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Abstract

The motivation of the study is based on the problems that arise from the mathe-

matical model of Pertussis and Measles. The purpose is to depict the differences

that occur in variations of mathematical systems. This is done by analyzing

and interpreting this model, as well as a simpler model, and then comparing the

solutions for the two. From the analysis, an insight to the theoretical and math-

ematical description of spread and contamination patterns has been obtained.

The two models are then compared to each other. The intention is to reveal the

consequence of expanding upon a compartment model, and thus the system of

differential equations. The two models display a different level of detail which is

reflected in the associated analysis. The simple model is a Measles model, and

the pertussis model has the higher degree of detail. The analytic methods applied

when describing the systems of differential equations appear to have a limited use

in the expanded system. This leads to mathematical complications.
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Chapter 1

Introduction

1.1 Background of the study

Mathematical modelling is a rapidly growing field reflecting interdisciplinary co-

operation of mathematics and biology in solving complex life-science problems.

The involvement of mathematical perspectives has shown to be essential in many

fields concerning population biology (Murray, 2001). The application of math-

ematics has successfully explained complex epidemiological patterns of various

childhood diseases (Moghadas, 2003; Nguyen, 2007). A classical example of such

models is the SIR- model explaining outbreaks. This model has been very suc-

cessful and subject to many variations among them, the modeling of the measles

epidemic (Hethcode, 1976) (in implementing current vaccination programs and

strategies responsible for minimizing measles infection).

Another disease that mathematicians have tried to depict with the use of mathe-

matics is Pertussis, also called “whooping cough,”. Pertussis is a very contagious

disease caused by bacteria called Bordetella pertussis. It is estimated by WHO

that, about 300 000 deaths and 50 million cases of pertussis occur every year

(WHO 2003). Pertussis is usually mild in older children and adults, but it often
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causes serious problems in very young children (that is, infants less than one year

of age). Nevertheless, existing mathematical models have struggled to explain

the observed resurgence of pertussis which has been reported (Fishman et. al,

2011).

Disease phenomena are often displayed by a variety of models analyzing specific

disease-related factors. These are a product of the mathematician’s goals, as-

sumptions and previous work. The various types of models reflect the attempts

to describe interactions in populations, and their role in the distribution of these

diseases. Since countless variables and interrelations could characterize this in-

teraction, the dynamics are often stripped to the simplest conceivable forms. The

process of modeling includes unification of results and comparisons of previously

formulated models.

Understanding the variations of the mathematical models gives clues to the un-

derlying biological mechanisms driving such occurrences is the focus of this thesis.

The two mathematical models treated in the following represent the standard epi-

demiological model and an extension. Measles is a fairly well-understood disease

described by a classical SIR (susceptible, infected, removed) model, serving as

the basic example of an epidemical model. In contrast the underlying mechanisms

of pertussis remain uncertain (Hethcode, 1976: Lavine, 2011). The uncertainty is

reflected by a continuous discussion in the academic community (Aguasa , 2006).

This has led to a variety of models that attempt to explain the resurgence.

A severe decrease in pertussis was observed in the mid-20th century. The disease

was thought to be driven towards extinction in the developed countries (United

States Center for Disease Control). However it was observed that the immu-

nity was of a limited duration. This meant that vaccinated individuals would

eventually lose their immunity and could once again be infected with the disease
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(Lavine, 2011). The resurgence has been motivated by loss of immunity, because

of an unexpected temporal change in transmission pattern. This pronounces a

shift in the age distribution of infection from, a dominant infantile prevalence

toward high infection prevalence of older groups (Lavine, 2011). Consequently,

the occurrence of pertussis cases have been sustained in developed countries. For

the interpretation of these observations we have looked at the SIRW model of

pertussis proposed by Lavine et al 2011. The comparison of the two models is

based on a mathematical analysis followed by a discussion of the biological inter-

pretation.

Epidemiology is the study of disease incidence, prevalence, and control of disease

in large populations, which are caused by various factors (http://dictionary.reference.com/,

epidemiology). Incidence and prevalence factors of communicable disease involve

both disease-related factors such as transmission, incubation periods (the period

from where an individual is infected to the disease symptoms appear), suscep-

tibility and immunization and societal factors such as economy, geography. We

distinguish between the disease incidence, which is the number of new disease

cases at a given time, and disease prevalence, which is the total number of dis-

ease cases in a population.

Communicable diseases are generally classified according to an epidemic or an

endemic disease occurrence. The occurrence of epidemic diseases is described

by seasonal fluctuations of outbreaks, whereas endemic diseases are habitually

present (Jensen, 2005). It is assumed that the population behaves more or less

like homogenous particles in a gas. That is, their contact rate is based on basic

statistical view that each individual will experience the same number of contacts

(on average). Infectious diseases are usually modeled by classifying individuals

into different classes which size change with time t. This categorization of the
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population is defined according to individuals’ health status with respect to the

disease progression. The models discussed in this thesis are SI, SIS, and SIR -

models (S, I, R models), where the letters S, I and R indicate different classes in

an infected population. These definitions are key notations that are used through-

out the study. The susceptible class, S, comprises healthy individuals, that can

incur the infection. The infective class, I, comprises individuals that are both

infected and infectious. Finally, the removed class R comprises individuals that

are removed from the classes of S and I either by being or achieving permanent

immunization or through isolation until recovery.

The simplest epidemic model is the SI model, describes a disease course with no

recovery. If the individuals recover with no immunity, then recovered individuals

will once again become susceptible. This is described by a so called SIS model.

Conversely, if individuals that recover gain immunity, then the model is called

an SIR model. In general, the SIR models are used to model viral epidemics

whereas bacterial epidemics are modeled by SIS models. The difference is based

on immunological differences between the two types of infection. Viral infection

usually induces long lasting immunity as oppose to bacterial infection which in-

duces either no immunity or a short duration of immunity (Hethcote 1976; Lavine,

2011). The S, I, R, Measles and Pertussis models are introduced here in their

original form. This process will be thoroughly reviewed in a subsequent chapter.

1.2 Statement Of Problem

Children with pertussis have decreased ability to cough up respiratory secretions

and develop thick, glue-like mucus in the windpipe. This causes severe coughing

spells that make it difficult for them to eat, drink, or breathe. The child may

suffer from coughing spells for two to three weeks or longer. Sometimes the child
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coughs several times before breathing in. When the child finally does breathe

in there is often a loud gasp or a whooping sound. The disease is most severe

when it occurs early in life and it often requires hospitalization. Despite numer-

ous management and control strategies of pertussis currently in place, pertussis

continue to cause great health effect worldwide.

Measles is respiratory infection caused by single-stranded virus of the Morbilli

paramyxovirus family. Measles is mainly spread through airborne droplets ex-

pelled by the coughing and sneezing of infected. As measles access the respiratory

tract it further extent to destroy lymph nodes. Subsequent the virus spreads to in-

volve the skin, the viscera, kidney and bladder. The virus mainly infects children,

so vaccination is used routinely where available. As opposed to most bacterial

diseases, a person that recovers from the measles virus gains permanent immu-

nity. Vaccination has caused a decrease in mortality in many developed countries;

however it still remains one of the deadliest child diseases in developing countries

(Jansen and Stollenwerk 2005, Vries et al, 2012).

Many mathematical researchers have done a lot of work on the modelling and

controlling the effects of these diseases on human.

However, no comparative study have been done on the dynamics of models of

these two diseases. Therefore, this study intends to fill this gap.

1.3 Research Objectives

1.3.1 General Objective

The main objective of this study is to perform a comparative analysis on the

pertussis and measles models.
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1.3.2 Specific Objectives

The specific objectives of this study are as follows:

1. To study the dynamics of the pertussis and measles models.

2. To determine the stability of the equilibrium points of the pertussis and

measles models.

3. To compare the dynamics of whooping cough mathematical model to that of

Measles epidemics.

1.4 Significance of the Study

The significance of the study will include the following;

1. The model will help health personnel to understand the dynamics of pertussis

and measles and set strategies on how to increase vaccination among pertussis

infected individuals.

2. The study will create awareness and inform people of the effect of pertussis

and measles.

3. The study will also act as a base for further research on the effect of pertussis

and measles and other related diseases.

4. The study intends to contribute to strategies of addressing Pertussis and

Measles on how to increase vaccination among infected individuals
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1.5 Outline of the study

The thesis consists of five main chapters. Chapter 1 talks about the background

of the study, problem statement, objectives as well as significance of the study.

In Chapter 2 we will review some literatures relevant to the study. Chapter 3

consists of methodology used in carrying out this study. In Chapter 4 we will come

up with the mathematical analysis of the models. In Chapter 5, we will discuss

the research findings and make the necessary conclusions and recommendations.
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Chapter 2

Review of Literature

2.1 The Biology of Pertussis

Pertussis, also known as whooping cough, is an acute infectious disease of the

human respiratory tract caused by the Gram-negative bacterium Bordetella per-

tussis (Tozzi, Celentano, degli Atti ML, & Salmaso, 2005). Estimated by WHO,

300 000 deaths and 50 million cases of pertussis occur every year (WHO 2003).

