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ABSTRACT 

The study investigates the macroscopic model of traffic flow characteristics and its 

accompanied continuity equation of vehicles (Lighthill-Whitham-Richards (LWR) 

model) on a basic freeway segment. The research presents a mathematical model of 

car traffic flow using the analogy between vehicles in traffic flows and particles in 

fluid flows which is based on the conservation laws. 

  

Using regression analysis the Flow-Density curve was found to be quadratic of the 

form  
2113.56 2.53q     

thus verifying the Lighthill-Whitham-Richards (LWR) model. 

 

The method of characteristics was used to solve the Partial Differential Equation 

(PDE)  

 113.56 5.06 0
t x

 


 
  

 
 

and the model yielded characteristics curve of the form  

 0 0113.56 189.24x x t x    

Consequently the solution of the Partial Differential Equation was obtained as  

   
37.4 4247.14

,
1 189.24

x t
x t

t





  

With the velocity field as 

 
113.56 189.24

,
1 189.24

x
u x t

t





 



  

vi 
 

TABLE OF CONTENTS 

 

DECLARATION ....................................................................................................................... ii 

ACKNOWLEDGEMENT ....................................................................................................... iii 

DEDICATION .......................................................................................................................... iv 

ABSTRACT ............................................................................................................................... v 

TABLE OF CONTENTS .......................................................................................................... vi 

LIST OF TABLES .................................................................................................................... ix 

LIST OF FIGURES ................................................................................................................... x 

LIST OF ACRONYMS/ABBREVIATIONS ........................................................................... xi 

 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY ............................................................... 1 

1.1.1 Why Modelling Traffic ............................................................................ 2 

1.2 STATEMENT OF THE PROBLEM .............................................................. 3 

1.3 OBJECTIVES ................................................................................................. 3 

1.3.1 General Objective .................................................................................... 3 

1.3.2 Specific Objectives .................................................................................. 4 

1.4 METHODS EMPLOYED IN THE STUDY .................................................. 4 

1.5 JUSTIFICATION ............................................................................................ 5 

1.6 SCOPE OF THE STUDY ............................................................................... 6 

1.7      LIMITATIONS OF THE STUDY .................................................................. 6 

1.8 ORGANIZATION OF THE STUDY ............................................................. 7 

 

CHAPTER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION ........................................................................................... 8 

2.1.1 Approaches to Modelling Traffic............................................................. 8 

2.2 THE GREENSHIELDS RELATIONSHIP ................................................... 10 

2.3 TRAFFIC MODEL CLASSIFICATION ...................................................... 11 

2.3.1 Physical Interpretation ........................................................................... 11 

2.3.2 Level of Detail ....................................................................................... 13 

2.3.3 Deterministic versus Stochastic ............................................................. 15 



  

vii 
 

2.3.4 Discrete Versus Continuous ................................................................... 16 

2.4 THE LIGHTHILL, WHITHAM AND RICHARDS (LWR) MODEL......... 17 

2.5 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS ...................... 19 

2.5.1 The Order of PDE .................................................................................. 20 

2.5.2 Linearity of PDE .................................................................................... 20 

2.6 TYPES OF PARTIAL DIFFERENTIAL EQUATIONS.............................. 20 

2.7 APPROACH TO STUDYING NONLINEAR PARTIAL DIFFERENTIAL 

EQUATIONS ........................................................................................................... 21 

2.8 SOLUTION OF A PARTIAL DIFFERENTIAL EQUATION .................... 21 

2.9 TRAFFIC MEASUREMENTS ..................................................................... 22 

 

CHAPTER THREE 

METHODOLOGY 

3.1 TRAFFIC STREAM ..................................................................................... 23 

3.2 FUNDAMENTAL TRAFFIC VARIABLES................................................ 23 

3.2.1 Speed ...................................................................................................... 24 

3.2.3 Volume ................................................................................................... 27 

3.2.4 Traffic Flow ........................................................................................... 27 

3.2.5 Traffic Density ....................................................................................... 27 

3.2.6 Occupancy.............................................................................................. 28 

3.3 FUNDAMENTAL RELATIONS OF TRAFFIC FLOW ............................. 29 

3.4 FREEWAYS ................................................................................................. 30 

3.5 BASIC FREEWAY SEGMENTS ................................................................. 31 

3.6 METHODS OF ANALYSIS ......................................................................... 31 

3.7 CONTINUUM FLOW MODEL ................................................................... 32 

3.8 THE GLOBAL CONSERVATION LAW .................................................... 32 

3.9 A VELOCITY-DENSITY RELATIONSHIP ............................................... 37 

3.10 FUNDAMENTAL DIAGRAMS OF TRAFFIC FLOW .............................. 38 

3.11 ELEMENTARY TRAFFIC FLOW MODEL ............................................... 38 

3.12 BASIC FLOW RELATIONSHIP ................................................................. 40 

3.12.1 Flow-Density Model .............................................................................. 40 

3.12.2 Speed-Flow Model ................................................................................. 42 

3.13 VELOCITY AS A FUNCTION OF DENSITY ........................................... 43 

3.14 METHOD OF CHARACTERISTICS .......................................................... 44 



  

viii 
 

3.15 CHARACTERISTICS OF FIRST-ORDER PARTIAL DIFFERENTIAL 

EQUATIONS ........................................................................................................... 45 

3.16  INITIAL AND BOUNDARY CONDITIONS ............................................ 48 

3.17 TRAFFIC DATA COLLECTION ................................................................ 48 

3.18 MEASUREMENTS AT ONE POINT .......................................................... 48 

3.19 MEASUREMENTS ON A ROAD SECTION ............................................. 49 

3.20 MOVING OBSERVER MEASUREMENT ................................................. 50 

3.21 THEORY ....................................................................................................... 51 

3.22 REGRESSION ANALYSIS ......................................................................... 54 

3.22.1 Linear Regression .................................................................................. 54 

3.22.2 Polynomial Regression .......................................................................... 55 

3.23 MATRIX FORM AND CALCULATION OF ESTIMATES ...................... 56 

 

CHAPTER FOUR 

DATA ANALYSIS AND MODELLING 

4.1 DATA COLLECTION .................................................................................. 58 

4.2 FUNDAMENTAL RELATIONSHIPS ANALYSIS .................................... 61 

4.2.1 Speed-Density Relationships ................................................................. 62 

4.2.2 Rate of flow - Density Relationships ..................................................... 64 

4.2.3 Speed-Rate of flow Relationships .......................................................... 65 

 

CHAPTER FIVE 

DISCUSSION, CONCLUSION AND RECOMMENDATION 

5.1 ANALYSIS OF RESULTS AND DISCUSSION ........................................ 68 

5.2 RESULTS OF ANALYSIS ........................................................................... 68 

5.2.1 Density Versus Speed ............................................................................ 68 

5.2.2 Rate of Flow versus Density .................................................................. 69 

5.2.3 Speed versus Rate of Flow ..................................................................... 70 

5.3 CHARACTERISTIC CURVES AND THE SOLUTION OF THE ............. 71 

TRAFFIC FLOW EQUATION ............................................................................... 71 

5.4 CONCLUSION ............................................................................................. 75 

5.5 RECOMMENDATION ................................................................................ 76 

REFERENCES……………………………………………………………………….77 

 



  

ix 
 

LIST OF TABLES 

 

TABLE 4.1: Vehicle Stream Data ........................................................................................... 59 

TABLE 4.2: Typical Analysed Manual Data Count ................................................................ 60 

TABLE 4.3: Stream flow of road section on Kumasi-Accra road ........................................... 61 

TABLE 4.4: Model Summary.................................................................................................. 62 

TABLE 4.5: ANOVA of Speed-Density Function .................................................................. 62 

TABLE 4.6: Coefficients of Speed-Density Function ............................................................. 63 

TABLE 4.7: Model Summary
a
 ................................................................................................ 64 

TABLE 4.8: ANOVA
a
 of Flow-Density Function .................................................................. 64 

TABLE 4.9: Coefficients of  Flow-Density Function ............................................................. 64 

TABLE 4.10: Model  Summary
a
 ............................................................................................. 66 

TABLE 4.11: ANOVA
a
 of Flow-Speed Function ................................................................... 66 

TABLE 4.12: Coefficients Flow-Speed Function ................................................................... 66 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



  

x 
 

LIST OF FIGURES 

 

FIGURE 3.1: The Flux, Density, Speed Relation .................................................................... 30 

FIGURE 3.2: Basic Freeway Segments ................................................................................... 31 

FIGURE 3.3: Cars entering and leaving a segment of roadway  ......................................... 33 

FIGURE 3.4: Illustration of a typical linear speed-density relationship ................................. 39 

FIGURE 3.5: Illustration of parabolic Flow – Density relationship ........................................ 41 

FIGURE 3.6: Illustration of parabolic Speed – Flow relationship .......................................... 43 

FIGURE 3.7: Characteristic initially at x   ........................................................................ 47 

FIGURE 4.1: Result of Regression for Average Speed versus Average Density. .................. 63 

FIGURE 4.2: Result of Regression for Average Rate of flow versus average density ........... 65 

FIGURE 4.3: Result of Regression for Average Rate of Flow Versus average speed ............ 67 

FIGURE 5.1: Solution of the traffic flow equation by method characteristics ....................... 74 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



  

xi 
 

LIST OF ACRONYMS/ABBREVIATIONS 

 

TRB  Transportation Research Board 

GDP  Gross Domestic Product  

PDE  Partial Differential Equation 

MOC  Method of Characteristics 

MCO  Moving Car Observer Method  

ODE  Ordinary Differential Equation  

HCM  Highway Capacity Manual 

BVP  Boundary Valued Problem 

IVP  Initial Valued Problem 

LWR   Lighthill, Whitham and Richards 

CBD   Central Business District  

Veh  Vehicles 

Veh/hr  Vehicles per hour 

Veh/km Vehicles per kilometre 

Km/hr  Kilometres per hour 



  

1 
 

CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND OF THE STUDY  

Traffic Flow is the study of the movement of individual drivers and vehicles between 

two points and the interactions they make with one another and they play a vital role 

in the progress of overall social productivity.   

 

In the 1950s James Lighthill and Gerard Whitham, two experts in fluid dynamics, and 

independently P. Richards, modelled the flow of car traffic along a single road using 

the same equations describing the flow of water (Lighthill et al.,1955; 

Richards,1956). The basic idea is to look at traffic on a large scale so as to consider 

cars as small particles and to assume the conservation of the cars number. The LWR 

model is described by a single conservation law, a special partial differential equation 

where the variable, the car density, is a conserved quantity, i.e. a quantity which can 

neither be created nor destroyed. 

 

Traffic engineering usually deals with the analysis of the behaviour of traffic and to 

design the roadway facilities for a smooth and safe operation of traffic. Traffic flow 

like fluid flow has several parameters associated with it; these parameters provide 

information regarding the nature of traffic flow, which helps the analyst in detecting 

any variation in flow characteristics. Understanding traffic behaviour requires a 

thorough knowledge of traffic stream parameters and their mutual relationship. 

 

Traffic Flow Theory is a mathematical tool that helps transportation engineers 

understand and express the properties of traffic flow. (Transportation Research Board 

special Report 165, Traffic Flow Theory, 1975).  
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1.1.1 Why Modelling Traffic 

Given the continual and dramatic increase in vehicle ownerships and many more 

people travelling day in and day out, at any given time, there are millions of vehicles 

on our roadways; these vehicles interact with each other and have great impact on the 

overall movement of traffic, or traffic flow. Every driver is therefore faced with the 

conflicting objective of reducing travel time and avoiding accidents.  

 

Engineers are given the task of designing, controlling and managing the road system 

to ensure that drivers travel as efficient as possible on our roadway. For this study we 

seek to obtain a Mathematical model that can provide the understanding necessary for 

the engineer to undertake his task and to assist in reducing the negative impacts that 

traffic congestion can have on our lives. 

 

A mathematical model is an inevitable component of scientific and technical progress. 

The very formulation of the problem of mathematical modelling of traffic flow leads 

to a better understanding of the traffic phenomena we see around us and a precise plan 

of action for the engineer.  

