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ABSTRACT 

The Lazer – McKenna mathematical model of a suspension bridge applied to 

the Adomi Bridge in Ghana is presented. 

Numerical methods accessible in commercially available Computer Algebraic 

System “MATLAB” are used to analyse the second order non-linear ordinary 

differential equation. 

Simulations are performed using an efficient SIMULINK scheme, the bridge 

responses are investigated by varying the various parameters of the bridge 
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CHAPTER ONE 

INTRODUCTION 

The collapse of the Tacoma Suspension Bridge in 1940 stimulated interest in 

mathematical modeling of suspension bridges. The reason of collapse was originally 

attributed to resonance and this was generally accepted for fifty years until it was 

challenged by mathematicians Lazer and McKenna (Lazer and McKenna, 1990). 

Using a system of uncoupled non-linear ordinary differential, these mathematicians 

explained the collapse of the Bridge. Their model with appropriate engineering 

constants will be used to determine the response of the Adomi Bridge subjected to 

large induced initial oscillations. 

1.1  BACKGROUND 

1.1.1 Overview of Suspension bridges 

Suspension bridges are of utmost importance in bridge engineering and dates 

as far back as early 19th century. Suspension bridge technology enables the longest 

span of any design. Normally two enormous cables stretch their length. Shorter 

cables dangle down to hold the roadway. This connection of cables to other cables 

makes suspension bridge very flexible and susceptible to noticeable oscillations. 

Suspension bridges have the longest free span of all the different type of 

bridges constructed, currently the first fifteen bridges with the longest free span in 

the world are of the suspension bridge type. (http://en.wikipedia.org/wiki/List_-

of_longest_-suspension_bridge_spans) The bridge with the longest free span in the 

world is The Akashi-Kaikyō Bridge.on the Kobe-Awaji Route in Japan with a free 

maximum span of almost 2000m (figure 1.1).  
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Figure 1.1: Akashi-Kaikyō Bridge.on the Kobe-Awaji Route in Japan (source: 
http://upload.wikimedia.org/wikipedia/commons/f/f1/Akashi_Bridge.jpg) 
 

As stated above, suspension bridge technology currently provides maximum 

free span of bridges than any other type of bridge, this makes researching technology 

of suspension bridges of special interest to both engineers and mathematicians. An 

event which triggered renewed interest in the modeling and behaviour of suspension 

bridges by the scientific community is the collapse of the Tacoma suspension bridge 

in 1940. 

1.1.2 The collapse of the Tacoma Suspension Bridge 

On July 1, 1940, the Tacoma Narrows Bridge in the state of Washington was 

completed and opened to traffic. From the day of its opening the bridge began to 

undergo vertical oscillations, and it was soon nicknamed “Galloping Gertie”. As a 

result of its novel behaviour, traffic on the bridge increased tremendously. People 

came from hundreds of miles to enjoy riding over a galloping, rolling bridge. For 

four months, everything was all right, and the authorities in charge became more and 
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more confident of the safety of the bridge that they were even planning to cancel the 

insurance policy on the bridge (Tajcová, 1997). 

The collapse of the bridge as described in (Tajcová, 1997) and (Menkveld 

and Pence, 2001) is paraphrased follows…. 

“At about 7:00 a.m. of November 7, 1940, the bridge began to undulate persistently 

for three hours. Segments of the span were heaving periodically up and down as 

much as three feet. At about 10:00 a.m., the bridge started suddenly oscillating more 

wildly and concerned officials closed the bridge. Shortly after the bridge was closed, 

the character of the motion changed from vertical oscillation to two-wave torsional 

motion. The torsional motion caused the roadbed to tilt as much as 45 degrees from 

horizontal. At one moment, one edge of the roadway was twenty eight feet higher 

than the other; the next moment it was twenty-eight feet lower than the other edge. 

The centre span, remarkably, endured the vertical and torsional oscillation for about 

a half hour, but then a centre span floor panel broke off and dropped into the water 

below At 10:30 a.m. the bridge began cracking, and finally, at 11:00 a.m. the entire 

structure fell down into the river”. 

The collapse of the Tacoma suspension bridge is of particular interest and 

thus referenced in many papers addressing mathematical modeling of suspension 

bridges. The aftermath of this collapse is that it generated a lot of interest in the 

mathematical modeling of suspension bridges within the mathematics community. 

Initially the Tacoma Narrows bridge failure was considered as a classic example of 

the resonance effects on structures, in this case under the action of time-periodic 

forcing caused by a von kármán street of staggered vortices due to impinging wind 

on the bridge structure (Amann et al, 1941). In this manner acknowledging that the 

ultimate source of problem is the interaction between the periodicities of the bridge 

oscillations and the vortices that are created in the von Kármán street, later it became 

clearer that the standard textbook explanation of the collapse, based on linear 

resonance arguments was erroneous (Billah and Scanlan, 1991). Linear resonance is 
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a rather narrow phenomenon and very difficult to occur in an irregularly changing 

environment (Lazer and McKenna , 1990) 

Surprisingly it took more than half a century for mathematicians (Lazer and 

McKenna, 1990) to suggest that the generally accepted cause of the Tacoma bridge 

collapse being resonance was flawed and could not have been the reason of collapse. 

Even so, up until now the science of the dynamics of suspension bridges has many 

unexplained gaps as was made abundantly clear by the opening and rapid closing of 

the Millennium Bridge in London in 2000 (McKenna and Moore, 2002) 

One of the most challenging and not fully explained areas of mathematical 

modeling involves nonlinear dynamical systems, in particular systems with so called 

jumping nonlinearity. It can be seen that its presence brings into the whole problem 

unanticipated difficulties and very often it is a cause of several solutions. The 

suspension bridge is an example of such a dynamical system. The nonlinearity is 

caused by the presence of the vertical supporting cable stays which restrain the 

movement of the centre span of the bridge in a downward direction, but have no 

influence on its behaviour in the upwards direction. 

After the collapse of the Tacoma Narrows Bridge, it became important to 

establish what factors caused this disastrous failure so that these factors would be 

taken into consideration for the design of future suspension bridges. Although 

questions still persists about the exact cause for the Tacoma Narrows Bridge failure, 

mathematical models have been developed to illustrate how the bridge behaved 

during its final moments. There are models that illustrate both the vertical motion, as 

well as the torsional motion exhibited by the bridge. (McKenna, 1999) 
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1.1.3 The Adomi Bridge 

One of Ghana’s most treasured landmarks and national heritage is the Adomi 

Bridge (originally opened as the Volta Bridge) which is the main link between the 

Eastern and Volta regions of Ghana. It bridges the Volta River at Atimpoku which is 

near Akosombo dam (the site of Ghana’s hydroelectric power plant). Figure 1.2 

Shows the Adomi Bridge which is rightly described as arched suspension bridge. The 

Adomi Bridge is an arch suspension type whereby the roadway is suspended off two 

giant arches via cables.  

According to a 1958 article in the Structural Engineer, the bridge has a span 

of 805 feet and the rise to the crown of the arches is 219 feet. There have been 

debates in the past as to whether Adomi Bridge can be described to be suspension 

bridge or not. It suffice to say that so far as the roadbed are suspended by means of a 

vertical cable stays (hangers) connected to the steel truss arches, the bridge can be 

considered as a suspension type but undeniably in conventional suspension bridges 

the vertical cable stays are connected to a main cables which are strung between two 

supporting towers at the ends of the span as shown in figure 1.1. 
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Figure 1.2 Adomi Bridge.  
(source: https://www.myc4.com/Images/Users/21333/Adomi%20Bridge%20006.jpg) 

According to Paper No. 6290 – The Volta Bridge (Scott and Adams, 1958), 

the Adomi Bridge is a steel arch structure having a clear span of 805 feet. The deck 

is suspended from the arch at 35 feet intervals by 2¼ inch high tensile steel cables 

(hangers), and is of composite reinforced concrete and steel construction. The 

carriageway has a width of 22 feet surfaced with a coat of mastic asphalt 1 inch 

thick. On each side are cantilevered footways of 4 feet 9inches wide. The arch is of 

crescent form bearing on concrete abutments founded on rock on each bank of the 

river. The arch itself is 40 feet wide overall. The rise of the lower chord is 158 feet 6 

inches above the hinges, and the overall depth of the truss is 32 feet at the centre.  

Adomi Bridge was designed by Sir William Halcrow & Partners and Freeman 

Fox & Partners and constructed by Dorman Long Bridge and Engineering Limited. 

