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CHAPTER 1 

INTRODUCTION 

   

1.1 Background to the study  

The Brong Ahafo Region is located in mid-western Ghana, between the 

Ashanti Region and Cote d‘Ivoire border. Its capital is Sunyani. Sunyani is linked to 

Accra, the nation‘s capital by a first class road and is about seven hours drive between 

them at a relatively regular pace. It is the second largest region in Ghana in terms of 

landmass with a territorial size of 39,557km
2
 with a population of about 1,824,857 

according to the 2000-population census. 

The region has twenty four (24) constituencies out of the two hundred and thirty 

constituencies in  Ghana. According to the 2008 voter‘s register, the voter population 

in the region is 1,175,221. As at September 2008, there were fifteen registered 

political parties in Ghana.  The twenty four (24) constituencies, their capitals and their 

respective voter population according to the electoral commission are tabulated 

below. 

Table 1.1: Constituencies, their capitals and voter population in Brong Ahafo 

CONSTITUENCY CAPITAL VOTER POPULATION 

Asutifi North Kenyase 27,204 

Asutifi South Kukuom 28,288 

Atebubu-Amantin Atebubu-Amantin 43,285 

Berekum Berekum 72,451 
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Dormaa West Dormaa-Ahenkro 70,103 

Dormaa-East Wamfie 29,020 

Jaman North Sampa 39,686 

Jaman South Drobo 48,825 

Kintampo North Kitampo 47,128 

Kintampo South Jema 36,543 

Nkoranza North Busuaa 28,919 

Nkoranza South Nkoranza 47,050 

Pru Yeji 56,771 

Sene Kwamedanso 43,889 

Sunyani East Suyani 79,829 

Sunyani West Domase 55,282 

Tain Nsokor 54,760 

Tano North Duayaw Nkwanta 40,470 

Tano South Bechem 41,818 

Techiman North Tuobodom 36,529 

Techiman South Techiman 86,113 

Wenchi Wenchi 52,380 

Asunafo North Goaso 64,190 

Asunafo South Hwediem 44,688 

  Out of the twenty-four( 24) constituencies, the NPP has fifteen (15) members of 

parliament  whereas the NDC has nine (9).  
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1.2 STATEMENT OF THE PROBLEM 

Parliamentary democracy is very important to every nation‘s development. The main 

players in Ghana are the political parties. The political parties spend huge sums of 

money, time, energy and resources campaigning. 

 Political parties in Ghana rely on meager dues from party members and donation 

from individuals for the running of the day to day activities. At some point in time, it 

is difficult raising the money needed. Some interest groups in the Ghanian politics 

have began asking government to support political parties. This is however difficult 

for a developing nation like Ghana whose per capital income was about seven 

hundred dollars as at 2007 and which rely on donors to finance about 40% of her 

budget.  

The political parties must therefore find a way by which they can minimize cost they 

incur during campaigning or depend on multinational companies or rich individuals to 

finance their campaign activities. Allowing multinationals or rich individuals to 

finance campaign is not the best option since this opens the door to corruption as 

these financiers would have to be compensated. More often than not, their 

compensation is undue. It is therefore a necessity and as a matter of urgency for 

political parties to find ways by which they can minimize cost.   

Taking the optimal rout by the presidential aspirant in all his/her campaign visitation 

is one sure way by which cost can be reduced.  This is what this thesis seeks to do. 
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1.3 OBJECTIVES 

The objectives of this thesis are 

i.to formulate a mathematical model that takes into consideration the actual 

distance   between the constituency capitals of the twenty-four constituencies in 

the Brong Ahafo  Region. 

ii. to determine the optimal rout for visiting all the twenty-four constituencies in 

the region. 

1.4 METHODOLOGY 

      The campaign visitation by a presidential aspirant to the constituency capitals in 

the Brong Ahafo region will be modeled as a Travelling Salesman Problem(TSP). The 

Simulated Annealing Algorithm is the method that will be used for solving the TSP 

model. This is because the simulated annealing which is a metaheuristic- based search 

algorithm is capable of solving combinatorial optimization problems like the TSP.  

The sources of data for the thesis are the internet and libraries for relevant literature, 

electoral commission and feeder roads will also be consulted for information on the 

voter population in the region and the distance of the network routes from one 

constituency capital to the other respectively. 

1.5 IMPORTANCE OF A VISIT BY A PRESIDENTIAL ASPIRANT 

1. An aspirant‘s visit to a constituency enables him/her to be introduced to the 

 electorate in the constituency. Some people get to see him/her for the first time. 

2. It affords the candidate an opportunity to deliver his or her message/policies to the 

people in the constituency. 
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3. Party members are energized to campaign even in the absence of the aspirant. 

4. Electorates in the constituencies also feel the aspirant cares about the. 

5. It gives the aspirant the opportunity to know the specific challenges in the various 

constituencies and assures the electorate as to how such challenges     would be dealt 

with. 

