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Dynamic programming is a useful mathematical technique for making a sequence of
interrelated decisions. It provides a systematic procedure for determining the optimal
combination of decisions. In contrast to linear programming, there does not exist a standard
mathematical formulation of “the” dynamic programming problem. Rather, dynamic
programming is a general type of approach to problem solving, and the particular equations
used must be developed to fit each situation. Competitive order processing or product
allocation that aims to deliver the reguired quantity, of supply (goods) and services to the
customers at the requested time demands“preciSe planning’and control mechanisms. The main
objective of this research is to apply dynamic programming in solving the product allocation
problem of a distribution company in Hohoe municipality. The aim is to minimize the cost of
product allocation to customers or market centres and to have optional returns. And
importantly to adopt more scientific approach in the runming of the company in order to
maximize returns. In solving «theé = problem, dynamic programming algorithm and
mathematical method formulated. Data collected from the company were used to solve the
model using MATLAB and EXCEL of dynamic programming algorithm. It is observed from
the analysis that the distribution eompany operates based.on Current market structure
principles such as; if it closes downlitloses:its;goodwill created, if it closes down it loses all
the customers,-with the hope that conditions may improve later, say in the long run for the
firm to enjoy optimal return or at least breakeven and to maintain its skilled personnel. The
company which has its optimal allocation policy based on the above market principles has
optimal return of GHC 252,000.00. It is evident that, using dynamic programming approach,
the optimum policy yields an optimum return of GHC 260,000.00. This thesis models product

distribution problem as a dynamic programming problem. The model developed could be

adopted for any problem that can be modelled as such.
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CHAPTER 1

1.0 INTRODUCTION

Dynamic programming is a very useful technique for making a sequence of interrelated
decisions. It requires formulating an appropriate recursive relationship for each individual
problem Eddy (2004). However, it provides a great computational savings over using
exhaustive enumeration to find the best combination of decisions, especially for large
problems. For example, if a problem has ten(10)!stage§ with!ten(10) states and ten(10)
possible decisions at each stage, then exhaustive enumeration must consider up to ten(10)
billion combinations, whereas dynamic programming need make no more than a
thousand calculations (10 for each state at each stage). This study has considered only
dynamic programming with a finite number of stages.

In this chapter of the thesis, we shall give an.overview of dynami¢ programming model; a
brief description of the problem statement of the thesis isralso-presented as well as the

objectives, the methodology, the justification and the organization of the thesis.

1.1 BACKGROUND OF STUDY

Dynamic programming is a method for solving-complex problems in mathematics and

e

computer seience by breakinmg™hem down into simpler sub problems. It is applicable to

problems exhibiting the properties of overlapping, sub problems which are only slightly
e

smaller and optimal substructure. When applicable, the method takes far less time than
naive methods. The key idea behind dynamic programming is quite simple. In general, to

solve a given problem, we need to solve different parts of the problem (sub problems),

then combine the solutions of the sub problems to reach an overall solution. Often, many



of these sub problems are really the same. The dynamic programming approach seeks to

solve each sub problem only once, thus reducing the number of computations.

This is especially useful when the number of repeating sub problems is exponentially
large. The term dynamic programming was originally used in the 1940s by Richard
Bellman to describe the process of solving problems where one needs to find the best
decisions one after another. By 1953, the author refined this to the modern meaning,
referring specifically to nesting smallet decisioniproblems, inside larger decisions, and the
field was thereafter recognized by the Institute of Electronics and Electrical Engineering
(IEEE) as a systems analysis and engineering: topic. Bellman's contribution is
remembered in the name of the Bellman equation, a central result of dynamic

programming which restates an optimization problem in recursive form Bellman (1954).

The word dynamic was chosen, by Bellman-to capture the time-varying aspect of the
problems, and also because it sounded impressive..The word programming referred to the
use of the method to find an optimal program, in the sense of a military schedule for
training or logistics Bellman(1957), Dynamicprogramming’ is-both a mathematical
optimization method and a computer‘programming methed. In both contexts it refers to
simplifying a E@lplicated problem by breaking it down into simpler sub problems in a

,/*_—_’—

récursive manner.

e
While some decision problems cannot be taken apart this way, decisions that span several

points in time do often break apart recursively; Bellman called this the "Principle of
Optimality". Likewise, in computer science, a problem that can be broken down

recursively is said to have optimal substructure. If sub problems can be nested recursively



inside larger problems, so that dynamic programming methods are applicable, then there
is a relation between the value of the larger problem and the values of the sub problems.
In the optimization literature this relationship is called the Bellman equation. In terms of
mathematical optimization, dynamic programming usually refers to simplifying a

decision by breaking it down into a sequence of decision steps over time.

This 1s done by defining a sequence of value functions V3, V5, ..., V,, with an argument y
representing the state of the system at times ifiorn 1 o, The definition of ¥, (y) is the
value obtained in state y at the last time ». The values V; at earlier times i=n-1, n-2... 2, 1
can be found by working backwards, usingla recursive relationship called the Bellman
equation. For i = 2, ...n, V;_; at any state y is'calculated from V; by maximizing a simple
function (usually the sum) of the gain from deeision-j=/"and the function V; at the new
state of the system if thisdecision is made. Since V; has already been calculated for the

needed states, the above operationyields V;~; for'those states:

Finally,V; at the initial state of the system is"the value of the optimal solution. The
optimal values of the decision variables can-be recovered, one by one, by tracking back

the calculations already performed(www:wikipedia.erg/wiki/dynamic_programing).

Dynamic prgg}hmming is_a usefut-mathematical technique for making a sequence of

interrelated decisions. It provides a systematic procedure for determining the optimal
R

combination of decisions. In contrast to linear programming, there does not exist a
standard mathematical formulation of “the” dynamic programming problem. Rather,

dynamic programming is a general type of approach to problem solving, and the

particular equations used must be developed to fit each situation. Therefore, a certain



degree of ingenuity and insight into the general structure of dynamic programming
problems is required to recognize when and how a problem can be solved by dynamic
programming procedures. These abilities can best be developed by an exposure to a wide
variety of dynamic programming applications and a study of the characteristics that are

common to all these situations.

Many at times we may come across situations, where we may have to make decision in
multistage, i.e. optimization of multistagé decision prablems. Dynamic programming is a
technique for getting solutions for multistage decision problems. A problem, in which the
decision has to be made at successive stagesyis called a multistage decision problem. In
this case, the problem solver will take decision at every stage, so that the total
effectiveness defined over all the stages'is optimal Bertsekas (2002).

Here the original problem.is broken down or decompesed into small problems, which are
known as sub problems or stages which is-much convenient to handle and to find the
optimal stage. For example, consider the problem of a sales manager, who wants to start
from his head office and tour various branches.of the.company and reach the last branch.
He has to plan his tour in suchsa Way that he has to visit.number of branches and cover
less distance as far as possible. He has te'divideithe network of the route connecting all
the branchesﬂijnzﬁﬂ various sta/g_e_,,smm:ljorkout, which is the best route, which will help
him to cover more branches and less distance. We can give plenty of business examples,
which are multistage decision problems.

The computational technique used is known as Dynamic Programming or Recursive

Optimization. We do not have a standard mathematical formulation of the Dynamic

Programming Problem (D.P.P). For each problem, depending on the variables given, and



objective of the problem, one has to develop a particular equation to fit for situation
Nocedal and Wright (2006).

Though we have quite good number of dynamic programming problems, sometimes to
take advantage of dynamic programming, we introduce multistage nature in the problem
and solve it by dynamic programming technique. Nowadays, application of Dynamic
Programming is done in almost all day to day managerial problems, such as, inventory
problems, waiting line problems, resource allocation problems etc.

Dynamic programming problem may be|classified dgpending on the following conditions
Kalavathy (2002);

(7) Dynamic programming problems may be classified-depending on the nature of data
available as Deterministic and Stochastic or Probabilistic models. In deterministic
models, the outcome “at-any-decision-stage’ is unique, determined _and known. In
Probabilistic models, there is__a set. of possible outcomes with some probability
distribution.

(i) The possible decisions at any stage, from which we are to choose one, are called
‘states’. These may be fmite.or infinites Statessare ‘the possible/situations in which the
system may be at any stage.

(7i7) Total number of stages in the process may be Iinite or infinite and may be known or

-
-

unknown.

s
Dynamic programming is a technique that can be used to solve many optimization

problems. In most applications, dynamic programming obtains solutions by working
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backward from the end of a problem toward the beginning, thus breaking up a large,
unwieldy problem into a series of smaller, more tractable problems Kalavathy (2002).
One example of the usefulness of dynamic programming is the resource allocation
problems. Resource allocation problems, in which limited resources must be allocated
among several activities, are often solved by dynamic programming. Even though such
problems can be solved by linear programming, for example, the Giapetto problem, to
use linear programming to do resourcg allgcation, one must made three assumptions
Kalavathy (2002);

(1) the amount of resource assigned to any activity may be any nonnegative value,

(11) the benefit obtained from each activity is proportional to the amount of the resource
assigned to the activity, and

(iii) the benefit obtained from more than-one activity is the.sum of the benefits obtained

from the individual activities.

Even if assumptions 1 and 2 do not hold, dynamiec programming can be used to solve
resource-allocation problems efficiently. when-assumption 3 is valid-and when the amount
of the resource allocated to each activity-is.a member of-a*finite set.

In addition to the above application, dynamic programming have been used to solve a
number of real-life probl-ming network problems, equipment replacement
problems, refinery capacity problems, travelling salesman problem. Thus dynamic has

played an important role in supporting managerial decisions in the area of capital

budgeting, warehouse location and scheduling.



1.2 PROBLEM STATEMENT

This thesis seeks to apply dynamic programming in solving the product allocation
problem of a distribution company. Distribution companies normally have to decide the
quantity of goods that should be sent to each market or consumption centers, considering
the trade-off between being able to meet customer’s satisfaction and minimizing the
transportation cost from source to desfination.\The_problem is a distribution of effort
problem that has a linear objective function and as8ingle constraint.

Fortunately, dynamic programming provides a solution with much less effort than
exhaustive enumeration. (The computational savings are enormous for larger versions of
this problem.) Dynamic,programming Starts with a small portion of the original problem
and finds the optimal solution“for this smaller problem. It then gradually enlarges the
problem, finding the current optimal solutien from the preceding one, until the original

problem is solved in its entirety.

1.3 OBJECTIVES

The objectives of the study are:

(i) to use dynamic prom solving the product allocation problem of a
distribution company in Hohoe municipality.

(ii) to optimize the returns of a product allocation of a distribution company.



1.4 METHODOLOGY
For our methodology, we propose dynamic programming algorithm in solving our
problem. First, the algorithm will be presented. A real life computational study will be

performed.

1.5 JUSTIFICATION

Dynamic programming are widely used jin financialydecision making, and very interesting
from the perspective of mathematical dptimization“and eemputer science because; it is
able to simplify a complicated problem by breakingiit down into simpler sub problems in
a recursive manner. While some decision problems cannot be taken apart this way,
decisions that span several points in time do often break apart recursively; Bellman called
this the "Principle of Optimality". ikewise, in computer science, a problem that can be
broken down recursively is said to -have optimal substructuré. If sub problems can be
nested recursively inside larger problems, so that dynamic programming methods are
applicable, then there is a relation between the value of the larger problem and the values

of the sub problems.