The Bridge was built from March 1955 to November 1956. It was unveiled by the 

Honourable Dr. Kwame Nkrumah– the then Prime Minister of the Gold Coast (now 
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Ghana), on 25th January, 1957 to commemorate the opening of the bridge by H.E Sir 

Charles Noble Arden-Clarke Governor of The Gold Coast 

Adomi Bridge is a major landmark and a national heritage and remains so 

even after fifty four years of exploitation. According to Ghana Highway Authorities 

(GHA), the Bridge is the main means by which an average of 120,000 workers, 

traders and tourists cross the Volta River daily to and from the eastern corridor and 

northern regions of the country. An average of 3,000 vehicles uses the Bridge daily. 

1.2  PROBLEM STATEMENT 

Suspension bridges are generally susceptible to visible oscillations, which if 

not controlled can lead to failure of the bridge. An uncoupled system of non-linear 

differential equation first derived in (McKenna, 1990) was used to explain the 

ultimate failure of the Tacoma Bridge. We apply this model to the Adomi Bridge 

with few modifications and appropriate engineering constants to predict the response 

of the Bridge to large oscillatory motions. 

As far as we are aware, there are no studies published previously on the 

response of the Adomi Bridge to possible oscillations (vertical and torsional). In this 

thesis, we analyse the problem of stability of the Adomi Bridge when it is subjected 

to large initial vertical displacement or large torsional rotation.  We determine 

whether small or large amplitude oscillations once started on the Bridge, will 

eventually diminish or rather continue oscillatory motion unceasingly until the 

Bridge collapses. 
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1.3  OBJECTIVES OF THESIS 

 Use appropriate software program to create a simulation of the mathematical 

model of suspension bridge proposed in (McKenna, 1999) with some 

modifications. 

 To determine using numerical experiments the response of Adomi Bridge 

when subjected to large initial vertical displacement or large torsional 

rotation.  

 Investigate the stability of the Adomi Bridge under various initial conditions 

and varying engineering constants  

 To establish if in spite of the apparent rigidity of steel arched- suspension 

bridge, they are as susceptible to large oscillation as in the conventional type. 

 To make an input to the general stock of knowledge available to determine 

the safe and economical parameters for design and construction of steel 

arched- suspension bridges 

 
1.4  JUSTIFICATION 

As stated previously, the Adomi Bridge is a major landmark and a national 

heritage and remains so even after fifty four years of exploitation. Any unforeseen 

damage to the bridge will be very costly to the country and bring about economic 

hardship to many people as well as loss of revenue to the country. The estimated 

more than one hundred and twenty thousand human traffic(workers, tourists and 

traders) and three thousand vehicles which use the bridge daily will have to find 

longer alternate route and as such loss of valuable man-hours and business and trade 

opportunities. In this view any research paper which provides any suggestions or 

some form of scientific knowledge on the continued exploitation and maintenance of 

the Bridge is justifiable 
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1.5  METHODOLOGY 

Recent advances in computer science have given us the necessary tools to 

evaluate the more sophisticated non-linear models rather than simplify the models 

using method such as linearization scheme. By means of available numerical tools, 

one can provide accurate numerical solutions in affordable computing times. 

In this dissertation, the non-linear differential equation which models the 

oscillations of the Bridge is evaluated by employing numerical methods specifically 

Runge-Kutta algorithm. This is done indirectly by the use of “Matlab simulink” a 

computer software program. Different simulations are performed for different initial 

conditions and also varying some of the engineering constants associated with the 

Bridge. The data needed for the model are the physical constants of the materials 

from which the Bridge was built, the physical dimensions of the Bridge, the spacing 

and the physical constants of cables stay (hangers). 

 

1.6  SCOPE OF THESIS 

The scope of this dissertation is limited to the application of a modified 

McKenna’s mathematical model of a suspension bridge to the Adomi Bridge. The 

mathematical model derived in (McKenna, 1999) is modified by adding other forcing 

term (periodic impulse and periodic random forces) to create a more realistic model. 

 

1.7  THESIS ORGANISATION 

The dissertation comprises the following five chapters. Chapter one is 

introduction which covers background, problem statement, objectives, justification, 

methodology, scope of thesis and thesis organisation.  
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Chapter two reviews related researches starting with a paper by Lazer and 

McKenna (Lazer and McKenna, 1990), which sparked interest in mathematical 

modeling of suspension bridges. Thereafter several other papers on mathematical 

modeling of suspension bridges and alternative models are assessed. 

Chapter three focuses on the methodology for the analysis of non-linear 

differential equations derived for oscillation of the suspension bridge. The derivation 

is from first principle using applied mechanics and Euler-Langrage principle. A brief 

overview of “Matlab simulink software” which is used for the analysis is presented 

and reasons for choosing a specific algorithm in this software are explained. The 

numerical method applied in the “Matlab simulink software” specifically the fourth 

order Runge-Kunte method for solving system of ordinary differential equation is 

outlined and it specific features which makes it the most suitable numerical method 

as compared to others are discussed. 

Chapter four is data collection and analysis; here by using available 

engineering data of the Adomi Bridge, we choose the appropriate values of the 

physical constants in the system of differential equations which models the 

oscillation of a suspension bridge. We perform multiple numerical experiments by 

specifying different initial conditions and assuming different physical constants. We 

use the Runge-Kutta method to solve the initial value problem over long period of 

time. The results of the numerical experiments are displacement - time plot for 

vertical oscillations and angle of rotation - time plot for torsional oscillations. 

Chapter five concludes the thesis. In this chapter we summarise the results of 

numerical experiments and draw conclusions on the results obtained. 

Recommendations based on the numerical experiments will be articulated. The 
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inadequacies of the mathematical model and the accuracy of results obtained from 

the model will be discussed. 
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CHAPTER TWO 

REVIEW OF RELATED STUDIES 

2.1 PIONEERING STUDIES 

The pioneering paper on mathematical modeling of suspension bridge (Lazer 

and McKenna, 1990) was published fifty years after the collapse of the Tacoma 

Suspension Bridge. Their research directly contradicted the long-standing view that 

resonance phenomena caused the collapse of the Tacoma Narrows Bridge. 

They suggested several alternative types of differential equations that govern 

the motion of such suspension bridges. In their paper the authors made a strong case 

against the popular notion that the collapse of the Tacoma Bridge was due to 

resonance. They contended that a complete mathematical explanation for the Tacoma 

Narrows disaster must isolate the factors that make suspension bridges prone to 

large-scale oscillations; show how a bridge could go into large oscillations as the 

result of a single gust and at other times remain motionless even in high winds; and 

demonstrate how large vertical oscillations could rapidly change to a twisting 

motion. One significant detail, they asserted, lies in the behaviour of the cable stays 

(hangers), connecting the roadbed to a bridge's main cable. 

Civil engineers usually assume that the stays always remain in tension under 

a bridge's weight, in effect acting as stiff springs. That allows them to use relatively 

simple, linear differential equations to model the bridge's behaviour. When a bridge 

starts to oscillate, however, the stays begin alternately loosening and tightening. That 

produces a nonlinear effect, changing the nature of the force acting on the bridge.  

When the hangers are loose, they exert no force, and only gravity acts on the 

roadbed. When the hangers are tight, they pull on the bridge, countering the effect of 

gravity. Solutions of the nonlinear differential equations that correspond to such an 
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asymmetric situation suggest that, for a wide range of initial conditions, a given push 

can produce either small or large oscillations. Lazer and McKenna went on to argue 

that the alternate slackening and tightening of cables might also explain the large 

twisting oscillations experienced by a suspension bridge. 

In (Lazer and McKenna, 1987) the authors proposed a nonlinear beam 

equation as a model for vertical oscillations in suspension bridges. They modelled 

the restoring force from the cable as a piecewise linear function of the displacement 

in order to capture the fact that the suspension cables resist elongation, but do not 

resist compression. Later investigations of the qualitative and quantitative properties 

of solutions to this type of asymmetric system suggest that this is a convincing model 

for nonlinearly suspended structures.  

The results on existence, uniqueness, multiplicity, bifurcation, and stability of 

periodic solutions are consistent with the nonlinear behaviour of some suspension 

bridges; see (Chen and McKenna, 1999), (Doole and Hogan, 2000), (Humphreys and 

McKenna, 1999) (Lazer and McKenna, 1990) and (McKenna and Walter, 1987) for 

example. In (McKenna, 1999) and (Moore, 2002), McKenna and Moore extended the 

models of Lazer and McKenna to the coupled vertical and torsional motions of 

suspension bridges. Though they were able to replicate the phenomena observed on 

the Tacoma Narrows Bridge on the day of its famous collapse, the model had several 

shortcomings. First, the treatment of the restoring force from the cables was 

oversimplified; the nonlinear terms in the model describe cables that behave 

perfectly linearly when in tension (regardless of the size of the oscillation) and that 

can lose tension completely. Moreover, the parameter values for which they could 

induce the desired phenomena were physically unreasonable.  
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In (McKenna and O’Tuama, 2001), the authors proposed a modified 

nonlinearity that addressed the shortcomings described above. In (McKenna and 

O’Tuama, 2001) and (McKenna and Moore, 2002) McKenna, O’Tuama, and Moore 

found that smoothing the nonlinearity yields a significant qualitative change in the 

structure of the set of periodic solutions to the nonlinearly coupled vertical-torsional 

system 

2.2 THE McKenna’s MATHEMATICAL MODEL 

In (McKenna, 1999), the author considered a horizontal cross section of the 

centre span of a suspension bridge and proposed an ordinary differential equation 

model for the torsional motion of the cross section. Using physical constants from 

the engineers' reports of the Tacoma Narrows collapse, he investigated this model 

numerically. In the paper, the author formulated a mechanical model for a beam 

oscillating torsionally about equilibrium, and suspended at both or ends by cables. 