2.1.1 Pertussis infection and symptoms

Pertussis is mainly transmitted by B. pertussis containing airborne droplets from

cough or sneeze during the first three weeks of infection (N. Crowcroft & Pe-

body, 2006; Heininger, 2001; Kerr & Matthews, 2000; Loeffelholz, 2003). The

household members are the source of infection in 7382% of infants with pertussis

(Wendelboe, Njamkepo, & Bourillon, 2007). The disease is highly contagious

evidenced by the secondary attack rate among family members being over 80%

(Long, Welkon, & Clark, 1990; Mertsola, Ruuskanen, Eerola, & Viljanen, 1983).

However, as much as 46% of the secondary cases are asymptomatic and not ex-

8



pected to be diseased (Mertsola et al., 1983; Schellekens, von Konig, & Gardner,

2005). It has been estimated that every primary case of symptomatic pertussis

leads to approximately five secondary cases of asymptomatic or clinically insignif-

icant infection (Ward, Cherry, & Chang, 2006). The clinical symptoms are mainly

caused by virulence factors such as bacterial toxins that B.pertussis secretes (Kerr

& Matthews, 2000).

The disease typically lasts 6 to 12 weeks or longer with three stages: catarrhal,

paroxysmal and convalescent (Loeffelholz, 2003). First, after exposure to the bac-

teria, the incubation period of 710 days precedes the development of symptoms.

During the catarrhal stage, non-specific symptoms appear with rhinitis and mild

cough lasting approximately 7 to 14 days. At this stage, the disease is highly com-

municable but rarely suspected. The cough gradually becomes paroxysmal with

severe coughing spells followed by whooping and possibly post-tussive vomiting.

The patients may also become cyanotic and require airway support. This parox-

ysmal cough is the typical symptom of pertussis, but the whoop may be absent in

the infants younger than 6 months, who may only present apnoea or even sudden

death (Heininger, Kleemann, Cherry, & Group, 2004). Other characteristic signs

during the paroxysmal stage in infants include leucocytosis, lymphocytosis, and

weight loss due to the post-tussive vomiting. After 2 to 8 weeks, the frequency

and severity of the paroxysms decrease referring to the transition of the illness to

the convalescent or recovery stage. The paroxysms are gradually improved but

may, however, recur during other respiratory infections leading to a misdiagnosis

of prolonged cough or asthma (Greenberg et al., 2007). Co-infections such as

respiratory syncytial virus infection may modify the symptoms and thus compli-

cate the diagnosis at all stages of the disease (N. S. Crowcroft, Booy, & Harrison,

2003; Korppi & Hiltunen, 2007).
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Severe pertussis and complications such as cyanosis and pneumonia primarily oc-

cur among infants too young to be vaccinated, and over 80% of the fatal cases are

among infants younger than 4 months (Crowcroft, Andrews, Rooney, Brisson, &

Miller, 2002; N. S. Crowcroft et al., 2003; Greenberg, von Konig, & Heininger,

2005; Vitek, Pascual, Baughman, & Murphy, 2003). Older patients often have

less severe or asymptomatic infections that are more difficult to be diagnosed

(Gregory, 2006; Hewlett & Edwards, 2005). The individuals with partial immu-

nity - such as infants with some maternal antibodies, incompletely vaccinated

children, or adolescents and adults with waning immunity - may show atypical

symptoms with less severe paroxysms and shorter course of illness causing misdi-

agnosis during the early stages of pertussis (Tozzi et al., 2005). As these patients

are not diagnosed and treated during the most contagious stage of the illness,

they frequently serve as sources of infection and expose the susceptible infants to

the disease (Hewlett & Edwards, 2005).

According to R. Parton, Bordetella pertussis produces a complex array of ad-

hesins, aggressins and toxins that are presumed to be important in the colonisa-

tion of its human host and in ensuring its survival and propagation. The organism

also has highly sophisticated mechanisms for regulating virulence factor expres-

sion, in response to environmental signals or by reversible mutations. Despite

the rapidly increasing knowledge of these aspects of the biology of B. pertussis,

our understanding of the pathogenesis of whooping cough is still far from clear.

In defining the role of individual factors, reliance has to be placed on in vitro

assays or animal models of the human infection, particularly in the mouse, where

different conditions may prevail. Some clues to pathogenic mechanisms may be

provided by considering other bordetellae, especially B. parapertussis, B. bron-

chiseptica and B. avium, their similar, but not identical, range of virulence factors
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and the common features of the diseases caused by these species in their respec-

tive hosts. The bordetellae are usually defined as obligate, non-invasive parasites

of the respiratory tracts of warmblooded animals, including birds, with a predilec-

tion for the respiratory ciliated epithelium. This definition has been challenged

by a number of recent observations. For example, the ability of Bordetella spp.

to regulate virulence factor expression in response to external signals strongly

suggests that they have alternative habitats where such regulation would be an

advantage. These habitats may be intracellular, since it has been shown that B.

pertussis, B. parapertussis and B. bronchiseptica can invade and survive within

host cells, or they may be in other sites within the same or different hosts. Recent

DNA fingerprinting studies of B. pertussis have revealed hitherto unsuspected

heterogeneity amongst isolates which could be reflected in antigenic differences

between strains. Some of these new perspectives on Bordetella pathogenicity may

have implications for pertussis vaccine development.(Parton, 1999)

2.2 The Biology of Measles

Measles is an acute viral infectious disease. References to measles can be found

from as early as the 7th century. The disease was described by the Persian physi-

cian Rhazes in the 10th century as “more dreaded than smallpox.” In 1846, Peter

Panum described the incubation period of measles and lifelong immunity after

recovery from the disease. Enders and Peebles isolated the virus in human and

monkey kidney tissue culture in 1954. Before a vaccine was available, infection

with measles virus was nearly universal during childhood, and more than 90% of

persons were immune by age 15 years. Measles is still a common and often fatal

disease in developing countries. The World Health Organization estimates there

were 164,000 deaths globally from measles in 2008.
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The measles virus is a paramyxovirus, genus Morbillivirus. It is 100-200nm in

diameter, with a core of single-stranded Ribonucleic acid (RNA), and is closely

related to the rinderpest and canine distemper viruses. Two membrane envelope

proteins are important in pathogenesis. They are the F (fusion) protein, which

is responsible for fusion of virus and host cell membranes, viral penetration, and

hemolysis, and the H (hemagglutinin) protein, which is responsible for adsorption

of virus to cells.

There is only one antigenic type of measles virus. Although studies have docu-

mented changes in the H glycoprotein, these changes do not appear to be epi-

demiologically important ( that is to say, no change in vaccine efficacy has been

observed). Measles virus is rapidly inactivated by heat, light, acidic pH, ether,

and trypsin. It has a short survival time (less than 2 hours) in the air or on

objects and surfaces.

2.2.1 Measles infection and symptoms

The first symptoms of infection with measles are fever, tiredness, runny nose,

cough and sore red eyes. These symptoms usually last for several days before a

red blotchy rash appears. The rash starts on the face over 1 to 2 days and spreads

down the body. Sometimes the rash peels. The rash will last for 4 to 7 days.

Up to a third of people infected with measles will experience a complication.

Complications are more common in young children and in adults. Complications

include ear infections, diarrhoea and pneumonia, and may require hospitalisation.

About one in every 1000 people with measles develops encephalitis (swelling of

the brain).

Measles can be difficult to diagnose because there are many other viruses that
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cause similar illnesses with a fever and a rash. Sometimes the presence of white

spots inside the mouth, called Koplik’s spots, the timing of the fever and the

rash, and the characteristics of the rash, can help a doctor to make the diagnosis.

Whenever measles is suspected, a blood test and/or swabs from the throat should

be collected to confirm the diagnosis. Confirming the diagnosis is important so

that other people who may be at risk of measles can be identified. By law, cases

of measles are notified to public health units so that measures can be taken to

help control further spread. The treatment for the symptoms of measles are rest,

plenty of fluids and paracetamol for fever. Where measles causes complications,

other treatments may be needed. While a person is infectious with measles it is

important that they remain at home to reduce the possibility of spread to other

people.

2.3 Modelling epidemics

Subjects that have the direct relationship to human’s life had been paid a lot

of attention from the scientist. They provided tools and principles to repre-

sent better understanding and perspective to such issues. Epidemics are one of

the most related subjects to humans life. They considered being an attractive

field of research since long time ago. Epidemiological scientist did their best to

model this phenomenon and help the policy makers by providing them with ac-

curate predictions and tools to make decisions that keep human life safe. The

better understood the diffusion of diseases the more efficiency the reaction can

be (Considerations for a Social and Geographical Framework for Agent-Based

Epidemics , 2009). Epidemics have been modelled with different type of models:

mathematical-stochastic, network-based and computational approaches(both cel-

lular automata and agent-based modelling) since past century.
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The mathematical models assumed homogeneity in the population and it divided

the population into groups of sub-population based on their infection status. SI

models which refers to the two groups of the population (Susceptible and In-

fected). They assumed that every individual in the population has contact with

every individual (Anderson & May, 1979; Bonten & Austin, 2001). These models

followed by some others all depended and referred to the classification of the total

population such as SIR, SEIR, SIS, and SIRS. The “E” means the exposure,

“R” recovered or removed based on the type of disease. However,in reality, these

assumptions cannot be achieved. The human population is heterogeneous and

individuals in the population are not in contact with each other. Furthermore, it

is impossible to discriminate on who infected and on individual response(Perez

& Dragicevic, 2009).