In view of these, application of dynamic programming to solving real-life problems is an
area of much interest in the contribution to academic knowledge, hence the reason for

solving-the dynamic programming problem.



1.6 LIMITATIONS OF THE STUDY

The main constraint of the study was inadequacy of funds. As a result, we decided not to
consider a bigger company outside the municipality for the study. Hence, the study was
restricted to a distribution company based in Hohoe township.

In addition to that, the company was not willing to disclose the actual returns from their
transactions for security reasons and also for the fear that their tax returns may be

Increased.

1.7 ORGANIZATION OF THE THESIS

In Chapter 1, we presented a backgroundystudy of dynamic programming. In Chapter 2,
related works in the field dynamic programming will be reviewed. In Chapter 3, dynamic
programming algorithm will be intreduced and explained. Included.in this

Chapter will be a formal definitien"-of the algorithm: Chapter 4 will provide a
computational study of dynamic programming algorithm applied to real-life instances.

Chapter 5 will conclude this thesis with additional comments on dynamic programming.

1.8 SUMMARY

In this chapter, the problem of optimal allocation of product of a distribution company is
formulated. The objectives of the study were also stated. The history of Richard
Bellman’s principle of optimality was discussed briefly, and the overview of dynamic
programming and its application to solving real life problems. In the next chapter, we
shall review some relevant literature in the area of dynamic programming algorithm,

model and applications.



CHAPTER 2

LITERATURE REVIEW

2.0 INTRODUCTION.

This Chapter seeks to review relevant literature related to the theory and applications of
dynamic programming. It also critically examines the abstracts of various literature on
deterministic, approximate and stochastic dynamic programming approach. And also,

some literature on linear and non-linear pfogramming wereseviewed.

2.1 ABSTRACTS AND REVIEW OF LITERATURE ON DYNAMIC
PROGRAMMING.

Steven (1975) presented.a technique with'the existence of an optimal stationary policy
that can be obtained fromsthe usual functional equation is" againrestablished in the
presence of a bound (not necessatily polynomial) on the oné=period reward of a semi-
Markov decision process. This isidone for both the discounted and the average cost case.
In addition to allowing ansuncountable“state space, the Taw of motion of the system is
rather general in that the author’s rﬁodel permits any.state o’ be” reached in a single

transition. There is, however, a bound on-a.weighted-moment of the next state reached.

Finally, the aujﬂér indicated the applieability of these results.

Dawen (1986) considered total reward Markov decision processes with countable state
space using positive dynamic programming. For these models it is well known that in the
positive case, i.e. the immediate reward function is nonnegative, without further

conditions (i) the value iteration holds and (ii) there exist point wise good stationary

10



strategies. Here the author showed that (i) remains true if the non-negativity of the
immediate reward function is replaced by the non-negativity of the value function and

that (i) remains true if there exists a strategy with nonnegative total rewards.

Held and Karp (1961) explored a dynamic programming approach to the solution of three
sequencing problems: a scheduling problem involving arbitrary cost functions, the
traveling-salesman problem, and an assembly line balancing problem. Each of the
problems is shown to admit of numerical/Soliition thropgh the use of a simple recursion

scheme; these recursion schemes also exhibit similarities and contrasts.

Yanhong and Scott (2002) described a_systematic method for optimizing recursive
functions using both indexed and recursive data structures. The method is based on two
critical ideas: first, deteemining.a.minimal input increment operation so as to compute a
function on repeatedly incremented input; second, determining appropriate additional
values to maintain in appropriate/data structures, based on what values are needed in
computation on an incremented input-and how these values can be established and
accessed. Once these two, ate determined,-the method extends the original program to
return the additional values. derives-ansincremental versiomofthe extended program, and
forms an optimized program that repeatedly callS'the incremental program. The method
can derive alh;jinamic pr(}mgorithms found in standard algorithm textbooks.
There are many previous methods for deriving efficient algorithms, but none is as simple,

__..--'-'"——.-F

general, and systematic as ours.

Mousavi and Karamouz (2003) developed a dynamic programming (DP) optimization

model for long term planning of multiple-reservoir operations. To overcome the well-

11



known dimensionality problem associated with such a model, a heuristic approach is used
to narrow the needed search algorithm within the state space of the DP model. This
method can recognize many infeasible transitions from the initial to the final state of the
DP stages. By diagnosing these infeasible transitions in advance and removing them from
further computations, significant improvement in computational load is achieved so that
the computer time for solving the model is reduced more than fifty (50) times for the
reservoir system under study. This methodqlogy is applied fo.a four-reservoir system

located in Iran.

For G be an acyclic directed graph with weights and values assigned to its vertices. In the
partially ordered knapsack problem we wish to find a maximum-valued subset of vertices
whose total weight does not exceed a given knapsack capaeity, and which contains every
predecessor of a vertex if it contains the vertex itself. Johnson and Niemi (1983)
considered the special case where G is-an out-tree. Even though this special case is still
NP-complete, we observe how dynamic  programming techniques can be used to
construct pseudo-polynomial time optimization-algerithms and fully polynomial time
approximation schemes for it. In-particular, we show that a nonstandard approach we call
“left-right” dynamic programming is-betterssuited for this problem than the standard
“bottom-up”_appfgach, and Egs_h/’oy_hﬁw this “left-right” approach can also be adapted
to the case of in-trees and to a related tree partitioning problem arising in integrated
cmsign. We conclude by presenting complexity results which indicate that similar

success cannot be expected with either problem when the restriction to trees is lifted.

I
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The 0/1 knapsack (or knapsack without repetition) has a dynamic programming solution
driven by a table in which each item is consecutively considered. Rolfe (2007)
approached the problem by generating a table in which the optimal knapsack for each
knapsack capacity is generated, modelled on the solution to the integer knapsack

(knapsack with repetition) and the solution to change-making.

Alvarez et al., (1998) presented a model that uses dynamic programming in resolving
economic issues may be extended to cayér recursive methods, particularly homogenous
problems. This may be made possible by defining the basic existence, uniqueness and
convergence results generated from dynamie® progtamming methods. The approach
provides a concrete evidence for the Principle of Optimality, by showing that the
dynamic program, itself, coincide accurately with the selutions of the original problem.

The proposed strategy further provides a finite solution.to the Bellman equation.

Charnes and Cooper (1956) presented a solution for the generalization of the warehouse
model by means of dynamic programming techniques-of onewersion of what is called the
“warehouse problem”. The“purpose of this.note s to indicate-how problems of this
general nature may be approached by,means of the functional’equation technique of the

theory of dynamic programming, and thereby t€duced to a very simple and straight-

forward computational problerl‘l’./—-l

In several of the earliest literatures on dynamic programming (DP), reference was made
to the possibility that the DP approach might be used to advise players on the optimal
strategy for board games such as chess. Since these papers in the 1950s, there have been

many attempts to develop such strategies, drawing on ideas from DP and other branches

13



of mathematics. Smith (2005) presented a survey of those where a dynamic programming

approach has been useful, or where such a formulation of the problem will allow further

insight into the optimal mode of play.

Sakoe (1978) studied an optimum dynamic programming (DP) based time-normalization
algorithm for spoken word recognition. First, a general principle of time-normalization is
given using time warping function. Then, two time-normalized distance definitions,
symmetric and asymmetric forms, are derived, ffom the “principle. These two forms are
compared with each other through theoretical discussions and experimental studies. The
symmetric form algorithm superiority is established. A new technique, called slope
constraint, is successfully introduced, in which the warping function slope is restricted so
as to improve discrimination between werds in different categories. Investigations were
made, based on the assumption that speech patterns are time-sampled with a common and
uniform sampling period, as in most general cases. One of the problems discussed in this
paper involves the relative superiority of either a symmetric form of DP-matching or an
asymmetric one. In the asymmetric” form, time-normalization is achieved by trans-
forming the time axis of a speech pattern onto that of the othef, In'the symmetric form, on

the other hand, both time axes are transformed.onte a tempeorarily defined common axis.

.-""'-FF

-

Theoretical and éxperimenmons show that the sym-metric form gives better
recognition than the asymmetric one. Another problem discussed concerns slope
constraint technique. Since too much of the warping function flexibility sometimes
results in poor discrimination between words in different the effective slope constraint

characteristic is qualitatively analyzed, and the optimum slope constraint condition is

14 LisEaRY
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determined through experiments. The optimized algorithm is then extensively subjected
to experimental comparison with various DP-algorithms, previously applied to spoken
word recognition by different research groups. The experiment shows that the present

algorithm gives no more than about two-thirds errors, even compared to the best

conventional algorithm.

Zhang (2009) considered a nonlinear non-separable functional approximation to the value
function of a dynamic programming formulation for théwnetwork revenue management
(RM) problem with customer choice. We propose a simultaneous dynamic programming
approach to solve the resulting problem, whichfis'a nenlinear optimization problem with
nonlinear constraints. We show that our approximation leads to a tighter upper bound on
optimal expected revenue than some known bounds in the literature. Our approach can be
viewed as a variant of the classical dyriamic programming decomposition widely used in
the research and practice of network RM. The compuiational cost of this new
decomposition approach is only slightly higher than the classical version. A numerical
study shows that heuristic’, control™ polici€s. from.the decomposition consistently

outperform policies from the.classical.decomposition.

Liu (2004) presq_l_‘lted an approach based on multi-scale representation and Dynamic
Programmingfor matching deformed and possibly occluded shapes, which is robust with
respect to noise and invariant to scale, translation, orientation and starting point selection.
The process of contour segmentation can adjust automatically while the amounts of noise

and deformation change. And the correspondence of similar parts of shapes helps to

analyze the object structure and can be used as prior knowledge to learn shape model. We

15



have tested and evaluated our method on a database of one thousand, one hundred (1100)

images of marine animals with a vast variety of shapes with very good results.

The query optimizer is one of the most important components of a database system. Most
commercial query optimizers today are based on a dynamic-programming algorithm, as
proposed in Selinger et al., (1979). While this algorithm produces good optimization
results (i.e, good plans), its high complexity can be prohibitive if complex queries need to
be processed, new query execution techniques| need| te, be integrated, or in certain
programming environments (e.g., distributed database systems). Donald and Konard
(2000) presented and thoroughly evaluated a new class of query optimization algorithms
that are based on a principle that we call iterative .dynamic programming, or IDP for
short. IDP has several important advantages: First, IDP-algorithms produce the best plans
of all known algorithms 'in_situations"in which dynamic programming is not viable
because of its high complexity. Second, some IDP variants are adaptive and produce as
good plans as dynamic programming if dynamic programming is viable and as good-as
possible plans if dynamic. programming turns-out-to be not viable: Three, all IDP-
algorithms can very easily be integrated into an existin_g oeptimizer which is based on

dynamic programming.

=~

e /—)

Dynamic programming algorithms based on Lagrange multiplier method is often used for
obtaining an optimal bit allocation strategy to minimize the total distortion given a
constrained rate budget in both source and channel coding applications. Due to possible

large quantizer set and improper initialization, the algorithm often suffers from heavy

16



computational complexity. There have been many solutions in recent years so the above
question. YiSong et al., (2003) presented a simple but efficient algorithm to further speed
up the convergence of the algorithm. This algorithm can be easily realized and get the
final solution much faster. The experimental result shows that our new algorithm can
figure out the optimal solution with a speed five-seven (5-7) times faster than the original

algorithm.