 

To better represent traffic flow, relationships have been established between the three 

main characteristics of traffic flow namely flow rate, density, and velocity. These 

relationships help in planning, designing, controlling and managing the operations of 

roadway facilities. 

 

Since 1930s scientist in various fields have focused on traffic problem and great 

progress has been made. The most widely used model is the Greenshields model 
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(Greenshields, 1935) which states that the relationship between speed and density is 

linear.  Here we focus our attention on a segment of the roadway where we will 

analyse traffic phenomena resulting from the complex interaction of many vehicles, 

instead of studying the phenomena associated with the motion of individual cars.  

 

1.2 STATEMENT OF THE PROBLEM 

In recent years, the problem of traffic congestion is becoming endemic due to large 

and ever-increase number of peoples owing cars and many more travelling. Usually 

drivers and passengers alike expect to get to their destinations on time without delays, 

traffic congestion can have great impact on their time of travel.  

 

Sometimes a lot of time is spent in traffic which may result in late arrival for work, 

meetings, and schools, resulting in lost business, disciplinary action or other personal 

losses, and even besides the time spent in traffic, which is directly related with 

congestion, there are other cost such as environmental costs (e.g. air pollution), social 

costs (e.g. stress) and economic costs (e.g. delayed deliveries, fuel consumption). This 

delay in traffic can end up reducing man hours which at the end negatively affect the 

Gross Domestic Product (GDP) and consequently reduce per capital income. 

 

1.3 OBJECTIVES  

1.3.1 General Objective 

The study investigates the macroscopic model of traffic flow characteristics and its 

accompanied continuity equation of vehicles (Lighthill-Whitham-Richards (LWR) 

model) on a basic freeway segment. 
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It also aims to formulate a model (Partial Differential Equation) that mathematically 

models car traffic flow similar to the equation of fluid flow.   

 

1.3.2 Specific Objectives  

This research seeks: 

i. To study traffic flow behaviour of a segment of the roadway 

ii. To derive the theoretical relationships between the various traffic variable, i.e., 

speed, flow and density relationships. 

iii. To determine a Partial Differential Equation (PDE)  that describes traffic flow 

using the conservation of cars  

iv. To determine the solution of the resulting first-order PDE‟s using the method 

of characteristics (characteristic curve) 

 

Although the study is related to particular road section and traffic conditions, it is 

expected that the findings, conclusions and recommendations may assist the engineers 

to understand traffic phenomena we see around us in order to eventually make 

decisions which may reduce travel time, alleviate congestion and avoid accident, to 

ensure that motorists travel as efficiently as possible on our roads.  

 

1.4 METHODS EMPLOYED IN THE STUDY   

We will use the idea of conservation of cars and experimental relationship between 

car velocity and traffic density to formulation a traffic problems in terms of a 

nonlinear partial differential equation. Thus we will study some methods of solving 

partial differential equations particularly the method of characteristics. Mathew and  

Rao (2007). 
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Data was collected manually by the Moving Car Observer Method (MCO). It is the 

most commonly used method to get the relationship between speed, density and 

traffic flow data by a single experiment. In this method, to measure the traffic flow in 

a road segment is to drive a car in that road segment yourself. First you drive in the 

section in the same direction as the observed flow, and then the section is driven on 

the other side of the road, against the flow. An observer(s) in the car measures the two 

traveling times, the number of opposing vehicles met, the number of vehicles the test 

vehicle overtook, and the number of vehicles overtaking the test vehicle. The data are 

then transferred onto various charts and tables to illustrate the operation of the 

roadway. The traffic flow pertaining to one direction was considered for this study. 

 

1.5 JUSTIFICATION 

Most transportation engineering projects begin with an evaluation of the traffic flow. 

Therefore, the transportation engineer needs to have a better understanding of the 

theories behind Traffic Flow Analysis and express their properties. Mathematical 

models of traffic flow can provide the understanding necessary for their purposes.   

 

In addition to maintaining flow on our existing roadways, we are faced daily with 

issues of allocating funds to maintenance activities that will ensure the roadways 

continue to serve the needs into the future. This includes identifying needs for 

expansion and/or changes in operational strategies, to facilitate efficient traffic flow. 

Mathematical models of traffic flow can help identify these needs. 
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1.6 SCOPE OF THE STUDY  

For analysis purposes, roadway facilities are separated into categories that are specific 

to traffic flow type: Uninterrupted and Interrupted traffic flow. (Analysis Procedure 

Manual 2006). 

 

This project examines commonly used segment (uninterrupted flow) analysis 

procedures. We will consider the macroscopic view of traffic flow which looks at 

modelling the number of vehicles passing a specified point on a roadway in some time 

interval. 

 

We will consider a basic freeway segment (outside the influence area of ramps or 

weaving areas) which provides uninterrupted flow and to analyse the operating 

condition primarily resulting from interactions among large number of vehicles in the 

traffic stream. Here Lighthill-Whitham-Richards (LWR) model concept is introduced. 

 

1.7     LIMITATIONS OF THE STUDY 

The study was limited in scope by its budget and time frame. The data collected did 

not cover the full range that the model is intended to cover, especially the influence of 

ramp (exit and entrance) segment and weaving sections.  

 

Apart from Lighthill-Whitham-Richards model (1955), there are many ways at 

looking into car traffic flow (e.g., Payne-Whitham model), and many other ways to 

solve these situations (e.g., numerical method); I did not however have the time to 

research them more. 
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1.8 ORGANIZATION OF THE THESIS 

The thesis will be presented in five major chapters.  

 

Chapter one is the introduction which presents the background to the study; why 

study  traffic flow, statement of the problem, objective of the study, methods 

employed in the study, justification of the study, scope of the study and the limitations 

of the study. 

 

 Chapter two will present review of relevant literature and comprises different 

perspective of researchers of the problem related to traffic flow.  

 

The methodology to achieve the objectives is outlined in chapter three and here the 

relationships between the three fundamental traffic variables are developed.  

 

Chapter four presents the data analysis, modelling results and the accompanying 

discussions.  

 

The summary of finding conclusions and recommendations are presented in chapter 

five, then the References and Appendix.  
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CHAP TER TWO 

LITERATURE REVIEW 

2.1 INTRODUCTION 

The scientific study of traffic flow had its beginnings in the 1930‟s with the 

application of probability theory to the description of road traffic, (Adams, 1936) and 

the pioneering studies conducted by Bruce D. Greenshields at the Yale Bureau of 

Highway Traffic when he measured the actual flows and speeds of one lane of traffic 

and identified a linear relationship between speed and density. (Greenshields, 1935).  

 

After World War II, with the rapid development of the transportation and the 

tremendous increase in the use of cars, traffic research got more and more attention 

and there was a surge in the study of traffic characteristics and the development of 

traffic flow theories. The 1950‟s saw theoretical developments based on a variety of 

approaches. (Dhingra and Gull, 2008). 

 

Some of the early contributions to traffic modelling were those of Reuschel (1950), 

Pipes (1953) and Lighthill and Whitham (1955). Reuschel and Pipes proposed a 

traffic model that describes the detailed movement of cars proceeding close together 

in a single lane, a “microscopic” model of traffic. Lighthill, a world-renowned fluid 

mechanics theorist, together with Whitham, proposed a “macroscopic” model of 

traffic, modelling traffic as a continuum akin to a fluid. 

 

2.1.1 Approaches to Modelling Traffic 

Modeling the process of traffic flow was previously studied from different points of 

view and different mathematical methods were used to describe the same process.     
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It also encounters difficulties in choosing an appropriate method of deriving physical 

appearance we can notice on our streets and roads. Different authors have different 

views to the same phenomena and are focusing on different aspects of the same 

problem (Junevicius and Bogdevicius, 2007; Berezhnoy et al., 2007; Akgungor, 

2008a and 2008b; Daunoras, et al., 2008; Yousefi and Fathy, 2008; Gowri and 

Sivanandan, 2008; Jakimavicius and Burinskiene, 2007 and 2009; Antov, et al., 2009; 

Knowles, 2008; Gasser, 2003).  All authors have an agreement on basic traffic flow 

parameters like, traffic flow density, traffic flow rate or the average speed of traffic 

flow. Besides, a lot of different investigations into the use of traffic flow models to 

deal with various problems of engineering are carried out, for example in Sivilevicius 

and Sukevicius, 2007 paper.  

 

A comparison of different continuum models has drawn that a number of scientific 

works were based on fluid dynamic theory and gas-kinetic traffic flow theory. The 

kinetic traffic flow theory is used for microscopic or macroscopic traffic flow models. 

The kinetic traffic flow theory is used in Flotterod and Nagel (2007), Gning et al. 

(2008), Li and Xu (2008), Prigogine and Herman (1971), where various approaches to 

the similar method are discussed. The equations of these models take different values 

to derive the same process. The kinetic theory was first used by Prigogine and 

Herman (1971) and co-workers. They suggested an equation analogous to Boltzmann 

equation. This theory was later criticized by many authors like Tampere, 2004.  The 

papers of whose show the experience of Pavery-Fontna who noticed that Prigogine 

model had inaccuracies comparing the results of modeling and physical experiments. 

He suggested vehicle desired velocity towards which its actual velocity tends. Later, 

many authors mainly focused on a better statistical description of the traffic process.  
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The macroscopic theory of traffic flows also can be developed as the hydrodynamic 

theory of fluids that was first introduced by Lighthill-Whitham and Richards model 

(Chalons and Goatin, 2008; Kim and Keller, 2002; Liu et al., 2008; Bonzani, 2007; 

Nikolov, 2008). They presented one dimensional model analogous to the fluid stream 

model. This theory was also criticized by such authors as Tampere (2004), Daganzo et 

al.,(2008) and Liu et al., (2008) who proposed the lattice method. Nagatani and 

Nakanishi model took into account that all vehicles were moving at the same time-

independent speed and in the same gap between vehicles. This method was improved 

later by considering the next-nearest neighbour interaction Liu et al.,(2008).  

 

A lot of traffic flow models are based on car-following theories supported by the 

analogues to Newton's equation for each individual vehicle.  

 

First International Symposium on The Theory of Traffic Flow was held at the General 

Motors Research Laboratories in Warren, Michigan in December 1959 Herman 

(1961). This was the first of what has become a series of triennial symposia on The 

Theory of Traffic flow and Transportation.  

 

2.2 THE GREENSHIELDS RELATIONSHIP 

Greenshields was one of the first traffic engineers to study the relationship between 

flow and concentration. Using a camera he took sub sequential photos of highways at 

a constant frame rate, from which he calculated the density and flow rate of the 

particular stretch of road. Greenshields postulated a linear relationship between the 

speed of the vehicles and the density of the road in which they were travelling. This 

relationship has been generally well regarded 



  

11 
 

2.3 TRAFFIC MODEL CLASSIFICATION 

A wide variety of traffic models exists. These models can be classified based on their 

properties. (Bellemans, 2002). 

 

Some of the way to classify traffic models from the point of view of a traffic control 

engineer includes: 

i. Physical interpretation 

ii. Level of detail 

iii. Discrete versus continuous 

iv. Deterministic versus stochastic 

 

2.3.1 Physical Interpretation 

Various mathematical models are presented to understand the rich variety of physical 

phenomena exhibited by traffic. According to system theory (Ljung, 1987), there are 

three major approaches towards modelling.  

 

2.3.1.1    The Deductive Approach  

In the deductive approach, physical equations describe the relationships between 

different states of the traffic system are obtained. This approach is used for instance to 

describe a mechanical system by Newton‟s laws and is called first principles 

modelling. The relationship between the states of the system is described by 

properties that can be measured (e.g. mass in a mechanical system). 
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2.3.1.2    Inductive Approach 

An alternative approach to the deductive approach is the inductive modelling where 

input and output data of the system are recorded and a generic parameterized model is 

fitted to the data. For a traffic system, the input/output data typically consist of the 

evolution of traffic flows, traffic densities and measured speeds over time. With the 

inductive modelling method there is in general no physical relationship between the 

modelled traffic situation and the model structure. An example of inductive traffic 

modelling is the application of a neural network that is trained to mimic the behaviour 

of the traffic system e.g. modelling the relationship between the future density as a 

function of the current density and speed, (Ho et al., 1996). 

