Comparison of gauge rainfall measurements with TRMM satellite estimates over Kumasi

July 29, 2015

Presented by: Marian A. Osei

Research Team:
Dr. Leonard K. Amekudzi
Marian A. Osei
Maureen A. Ahiataku
Magaret A. Oduro
Eugene Asante-Bekoe

Outline

- Introduction
- Motivation and Objectives
- Study site and data
- Methodology
- Results and Discussion
- Conclusion

Introduction

- Rainfall is an essential resource for socio-economic activities especially in developing countries.
- Rainfall variability in Sub-Saharan Africa has been reported by Owusu et al. (2012), Nicholson et al. (2003), Amekudzi et al. (2015).
- To improve our understanding of the spatio-temporal variations of rainfall rigourous validation has been carried out all over the world by comparing in-situ measurements with satellite estimates. (Friesen 2002; Amekudzi et al., 2011; Adeyewa and Nakamura 2003; Haque et al., 2013).
- In the tropics, the Tropical Rainfall Measuring Mission (TRMM) has been specifically dedicated to monitoring rainfall intensity and distribution.

Motivation and Objectives

Motivation:

- Sparse rain-gauge network in Ghana.
- Inadequate in-country validation of TRMM satellite estimates over Ghana.
- Deployment of automated rain gauges for student training purposes.

Objectives:

- This study aimed at validating TRMM satellite estimates and OTT-pluvio measurements over Kumasi, with the objectives of checking the reliability and consistencies of both measurements.
- To inter-compre rainfall measurements at the same locations using Ghana Meteorological Agency (GMet) deployed rain gauge with OTT-pluvio gauge.

Study Site and Data

Figure: Study sites located between $6^{0} 42^{\prime} \mathrm{N}, 1^{0} 35^{\prime} \mathrm{W}$

Rain Gauge Types

Figure: OTT-Pluvio Gauge and Standard Rain Gauge (SRG)

TRMM Specifications

Figure: TRMM satellite and its payloads

Methodology

- Daily rainfall measurements were obtained from four OTT-Pluvio instruments were considered for the period of 2011 to 2013.
- Thiessen polygon method was used to calculate for the daily rainfall average for the ground-based instruments using the mathematical expression;

$$
\begin{equation*}
P_{\text {ave }}=\frac{\sum A_{i} P_{i}}{A_{T}} \tag{1}
\end{equation*}
$$

where $A_{T}=$ total area of the basin.

- The statistical methods used for comparison include: bias, mean bias error, root mean squared error (RMSE), normalized root mean squared error (NRMSE) and the correlation coefficient.

$$
\begin{gather*}
\text { Bias }=\frac{\bar{T}_{i}-\bar{G}_{i}}{\bar{G}_{i}} \tag{2}\\
M B E=\frac{1}{n} \sum_{i=1}^{n}\left(T_{i}-G_{i}\right) \tag{3}\\
\text { RMSE }=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(T_{i}-G_{i}\right)^{2}} \tag{4}\\
\text { NRMSE }=\frac{\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(T_{i}-G_{i}\right)^{2}}}{\bar{G}} \tag{5}
\end{gather*}
$$

Where $G_{i}=$ rain gauge measurements, $T_{i}=$ satellite estimates, $\bar{G}=$ average of the rain gauge measurements, $n=$ number of observations.

Results and Discussion

Airport

Agromet

Figure : 3-year correlation plots for Agromet and Airport

Figure: Monthly averages [mm/month] for TRMM and Pluvio datasets from 2011 to 2013

Figure: Plots of Bias, MBE [mm/month], RMSE [mm/month], RRMSE for 2011 to 2013

Figure: Annual correlation plots

3-year dry months correlation

Figure : 3-Year Seasonal Correlation

Summary

Table: Annual averages of Bias [\%], MBE [mm/month], RMSE [mm/month], NRMSE and the Total annual rainfall [mm]

Year	Bias	MBE	RMSE	NRMSE	Annual Rainfall Total TRMM	Gauge
2011	-14.97	-0.93	6.25	1.82	1142.49	1454.55
2012	15.21	-0.54	5.52	2.16	1029.88	1228.37
2013	17.82	-0.22	5.70	2.59	1153.67	1234.57

Conclusion

- Analysis of SRG and OTT-Pluvio rainfall measurements were observed to be in close agreement with a correlation coefficient of 0.99 for the years under study.
- Monthly averages showed good agreement between the TRMM estimates and pluvio datasets.
- Analysis showed a general underestimation of TRMM rainfall data by gauge, but quite good agreement in dry seasons.
- Statistical methods used for the validation also proved TRMM to be consistent and reliable with gauge dataset.
- Therefore, TRMM rainfall data has the potential to be used for climate impact studies (agricultural, hydrological and meteorological purposes).

THANK YOU