Chisonge and Cole (2004) considered/a fnetwark MWhere hodes communicate by
exchanging information packets whose fields include the address of the sending node and
that of the destination node. In the absence of some verification mechanism, an attacking
node can send packets to another node using a forged origin address. The author
considered an optimization problem of"identifying-a minimum cardinality subset of
verification nodes on a tree such that the number of attacks from any forged origin to any
destination is limited to a prescribed level. For the case in which communication is
permitted between every node in the tree, we develop an optimal polynomial-time
dynamic programming algorithm for this problem. We compare the performance of the
dynamic programming algorithm “against a mixed-integer programming model on

randomly generated tree networks at varied levels of seeurity.

Matthew et alTk2007) presented—an approximate dynamic programming approach for

making ambulance redeployment decisions in an emergency medical service system. The
____-_____..-

primary decision is where we should redeploy idle ambulances so as to maximize the

number of calls reached within a delay threshold. We begin by formulating this problem

as a dynamic program. To deal with the high-dimensional and uncountable state space in

the dynamic program, we construct approximations to the value function that are
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parameterized by a small number of parameters. We tune the parameters using simulated
cost trajectories of the system. Computational experiments demonstrate the performance
of the approach on emergency medical service systems in two metropolitan areas. We
report practically significant improvements in performance relative to benchmark static

policies.

Dynamic programming (DP) is a popular technique which is used to solve combinatorial
search and optimization problems. Guangming et al., (2009) studied a model that focused
on one type of DP, which is called nonserial polyadic dynamic programming (NPDP).
Owing to the nonuniform data dependencies of NPBP, it is difficult to exploit either
parallelism or locality. Worse still, the emerging multi/many-core architectures with

small on-chip memory make these issues more challenging.

In this paper, we address the challenges of exploiting the fine grain parallelism and
locality of NPDP on multicore architectures. We describe alatency-tolerant model and a
percolation technique for programming_on-multicore architectures.-On an algorithmic
level, both parallelism and localitysdo_benefit from-a, ‘Specific data dependence
transformation of NPDP. Next, we propose a parallel pipelining algorithm by
decomposing Cﬂ&lputation opm percolating data through a memory hierarchy to
crmst-in-time locality. In order to predict the execution time, we formulate an
analytical performance model of the parallel algorithm. The parallel pipelining algorithm

achieves not only high scalability on the 160-core IBM Cyclops64, but portable

performance as well, across the 8-core Sun Niagara and quad-cores Intel Clovertown.
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Ray directed volume-rendering algorithms are well suited for parallel implementation in
a distributed cluster environment. For distributed ray casting, the scene must be
partitioned between nodes for good load balancing, and a strict view-dependent priority
order is required for image composition. Frank (2009) studied the load balanced network
distribution (LBND) problem and map it to the NP-complete precedence constrained job-
shop scheduling problem. We introduce a kd-tree solution and a dynamic programming
solution. To process a massive data set,jeither aypatallel.or’anfout-of-core approach is
required. Parallel preprocessing is performed by%render nodes on data, which are
allocated using a static data structure. Volumetric data sets often contain a large portion
of voxels that will never be rendered, or empty space. Paralic] preprocessing fails to take
advantage of this. Our slab-projeetion slice; introduced in this paper, tracks empty space
across consecutive slices of datato reduce the amount of data distributed and rendered. It
is used to facilitate out-of-core bricking and kd-tree partitioning. Load balancing using
each of our approaches is compared with traditional methods using several segmented

regions of the Visible Korean data set.

Deependra (2010) proposed a framework that includes a penalty function incorporated
stochastic dynamic programm model in order to derive the operation policy of
the reservoir of a hydropower plant, with an aim to reduce the amount of spill during
operation of the reservoir. SDP models with various inflow process assumptions
(independent and Markov-I) are developed and executed in order to derive the reservoir

operation policies for the case study of a storage type hydropower plant located in Japan.
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The policy thus determined consists of target storage levels (end-of-period storage levels)
for each combination of the beginning-of-period storage levels and the inflow states of
the current period. A penalty function is incorporated in the classical SDP model with
objective function that maximizes annual energy generation through operation of the
reservoir. Due to the inclusion of the penalty function, operation policy of the reservoir
changes in a way that ensures reduced spill. Simulations_are carried out to identify
reservoir storage guide curves based on the\derived operation palicies. Reservoir storage
guide curves for different values of the coefficient'ef penalty function, are plotted for a
study horizon of sixty-four (64) years, and, the corresponding average annual spill values
are compared. It is observed that, with increasing values, of the average annual spill
decreases; however, the simulated.ayerage-annual energy. value«is marginally reduced.

The average annual energy generation ecan be checked vis-a-vis the average annual spill
reduction, and the optimal value of, can be identified based on the cost functions

associated with energy and spill.

Operation of a storage-based resérvoirmodifies the downstream flow usually to a value
higher than that of natural flow in dry season. This could be important for irrigation,
water supply, or']‘;:ower prodms like an additional downstream benefit without
any additional investment. Mahesh (2001) undertook a study that addresses the operation
of two proposed reservoirs and the downstream flow augmentation at an irrigation project
located at the outlet of the Gandaki River basin in Nepal. The optimal operating policies

of the reservoirs were determined using a Stochastic dynamic programming (SDP) model
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considering the maximization of power production. The modified flows downstream of
the reservoirs were simulated by a simulation model using the optimal operating policy
(for power maximization) and a synthetic long-term inflow series. Comparing the
existing flow (flow in river without reservoir operation) and the modified flow (flow after
reservoir operation) at the irrigation project, the additional amount of flow was
calculated. The reliability analysis indicated that the supply of irrigation could be
increased by twenty-five (25) to hundred (100) percent of the existing supply over the dry

season (January to April) with a reliability 6f moreithan 80 percent.

A global mathematical model for simultaneously obtaining the optimal layout and design
of urban drainage systems for foul sewage and storm water was presented by Freire
(2000). The model can handle every kind-of network, including parallel storm and foul
sewers. It selects the optimal loeation for pumping systems and outfalls or wastewater
treatment plants (defining the natural and artificial drainage basins), and it allows the
presence of special structures and existing subsystems for optimal re-modelling or
expansion. It is possible to identify two basic-optimization levels: in the first level, the
generation and transformation of general layouts (consisting of forests of trees) until a
convergence criterion is reached, and in the second level, the design and evaluation of
each forest. The global stratm_ combines and develops a sequence of optimal
design and plan layout sub-problems. Dynamic programming is used as a very powerful
technique, alongside simulated annealing and genetic algorithms, in this discrete

combinatorial optimization problem of huge dimension.
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Shahid (2010) presented a new scheme for evaluating the performance of multithreaded
computers and demonstrate its application to the Cray MTA-2 and XMT supercomputers.
Our scheme is based on the concept of clock cycles per element, plotted against both
problem size and the number of processors. This scheme showed that if an
implementation has achieved its asymptotic efficiency and is more general than (but
includes) the commonly used speedup metric. It permits the discovery of any
imperfections in both the software as well as the hardware, and is expected to permit a
unified comparison of much different parallel architecture. Measurements on a number of
well-known parallel algorithms, ranging from mattix:multiply to quicksort, are presented
for the MTA-2 and XMT and highlight some interesting differences between these
machines. The performance of sequence alignment using dynamic programming is
evaluated on the MTA-2, XMT,IBM x3755 and SGI Altix 350 and provides a useful
comparison of the capabilities of the Cray machines with mere eonventional shared
memory architectures.

The notion of being sure that you have completely eradicated an invasive species is
fanciful because of imperféct detection’ and--persistent seed banks. Eradication is
commonly declared either on an ad-hoe basis, on notions of seed bank longevity, or on
setting arbitrary thresholds of 1% or 5% confidence that the species is not present. Rather
than declaring eradication at mry level of confidence, Tracey (2006) studied an
economic approach in which we stop looking when the expected costs outweigh the
expected benefits.

The author developed theory that determines the number of years of absent surveys

required to minimize the net expected cost. Given detection of a species is imperfect, the
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optimal stopping time is a trade-off between the cost of continued surveying and the cost

of escape and damage if eradication is declared too soon.

A simple rule of thumb compares well to the exact optimal solution using stochastic
dynamic programming. Application of the approach to the eradication programme of
Helenium amarum reveals that the actual stopping time was a precautionary one given
the ranges for each parameter.

Francisco (2010) examined the labour market effects of incomplete information about the
workers' own job-finding process. Search ‘eutcomes'convey valuable information, and
learning from search generates endogenous heterogéneity in workers' beliefs about their
job-finding probability. We characterize this process and analyze its interactions with job
creation and wage determination. Our theory sheds new light on how unemployment can
affect workers' labor market Outeomes and. wage determination, providing a rational
explanation for discouragement as_the consequence of negative search outcomes. In
particular, longer unemployment 'durations- are likely to be followed by lower
reemployment wages because a worker's beliefs about his job-finding process deteriorate
with unemployment duration."Moreover, our-analysis provides a set of useful results on
dynamic programming with optimal-learning,

Gerardo (2008)—f;resented am;oach for capillary electrophoresis (CE) data
analysis based on pattern recognition techniques in the wavelet domain. Low-resolution,
denoised electropherograms are obtained by applying several preprocessing algorithms

including denoising, baseline correction, and detection of the region of interest in the
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wavelet domain. The resultant signals are mapped into character sequences using first

derivative information and multilevel peak height quantization.

Next, a local alignment algorithm is applied on the coded sequences for peak pattern
recognition. We also propose 2-D and 3-D representations of the found patterns for fast
visual evaluation of the variability of chemical substances concentration in the analyzed
samples. The proposed approach is tested on the analysis of intra-cerebral micro-dialysate
data obtained by CE and LIF detection, ai:lm.xﬁnhn é@,gtciqrﬁttcétion rate of about 85%

with a processing time of less than 0.3,s per 25,000-point electro-pherogram.

Using a local alignment algorithm on lowsresolution denoised electropherograms might
have a great impact on high-throughput CE since the proposed methodology will
substitute automatic fast pattern recognition analysis for slow, human based time-
consuming visual pattern recognition methods.

Masafumi (2010) studied the optimal operation of railway systcrn-s-;inimizing total
energy consumption. Firstly, some measures of finding energy-saving train speed profiles
are outlined. After the characteristics that sho.ﬁld be considered in optimizing train
operation are cﬁﬁﬁed. commmimtion based on optimal control theory is
reviqe__w_g_g_.__'l'l'lcir basic formulations are summarized taking into account most of the

difficult characteristics peculiar to railway systems.
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Three methods of solving the formulation, dynamic programming (DP), gradient method,
and sequential quadratic programming (SQP), are introduced. The last two methods can
also control the state of charge (SOC) of the energy storage devices. By showing some
numerical results of simulations, the significance of solving not only optimal speed
profiles but also optimal SOC profiles of energy storage are emphasized, because the
numerical results are beyond the conventional qualitative studies. Future scope for

applying the methods to real-time optimal control is also mentioned,

Spjotvold (2009) considered the worst-case optimal control of discontinuous piecewise
affine (PWA) systems, which are subjected to constraints and disturbances. Tha author
seek to pre-compute, via dynamic programming, an explicit control law for these systems
when a PWA cost function is utilized. One'difficulty with this problem class is that, even
for initial states for which the value function of the optimal control problem is finite,
there might not exist a control law that-attains the infimum. Hence, we propose a method
that is guaranteed to obtain a sub-optimal solution, and where the degree of sub-
optimality can be specified a priori. This is achieved by approximating the underlying

sub-problems with a parametrie piecewise linear program.