The second approach, which is the network-based approach, is widely used in

simulating the disease spread. This approach depends on the social interac-

tion between individuals. It represent the population’s social networks. The

approach assumed that the disease is spread along the edge which connects two

nodes(Eames & Keeling, 2002; Read, 2008). The nodes represent the individuals

and the relationship/contact between them is the edge. For simulating diseases,

which required social contacts to spread such as HIV/AIDS the network-based

models, are very useful(Considerations for a Social and Geographical Framework

for Agent-Based Epidemics , 2009). However, Claude, Perrin et al(2009) argued

that for several layers of social interaction or casual contact between strangers in

the crowded area network-based approach cannot count.

Agent-based modelling(ABM) is one of these models that have been used to sim-

ulate the spread of the disease within people. ABMs are differing than traditional

models not only in leading to better understanding the process of disease propa-
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gation but with their efficiency to simulate the heterogeneity of the population.

It takes in account the temporal and spatial aspects of the diffusion of a disease.

In additions, ABMs provide the individual contact and behaviour level of data.

Furthermore, it provides tools to build and test theories related to diffusion pro-

cess, test control measurement such as vaccination, design and analysis surveys

of the epidemiological(Yang & Atkinson, 2007).

It is important to understand the process of disease transfer at the level of

individuals(Yang & Atkinson, 2007). This understanding is crucial for build-

ing the simulation model for the disease. ABMs were being used to simulate

different types of epidemics such as influenza or avian flu (Ferguson & Cum-

mings, 2006; Brown & Riolo, 2004), smallpox(Barrett & Eubakn, 2005) and

HIV/AIDS(Teweldemedhin & Marwala, 2004). Usually, these models are based

on the interaction and the contacts between agents(individuals). The contact

might be face-to-face or skin-to-skin or both to make the disease spread from

infectious agent to a susceptible agents. It could be transmitted via vector such

as blood-borne diseases(Gu & Novak, 2009).

The disease ABMs are variance than each other in the way of simulating even

if they are dealing with the same phenomenon(the same disease) and believe on

the same principles. For instance, for both the above smallpox ABMs, they were

dealing with spread of smallpox from different perspective and presented their

model different from each other. Epstein and Cummings et al. (2004) used the

grid cell to represent the population living in two cities, while Barret and Eubank

et al. (2005) used the virtual city model (EpiSims) to represent the Chicago city

environment. These differences in simulating such phenomenon is a very healthy

result and proof the flexibility and efficiency of ABMs in such fields of studying.

It is good to state that the models above be termed as individual-based models
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(IBMIs) as well as they are known as ABMs(Bian, 2004).

IBM have the ability to explicitly describe the differences between individuals

based on their attributes, which have direct effect on the process of disease dif-

fusion such as physical (e.g. immunity level), social (e.g. friends), economic (e.g.

workers or non-workers), and environmental characteristics (Yang & Atkinson,

2007).

Among all of these agent-based modelling and of course there were more we did

not mentioned here, Individual Space-Time Activity-based Model(ISTAM) model

which is presented by Yang, Atkinson et al. (2007;2008) was the most attractive

and interesting to start from in building this research’s disease model. It pro-

vides a new way of building a dynamic contact network based on the individuals’

activity patterns. The dynamics of the contact network means the individuals

contact change over time the order of these contacts affect on the disease diffu-

sion. The following section would provide a brief overview about this model and

the principles presented.

The ISTAM model (Individual Space-Time Activity-based Model) is a disease

IBM model developed by Yang and Atkinson (2007) integrating “the contact pat-

tern of individuals’ an infectious disease process model, and a stochastic infection

model by simulating ABs”. It is time discrete stochastic model. Its implementa-

tion is based on Repast and java. Individual Space-Time Activity-based Model

consists of three objects: the infectious diseases, individuals and activity bundles.

For the infectious disease, they defined thee parameters to describe the applied

infectious disease: effective contact, disease severity and evolution of the disease

within the host. The disease diffusion in ISTAM depends on the distance between

infectious and susceptible individuals if there are no obstacles between them as

well as directly related to the duration of contact. For an individual in ISTAM’s
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model, s/he has three groups of attributes: static, dynamic and intelligent at-

tributes. The attributes including demographic information, health level activity

pattern that are not changed during the simulation and the reaction attributes to

the current situation. In Individual Space-Time Activity-based Model the indi-

vidual space-time model is described at two levels: between activity bundle and

within activity bundle.

Activity bundles or as in Individual Space-Time Activity-based Model known as

AB are unites of space. In Individual Space-Time Activity-based Model space

where most of individuals’ interactions occur is divided into number of activity

bundles. AB could be a room, a whole building or a building complex. They can

be classified into different groups according to the human activity type and the

function of the space. The parameters used to express an AB are the space-time

dynamics of individual within the AB and the geometry of the space such as it is

size and spatial layout. Movement within AB has been considered in Individual

Space-Time Activity-based Model; in some AB, individuals remain static during

the simulation time while in some other AB movement is required.

The contact network in Individual Space-Time Activity-based Model is generated

from individuals space-time dynamics constrained both by the physical condition

of the space and the individuals’ activities. At the level of between ABs and

within ABs the activity pattern, spatial effects and contact network are consid-

ered. At the level of between ABs the individuals are visiting locations near their

current location more likely. their activity patterns can reflect this expectation.

On the other hand, at the within ABs level, the effective contact concept is ap-

plied.

Individual Space-Time Activity-based Model was performed to simulate a hypo-

thetical influenza epidemic at the University of Southampton. The first year of
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undergraduate students was the ISTAM population whom their data had been

collected via a questionnaire survey. The questionnaire was consists of three

parts: personal information, time point and activity preferences and durations.

The information of this survey was used to build activity patterns per individual.

2.3.1 SI Epidemic Model

The following system represents a simple no-recovery model without vital dy-

namics. The relationship between the two states S and I, is illustrated in the

system.

where S are the class of susceptible and I the class of infected. The parameter

b is the contact rate. The compartment diagram provides us with the following

SI model for the population:

dS

dt
= −βSI

dI

dt
= βSI

(2.1)

where the parameter β is a positive contact rate. The initial conditions satisfy

N = S(0) + I(0) for S(0) > 0 and I(0) > 0. This type of model describes disease

up till the stage of infection and is especially applicable when modeling high large

infection proportions of populations such as influenza. Communicable diseases

with similar epidemiological dynamics are characterized by a high infection force.

Here the disease is transmitted through whole populations in a short amount of

time, and then eventually die out (Allen, 20o7).
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2.3.2 SIS Epidemic Model

The following SIS model is an expansion of the previous SI model with the

addition of recovery and vital dynamics:

where S are the class of susceptible and I the class of infected. The parameter

b is the contact rate, g is the recovery rate and m is rate of birth and death.

dS

dt
= −βSI + γI + µ− µS

dI

dt
= βSI − γI − µI

(2.2)

where β and γ denote the contact and recovery rate, receptively. The param-

eter µ denotes birth and death rate, such that birth rate is equal to the death

rate. The dynamics described by an SIS models are applicable to commutable

diseases with behavior of sexually transmitted diseases such as syphilis and gon-

orrhea (Allen, 2007).

2.3.3 SIR Epidemic Model

In an SIR model with vital dynamics immunity is obtained by recovery rate. The

S are the class of susceptible, I the class of infected and R the class of removed.

The parameter b is the contact rate, g is the recovery rate and m is rate of birth

and death.

dS

dt
= −βSI + µ− µS

dI

dt
= βSI − γI − µI

dR

dt
= γI − µR

(2.3)
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where β, γ, µ are contact rate, recovery rate and vital rate, respectively. The

initial conditions satisfy N = S(0) + I(0) for S(0) > 0 and I(0) > 0. However

since N(t) = S(t) + I(t) + R(t), R(t) can be obtained from S(t) and I(t). This

means that R can be defined as R(t) = 1 − S(t) + I(t). This type of model

is applicable when modeling viral disease that describes outbreaks over longer

periods of time. The model used for Measles, is later discussed in great detail.

This SIR model can exhibit the traits of periodic outbreaks in small communities,

but also endemic behavior of Measles in large populations (Allen, 2007).

2.4 The models

In this section we will introduce the two models of pertussis and measles in

their original form, as proposed by their authors. This is followed by a non-

dimensionalization, which will be the subsequent notation throughout.

Measles and Pertussis have been the subject of thorough investigation for many

years. Various models have been proposed, to understand the underlying dy-

namical forces and approximate data of observation. The models that have been

subject to this study are:

Measles model

This model is described by (Hethcode, 1976):
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S ′(t) = −λIS + µ− µS

I ′(t) = λIS − γI − µI

R′(t) = γI − µR

and

R(t) = 1− S(t)− I(t)

(2.4)

Pertussis model

This model is described by (Lavine, 2011):

dS

dt
= µ(1− ν)− (µ+ βI)S + σ∗W

dI

dt
= βIS − (µ+ γ)I

dW

dt
= 2σR− (µ+ σ∗ + κβI)W

dR

dt
= κλW + γI + µν − (µ+ σ∗)R

(2.5)

2.5 Non-dimensionalization of pertussis and Measles

Models

Before the commencement of an analysis, it is useful to simplify a model. This

can cause a decrease in computation time, arithmetic and errors and possibly

increase transparency in interpretation. In some situations, an effective tool is

non-dimensionalization of systems (a particularly common trait among physi-

cists). By substituting appropriate units, equations appear without any specific

unit attachment. This allows parameterization, collection of terms and secures
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dimensional agreement throughout. This can enable isolation of parameters and

thus minimize the number of coefficients - preferably to the order of one. The

number of parameters or variables are therefore reduced at least one dimension.