He showed how the “small-angle” linearization can remove a large class of large-

amplitude non-linear solutions that can be sustained by extremely small periodic 

forcing terms 

To model the motion of a suspension bridge, McKenna considered the 

horizontal cross section of the suspension bridge as a beam (rod) of  

length 2l  and  

mass m  suspended by non-linear cables, 

( )y t  denote the downward distance of the centre of gravity of the rod from the 
unloaded state and  

( )t  denote the angle of the rod from horizontal at time t 
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The uncoupled differential equation derived by the author in (McKenna, 

1999) for the torsional and vertical motion of a beam assuming that the vertical 

cables never lose tension was given as. 

1

6
cos sin ( )

K
f t

m
        

                                                                           2.1 

2

2K
y y y g

m
    

                                                                                       2.2 

where 1  and 2  are damping constants, 

 g  is the force due to gravity, and  

( )f t  is the external force at time t , 

K  is the spring constant of the nonlinear cable-like springs 

By specifying the initial position and velocity of the cross section and using 

the Runge-Kutta method to solve the initial value problem over long time, McKenna 

demonstrated that under the same small periodic forcing term, small or large 

amplitude periodic motion may result; the ultimate outcome depends on the initial 

conditions.  

2.2.1 Modifications to McKenna’s model 

In (McKenna and Moore, 2000), the authors contended that the methodology 

in the (McKenna, 1999) was somewhat primitive. In (McKenna, 1999), different 

initial conditions were prescribed randomly and the eventual behaviour of the 

solution of the initial value problem was observed. For such a method sometimes the 

motion converged to a large amplitude solution and sometimes to the small near-

equilibrium solution. In their paper, McKenna and Moore presented a more 

systematic approach to the study of the equation for the torsional motion of a cross 

section of the center span. They used Leray-Schauder degree theory to prove that, 
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under certain physical assumptions, the undamped equation has multiple periodic 

solutions. They demonstrated numerically that for small forcing, multiple periodic 

solutions exist and that whether large or small amplitude motion results depends only 

on the initial conditions. Finally, they used a more sophisticated approach to compute 

periodic solutions of the nonlinear differential equation. Using continuation methods, 

they examined the bifurcation properties of periodic solutions as the amplitude of the 

forcing term varies and they demonstrated that bifurcation from single to multiple 

periodic solutions occurs for small forcing. 

In Ben-Gal and Moore, 2006, the authors study the nature of periodic 

solutions of two non-linear spring-mass equations; their non-linear terms were 

similar to earlier models of motion in suspension bridges. Firstly they considered the 

known piecewise linear model and then proposed a smoothed non-linear cable 

model. For the piecewise linear cable force Ben-Gal and Moore were motivated by 

the original Lazer-McKenna model (Lazer and McKenna, 1987) and thus arrive at 

equations similar to ones in equations 2.1 and 2.2. The authors then proposed a 

smoothed non-linear cable force, here they contended that there are some inherent 

flaws in the piecewise model. For example, they stated that the fact that the 

expression for the cable force cannot be differentiated makes it an unlikely candidate 

to describe a physical system. Relying on physical intuition they indicated that the 

transition of an object from resisting to no resisting of a noticeable force is not 

sudden, but must be smooth. They argued that the cable stay do in fact exert some 

resistance when compressed and exert super-linear force when overstretched. 

Motivated by (McKenna and O’Tuama, 2001) and (McKenna and Moore, 2002), 

Ben-Gal and Moore proposed the equation of the smoothed non-linear cable force F. 

as 
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( 1)
Ky
mgF mg e                                                                                                      2.3  

The corresponding differential equation is given as 

( 1) sin( )
Ky
mgy g e t

m m

             
   

                                                                  2.4 

Where y is downwards displacement of the mass from the equilibrium point,  

g is acceleration due to gravity,  

  is damping constant,  

  and   are the amplitude and frequency of forcing term and 

K  is the spring constant of the nonlinear cable-like springs 

They contrast the multiplicity, bifurcation, and stability of periodic solutions for a 

piecewise linear and smooth non-linear restoring force. The authors conclude that 

while many of the qualitative properties are the same for the two models, the nature 

of the secondary bifurcations (period-doubling and quadrupling) differs significantly. 

 

2.3 AN ALTERNATIVE MATHEMATICAL MODEL 

A more complex model as compared to the model suggested by McKenna 

(McKenna, 1999) is found in (Tajcová, 1997). In his paper, the author proposed two 

mathematical models describing a dynamical behaviour of suspension bridges such 

as Tacoma Narrows Bridge. The author’s attention was concentrated on their 

analysis concerning especially the existence of a unique solution. 
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In the first and simpler model proposed by Tajcová, the construction holding 

the cable stays was taken as a solid and immovable object. Then he described the 

behaviour of the suspension bridge by a vibrating beam with simply supported ends. 

The suspension bridge is subjected to the gravitation force, to the external periodic 

force (e.g. due to the wind) and in an opposite direction to the restoring force of the 

cable stays hanging on the solid construction. The model illustrated in figure. 2.1 

shows the bending beam with simply supported ends, held by nonlinear cables, 

which are fixed on an immovable construction 

Figure 2.1 A simple model of a suspension bridge proposed by Tajcová 

In this model the displacement ( , )u x t  of this beam was described by non-linear 

partial differential equation:  

2 4

2 4

( , ) ( , ) ( , )
( , ) ( ) ( , )

u x t u x t u x t
m EI b ku x t W x f x t

t x t
  

     
  

                     2.5 

With  the boundary conditions 

2 2

2 2

(0, ) ( , )
(0, ) ( , ) 0

( , 2 ) ( , ), , (0, )

u t u L t
u t u L t

x x
u x t u x t t x L

 
   

 
      

                                             2.6 
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In the other and more complicated model proposed by Tajcová, the 

construction holding the cable stays was not taken as a solid and immovable object 

but rather as a vibrating string, coupled with the beam of the roadbed by non-linear 

cable stays as shown in Fig 2.2 

 

Figure 2.2 A more complicated model proposed by Tajcová  
 

 

For this model the displacement ( , )u x t  of the beam and ( , )v x t of that of vibrating 

string was given by the author as a coupled non-linear partial differential equation: 

2 4

2 4

2 2

1 1 1 12 2

( , ) ( , ) ( , )
( ) ( ) ( , )

( , ) ( , ) ( , )
( ) ( ) ( , )

u x t u x t u x t
m EI b k u v W x f x t

t x t

v x t v x t v x t
m T b k u v W x f x t

t x t









  
     

  
  

     
  

                          2.7 

With  the boundary conditions 

2 2

2 2

(0, ) ( , )
(0, ) ( , ) (0, ) ( , ) 0

u t u L t
u t u L t v t v L t

x x

 
     

 
                                     2.8 
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In equations 2.5, 2.6, 2.7 and 2.8 

m and m1 mass per unit length of bridge and main cable respectively, 

E         Young’s modulus,  

I       Moment of inertia of cross section, 

b and b1      damping coefficient of bridge deck and main cable respectively, 

k         stiffness of cables (spring constant), 

W and W1 weight per unit length of the bridge and main cable respectively, 

L      length of the centre-span of the bridge, 

T      inner tension of main cable, 

f  and 1f  external time-periodic forcing term (due to wind) on bridge and main 

                        cable respectively. 

In the paper (Tajcová, 1997), the author used the same non-linear springs 

assumption for the cable stays (hangers) as proposed in (Lazer and McKenna, 1990). 

That is the cable stays are considered as one-sided springs, obeying Hooke’s law, 

with a restoring force proportional to displacement when stretched and with no 

restoring force when compressed. Thus if an unloaded cable is expanded downward 

by a distance u  from the unloaded state, the cable should have a resisting force ku  

in other words, ku  if u  is positive, and 0 if u  is negative. 