6. The visit also enables the aspirant to canvass for votes.  

 

1.6 Organization of the thesis 

Chapter one covers the introduction to the thesis, Chapter two the literature review, 

Chapter three methodology, Chapter four the collection of data, analysis of data and 

discussion. In Chapter five we shall put forward conclusions and recommendations of 

the thesis. 

 

1.7 SUMMARY 

In this chapter, we presented brief history of Ghana, background to the study, 

statement of the problem, objectives of the thesis, methodology, importance of a visit 

by a presidential aspirant and the organization of the thesis. 

In the next chapter, we shall review some literature in the field of travelling salesman 

problem. 
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CHAPTER 2 

LITERATURE REVIEW 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied in operations research and theoretical computer science. Given a list of cities 

and their pairwise distances, the task is to find the shortest possible tour that visits 

each city exactly once. 

    The Travelling Salesman Problem (TSP) has been studied during the last fifty years 

and many exact and heuristic algorithms have been developed. These algorithms 

include construction algorithms, iterative improvement algorithms, branch-and-bound 

and branch-and-cut exact algorithms and many metaheuristic algorithms, such as 

simulated annealing (SA), tabu search (TS), ant colony (AC) and genetic algorithm 

(GA). 

  Some of the well known tour construction procedures are the nearest neighbor 

procedure by Rosenkratz et al, the Clark and Wright savings‘ algorithm, the insertion 

procedures, the partitioning approach by Karp and the minimal spanning tree 

approach by Christotides. 

    The branch exchange is perhaps the best known iterative improvement algorithm 

for the TSP. The 2-opt and 3-opt heuristics were described in Lin. Lin and Kernighan 

(1973) made a great improvement in quality of tours that can be obtained by heuristic 

methods. Even today, their algorithm remains the key ingredient in the successful 

approaches for finding high quality tours and is widely used to generate initial 

solutions for other algorithms or developed a simplified edge exchange procedure 
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requiring only Q(n
2
) operations at each step , but producing tour nearly as good as the 

average performance of 3-opt algorithm. 

One of the earliest exact algorithms is due to Dantzig et al(1954), in which 

linear programming (LP) relaxation is used to solve the  integer formulation by 

suitably chosen linear inequality to the list of constraints continuously. Branch and 

bound (B & B) algorithm are widely used to solve the TSP‘s. Several authors have 

proposed B &B algorithm based on assignment problem (AP) relaxation of the 

original TSP formulation. These authors include Eastman (1958), Held and 

Karp(1970), Smith et al, Carpaneto and Toth, Balas and Christofides. Some Branch 

and Cut (B & C) based exact algorithms were developed by Crowder and Padperg, 

Padberg and Hong , Grotschel and Holland.  

Besides the above mentioned exact and heuristic algorithms, metaheuristic 

algorithms have been applied successfully to the TSP by a number of researchers. SA 

algorithms for the TSP were developed by Bonomi and Lutton, Golden and Skiscim 

and Nahr et al. Lo and Hus etc. Tabu search metaheuristic algorithms for TSP have 

been proposed by Knox and Fiechter. The AC is a relative new metaheuristic 

algorithm which is applied successfully to solve the TSP. some work based on SA 

technology was reported by Dorigo et al. Genetic algorithms for the TSP were 

reported by Goefenstetle et al.    

Applegate et. al (1994) solved a traveling salesman problem which models the 

production of printed circuit boards having 7,397 holes (cities), and in 1998, the same 

authors solved a problem over the 13,509 largest cities in the U.S.  For problems with 

large number of nodes as cities the TSP becomes more difficult to solve. 
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In Homer's Ulysses problem of a 16 city traveling salesman problem, one 

finds that   there are 653,837,184,000 distinct routes (Grötschel and Padberg, 1993). 

Enumerating all such roundtrips to find the shortest one took 92 hours on a powerful 

workstation.  

The TSP and its solution procedures have continued to provide useful test grounds for 

many combinatorial optimization approaches. Classical local optimization techniques 

Rossman (1958) ; Applegate et al.(1999) ; Riera-Ledesma,(2005) ; Walshaw,(2002) ; 

Walshaw (2001) as well as many of the more recent variants on local optimization, 

such as simulated annealing by Tian and Yang (1993), tabu search by Kolohan and 

Liang, (2003), neural networks by Potvin, (1996) and genetic algorithms have all been 

applied to this problem, which for decades has continued to attract the interests of 

researchers.  

 Although a problem statement posed by Karl Menger on February 5, 1930, at a 

mathematical colloquium in Vienna, is regarded as a precursor of the TSP, it was 

Hassle Whitney, in 1934, who posed the traveling salesman problem in a seminar at 

Princeton University (Flood, 1956). 

