1

n

k
k

x x
−

=

=∑   and ny x=  

 
Since x y⊥ , we have  
 
 

2
2

1

n

k
k

x x y
=

= +∑  

             
                

2 2x y= +  
               

                
1

2 2 2

1 1

n n

k n k
k k

x x x
−

= =

= + =∑ ∑  

This proves the theorem. 
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2.27.5 THEOREM (Bessel’s Equality and Inequality) 
 
Let 1 2, ,....x x  be an orthonormal sequence of vectors in an inner product space E .  
 
Then for every x E∈ , we have 
 

2
2 2

1 1
, ,

n n

k k k
k k

x x x x x x x
= =

− + =∑ ∑  

 
 

It follows that  
2 2

1
, 1

n

k
k

x x x n
=

≤ ∀ ≥∑  

 
PROOF 
 

2

1

1 1

2 22

1 1

22

1

2
22

1 1

,

, , ,

, 2 ,

,

, ,

n

k k
k

n n

k k k k
k k

n n

k k
k k

n

k
k

n n

k k k
k k

x x x x

x x x x x x x x

x x x x x

x x x

x x x x x x x

=

= =

= =

=

= =

−

= − −

= + −

= −

⇒ = − +

∑

∑ ∑

∑ ∑

∑

∑ ∑  

 

It follows that 
2 2

1
, 1

n

k
k

x x x n
=

≤ ∀ ≥∑ Let .n →∞  Then 
2 2

1
, k

k
x x x

∞

=

≤∑  
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2.28 COMPLETE ORTHONORMAL SEQUENCE 
 
An othonormal sequence ( )nx  in an inner product space E is said to be  
 
complete  if for every x E∈  we have  
 

1
, n n

n
x x x x

∞

=

=∑  

 
 
 
2.29 ORTHONORMAL BASIS 
 
An orthonormal system B in an inner product space E is called an  
 
orthonormal Basis  if every x E∈  has a unique representation 
 

1
n n

n
x xα

∞

=

=∑ . 

 
Where n Cα ∈ , where C  is a complex number and 'nx s  are distinct elements of  
 
B . 
 
 
 
2.29.1 THEOREM 
 
An orthonormal sequence ( )nx  in a Hilbert space H is complete if and only if  
 

, 0nx x =  for all n N∈ implies 0x =  
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PROOF 
 
Suppose ( )nx  is complete orthonormal sequence in H . Then every x H∈   
 
has the representation 
 

1
, n n

n
x x x x

∞

=

=∑   

 
Thus, if  , 0nx x for every n N= ∈ , then 0x =  
 
Conversely, suppose , 0nx x for all n N= ∈  implies 0x = .  
 
Let x be an element of H . Define  
 
 
 

1
, n n

n
y x x x

∞

=

=∑  

 
Since, for every n N∈ , 
 

1
, , , ,n n k k n

k
x y x x x x x x x

∞

=

− = − ∑  

                   
 

                   
1

, , ,n k k n
k

x x x x x x
∞

=

= −∑  

                   
 
                   , , 0n nx x x x= − =  
 

We have 0x y− =  and hence  
1

, n n
n

x x x x
∞

=

=∑  
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2.29.2 THEOREM (Parseval’s Formula) 
 
An orthonormal sequence ( )nx  in a Hilbert space H is complete if and only if 
 

22

1
, n

n
x x x for every x H

∞

=

= ∈∑ . 

 
 
PROOF 
 
Let x H∈ . By the Bessel equality, for every n N∈ , we have 
 

( )
2

22

1 1
, , 3

n n

k k k
k k

x x x x x x x
= =

− = −∑ ∑  

 
If ( )nx  is a complete sequence, then the expression on the let in  ( )3   
 
converges to zero as n →∞ . Hence  
 

22

1
lim , 0

n

kn k
x x x

→∞
=

 
− =  
∑  

 
Therefore the theorem holds. 
 