When a hybrid electric vehicle (HEV) is certified for emissions and fuel economy, its

—
-

power management system m € charge sustaining over the drive cycle, meaning that

the battery state of charge (SOC) must be at least as high at the end of the test as it was at

-\_f-

the beginning of the test. During the test cycle, the power management system is free to
vary the battery SOC so as to minimize a weighted combination of fuel consumption and
exhaust emissions. Edward (2007) presented a model which argued that shortest path

stochastic dynamic programming (SP-SDP) offers a more natural formulation of the
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optimal control problem associated with the design of the power management system
because it allows deviations of battery SOC from a desired setpoint to be penalized only
at key off.

This method is illustrated on a parallel hybrid electric truck model that had previously
been analyzed using infinite-horizon stochastic dynamic programming with discounted
future cost. Both formulations of the optimization problem yield a time-invariant causal
state-feedback controller that can be directly implemented on the vehicle.

The advantages of the shortest path formulation ingludg that a'single tuning parameter is
needed to trade off fuel economy and emissionswersus battery SOC deviation, as
compared with two parameters in the discounted, infinite-horizon case, and for the same
level of complexity as a discounted future-cost controller;.the shortest-path controller
demonstrates better fuel and emission minimization while also achieving better SOC
control when the vehicle is turned off. Linear programming. is wsed to solve both

stochastic dynamic programs.

The electric power industry, iS.undergoing restructuring and deregulation. We need to
incorporate the uncertainty of electric power demand or.power generators into the unit
commitment problem. The unit commitment problem is to determine the schedule of
power generating units and thﬁmllevel of each unit.

The objective is to minimize the operational cost which is given by the sum of the fuel
cost and the start-up cost. Takayuki (2004) presented a new algorithm for the stochastic
unit commitment problem which is based on column generation approach. The algorithm

continues adding schedules from the dual solution of the restricted linear master program
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until the algorithm cannot generate new schedules. The schedule generation problem is
solved by the calculation of dynamic programming on the scenario tree.

One partial solution to the problem of ever-increasing demands on our water resources is
optimal allocation of available water. Bijan (2004) presented a non-linear programming
(NLP) optimization model with an integrated soil water balance. This model is the
advanced form of a previously developed one in which soil water balance was not
included. The author proposed a dynamic programming_approach for solving the
problem. The model can perform over differgnt ‘erop_growth stages while taking into
account an irrigation time interval in each stages T herefore, the results are directly
applicable to real-world conditions. However,the time trend of actual evapo-transpiration
(AET) for individual time intervals fluctuates more than thatfor growth-stage AETs. The
proposed model was run for the~Acrdak area (45km NW. of the city of Mashhad, Iran)
under a single cropping cultivation (corn) asiwell-as.a.multiple cropping pattern (wheat,
barley, corn, and sugar beet). The /water balance equation was manipulated with net
applied irrigation water to overcome the difficulty encountered with incorrect deep
percolation. The outputs of the ‘model, under the imposed seasonal irrigation water
shortages, were compared with the:results obtained from™a ‘simple NLP model. The
differences between jhese two models (simple and integrated) became more significant as
irrigation water shortage increMimpliﬁed assumptions in the previous simple
model were the main causes of these differences.

Real-time signal control operates as a function of the vehicular arrival and discharge

process to satisfy a pre-specified operational performance. This process is often predicted

based on loop detectors placed upstream of the signal. Fang (2010) developed a signal
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control for diamond interchanges, a microscopic model to estimate traffic flows at the
stop-line. The model considers the traffic dynamics of vehicular detection, arrivals, and
departures, by taking into account varying speeds, length of queues, and signal control.
As the signal control is optimized over a rolling horizon that is divided into intervals, the
vehicular detection for and projection into the corresponding horizon intervals are also
modeled. The signal control algorithm is based on dynamic programming and the
optimization of signal policy is performed using a certain performance measure involving
delays, queue lengths, and queue storage, fati6s. "The .arrival, discharge model is
embedded in the optimization algorithm and both“are programmed into AIMSUN, a
microscopic stochastic simulation program. ALMSUN is then used to simulate the traffic
flow and implement the optimal signal control by accessing internal data including
detected traffic demand and-vehicle.speeds:-Sensitivity analysissis conducted to study the
effect of selecting different optimization'criteria on the signal control performance. It is
concluded that the queue length and queue storage ratio are the most appropriate

performance measures in real-time signal control of interchanges.

Jushan (2003) considered practical‘issues*for the empirical’applications of the procedures.
We first address thg___ problem of estimation of the break dates and present an efficient
algorithm to obtain gldbal minimizers of the sum of squared residuals. This algorithm is
based on_the principle of dynamic programming and requires at most least-squares
operations of order O(T2) for any number of breaks. Our method can be applied to both
pure and partial structural change models. Second, we consider the problem of forming

confidence intervals for the break dates under various hypotheses about the structure of
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the data and the errors across segments. Third, we address the issue of testing for
structural changes under very general conditions on the data and the errors. Fourth, we
address the issue of estimating the number of breaks. Finally, a few empirical
applications are presented to illustrate the usefulness of the procedures. All methods
discussed are implemented in a GAUSS program.

An approximate dynamic programming (ADP) method has shown good performance in
solving optimal control problems in many small-scale process control applications. The
offline computational procedure of ADP c@nstructs\an ‘approximation of the optimal "cost
- to - go" function, which parameterizes the optimalycontrol policy with respect to the
state variable. With the approximate "cost -fto - go" fumétion computed, a multistage
optimization problem that needs to be solved online at every sample time can be reduced
to a single-stage optimization, thereby sighificantly lessening the real-time computational
load. Thidarat (2009) addressed  stochastic uncertainties ~within this framework.
Nonetheless, the existing ADP method requires excessive offline computation when
applied to a high-dimensional system. A case study of a reactor and a distillation column
with recycle was used to illustrate this issue: Then,several ways were proposed to reduce
the computational load so that the~ADP“method can be“applied to high-dimensional

integrated plants. The results showed that the approach is much more superior to NMPC

-

in both deterministic and stoch-m

Optical microscopy allows a magnified view of the sample while decreasing the depth of

focus. Although the acquired images from limited depth of field have both blurred and

focused regions, they can provide depth information. The technique to estimate the depth
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and 3D shape of an object from the images of the same sample obtained at different focus
settings is called shape from focus (SFF). In SFF, the measure of focus, sharpness, is the
crucial part for final 3D shape estimation. The conventional methods compute sharpness
by applying focus measure operator on each 2D image frame of the image sequence.
However, such methods do not reflect the accurate focus levels in an image because the
focus levels for curved objects require information from neighboring pixels in the
adjacent frames too. To address this issue, Seong (2009) proposed a new method based
on focus adjustment which takes the valugs“efthé\neighboring pixels from the adjacent
image frames that have approximately the same initial depth as of the centre pixel and
then it re-adjusts the center value accordinglysExperimentsi were conducted on synthetic
and microscopic objects, and the results show that the preposed technique generates
better shape and takes less . computation time in eomparison with previous SFF methods

based on focused image surface (FIS) and dynamie programming,

An important technical component of natural resource management, particularly in an
adaptive management context, is optimization..This.is used to select'the'most appropriate
management strategy, given a model.of the'system and all rélevant-available information.
For dynamic resource systems, dynamic programming has been the de facto standard for
deriving optima]f;tate-speciﬁe"ﬁﬁ’rmgaent strategies. Though effective for small-
dim@pmblems, dynamic programming is incapable of providing solutions to larger
problems, even with modern micro-computing technology. Reinforcement learning is an

alternative, related procedure for deriving optimal management strategies, based on

stochastic approximation. It is an iterative process that improves estimates of the value of
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state-specific actions based in interactions with a system, or model thereof. Applications
of reinforcement learning in the field of artificial intelligence have illustrated its ability to
yield near-optimal strategies for very complex model systems, highlighting the potential
utility of this method for ecological and natural resource management problems, which
tend to be of high dimension. The author described the concept of reinforcement learning
and its approach of estimating optimal strategies by temporal difference learning. He
then illustrate the application of this method using a simple, well-known case study of
Anderson [1975], and compare the reinfor¢ement learning results Wwith those of dynamic
programming. Though a globally-optimal strategy dsynot discovered, it performs very
well relative to the dynamic programming fstrategy, based on simulated cumulative
objective return. Christopher (2005) suggested that reinforcement learning be applied to
relatively complex problems-where. an approximate solutionsto a realistic model is

preferable to an exact answer to af‘oversimplified model.

Approximate dynamic programming (ADP) is a broad umbrella for a modeling and
algorithmic strategy for solving problems that are-sometimes large and complex, and are
usually (but not always) stochastic. Ht-is most.often presentedas a'method for overcoming
the classic curse of'fcfi_imcnsionality that is well-known to plague the use of Bellman's
equation. For many "probllems, mmly up to three curses of dimensionality. But
the richer message of approximate dynamic programming is learning what to learn, and

how to learn it, to make better decisions over time. Warren (2009) presented a brief

review of approximate dynamic programming, without intending to be a complete
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tutorial. Instead, our goal is to provide a broader perspective of ADP and how it should

be approached from the perspective of different problem classes.

Stochastic dynamic programming models are attractive for multi-reservoir control
problems because they allow non-linear features to be incorporated and changes in
hydrological conditions to be modelled as Markov processes. However, with the
exception of the simplest cases, these models are computationally intractable because of
the high dimension of the state and action gpaces inyolyed. Arghibald (2006) proposed a
new method of determining an operating policy for amulti-reservoir control problem that
uses stochastic dynamic programming, but is practical for systems with many reservoirs.
Decomposition is first used to reduce the problem to :a number of independent
subproblems. Each subproblem is-formulated as.a low-dimensional stochastic dynamic
program and solved to determine“the operating policy for one of the reservoirs in the

system.

Cheng-Liang Chen (2003) proposed a mnovel algorithm integrating iterative dynamic
programming and fuzzy aggregation to-solve multi-objective.eptumal control problems.
First, the optimal control policies involving these objectives are sequentially determined.
A payoff table is th__efri established by applying each optimal policy in series to evaluate
these multiple objectives. Considering the imprecise nature of decision-maker's
judm these multiple objectives are viewed as fuzzy variables. Simple monotonic
increasing or decreasing membership functions are then defined for degrees of
satisfaction for these linguistic objective functions. The optimal control policy is finally

searched by maximizing the aggregated fuzzy decision values. The proposed method is
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rather easy to implement. Two chemical processes, Nylon 6 batch polymerization and
Penicillin G fed-batch fermentation, are used to demonstrate that the method has a

significant potential to solve real industrial problems.