 

Finally, we can distinguish an intermediate method between the deductive and 

inductive modelling. This modelling is a combination of the inductive and the 

deductive approach. In the deductive phase, parameterized equations between the 

states of the motorway system are written down. During the inductive phase, the 

parameters in the model are tuned by fitting the input-output relation of the traffic 

model to input-output measurements of the traffic system. As an example of this 

intermediate approach, we mention the traffic models of Lighthill, Whitham (1955) 

and Richards (1956) and Payne (1971). The equations in these models have a physical 

interpretation but contain parameters, which need to be fitted using input/output data 

from the traffic system. 
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2.3.2 Level of Detail 

Modelling traffic flow can be done at various levels of detail ranging from 

microscopic, to kinetic and macroscopic models, Bellemans et al. (2002) as sited in 

Hoogendoorn and Bovy (2000). 

 

2.3.2.1     Microscopic Model 

Microscopic traffic model was first introduced in 1955 when D. L. Gerlough 

published his dissertation. In this model every vehicle or „particle‟ in the system is 

considered as an individual, and therefore an equation is written for each, usually an 

Ordinary Differential Equation (ODE). These vehicle models include e.g. the 

interaction between the vehicles or between the vehicles and the motorway.  

 

The two most important microscopic models are: 

i. The car following model, which describes how a vehicle follows preceding 

vehicles. (Herman et. al., 1959). In this theory, the behaviour of each car is 

entirely dependent on the car in front of it.  That is, it describes the headway a 

driver preserves between himself and the preceding vehicle, how the driver 

reacts on acceleration or deceleration of the vehicle in front of him. Here the 

distance to the next car and the reaction time of the driver are the main 

variables.  

 

ii. The overtaking model describes how a driver decides whether or not to 

overtake its predecessor. Vehicle and driver properties that are important in 

the overtaking model are e.g. the desired speed of the driver and acceleration 

abilities of the vehicle.  
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The number of lanes is a motorway property that influences overtaking behaviour. 

Vehicle interaction is also important in overtaken model. A driver will decide to 

overtake based on the speed difference between his lane and the adjacent lane and on 

the available gap on the other lane. 

 

2.3.2.2     Macroscopic Model 

Macroscopic models describe the traffic flow by continuous aggregate functions like 

average density, velocity and flow in the space-time domain. The dynamics of traffic 

flow is modelled by a nonlinear system of Partial Differential Equations. Typically, a 

macroscopic model defines a relation between the traffic density, the average velocity 

and the traffic flow. (Gerlough and Huber, 1975; Pensaud and Hurdle, 1991; Ross, 

1991; Hall, Hurdle and Banks, 1992; Gilchrist and Hall, 1992; Disbro and Frame, 

1992). 

 

Within the class of macroscopic models, a classification based on the order of the 

models can be made. The oldest model was proposed by Lighthill and Whitham in 

1955 and independently by Richards in 1956 and is of first order. 

Lighthill-Whitham-Richards model is given below: 

 

 ( ) 0,t x
u   

          max

max

( ) 1 ,u u





 
  

 
max0 .  

        (2.1) 

 

The only state variable of this model is the traffic density. The Lighthill, Whitham, 

Richards model was extended later on in order to be able to cope with shock waves 

and stop-and-go traffic in congested traffic situations (Newell, 1993). The model 
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described by Payne (1971) is of second order since it has two state variables: traffic 

density and average velocity. 

Payne-Whitham model:  

            

  
     20, ( ) 0,t x t x

u u u p        
                                   (2.2) 

  

This model mimics the flow of gas particles. In fact, the above equations are known 

as the Euler equations of gas dynamics with pressure  

 

( ) , 0, 1.p a a                                                                        (2.3) 

 

The disadvantage of this model is that there may be solutions for which the velocity 

u  is negative. Helbing (1996) proposed a third order macroscopic traffic model with 

as state variables the traffic density, the average velocity and the variance on the 

velocity. 

 

Since macroscopic traffic models only work with aggregate variables and do not 

describe the traffic situation on the level of independent vehicles, they are less 

computationally intensive than microscopic models. Due to the fact that a 

macroscopic traffic model has fewer parameters to estimate than a microscopic 

model, it is easier to identify and to tune a macroscopic model.   

 

2.3.3 Deterministic versus Stochastic 

In a deterministic traffic model there is a deterministic relation between the input, the 

states and the output of the model. If we simulate a traffic situation twice, starting 
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from the same initial conditions and with the same inputs and boundary conditions, 

the outputs of the model will be the same. Payne‟s macroscopic traffic simulation 

model is an example of a deterministic traffic model. 

 

A stochastic traffic model contains at least one stochastic variable. It captures 

variation in e.g. reaction time, arrival processes, route choice. But every simulation 

run results in different outcome, so you need to replicate simulation runs. This implies 

that two simulations of the same model starting from the same initial conditions, the 

same boundary conditions and the same inputs may give different results, depending 

on the value of the stochastic variable during each simulation. The stochastic variable 

is characterized by a distribution function or a histogram. 

 

2.3.4 Discrete Versus Continuous 

A motorway traffic model describes the evolution of the state variables of the traffic 

network over time. This means that there will be two independent variables, namely 

space and time. These independent variables can be considered to be either 

continuous or discretized. Since the continuous traffic models are generally too 

complicated to solve analytically, especially if the size of the considered traffic 

network is large, they are discretized in time and space in order to simulate their 

behaviour using a computer (Lebacque, 1996). Payne‟s traffic model is from origin a 

continuous model which is discretized in space (with motorway stretches of typically 

500 meter) and time (with time intervals of typically 15 seconds) for implementation 

and simulation on a computer (Papageorgiou, 1990). 

 

In this thesis, we will consider the Lighthill-Whitham-Richards model.  
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2.4 THE LIGHTHILL, WHITHAM AND RICHARDS (LWR) MODEL 

In the mid 1950‟s, two mathematicians from Manchester University; James Lighthill 

and Gerard Whitham, experts in the field of fluid dynamics provided one of the first 

published theories of the macroscopic modelling of highway traffic flow. Their theory 

was based on two relationships. One was a continuity equation, and the other was the 

fundamental relationship between the flow and the density of a traffic stream. 

Lighthill and Whitham (1955). This paper focuses on the traffic application. 

 

Richards (1956) independently proposed the same continuum approach, even though 

in a slightly different form. The key difference is that Richards focused on the 

derivation of shock waves with respect to density, whereas Lighthill and Whitham 

considered the same from the perspective of disruptions in traffic flow. Another 

difference between the two methods is that Richards fixed the equilibrium 

relationship, whereas Lighthill and Whitham did not restrict themselves to an a priori 

definition. Because of the nearly simultaneous and independent development of the 

theory Modern literature often refers to this model as the Lighthill, Whitham and 

Richards or the LWR Model, Schoenhof and Helbing (2004) as cited by Chan Wenqin 

(2007).  

 

Unlike microscopic model (Cameron and Duncan, 1996; Fellendorf, 1996; Owen et 

al., 2000), the macroscopic model use aggregated variables to describe the behaviour 

of traffic. Macroscopic traffic models are often derived using the analogy  between 

traffic flows and the fluid flows. We can write down a law of conservation of vehicles 

in the traffic context: 
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( , ) ( , )
0

x t q x t

t x

 
 

                                                                     (2.4)         

 

  max max

max

( ) 0, ( ) 1 , 0t x
u u u


     



 
      

 
             (2.5) 

where  

( , ),x t  denotes the traffic density in vehicles per lane per kilometre at location x and 

at time, t  ,q x t  the traffic flow in vehicles per hour at location x at time, .t  The 

aggregated variables  ,x t  and  ,q x t  are continuous functions of time and space; 

although the system they describe is intrinsically discrete (the cars on the motorway 

are discrete entities). Equation (2.5) is a „physical law‟ in traffic. 

 

The traffic flow  ,q x t  from equation (2.5) can be expressed in terms of the traffic 

density  ,x t  and the traffic speed  ,u x t : 

 

     , , ,q x t x t u x t                                                                      (2.6) 

 

Lighthill and Whitham (1955) and also Richards (1956) observed that the average 

equilibrium speed of the vehicles is a function of the traffic density: 

 

    , ,u x t F x t                                                                          (2.7) 

 

The Lighthill-Whitham-Richards (LWR) model consists of the Eqn. (2.5) to Eqn. 

(2.7). This model is a continuum model in both time and space.  
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Although advances have been made in many directions, the LWR model is still 

widely used for the modelling of traffic flow, because of its simplicity and good 

explanatory power to understand the qualitative behaviour of road traffic. The results 

that are obtained from the LWR model are generally adequate for many applications 

such as traffic management and control problems. 

 

This thesis focuses on investigating the LWR model and its usefulness to the traffic 

engineer and the development of an efficient solution method for this model.  

 

The first-order LWR model can be solved either analytically or numerically. For the 

analytical aspects, the governing equation of the LWR model is solved by using the 

method of characteristics. 

 

2.5 FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS 

In mathematics, a first-order partial differential equation is a partial differential 

equation that involves only first derivatives of the unknown function of n variables. 

The equation takes the form (Evans, 1998). 

 

 
11, , , , , , 0

nn x xF x x u u u 
                                                           (2.8) 

 

 So the mathematical problem is to find the unknown from the equation and study its 

properties. 

 

Partial Differential equations are of interest in mathematics and in modelling 

phenomena in the sciences, engineering, economics, ecology, and other areas 
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2.5.1 The Order of PDE 

The order of a PDE is the order of the highest derivative present in the equation. 

 

2.5.2 Linearity of PDE  

The PDE is said to be linear if is linear in all the components (i.e., linear in the 

unknown functions and its partial derivatives) and is quasi-linear if is linear in the 

partial derivative of highest order. 

 

Thus a general first and second order linear PDE, respectively will have the form (in 

two variables) 

 

( , ) ( , ) ( , ) ( , ) 0x ya x y u b x y u c x y u g x y   
                    (2.9a) 

 

( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0xx xy yy x ya x y u b x y u c x y u d x y u e x y u f x y u g x y      

                                                                                                                                (2.9b)    

                                                                               
                                                                                                                                                  

where the coefficients of „u’, partial derivatives and „g’ are known functions.  

 

2.6 TYPES OF PARTIAL DIFFERENTIAL EQUATIONS   

Three of the most basic types of partial differential equations (PDEs) are hyperbolic, 

elliptic, and parabolic equations. For linear models, their representatives are the 

transport equation and the wave equation for the hyperbolic case, the Laplace 

equation for the elliptic case, and the heat equation for the parabolic case.  
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2.7 APPROACH TO STUDYING NONLINEAR PARTIAL 

DIFFERENTIAL EQUATIONS   

The most common basic approach to studying nonlinear partial differential equations 

is to change the variables (or otherwise transform the problem) so that the resulting 

problem is simpler (possibly even linear). Sometimes, the equation may be 

transformed into one or more ordinary differential equations. 

 

Another common (though less mathematics) tactic, often seen in fluid and heat 

mechanics, is to use scale analysis to simplify a general, natural equation in a certain 

specific boundary value problem. For example, the nonlinear Navier-Stokes equations 

can be simplified into one linear partial differential equation in the case of transient, 

laminar, one dimensional flow in a circular pipe; the scale analysis provides 

conditions under which the flow is laminar and one dimensional and also yields the 

simplified equation. Other methods include examining the characteristics and using 

the methods outlined above for ordinary differential equations. 

 

2.8 SOLUTION OF A PARTIAL DIFFERENTIAL EQUATION 

A solution of a PDE, by definition, is a function u , which is continuously 
kc

differentiable satisfying equation. In all problems where a PDE appears, there are 

associated conditions, like boundary and/or initial values which are known already. In 

such cases the solution should satisfy these conditions as well. 