In 1949 Robinson, with an algorithm for solving a variant of the assignment problem 

is one of the earliest references that use the term "traveling salesman problem" in the 

context of mathematical optimization. (Robinson, 1949),  However, a breakthrough in 

solution methods for the TSP came in 1954, when Dantzig et al. (1954) applied the 

simplex method (designed by George Dantzig in 1947) to an instance with 49 cities 

by solving the TSP with linear programming.  

There were several recorded contributions to the TSP in 1955. Heller, (1955) 

discussed linear systems for the TSP polytope, and some neighbor relations for the 
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asymmetric TSP polytope. Also Kuhn, (1955) announced a complete description of 

the 5-city asymmetric TSP polytope. Morton and Land (1955) presented a linear 

programming approach to the TSP, alongside the capacitated vehicle routing problem. 

Furthermore, Robacker (1955) reported manual computational tests of some 9 cities 

instance using the Dantzig-Fulkerson-Johnson method, with average computational 

times of about 3 hours. This time became the benchmark for the next few years of 

computational work on the TSP (Robacker, 1955).  

Flood (1956) discussed some heuristic methods for obtaining good tours, including 

the nearest-neighbor algorithm and 2-opt while Kruskal, (1956) drew attention to the 

similarity between the TSP and the minimum-length spanning trees problem. The year 

1957 was a quiet one with a contribution from Barachet,(1957) described an 

enumeration scheme for computing near-optimal tours.  

 Croes (1958) proposed a variant of 3-opt together with an enumeration scheme for 

computing an optimal tour. He solved the Dantzig-Fulkerson-Johnson 49-city 

example in 70 hours by hand. He also solved several of the Robacker examples in an 

average time of 25 minutes per example.  Bock (1958) describes a 3-opt algorithm 

together with an enumeration scheme for computing an optimal tour. The author 

tested his algorithm on some 10-city instance using an IBM 650 computer. 

By 1958, work related to the TSP had become serious research to attract Ph.D. 

students. A notable work was a Ph.D. thesis Eastman, (1958) where a branch-and-

bound algorithm using the assignment problem to obtain lower bounds was described. 

The algorithm was tested on examples having up to 10 cities. Also that same year, 

Rossman and Twery (1958) solved a 13-city instance using an implicit enumeration 

while a step-by-step application of the Dantzig-Fulkerson-Johnson algorithm was also 



10 
 

given for Barachet's 10-city example. Bellman (1960) showed the TSP as a 

combinatorial problem that can be solved by dynamic programming method.  

In Miller et al. (1960), an integer programming formulation of the TSP and its 

computational results of solving several small problems using Gomory's cutting-plane 

algorithm was reported. Lambert (1960) solved a 5-city example of the TSP using 

Gomory cutting planes. Dacey, (1960) reported a heuristic, whose solutions were on 

average 4.8 percent longer than the optimal solutions. TSP in 1960 achieved national 

prominence in the United States of America when Procter & Gamble used it as the 

basis of a promotional context. Prizes up to $10,000.00 were offered for identifying 

the most correct links in a particular 33-city problem. A TSP researcher, Gerald 

Thompson of Carnegie Mellon University won the prize in Applegate et al (2007).  

Müuller- Merbach (1961) proposed an algorithm for the asymmetric TSP; he 

illustrated it on a 7-city example. Ackoff et al. (1961) gave a good survey of the 

computational work on the TSP that was carried out in the 1950‘s. 

By 1962, when the computer was becoming a useful tool in exploring TSP, the 

dynamic programming approach gained attention. Gonzales solved instances with up 

to 10 cities using dynamic programming on an IBM 1620 computer by Gonzales, 

(1962). Similarly, Held and Karp (1962) described a dynamic programming algorithm 

for solving small instances and for finding approximate solutions to larger instances. 

Little et al. (1963) coined the term branch-and-bound. Their algorithm was 

implemented on an IBM 7090 computer and they gave some interesting 

computational tests including the solution of a 25-city problem that was in the Held 

and Karp test set. Their most cited success is the solution of a set of 30-city 

asymmetric TSPs having random edge lengths. In an important paper (Lin, 1965): a 
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heuristic method for the TSP was published. The author defined k-optimal tours, and 

gave an efficient way to implement 3-opt, extending the work of Croes (1958) with 

computational results given for instances with up to 105 cities. 

 The year 1966 was another fruitful one for the TSP in terms of published works. 

Roberts and Flores (1966) described an enumerative heuristic and obtained a tour for 

Karg and Thompson's 57-city example, having cost equal to the best tour found by 

Karg and Thompson. Also, in a D.Sc. thesis at Washington University, St. Louis, 

Shapiro (1966) describes an algorithm similar to Eastman's branch-and-bound 

algorithm.  

Gomory1966 gave a very nice description of the methods contained in Dantzig et 

al.(1954), Held and Karp (1962) and Little et al. (1963). Similarly, in Lawler and 

Wood (1966) descriptions of the branch-and-bound algorithms of Eastman 1958 and 

Little et al. (1963) were given. The authors suggested the use of minimum spanning 

trees as a lower bound in a branch-and-bound algorithm for the TSP.  