It should be noted that this operation only changes units.

Obviously, ratios must be conserved such, that a system retains its dynamics. A

dimensionless system can thus yield fewer parameters, which in some cases cause

a decrease in computation time and arithmetic, during analysis. Ultimately it is

possible to perform a reverse calculation into terms of original units.

2.6 Dynamics of the Measles Model

The biological understanding of the measles model, the different parameters and

their interpretations, flow diagram and threshold will be explained well in details.

Measles is respiratory infection caused by single-stranded RNA - virus of the Mor-

billi paramyxovirus family. Measles is mainly spread through airborne droplets

expelled by the coughing and sneezing of infected. However it is also spread

through close personal contact or direct contact with infected nasal or throat

secretion from infected individuals. As measles access the respiratory tract it

further extent to destroy lymph nodes. Subsequently the virus spreads to involve

the skin, the viscera, kidney and bladder.

The virus mainly infects children, so vaccination is used routinely where available.

As opposed to most bacterial diseases, a person that recovers from the measles

virus gains permanent immunity. Vaccination has caused a decrease in mortality

in many developed countries; however it still remains one of the deadliest child

diseases in developing countries (Jansen and Stollenwerk 2005, Vries 2012)

22



Derivation of model from the flow diagram (Measles)

The Measles model presented in the following is an SIR model with vital dy-

namics. The model has been redefined such that both models use analogous

parameters. The model is constructed using different compartments that denote

the division applied to the given population groups. A time dependent flow con-

nects the population groups in the compartments, and is defined by rates, denoted

by Greek letters.

Figure 2.1: A Compartmental model for Measles

Table 2.1: Symbols and Description of Model Variables.

Symbol Description
x the class of susceptible
y class of infected
z class of removed
βy contact rate dependent on the size of the y class
γ recovery rate
µ rate of birth and death

The three compartments are the three basic compartment types of the SIR-

model:

1. the susceptible (x), which represents the fraction of the population which

is able to conceive Measles,
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2. the infected (y), which is the part of the population which has become

infected with Measles and

3. the recovered (z), which is the share of the population that has obtained

immunity.

The flow diagram includes one source and three sinks. The source represents

births, which is considered only to be into the susceptible compartment. Hence

you can not be born infected nor immune (in this model). The sinks show that

the individuals can die in either compartment, since people obviously can die

whether they are susceptible, infected or recovered. The rates that characterize

the flow are given as follows:

[x′] = 1
time

, [y′] = 1
time

,, [z′] = 1
time

,

[x′] = 1
time(individualsflow)

, [x′] = 1
time(contactrate)

[x′] = 1
time(recoveryrate)

1
µ

then interprets average lifetime of an individual in population and 1
µ

the aver-

age infection period (Hethcode, 1976).

The compartment dynamics of this flow diagram is characterized by a one-

directional, irreversible flow from left to right. This means, that once you have

been infected you can’t become susceptible and once you have recovered you

can’t get infected again (thus nor susceptible). The internal compartment-by-

compartment dynamics have the following properties:

1. The x-compartment transfers individuals from x into y at a rate propor-

tional to both x and y. This makes sense since: the larger the group of

x, the more susceptible individuals will be to measles. Also, the larger the

group of infected, the more carriers. The contact rate is applied, since infec-

tion is caused by direct interaction. The underlying assumption here is that

each person in the compartment has an average number of interactions. Of

these interactions, a certain fraction is with susceptible individuals and a
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fraction of these interactions will then result in infection (Hethcode, 1976).

Combining this observation with the sink and source contributions the fol-

lowing equation for x′ is obtained:

x′ = µ− µx− βyx

2. The y-compartment has its positive contribution from the negative con-

tribution of x, due to the source and flow direction considerations. The

output in y is considered proportional to y itself only, since no other com-

partment affects the rate of recovery. Thus the differential equation of this

compartment is given by:

y′ = βyx− (γ + µ)y

3. The z-compartment only has input from the feed of y, and the sink of deaths.

This tells that once you have recovered from infection, the only way you

leave the recovered group is by passing away. Hence gaining immunity is

permanent - you can’t get susceptible (or infected) again. From this you

get the expression:

z′ = γy − µz

The total population is expressed by N = x + y + z = 1. The population is

restricted, such that dN
dt

= 0 and thus: dx
dt

+ dy
dt

+ dz
dt

= 0. This means, that the

3-dimensional system,
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x′ = µ− µx− βyx

y′ = βyx− (γ + µ)y

z′ = γy − µz

is reduce it to a two dimensional system, by factoring out z, since x′ and y′ are

only mutually coupled. This gives:

x′ = µ− µ− βyx

y′ = βyx− (γ + µ)y

2.6.1 Threshold for an epidemic outbreak of Measles

The threshold parameter R0 is the value that determines whether or not an

epidemic can happen. This parameter is defined as:

R0 =
β

γ + µ

This parameter is based on the assumption that epidemics are based exclusively

on the infective proportion of a population. Thus only the inputs and outputs

of y determine the epidemic outcome. The threshold parameter for the measles

model has the value one. The dynamics for the Measles model are therefore di-

vided into either, R0 ≤ 1 or R0 > 1.

If R0 ≤ 1, the fraction of infected will approach zero, as there won’t be enough in-

fected to start an epidemic. This can be interpreted as, if each infected individual

infects one or less (on average), the compartment of y will decrease exponentially.
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This relates to fact that the y compartment has an output that contributes to

the recovered population. Conversely, if R0 > 1, an epidemic will break out, as

the number of infected individuals exceeds the threshold (Hethcode, 1976).

2.7 Dynamics of the Pertussis Model

Pertussis, or whooping cough, has since its first discovery in the middle Ages, ap-

peared in all populations with unimmunized children. Pertussis is a respiratory

infection arising from the colonization of the lung epithelial cells by the aerobic

bacillus Bordetella Pertussis. The pathogenesis of a pertussis infection is initiated

by transmission of the infection agents through the respiration system. As these

infectious agents reach the lungs organelles the bacteria’s surfaceprotein attach

to the hair, otherwise known as cilia. This prevents the removal of mucus from

the lungs. The accumulation of mucus in the lungs forces the host into a cough-

ing fit, of which some bacteria airdrops are expelled, free to contaminate other

individuals. Disease manifestations are well documented for first case infections

as they span a variety of symptoms - the most prominent of these is the whooping

sound produced as the infected inhales after coughing(Cherry, 1996).

The incubation period is usually between 6 to 20 days (WHO, 2011). Historical

records of the pre-vaccine era of pertussis reveal a peak in the infection cycle

every 2-5 year. The isolation of Pertussis in 1906, promoted the discovery of the

whole cell vaccine This led to a convention of mass immunization in developed

countries from the 1950’s (Cherry, 1996). At first sight, the vaccination program

seemed to have a rather significant effect; however it was soon observed that the

vaccine and the immunization produced was of limited duration.

Pertussis remains endemic, affecting nearly 16 million people a year (WHO, 2011).

Infected persons are treated with antibiotica, and infection is prevented by age -
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distributed vaccine programs (Statens Serum Institute, 2012).

2.7.1 Derivation of model from the flow diagram (Pertus-

sis)

The following compartmental model explains the pertussis model. explains the

compartments and the derivation of equations based on this compartment.

Figure 2.2: A Compartmental model for Whooping cough

Table 2.2: Symbols and Description of Model Variables.
Symbol Description

x the class of susceptible
y class of infected
z class of recovered
g the class of immune individuals that loose there immunity
σ∗ rate with which g looses immunity
βy contact rate dependent on the size of the y class
κ the boosting coefficient
κβy the boosting rate multiplies with the contact rate dependent on the size of the y class
γ recovery rate
µ rate of birth and death
µν vaccination rate

The model described in Lavine et al., 2010, is based on a “SIRS −model”.

However it incorporates an extension that embodies the observed characteristic

of Pertussis. That is the reemergence of infection, after achievement of immunity.

The model represents the three basic SIR classes, where the class of immune is

divided into two “sub”-compartments; the standard recovered compartment (z)
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and the new compartment: waning (g). This sub-compartment structure is the

model-equivalent of the re-emergence of Pertussis, interpreted in terms of decreas-

ing effect of a vaccine given.

There is only one source in this compartment, and this is the birth rate, µ. How-

ever, since we assume that we have a constant population, the source must be the

same size as the combined output of the sinks, hence µ = µ(x+ y+ z)(otherwise

our population would grow with time). Thus the sink, which in this case is the

mortality rate, is denoted by the same symbol as the source. The source con-

tributes positively to the x compartment. The sink contributes negatively to all

compartments since individuals can die in any given compartent. The interrelat-

ing dynamics between the compartments has been visualized in the flow diagram.

The susceptible compartment, x, consists of the individuals born into the popu-

lation and the people transferred from g, who lost their immunity due to lack of

exposure to infection. Two negative contributions are present in the dynamics of

this group. A part is moved directly into the immune group, z. The underlying,

simplified assumption is that infants are vaccinated at the moment they are born.