 

In this work we will study the first order equations in detail. The interesting fact in 

this case is that it can be reduced to a system of ODE‟s, via the method of 

characteristics. 
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2.9 TRAFFIC MEASUREMENTS 

Traffic flow parameters estimation is very important in the planning and design 

process for all aspects of the road network. This can be done in various ways. In the 

beginning of traffic research the only instruments used were a stopwatch and manual 

counts. Later, these restricted means were replaced with vehicle detectors, connected 

to registration equipment, which enables us to perform measurements over long 

periods of time. The processing of the data, in the early days done by hand, was 

automated when computers entered the measurement campaigns. These 

measurements revealed many parameters of the traffic stream. The characteristic 

property of most vehicle detectors is that the measurements are done at one point. The 

measurements are so-called “spot measurements”.  

 

Another method to observe a traffic stream is to measure the behavior in a road 

section. Unfortunately the measurement of road section parameters is difficult. One of 

the methods, used in the early years of traffic measurement, is to make aerial 

photographs, and to determine the behaviour of the traffic stream from these 

photographs. The processing of these pictures however, is a time consuming 

procedure. It is not possible to use this method continuously to watch the traffic flow. 

Traffic Guidance Systems (2006) 

 

In the 1950‟s a method utilising a moving observer was suggested. Basically, it 

involves an observer in a moving vehicle that follows a road section in two directions. 

The properties of the traffic stream can be determined from a few easy measurements. 

The properties of the traffic stream can be determined from a few easy measurements. 

Wardrop and Charlesworth (1954) 
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CHAPTER THREE 

METHODOLOGY 

3.1 TRAFFIC STREAM  

A traffic stream that operates free from the influence of such traffic control devices as 

traffic signals and stop signs is classified as uninterrupted flow (Highway Capacity 

Manual, 2000). This type of traffic flow is influenced primarily by roadway 

characteristics and the interactions of the vehicles in the traffic stream. Freeways, 

multilane highways, and two-lane highways often operate under uninterrupted flow 

conditions.  

 

Traffic streams that operate under the influence of external means such as traffic 

signals and stop signs are classified as interrupted flow. Here vehicle-vehicle 

interactions and vehicle-roadway interactions play a secondary role in defining the 

traffic flow (Mannering et al., 2005).  

 

Understanding what type of flow is occurring in a given situation will lead to different 

methods for analysing traffic situations. In this paper, only uninterrupted flows are 

considered. Traditionally, uninterrupted traffic flows are modelled empirically: speed 

and flow data are collected for a specific road and econometrically fitted into curves 

Daganzo (1997). 

 

3.2 FUNDAMENTAL TRAFFIC VARIABLES  

Virtually all traffic flow models are based on the relationships between flow rate ( )q , 

density ( ) , and velocity (space mean speed), u . These three basic parameters 
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describe the state of an uninterrupted traffic stream, primarily found on freeways and 

they form the underpinnings of traffic analysis. 

 

In a free flowing network, traffic flow theory refers to the traffic stream variables of 

speed, density and flow (Henry Lieu, 1999).   

 

3.2.1 Speed 

The average speed is an important property of the traffic situation because it relates to 

safety, time, comfort and convenience (Cuthbert, 2006).). In traffic engineering, speed 

is defined as the distance travelled by a vehicle over a certain period of time. It is 

expressed as distance per unit of time or kilometre per hour. (Ergotmc @ GTRI 

Georgia Tech »http://ergotmc.gtri.gatech.edu/). It is one of the three basic 

characteristics of the traffic stream. 

 

One way of measuring the speed of a car moving along the highway, is to record the 

velocity; 

 

 i iu dx dt
                                                                                      (3.1)

 

 

of each car. With N  cars, there are different velocities, ( ), 1,2,3, ,iu t i N , each 

depending on time, t. If the number of cars N  are large, the speed of every individual 

vehicle is almost impossible to track on a roadway. So instead of measuring the 

velocity of each individual car, we associate to each point in space at each time a 

velocity field, ( , ).u x t  This would be the velocity measured by an observer fixed at 

position x  at time, .t  This velocity is the velocity of a car at that place (if a car is 



  

25 
 

there at that time). Thus the velocity field  ,u x t  at the cars position  ix t
 
must be 

the cars velocity  iu t ,  

 

   ( ),i iu x t t u t
                                                                              (3.2) 

 

Freeway speed occurs when a single vehicle is operating at effectively zero density in 

the presence of no other vehicle. As said earlier it is quite impossible to measure the 

speed of every individual car and due to this average speed is taken into account. 

 

Two different kinds of average speed can be distinguished; the time mean speed and 

the space mean speed. 

 

3.2.1.1     Time mean speed  

If speed is measured by keeping time as reference it is called time mean speed. 

This is the arithmetic mean of the vehicle speeds observed at some particular point 

along the roadway. Time mean speed is an important factor used in the analysis of 

flow along a roadway segment which has homogeneous geometric and traffic 

characteristic with no interruptions. 

Time-mean speed is expressed as  

  1

(1 )
m

t spot i

i

u u m u


  
                                                            (3.3)

 

where   

tu  = time-mean speed in unit distance per unit time  

iu
 
= the speed of the i th  vehicle 

m  = represents the number of vehicles passing the fixed point 
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3.2.1.2      Space Mean Speed 

If speed is measured by space reference it is called space mean speed.  

The space mean speed is the average speed of the vehicles in a given road section 

Wardrop and Charlesworth (1954). 

 

Space mean speed is determined on the basis of the time necessary for a vehicle to 

travel some known length of roadway. It account for both the segment length and 

travel time of that road section, and is computed by dividing the segment length by 

the mean or average travel time of a group of vehicles (HCM, 2000).   

 

s

l
u

t


                                                                                             (3.4a)
 

where  

su  = space-mean space in unit distance per unit time  

l  = length of roadway used for travel time measurement of vehicles, and   

t   = average vehicle travel time, defined as   

1

1 n

i

i

t t
n 

 
                                                                            

 

where  

it  = time necessary for vehicle   to travel a roadway section of length l , and  

n  = number of measured vehicle travel time.  

This implies  

1

1
s n

i

i

l
u

t
n 




                                                                                              

(3.4b)
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Space mean speed is an important factor in speed studies used for the analysis of flow 

along a roadway segment. 

 

3.2.3 Volume   

An observer fixed at a certain position along the roadway could measure the number 

of cars that passed in a given length of time. 

 

Volume is simply the number of vehicles that pass a given point on the roadway in a 

specified period of time (Highway Capacity Manual, 2000).  Volume is commonly 

converted directly to flow ( )q , which is a more useful parameter in traffic analysis. 

 

3.2.4 Traffic Flow    

Flow is traffic volume standardise to an hour, or vehicles per hour. The  HCM, 

Transportation Research Board 2000  defines Flow rate ( )q  as the equivalent hourly 

rate at which vehicles pass over a given point of a roadway during a given time 

interval in less than one hour usually 15-minutes. Flow rate is given in terms of 

vehicles per hour.  

 

3.2.5 Traffic Density   

Density is defined as the number of cars (at a fixed time) occupying a given length of 

a roadway. (Mannering et al., 2005). The unit used is vehicles per unit distance or 

vehicles per kilometre 

 

n

l
 

                                                                                               (3.5)
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where  

  =  traffic density in vehicles per unit road length. 

n  = number of vehicles occupying some length of roadway at some specified time, 

and 

l  = length of the roadway 

 

Density is a critical parameter for uninterrupted flow facilities because it characterizes 

the quality of traffic operations. It describes the proximity of vehicles to one another 

and reflects the freedom to manoeuvre within the traffic stream. Density measurement 

is a difficult task as it requires a photographing or videotaping a long segment and 

manually counting individual vehicles. Density is more commonly determined by 

dividing flow rate by speed, rather than performing a direct field measurement. 

 

High densities indicate that individual vehicles are very close together, while low 

densities imply greater distances between vehicles. 

 

 3.2.6 Occupancy 

The density is a fundamental traffic stream property, but can only be approximated by 

spot measurements, or it must be measured with complicated methods. Therefore 

several other approximations for the density are investigated. One of the commonly 

used properties is the occupancy. 

 

Suppose we are able to measure the lengths of the vehicles in a road section. Then we 

can calculate the following ratio: 
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1

vehicle lengths

section length
R 


                                                                   (3.6)                 

 

When we divide this value by the average vehicle length, we have an approximation 

for the density. Although it is not possible to measure the vehicle lengths in a road 

section, it is possible to find an estimate for this value, using time measurements at a 

point. (Traffic Guidance Systems, 2006) 

 

3.3 FUNDAMENTAL RELATIONS OF TRAFFIC FLOW  

There is a close relationship between the fundamental variables of traffic flow, 

namely Speed, flow, and density. The relationship between them is called the 

fundamental relations of traffic flow. The relationships between speed and density are 

not difficult to observe in the real world, while the effects of speed and density on 

flow are not quite as apparent. 

 

Let‟s consider one of the simplest possible traffic situations. Suppose that on some 

road, cars are at a constant speed  u  with a constant density  . Since each car moves 

at the same speed, the distance between cars remains constant. Hence the traffic 

density does not change. 

 

Consider an observer measuring the traffic flow (the number of cars per hour that pass 

him), then after a time   the marked car initially at A , see fig. 3.1 will cover a 

distance  AB = u . Of course during the same time interval the u  cars initially 

occupying AB  will have moved on, passing B  in the process. Thus by definition the 

number of cars per hour which we have called the flux past B  is q u u    
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If the traffic variables depends on x  and t , i.e.,      , , , , , ,q x t x t u x t  then under 

uninterrupted flow conditions, the three fundamental traffic variables speed, density, 

and flow are all related by the following equation: 

 

     , , ,q x t x t u x t                                                                      (3.7) 

 

This relationship represents the fundamental equation of traffic flow. 

Because flow is the product of speed and density, the flow is equal to zero when one 

or both of these terms is zero. It is also possible to deduce that the flow is maximized 

at some critical combination of speed and density.   

 

Figure 3. 1:  The Flux, Density, Speed Relation 

Source: Neville, 1994  

 

3.4 FREEWAYS  

The analysis of freeways is generally broken down into the major components of the 

freeway system including basic freeway segments, ramps and ramp junctions and 

weaving segments (HCM, 2000). In this work the analysis procedures used for the 

basic freeway segment is adopted. 
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3.5 BASIC FREEWAY SEGMENTS  

 

Figure 3.2:  Basic Freeway Segments 

Source: HCM, 2000 

 

Basic freeway segments include the portions of freeway where traffic flow is not 

influenced by the diverging or merging movements near ramps/freeway connections. 

Partial Differential Equation (PDE) would be used for analysing basic freeway 

segment operations. 

 

Within basic freeway sections, density is used to define the level of service. Density 

was selected as the parameter because it is sensitive to changes in flow throughout the 

range from zero to capacity. 

  

3.6 METHODS OF ANALYSIS 

When studying traffic patterns, there are many ways to model the flow of cars on the 

road. Based on the level of detail, traffic flow models have been categorized as 

macroscopic and microscopic models. But in relevance to the research at hand, we 

focus our attention on macroscopic model where we will analyse traffic situation 
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resulting from the complex interaction of many vehicles, instead of studying 

individual cars.  

 

3.7 CONTINUUM FLOW MODEL 

Looking into traffic flow from a very long distance, the flow of fairly heavy traffic 

appears like a stream of a fluid or continuum fluid and also because traffic involves 

flows, density, and speeds, there is a natural tendency to attempt to describe traffic in 

terms of fluid behaviour.   It seems therefore quite natural to associate traffic with 

fluid flow and treat it similarly. 

 

In the fluid flow analogy, the traffic stream is treated as a one dimensional 

compressible fluid. This leads to two basic assumptions:  

i. Traffic flow is conserved, which leads to the conservation or continuity 

equation, and 

ii. There is a one-to-one relationship between speed and density or between flow 

and density.  

 

3.8 THE GLOBAL CONSERVATION LAW 

The development of continuum models of traffic flow began from the LWR theory 

presented by Lighthill and Whitham (1955) and independently by Richards (1956). 