Bellmore and Nemhauser (1968) presented an extensive survey of algorithms for the 

TSP. They suggested dynamic programming for TSP problems with 13 cities or less, 

Shapiro‘s branch-and-bound algorithm for larger problems up to about 70-100 and 

Shen Lin's `3-opt' algorithm for problems that cannot be handled by Shapiro's 

algorithm. Raymond (1969) is an extension to Karg and Thompson‘s 1964 heuristic 

for the TSP where computational results were reported for instances having up to 57 

cities.  

Held and Karp in their 1970 paper introduced the 1-tree relaxation of the TSP and the 

idea of using node weights to improve the bound given by the optimal 1-tree. Their 

computational results were easily the best reported up to that time. Another notable 
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work on the TSP in the 70s is the S. Hong, Ph.D. Thesis, at The Johns Hopkins 

University in 1972 written under the supervision of M. Bellmore, and the work was 

the most significant computational contribution to the linear programming approach 

to the TSP since the original paper of Dantzig et al. (1959). The Hong‘s algorithm 

(1972) had most of the ingredients of the current generation of linear-programming 

based algorithms for the TSP. He used a dual LP algorithm for solving the linear-

programming relaxations; he also used the Ford-Fulkerson max-flow algorithm to find 

violated subtour inequalities.  

The algorithm of Held and Karp (1971) was the basis of some major publications in 

1974. In one case, Hansen and Krarup (1974) tested their version of Held-Karp (1971) 

on the 57-city instance of Karg and Thompson 1964 and a set of instances having 

random edge lengths. In 1976 a linear programming package written by Land and 

Powell was used to implement a branch-and-cut algorithm using subtour inequalities. 

Computational results for the 48-city instance of Held and Karp and the 57-city 

instance of Karg and Thompson (1964) were given.  

Smith and Thompson, 1977 presented some improvements to the Held-Karp 

algorithm tested their methods on examples which included the 57-city instance of 

Karg and Thompson 1964 and a set of ten 60-city random Eucliean instances. In 

1979, Land described a cutting-plane algorithm for the TSP. The decade ended with a 

survey on algorithms for the TSP and the asymmetric TSP in Buckard, (1979).  

A very impressive work heralded the 1980s. Crowder and Padberg (1980) gave the 

solution of a 318-city instance described in Lin and Kernighan (1973). The 318-city 

instance would remain until 1987 as the largest TSP solved. Also, in 1980, Grötschel 

gave the solution of a 120-city instance by means of a cutting-plane algorithm, where 
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subtour inequalities were detected and added by hand to the linear programming 

relaxation in Grötschel, M. (1980). 

In 1982, Volgenant and Jonker described a variation of the Held-Karp algorithm, 

together with computational results for a number of small instances by Volgenant and 

Jonker (1982).  A very important work of 1985 is a book (Lawler et al., 1985) 

containing several articles on different aspects of the TSP as an optimization problem. 

Padberg and Rinaldi (1987) solved a 532-city problem using the so-called branch and 

cut method.  

The approach for handling the subtours elimination constraints of the TSP integer LP 

is another area for re-examination. Researchers have identified the issue of feasibility 

or subtour elimination as very crucial in the formulation of the TSP or similar 

permutation sequence problem. ―No one has any difficulty understanding subtours, 

but constraints to prevent them are less obvious,‖ says Radin L.R in Radin, (1998). 

Methodologies or theoretical basis for handling these constraints within the context of 

algorithm development has been the basis of many popular works on the TSP. A 

classical example of this approach is in Crowder and Paderg (1980) where a linear 

programming relaxation was adopted such that if the integral solution found by this 

search is not a tour, then the subtour inequalities violated by the solution are added to 

the relaxation and resolved.  

Grötschel (1980) used a cutting-plane algorithm, where cuts involving subtour 

inequalities were detected and added by hand to the linear programming relaxation. 

Hong (1972) used a dual LP algorithm for solving the linear-programming 

relaxations, the Ford-Fulkerson max-flow algorithm, for finding violated subtour 

inequalities and a branch-and-bound scheme, which includes the addition of subtour 
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inequalities at the nodes of the branch-and-bound tree. Such algorithms are now 

known as "branch-and-cut". The problem of dealing with subtour occurrences 

algorithm development has been a major one in the in the TSP studies in the literature. 

The works in the 1990‘s were mostly application in nature. A large number of 

scientific/engineering problems and applications such as vehicle routing, parts 

manufacturing and assembly, electronic board manufacturing, space exploration, oil 

exploration, and production job scheduling, etc. have been modeled as the  Machine 

Setup problem (MSP) or some variant of the TSP are found in (Al-Haboub-Mohamad  

and Selim Shokrik (1993), Clarker and Ryan (1989), Crama et al, (2002), Ferreir 

(1995), Foulds and Hamacher (1993), G¨unther et al (1998), Keuthen (2003), Kolohan  

and Liang  (2000), Mitrovic-Minic and Krishnamurti, ( 2006) ). 