The Cramér-Lundberg insurance model is studied where the risk process can be
controlled by reinsurance and by investment in a financial market. The performance
criterion 1s the ruin probability. Manfred (2003) studied this problem by can imbedding in
the framework of discrete-time stochastici dynami¢ progtamming. Basic tools are the
Howard improvement and the verification theorem./Bxplicit conditions are obtained for
the optimality of employing no reinsurance andwof not investing in the market.

The accuracy of an alignment between two protein sequences can be improved by
including other detectably relatcd sequences-in the comparisons Marc (2004) optimized
and benchmarked such an approach that relies-on, aligning two_multiple sequence
alignments, each one including one of the two'protein sequences. Thirteen(13) different
protocols for creating and comparing profiles corresponding to the multiple sequence
alignments are implemented i the SALIGN'Command.of MODELLER. A test set of 200
paire wise, structure-based alignments with._sequence identities-below 40% is used to
benchmark the thirfgpn (13) protocols as well as a number of previously described
sequence alignment ﬂlethods, including heuristic pairwise sequence alignment by
BLAST, pairwise sequence alignment by global dynamic programming with an affine
gap penalty function by the ALIGN command of MODELLER, sequence-profile

alignment by PSI-BLAST, Hidden Markov Model methods implemented in SAM and

LOBSTER, pairwise sequence alignment relying on predicted local structure by SEA,
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and multiple sequence alignment by CLUSTALW and COMPASS. The alignment
accuracies of the best new protocols were significantly better than those of the other
tested methods. For example, the fraction of the correctly aligned residues relative to the
structure-based alignment by the best protocol is 56%, which can be compared with the
accuracies of 26%, 42%, 43%, 48%, 50%, 49%, 43%, and 43% for the other methods,
respectively. The new method is currently applied to large-scale comparative protein

structure modeling of all known sequences.

Jacoboni (2001) presented a method based on'neural networks and tested on a non-
redundant set of barrel membrane proteins.known at atomic resolution with a jackknife
procedure. The method predicts the topography of trans-membrane, strands with residue
accuracy as high as 78% when evelutionary-information is-used as input to the network.
Of the trans-membrane, strands-included“in the training set, 93%are correctly assigned.
The predictor includes an algorithm of model optimization, based on dynamic
programming that correctly models eight out of the eleven (11) proteins present in the
training/testing set. In addition; protein topology is assigned on the basis of the location
of the longest loops in the models. The-author proposed this-as a general method to fill

the gap of the prediction of, barrel membrane proteins.

-

Tsai (2005) presented an automatic and more robust implementation of multivariate
adaptive regression splines (MARS) within the orthogonal array (OA)/MARS
continuous-state stochastic dynamic programming (SDP) method. MARS is used to

estimate the future value functions in each SDP level. The default stopping rule of MARS
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employs the maximum number of basis functions Mmax, specified by the user. To reduce
the computational effort and improve the MARS fit for the wastewater treatment SDP
model, two automatic stopping rules, which automatically determine an appropriate value
for Mmax, and a robust version of MARS that prefers lower-order terms over higher-
order terms are developed. Computational results demonstrate the success of these

approaches.

In solving the boundary value problem reshlting fcom the'usé of Pontryagin's maximum
principle, a transformation matrix is used to relate the sensitivity of the final state to the
initial state. This avoids the need to selve the (n X n) differential equation to give the
transition matrix, and yields very rapid convergence to the optimum. To ensure
convergence, Rein (2010) proposcd an-iterative dynamic programming (IDP) for a
number of passes to yield good. starting conditions for this boundary condition iteration
procedure. Clipping technique /is used to handle constraints on control. Five optimal

control problems were used to illustrate and to test the procedure.

At times, the objective is to seek a-bang-bang control pelicy-for.nonlinear time-optimal

control problems. The usefulness of-iterativetdynamie programming (IDP) has been

shown in the literature for solving such problems. However, the convergence to the
—— /—-_/'

optimal solution has been obtained from about 50% of the guessed values near the

optm Yash (2000) presented an improved IDP search method for seeking such

solutions and a comparison is made with the IDP. The results show that the convergence

can be obtained from a significantly higher number of guessed values chosen over a

much wider region around the optimum.
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The discretized quadratic sub-optimal tracker for nonlinear continuous two-dimensional
(2-D) systems is newly proposed by Chia-Wei (2004). The proposed method provides a
novel methodology for indirect digital redesign for nonlinear continuous 2-D systems
with a continuous performance index. This includes the following features: (i) the 2-D
optimal-linearization approach of the nonlinear 2-D Roesser's model (RM), (ii) the
dynamic programming-based discretized quadratic optitnal tracker for linear continuous
2-D systems, (iii) the steady-state discretized quadratic sub-optimal tracker for linear
continuous 2-D systems, and (iv) the discretized quadratic sub-optimal tracker for
nonlinear continuous 2-D systems. Illustrative examples were presented to demonstrate

the effectiveness of the proposed procedure.

A symbolic dynamic programming appioach for modelling first-order Markov decision
processes within the fluent calculus was studied by Grobmann et al., (2002). Based on an
idea initially presented, the major components of Markowv decision processes such as the
optimal value function ‘and apolicy arelogically“represented. Thetechnique produces a
set of first-order formulae “with” equality that minimally" partitions the state space.
Consequently, the symbolic dynamic programming algorithm presented here does not
require to enumera;c‘;the state and-action spaces, thereby solving a drawback of classical
dynamic programming methods. In addition, we illustrate how conditional actions and

e m——

specificity can be modelled by the approach.

The curse of dimensionality givesrise to prohibitive computational requirements that

render infeasible the exact solution of large-scale stochastic control problems. De Farias
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and Dawen (2001) studied an efficient method based on dynamic programming for
approximating solutions to such problems. The approach “fits” a linear combination of
pre-selected basis functions to the dynamic programming cost-to-go function. The
authors developed error bounds that offer performance guarantees and also guide the
selection of both basis functions and “state-relevance weights” that influence quality of
the approximation. Experimental results in the domain of queuing network control

provide empirical support for the methodology,

Bertossi and Mei (2000) presented several dynamic programming algorithms which can
be efficiently implemented using parallel networks with reconfigurable buses. The bit
model of general reconfigurable meshes with'directed links, common write, and unit-time
delay for broadcasting is assumed. Given'two sequences of length m and n, respectively,
their longest common subsequence ‘ean be found in constant time by an o(mh).o(nh)
directed reconfigurable mesh, where A =min{m,n}+"1. Moreover, given an n-node
directed graph G = (V,E) with (possibly negative) integer weights on its arcs, the
shortest distances from.a source node v& V-to all-other nodes cansbe found in constant
time by an O(I'IEW) X O(n‘?'w) direcied reconfigurable.meshyywheére w i1s the maximum

weight.

S

—

Godfrey and Powell (2000) sm;daptive dynamic programming algorithm for
stochastie-dynamic resource allocation problems, which arise in the context of logistics
and distribution, fleet management, and other allocation problems. The method depends
on estimating separable nonlinear approximations of value functions, using a dynamic

programming framework. That paper considered only the case in which the time to
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complete an action was always a single time period. Experiments with this technique
quickly showed that when the basic algorithm was applied to problems with multi-period
travel times, the results were very poor. In this paper, we illustrate why this behavior
arose, and propose a modified algorithm that addresses the issue. Experimental work
demonstrates that the modified algorithm works on problems with multiperiod travel
times, with results that are almost as good as the original algorithm applied to single

period travel times.

The most common application of linear programming in agricultural situations has been
to the problem of resource allocation between competing farm activities. Given relevant
input-output information for a specific farm, together with real or assumed price and cost
patterns, the technique of linear programming enables ealculation of the.combination of
enterprises which maximizes-net profit, within the limitations imposed by the availability
of farm resources. It is necessary in some linear programming analyses to make explicit
allowance for the peculiar influence of time on the structure of the system under study.
Of the many ways in whieh this may be achieved, Throsby (1962) studied four proposals,
which have been, or are“likely ‘te..be, of relevance.in” am ‘agricultural context: (i)
Parametric programming, which allows: consideration~0f resource or price variation
between time peric{fi's'; (11) extens,/i?ln’f_the time-span of an activity to cover a series of
sequential processes, for example the treatment of rotational sequences as single
actimiii) the referencing of some resources and/or activities to specific time periods;
a common example is the fragmentation of labour supply into months; and (iv) the so-

called "multi-stage" or "dynamic" linear programming where a single matrix is used to

describe, in an orderly fashion, a system's structure over a time-span of several periods. It
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is the latter with which we are primarily concerned here. In its simplest form a dynamic
linear programming problem may be set up as a large matrix composed of a series of
smaller matrices lying down the diagonal. In its more advanced form allowance can be
made for interactions between resources and activities in different periods. In general,
dynamic linear programming problems are characterized by large "sparse" matrices (i.e.,
matrices in which many coefficients are zero) and usually a "block diagonal”" or "block
triangular" pattern is evident. The sizerof such matpices=gs* frequently forbidding;
however, computational algorithms are available which=dllow overall solutions to be
obtained by solving a series of smaller problemss With the aid of a little ingenuity a great
variety of time-dependent restrictions, resources, activitics and opportunities can be
accounted for in a dynamic linear programining analysis. From an agricultural
economist's viewpoint ‘it would not seem_extravagant to eclaim.that dynamic linear
programming can be used to provide a-more adequate analytical description of whole-

farm situations over time than most other tools at present available in his kit.

Milios and Petrakis (1999).presented a shape.matching algorithm for deformed shapes
based on dynamic programming.-Our algorithm is capable of grouping together segments
at finer scales in order to come up with~appropriate-correspondences with segments at
coarser scales. The authers illuWﬁectiveness of our algorithm in retrieval of
shapes by content on two different two-dimensional (2-D) datasets, one of static hand
SRS
gesture shapes and another of marine life shapes. The authors also demonstrated the
superiority of their approach over traditional approaches to shape matching and retrieval,

such as Fourier descriptors and geometric and sequential moments. Our evaluation is
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based on human relevance judgments following a well-established methodology from the

information retrieval field.

Tohru (2007) studied capacity expansion problems for telecommunication network
facilities, based on fuzzy dynamic programming. Although cost functions, discount rates,
demand functions, and so on should be given, they usually cannot be defined clearly
because of technical developments or business fluctuations. This paper represents
undefined factors by fuzzy numbers [withi thiangular membership functions (TMF).
Multiplication or division of TMF does not give rigid TMF, but we approximate them to
TMF for ease of calculation. Three methods based on' this approximation are compared,
using numerical examples. Approximation aceuraecies are confirmed by strict calculation

using removal of defining orders of fuzzy numbers.

An investigation of the single-vehicle,“many-to-many, immediate-request dial-a-ride
problem was developed in two parts (I and 1) by Harilaos (1980). Part I focuses on the
“static” case of the problem: In this case, intern;lediate requests that-may appear during
the execution of the route are motf“considered. A generalized. objective function is
examined, the minimization of a“weighied conmbination of the time to service all
customers and of the total degree of “dissatisfaction” experienced by them while waiting
for service. This dissatisfaction is assumed to be a linear function of the waiting and
riding-#tmes of each customer. Vehicle capacity constraints and special priority rules are
part of the problem. A Dynamic Programming approach was proposed. The algorithm

exhibits a computational effort which, although an exponential function of the size of the

problem, is asymptotically lower than the corresponding effort of the classical Dynamic
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Programming algorithm applied to a Traveling Salesman Problem of the same size. Part
[I extends this approach to solving the equivalent “dynamic” case. In this case, new
customer requests are automatically eligible for consideration at the time they occur. The
procedure is an open-ended sequence of updates, each following every new customer
request. The algorithm optimizes only over known inputs and does not anticipate future
customer requests. Indefinite deferment of a customer’s request is prevented by the
priority rules introduced in Part I. Examples, ingbeth j'siatic¥sand “dynamic” cases are

presented.