Another part is infected and thus transferred into y. Two positive contributions

are also present. One is individuals born into x, who remain in x. The other

is individuals whose immunity has vanished due to lack of exposure. These get

transferred from g into x.

Deriving x′, it’s first noted that the positive contribution of births is not depen-

dent on any compartment, thus it is constant in x. We express it as µ(1 − ν)

where the negative contribution of ν denotes the births into immunity due to

vaccine. It is obvious that the input of the waning is proportional to g, that is we

write σ∗g. The mortality and infection rate must be proportional to the size of x,

thus we write -(µ + βy)x- negative since it is an output. Putting this together,
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we get:

x′ = µ(1− ν)− (µ+ βy)x+ σ∗g

The infected compartment only has one input and one output in the flow in-

dication. The input from x being infection, and the output to z being recovered.

That is individuals always pass straight through the y compartment (unless they

die). In the differential equation, the positive contribution is from x and propor-

tional to x and itself. Thus we write βyx. The negative contribution is into W

and proportional to y itself, that is written (−µ + γ)y. Putting them together

gives

y′ = (βx− (µ+ γ))y

The recovered compartment has 3 inputs and one output. The possibilities for

individuals entering this compartment in this situation are that they either recover

from illness (γ), get vaccinated ν or get immune boosted from g(κλ = κβI). The

only output from z is to g, when individuals loose parts of their immunity. This

is also the only input in g. g, nonetheless, has two outputs. One returning to z

(boosting) and the other one to x (complete immunity loss).

Biologically, the interpretation of the dynamics of these is that individuals in z

are highly resistant to the infection and therefore not in need of immune boosting.

As individuals in z transfer to the waning class, their immune weakens permitting

two possibilities. First possibility is that they lose their immunity due to absence

of exposure, returning them to susceptible class. The other possibility is that, the

infection rate is high, and their immunity is boosted such that they once again

are to return to the recovered class.

The derivation for z′ and g′ is, based on the above:
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z′ = κβyg + γν − (µσ∗)z

g′ = σ∗(N − y − x− g)− g(µ+ σ∗ + κβy)

(2.6)

The second expression is derived by using the assumption that N = 1.

2.7.2 Threshold for an epidemic outbreak of Pertussis

The threshold for Pertussis is slightly different from the one for Measles. That is;

In a SIR epidemic model the threshold for a Measles epidemic is as follows:

ForR0 ≤ 1

no endemic will occur.

ForR0 > 1

an endemic will occur.

In the whooping cough there are different values for when an epidemic will start.

In the model for whooping cough the parameter Pvaccinated is used to describe,

when there will be an epidemic. This describes how large a percentage of the

population, N(forN = 1), that is vaccinated. The parameter Pvaccinated is defined

as 1 − ν , where ν is the vaccine probabilities (Lavine, 2011). The link between

the two thresholds is defined by:

Re = R0(1− Pvaccinated) < 1

β(1− Pvaccinated)
γ + µ

< 1⇔

γ + µ

β
> 1− Pvaccinated ⇔
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Pvaccinated > 1− 1

R0

32



Chapter 3

Methodology

3.1 Introduction

This chapter provide an overall understanding of the structure and the method

used to analize the mathematical models.

3.1.1 Dynamics

In analysis of dynamical systems, the characterization is often expressed in terms

of differential equations. That is, equations describe the behavior of the system,

or more specifically: the rate of a variable with respect to its state variable. In

terms of a variable x, evaluated in time(t), this could have the basic form

dx

dt
= f(x, t)

. The models for pertussis and Measles, in our analysis are categorized as a

system of ordinary differential equation (ODE). Ordinary means our equations

only have one independent variable, and we only take derivatives with respect

to this one variable, as opposed to partial differential equations. The system is
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also autonomous, which simply explains that the equations in question, do not

explicitly depend on time. Hence no t-terms enter our equations - only variables

implicitly depending on time (x(t), y(t)), etc.

Furthermore we see that these autonomous systems of ordinary differential equa-

tions are coupled and hence non-linear. At a first glance, the pertussis model

seems like it only consists of linear terms on the right-hand side of the differen-

tial equations. However, the term λ implies the rate βI, which means we have

composition of variables. This means we have non-linear terms that model the

interaction between our compartments, such that, for example, the rate of growth

of the infected compartment, I, is proportional to the size of the susceptibles, S.

They are coupled, because the variable terms appear in combination in the rates

of each term. Thus we see that ds
dt

is determined by the variables S and W ,

ds
dt

by S and I, and so forth. Since the dynamical system is described in terms

of differential equations, we also call the system a continuous system (Strogatz,

2001). That is to say we have a 3-dimensional continuous coupled non-linear

autonomous system of ordinary differential equations(Edwards, 2010).

3.2 Existence and uniqueness

Theorem: Consider the initial value problem

ẋ = f(x), x(0) = x0

Suppose that f is continuous and that all its partial derivatives ∂fi
∂xj

,i, j = 1, 2, 3, ..., n

are continuous for x in some open connected set D ⊆ Rn . Then for x0 ∈ D, the

initial value problem has a solution x(t) on some interval (−t, t) about t = 0, and

the solution is unique. - Nonlinear dynamics and chaos by Steven H. Strogatz.
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The Theorem of existence and uniqueness is a very powerful theorem when solv-

ing differential equations. It’s especially powerful when dealing with scalar or

2-dimensional cases, which makes it valuable to the Measles model. The reason

this is important is because the theorem states that there exists a solution for a

given initial value (existence), and solutions cannot intersect each other (unique-

ness). If solution curves did intersect then there would be two solutions starting

at some initial value and thus it violates the uniqueness term in the aforemen-

tioned theorem (Strogatz, 2001).

When dealing with three dimensions, which in this case refer to the whooping

cough model, the solutions can move in the 3rd direction. This means that a 2-D

plot of the behaviour usually is not adequate when describing solutions. An ex-

ample that illustrates this is, if there is a limit cycle in the plane in 2 dimensions

then the solution to an initial value inside the limit cycle cannot escape.

However if it’s in 3-dimensions the solutions would be able to escape the limit

cycle because of the 3rd direction (Strogatz, 2001).

3.3 Model Linearization

An autonomous homogenous linear differential equation system can be written

as the following:

dX

dt
= BX

In this study we are dealing with nonlinear autonomous homogenous differential

equation system which can be written as:

dX

dt
= F (X), whereF (X) = (f1X, f2X, f3X, ..., fnX)T
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Systems of nonlinear differential equations are much trickier to evaluate, than

linear differential equations. However, by using Taylor’s expansion we are able

to transform a nonlinear system to its linear equivalent system near each of its

equilibrium point. That is, if we consider the higher order terms of the Taylor

expansion as very small, then we can neglect these as λ is different from zero

(Allen, 2007).

Let us consider a 2-dimensional nonlinear system first:

dX

dt
= F (X) =

 dx1
dt

dX2

dt

 =

 f1(x1, x2)

f2(x1, x2)


This system is then expanded around its equilibrium point (x0, y0). First we

will define two new functions, u = x1 − x1,0 and v = x2 − x2,0 and assume that f

have continuous second-order partial derivatives. Then the expansion yields:

du

dt
= f(x1,0, x2,0) + fx1(x1,0, x2,0)u+ fx2(x1,0, x2,0)u+ fx1x2(x1,0, x2,0)

u2

2
+ ...

dv

dt
= f(x1,0, x2,0) + fx1(x1,0, x2,0)v + fx2(x1,0, x2,0)v + fx1x2(x1,0, x2,0)

v2

2
+ ...

Now since f(x0, y0) = 0 and neglect the higher order terms, this may be

written as:

dZ

dt
= JZ

where J =

 f1x1(x1, x2) f1x2(x1, x2)

f2x1(x1, x2) f2x2(x1, x2)

 evaluated at x1 = x1,0 and x2 = x2,0

and Z =

 u

v


Hence we have written our nonlinear system as an approximately linear sys-

36



tem.

It should be noted that if the eigenvalues λ = 0, then the small terms of the Tay-

lor expansion does not hold enough information to linearize the system. When

this is the case it is not sufficient to use the Jacobian matrix to linearization

(Allen, 2007). In an n-dimensional system, J is called the Jacobian matrix and

is written as

J =


f1x1(x1, x2, ..., xn) · · · f1xn(x1, x2, ..., xn)

...
. . .

...

fnx1(x1, x2, ..., xn) · · · fnxn(x1, x2, ..., xn)


Evaluated at x1 = x1,0, x2 = x2,0, x2,1..., xn,0

3.4 Stability Analysis

3.4.1 Classification of fixed point

A system can be defined by a set of interacting elements, to the extent that

there are cause and effect relations in the phenomena that occur to the elements

of this set. Some characteristics of the interacting elements change over time

in dynamical system. From the Calculus invented by Newton and Leibniz it is

apprehended with certainty that the variation of an object (characteristic) x(t) in

a continuous time is measured by the derivative
dx(t)

dt
. In this sense the system

evolution in time can be described mathematically by:

x′ =
dx(t)

dt
(3.1)

x′ = f(x, β) (3.2)
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Where f is the variation rate, x is the state variable, and β is a parameter of

the system. When f does not depend on time explicitly the system is called

autonomous. Certain values, lim
t→∞

x(t) = x∗ with f(x∗) = 0 do not change over

time, depicting a stationary solution or the equilibrium solution of equation 3.1.