 One of the ultimate goals in computer science is to find computationally feasible 

exact solutions to all the known NP-Hard problems; a goal that may never be reached. 

Feasible exact solutions for the TSP have been found, but there are restrictions on the 

input sizes. An exact solution was found for a 318-City problem by Crowder and 

Padberg in (1980). The basic idea in achieving this solution involves three phases. In 

the first phase, a true lower bound on the optimal tour is found. In the second phase, 

the result in the first phase is used to eliminate about ninety-seven percent of all the 

possible tours. Thus, only about three percent of the possible tours need to be 

considered. In the third phase, the reduced problem is solved by brute force. This 

solution has been implemented and used in practice. Experimental results by Apple 

Gate et al (1998) showed that running this algorithm, implemented in the C 

programming language and executed on a 400MHz machine, would produce a result 

in 24.6 seconds of running time.  
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Other exact solutions have been found. As mention in 1998, a 120-city problem by 

Grötschel (1980), a 532-city problem by Padberg and Rinaldi  (1987) . However, none 

of the algorithms that provide an exact solution for input instances of over a thousand 

cities are practical for everyday use. Even with todays super computers, the execution 

time of such exact solution algorithms for TSPs involving thousands of cities could 

take days.  

Computer hardware researchers have been making astonishing progress in 

manufacturing evermore powerful computing chips. Moores Law in 

(http://en.wikipedia.org/wiki/Moore's_law ), which states that the number of 

transistors that can fit on a chip will double after every 18 months, has held ground 

since 1965. This basically means that computing power has doubled every 18 months 

since then. Thus, we have been able to solve larger instances of NP-hard problems, 

but algorithm complexity has still remained exponential. Moreover, it is highly 

speculated that this trend will come to an end because there is a limit to the 

miniaturization of transistors. Presently, the sizes of transistors are approaching the 

size of atoms. With the speeds of computer processors rounding the 5GHz mark, and 

talks about an exponential increase in speeds of up to 100GHz 

(http://en.wikipedia.org/wiki/Moore's_law ) , one might consider the possibility of us 

exceeding any further need of computational performance. However, this is not the 

case. Although computing speeds may increase exponentially, they are, and will 

continue to be, surpassed by the exponential increase in algorithmic complexity as 

problem sizes continue to grow. Moore‘s law may continue to hold true for another 

decade or so, but different methods of computing are being researched. 
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CHAPTER 3 

METHODOLOGY 

The travelling salesman problem is combinatorial optimization problem. According to 

Hillier and Lieberman (2005)  it has been given this picturesque name because it can 

be described in terms of a salesman (or saleswoman) who must travel to a number of 

cities during one tour. Starting from his or her home city, the salesman follows to visit 

each city exactly once before returning to his home city as to minimize the total 

length of the tour. 

The figure below shows an example of a small travelling salesman problem with 

seven cities.  

 

Figure 3.1 Traveling Salesman Problem 

City 1 being the salesman‘s home city, he starts from this city, and must choose a 

route to visit each of the other cities exactly once before returning to city 1. The 

number next to each link between   each pair of cities represents the distance between 

these cities. The objective is to determine which route will minimize the total distance 
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that the salesman must travel. The Sub-tour Reversal Algorithm, the Tabu Search and 

the simulated annealing will each be used to find the optimal solution for the 

travelling salesmanm problem above later in this chapter.  

There have been a number of applications of travelling salesman problems that 

have nothing to do with salesmen. For example, when a presidential aspirant leaves 

his home city and visits a number of cities campaigning and returns to his home city 

after a period, the problem of determining the shortest route for doing this tour is a 

travelling salesman problem. Another example involves the manufacture of printed 

circuit boards for wiring chips and other components. When many holes need to be 

drilled into a printed circuit board, the process of finding the most efficient drilling 

sequence is a travelling salesman problem. 

The difficulty of travelling salesman problems increases rapidly as the number 

of cities increases. For a problem with n cities, the number of feasible routes to be 

considered is (n- 1)!/2 since there are (n-1) possibilities for the first city after the 

home city, (n-2) possibilities for the next city, and so forth. The denominator of 2 

arises because every route has an equivalent reverse route with exactly the same 

distance. Thus, while a 10-city travelling salesman problem require less than 200,000 

feasible solutions to be considered, a 20-city problem has roughly 10
16

 feasible 

solutions while a 50-city problem has about 10
62

 feasible solutions. 
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Formulation of TSP model 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph 

with vertices V, |V|=n, where n is the number of cities, and edges E with edge length 

dij for (i,j). The focus is on the symmetric TSP in which case dij = dji, for all (i,j). This 

minimization problem can be formulated as an integer programming as shown below 

in Equations (1) to (5). The problem is an assignment problem with additional 

restrictions that guarantee the exclusion of sub-tours in the optimal solution. Recall 

that a sub-tour in V is a cycle that does not include all vertices (or cities). Equation (1) 

is the objective function, which minimizes the total distance to be travelled. 