Dan (2009) considered a nonlinear non-separable functional approximation to the value
function of a dynamic programming formulation for the network revenue management
(RM) problem with customer choice. The authors proposed a simultaneous dynamic
programming approach to selve the resulting problems which.is a noalinear optimization
problem with nonlinear constraints: We.show that our approximation leads to a tighter
upper bound on optimal expected revenue than some known bounds in the literature. Our
approach can be viewed as a variant—of-the—classical dynamic programming
decomposition widely used. inathe.research and praetices’of“ network RM. The
computational cost of this new decompesition‘approach-1s only slightly higher than the
classical version. K_ﬁumerical WS that heuristic control policies from the

—

decomposition consistently outperform policies from the classical decomposition.

__1--'-"---_'_

To reduce delay in ship operations in automated container terminals, It 1S important to
make different types of container handling equipment to operate harmoniously during
this operation. Delivery operations by automated guided vehicles (AGVs) play an

important role for synchronizing operations of container cranes with yard cranes. Kap
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and Jong (2000) studied how to dispatch AGVs by utilizing information about locations
and times of future delivery tasks. A mixed-integer programming model was provided for
assigning optimal delivery tasks to AGVs. A heuristic algorithm is suggested for
overcoming the excessive computational time needed for solving the mathematical
model. Objective values and computational times of the heuristic algorithm are compared
with those of the optimizing method. To test performances of the heuristic algorithm, a
simulation study 1s performed by consideringgthe uncertainties-ef=various operation times
and the number of future delivery tasks*for looking*ahead="Also, the performance of the

heuristic algorithm 1s compared with those of other dispatching rules.

Car pooling is a transportation service organized by'a large company which encourages
its employees to pick up.colleagues whileidriving to/ftom work to minimize the number
of private cars travelling te/from the company site. The car peoling problem consists of
defining the subsets of employees that will share each car and'the paths the drivers should
follow, so that sharing is maximized and the sum of the path costs is minimized. The
special case of the car poeling problem where-allicars-are 1dentical can be modeled as a
Dial-a-Ride Problem. Roberte.etial., (2000) presented a dynamic programming model for
the car pooling problem, based on intégerprogramming-formulations of the problem. The
method was baseEEﬁ;a boundhg/ﬁﬂ,_cmechﬂe that combines three lower bounds derived
from different relaxations of the problem. A valid upper bound is obtained by a heuristic
methmaich transforms the solution of a Lagrangean lower bound into a feasible

solution. The computational results show the effectiveness of the proposed methods.

The Traveling Salesman Problem with Time Windows (TSPTW) is the problem of

finding a minimum-cost path visiting a set of cities exactly once, where each city must be
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visited within a specific time window. Filippo et al., (2001) presented a dynamic
programming approach for solving the TSPTW that merges Constraint Programming
propagation algorithms for the feasibility viewpoint (find a path), and Operations
Research techniques for coping with the optimization perspective (find the best path).
The authors showed with extensive computational results that the synergy between
Operations Research optimization techniques embedded in global constraints, and
Constraint Programming constraint solying techmiquesy prakesypthe resulting framework
effective in the TSPTW context also if*thése reSults=are*e6mpared with state-of-the-art

algorithms from the literature.

Dynamic programming solutions to a number of different recurrence equations for
sequence comparison and.for RNA secondary structure prediction were.considered by
Eppstein et al., (1992). These recurrences are defined over-a number of points that is
quadratic in the input size; however only a sparse set matters for the result. Efficient
algorithms for these problems “ate given, when the weight functions used in the
recurrences are taken to beslinear. The time‘complexity.of the algorithms depends almost
linearly on the number of pointsithat heed to be considered;When the problems are sparse

this results in a substantial speed-up over-known algorithms.
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Andrew et al., (1997) developed a dynamic programming based system for managing

et
inventory at Jeppesen Sanderson, Inc., a major provider of aviation-information products.
The system determines order quantities for charts used in flight manuals. These charts

contain essential safety information that changes frequently, making standard methods

for inventory management ineffective. The formulated the problem as a dynamic
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programming model and developed a simple heuristic-solution procedure for determining
order quantities. Based on this procedure, we also developed a decision support system
(DSS) and implemented it for 600 of the most expensive Jeppesen charts. The system has

been in use since August 1998, generating actual annual cost reductions of over

$800,000.

Current methods for identification of potential triplex-forming sequences in genomes and
similar sequence sets rely primarily on detecting Romopuriae and homopyrimidine tracts.
Procedures capable of detecting sequences supporting imperfect, but structurally feasible
intra-molecular triplex structures are needed for better sequence analysis. Matej et al.,
(2010) presented a dynamic programming algorithm for detection of approximate
palindromes, so as to account for the speeial nature-of triplex DNA structures. From
available literature, we conelude that approximate triplexes tolerate two classes of errors.
One, analogical to mismatches in duplex DNA; invelves nucleotides in triplets that do not
readily form Hoogsteen bonds. The other class involves gcometrically incompatible
neighboring triplets hindering proper alighment of strands for optimalthydrogen bonding
and stacking. We tested the “statiStical properties of the” algorithm, as well as its
correctness when confronted with known triplex- sequences. The proposed algorithm
satisfactorily detect_;f{f sequencew__@ra-mﬂlecular triplex-forming potential. Its

B

complexity is directly comparable to palindrome searching.

The substitution rate in a gene can provide valuable information for understanding its
functionality and evolution. A widely used method to estimate substitution rates is the
maximum-likelihood method implemented in the CODEML program in the PAML

package. A limited number of branch models, chosen based on a priori information or an
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interest in a particular lineage(s), are tested, whereas a large number of potential models
are neglected. A complementary approach is also needed to test all or a large number of
possible models to search for the globally optional model(s) of maximum likelihood.
However, the computational time for this search even in a small number of sequences
becomes impractically long. Thus, it is desirable to explore the most probable spaces to
search for the optimal models. Using dynamic programming techniques, Chengiun et al.,
(2010) developed a simple computatipnal ginethad fergsearehing the most probable
optimal branch-specific models in a praetically feasiblé cemputational time. We propose
three search methods to find the optimal models, which explored O(n) (method 1) to
O(n®) (method 2 and method 3) models when the givensphylogeny has » branches. In
addition, we derived a formula to calculate the number of all possible models, revealing
the complexity of finding the “optimal branch-specific..model. We show that in a
reanalysis of over fifty (50) previously: published ‘studies, the vast majority obtained
better models with significantly: higher likelihoods than the conventional hypothesis

model methods.

Allocating water between diffeérent tsers and uses, including the“environment, is one of
the most challenging task facing water-resourees managers and has always been at the
heart of Integrated Wé‘fér Resoquent (IWRM). As water scarcity is expected
to increase over time, allocatiﬁns decisions among the different uses will have to be
found_fa'lzﬁ-é into account the complex interactions between water and the economy.
Hydro-economic optimization models can capture those interactions while prescribing

efficient allocation policies. Many hydro-economic models found in the literature are

formulated as large-scale non linear optimization problems (NLP), seeking to maximize
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net benefits from the system operation while meeting operational and/or institutional
constraints, and describing the main hydrological processes. However, those models
rarely incorporate the uncertainty inherent to the availability of water, essentially because
of the computational difficulties associated stochastic formulations. Goor et al., (2008)
presented a dynamic programming model that can identify economically efficient
allocation policies in large-scale multipurpose multireservoir systems. The model is
based on stochastic dual dynamic progrmmigg (SDP), amextension of traditional SDP
that is not affected by the curse of diﬁehs*rbna‘ﬁlfﬁ SDBP identify efficient allocation
policies while considering the hydrologic uncertainty. The objective function includes the
net benefits from the hydropower and irrigation sectors, as well as penalties for not
meeting operational and/or institutional constraints. To be able to implement the efficient
decomposition scheme that remove-the computational burden, the enc-stage SDDP
problem has to be a linear program. Reeent developments improve the representation of
the non-linear and mildly non- convex hydropower function through a convex hull
approximation of the trug hydropower function. This model is illustrated on a cascade of

fourteen (14) reservoirs on the Nile river basin.

Hybrid electric vehicles (HEVs) combined with more than one power source offer
additional flexibility-to improve the-fuel'economy and to reduce pollutant emissions. The
dynanﬂ::f_r_ggramming-based supervisory controller (DPSC) was studied by G-Qaoi et
al., (2008) which investigates the fuel economy improvement and emissions reduction
potential and demonstrates the trade-off between fuel economy and the emission of

nitrogen oxides (NO,) for a state-of-charge-sustaining parallel HEV. A weighted cost

function consisting of fuel economy and emissions is proposed in this paper. Any
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possible engine-motor power pairs meeting with the power requirement is considered to
minimize the weighted cost function over the given driving cycles through this dynamic
program algorithm. The fuel-economy-only case, the NO,-only case, and the fuel-NO,
case have been achieved by adjusting specific weighting factors, which demonstrates the
flexibility and advantages of the DPSC. Compared with operating the engine in the NO,-
only case, there is 17.4 per cent potential improvement in the fuel-economy-only case.
The fuel-NO, case yields a 15.2 per centgredugtion in N@, emissien only at the cost of 5.5

per cent increase in fuel consumption comparéd witlr'the fael-economy-only case.

Khaneja et al., (1988) presented Dynamichprogramming algorithms for automated
generation of length minimizing geodesies and curves of extremal curvature on the
neocortex of the macaque.and the Visible ' Humans Probabilistic models of curve variation
are constructed in terms of the variability in speed, curvature; and torSion in the Frenet

representation.

In cricket, when a batsman is dismissed towards the end of a day's play, he is often
replaced by a lower-order'batsman (a_'might-watchman'), in the-hape that the remaining
recognised batsmen can start théir.innings.on the following-day. Clarke and Norman
(2003) studied a dynamic programming analysis which suggests that the common
practice of using a Tower-order batsman is often sub-optimal. Towards the end of a day's
play, when the conventional wisdom seems to be to use a night watchman, it may be best
to send in the next recognised batsman in the batting order. Sending in a night watchman
may be good judgement when there are several recognised batsman and several lower

order batsmen still to play (say four of each). However, with smaller numbers (two of
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each, for example), then, with very few overs left to play, it may be better to send in a

recognised batsman.