Finally Tajcová presented his own results concerning existence and 

uniqueness of time-periodic solutions of two chosen models. He used two different 

approaches; the first one was based on the Banach contraction theorem which needs 

some restrictions on the bridge parameters. The second approach works in relatively 

greater generality but with an additional assumption of sufficiently small external 

forces. One conclusion the author arrives at, consistent with the conclusion of other 

researches was that strengthening the cable stays (hangers), which means increasing 

the spring constant k, can paradoxically lead to the destruction of the bridge. That is 



21 
 

in some range of k values the more flexible the cable stays are, the better the bridge 

response to oscillations (large amplitude oscillations settle down more quickly) 

Research in the area of mathematical modeling of suspension bridges started 

by Lazer and McKenna is still continuing with researchers constantly providing 

interesting and useful results. 
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CHAPTER THREE 

METHODOLOGY 

This chapter will start with the derivation of the system of second order 

differential equation governing the vertical and torsional oscillations of a suspension 

bridge. The equations with the necessary engineering constants were used in 

(McKenna, 1999) to explain the probable cause of collapse of the Tacoma Narrows 

Suspension Bridge. Herein, this differential equations is applied to model the vertical 

and torsional oscillations of the Adomi Bridge. Numerical methods specifically the 

fourth order Runge-Kutta method is employed to solve the equations, hence the 

formulation of this method (Runge-Kutta) is presented. This is done indirectly by the 

use of “Matlab simulink” which is imbedded in “Matlab” a computer software 

program. The chapters end with an overview of the capabilities of “Matlab” and 

“Matlab simulink”. 

 
3.1  THE MODEL OF CROSS SECTION OF BRIDGE’S SPAN 

We first develop the differential equation governing the vertical and torsional 

oscillations of the horizontal cross section of the centre span of a suspension bridge. 

We treat the centre span of the bridge as a beam of length L  and width 2l  

suspended by cables (see figure 3.1). 

 

 

 

 

 
Figure 3.1: A simple model of suspension bridge  
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To model the motion of a horizontal cross section of the beam, we treat it as a 

rod of length 2l  and mass m  suspended by cables. Let  

( )y t  denote the downward distance of the centre of gravity of the rod from the 
         unloaded state  

( )t  denote the angle of the rod from horizontal at time t  (see figure 3 2). 
 

We will assume that the cables do not resist compression, but resist 

elongation according to Hooke's Law with spring constant K ; i.e., the force exerted 

by the cable is proportional to the elongation in the cable with proportionality 

constant K . In Figure 3.2 we see that the extension in the right hand cable is 

( sin )y l   hence the force exerted by the right hand cable is 

 

 

( sin ), sin 0
( sin )

0, sin 0

K y l y l
K y l

y l

 





      
  

                                             3.1 

 

Where max( ,0)v v   

 

Similarly the force exerted by the left hand cable is  

 

( sin ), sin 0
( sin )

0, sin 0

K y l y l
K y l

y l

 





      
  

                                                        3.2 

  



24 
 

 

 

 

 

 

 

 

 

 

 
                                   

 

                                                                              ( )y t  

                                                                                

                                                                                 2l  

                                                                                                     ( )t         

 

                    Figure 3.2: A horizontal cross section of suspension bridge  

The derivation is as follows; the potential energy ( . )P E  of a spring with spring 

constant k  stretched a distance x  from equilibrium position is given by 

  21
.

2
P E kxdx kx                                                                                              3.3 

Thus total potential energy ( . )TP E  of right and left hand cable (figure 3.2) will be 

given by 

    2 21
. ( sin ) ( sin )

2TP E K y l y l                                                           3.4 

    Original equilibrium position 

    Immovable rigid beam support 
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The potential energy . RP E  due to weight of rod with mass m  displaced downwards 

from equilibrium by distance y is given by 

. RP E mgy                               

where g  is acceleration due to gravity 

Therefore total potential energy of model . MP E is given by 

 2 2
. ( sin ) ( sin )

2M

K
P E y l y l mgy                                                3.5 

Now we proceed to find the total kinetic energy . MK E  of model. For the vertical 

oscillatory motion the kinetic energy . RK E of the centre of mass of the rod is given 

by 

21
.

2RK E my    

where y is the velocity of the centre of mass of rod. 

The formula for finding the kinetic energy . TK E  about the centroid of the rod due to 

the torsional oscillatory (rotational ) motion is derived from first principles as; 

 2 21
.

6TK E ml    

where   is the angular velocity  

To prove the formula for . TK E  consider an infinitesimal part of the rod with mass 

dm at a distance r  from the centre of rod as shown in figure 3.3. 

 

 

                Figure 3.3 Rod representing cross section of bridge 

-l l r
2l

dm 
dr 
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The kinetic energy . dmK E  of mass dm is given by  

21
. ( )

2dmK E dm r  ,  

r  is linear velocity v of infinitesimal part dm. The mass of rod is m and length 2l, 

thus  

2

m
dm dr

l


 

Substituting this in . dmK E  and integrating over limit ,l l  we have 

2
2 2 21

.
4 6

l

T l

m
K E r dr ml

l

 


 
     

Thus total Kinetic energy of system will be given by  

2 2 21 1
. . .

2 6M R TK E K E K E my ml                                                                 3.6 

Now we form the Lagrangian L 

. .M ML K E P E   

 2 22 2 21 1
( sin ) ( sin )

2 6 2

K
L my ml y l y l mgy               

                  3.7 

According to the principle of least action, the motion of the beam obeys the Euler-

Lagrange equations, 

0
d L L

dt  
       

             and            0
d L L

dt y y

  
    

                               3.8 

We proceed by evaluating the required derivatives needed in the Euler-Lagrange 

equations, 

2

2

3

3

L ml

d L ml

dt












    






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cos ( sin ) ( sin )
L

Kl y l y l  


       
 

Thus    0
d L L

dt  
       

          becomes 

2

cos ( sin ) ( sin )
3

ml
Kl y l y l

         


                                                        3.9 

Similarly we evaluate 

L
my

y

d L
my

dt y






 
  







 

( sin ) ( sin )
L

K y l y l mg
y

          
 

Thus  0
d L L

dt y y

  
    

                becomes 

( sin ) ( sin )my K y l y l mg                                                                3.10 

Simplifying and adding damping terms 1   and 2 y   to equations (3.9) and (3.10) 

respectively, as well as external forcing function ( )f t  to equation (3.9) we get the 

following system of coupled second order differential equations 

1

2

3
cos ( sin ) ( sin ) ( )

( sin ) ( sin )

K
y l y l f t

ml

K
y y l y l y g

m

     

  

 

 

         
 
 
 

          

 

 

                     3.11 

Assuming that the cables never lose tension,  

we have sin 0y l    and hence  

 sin siny l y l    .  
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Thus, the equations (3.11) become uncoupled and the torsional and vertical motion 

satisfy 

1

6
cos sin ( )

K
f t

m
                                                                              3.12 

2

2Ky
y y g

m
                                                                                               3.13 

Equations 3.12 and 3.13 were used in (McKenna, 1999) to explain the cause of 

collapse of the Tacoma Narrows suspension bridge. 

Equation 3.13 model the vertical oscillatory motion and is simply the 

equation for a damped, forced, linear harmonic oscillator and the behaviour of its 

solutions is well known (Blanchard, Devaney and Hall, 2006). The equation for the 

torsional motion is a damped, forced, pendulum equation, which is known to possess 

chaotic solutions (Blanchard, Devaney and Hall, 2006). McKenna approximated 

periodic solutions of (3.12) in (McKenna, 1999). In this dissertation we investigate 

numerically the bifurcation properties of these periodic solutions. 

3.2  FOURTH (4th) ORDER RUNGE-KUTTA METHOD 

The fourth order Runge-Kutta method (RK4) is the most widely used 

numerical method for solving ordinary differential equation (ODE). RK4 belongs to 

the family of explicit Runge-Kutta method.  

Let an initial value problem (IVP) be specified as follows 

( , ),y f t y       0 0( )y t y                                                                                   3.14 

The explicit Runge-Kutta method is then given by 

1
1

s

n n i i
i

y y h b k


                                                                                               3.15 

Where 
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1

2 2 21 1

3 3 31 1 32 2

1 1 2 2 , 1 1

( , ),

( , ),

( , ),

( , ),

n n

n n

n n

s n s n s s s s s

k f t y

k f t c h y a hk

k f t c h y a hk a hk

k f t c h y a hk a hk a hk 



  

   

     





                                         3.16 

s - The number of stages. 

h  - The step size 

(1 ), ( 1,2, , )ij ia j i s b i s    
 
and ( 2,3, , )ic i s  are coefficients to be specified 

for a particular Runge – Kunta (RK) order and chosen so as to minimize local 

truncation error (LTE). The LTE, of an RK method is defined to be the difference 

between the exact and the numerical solution of the IVP at time 1nt t  . These data 

are conveniently displayed in a tableau known as the Butcher array shown in table 

3.1. 