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that 

each city is entered from only one other city, while (3) ensures that each city is only 

departed to on other city. Constraint (4) eliminates sub-tours. Constraint (5) is a 

binary constraint, where xij = 1 if edge (i,j) in the solution and xij = 0, otherwise. 

 

     min i j i j

i v j v

c x
 

                                ( 1) 

    1i j

j v

j i

x i v




                             (2) 

1i j

i v

x j v

i j


 



                                            (3) 

| | 1 ,i j

i s j s

x s s v s
 

                              (4) 
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1 ,i jx or i j v                                             (5) 

However, the difficulty of solving TSP is that sub-tour constraints will grow 

exponentially as the number of cities grows large, so it is not possible to generate or 

store these constraints. Many applications in real world do not demand optimal 

solutions.  

 

3.2 The Sub-Tour Reversal Algorithm 

This adjusts the sequence of cities visited in the current trial solution by 

selecting a sub-sequence of the cities and simply reversing the order in 

which that sequence of cities is visited. 

 

Initialization: Start with any feasible tour as the initial trial solution. 

 

Iteration: For the current trial solution, consider all possible ways of 

performing a sub-tour reversal except reversal of the entire tour. Select the 

one that provides the largest decrease in the distance travelled to the new 

trial solution 

 

Stopping Rule: Stop when no sub-tour reversal will improve the current 

trial solution. Accept this solution as the final solution. 

 

Applying this algorithm to the problem above and starting with 1-2-3-4-5-

6-7-1 as the initial trial solution, there are four possible sub-tour reversals 

that would improve upon this solution as shown below 
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                       1-2-3-4-5-6-7-1 = 69 

Reverse 2-3: 1-3-2-4-5-6-7-1 = 68 

Reverse 3-4: 1-2-4-3-5-6-7-1 = 65 

Reverse 4-5: 1-2-3-5-4-6-7-1 = 65 

Reverse 5-6: 1-2-3-4-6-5-7-1 = 66 

 

The solution with distance = 65 tie for providing the largest decrease in the 

distance travelled, so suppose that the first of these 1-2-4-3-5-6-7-1 is 

chosen to be the next trial solution. This completes the first iteration. 

 

The second iteration has only one sub-tour reversal that will provide an 

improvement as shown below 

                             1-2-4-3-5-6-7-1 = 65 

Reverse 3-5-6: 1-2-4-6-5-3-7-1 = 64 

 

At this point there is no sub-tour reversal that will improve upon this new 

trial solution. So the sub-tour reversal algorithm stops with this trial 

solution as the final solution even though by other methods, 1-2-4-6-5-3-7-

1 is not the optimal solution. 

 

3.3 Tabu Search 

According to Hillier and Lieberman Tabu Search is a widely used 

metaheuristic that uses some common sense ideas to enable the search 

process to escape from a local optimum. The concept of tabu search (TS) 

is derived from artificial intelligence where intelligent use of memory 
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helps in exploiting useful historical information.  The restrictions put on 

the information in the memory reminiscent of the definition of the word 

‗tabu‘ as ―a set apart as charged with a dangerous supernatural power and 

forbidden to profane use or contact‖. Tabu search can also incorporate 

some more advanced concepts. One is intensification, which involves 

exploring a portion of the feasible region more thoroughly than usual after 

it has been identified as a particularly promising portion for containing 

very good solutions. Another concept is diversification, which involves 

forcing the search into previously unexplored areas of the feasible region. 

The focus will however be on the basic form of tabu search summarized 

below. 

 

1. Initialization : A starting solution generated by choosing a random 

solution, x Є S. The evaluating function f(x) is used to evaluate x. The 

solution is stored in the algorithm memory called the tabu list. 

2. Neighborhood exploration: All possible neighbours µ(x) of the 

solution x are generated and evaluated. Solutions in the tabu list are 

considered unreachable neighbours, they are taboo (tabu). An immediate 

neighbor can be reached by making a sub-tour reversal. 

3. New Solution: A new solution is chosen from the explored 

neighbourhood. This solution should not be found in the tabu list before it 

is discovered and has to have the best move evaluation value of f(x) for all 

reachable neighbours of x. 

Do tabu check on the new solution. If it is successful replace the current 

solution and update the tabu list and other tabu attributes. Here the new 
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solution evaluation value can be worse compared with that of current 

solution. This enables the solution not to be trapped at local optimum. The 

tabu check applied based on the move being the best move. 