Rust (1987) presented a model of retirement behavior based on the solution to a dynamic
programming problem. The workers objective is to maximize expected discounted utility
over his remaining lifetime. At each time period the worker chooses how much to
consume and whether to work full-time, part-time, or exit the labor force. The model
accounts for the sequential nature of th€ retirgment decision problem, and the role of
expectations of uncertain future variables such as the worker's future lifespan, health
status, marital and family status, employment status, as well as earnings from
employment, assets, and social security retirement, disability and Medicare payments.
This method applies @a~“nested fixed point" algornthm that convertssthe dynamic
programming problem into the problem of repeatedly re-computing the fixed point to a
contraction mapping operator as:a Subroufine of a standard nonlinear maximum
likelihood program. The goal of the paper is to demonstrate that a fairly complex and
realistic formulation of theretirement problem can be estimated using this algorithm and

a current generation supercomputer, the Cray-2.
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CHAPTER 3
METHODOLOGY

3.0 INTRODUCTION

This chapter provides an in depth explanation of the dynamic programming.
In order to understand the value of dynamic programming, it is necessary to have a good

understanding of some key terms as used in dynamic programming problems

3.1 CHARACTERISTICS OF DYNAMIC PROGRAMMING PROBLEMS

One way to recognize a situation that can be formulated as a dynamic programming

problem is to notice that its basic features.

These basic features that tharacterize dynamic programming problems are presented and

discussed here.

(i) The problem can be divided into stages; with a poliey decision required at each stage.

Dynamic programming problems require making a sequence«of interrelated decisions,

where each decision corrésponds to one stage of the-problem.

(ii) Each stage has a number of'states asSociated with the-beginning of that stage.

In general, the states are the various possible-eenditions in which the system might be at

that stage of the prgb]éfn. The number-efstates may be either finite or infinite.

(iii) The effect of the policy decision at each stage is to transform the current state to a
e

state associated with the beginning of the next stage (possibly according to a probability

distribution).

This procedure suggests that dynamic programming problems can be interpreted in terms

of the networks. Each node would correspond to a state. The network would consist of
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columns of nodes, with each column corresponding to a stage, so that the flow from a
node can go only to a node in the next column to the right. The links from a node to
nodes in the next column correspond to the possible policy decisions on which state to go
to next. The value assigned to each link usually can be interpreted as the immediate
contribution to the objective function from making that policy decision. In most cases,
the objective corresponds to finding either the shortest or the longest path through the
network.

(iv) The solution procedure is designed to find anfoptimalspélicy for the overall problem,
1.e., a prescription of the optimal policy decision at each stage for each of the possible
states.

For any problem, dynamic programming provides this kind of policy prescription of what
to do under every possible circumstance (which 1s why the actual decision made upon
reaching a particular state at a given stage is referred to as'a poliey decision). Providing
this additional information beyond simply specifying an optimal solution (optimal
sequence of decisions) can be helpful in a variety of ways, including sensitivity analysis.
(v) Given the current state;, angoptimal policy-for'the remaining stages is independent of
the policy decisions adopted in“prévious.stages...Fherefore, the optimal immediate
decision depends on ;q’nly the current state and not on how you got there. This is the
principle of optimality for dynanﬁfrogrm;ing.

For dynamic programming problems in general, knowledge of the current state of the
system conveys all the information about its previous behavior necessary for determining
the optimal policy henceforth. Any problem lacking this property cannot be formulated as

a dynamic programming problem.

50



(vi) The solution procedure begins by finding the optimal policy for the last stage.

The optimal policy for the last stage prescribes the optimal policy decision for each of the
possible states at that stage. The solution of this one-stage problem is usually trivial, as it
was for the stagecoach problem.

(vii) A recursive relationship that identifies the optimal policy for stage n, given the
optimal policy for stage n + 1, is available.

Therefore, finding the optimal policy degisiemwhengyou start imgstate s at stage » requires
finding the minimizing value of x,,.

This property is emphasized in the next (and _final) characteristic of dynamic
programming.

(viii) When we use this recursive relationship, the solution procedure starts at the end and
moves backward stage by stage - each time finding the optimal poliey for that stage -
until it finds the optimal policy. starting-at the “initial” stage.This optimal policy

immediately yields an optimal solution for the entire problem.

3.2 THE DYNAMIC PROGRAMMING ALGORITHM

o Identify the decision variables-and/Specify objective fimction to be optimized under
certain limitations, if any.

e Decompose or di;;'ide the giverr’pﬁi)—lanl into a number of smaller sub-problems or
stagei._lq_ggtify the state variables at each stage and write down the transformation
function as a function of the state variable and decision variables at the next stage.

« Write down the general recursive relationship for computing the optimal policy. Decide

whether forward or backward method is to follow to solve the problem.
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* Construct appropriate stage to show the required values of the return function at each
stage.
* Determine the overall optimal policy or decisions and its value at each stage. There may

be more than one such optimal policy.

The basic features, which characterize the dynamic programming problem, are as
follows:

(7) Problem can be sub-divided into stageS with,a policy decisign required at each stage.
A stage is a device to sequence the decisions. That is, it decomposes a problem into sub-
problems such that an optimal solution to the problem can be obtained from the optimal
solution to the sub-problem.

(ii) Every stage consists-of a number of statesqassociated with it. The states are the
different possible conditions in which the system may find-itself at that stage of the
problem.

(iii) Decision at each stage converts the current stage into state associated with the next
stage.

(iv) The state of the system at“acstage is described by.a“Setof variables, called state
variables.

(v) When the cur_reﬁf[_fétate 1S Wﬂptimal policy for the remaining stages 1is

independent of the policy of the previous ones.

—

(vi) To idenﬁfy the optimum policy for each state of the system, a recursive equation is
formulated with ‘»’ stages remaining, given the optimal policy for each stage with (n— 1)

stages left.
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(vit) Using recursive equation approach each time the solution procedure moves
backward, stage by stage for obtaining the optimum policy of each stage for that

particular stage, still it attains the optimum policy beginning at the initial stage.

3.3 THE FORMULATION OF DYNAMIC PROGRAMMING MODEL

The formulation for solving multistage problem is as follows;

Let the decision variables x,,(n = 1,2,3;...s \o) be the immediate destination on stage n
(the nth stage problem to be solved).Thu$; the probi€n=s€lected is x; — x, = %3, =
X, where x,, = J,and j is the ultimate destination.

Let f,(s,x,) be the total cost of the bestioverall policy for the remaining stages, given
that we are in state s, ready to start stage m, and selects x;, as the immediate destination.
Given s and n,

let x,, * denote any value of x,, (notmecessarily unique) that-mmimizes f, (s, x,), and let
f * (s) be the corresponding minimum value of £,(s, x,,). Thus,

Ja * (=) = min'f; (s, %) f(( S % *), Where

f.(s,x,) =immediate cost (stage.n) + minimum futurecost (stage n +1 onward) =
Coan o s ()

The value of cs,,, is given by setting i = s (the current state) and j = x,, (the immediate

™ /’/—/—
destination). Because the ultimate destination (state J) is reached at the end of stage n,

9o 07D
The objective is to find f*i(A) and the corresponding route. Dynamic programming finds

it by successively finding f*n(s), f*. _,(s), f*,_,(s), ..., for each of the possible states.

53



CHAPTER 4
DATA COLLECTION AND ANALYSIS

4.0 INTRODUCTION

In this chapter, we shall consider a computational study of dynamic programming
for solving product allocation problem.
The choice of the product allocation modelyis a geal;lifespseblem in the distribution
industry. The aim is to determine the optinialfallocatien peli€y in the business so that the
business gets the optimum return of profit from the number of salesmen working in
different market zone. The general practice isithat most €stablishments do not have a well
structured plan on how to allocate salesmen to macket zones. Salesmen are allocated by
trial and error basis and at the diseretion of people or departments in charge. These
methods are faulted, and are basically. mefficient “as returns from salesmen are not

optimal.

4.1 DATA COLLECTION AND ANALYSIS

A company has 8 salesmen, who have-to be' allocated t6 four marketing zones. The return
of profit from each zone depends upon the number of salesmen working that zone. The
—_— /

expected returns for different number of salesmen in different zones, as estimated from

the pastrecords, are given in Table 4.1. Determine the optimal allocation policy.
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Table 4.1: Sales Marketing in Zones

NO. OF ZONE 1 ZONE 2 ZONE3 | ZONE4
SALESMEN

0 45 30 35 42
1 58 45 45 54
2 70 60 52 60
3 82 70, fa 7
4 93 Y N 72 82
5 101 90 82 95
6 108 98 93 102
7 113 105 08 110
8 118 110 2 10— 110

All values in Table 4.1 apart from number of salesmen are in thousands (GH¢’000). The

problem here is how many salesmen are to be allocated to each zone to maximize the
total return. In this problem each zone ecan be considered-asa stage, number of salesmen
in each stage as decision variables. Nuniber-of salesmen-available for allocation at a stage
is the state variable Ef the problem.

,/—_

In this problem, decision policy requires making four interrelated decisions. What should
__—--—-——. -
be the number of salesmen in each of the four marketing zones? If x;, x, x3 and x; are the

number of salesmen allocated to the four zones and f; (x)...fs (x4) are respectively the

returns from the four zones, then the objective function is:
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Maximize Z= /i (x1) + /2 (x2) + /5 (x3) + /i (x4).

Subject to: x; + x; + x3 + x4 < 8 and x,, x3, x3 and x4 are non-negative integers.

Thus,
Maximize Z = ¥, fi(xi)
st. N xi <8

i€l

Considering the first stage (zone 1) and add-te,it the secopd-stage: (zone 2) and compute

the optimal return and optimal allocation. The allocatioh 6f€alesmen for each zone may

be0,1,2...and 8.

4.2 TABLES OF RESULTS

Table 4.2: Returns from combination of allocating salesmen to zones 1 and 2

Zone__| 0 ! 2 3 . 5 6 7 8

Salesmen 1.

Return 45 58 70 82 93 101 108 113 118

Zone 2| Return

Salesmenl | , ,

0 30 75 88 100 112 123 141 138 143 148

1 45 00 [NOB- NS 1271138 —t46” L1538 | 158

2 60 105 | 118 | 130 3182 —F1530] 161 | 168

3 70 115 128 140 152 163 171
) - __‘_,.---"'"—i___r

4 79 124 137 149 161 172

5 —190 135 148 160 | 172

|6 08 143 156 168

7 105 150 163 =

8 110 155

|
|
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The company can allocate zero salesmen, then zero to zone 1 and zero to zone 2 and the
total outcome is 75.

When company wants to allocate 1 salesman to two zones, the allocation is zero to zone |
and 1 to zone 2 or 1 to zone 1 and zero to zone 2. The outcomes are 90 and 88
respectively.

When company wants to allocate 2 salesmen to two, zonessthe-allocation 1s 1 to zone 1
and 1 to zone 2 or 0 to zone 1 and 2 t6 zene 2Mors2<to=zene il and 0 to zone 2. The
outcomes are 103, 100 and 105 respectively.

If the company wants to allocate 3 salesmen'to two zonesy the allocation is 0 to zone 1
and 3 to zone 2 or 3 to zone 1 and 0 to zone 2 or 2-to'zone b and 1 to zone 2 or 1 to zone
1 and 2 to zone 2. The outcomes are-1-12; 115,118 and 115 respectively.

If the company wants to allocate 4 salesmen-to two,zones, the alloecation is 4 to zone |
and 0 to zone 2 or 3 to zone 1 and/1 to zone 2 or2 to zone 1 and 2 to zone 2 or 1 to zone
1 and 3 to zone 2 or 0 to zone 1 and 4 te zone 2. The outcomes are 123, 127, 130, 128
and 124 respectively.