                       Table 3.1: The Butcher array for an explicit RK method 

                                    

2 21

3 31 3,2

,1 ,2 , 1

1 2 1

0 0 0 0

0 0

0 0

0s s s s s

s s

c a

c a a

c a a a

b b b b






 

  



 

For explicit RK method the following conditions are imposed in specifying the 

coefficients. 

0ija    for all j i  

1

, 2 :
s

i ij
j

c a i s


  and   

1

1
s

j
j

b


  
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RK4 is a four-stage RK method. The most popular of all RK methods (of any stage 

number) is the four-stage, fourth order method with corresponding Butcher array 

shown in table 3.2. 

Table 3.2: The Butcher array for the classic four-stage, fourth-order method 

                                                       

1 1
2 2

1 1
2 2

1 1 1 1
6 3 3 6

0 0 0 0 0

0 0 0

0 0 0

1 0 0 1 0

 

Thus equivalently, the RK4 method for the IVP specified in equation 3.14 will be 

given by the following equations: 

1
1 1 2 3 46

1

( 2 2 )n n

n n

y y h k k k k

t t h





    

 
                                                                         3.17 

Where 1ny  is the RK4 approximation of 1( )ny t  and 

1

1 1
2 12 2

1 1
3 22 2

4 3

( , )

( , )

( , )

( , )

n n

n n

n n

n n

k f t y

k f t h y hk

k f t h y hk

k f t h y hk



  

  

  

                                                                                     3.18 

Thus, the subsequent value (yn + 1) is determined by the current value (yn) plus the 

product of the size of the interval (h) and an estimated slope. The slope is a weighted 

average of slopes: 

 k1 is the slope at the start of the interval; 

 k2 is the slope at the midpoint of the interval, using slope k1 to determine the 

value of y at the point tn + h / 2 using Euler's method; 

 k3 is again the slope at the midpoint, but now using the slope k2 to determine 

the y-value; 

 k4 is the slope at the end of the interval, with its y-value determined using k3. 
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In averaging the four slopes, greater weight is given to the slopes at the midpoint: 

1
1 2 3 46 ( 2 2 )slope k k k k     

The RK4 method is a fourth-order method, meaning that the error per step is 

on the order of h5, while the total accumulated error has order h4. The above 

formulae are valid for both scalar- and vector-valued functions (i.e., y can be a vector 

and f an operator). The fourth-order Runge–Kutta scheme requires four function 

evaluations per time step. However, it also has superior stability as well as excellent 

accuracy properties. These characteristics, together with its ease of programming, 

have made the fourth-order RK one of the most popular schemes for the solution of 

ordinary and partial differential equations. A straightforward implementation of RK4 

method applied to a system of ODE is as follows: 

We wish to solve the system of differential equations 

1
1 1 2

2
2 1 2

1 2

( , , , , )

( , , , , )

( , , , , )

n

n

n
n n

dy
f x y y y

dx
dy

f x y y y
dx

dy
f x y y y

dx















 

The pseudo-code is given by: 

x - scalar; y, k1, k2, k3, k4, slope are vectors; n number of equations; h is step size. 

On exit, both x and y are updated for the next station in marching. 

SUB RK4 ( x , y , n , h ) 

CALL Derivs ( x , y , k1 ) 

DO i = 1 , n 

ym ( i ) = y ( i ) + k1 ( i ) * h / 2 

END DO 

xm = x + h / 2 

CALL Derivs ( xm , ym , k2 ) 

DO i = 1 , n 

ym ( i ) = y ( i ) + k2 ( i ) * h / 2 
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END DO 

CALL Derivs ( xm , ym , k3 ) 

DO i = 1 , n 

ym ( i ) = y ( i ) + k3 ( i ) * h 

END DO 

xm = x + h 

CALL Derivs ( xm , ym , k4 ) 

DO i = 1 , n 

slope ( i ) = ( k1 ( i ) + 2 * ( k2 ( i) + k3 ( i ) ) + k4 ( i ) ) / 6 

y ( i ) = y ( i ) + slope ( i ) * h 

END DO 

x = xm 

END 

SUB Derivs ( x , y , f ) 

f ( 1 ) = function-1 ( x , y ) 

f ( 2 ) = function-2 ( x , y ) 

f ( n ) = function-n ( x , y ) 

END 

A more complex implementation of RK4 method is available in commercial 

mathematical packages such as MATLAB, MAPLE, MATHCAD etc. The 

implementation in such packages will routinely consider adaptive steps techniques. 

This method adapts the step size h during the course of the iteration in attempt to 

keep the LTE within some specified bound. An example of such method is the 

Runge-Kutta-Fehlberg Variable-Step method (RKF45) 

 

3.3  COMPUTER ALGEBRAIC SYSTEM “MATLAB” 

MATLAB (an abbreviation of MATrix LABoratory) is a computer algebraic 

package, registered trademark of computer software, now at version 7.10 (release 

R2010a) developed by the Math Works Inc. The software is widely used in many of 

science and engineering fields. MATLAB is an interactive program for numerical 

computation and data visualization. MATLAB is supported on Unix, Macintosh and 
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Windows environments. MATLAB integrates mathematical computing, 

visualization, and a powerful language to provide a flexible environment for 

technical computing. The open architecture makes it easy to use MATLAB and its 

companion products to explore data, create algorithms and create custom tools, that 

provide early insights and competitive advantages. Known for its highly optimized 

matrix and vector calculations, MATLAB offers an intuitive language for expressing 

problems and their solutions both mathematically and visually. Typical uses include: 

• Numeric computation and algorithm development. 

• Symbolic computation (with the built-in Symbolic Math functions). 

• Modeling, simulation and prototyping. 

• Data analysis and signal processing. 

• Engineering graphics and scientific visualization. 

MATLAB offers engineers, scientists, and mathematicians an intuitive 

language for expressing problems and their solutions mathematically and 

graphically. It integrates computation, visualization, and programming in a flexible, 

open environment. Complex numeric and symbolic problems can be solved in a 

fraction of the time required with other languages such as C, Fortran, or Java. 

Simulink (Simulation and Link) is an extension of MATLAB by Mathworks 

Inc. It works with MATLAB to offer modeling, simulating, and analyzing of 

dynamical systems under a graphical user interface (GUI) environment. The 

construction of a model is simplified with click-and-drag mouse operations. Simulink 

includes a comprehensive block library of toolboxes for both linear and nonlinear 

analysis. Models are hierarchical, which allow using both top-down and bottom-up 

approaches. As Simulink is an integral part of MATLAB, it is easy to switch back 
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and forth during the analysis process and thus, the user may take full advantage of 

features offered in both environments. 

• A graphical, interactive software tool for modeling, simulating, and 

analyzing dynamic systems 

• Enables rapid construction of "virtual prototypes" to explore design 

concepts at any level of detail with minimal effort 

• Ideally suited to linear, nonlinear, continuous-time and discrete-time 

systems 

• Commonly used in control system design, DSP design, communication 

system design, and other simulation applications 

• A graphical plug-in for MATLAB®, offering additional access to a range of 

non-graphical analysis and design tools 

Traditional approaches to system design typically include building a 

prototype followed by extensive testing and revision. This method can be both time-

consuming and expensive. As an effective and widely accepted alternative, 

simulation is now the preferred approach to engineering design. Simulink is a 

powerful simulation software tool that enables you to quickly build and test virtual 

prototypes so that you can explore design concepts at any level of detail with 

minimal effort. By using Simulink to iterate and refine designs before building the 

first prototype, engineers can benefit from a faster, more efficient design process. 

Simulink provides an interactive, block-diagram environment for modeling 

and simulating dynamic systems. It includes an extensive library of predefined 

blocks that you can use to build graphical models of your systems using drag-and-

drop operations. Supported model types include linear, nonlinear, continuous-time, 

discrete-time, multirate, conditionally executed, and hybrid systems. Models can be 
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grouped into hierarchies to create a simplified view of components or subsystems. 

High-level information is presented clearly and concisely, while detailed information 

is easily hidden in subsystems within the model hierarchy. 

As shown in table 3.3 (a composite of a couple of tables in the MathWorks 

MATLAB Function Reference, Vol. 1), currently in MATLAB there are seven ODE 

solvers with varying speed of execution, accuracy and suitability for particular type 

of ODE. The ODE solvers in MATLAB fall, broadly, into two types: solvers for non-

stiff and stiff problems. An (ODE) problem is said to be “stiff” when stability 

requirements force the solver to take a lot of small time steps, this happens when 

there is a system of coupled differential equations that have two or more very 

different scales of the independent variable over which integrating is done. 