 

Considering a traffic flow on  section of a road, if there is no on-ramp and off-ramp 

(i.e. no sinks or sources ) within the interval, then the number of cars coming in 

equals the number of cars going out of the segment (conservation law).  
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We choose an interval on any particular roadway between say 1  and x x 2x x
 
as 

shown in Fig 3.3.    

 

 

Figure 3.3: Cars entering and leaving a segment of roadway  

Source: Richard Habeman, 1977 

  

Our main aim is to take the statement that cars are conserved and turns it into a Partial 

Differential Equation (PDE). As said earlier we adopt a continuum model of traffic 

flow rather than modelling individual cars and their flow. We will assume the vehicles 

to be sufficiently numerous that they can be considered to be distributed continuously 

from 1 2 to x x 
 
Accordingly, we defined the continuous and differentiable function 

( , )x t  to be the number of cars per unit length of the road at time   and position   

and it is called the vehicle density. We also define the Flux of the vehicle, ( , )q x t  as 

the number of cars passing a position x  per unit time at time, t   The number of cars 

which are in the interval, 1 2( , )x x  denoted by N  can be computed from the sum of 

vehicles in the segment and is equal to.: 

 

 
2

1

( ) ,
x x

x x
N t x t dx




                                                                         (3.8) 

 

If more cars flow into the segment 1 2( , )x x  than flow out of it, the number of cars 

within the segment will increase, and similarly if more cars flow out than in, the 
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number of cars will decrease. Assuming no vehicles are created or destroyed within 

the segment then Mathematically the rate of change of the number of cars in the given 

segment of the road with respect to time, dt
dN , is equal to the difference between the 

cars entering and those leaving the section through its two ends, as illustrated in the 

equation below since the rate of change of the number of cars per unit time is the 

traffic flow at position 1x  minus the traffic flow at position 2x  both at time t : 

 

1 2( , ) ( , )
dN

q x t q x t
dt

                                       (3.9) 

Taking the derivative of both sides of equation (3.8) with respect to time gives the 

following: 

 

 
2

1

,
x

x

dN d
x t dx

dt dt
                                                                       (3.10) 

 

By equating equation (3.9) and equation (3.10), you get the result: 

 

 
2

1
1 2, ( , ) ( , )

x

x

d
x t dx q x t q x t

dt
                                                    (3.11) 

 

This last result is the traffic conservation law in integral form. 

In order to carry out thorough analysis of traffic, a conservation law in partial 

differential form is required.  

 

Now, taking the partial derivative of the right hand side of equation (3.11) with 

respect to, x  and then taking the integral from 2 1 to x x x x  , gives the following 

equation: 



  

35 
 

 
2 1

1 2

( , )
,

x x

x x

d q x t
x t dx dx

dt x





                                    (3.12)

  

To have the integral with the same interval, we need to use an integral property, 

which is to take the negative of the right hand side of equation (3.12): 

 

 
2 2

1 1

( , )
,

x x

x x

d q x t
x t dx dx

dt x



 

                                    (3.13) 

Moving the negative sign inside of the integral gives: 

 

 
2 2

1 1

( , )
,

x x

x x

d q x t
x t dx dx

dt x



 

                                    (3.14) 

 

We can now move the dtd  inside of the integral to get the following equation; we 

can do this because derivatives and integrals are interchangeable.  If you move the 

derivative inside the integral and it has a function of two variables, then the derivative 

becomes a partial derivative:  

 

 
2 2

1 1

( , )
,

x x

x x

q x t
x t dx dx

t x


 
 

                                     (3.15) 

 

Equation (3.15) implies: 

 

 

2

1

( , )
( , ) 0

x

x

q x t
x t dx

t x


  
  

  
                                    (3.16) 

 

This equation states that the definite integral of some quantity is always zero for all 

values of the independent varying limits of the integral. The only function with this 
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feature is the zero function. Therefore, assuming ρ(x, t), and q(x, t) are both smooth, 

the 1-D conservation law is found to be 

 

( , )
( , ) 0

q x t
x t

t x


 
 

 
                                                                 (3.17a) 

 

And from equation (3.17a) we get 

 

( , ) ( , )
0

x t q x t

t x

 
 

 
                                                                   (3.17b) 

 

Suppressing dependencies, Equation (3.17b), becomes: 

 

0
q

t x

 
 

 
                                                              (3.18) 

 

This PDE describes the conservation of vehicle on a simple road. Its major underlying 

assumption is that no vehicles are created or destroyed (or join/leave the road if 

junctions are present) between two elementary points on the road.     

                                                                                          

If sinks or source exist within the section of the roadway, then the conservation 

equation takes the more general form 

 

( , )
q

g x t
t x

 
 

                                                                              (3.19)
 

 

where  ,g x t  is the generation (or dissipation) rate in vehicle per unit time per 

length.  
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We know from above that, for vehicle traffic flow, the flow is given by equation (3.7), 

and so therefore we can rewrite the q x   as the following: 

 

( )
q

u
x x


 


    

.                                                          (3.20) 

 

Equation (3.18) then becomes  

 

( )
0

u

t x

  
 

 
                                                                              (3.21) 

 

This is another form of the conservation equation. 

 

3.9 A VELOCITY-DENSITY RELATIONSHIP 

Again let‟s consider a section of the highway with only a single vehicle on it. Under 

this condition the density will be very low and, the vehicles can move freely without 

hindrance from the other vehicles, (Wardrop and Charlesworth, 1954). As more and 

more vehicles begin to use the segment of highway, the traffic density will increase 

and the average operating speed of vehicle will decline from the free flow value due 

to the presence of other cars. With all of these types of observations, we can make a 

simplifying assumption that at any point along the road the velocity of a car only 

depends on the density of cars (Lighthill et al., 1955).    

 

( )u u                                                                        (3.22) 
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3.10 FUNDAMENTAL DIAGRAMS OF TRAFFIC FLOW  

The fundamental diagrams of traffic flow are vital tools which enables analysis of 

fundamental relationships. The relation between flow and density, density and speed, 

speed and flow, can be represented with the help of some curves. They are referred to 

as the fundamental diagrams of traffic flow.  There are three diagrams; speed-density, 

speed-flow and flow-density.  

 

All the graphs are related by the equation “flow = speed * density”; this equation is 

the essential equation in traffic flow. The fundamental diagrams were derived by the 

plotting of field data points and giving these data points a best fit curve. With the 

fundamental diagrams road engineers can explore the relationship between speed, 

flow, and density of traffic. 

 

3.11 ELEMENTARY TRAFFIC FLOW MODEL  

As shown above, in general the car velocity is a decreasing function of density 

Thomson (1967) as cited in Lighthill et al. (1955). The graph of this function 

estimated in the literature approximate the downward sloping of this relationship. One 

possible representation of the process is the linear relationship shown in Fig. 3.4. 

 

The simplest macroscopic stream model developed by Greenshield (Greenshied, 

1935) in which density and speeds are negatively linearly related is given by 

 

max

max

( ) 1u u





 
  

 

                                                                    (3.23) 
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Figure 3. 4: Illustration of a typical linear speed-density relationship 

Source: Mannering, 1998 

 

As mentioned above, free-flow speed occurs when a single vehicle is operating at 

effectively zero density in the presence of no other traffic (i.e., when there are very 

little or no cars at all on the road with them).  

 

So the velocity will be at a maximum when the density is zero or the vehicle flowing 

with the free flow speed as illustrated with equation (3.23)  

 

max(0)u u                                                            (3.24) 

 

As more and more cars join the road way, their presence will slow down the car, and 

as the density increases further, the velocity of the cars would decrease linearly from 

free-flow speed to zero speed.  Thus the rate of change, which is the derivative of the 

velocity with respect to density, is defined as below: 

 

'( ) 0,
du

u
d



   0                                     (3.25) 
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That is traffic speeds tend to go down with increasing traffic density.  

 

At a certain density highly congested roadways result in minimal traffic movement, 

and then cars will move at zero velocity, or stand still. This maximum density max  

usually corresponds to what is called bumper to bumper traffic. 

 

max( ) 0u                                                 (3.26) 

 

Therefore the car velocity vs. the traffic density is steady decreasing. Optimum speed 

occurs between free-flow speed and zero speed and optimum density occurs at 

optimum speed. As illustrated in Fig 3.4. 

 

3.12 BASIC FLOW RELATIONSHIP  

3.12.1 Flow-Density Model  

Since the traffic flow (the number of car per hour) equal density times velocity, 

q u  and ( )u u   

 

( )q u                                                                                        (3.27) 

 

Thus using the assumption of a linear speed-density relation, a parabolic flow-density 

model can be obtained by substituting Eqn. (3.23) into the Eqn. (3.27) 

This gives  

max

max

( ) 1q u u


  


 
   

 
                                                         (3.28) 

  

2

max

max

( )q u


 


 
  

 
                                                                   (3.29) 
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where all terms are as defined before. 

Thus, in general, the traffic flow dependence on the density is illustrated in Fig 3.5. 

 

Figure 3.5:  illustration of parabolic Flow – Density relationship 

Source: Mannering, 1998  

 

This curve has a characteristic shape that is the same for every motorway section and 

is known in the traffic literature as the “fundamental diagram”. (Bellemans, 2002 as 

cited in Greenshields, 1935). 

 

Note from Fig. 3.5 that the maximum flow rate  maxq  represents the highest rate of 

traffic flow that the highway is capable of handling. This is referred to as traffic flow 

at capacity. The traffic density that corresponds to this capacity flow rate, the 

optimum density is 0  and the corresponding speed, the optimum speed is 0u . To 

determine the density, 0  and the speed, 0u  at which the flow or volume is maximum 

we differentiate Eqn. (3.29)   because at maximum flow  
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max

max

2
1 0

dq
u

d



 

 
   

 
                                                                (3.30) 

And because the free-flow speed maxu  is not equal to zero     

 

              

max
0

2


                                                                                   (3.31) 

 

Substituting Eqn. (3.31) into Eqn. (3.23) 

 

max

0 max

max

21u u





 
  
 
 
                                                                        (3.32)

 

                                     

max
0

2

u
u                                                                                          (3.33) 

 

And putting Eqn. (3.31) and (3.33) into q u  gives the maximum flow 

max max
max

4

u
q


                                                                                (3.34) 

   

3.12.2   Speed-Flow Model 

Again returning to linear speed-density model Eqn. (3.23), a corresponding speed-

flow model can be developed by rearranging to obtain  

 

max

max

1
u

u
 

 
  

 
 ,                                                                        (3.35) 
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and by substituting  Eqn. (3.35)  into   q u  and simplifying we obtain  

2

max

max

( )
u

q u u
u


 

  
 

                                                                    (3.36) 

 

This speed- flow model defined by Eqn. (3.36) again gives a parabolic function, as 

shown in Fig.3.6 

 

Figure 3.6: illustration of parabolic Speed – Flow relationship 

Source: Mannering, 1998 

  

3.13 VELOCITY AS A FUNCTION OF DENSITY 

The equation we now have for vehicle conservation, Equation (3.21) is one relation 

involving two unknowns. Conventionally, we would need another relation to close the 

system in two unknowns. A major assumption that is often made by traffic modellers 

is that velocity may be reasonably assumed to be a function of the density alone. That 

is, we can assume ( )u u  and our equation becomes a relation in  and its 

derivatives: 

 

 ( )
0

u

t x

  
 

                                                                         
(3.37) 
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Such an equation is called a partial differential equation (PDE) of first order. 

It is a PDE because of the two variables involved, x, t, and the partial differentiations 

with respect to these variables. It is a first-order equation because only first partials 

are involved. But we know that ( ) ( )q u   . Then the Eqn. (3.37) can be written 

 

'( ) 0q
t x

 


 
 

                                                                            
(3.38) 

 

 

where the prime denotes the differentiation of q  with respect to  . 

 

 This first order nonlinear partial differential equation for the traffic density contains 

both the driver behaviour information and the conservation information required to 

determine how density changes occurs in traffic. (Fowkes and Mohany, 1994).  

 

The first term t   represents the change in the traffic density at fixed position, 

whiles  '( )q x     represents the change due to the fact that the observer moves in 

to a region of possibly different traffic density.  