Conversely, if the theorem holds, then the expression on the right in ( )1   
 
converges to zero as n →∞ , and thus  
 

2

1
lim , 0

n

k kn k
x x x x

→∞
=

− =∑  

 
This proves that ( )nx  is a complete sequence. 
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2.30 ORTHOGONAL COMPLEMENT 
 
Let S be a non-empty subset of a Hilbert space, H . An element x H∈ is said  
 
to be orthogonal to S , denoted by x S⊥ , if , 0x y for every y S= ∈ .  
 
The set of all elements of H orthogonal to S , denoted by S ⊥ , is called the  
 
orthonormal complement  of S . That is  
 

{ },S x H x S⊥ = ∈ ⊥  
 
If  x y⊥ , for every y H∈ , then 0x = . Thus, { }0H ⊥ = . Similarly,  
 

{ }0 H⊥ =  
 
 
 
Two subsets A and B of a Hilbert space are said to be orthogonal if x y⊥  for  
 
every x A∈  and y B∈ . This is denoted by A B⊥ .. 
 
 
 
2.30.1 THEOREM 
 
For any subset S of a Hilbert space H , the set S ⊥  is a closed subspace of H  
 
PROOF 
 
If , Cα β ∈  and ,x y S ⊥∈ , then  
 

, , , 0x y z x z y z for every z Sα β α β+ = + = ∈ . 
 
Thus S ⊥  is a vector subspace of H .  
 
We next prove that S ⊥  is closed. 
 
Let ( )nx S ⊥∈  and nx x→  for some x H∈ . 
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From the continuity of the inner product, we have 
 

, lim , lim , 0n nn n
x y x y x y for every y S

→∞ →∞
= = = ∈ . 

 
This shows that x S ⊥∈  is closed.  
 
 
 
 
 
2.30.2 THEOREM(Projection theorem) 
 
Let H be a Hilbert space and M a closed subspace of H . For arbitrary vector 
  
x in H , there exist a unique vector *m M∈ , such that *x m x m− < −  for all 

 
 m M∈ . 
 
Furthermore, *m M∈ is the unique vector if and only if ( )*x m M− ⊥  

 
 
 
2.31 DIRECT SUM 
 
Let V be a vector space. V is said to be the direct sum  of two subspaces  
 
M and N of V written V M N= ⊕ if each x V∈ can be represented  
 
uniquely as 
 
 x m n= +  where m M∈ and n N∈ . 
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2.31.1 THEOREM(direct sum) 
 
Let M be a closed subspace of a Hilbert space, H .Then H M M ⊥= ⊕  
 
PROOF 
 
Let x H∈ be arbitrary. By the projection theorem, there exist a unique vector 
 

*m M∈ such that *x m x m− ≤ −  for all m M∈  and let  

 
* *:n x m= − M ⊥∈ .consequently, we can write 

 

( )* * * *:x m x m m n= + − = +  with * *
1 1 0m m n n− + − = *m M∈ and 

*n M ⊥∈ . 
 
 It remains now to show that this representation is unique. 
 
Suppose that 1 1x m n= +  with 1m M∈  and 1n M ⊥∈  is another  
 
representation of  x . 
 
Then * *

1 1m n m n+ = +  so that * *
1 1 0m m n n− + − = . But ( )*

1m m− and 

( )*
1n n−  

 
 are orthogonal. Hence by Pythagoras theorem 
  

( ) ( ) 2 2 2* * * *
1 1 1 1 0m m n n m m n n− + − = − + − =  

 
This implies, *

1 0m m− =  and *
1 0n n− = . Hence *

1m m=  and *
1n n= , 

 
establishing the uniqueness of the representation. Thus H M M ⊥= ⊕   
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2.31.2 THEOREM( Riesz Representation Theorem) 
 
This theorem shows that any bounded linear functional on a Hilbert space can 
  
be represented as an inner product with a unique vector in H  
 
Let H  be a Hilbert space and let f be a bounded linear functional on H . Then, 
 

(i) There exist a unique vector 0y H∈  such that 
 
( ) 0,f x x y=  for each x H∈                  (1) 

        
(ii)       Moreover, 0f y=  

 
 
PROOF  
 
(i)  Let ( ){ }: 0M x H f x= ∈ = . 
 
Then clearly M  is a closed subspace of H . By  
 
the  direct sum theorem,  
 
H M M ⊥= ⊕  and { }0M M ⊥ = .  
 