The solver ode45 is based on an explicit Runge-Kutta (4,5) formula of the 

Dormand-Prince pair (Dormand and Prince, 1980). That means the numerical solver 

ode45 combines a fourth order method and a fifth order method, both of which are 

similar to the classical fourth order Runge-Kutta (RK4) method discussed above. The 

modified RK varies the step size, choosing the step size at each step in an attempt to 

achieve the desired accuracy. Therefore, the solver ode45 is suitable for a wide 

variety of initial value problems in practical applications. In general, ode45 is the 

best function to apply as a “first try” for most problems. 
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Table 3.3: ODE solver types in MATLAB 

 
  

Solver Problem 
Type 

Order of 
Accuracy

Mathematical  
Method 

When to use 

ode45 non-stiff medium Explicit Runge-Kutta (4,5) 
formulation. 

Most of the time. This 
should be the first 
solver to try. 

ode23 non-stiff low Explicit Runge-Kutta (2,3) 
formulation. 

If using crude error 
tolerances or solving 
moderately stiff 
problems. It may be more 
efficient than ode45 at 
crude tolerances. 

odell3 non-stiff low to 
high 

Variable order Adams-
Bashforth-Moulton predictor-
evaluate-corrector-evaluate 
(PECE) method. 

If using stringent error 
tolerances or solving a 
computationally 
intensive ODE file. 
This one may be more 
efficient than ode45 at 
strict tolerances. 

odel5s stiff low to 
medium 

Variable order solver based 
on numerical differentiation 
formulas (NDF). 

If ode45 is slow (stiff 
systems). Try this one 
if ode45 failed. 

ode23s stiff low Modified 

Rosenbrock formula of order 
2. 

If using crude error 
tolerances to solve stiff 
systems. This one may 
work at crude tolerance 
when ode 15s fails. 

ode23t moderately 
stiff 

low The trapezoidal rule using a 
"free" interpolant. 

If the problem is only 
moderately stiff and 
you need a solution 
without numerical 
damping. 

ode23tb stiff low An implicit Runge-Kutta 
formula with first stage 
trapezoidal rule and second 
stage backward 
differentiation formula of 
order 2 (TR-BDF2). 

If using crude error 
tolerances to solve stiff 
systems. This one may 
work when ode 15s 
failed at crude 
tolerances. 
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The Dormand-Prince method (DOPRI) is a member of the Runge–Kutta 

family of ODE solvers. More specifically, it uses six function evaluations to 

calculate fourth- and fifth-order accurate solutions. The difference between these 

solutions is then taken to be the error of the (fourth-order) solution. This error 

estimate is very convenient for adaptive stepsize integration algorithms.  

Other similar integration methods are Fehlberg (RKF) and Cash–Karp 

(RKCK). The Dormand–Prince method has seven stages, but it uses only six function 

evaluations per step because it has the FSAL (First Same As Last) property: the last 

stage is evaluated at the same point as the first stage of the next step. 

Dormand and Prince choose the coefficients of their method to minimize the 

error of the fifth-order solution. This is the main difference with the Fehlberg 

method, which was constructed so that the fourth-order solution has a small error. 

For this reason, the Dormand–Prince method is more suitable when the higher-order 

solution is used to continue the integration, a practice known as local extrapolation 

(Shampine 1986; Hairer, Nørsett & Wanner 2008, pp.178–179). 

Dormand–Prince is currently the default method in MATLAB and GNU 

Octave's ode45 solver and is the default choice for the Simulink's model explorer 

solver.  

A Fortran free software implementation of the algorithm called DOPRI5 is 

also available at http://www.unige.ch/~hairer/prog/nonstiff/dopri5.f (http://en.wikip-

edia.org/wiki/Dormand%E2%80%93Prince_method, accessed April 10th 2011). 
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In this thesis we attempt to apply the existing mathematical models of 

suspension bridges to the Adomi Bridge in Ghana. By the recommendations 

presented in Table 3.3 above, we perform numerical experiments and simulation on 

the mathematical model of the Adomi Bridge in the next chapter.  
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CHAPTER FOUR 

DATA COLLECTION AND ANALYSIS 

4.1  MODEL PARAMETERS FOR ADOMI BRIDGE 

The data required for modeling the oscillations of the Adomi Bridge is the 

physical properties of the materials which were used in constructing the Bridge. Also 

necessary is the detailed geometric configuration of the Bridge. The following 

information was gathered from a comprehensive engineering report (Scott and 

Adams, 1958) on the Adomi Bridge. 

 The bridge is a two hinged latticed steel arched structure of 805 feet clear span, 

bearing on concrete abutments founded on rock on each bank of the river. The 

arch is of crescent form. 

 The deck is suspended from the arch at 35 feet intervals by 2¼ inch high tensile 

steel cables, the cables consist of 127 wires, 0.164 inches diameter with a 

breaking stress of 100-110 tons/square inch before galvanizing 

 The deck is of composite reinforced concrete and steel construction. The deck 

slab is made up of 23 reinforced concrete panels each 35 feet giving a total length 

of 805 feet. 

 The carriageway has a width of 22 feet surfaced with a coat of mastic asphalt 1 

inch thick. On each side are cantilevered footways of 4 feet 9inches wide. The 

footways have natural concrete finish with wooden floats, and protected by 

galvanized steel handrails with teak capping. 

 The arch itself is 40 feet wide overall. The rise of the lower chord is 158 feet 6 

inches above the hinges, and the overall depth of the truss is 32 feet at the centre. 
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 Weight of steel in main span is 880 tons, this is made up of 580 tons for the arch 

steel work and 300 tons for the deck steelwork. The total volume of concrete of 

the entire deck is 520 cubic yards (≈ 400 m3) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.1: Mathematical model of cross section of Adomi Bridge 

Figure 4.1 shows the mathematical model of the vertical and torsional motion 

of a cross section of the Adomi Bridge. The differential equations modeling the 

torsional and vertical motion of a suspension bridge was proposed by McKenna 

(1999) and derived in Chapter 3 as; 

1
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The parameters needed are m, mass per unit length of the bridge deck. For the 

Adomi Bridge, this is evaluated as (from Engineering details of Bridge above). 

(300 400*2.5 6.705*0.025*245.36*2.5 2*1.45*0.02*245.36*2.5) / 245.36

5.862 / 5862 / 6,000 /

m

m tons m kg m kg m

   
  

  

This value of m fairly compares with bigger suspension bridges as listed in 

(Tajcová, 1997); Tacoma – 8,500 kg/m, Golden Gate – 31,000 kg/m, Bronx-

Whitestone – 16,000 kg/m.  

The real value of the stiffness of the cable stays k in our mathematical model 

cannot be easily determined. Based on observations during the collapse of the 

Tacoma Bridge, the value of K for the Bridge was approximated as 1,000 kg/s2 per 

foot (0.3m).Thus stiffness 1 23,333K kgm s  for the Tacoma Bridge. In this thesis 

we will investigate the mathematical model with vastly varying value of the stiffness 

K (between 1,000 and 300,000 kgm-1s-2). 

The damping coefficients 1 and 2  also are not easily determined, again for 

the Tacoma Bridge a value of 0.01 was used in (McKenna, 1999), we also use same 

value of 0.01 

In modeling the collapse of the Tacoma Bridge, the forcing function ( )f t  

was assumed to be sinusoidal with constant amplitude   of form ( ) sinf t t  , the 

value of   was chosen between 1.2 to 1.6, this was based on the fact that the 

frequency of motion of the bridge before the collapse was about 12 to 14 cycles per 

minute. The value of   specified between 0.02 - 0.06 was so chosen, in order to 

induce oscillations of three degrees near equilibrium in the linear model (McKenna, 

1999). In this thesis we use similar values for the forcing term as used for modeling 

the Tacoma Bridge. We also investigate the Adomi Bridge responses to different 
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forcing term like periodic impulsive force, periodic random forces and the 

combination of these. 

4.2  NUMERICAL EXPERIMENTS 

4.2.1 Vertical Motion 

Firstly we consider the vertical motion of the bridge which is the familiar 

forced harmonic oscillator. 

2 2

2 2Ky Ky
y y g y y g

m m
                                                                      4.3 

This is standard second order linear ordinary differential equation; with a known 

analytical solution: 

    2 2 28 81 12
2 22 2cos sin

2

t
k k

m m

mg
y e A t B t

K


 



                                       4.4 

The constants A and B are determined by the initial conditions (initial displacement 

and initial velocity of the mass). Due to the presence of damping (i.e., because of the 

2
2

t

e


term), we point out that  

( )
2

mg
y t

K
  as t  . 

Therefore the long term response of this system is independent of the initial 

conditions and is driven entirely by the external forcing. 