The classification of these equilibrium fixed point are well explained by the

stability and the topological property of a phase portrait. A phase portrait (phase

space or phase diagram) is a plot of the system’s trajectories in the state space

in which the axes are the state variables. Figures 3.2 , 3.3 and 3.4 are the phase

portrait for stable and unstable focus, stable and unstable node, a center and a

saddle.

Lyapunov Stability

In dynamical systems the most important type of stability regarding the solution

of differential equations (DE) is the solutions near the point of equilibrium. This

was discussed by Lyapunov his book “The General Problem of Stability of Mo-

tion” in 1892. According to Lyapunov, stability is a property of system behaviour

in neighbourhoods of equilibria, Lyapunov(1892). Lyapunov stability considers

changes in the initial conditions for a fixed system whiles a perturbations of the

system itself is called structural stability. When the initial conditions, x(0), fit

in with an equilibrium point the system remains indefinitely in this point. How-

ever, when the initial conditions are inside a sphere of radius δ whose centre is

a specific equilibrium, x∗, it can be defined as asymptotically stable when all the

trajectories, x(t), converge to x∗. It is locally stable if this sphere has a finite

radius this point is, otherwise when the radius approaches infinity the point is

globally stable. We can conclude on this that :

→ If we choose ε > 0, there exist a δ = δ(ε) > 0 such that, if ‖ x(0) − x∗ ‖< δ,
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then ‖ x(0)− x∗ ‖< ε for all t ≥ 0, the equilibrium of 3.1 is Lyapunov stable.

→ If the system is Lyapunov stable, and if there exist δ > 0, such that, if

‖ x(0) − x∗ ‖< δ, then lim
t→∞

‖ x(0) − x∗ ‖= 0, then the equilibrium of 3.1 is

asymptotically stable.

→ If the system is asymptotically stable, and if there exist ℘, `, δ > 0, such that,

if ‖ x(0)− x∗ ‖< δ, then ‖ x(0)− x∗ ‖≤ ℘ ‖ x(0)− x∗ ‖ e−`t, for t ≥ 0, then

the equilibrium of 3.1 is exponential stable.

All these classification is based on the temporal evolution of the distance

between a trajectory x(t) and x∗, for the complicated systems. (Lyapunov, 1892)

developed a another method for assessing the conditions of stability indirectly.

This method involves linearizing f at x∗, with a set of jacobian matrix of f

denoted by J, evaluating at x∗ gives as:

J =
∂f(x, β)

∂x
|x=x∗ (3.3)

The eigenvalues of J determine whether x∗ is stable. These are scaler values

λi such that det(J−λiI) = 0, that is the roots of the characteristic polynomial of

J , where I is the identity matrix. In this way, if the eigenvalues are all distinct,

it is possible to write an exponential approximation for general solution of the

linearized system by:

x(t) = k1v01e
λ1t + k2v02e

λ2t + ...+ knv0ne
λnt (3.4)

where ki are the arbitrary constants that are given by the initial conditions, n is

the dimension of the system and the vectors voj are the eigenvectors corresponding
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with each eigenvalue and determined by:

Jv0i = λiv0i (i = 1, 2, ..., n) (3.5)

Sometimes the Jacobian matrix presents equal real eigenvalues, in this case the

multiplicity of the eigenvalues has to be considered in order to generate linearly

independent solutions. Where the multiplicity is the number of equal eigenvalues.

If the multiplicity of an eigenvalue is two, there are two eigenvalues of this same

value, an example of a two-dimensional system that has two equal eigenvalues

(λ1 = λ2 = λ) has a general solution for the degenerate case as:

x(t) = k1v01e
λ1t + k2v02te

λ2t (3.6)

In n-dimensional case for eigenvalues with multiplicity m the associated functions

are eλit, teλit, t2eλit, . . . ,tm−1eλit, thus, in the same way as for distinct

eigenvalues, the general solution is the linear combination of these functions and

then uses the initial conditions to calculate the arbitrary constants.

It is important to note that the equilibrium behaviour of the non-linear system

in the is the same the approximated linear system except when the equilibrium

point of the approximated linear system is a centre. A further analysis is needed

to determine the nature of the original non linear system, which could be stable

centre, a stable spiral sink, or an unstable spiral source.

Poincaré Approach

Poincaré also classified fixed points in a two dimensional plane by the trace T

and the determinant D of the J matrix:

→ if D < 0, λ1,2 are real and of opposite signs, the fixed point is called a an
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unstable saddle.

→ if D > 0 and T 2 − 4D > 0, λ1,2 are real and with the same sign. If T > 0 the

point is called a nodal source, and a nodal sink for if T < 0.

→ if D > 0 and T 2 − 4D < 0, λ1,2 are complex conjugated. If T > 0 the fixed

point is a spiral source, if T < 0 it is a spiral sink and if T = 0 the point is a

stable center.

Figure 3.1: Trace Determinant Plane

On the line T 2− 4D = 0 are lying the degenerate nodes and star points, with

this cases the system has two equal eigenvalues. In the case of star points, only

the main diagonal of J is different of zero with equal elements, thus the solutions

being straight lines passing through x∗ in the phase plane, the star is unstable

if the elements of the diagonal are positive, if the elements of the diagonal are

negative the star is asymptotically stable. When T 2 = 4D there is a degenerate

node that is stable when T < 0 and unstable when T > 0. If D = 0 at least one

of the eigenvalues is zero and in this case there is a whole line or a plane of fixed

41



points. Figure 2.4 shows some of the different mentioned types of fixed points

and the degenerate cases.

Observing the form of the solution of equation (2.3) it can be seen that it

converges to stable solution when Reλi < 0 and diverges when at least one eigen-

value λi is positive. But in the degenerate cases such as center, star, degenerate

node and non-isolated fixed points, the linear system does not guaranty a correct

picture of the phase portrait near the fixed point, degenerate points can be altered

by small nonlinear terms. In such cases stability must be determined considering

non-linear terms of the Taylor series of f(x, β)

Routh-Hurwitz Approach

Edward John Routh and Adolf Hurwitz found independently the solution to find

out whether all the roots of a polynomial have it real part being negative. As

mentioned earlier the stability of an equilibrium point is established by the sign

of the real part of its eigenvalues. Therefore to determine the stability of this

solution, taking into account that a fixed point is stable when Re(λi < 0) for all

i, is therefore necessary to know if the signs of the real parts of λi are negative or

not. This approach of stability known as Routh-Hurwitz theorem is very helpful

specially when the eigenvalues of the Jacobian J is of order higher than five and it

is in general impossible to calculate analytically its roots. The theorem explains

that the real part of all roots of the polynomial:

λn + a1λ
n−1 + a2λ

n−2 + ...+ an−1λ+ an = 0 (3.7)

are negative if all the coefficients ai are positive and if all upper-left determinants

Di(i = 1, ..., n) of the Hurwitz matrix H are positive. If the jacobian matrix J is

n× n so is H. The H matrix are made in the following way:

42



→ The coefficients ai with odd indices and increasing j are written in the first

row. In the second line are written the coefficients with even indices and

increasing j. Notice that the coefficient of λn, a0, is 1. the other positions are

filled up with zeros.

→ The two preceding lines are obtained moving the first two lines one column

to the right, filling-in the empty positions with zeros.

→ The other rows are built repeating the procedure above until an occupies the

lower right edge of the matrix.

In this way, for example, for n = 6 the Hurwitz matrix is

H =



a1 a3 a5 0 0 0

1 a2 a4 a6 0 0

0 a1 a3 a5 0 0

0 1 a2 a4 a6 0

0 0 a1 a3 a5 0

0 0 1 a2 a4 a6


and the upper-left determinants Di(i = 1, ..., n) are:

D1 =

∣∣∣∣a1∣∣∣∣ , D2 =

∣∣∣∣∣∣∣
a1 a3

1 a2

∣∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣∣∣∣∣
a1 a3 a5

1 a2 a4

0 a1 a3

∣∣∣∣∣∣∣∣∣∣
, ..., D6 =

∣∣∣∣H∣∣∣∣

The behaviours of this differential equation in the neighbourhood of the steady

state is summarized below

1. If the eigenvalues are real and distinct then:
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→ If the eigenvalues are positive, then the equilibrium point is an unstable

source.

→ If the eigenvalues are negative, then the equilibrium point is stable sink.

→ If at least one of them is positive, then the equilibrium point is an unstable

saddle.

2. If the eigenvalues are real and equal, and the eigenvectors are independent.

→ If the eigenvalues are positive, then the equilibrium point is an unstable

star source.

→ If the eigenvalues are negative, then the equilibrium point is stable star

sink.

3. If the eigenvalues are real and equal, and at least one of the eigenvectors are

dependent.

→ If the eigenvalues are positive, then the equilibrium point is an unstable

improper source (degenerate nodal source).

→ If the eigenvalues are negative, then the equilibrium point is stable im-

proper sink (degenerate nodal sink).

4. If the eigenvalues are complex:

→ If the eigenvalues are purely imaginary, then the equilibrium point is a

stable centre.

→ If the eigenvalues have positive real component, then the equilibrium point

is an unstable spiral source.