 

3.14 METHOD OF CHARACTERISTICS  

In mathematics, the method of characteristics is a common method for solving initial 

value problem (IVP). Notable among them is traffic flow problem. (Metcalf, 2006). 

The method is to reduce a partial differential equation to a family of ordinary 

differential equations along which the solution can be integrated from some initial 

data given. It is a technique for solving partial differential equations. Typically, it 

applies to first-order equations, although more generally the method of characteristics 

is valid for any hyperbolic partial differential equation (John, 1991).   
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3.15 CHARACTERISTICS OF FIRST-ORDER PARTIAL DIFFERENTIAL 

EQUATIONS 

The general theory of how to deal with partial differential equations of first order was 

developed by Cauchy as cited by Carrier and Pearson (1976). 

 

For a first-order PDE, the method of characteristics discovers curves (called 

characteristic curves) along which the PDE becomes an ordinary differential equation 

(ODE). Once the ODE is found, it can be solved along the characteristic curves and 

transformed into a solution for the original PDE (Hood, 2000). 

 

The general characteristics can be obtained by analyzing the conservation of traffic 

partial differential equation in Eqn. (3.38), as done by Coleman (2008).  

Consider a function ( , )x t  satisfying a first order linear PDE of the form 

 

  0q
t x

 


 
 

                                                                         
(3.39) 

 

We want to transform this linear first order PDE into ODE along the appropriate 

curve. 

 

Assume the curve is identified with the graph of a function  x x t  and let 

  ,x t t  be the value of the solution along it. We compute the rate of change in the 

solution along the curve by differentiating    ,x t t  with respect to t . Invoking the 

multi-variable chain rule.  
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( ( ), )
d dx

x t t
dt t dt x

 


 
 
                                                                

(3.40) 

 

In particular, if  x t  satisfies 

 

( )
dx

q
dt


                                                                                    

(3.41a) 

 

Then  

 

( ( ), ) ( ) 0
d

x t t q
dt t x

 
 

 
  

                                                   (3.41b)
 

 

So, along the characteristic line  ( ),x t t , the original PDE become the ODE  

 

 ( ( ), ) , ( ), 0
d

x t t F x t t
dt
  

                                                       (3.42)
 

 

Since the derivative is zero, the solution   ,x t t  must be a constant. That is to say 

that along the characteristics, the solution is constant. 

Thus    0, ,0tx t x   

Where    0,  and ,0tx t x  lie on the same characteristic. 

 

So to determine the general solution, it is enough to find the characteristics by solving 

the characteristic system of ODEs 
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  ,

dx
q

dt
                                                                                     (3.43) 

 

In the  ,x t  plane.  

We can now determine  ,x t , given the traffic conditions at initial time.  

One can even graphically construct the answer in the following way as shown in 

Fig.3.7 

 

Figure 3.7  : Characteristic initially at x   

 

At each point x   along the 0t  axis draw a straight line with the required 

characteristic slope   ,0q   . Along this line,   retains the value  ,0  . A 

corresponding analytic description is given by  

 

   , ,0x t    along    ,0x q t                                  (3.44) 

 

This characteristic solution is ideal for graphical representation. 
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3.16  INITIAL AND BOUNDARY CONDITIONS 

Formulation of boundary conditions is very crucial to correctly solving the governing 

equation. Solution of the governing partial differential equation (Eqn. (3.39) starts 

with calculations at a specified time. At this time, the flow conditions should be 

known. These flow conditions at the initial time are termed as the "initial conditions"  

 

Any physical system has finite boundaries. For a one-dimensional flow, there will be 

a boundary at 0x   and another boundary at some distance cx x . 

In the solution of governing equations, one has to specify one or more conditions at 

the boundaries of the system. These are known as the "boundary conditions". 

 

3.17 TRAFFIC DATA COLLECTION 

Unlike many other disciplines of the engineering, the situations that are interesting to 

a traffic engineer cannot be reproduced in a laboratory. Even if road and vehicles 

could be set up in large laboratories, it is impossible to simulate the behavior of 

drivers in the laboratory. Therefore, traffic stream characteristics need to be collected 

only from the field. There are several methods of data collection depending on the 

need of the study (Mathew, 2007; Traffic Guidance Systems, 2006). 

 

3.18 MEASUREMENTS AT ONE POINT 

Traffic theory started in the early days of traffic research with data, measured at a 

fixed point besides the road, because the existing measurement equipment offered 

only those data. Up to now this method provides the major part of the traffic 

measurements. The simplest measurements are counts. Normally, data will be 

collected for short interval of 5 minutes, 15 minutes or 1 hour etc., although the total 
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measurement duration covers a larger period. The properties of the traffic stream are 

often presented as average values. Therefore averaging techniques was employed.  

 

Density, which is defined as vehicles per unit length, does not make sense for a point 

measurement, because no length is involved.  (Traffic Guidance Systems, 2006; May 

et al., 1963; Athol, 1965). 

 

3.19 MEASUREMENTS ON A ROAD SECTION 

According to Mathew (2007) measurement on a road section is normally used to 

obtain variations in speed over a stretch of road. We can also get density. 

 

Vehicles on a road section can be observed by using aerial photographs or by using 

video-image processing.  When distance markers are available on the road, the 

number of vehicles in a section can be counted, giving the density.  From a single 

frame on the road the number of vehicles in a section can be counted, given the 

density, but not speed or volumes. By taking two images with a short interval, the 

speed of the vehicles can be determined by the distance covered between the two 

frames and the time interval between them. These properties are sufficient to compute 

the flow rate. (Payne and Tignor, 1978; Collins, 1983). 

 

If N  is the number of vehicles in the observed road section, and the length of the 

section is L , the density follows from: 

 

N

L
 

                                                                                            (3.56)
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When two images are taken with a time difference of t , and the displacement of 

vehicle i  is is , the space mean speed can be computed with:  

 

1 1 1

1 1 1N N N
i i

i s i i

i i i

s s
u u u s

t N N t N t  

    
  

                            (3.57) 

 

The flow rate can be found with the well-known formula: sq u   

 

1

N

i

i

s

q
L t






                                                                                        (3.58)
 

 

NB: Theoretically these formulas are only valid when the length of the road section 

approaches infinity. 

 

3.20 MOVING OBSERVER MEASUREMENT 

The moving observer method was developed in the UK by the Road Research 

Laboratory (Traffic and Safety Division) and was first described in a paper by 

Wardrop and Charlesworth (1954). Their method involved a series of runs in a test 

vehicle made travelling „with‟ and „against‟ a one-way traffic stream. O‟Flaherty and 

Simons (1970).  

 

The observer(s) in the test vehicles record the following information for each run: 

The number of opposing vehicles met; 

The number of vehicles overtaking the test vehicle while it was travelling; 

 The number of vehicles the test vehicle overtook; 

The journey times of the observer, with and against the stream. 
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These observations form the basis for the estimate of the traffic flow rate. Equations 

were derived enabling the traffic flow rate to be calculated from the collected 

information. 

 

Moving observer method of measurement is the most commonly used method to get 

the relationship between speed, density and traffic flow data by a single experiment 

Mathew (2007).  

 

3.21 THEORY 

Consider an observer watching a stream of vehicles. Two different cases of motion 

can be considered, Wardrop and Charlesworth (1954). The first case considers the 

traffic stream to be moving and the observer to be stationary. If 0m  is the number of 

vehicles overtaking the observer during a time period, t , then the flow q  is 
0m

t
, or 

 

0m q t 
                                                                                         (3.59)

 

 

The second case assumes that the stream is stationary and the observer moves with 

speed 0u . If pm  is the number of vehicles overtaken by observer over a length l

travelled by the observer then by definition, density   is 
pm

l
 , or 

 

pm l 
                                                                                      (3.60a)

 

                 

or 
 

0pm u t  
                                                                                 (3.60b) 



  

52 
 

Where 0u  is the speed of the observer and t  is the time taken for the observer to cover 

the road stretch. 

 

These two cases are now merged into a situation where both the stream and the 

observer are moving in the same direction, but at different speeds. Obviously some 

cars will overtake the observer and he will in turn over take some of the cars.  

 

On the trip in the same direction as the observed flow, the observer adds up the cars 

that pass the observer, and subtracts the cars that are passed by the observer. On the 

trip against the observed flow, the observer counts the cars that pass the observer in 

the opposite direction. Wardrop and Charlesworth (1954). If the length of the road 

section is L.  This can be represented mathematically. 

 

Assuming 0m  vehicles overtake the observer, and assuming pm  is the number of 

vehicles the observer passes, then, using Eqn. (3.59) and Eqn. (3.60b) we can describe 

the difference between 0m  and pm   called the tally counts
 
as: 

 

0 pm m m 
                                                                                (3.61a)

 

 

From above  

 

0m qt u t 
                                                                               (3.61b) 

 

This equation is the basic equation of moving observer method, which relates q  and

   to the counts, ,wm  t   and 0u  that can be obtained from the test. 
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Assume that the trip against the observed flow yields a traveling time at  and a vehicle 

count is am , 

 

a a a am qt u t 
                                                                          (3.62) 

 
  

 and the trip in the same direction of the observed stream has a traveling time wt  and a 

vehicle count 
wm  (i.e. those passing minus those overtaken-Tally counts). 

 

w w w wm qt u t 
                                                                         (3.63) 

 

Manipulating Eqn. (3.62) and Eqn. (3.63), the following formulas can be found (refer 

to Appendix A3.1 for derivation): 
      

       

 

a w

a w

m m
q

t t





                                                                                    (3.64)

 

 

w
av w

m
t t

q

 
  

                                                                                 (3.65) 

 

av

av

l
u

t


                                                                                         (3.66)

 

 

av

q

v
 

                                                                                           (3.67) 

These formulae allow one to estimate both speeds and flows for one direction of 

travel.  
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where, 

q  is the estimated flow on the road in the direction of the stream. 

am  is the number of vehicles met in the opposite direction while traveling against the    

      direction of interest, 

wm  is the net number of vehicles that overtake the survey vehicle while traveling in   

      the direction of interest (i.e. those passing minus those overtaken), 

at  is the travel time taken for the trip against the stream, 

wt  is the estimate of mean travel time for the trip in the direction of the stream. 

 

3.22 REGRESSION ANALYSIS 

3.22.1 Linear Regression 

  
The goal of regression analysis is to model the expected value of a dependent variable 

y in terms of the value of an independent variable (or vector of independent variables) 

x. In simple linear regression, the model 

 

0 1y x     ,                                                                              (3.68) 

  

is used, where ε is an unobserved random error with mean zero conditioned on a 

scalar variable x. In this model, for each unit increase in the value of x, the conditional 

expectation of y increases by a1 units. 

 

In many settings, such a linear relationship may not hold. In that case, we might 

propose a quadratic model of the form 
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2

0 1 2y x x      
                                                                   (3.69)

 

 

In this model, when there is an increased from x to x + 1 unit, the expected yield 

changes by 1 22 x  . The fact that the change in yield depends on x is what makes 

the relationship nonlinear (this must not be confused with saying that this is nonlinear 

regression; on the contrary, this is still a case of linear regression). 

In general, we can model the expected value of y as an nth order polynomial, yielding 

the general polynomial regression model 

 

2 3

0 1 2 3

m

my x x x x           
                                    (3.70)

 

 

Conveniently, these models are all linear from the point of view of estimation since 

the regression function is linear in terms of the unknown parameters 0 1 2, , ,  

Therefore, for least squares analysis, the computational and inferential problems of 

polynomial regression can be completely addressed using the techniques of multiple 

regressions. This is done by treating 
2,x x  as being distinct independent variables in 

a multiple regression model. 

 

3.22.2 Polynomial Regression 

In statistics, polynomial regression is a form of linear regression in which the 

relationship between the independent variable x and the dependent variable y is 

modelled as an nth order polynomial. Polynomial regression fits a nonlinear 

relationship between the value of x and the corresponding conditional mean of y, 

denoted E(y|x),. Although polynomial regression fits a nonlinear model to the data, as 
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a statistical estimation problem it is linear, in the sense that the regression function 

E(y|x) is linear in the unknown parameters that are estimated from the data. For this 

reason, polynomial regression is considered to be a special case of multiple linear 

regressions. 