(i) If the solution is in the tabu list then check the aspiration level. If 

successful replace the current solution and update the tabu list and 

other tabu attributes. The aspiration check uses the function 

evaluation and the success of the check depends on the function 

evaluation of the new solution being better than that of the current 

best solution. 

(ii) If checks (i) and (ii) are not successful then keep the current 

solution otherwise replace the current solution by the new solution. 

(iii) Compare the best solution to the current solution, if the current 

solution is better than the best solution, replace the best solution. 

(iv) Until loop condition is satisfied go to step Until termination 

condition is satisfied go to step 1. 

(v) Stop after three consecutive iterations without an improvement in 

the best objective function value. Also stop at any iteration where 

the current trial solution has no immediate neighbours that are 

not ruled out by their tabu status. 

To apply this tabu search algorithm to the problem above,  

Let initial trial solution = 1-2-3-4-5-6-7-1           Distance = 69 

Tabu list : Blank at this point 
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Iteration 1:  

reverse 3-4 

Delete Links: 2-3 and 4-5 

Added links: 2-4 and 3-5 

Tabu list : Links 2-4 and 3-5 

New trial solution: 1-2-4-3-5-6-7-1             Distance = 65 

Iteration 2  

Reverse 3-5-6 

Delete links: 4-3 and 6-7 

Added links: 4-5 and 3-7 

Tabu list: links 2-4, 3-5, 4-6 and 3-7 

New trial solution: 1-2-4-6-5-3-7-1            Distance = 64 

The tabu search algorithm now escapes from this local optimum by moving next to 

the best immediate neighbor of the current trial solution even though its distance is 

longer. Considering the limited availability of links between pairs of cities in fig….., 

the current trial solution has only the two immediate neighbours listed below. 

Reverse 6-5-3: 1-2-4-3-5-6-7-1                       Distance = 65 

Reverse 3-7:  1-2-4-6-5-7-3-1                          Distance = 66 

Reversing 2-4-6-5-3-7 to obtain 1-7-3-5-6-4-2-1 is ruled out since it is simply the 

same tour in the opposite direction. However the of these immediate neighbours must 
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be ruled out because it would require deleting links 4-6 and 3-7, which is tabu since 

both of these links are on the tabu list. This move could still be allowed if it would 

improve upon the best trial solution found so far but it does not. 

Ruling out this immediate neighbor does not allow cycling back to the preceding trial 

solution. Therefore by default, the second of these immediate neighbours is chosen to 

be the next trial solution as summarized below. 

Iteration 3  

Reverse 3-7 

Delete links: 5-3 and 7-1 

Add links: 5-7 and 3-1 

Tabu List: 4-5, 3-7, 5-7 and 3-1 

New trial solution: 1-2-4-6-5-7-3-1          Distance = 66 

The sub- tour reversal for this iteration can be seen in the fig……., where the dashed 

lines show the links being deleted (on the left) and added (on the right) to obtain the 

new trial solution. 

The new trial solution has the four immediate neighbours listed below. 

Reverse 2-4-6-5-6: 1-7-5-6-4-2-3-1                       Distance = 65 

Reverse 6-5: 1-2-4-5-6-7-3-1                                  Distance = 69 

Reverse 5-7: 1-2-4-6-5-7-3-1                                  Distance = 63 

Reverse 7-3: 1-2-4-6-5-3-7-1                                  Distance  
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Both of the deleted links 4-6 and 5-7 are on the tabu list. The second of these 

immediate neighbours is therefore tabu. The fourth immediate neighbor is also tabu. 

Thus, there are only two options, the first and the third immediate neighbours. The 

third immediate neighbor is chosen since it has shorter distance. 

Iteration 4 

Reverse 5-7 

Delete links: 6-5 and 7-3 

Add links: 6-7 and 5-3 

Tabu list: 5-7, 3-1, 6-7 and 5-3 

(4-6 and 3-7 are now deleted from the list) 

New trial solution: 1-2-4-6-7-5-3-1            Distance = 63 

The only immediate neighbor of the current trial solution would require deleting links 

6-7 and 5-3, both of which are on the tabu list so cycling back to to the preceding trial 

solution is prevented. Since no other immediate neighbours are available, the stopping 

rule terminates the algorithm at this point with 1-2-4-6-7-5-3-1 as the final solution 

with Distance = 63. 

 

3.3 Simulated Annealing 

According to Amponsah and Darkwah(2007) the concept of Simulated Annealing is 

derived from Statistical mechanics in the area of natural sciences. A piece of regular 

metal in its natural state has the magnetic direction of its molecules aligned in uniform 
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direction. As the metal is heated, the kinetic energy of the molecules increases and the 

cohesive force decreases till when the molecules are free to move about randomly. 

The magnetic directions of the molecules are oriented randomly.  