As we know the damping coefficient 2 is usually small (in our model we 

have settled on a value of 0.01) so the square of it can be neglected as compared to 

the value of 8K
m  hence equation 4.4 simplifies to 

    2
2 22 cos sin

2

t
k k

m m

mg
y e A t B t

K


                                                            4.5 

Given assuming that K=3000 

 0.005 cos sin 10ty e A t B t                                                                              4.6 

2 0.01, 6000, 10m g   
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Considering initial condition of (0) 14, (0) 0y y  , we have 4, 0.02A B  . Final 

solution is thus:  

 0.005( ) 4cos 0.02sin 10ty t e t t    

An initial condition of (0) 10, (0) 0y y  , yields 0, 0A B  which corresponds to 

equilibrium position of the bridge deck under its own weight. In this case equation is 

simply: 

( ) 10y t  . 

The original differential equation for the vertical motion after substituting 

parameters in equation 4.3 becomes 

0.01 10y y y                                                                                                 4.7 

Further on we use the MATLAB SIMULINK to simulate the numerical solution of 

the differential equation and compare it with the analytical solution to determine the 

accuracy of the numerical method. 

Figure 4.2 shows the SIMULINK scheme and the numerical solution of the 

differential equation in form a graph of y (vertical displacement) against t (time), for 

t up to 1500 seconds. In table 4.1, we present the values of the solution of the 

differential equation analytically (in closed form) and numerically by SIMULINK 

over time ranging from t=0 to t =6000 at varying intervals. A comparison of the 

values shows very little error which confirms the accuracy of the chosen algorithm in 

the SIMULINK scheme as well as the scheme itself for the solution of the equation. 

The solver used in the SIMULINK program is the variable step fourth and 

fifth order solver RK45, which as stated in Chapter 3 is based on the  Dormand-

Prince method (DOPRI), a member of the Runge–Kutta family of ODE solvers. The 

solver options in the program was set as follows; Type – Variable-step, solver – 

ode45 (Dormand-Prince), Max step size – auto, Min step size – auto, Initial step size 
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– auto, Relative tolerance – 1e-6, Absolute tolerance – auto, Shape preservation – 

Disable all. 

The time taken to solve the equation on 64 bit core 2 duo laptop with 4gb of 

memory for a time up to t=6000 was 10 seconds, which for all purpose can be 

deemed to be fast enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: SIMULINK Scheme for vertical motion and the bridge 
response, y (0) =14 
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Table 4.1: Vertical motion results; numerical and analytical solution 

 
  

Time 
Numerical 
Solution 

SIMULINK 

Analytical Solution 
(Closed form) 

Absolute 
relative error 

0 14.00000000 14.00000000 0.00000000
0.1 13.98002332 13.98002282 0.00000004
0.2 13.92031940 13.92031742 0.00000014
0.3 13.82152421 13.82151978 0.00000032
0.4 13.68466343 13.68465566 0.00000057
0.5 13.51114191 13.51112995 0.00000089
0.6 13.30272920 13.30271230 0.00000127
0.7 13.06154150 13.06151901 0.00000172
0.8 12.79002026 12.78999164 0.00000224
0.9 12.49090737 12.49087223 0.00000281

1 12.16721756 12.16717563 0.00000345
2 8.37007107 8.36998057 0.00001081
3 6.10178894 6.10176667 0.00000365
4 7.42221424 7.42236122 0.00001980
5 11.08769484 11.08792920 0.00002114
6 13.72166444 13.72174871 0.00000614
7 12.92479517 12.92457620 0.00001694
8 9.46021205 9.45983172 0.00004021
9 6.52390816 6.52372674 0.00002781

10 6.79679825 6.79705211 0.00003735
20 11.49433323 11.49351302 0.00007136
30 10.51277827 10.51405368 0.00012131
40 7.82926076 7.82803014 0.00015721
50 13.00144605 13.00197844 0.00004095
60 7.17257393 7.17322426 0.00009066
70 11.79796260 11.79607703 0.00015985
80 9.68804089 9.69069640 0.00027403
90 8.87115882 8.86858334 0.00029040

100 12.08438405 12.08594881 0.00012947
1000 10.01554304 10.01526855 0.00002741
1500 9.99970403 9.99974506 0.00000410
2000 9.99993837 9.99993411 0.00000043
3000 9.99999882 9.99999881 0.00000000
4000 9.99999999 9.99999999 0.00000000
5000 10.00000000 10.00000000 0.00000000
6000 10.00000000 10.00000000 0.00000000
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For further verification Figure 4.3 show the SIMULINK scheme and the 

graph of y plotted against t for initial condition y(0)=10 and yꞌ(0)=0. As expected the 

solution yields exactly y(t)=10 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
             Figure 4.3: SIMULINK Scheme for vertical motion and the bridge 

response, y (0) =10 
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4.2.2 Torsional Motion 

Now we consider the torsional motion of the bridge which is a non-linear 

second order differential equation of the form; 

1 1

6 6
cos sin ( ) cos sin ( )

K K
f t f t

m m
                                       4.8 

Assuming we consider only small values of θ (an assumption engineers make 

for the motion of a bridge), then we can linearize equation 4.8 and rewrite it as 

1

6
( )

K
f t

m
                                                                                                  4.9 

Once again a forced harmonic oscillator with analytical solution of form 

    1 2 224 241 12
1 12 2( ) cos sin ( )

t
k k

pm mt e A t B t t


   


                              4.10 

Where ( )p t  is the particular solution dependent on forcing function ( )f t . 

A and B are constants determined by initial conditions (0) and (0) . 

If the forcing function is assumed to be sinusoidal with small amplitude then no 

matter the initial conditions, the long-term behaviour of this linearized system will be 

sinusoidal with small amplitude signifying stability of the model and hence the 

stability of the suspension bridge regardless of the initial conditions. 

We now proceed to investigate numerically the response of the non-linear 

system (equation 4.8), substituting 1 0.01, 6000m    in equation yields 

0.01 0.001 cos sin ( )K f t                                                                         4.11 

Similarly as in the case of investigating the Tacoma Bridge (McKenna, 1999) 

we first of all simply consider the sinusoidal forcing function 

( ) sin 0.05sin1.3f t t t     

In our first trial we will verify our SIMULINK scheme and the accuracy of 

the ODE solver, as well as test the behaviour of the mathematical model. For this we 
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choose K=0 which is equivalent to suspension bridge without cable stay! The result 

of this is obvious, the system just collapses.  

Figure 4.4 shows the SIMULINK scheme for the differential equation 

(equation 4.11), figure 4.5 depicts the solution in form a graph of   against t, for t up 

to 1800 seconds, as well as the phase portrait which is the graph of angular velocity 

 against torsional angle . The initial conditions considered are as in the case of the 

Tacoma Bridge; (0) 1.2 , (0) 0radians   .The solver options in the program was 

set as follows; Type – Variable-step, solver – ode45 (Dormand-Prince), Max step 

size – auto, Min step size – auto, Initial step size – auto, Relative tolerance – 1e-9, 

Absolute tolerance – auto, Shape preservation – Disable all 

The plots in figure 4.5 show results consistent with the expected outcome 

which is a total failure and unstable nature of a suspension bridge without cable 

stays! The torsional angle increases rapidly from the initial angle of 1.2 radians to 

over 3.142 radians (180 degrees) in 70 seconds. This means the bridge completely 

flips over! Signifying a complete destruction as expected. In our analysis of the 

results further on, any torsional angle exceeding 1.571 radians (90 degrees) will 

signify instability and ultimate failure.  

The plots in figure 4.5 show the torsional angle settling around 5 radians in 

the long term. Of course the bridge would have long collapsed by then! The phase 

portrait in figure 4.5 shows that the angular velocity with an initial value of zero (0 

rad/s) does not exceed 0.08rad/s over the entire period, meaning the system violently 

twists without accelerating which again indicate instant instability. 

With K=0 and ( ) sin 0.05sin1.3f t t t    equation 4.11 becomes 

0.01 0.05sin1.3t                                                                                      4.12 

Subject to initial conditions (0) 1.2, (0) 0    
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The analytical solution of this equation is given as: 

0.01( ) 5.046154 3.845926 0.029584sin(1.3 ) 0.000228cos(1.3 )tt e t t      

In table 4.2, we present the values of the solution of the differential equation 

analytically (in closed form) and numerically by SIMULINK over time ranging from 

t=0 to t =1800 at varying intervals. A comparison of the values shows very little error 

which confirms the suitability of the SIMULINK scheme as well as the accuracy of 

the chosen algorithm in the SIMULINK program for the solution of the equation. 