→ If the eigenvalues have negative real component, then the equilibrium point

is a stable spiral sink.
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5. If one of the eigenvalues is zero, with the other given as ϕ.

→ If ϕ > 0, then the equilibrium is an unstable saddle-node.

→ If ϕ < 0, then the equilibrium is a stable saddle-node.

Figure 3.2: Phase diagram indicating stable node and stable spiral
(a) is a stable node and the equations used are x′ = −3x− y, y′ = −x− 3y,
(b) is a stable spiral, drawn with equations x′ = −0.2x+ y, y′ = −x− 0.2y
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Figure 3.3: Phase diagram indicating unstable node and unstable spiral
(a) is an unstable node and the equations used are x′ = −3x− y, y′ = −x− 3y,
(b) is a unstable spiral, drawn with equations x′ = 0.2x+ y, y′ = −x+ 0.2y

Figure 3.4: Phase diagram indicating a centre and a saddle
(a) is a centre and the equations used are x′ = 4x− 10y, y′ = 2x− 4y,
(b) is a saddle, and equations used are x′ = x+ 4y, y′ = 2x− y
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Chapter 4

Analysis of the Mathematical

Models

This chapter contains the stability analysis of the measles and pertussis models.

This includes the stability analysis and the finding of equilibrium point of the

models.

4.1 Stability analysis of the Measles Model

The parameter values of the differential equation system are the following

β = 0.4, µ = 0.0001 and γ = 0.2

The system of equations for the model is the following

x′ = µ− µx− βyx

y′ = βyx− (γ + µ)y

z′ = γy − µz
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At equilibrium, we have;

0 = µ− µx− βyx

0 = βyx− (γ + µ)y

0 = γy − µz

Finding the equilibrium points in the initial step, we have; y = 0 = y(βx −

γ − µ)⇒ y∗1 = 0 and x∗2 = µ+γ
β

.

Using y∗1 = 0 yields the first equilibrium point: x′ = µ − µx = 0 ⇒ x∗1 = 1

Next, the value of x∗2 = µ+γ
β

yields the equilibrium point;

x′ = µ− µµ+ γ

β
− βyµ+ γ

β
= 0⇒ y∗2 = (µ− µµ+ γ

β
)

1

µ+ γ

Hence, the following equilibrium points of the system: (x∗1 = 1, y∗1 = 0)

x∗2 =
γ + µ

β
, y∗2 = (µ− µµ+ γ

β
)

1

µ+ γ

To linearize the differential equation system, the theory of calculating the Jaco-

bian matrix is used. The Jacobian, J , is computed by the following matrix of

partial derivatives;

J(x, y) =

 ∂x′

∂x
∂y′

∂x

∂x′

∂y
∂y′

∂y

 =

 −µ− βy −βx

βy βx− (γ + µ)


Determining the eigenvalues of this Jacobian matrix implies

A− λI =

 −µ− βy − λ −βx

βy βx− (γ + µ)− λ


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J(x∗1, y
∗
1) =

 −µ −β

0 β − (γ + µ)



Det(J(x∗1, y
∗
1)−λI) = 0 =

 −µ− λ −β

0 β − (γ + µ)− λ

 = (−µ−λ)(β−γ−µ−λ) = 0

The eigenvalues are therefore given by; λ1 = −µ and λ2 = −γ − µ+ β.

The trace Tr(A) = λ1 + λ2 = −2µ− γ + β and Det(A) = (−µ)(β − γ − µ).

T r(A) < 0 if and only if 2µ + γ > β, Tr(A) > 0 if and only if γ + µ < β and

the determinant of A is positive if and only if γ + µ > β and negative if and

only if γ + µ < β In order to determine the behavior of the solutions in the

phase plane we then need to calculate these values using the parameter values;

β = 0.4, µ = 0.0001, γ = 0.2. 2µ + γ ≈ 0.2002 < β and µ + γ ≈ 0.2002 < β.

Hence, we have a saddle point.

Determining the stability of the second equilibrium point using the above

approach gives;

(J(x∗2, y
∗
2)− λI) = 0 =

 −µ− β
(
µ− µµ+γ

β

)
1

µ+γ
− λ −(γ + µ)

β
(
µ− µµ+γ

β

)
1

µ+γ
−λ


Let a = −β

(
µ− µµ+γ

β

)
1

µ+γ
and b = β

(
µ− µµ+γ

β

)
1

µ+γ
. The Characteristics

polynomial is

λ2 − (a− µ)λ+ b(γ + µ) = 0

λ =
a− µ±

√
(a− µ)2 − 4b(γ + µ)

2
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This gives the following eigenvalues;

λ1 =
a− µ+

√
(a− µ)2 − 4b(γ + µ)

2
= 4.338× 10−3

and

λ2 =
a− µ−

√
(a− µ)2 − 4b(γ + µ)

2
= −4.338× 10−3

The values of the trace and determinant are a−µ = −9.995×10−8 and b(γ+µ) =

−9.995× 10−5. Hence it is a saddle point.

4.2 Stability analysis of the Pertussis Model

Analyzing the pertussis system stability, is based on the Routh-Hurwitz criteria.

This criterion ensures that we do not have to actually solve the characteristic

equation in order to say something about the stability of the equilibrium points.

This is due to the fact that if the eigenvalues at some equilibrium point lie in the

left half of the complex plane, then the point is stable as the solution will decay

exponentially towards the point. Let?s consider the differential equation system

giving, where the variable R has been replaced by N − y − x − g, α = βy and

2σ = σ∗

x′ = µ(1− ν)− (µ+ βy)x+ σ∗g

y′ = (βx− (µ+ γ))y

g′ = σ∗(N − y − x− g)− g(µ+ σ∗ + κβy)

(4.1)
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The Jacobian matrix A is then computed as:

J =


∂x′

∂x
∂y′

∂x
∂g′

∂x

∂x′

∂y
∂y′

∂y
∂g′

∂y

∂x′

∂g
∂y′

∂g
∂g′

∂g

 =


−(µβy) −β σ∗

βy βx− (µ+ γ) 0

σ∗ −σ∗ − κβg −2σ∗ − µ− κβy


Then the eigenvalues are calculated as

A− λI =


−(µβy)− λ −β σ∗

βy βx− (µ+ γ)− λ 0

σ∗ −σ∗ − κβg −2σ∗ − µ− κβy − λ


The characteristic polynomial is determined by calculating the determinant, det(A−

λI) = 0. That is

−λ∗ + λ2Tr(A)− λM +Det(A) = 0

The determinant and trace are then computed as;

Det(A) =

−βx

∣∣∣∣∣∣∣
−βx σ∗

−σ∗ − κβg −2σ∗ − µ− κβy

∣∣∣∣∣∣∣+(βx−(µ+γ))

∣∣∣∣∣∣∣
−(µ+ βy) σ∗

−σ∗ −2σ∗ − µ− κβy

∣∣∣∣∣∣∣
Tr(A) = xβ − 3µ− 4σ − yβ − γ − yβκ

From the characteristic equation, we can conclude that there is at least one coeffi-

cient in the characteristic equation which is negative, by using the Routh-Hurwitz

theorem. Thus, there will be at least one eigenvalue with a positive real part.

The next step is to actually calculate the eigenvalues, in order to do this the
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equilibrium points must be calculated. That is

0 = µ(1− ν)− (µ+ βy)x+ σ∗g

0 = (βx− (µ+ γ))y

0 = σ∗(N − y − x− g)− g(µ+ σ∗ + κβy)

The equilibrium points (y∗, x∗, g∗) are “simultaneously” calculated such that so-

lutions satisfy x′, y′, g′(y∗, x∗, g∗) = 0. The approach is to find solutions for

a single differential equation and then substitute into the next. From y′ =

(βx− (µ+ ν))y = 0, y = 0, x = (µ+γ)
β

x′ = µ(1− ν)− (µ+ βy)

(
(µ+ γ)

β

)
+ 2σg = 0

⇒

g =
(µ+ βI)(µ+ γ)

(2σβ)
− µ(1− ν)

2σ

and

y =
µ(1− ν)− (µ+γ)

β
+ 2σg

µ− ν

The derived expression for x and g are our preliminary equilibrium points,

from y′, x′. The next step is to substitute x and g into g′, leaving solutions in

terms of y. This yields a second order polynomial equation for y:

2σ

[
1− µ+ γ

β
− y −

(
(µ+ βy)(µ+ γ)

2σ

)]
−
(
µ+ βy

2βσ
− µ(1− ν)

2σ

)
(µ+2σ+βyκ) = 0

Solving for y symbolically, leaves a lengthy and unmanageable expression, so it
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is solved numerically, with the rates specified in [Lavine et al., 2011], yielding:

yn,0 =

 y1,0

y2,0

 =

 0.001386

0.0003688


This value can then be utilized to enter into the g solution for x′ above, such

that:

gsolve =

(
(µ+ βyn,0)(µ+ γ)

2σβ
−
(
µ(1− ν)

2σ

))

gsolve =

 gs1

gs2

 =

 0.024

−0.125


where gs1 corresponds to the solution y1,0 and gs2 corresponds to the solution y2,0.