 

Polynomial regression models are usually fit using the method of least squares. The 

least-squares method minimizes the variance of the unbiased estimators of the 

coefficients, under the conditions of the Gauss–Markov theorem. The least-squares 

method was published in 1805 by Legendre and in 1809 by Gauss. The first design of 

an experiment for polynomial regression appeared in an 1815 paper of Gergonne. In 

the twentieth century, polynomial regression played an important role in the 

development of regression analysis, with a greater emphasis on issues of design and 

inference. More recently, the use of polynomial models has been complemented by 

other methods, with non-polynomial models having advantages for some classes of 

problems. 

 

3.23 MATRIX FORM AND CALCULATION OF ESTIMATES 

The polynomial regression model 

   

 2 3

0 1 2 3 1,2, ,m

my x x x x i n            
            (3.71)

 

 

can be expressed in matrix form in terms of a design matrix X , a response vector y , 

a parameter vector  , and a vector   of random errors. The ith row of X and y will 

contain the x  and y  value for the ith data sample. Then the model can be written as 

a system of linear equations: 
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

 
     
     
      
     
      

     
                                        (3.72)                         

 

which when using pure matrix notation is written as 

 

Y X                                                                                        (3.73) 

 

The vector of estimated polynomial regression coefficients (using ordinary least 

square estimation is 

 

   
1

T TX X X Y





                                                                      (3.74)

 

  

This is the unique least squares solution as long as X  has linearly independent 

columns. 
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CHAPTER FOUR 

DATA ANALYSIS AND MODELLING 

 

4.1 DATA COLLECTION  

The data were collected on March 22, 2011 during good weather. The field data were 

collected during evening peak period. Peak hour was taken generally from 5.30 p.m. 

to 6.30 p.m., where the civil servants and traders from the Central Business District 

(CBD) areas are going back home.  The traffic count was done manually using the 

Moving Car Observer method (MCO) along 1.2 Km way of Kumasi-Accra road 

(Ghana) between (KNUST Police Station and Boadi Junction). The site is a level 

grade straight segment. In all a one hour data were collected for the study using the 

Moving Car Observer method. 

 

Basically in the moving car observer method, observer (s) in a moving vehicle 

travelling along a known section of road in both direction records the number of 

vehicles met in the opposite direction  am , number of vehicles passing the test car 

 om , number of vehicles overtaken by test car  pm  and the  journey time of the test 

vehicle in both directions  is also noted  ,w at t . Therefore, based on the Wardrop  and 

Charlesworth formula the number of vehicles per hour  q , number of vehicles per 

length  l  of roadway   , mean space speed  u , and average journey time  avt  is 

equal: 

 

a o p

w a

m m m
q

t t

 



                 

o p

av w

m m
t t

q


                 

av

l
u

t
                   

q

u
   
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In all seven (7) runs by the observer‟s vehicle was done to collect the data and the 

results are presented in Tables 4.1 and Tables 4.2.  

 

TABLE 4. 1:  Vehicle Stream Data  

Sample 

No 

Start 

time 

(pm) 

Journey 

Time 

(min) 

No of 

Vehicles 

Met 

am  

No of Vehicles that 

Overtakes the test 

car 

om  

No of Vehicles 

Overtaken by the test 

car 

pm  

1 5:30 1.11  0 0 

5:32 1.28 34   

2 5:34 1.13  3 3 

4:36 1.30 49   

3 5:38 1.16  1 2 

5:40 1.23 54   

4 5:42 1.19  0 2 

5:44 1.27 60   

5
 

5:45 1.25  0 4 

5:47 1.30 62   

6
 

5:50 1.46  1 5 

5:53 1.34 63   

7
 

5:55 2.00  0 10 

5:58 1.3 55   
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TABLE 4. 2: Typical Analysed Manual Data Count 

No No of 

Vehicles 

overtaking 

the test 

Car 

om  

No of 

Vehicles 

overtaken 

by the test 

Car 

pm  

Relative 

Flow 

against 

test car 

am  

Relative 

Flow 

 with 

test car 

0w pm m m 

 

Travelling 

time 

against 

The flow 

at  

Travelling 

time 

With 

the flow 

wt  

Flow rate 

(veh/hr)

60 a w

a w

m m
q

t t

 
  

 
 

Average  time  

(min) 

60 w
av w

m
t t

q

 
   

 
 

Speed  

(km/hr) 

av

l
u

t
  

Density  

(veh/km) 

q

u
   

1 0 0 34 0 1.28 1.11 853.56 1.11 64.86 13.16 

2 3 3 49 0 1.3 1.13 1209.88 1.13 63.72 18.99 

3 1 2 54 -1 1.23 1.16 1330.54 1.21 59.75 22.27 

4 0 2 60 -2 1.27 1.19 1414.63 1.27 56.48 25.05 

5 0 4 62 -4 1.31 1.25 1359.38 1.43 50.47 26.93 

6 1 5 63 -4 1.34 1.46 1264.29 1.65 43.64 28.97 

7 0 10 55 -10 1.3 2 818.18 2.73 26.34 31.06 
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From the data shown in the Table 4.2 above, the results of stream flow for KNUST 

Police Station – Boadi junction are summarized in Table 4.3 

 

Table 4. 3: Stream flow of road section on Kumasi-Accra road   

No Relative 

flow 

With 

test car 

Relative 

flow 

Against 

test car 

Travelling 

time 

Against  with 

Flow      Flow 

Flow 

rate 

 

Average 

time 

Speed Density 

1 0 34 1.28 1.11 853.56 1.11 64.86 13.16 

2 0 49 1.3 1.13 1209.88 1.13 63.72 18.99 

3 -1 54 1.23 1.16 1330.54 1.21 59.75 22.27 

4 -2 60 1.27 1.19 1414.63 1.27 56.48 25.05 

5 -4 62 1.31 1.25 1359.38 1.43 50.47 26.93 

6 -4 63 1.34 1.46 1264.29 1.65 43.64 28.97 

7 -10 55 1.3 2 818.18 2.73 26.34 31.06 

 

 

4.2  FUNDAMENTAL RELATIONSHIPS ANALYSIS 

In this section, fundamentals of the data were studied. A detailed description of the 

data is presented. In addition, procedures for computing traffic flow measures are 

explained. Finally, traffic conditions of the data and the relationships among the 

traffic condition parameters are studied. 

 

The average rate of flow ranged from 818.18 to 1414.63 vehicles per hour; the 

average traffic density ranged from 13.16 to 31.06 vehicles per kilometre; and the 

average travel speed ranged from 26.34 to 64.86 kilometres per hour. The rate of flow 

and density increased with time during the study period whiles the speed decreased. 
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The pair-wise relationship curves among the rate of flow, density, and speed closely 

matches the basic relationship curves among these three parameters within the range 

of the data. The result supports the adequacy of the data.  

 

Before a regression model was built and developed for analyzing the basic freeway 

segment performance, the empirical relationships between traffic speed, rate of flow 

and density were examined to gain a better understanding of the operational 

characteristics of the basic freeway section.   

  

4.2.1 Speed-Density Relationships  

Relationships between speed and density were examined. Speeds and densities were 

calculated from the field data over the length of the freeway section. 

 

TABLE 4.4: Model Summary  

R R Square 

Adjusted R 

Square 

Std. Error of 

the Estimate 

.858 .736 .684 7.659 

The independent variable is Density. 

 

TABLE 4. 5: ANOVA of Speed-Density Function 

 Sum of 

Squares df Mean Square F Sig. 

Regression 819.864 1 819.864 13.975 .013 

Residual 293.331 5 58.666   

Total 1113.195 6    

The independent variable is Density. 

For this model F-ratio is 13.975, which is very unlikely to have happened by 

chance    (p<.001). therefore the model significant at 5% 
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TABLE 4. 6: Coefficients of Speed-Density Function 

 Unstandardized 

Coefficients 

Standardized 

Coefficients 

T Sig. 
 B Std. Error Beta 

Density -1.890 .506 -.858 -3.738 .013 

(Constant) 97.113  12.363 7.855 .001 

  

  

 

Figure 4. 1: Result of Regression for Average Speed versus Average Density. 

  

Figure 4.1 presents the relationships between the average speed and average density 

over the observed periods. This it significantly from most speed-density models in 

which the average speed generally decreases linearly with the increase of density. 
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4.2.2 Rate of flow - Density Relationships 

Relationships between density and rate of flow were also examined. Densities were 

obtained from the flow rate and the velocities. The following results were obtained. 

 

TABLE 4.7: Model Summary
a
  

R R Square Adjusted R Square 

Std. Error of the 

Estimate 

.992 .983 .976 184.531 

The independent variable is density. 

a. The equation was estimated without the constant term. 

 

TABLE 4. 8: ANOVA
a
 of Flow-Density Function 

 Sum of 

Squares Df 

Mean 

Square F Sig. 

Regression 9909379.543 2 4954689.771 145.504 .000 

Residual 170259.139 5 34051.828   

Total 1.008E7 7    

The independent variable is density. 

a. The equation was estimated without the constant term. 

For this model F-ratio is 145.504, which is very unlikely to have happened by chance    

(p<.001). Therefore the model is significant.  

 

 

TABLE 4. 9: Coefficients of  Flow-Density Function 

 
Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig.  B Std. Error Beta 

Density 113.561 16.703 2.314 6.799 .001 

density ** 2 -2.530 .628 -1.371 -4.027 .010 
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Figure 4. 2: Result of regression for average rate of flow versus average density  

  

The figure shows a fitted second order polynomial to the data (which is expected to 

explain the nature of any flow-density diagram). The maximum of the fitted curve, 

i.e., the highest flow value indicates the capacity of the road stretch. 

 

It was determined that a model for predicting densities on the basis of flow would be 

the most effective procedure for predicting traffic operations in the basic freeway 

section of the roadways. 

  

4.2.3 Speed-Rate of flow Relationships 

The relationships between speed and rate of flow were studied and analyzed using 

SPSS 17.00 and the following results were obtained.   
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TABLE 4. 10: Model  Summary
a
 

R R Square Adjusted R Square 

Std. Error of the 

Estimate 

.992 .983 .977 183.765 

The independent variable is speed. 

a. The equation was estimated without the constant term. 

 

TABLE 4. 11:  ANOVA
a
 of Flow-Speed Function 

 Sum of 

Squares Df Mean Square F Sig. 

Regression 9910790.738 2 4955395.369 146.741 .000 

Residual 168847.943 5 33769.589   

Total 1.008E7 7    

The independent variable is speed. 

a. The equation was estimated without the constant term. 

For this model F-ratio is 146.741, which is very unlikely to have happened by chance    

(p<.001). Therefore the model significantly improves our ability to predict the 

outcome. 

 

TABLE 4. 12:  Coefficients Flow-Speed Function 

 

Unstandardized Coefficients 

Standardized 

Coefficients 

t Sig.  B Std. Error Beta 

Speed 51.841 8.495 2.319 6.103 .002 

speed ** 2 -.527 .147 -1.366 -3.593 .016 
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FIGURE 4. 3: Result of Regression for Average Rate of Flow Versus                                                            

                                            average Speed 

 

From Fig. 4.3 Speed appears to be sensitive to flow for the flow rates measured. From 

the data collected, an obvious relationship between speed and flow was found.  

 

 

 

 

 

 

 

 



  

68 
 

CHAPTER FIVE 

DISCUSSION, CONCLUSION AND RECOMMENDATION 

  

5.1 ANALYSIS OF RESULTS AND DISCUSSION 

The purpose of this study and analysis for basic freeway is to build up the regression 

model of the correlation of traffic speed, rate of flow, and density, and predict the 

trend of traffic flow characteristics. 

 

5.2 RESULTS OF ANALYSIS 

5.2.1 Density Versus Speed 

The model of the result of regression for density versus speed is indicated as follows: 

 

97.113 1.890u                                                                            (5.1) 

 

where:   = average traffic density, vehicle per kilometre, and 

           u  = average traffic speed, kilometre per hour. 