Table 4.2: Trial torsional motion results; numerical and analytical solution 

Time 
Numerical Solution 

SIMULINK 
Analytical Solution 

(Closed form) 
Absolute 

relative error
0 1.20000000 1.20000000 0.00000000

0.1 1.20001083 1.20001082 0.00000001

0.2 1.20008636 1.20008633 0.00000002

0.3 1.20029012 1.20029007 0.00000004

0.4 1.20068341 1.20068333 0.00000007

0.5 1.20132429 1.20132418 0.00000010

1 1.20992871 1.20992835 0.00000030

2 1.26132722 1.26132643 0.00000062

3 1.33440468 1.33440403 0.00000048

4 1.37705822 1.37705808 0.00000010

5 1.38120925 1.38120927 0.00000001

10 1.55357913 1.55357914 0.00000001

20 1.87466908 1.87466910 0.00000001

30 2.16844823 2.16844832 0.00000004

40 2.43900148 2.43900142 0.00000003

50 2.68914931 2.68914928 0.00000001

100 3.65891689 3.65891735 0.00000013

200 4.50561804 4.50561635 0.00000037

400 5.00521705 5.00521440 0.00000053

1000 5.06296764 5.06296848 0.00000017

1200 5.01717679 5.01717563 0.00000023

1500 5.02259121 5.02258948 0.00000034

1800 5.03252323 5.03252001 0.00000064
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Figure 4.4: SIMULINK Scheme for torsional motion of bridge deck 
 

theta (0)=1.2
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Figure 4.5: Torsional motion; Bridge response for K=0, f(t)=0.05sin1.3t and 

Phase potrait 
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4.2.3 Numerical result for torsional motion 

In the mathematical model investigated by McKenna (1999) the forcing term 

was restricted to a sinusoidal form ( ) sinf t t  which understandably does not 

accurately depict the nature of the forces acting the bridge. The forces acting on the 

bridge is of varying (random) nature and includes forces due to wind, earthquakes, 

hurricanes, dynamic impacts loads from vehicles etc. In this thesis, apart from the 

sinusoidal forcing term, additional forcing term from a signal generator (SG) and 

pulse generator (PG) available in the SIMULINK program are considered. These 

forces though periodic are more realistic and can simulate some of the actual forces 

acting on the bridge. Figure 4.6, figure 4.7 and figure 4.8 shows respectively the 

nature of the force SG, PG and the sum of the two referred to as forcing function 

(FF). FF is feed into the system after multiplication by the factor in X factor block 

(see SIMULINK scheme in figure 4.4) 

 
Figure 4.6: Signal generator; generates random periodic forces, amplitude = 

0.025, frequency = 1.0 rad/sec 
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Figure 4.7: Pulse generator; generates random impulse forces, amplitude = 0.10, 

period = 60 seconds, pulse width = 3seconds 
 
 

 
Figure 4.8: Combination of the Pulse generator and Signal generator 
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In this section we perform numerical experiment by using the SIMULINK 

scheme in figure 4.4, we vary the K values which corresponds to changing the 

stiffness of the cable stays. We also use different values for the X factor block which 

correspond to varying the forcing function acting on the bridge. The forcing function 

in McKenna (1999) which is ( ) 0.05sin1.3f t t  is left unaltered throughout the 

whole set of experiment. All the simulations are performed for the period t=0 to t 

=3600 secs  

 Experiment 4.1: K=1,000 , X factor = 0. This corresponds to stiffness of cable 

stays equals 1,000 kgm-1s-2 and ( ) 0.05sin1.3f t t  as the only forcing function 

acting on the system. The results of this experiments is shown in figure 4.9, 

which is a graph of torsional angle (angle of rotation of the deck) in radians to 

time t in seconds. Figure 4.10 is a phase portrait which is a plot of angular 

velocity ( ) against torsional angle ( )   

 
Figure 4.9: Experiment 4.1; Bridge response (Stable) 
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Figure 4.10: Experiment 4.1; Phase portrait (Spiral sink)  

The plot in figure 4.9 indicates that, the amplitude of the oscillations of the 

bridge subsides, the peak value of torsional angle in the region close to of the end of 

the period (3600 seconds) is about 0.07 radians (4 degrees). The phase portrait of the 

system shown in figure 4.10 is that of a spiral sink. Here we observe that the long 

term behaviour of the bridge as stable. 

 Experiment 4.2: K=2,400 , X factor = 0. This experiment corresponds to the 

system used to model the Tacoma Bridge collapse in McKenna (1999). The plot 

of torsional angle against t is shown in figure 4.11 and the phase portrait in figure 

4.12 
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The plot in figure 4.11 indicates that, the amplitude of the oscillations of the 

bridge is sustained, the peak value of torsional angle in the region close to of the end 

of the period (3600 seconds) is about 0.8 radians (45 degrees). The phase portrait of 

the system shown in figure 4.12 is that of a Limit cycle. Here we observe the long 

term behaviour of the bridge as Unstable, which leads to ultimate failure 

(collapse).This was how Lazer and McKenna explained the reason for the collapse of 

the Tacoma Bridge. 

 

Figure 4.11: Experiment 4.2; Bridge response (Unstable) 
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Figure 4.12: Experiment 4.2; Phase portrait (limit cycle)  

 

 Experiment 4.3: K=100,000, X factor = 0. This experiment is equivalent to 

modeling the oscillations of a stiff bridge for example the Adomi Bridge. The 

plot of torsional angle against t is shown in figure 4.13 and the phase portrait in 

figure 4.14 

The plot in figure 4.13 indicates that, the amplitude of the oscillations of the 

bridge rapidly subsides, the peak value of torsional angle in the region close to of 

the end of the period (3600 seconds) is about 0.0005 radians (0.03 degrees). The 

phase portrait of the system shown in figure 4.14 is that of a spiral sink. Here we 

observe that the long term behaviour of the bridge as very stable. 
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From the results of the three experiments, it can be seen that with only a 

sinusoidal forcing term acting on the bridge, a cable stay with K=1000 is stable and 

will withstand the initial large torsional angle, whilst that with K=2400 is unstable 

and will collapse. This is an unexpected result and is a kind of paradox. Such a result 

led Lazer, McKenna and other researchers to conclude that making the cable stay of 

suspension bridges stiffer does not always make it less prone to large oscillations. 

Using the SIMULINK scheme in figure 4.4, additional numerical 

experiments are conducted (K between 1,000 and 300,000, X factor between 0 and 

50) results of which are not included in this thesis. Conclusions drawn from these 

numerical experiments are discussed in chapter 5. 

 

 

Figure 4.13: Experiment 4.3; Bridge response (Very stable) 
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Figure 4.14: Experiment 4.2; Phase portrait (Spiral sink) 
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4.3  ADOMI BRIDGE RESULTS 

As stated earlier on, Adomi Bridge is not truly a suspension bridge in a 

traditional sense. This is because the cable stays are connected to a rigid steel truss 

arches instead of being connected to another “vibrating flexible” main cable. This 

makes the Bridge very rigid and as a result, there are no noticeable oscillations under 

normal operating conditions. The cable stays of the Bridge are subjected to only 

small deformations, thus Hooke’s law is applicable, and a good estimate of the 

stiffness of the cable stay is given by 

AE
K

ld


 

α is coefficient that account for cable fatigue and imperfections (0.5) 

A is effective cross sectional area of cable stay,  

E is Young modulus of material used for the cable stay (steel -2 x1011 Nm-2) and  

l is length of the cable. (48.2 m) 

d is the spacing between the cable stays (10.7 m) 

For the Adomi Bridge, the value of K evaluated this way gives approximately 

K ≈ 300,000 kgm-1s-2  

For such values of K, and an X factor value set at 50, the response of the 

Bridge is similar to figure 4.13 of experiment 4.3. This indicates that, the Adomi 

Bridge is not affected by large torsional oscillations and any initial oscillation started 

under any condition will quickly subside. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

From the various numerical experiments performed using the SIMULINK 

scheme in chapter 4, it was observed that, at a constant mass m of the deck of the 

bridge, if other small random or impulsive forcing terms are considered in addition to 

the sinusoidal force, then increasing the stiffness K of the cable stays of the 

suspension bridge always results in a more stable response to the initial torsional 

angle. This is a likely result, so we conclude that, it is certainly incorrect to consider 

only a sinusoidal forcing term as in the mathematical  model of Lazer – McKenna 

which led to some paradoxical results discussed in chapter 4. 

Keeping in mind that the magnitude of the non-linear term (sin cos  ) in the 

equation for the torsional motion (equation 4.1) is proportional to K
m  (the ratio of 

the cable’s spring constant (stiffness) to the mass of the roadbed). We expect then 

that by increasing m at a fixed value of K, we reduce the effect of the nonlinearity 

and therefore better control the oscillation of the roadbed. 

We conclude that for steel arched-suspension bridge similar to the Adomi 

Bridge, their rigidity makes them withstand any form of large amplitude oscillations. 

A major inadequacy of the dissertation is the inherent over simplification of 

the model adopted to represent the suspension bridge. Only a typical cross section at 

the centre of the Bridge’s span is taken into account for the derivation of the system 

of non-linear differential equations.  

We recommend a more accurate model which should take into consideration 

the full length of the Bridge. This will result in a system of non-linear partial 

differential equation as the model instead of the current system of non-linear 

ordinary differential equation.  
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