If M H= , we are done 
 
 because we can take the unique vector 0y H∈  as 0 0y ≡  and (1) is satisfied. 
 
If M H≠ , let z M ⊥∈ . Then ( ) 0f z ≠  
 
Let x H∈  be arbitrary and let  
 
 

( )
( )

f x
u x z

f z
= −            (2) 

 
Applying f  to (2) we have   
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( ) ( ) ( ) 0f u f x f x= − = . 
 
 Which implies u M∈ . 
 
Thus, u z⊥ , that is , 0u z = . 
 
 Taking inner product of (2) with z  we get 
 

( )
( )

( )
( )

, , , , 0
f x f x

u z x z z x z z z
f z f z

= − = − = and so,  

 
 

 

and  so  ( )( )0 / ,y f z z z z=  

 
For arbitrary z M ⊥∈  
 
 

(ii) From (1), ( ) 0.f x x y≤  and so 0f y≤ . 
 
Also  

 

( ) 2
0 0 0 0,f y y y y= =  

 
So that 0f y=  
 
For uniqueness, let 1 2,y y H∈  satisfy ( ) 1 2, ,f x x y x y= =  for every  
 
x H∈ .  
 
Then, 
 

1 2, 0x y y− =  for all x H∈ .  

( ) ( )

( )( )
0

,
,

, / ,

,

f z
f x x z

z z

x f z z z z

x y

=

=

=
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In particular, 1 2 1 2, 0y y y y− − =  so that  
 

2
1 2 0y y− =    Which yields 1 2y y=  

 
 
2.32 SEPARABLE HILBERT SPACES 
 
A Hilbert space is called separable  if it contains a complete orthonormal  
 
sequence. Finite dimensional Hilbert spaces are separable. 
 
 
 
2.33 ISOMORPHISM 
 
A Hilbert space 1H is said to be isomorphic to a Hilbert space 2H , if there  
 
exist a one-to-one linear mapping T from 1H onto 2H such that 
 

( ) ( ), ,T x T y x y=  * 
 
For every 1,x y H∈ . 
 
Note that * implies 1T =  because ( )T x x=  for every 1x H∈  
 
 
2.33.1 THEOREM 
 
Let H  be a separable Hilbert space. If H is infinite dimensional, then it  
 
is isomorphic to 2l . 
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PROOF 
 
Let ( )nx  be complete orthonormal sequence in H . If H is infinite  
 
dimensional, then ( )nx  is an infinite sequence. Let x  be an element of H . 
 
Define ( ) ( )nT x α= , where , , 1,2,...n nx x nα = =  
 
T is one-to-one mapping from H to 2l . It is clearly a linear mapping.  
 
Moreover, for ,n nx xα =  and , , , ,n ny y x y H n Nβ = ∈ ∈ , where N is a 
positive integer. 
 
We have ( ) ( ) ( ) ( ), ,n nT x T y α β=  
 

                                          
1

n n
n
α β

∞

=

=∑  

 

                                           
1

, ,n n
n

x x y x
∞

=

=∑  

 

                                           
1

, , n n
n

x y x x
∞

=

=∑
1

, , ,n n
n

x y x x x y
∞

=

= =∑  

Thus T is isomorphism from H onto 2l . 
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CHAPTER THREE 
 
 
In this chapter we discuss two topologies on the dual of a Banach space. 
 
 
3.1 DEFINITION 
 
Let V be a Banach space over R . For every bounded linear functional f onV ,  
 
there is a constant positive real number λ  such that ( )f x xλ≤ . Hence  
 
 

( )
0

f x
for all x V suchthat x

x
λ≤ ∈ ≠

 

We define the norm, 
*

f  as the least upper bound of all set of the form 
 

( )
0

f x
such that x V and x

x
∈ ≠ . 

 
 
This defines a norm, *

*
, onV . Indeed ( )*

*
, ,V is also a normed vector space. 

 
Recall that in section 2.12 , the topology induced by 

*
, was discussed. Also in  

 
section 3.3 another topology, the weak topology will be described. 
 