 

The coefficient of correlation  2 0.736R   and the t  value of constant is 7.855 . 

The density variable is the significance of the speed. In this case, it is explained by the 

variability of the dependent variable, the average speed in this case. The adjusted 2R  

value for Eqn. (5.1) is 0.684.  The result of regression for average traffic density 

versus average traffic speed equation is shown as Fig. 4.1.  

Notice that Eqn. (5.1) is linear with respect to space mean speed and density and is of 

the form of Greenshield‟s equation. 
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Greenshield‟s equation: max
max

max

s

u
u u 



 
  

                                                            (5.2)

 

 

Comparing Eqn. (5.1) and Eqn.  (5.2)  

 

Free flow speed max 97.113u   

To calculate jam density: 

 max

max

1.890
u


  Implying max 51.383    

This model indicates when the critical (optimum) density at maximum flow (capacity) 

equals to 22.44 vehicles per kilometre. This coincides with the speed 54.701 

kilometres per hour at that point of capacity, and the rate of flow is 1274.318  vehicles 

per hour per. The jam density equals to 51.383 vehicles per kilometre and then the 

traffic rate of flow and speed equals to zero. The results are shown as Fig. 4.2 and 

Fig. 4.3. 

 

5.2.2 Rate of Flow versus Density   

The model of the result of regression for the density versus rate of flow is indicated as 

follows: 

 

  2113.5615 2.530q                                                                (5.3) 

 max 44.88 veh/km   

where: q  = average rate of flow, vehicle per hour, and 

  = average traffic density, vehicle per kilometre. 
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The coefficient of correlation  2 0.983R  . The density variable is significant to the 

rate of flow. In this case, it is explained by the variability of the dependent variable, 

the average rate of flow in this case. 

 

The adjusted 2R  value for Equation (5.3) is 0.976 . The result of regression for the 

average traffic density versus the average rate of flow equation is shown as         

Figure 4. 2. 

 

The flow and speed are 1274.318 veh/hr and 56.788 km/hr respectively from 

appendix A3.1. 

 

The model indicated that the critical density is 22.44 vehicles per kilometre, which 

coincides with the rate of flow at 1274.318 vehicles per hour (capacity). 

 

5.2.3 Speed versus Rate of Flow 

From the model of the result of regression for the speed versus rate of flow is 

indicated as follows: 

 

251.841 0.527q u u                                                                        (5.4) 

 

where: q  =  average rate of flow, vehicle per hour per lane, and 

            u  =  average traffic speed, vehicle per hour per lane. 

The coefficient of correlation  2 0.983R  . The adjusted 2R  value for Eqn. (3) is 

0.977. The result of   regression for the average traffic speed versus the average rate 

of flow equation is shown as Fig. 4.3 . The model indicated the critical speed is 
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54.701 kilometres per hour, which coincides with the rate of flow at 1274.318 

vehicles per hour per. 

 

The speed variable is significant to the rate of flow. In this case, it is explained by the 

variability of the dependent variable, the average rate of flow in this case. 

  

5.3 CHARACTERISTIC CURVES AND THE SOLUTION OF THE 

TRAFFIC FLOW EQUATION 

 

For the (LWR)  model, It was determined that a model for predicting densities on the 

basis of flow would be the most effective procedure for predicting traffic operations 

in the basic freeway section of the roadways. 

The model of the result of regression for the flow rate versus density was indicated in 

Eqn. (5.3). Differentiating Eqn. (5.3) and substituting into Eqn. (3.38) we have   

 

 113.561 5.06 0
t x

 


 
  

                                                           (5.5)
 

 

Equation (5.5) is a first order partial differential equation. 

 

The method of characteristics can be used to find a solution for the initial boundary 

value problem. An initial boundary value problem assumes (beside the differential 

equation) two extra equations: 

• Initial values: the density values at time 0t           

    

      ,0x f x x    
                                                                  (5.6)
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• Boundary values: the density values at distance  

 

0x          0,t g t 
                                                                  (5.7a) 

And cx x  where    ,cx t h t                                                                            (5.7b) 

We assume that the initial density distribution  f x  is given by a linear function  

 

 ,0x kx 
                                                                                      (5.8) 

 

Consider the boundary conditions 

 

 0,0 0   and     max,0 22.44
2

cx


    

 

This implies that 

 
 ,0 22.44

37.4
0.6

c

c

x
k

x


    

Hence the initial condition  

 

 ,0 37.4x x 
                                                                                (5.9)

 

 

Now applying the method of characteristics to Eqn. (5.5)  

along with the initial condition    ,0 37.4x x   

where  ,x t   is the unknown to be determined  

The traffic density measured by the moving observer depends on time and the 

position,   ,x t t . The rate of change of this density depends both on the variation 
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traffic and on the motion of the observer, since the chain rule of partial derivatives 

implies equation (3.40).        

 

The characteristic ordinary differential equations is given as 

 

113.561 5.06
dx dq

dt d



  

                                                              (6.0)
 

 

Therefore        113.56 5.06x t k  
                                                                  (6.1)

 

Thus we have 

 

  0113.56 5.06x t x  
                                                              (6.2a)

 

 

 as the characteristic curve which starts at 0x x  when  0t  . 

Substituting  0 0,0 37.4x x   into eqn. (6.2a)  

we have    0 0113.56 189.24x x t x  
                                                         (6.2b)

 

 

For 0x  ,    0        and        113.56x t                                                           (6.3a) 

 

For  0.24x  ,   8.976        and      68.14 0.24x t                                          (6.3b) 

 

For  0.48x  ,    17.952      and      22.725 0.48x t                                       (6.3c) 

 

For  0.6x  ,   22.44       and        0.016 0.6x t                                            (6.3d) 

 

For  0.84x  ,    31.416    and       45.40 0.84x t                                         (6.3e) 

 

For  1.08x  ,    40.392     and       90.82 1.08x t                                         (6.3f) 
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The graphical construction of these characteristics curves (6.3) are shown in Fig. 5.1  

  

 

Figure 5.1:    Solution of the traffic flow equation by method characteristics 

 

This x t  diagram shows what happens to a gradually increasing traffic density.   

 

Notice that, since   is constant on each characteristic, we can compute the traffic 

density as a function of x  for any time. 

 

Recall 

 0 0113.57 189.24x x t x    

Solving for   0 ,x x t  we have 

0

113.56

1 189.24

x t
x

t





                                                                               (6.4) 

But we know 037.4x   and substituting from (6.4) we obtain  
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113.56

37.4
1 189.24

x t

t


 
  

                                                                    (6.5a)

 

 

     
37.4 4247.14

,
1 189.22

x t
x t

t





                                                             (6.5b)
 

 

Also       0113.56 189.24
dx

u x
dt

    

 

Hence    
113.56 189.24

,
1 189.24

x
u x t

t




                                                                (6.6)
 

 

 5.4  CONCLUSION 

The presented traffic flow model gave the theoretically expected results.  

The Lighthill-Whitham-Richards (LWR) model has been verified for the basic 

freeway segment between KNUST Police station and Boadi junction on Kumasi-

Accra road 

Using regression analysis, the Flow Density curve was found to be quadratic of the 

form        
2113.5615 2.530q     

The method of characteristics was used to solve the PDE and the model yielded 

characteristics curve of the form  0 0113.57 189.24x x t x    

Consequently the solution of the Partial Differential Equation was obtained as  

 

     
37.4 4247.14

,
1 189.24

x t
x t

t






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5.5 RECOMMENDATION 

It is recommended to conduct the same study on working days, during morning peak 

hour and on various segments of the road on the test site. 

 

To prevent congestion and to improve efficiency, traffic should somehow be forced to 

move at a density (and speed) corresponding to maximum traffic flow. A signal which 

literally stops traffic and then permits it to go (in intervals yielding the density 

corresponding maximum flow) would result in an increased flow of cars on the road. 

Thus momentarily stopping traffic would actually result in an increase flow.  
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APPENDIX A3.1 

Determination of maximum flow, optimum density and optimum speed. 

Recall  
2113.5615 2.530q     

 at the maximum point  

 113.561 2.530 2 0
dq

d



  

 

 113.561 2.530 2 0 
 

5.06 113.561   

22.44 density at maxmum flowo   
 

Substituting 22.44   into (5.3), gives 

22.530 113.561q      

   
2

2.530 22.44 113.561 22.44q   
 

1273.991 2548.309q     

1274.318 veh/hrq   

Speed at maximum flow is max 1274.318
56.788 km/hr

22.44
o

o

q
u


     
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APPENDIX A3.2: 

Derivation of formulas for the estimation of speed, flow rate and density
 

 for one direction of travel.  

Consider an observer watching a stream of vehicles. Two different cases of motion 

can be considered J.G Wardrop and G. Charlesworth (1954). The first case considers 

the traffic stream to be moving and the observer to be stationary. If 0m  is the number 

of vehicles overtaking the observer during a time period, t , then the flow q  is 
0m

t
, 

or 

0m q t 
                                                                                        (1)

 

The second case assumes that the stream is stationary and the observer moves with 

speed 0u . If pm  is the number of vehicles overtaken by observer over a length l  

travelled by the observer then by definition, density   is 
pm

l
 , or 

pm l 
                                                                                    (2a)

 

 

or 

 

0pm u t  
                                                                                  (2b)

 

Where 0u  is the speed of the observer and t  is the time taken for the observer to 

cover the road stretch 

These two cases are now merged into a situation where both the stream and the 

observer are moving in the same direction, but at different speeds. Obviously some 

cars will overtake the observer and he will in turn over take some of the cars.  

On the trip in the same direction as the observed flow, the observer adds up the cars 

that pass the observer, and subtracts the cars that are passed by the observer. On the 
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trip against the observed flow, the observer counts the cars that pass the observer in 

the opposite direction. Wardrop, J. G., and Charlesworth (1954). If the length of the 

road section is L.  This can be represented mathematically. 

 

Assuming 0m  vehicles overtake the observer, and assuming pm  is the number of 

vehicles the observer passes, then, using Eqn. (1) and Eqn. (2b) we can describe the 

difference between 0m  and pm   called the tally counts
 
as: 

0 pm m m 
                                                                                       (3a)

 

From above  

0m qt u t 
                                                                                   (3b)

 

This equation is the basic equation of moving observer method, which relates q  and

   to the counts, ,m  t and 0u  that can be obtained from the test. 

 

Assume that the trip against the observed flow yields a traveling time at  and a vehicle 

count is am , 

a a a am qt u t 
                                                                               (4)

 
  

 and the trip in the same direction of the observed stream has a traveling time wt  and a 

vehicle count 
wm  (i.e. those passing minus those overtaken-Tally counts). 

 

w w w wm qt u t 
                                                                            (5) 

Adding Eqn. (4) and Eqn. (5), gives the flow rate in both directions (in minutes)
 

 

   

a w

a w

m m
q

t t





                                                                                     (6)                                                        
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Now from     w w w wm qt u t   

w
w

w

m
q u

t
             

But   
q

u
   and w

w

l
u

t
  

w

w w

m q l
q

t u t

  
    

  
 

1
1w

w w

m l
q

t u t

 
   

 
 

1 since w av

w w

m t l
q t

t t u

 
   

 
 

1w av
w

w

m t
t

q t

 
   

 
      

w
w av

m
t t

q
                                        

w
av w

m
t t

q
 

                                                                                         (7)                                       

 

w
av w

av

ml
t t

u q
    

av
w

w

l
u

m
t

q





                                                                                       (8)          

 

av

av

l
u

t


                                                             

 

From   q u  

 av

q

u
 

                                                                                          (9)                            
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APPENDIX A4.1 

The Result of Stream Flow for the First Test Run 

Flow rate is given by equation, 
 34 0 0

60 853.5565 veh/hr
1.28 1.11

q
  

  
   

Average time of the stream 
0

1.11 60 1.11hrs
853.5565

avt
 

   
 

 

Stream speed sv  can be found out from equation  
1.2

60 64,86 km/hr
1.11

sv
 

  
 

 

Density can be found out from equation as 
853.5565

13.159 veh/km
64.85486

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