If the company wants to allocate 4 salesmen.to two.zen€s, the allocation is 4 to zone |

and 0 to zone 2 or 3 to zone 1 and 1 to zone 2 or 2 to zone | and 2 to zone 2 or 1 to zone
1 and 3 to zone 2 or 0 to zone I-and4-to-zone 2. The outdomes are 123, 127, 130, 128
and 124 respectively.

If the company wants to allocate 5 salesmen to two zones, the allocation is 5 to zone |

and 0 to zone 2 or 4 to zone 1 and 1 to zone 2 or 3 to zone 1 and 2 to zone 2 or 2 to zone
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1 and 3 to zone 2 or 1 to zone 1 and 4 to zone 2 or 0 to zone 1 and 5 to zone 2. The
outcomes are 141, 138, 142, 140, 137 and 135 respectively.

The company can allocate 6 salesmen to two zones, the allocation is 6 to zone 1 and 0 to
zone 2 or 5 to zone 1 and 1 to zone 2 or 4 to zone 1 and 2 to zone 2 or 3 to zone 1 and 3
to zone 2 or 2 to zone 1 and 4 to zone 2 or 1 to zone 1 and 5 to zone 2 or 0 to zone 1 and
6 to zone 2. The outcomes are 138, 146, 153, 152, 149, 148 and 143 respectively.

In allocating 7 salesmen to two zones, thejallogation is 7 $0 zene=d=and 0 to zone 2 or 6 to
zone 1 and 1 to zone 2 or 5 to zone 1 andi2tozone 2%e#'4 te<zone 1 and 3 to zone 2 or 3
to zone 1 and 4 to zone 2 or 2 to zone 1 and 5 to zone 2 or | to zone 1 and 6 to zone 2 or
0 to zone 1 and 7 to zone 2. The outcomes are-143, 153, 161, 163, 161, 160, 156 and 150
respectively.

Similarly if the company wants to allecate 8 salesmen to two-zones, the allocation is 8 to
zone 1 and 0 to zone 2 or 7 to zone 1 and.1 to zone 2-or 6 to zone-1'and 2 to zone 2 or 5
to zone 1 and 3 to zone 2 or 4 to zone 1 and 4 to.zone 2 or 3 to zone 1 and 5 to zone 2 or
2 to zone 1 and 6 to zone 2 or 1 to zone 1 and 7 to'zone 2 or 0 to zone 1 and 8 to zone 2.

The outcomes are 148, 158,.168;. 171, 172,172,168, 163-and 155.respectively.
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Table 4.3: Optimum returns from the allocation of salesmen to zones 1 and 2

No. of

Salesmen | 0 1 2 3 4 5 6 i 8

Zone 1 0 0 0 1 2 3 4 4 4 3
Zone 2 0 | 2 2 2 2 2 3 4 5
Outcome | 75 90 105 118 130 142 153 162 172 172

In the second stage, let us combine zone 3 and zone 4 and get the total market returns.

Table 4.4: Returns from combination of allocating salesmen to zones 3 and 4

Zone 3 0 ] 2 3 4 5 6 7 8
—

Salesmen

Return 35 45 52 64 7 82 93 98 100

Zone 4

Salesmenl Return

0 42 77 97 OV 06 | LidatiDAN | 136 | 140 | 142

1 54 89 09 TG | -11T==Dma L1268 147 | 152

2 60 05 {085 | 112 Nl ™32 142 V158

3 70 105 | 115202 134 | 1426157

4 8 | 117 | 127 | 134 | 1361 154

5 95 1130 | 140+147 | 159

6 102 [ 137 | 147 | 154

7 IO 145155

8 110 | 145

59




If the company wants to allocate zero salesmen, then 0 to zone 3 and 0 to zone 4 and the
total outcome is 77.

When company wants to allocate 1 salesman to two zones, the allocation is zero to zone 3
and 1 to zone 4 or 1 to zone 3 and zero to zone 4. The outcomes are 97 and 89
respectively.

When company wants to allocate 2 salesmen to two zones, the allocation is 1 to zone 3
and 1 to zone 4 or 0 to zone 3 and 2 tp zeng 4,0% 2 to zene.3-and 0 to zone 4. The
outcomes are 94, 99 and 95 respectively.

If the company wants to allocate 3 salesmen to twoizones, the allocation is 0 to zone 3
and 3 to zone 4 or 3 to zone 3 and 0 to zone'4.or 2 to zone 3 and 1 to zone 4 or 1 to zone
3 and 2 to zone 4. The outcomes are 106, 106, 105-and 105 respectively.

If the company wants to'allocate 4-salesiien-to two zones, the allocation-is 4 to zone 3
and 0 to zone 4 or 3 to zone 3 and+l to zone 4 or 2 to-zone.3-and 2.6 zone 4 or 1 to zone
3 and 3 to zone 4 or 0 to zone 3 and 4 to zone 4. The outcomes are 114, 118, 112, 115
and 117 respectively.

If the company wants to allocate 4 salesmen-to'two zones, the alloeation is 4 to zone 3
and 0 to zone 4 or 3 to zone 3 and 1-te’ zone.4 or 2 to zene 3and 2 to zone 4 or 1 to zone
3 and 3 to zone 4 or 0 to zone 3 and 4 to zone 4. The outcomes are 114, 118, 112, 115
and 117 respectively. —

If the company wants to allocate 5 salesmen to two zones, the allocation is 5 to zone 3
and 0 to zone 4 or 4 to zone 3 and 1 to zone 4 or 3 to zone 3 and 2 to zone 4 or 2 to zone

3 and 3 to zone 4 or 1 to zone 3 and 4 to zone 4 or 0 to zone 3 and 5 to zone 4. The

outcomes are 124, 126, 124, 122, 127 and 130 respectively.
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If the company wants to allocate 6 salesmen to two zones, the allocation is 6 to zone 3
and 0 to zone 4 or 5 to zone 3 and 1 to zone 4 or 4 to zone 3 and 2 to zone 4 or 3 to zone
3 and 3 to zone 4 or 2 to zone 3 and 4 to zone 4 or | to zone 3 and 5 to zone 4 or 0 to
zone 3 and 6 to zone 4. The outcomes are 136, 136, 132, 134, 134, 140 and 137
respectively.

If the company wants to allocate 7 salesmen to two zones, the allocation is 7 to zone 3
and 0 to zone 4 or 6 to zone 3 and | to zgne4 or 5,tq zope 3-and.2 to zone 4 or 4 to zone

1

3 and 3 to zone 4 or 3 to zone 3 and 4 t6 Zene 4Vor'2.t6 zone 3 and 5 to zone 4 or 1 to
zone 3 and 6 to zone 4 or 0 to zone 3 and 7 to zone 4. The outcomes are 140, 147, 142,
142, 146, 147, 147 and 145 respectively.

Similarly if the company wants to allocate 8 salesmen to two zones, the allocation is 8 to
zone 3 and 0 to zone 4 or 7 to zone-3-and 1 to-zone 4 or 6 to-zone 3 and 2-to zone 4 or 5
to zone 3 and 3 to zone 4 or 4 to zone 3'and 4 to zone 4 or.3 to-zone 3 and 5 to zone 4 or

2 to zone 3 and 6 to zone 4 or | to zone 3 and 7 to zone 4 or 0 to zone 3 and 8 to zone 4.

The outcomes are 142, 152, 153, 152, 154, 159, 154, 155 and 145 respectively.

Table 4.5: Optimum returns from the.alloCation of salesmeén to-zones 3 and 4

No. of __

' 10 6 7 8
Salesmen | 0 | | 2 ,}J____ e
Zone 3 0 | ] 2 3 5 1 | 2 2
Zone 4 0 0 | 1 | 0 5 6 5 5
Outcome | 77 97 90 | 106 | 118 | 130|140 | 147 147 159

In third stage we combine both zones 1 and 2 outcomes and zones 3 and 4 outcomes.
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Table 4.6: Returns from combination of allocating salesmen to Zones 1 and 2 and zones 3

and 4 combined.

ZOﬂel_&E (0,0) | (0,1) | (0,2) [ (1,2) | (2,2) | (3,2) | (4,2) | (4,3) | (4,4)(3,5)
Salesmen 0 ] 2 3 4 5 6 7 8
Return 7y 90 105 118 130 142 153 163 172
Zone3&4 || Return
Salesmen
0(0,0) 77 152 167 | 182 |195 (207 |[219 |230 |240 |247
1(1,0) 07 172 187 (202 Il.Z1 |(RY7 | 2389 "m243 | 260
Lo
2(1,1) 99 174 189 1204 °| 217 [229=| 281 |252
3(2,1) 106 | 181 | 196 |211 |224 42364 | 248
4(3,1) 118 193 | 208 |[223 (236 | 248
5(5,0) 130 205 | 220 | 235 248
6(1,5) 140 2159 230-4245
7(1,6)(2,5) | 147 292 237
8(3,5) 159 234

Table 4.6: Returns from allocating salesmen to Zones | and 2.and.zones 3 and 4

Salesmen | 0 ] 2 4 S 6 7 8
Zone | 0 g1 el T B T (! 4 4
e __'__,.,.—---""'"'
Zone 2 0 0 0 2 2 2 2 3
e
Zone 3 0 ] ] ] | ] ]
Zone 4 0 0 0 0 0 0 0 0
Returns 152 172 187 1202 |215 |227]|239 |243 260
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The above table shows that how salesmen are allocated to various zones and the optimal

~ outcome for the allocation. Maximum outcome is GH¢260,000.




CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.0 INTRODUCTION

The aim of this chapter is to give an overall summary of the main concepts presented
in this thesis, the use of the dynamic programming for market allocation and distribution

problem for a particular company in Ghana.
5.1 FINDINGS AND CONCLUSIONS

In the production and distribution theory under/market structure, it is asserted that even
though a firm or a company may not be making optimal returns, it should still be
operating for certain econemic reasons, examples being:

(i). If it closes down it loses its goodwill created.

(ii). If it closes down it loses all the customers.

(iii). With the hope that conditions'may improve later, say in the long run for the firm to
enjoy optimal return or at least breakeven.

(iv). To maintain its skilled personnel,

After a thorough examination of the data-ebtained*and-analysis made, it was found out
that the company c_g{{-.)ut its opa/aﬁglﬁaasr:d on the above market structure principles.

In this instance, the company from the data given, the optimal allocation policy based on
the above principle reach by the company was: allocating 4 salesmen to market zone 1, 2

salesmen to market zone 2, 1 salesman to market zone 3 and 1 salesman to market zone

4, given an optimal return of GH¢252,000.00.
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Using our approach, it was observed that the optimal policy that gave maximum
achievable value was: allocating 4 salesmen to market zone 1, 3 salesmen to market zone

2, 1 salesman to market zone 3 and 0 salesman to market zone 4, given an optimal return

of GH¢260,000.00.

5.2 RECOMMENDATIONS

The use of computer application in gomputatigng givesa=systematic and transparent
solution as compared with an arbitrary* method¥ Using wheé more scientific dynamic
programming model for the product allocation and distribution problem of the company
gives a better result. Management may benefit from the proposed approach for the
product allocation and distribution to guarantee optimal allocation policy and maximum
returns. We therefore recommend-that the dynamic programming model should be
adopted by the company for their _product allocation and- distribution to the various

market zones.
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