This leads to two equilibrium points;

E∗1 = (y1,0, gs1, x
∗) and E∗2 = (y2,0, gs2, x

∗)

To find other equilibrium points, the next step goes back to the second equi-

librium solution for y′, where y∗ = 0. Substituting y∗ into x′ = 0, leads to:

g = −
(
µ(1− ν)− µS

2σ

)

If g then is substituted into the expression for g′ = 0, this directly gives the

equilibrium point x1,0 = x such that:

g′ = 2σ

[
1− x−

(
µ(1− ν)− µx

2σ

)]
+

(
µ(1− ν)− µx

2σ

)
(µ+ 2σ) = 0

x =
4σ2 + µ2(1− ν)

(µ2 + 4σ2)
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Substituting x∗1,0 = s into g, we get:

g∗ =
µ(1− ν)− µx

2σ
= 0

This concludes the equilibrium point’s analysis and yields three equilibrium so-

lutions:

E∗1 = (x∗, y1,0, gs1)

E∗2 = (x∗, y2,0, gs2)

E∗3 = (x, y∗, g∗)

These equilibrium points are then evaluated in the Jacobian matrix previously

calculated, and given by:

J =


−(µ+ βy) −βx σ∗

βy βx− (µ+ γ) 0

−σ∗ −2σ − κgβ −(2σ∗ + µ+ κβy)


The Jacobian evaluated in equilibrium point 1 is assigned the letter λA, and gives:

Solving for eigenvalues numerically yields three solutions:

J(x∗, y1,0, gs1) =


−(µ+ βy) −βx∗ σ∗

βy1,0 βx∗ − (µ+ γ) 0

−σ∗ −2σ − κgs1β −(2σ∗ + µ+ κβy1,0)



Eigenvalues J(x∗, y1,0, gs1) = λA =


−0.12 + 2.681i

−0.12 + 2.681i

−7.766


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The Jacobian of equilibrium point 2 is denoted λB and given by:

J(x∗, y1,0, gs1) =


−(µ+ βy) −βx∗ σ∗

βy2,0 βx∗ − (µ+ γ) 0

−σ∗ −2σ − κgs2β −(2σ∗ + µ+ κβy2,0)


This yields the eigenvalues:

Eigenvalues J(x∗, y2,0, gs2) = λB =


−2.194

1.884 + 1.8i

1.884− 1.8i


The Jacobian for equilibrium 3, given by λC : λC and given by:

J(x∗, y∗, g∗) =


−µ −β σ∗

0 β − (µ+ γ) 0

−σ∗ −2σ −(2σ∗ + µ)


By using the actual parameter values, this also gives the following eigenvalues:

Eigenvalues J(E∗3) = λC =


−0.22

−0.22

242.98


All the eigenvalues calculated from matrix A, B and C confirms our earlier

prediction namely; there will be at least one eigenvalue that lies in the right half

of the complex plane (we actually got three). Looking at the equilibrium points,

it is obvious that the biologically most relevant part is that of the equilibrium

point A and C. Since equilibrium point B has a negative population g, it is

clearly non-biological.
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4.2.1 Interpretation of the Analysis of the Measles Model

The analysis of the measles model shows that the behaviour of the equilibrium

solutions produces saddle points. It is obvious that for our disease free equilib-

rium, no disease will occur, since no healthy individuals can infect others. That

is x will remain constant. For the infected equilibrium the trajectory of the phase

plane will tend infinity in the x-direction and consequently y will tend to zero.

This means that even if the disease exists in the population, it will eventually

die out, due to immunity. This is clearly not always the case, but relies solely

on the rates in and out of infection. This relation is the previously mentioned

factor R0, which is the threshold that translates to number of successful infective

interactions per time.

4.2.2 Interpretation of the Analysis of the Measles Model

The analytic results in our analysis of the pertussis model indicate that the dy-

namics around the infected equilibrium point have cyclical behaviour due to the

imaginary parts of the eigenvalues. This indicates that the flow between the

compartments has time-dependent (likely seasonal) variations. This is consistent

with the traits of an epidemic. If the spiral is attracting it might tend to the

equilibrium point where the seasonal variations cease to exist. It might also tend

towards a limit cycle near the equilibrium point where the seasonal variations are

constant.

The disease free equilibrium yields a slightly different and less trivial solution

than the solution for the measles model. This seems a somewhat artificial result

since the dynamics between the waning susceptible and immune might be of little

interest if the infection is non-present. However, it could hold some information

on what the susceptible population would be in a society that has no pertussis,
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still get vaccinated, but is subject to the waning effect of vaccination.
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Chapter 5

Conclusion

5.1 Conclusion

Comparing the two different models of the analysis, it is clear that two different

types of solution dynamics are present. The measles model predicts an unsta-

ble dynamical picture which in time leads to either an infection of either the

whole population or none at all. The whooping cough model shows cyclical be-

haviour which means it predicts seasonal variations of the disease. Over time,

this variation exhibits a decreasing oscillation around a mean ratio of infected in

the population (given by the equilibrium point). Each model has the underlying

assumption that people, with respect to interacting with other people, behaves

more or less like particles in a gas. That is, their contact rate is based on basic

statistical view that each individual will experience the same number of contacts

(on average). This is obviously a simplification of human interaction patterns,

but since these models do not include behavioural patterns, cultural or social

differences in lifestyles, population density, seasonality etc., this seems like the

best conceivable approximation.

Furthermore the models assume a uniform ability of individual’s immune re-
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sponse to infection. This might somehow be inferred in the age-group structure

of the whooping model. This is also reflected in the lack of congenital immu-

nity, which is a real biological factor in the measles model. A variety of other

factors could be conceived according to the problem at hand. However, this

level of detail in a given system comes at a cost. It is clear that the measles

model is less involved than the pertussis model. This is mainly due to two con-

figurations, namely the feedback mechanism and the extra compartment of the

pertussis model. These are not present in the measles model. The reason behind

the diversity between the models is partly due to simplification of the system and

partly due to biological differences. The effect of the difference is evident in the

mathematical treatment of the two problems. The measles model has a straight

forward solution strategy that both analytically and numerically yields biologi-

cally intuitive results. Some information must lack and only few parameters can

be adjusted in the model. In contrast, the whooping cough model entails greater

attention to detail, which subsequently means that the mathematical structure

and computations will contain increased degrees of difficulty. The consequence

of this is that, aside from having included more consideration, parameters will

be adjustable such that they have values that cause the system to mimic real life

observations. These parameters can then be interpreted for biological meaning.

However, there is also a cost involved. Unfolding the analytic solution for

the pertussis model does not yield a straight forward approach, and thus the

degree of difficulty is elevated. What is more critical is that, both numerical and

analytic results lack transparency in terms of biological interpretation. Due to the

uniform direction of flow in the measles model, it is quite clear how to interpret

the implicit role of z. In the whooping cough model, however, the interpretation

of z is well hidden within the confines of the transformed system. The solution
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strategy is clearer, but the biological interpretation of the hidden variables gets

even more clouded.

The possible loss of qualities, leads us to one of the main difficulties when

dealing with high order systems: that the existence and uniqueness theorem loses

its significance. This leaves very few tools for analysis, such as the sign of the

eigenvalues given by the Jacobian matrix evaluated at the respective equilibrium

points. The absence of thorough all-purpose solution tools is unquestionably a

major contribution to what makes the discipline of analyzing high dimensional

non-linear differential equation systems so problematic. Apart from increasing

the difficulty level of analytical solution strategies, uncertainties may grow, error

estimation and management becomes increasingly difficult and round-off errors

might expand.

The investigation on variations on the basic SIR-model has illustrated the

consequences of additional compartments in well-known models as well as the

computational complexity that arises. The presentation might show more in

terms of expanding compartment models, than actual disease dynamics, since

some key-elements such as age distribution and population variations is left out

of our mathematical considerations. However, limiting variations and omitting

some influences are of utmost importance when constructing models. In fact, this

is a main point of the comparison, namely that every addition to one’s system

comes at a computational cost. This is evident from the two analyses in chapter

4. Apart from increasing the difficulty level of solution strategies, uncertainties

may grow in numerical computation. Also, the transparency of the biological

implications of the solutions becomes cluttered.
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5.2 Recommendation

This study only relates to a part of the model proposed by Lavine et al. (2011).

The age specific resurgence, which has been one of the main foci of pertussis

epidemiology, has not been taken into account because it was considered to be

a distortion of the focus of this study. That is the pertussis model we have

investigated is only describing the dynamics of the age indifferent disease. This

represents a lack in the total picture of the spread pattern of the disease. However,

a number of other population dynamics could be proposed as possible influences,

such as population density, are not included either. There are various ways to

improve the model. One could be to differentiate the rates of the sinks in the

different compartments. That is, if one considers infection to be fatal, it could

be implied that a group of infected would have a slightly increased rate of death.

Another way to change the dynamics of the system is to reconsider the pop-

ulation mixing pattern, such that it gets more realistic. This can be done by

letting the contact rate vary with the age groups, such that the mixing pattern

varies over a life time. Moreover demographic dynamics could be included. There

could also exist a correlation between age and population density, if you consider

younger people to live in more densely populated areas than older. This might

also affect the contact rate. Living conditions might also be an important factor,

which would have to be introduced by a new parameter. The possible interrela-

tions are practically endless, and just a few added parameters have been shown

to make a significant expansion in computational efforts. Furthermore, added

parameters do not necessarily increase the precision in which the model reflects

on real life dynamics.
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