 
  
As mentioned earlier, in an infinite dimensional Hilbert we give an example of a  
 
closed bounded subset which is not compact. 
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3.2 EXAMPLE 
 
 
Let { }2 | 1S x l x= ∈ ≤  
 
Then S  is a closed and bounded subset in the Hilbert space 2l , but S  is   not  
 
compact. 
 
 
PROOF 

In 2l  define a sequence ne  as follows: ( )
0
1n

if k n
e k

if k n
≠

=  =
 

Then { }| 1,2,3,....ne n =  is an orthonormal set in 2l . 
 

Assume that S is compact in the normed vector space ( )*
*

, ,V . Then the sequence  

 
ne  has a convergent subsequence 

kne . Choose a positive integer q such that  
 

1
j kn ne e− <   whenever j q≥  and .k q≥   

 

Then there is a contradiction
1

2 1
q qn ne e

+
= − < . 

 
The assumption is false. Hence S  is not compact.  
 

 
Finally we look for a topology on 2l  for which S  is compact. 
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3.3 DEFINITION 
 
 
There is the weak topology of *V  which is the topology of  *V  generated by all  
 
set of the form 
 
( ) ( ){ }*, |U x G f V f x G= ∈ ∈ for each ,x V∈ and each open set  

 
G R⊂ . Let the sets ( ),U x G  be a subbasis for the topology in *V  . This  
 
Topology is called the weak topology in *V  determined by V .   
 
 
3.3.1 EXAMPLE 
 

Let 
1|
2

G t R t = ∈ < 
 

 

 

Given  a V∈ , we find that ( ) ( )* 1, |
2

U a G f V f a = ∈ < 
 

. 

 
 
3.4 THEOREM 
 
If V is a Banach space and the dual *V  is given its weak topology then, the closed  
 
unit ball *S V⊂  is compact. 
 
PROOF 
 
For each .x V∈ let xR  be the set of real numbers. The space [ ]|xR x V∈∏   
 
evidently contains *,V and the weak topology in *V  is the one induced by the  
 
topology in [ ]|xR x V∈∏ . Let K  be the subset of [ ]|xR x V∈∏ of points  
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whose x -coordinate has absolute value not greater than ,x  for every .x V∈  
 
By the theorem ( that is if , ,X Aα α ∈ are compact spaces, then 

[ ]|X X Aα α= ∈∏ is  
 
compact.), K  is compact. We show that the closed unit ball *S V⊂ is a weakly  
 
closed subset of K . 
    
  Let Sψ ∈ , the weak closure of S  in K . Then .Kψ ∈  We show that ψ is linear.  
 
For this, let , , .x y x y V+ ∈  let 0.∈>  By the definition of the topology  
 

[ ]|xR x V∈∏ , there is an * *x V∈  such that  
 

( ) ( ) ( ) ( )
( ) ( )

* *

*

, ,

and .

x x x x y y

x x y x y

ψ ε ψ ε

ψ ε

− < − <

+ − + <
 

 
Since ( ) ( ) ( )* * * ,x x y x x x y+ = + it follows that  
 
( ) ( ) ( ) 3 .x y x yψ ψ ψ ε+ − − <  

 
Since this holds for every 0,ε >   
 
( ) ( ) ( ).x y x yψ ψ ψ+ = +  It is just as easy to show that for every x V∈  and  

 
every ( ) ( ), .a R ax a xψ ψ∈ =  Since ( ) ,x xψ ≤ for every ,x V∈ it follows 
that  
 

.Bψ ∈ Hence S is closed and we have proof theorem 3.4. 
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CONCLUSION 

 
The conclusion is that when *

2l  is given its normed topology then *
2l  is isomorphic  

 
to 2l  .In this case { }*

2 | 1x l x∈ ≤  is not compact. On the other hand *
2l  can be  

 
given the weak topology. In this case { }*

2 | 1x l x∈ ≤  is compact. 

 
It must be emphasized that the normed topology is the natural topology of *V .  
 
There are times when the weak topology is needed. 
 
 

 

 

                              

 

  

 

 

     

 

 

 
 
 



 66 

 
RECOMMENDATION 

 
On the same vector space several unequal topologies may be defined and when  
 
you want to choose one you have to decide your purpose. 
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