To achieve regularity of alignment of the magnetic direction so as to make the metal 

stable for use, it must be cooled slowly. This slow cooling of the metallic material is 

called annealing. In 1953 Metropolis and others recognised the use of Boltman‘s law 

to stimulate the efficient equilibrium condition of a collection of molecules at a given 

temperature and thus facilitate annealing.  When the metal is heated to higher 

temperature and it is being cooled slowly it is assumed that for a finite drop in 

temperature the system state change in the sense that the molecules assume new 

configuration of arrangement. The configuration depends on parameters like 

temperature, the energy of the system and others. An energy function can be obtained 

by combining the parameters.  

In 1983 Kirk Patrick showed how Simulated Annealing of Metropolis could be 

adapted to solve problems in Combinatorial Optimization. 

The following analogy was made 

1. a) Annealing looks for system state at a given temperature.  

b) Optimization looks for feasible solution of the combinatorial problems 

2.   a) Cooling of the metal is to move from one system state to another 

             b) Search procedure (algorithm scheme) tries one solution after another in 

order to find the optimal solution. 

3.     a) Energy function is used to determine the system state and energy 
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            b) Objective (cost) function is used to determine a solution and the objective 

function value. 

   4.    a) Energy results in evaluation of energy function and the lowest energy state 

corresponds to stable state. 

          b) Cost results in evaluation of objective function and the lowest objective 

function value corresponds to the optimal solution  

   5.  a) Temperature controls the system state and the energy 

         b) A control parameter is used to control the solution generation and the 

objective function value 

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global 

optimization problem of applied mathematics, namely locating a good approximation 

to the global minimum of a given function in a large search space. It is often used 

when the search space is discrete (e.g., all tours that visit a given set of cities). For 

certain problems, simulated annealing may be more effective than exhaustive 

enumeration — provided that the goal is merely to find an acceptably good solution in 

a fixed amount of time, rather than the best possible solution. 

 

3.3.1 Using simulated Annealing to solve TSP 

 The TSP was one of the first problems to which simulated annealing was applied, 

serving as an example for both Kirk patrick et al. (1983) and Cerny (1985). Since then 

the TSP has continued to be a prime test bed for the approach and its variants. Most 

adaptations have been based on the simple schema presented in Figure below, with 



28 
 

implementations differing as to their methods for generating starting solutions (tours) 

and for handling temperatures, as well as in their definitions of equilibrium, frozen, 

neighbor, and random. Note that the test in Step g is designed so that large 

steps uphill are unlikely to be taken except at high temperatures t. The probability that 

an uphill move of a given cost Δ will be accepted declines as the temperature is 

lowered. In the limiting case, when T = 0, the algorithm reduces to a randomized 

version of iterative improvement, where no uphill moves are allowed at all. 

 

3.3.2 General schema for a simulated annealing algorithm. 

a. Generate a starting solution S and set the initial  solution S * = S. 

b. Determine a starting temperature T. 

c. While not yet at equilibrium for this temperature, do the following: 

 d. Choose a random neighbor S
*
 of the current solution. 

e. Set Δ = Length(S
*
) = Length(S). 

f. If ≤ 0 (downhill move): 

Set S = S
*
. 

If Length(S) < Length(S *), set S * = S. 

 h. If length(S) < length(S
*
)  (uphill move): 

Choose a random number r uniformly from [0, 1 ]. 

If r < Te


 , set S = S*. 
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i. End ‗‗While not yet at equilibrium‘‘ loop. 

j Lower the temperature T. 

k. End ‗‗While not yet frozen‘‘ loop. 

l. Return S *.  

 

3.3.3 Example 

Considering Figure 3.1  

Taking the initial solution to be in the tour in the order :1-2-3-4-5-6-7-1  

 using the parameters; 

0 20T               
1k kT T            0.5     

Stop when  0.1T   

   First Iteration 

Assuming  0x =1-2-3-4-5-6-7-1 

d( 0x )=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69 

Using the sub-tour reversal as local search to generate the new solution 1x =1-3-2-4-5-

6-7-1 

d( 1x )=d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68 

  1 0( ) ( )d x d x   =68-69=-1 

Since 0  , set 0 1x x  
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 Updating the temperature 
1 0T T =0.5(20)=10 

Second Iteration 

d( 0x )=68 

By the sub-tour reversal as local search to generate the new solution 1-2-3-5-4-6-7-1 

1x =1-2-3-5-4-6-7-1 

d( 1x )=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65 

1 0( ) ( )d x d x   =65-68=-3 

Since 0  , set 0 1x x  

Updating the temperature , 
2T =0.5(10)=5 

Third Iteration 

d( 0x )=65 

Using the sub-tour reversal as local search to generate the new solution 1-2-3-4-6-5-7-

1 

1x =1-2-3-4-6-5-7-1 

d( 1x )=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66 

1 0( ) ( )d x d x   =66-65=1 

Since 0  , then apply Boltzmann‘s condition 2T
m e



 =0.81 

A random number would be generated from a computer say   
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If  m>  then set 0 1x x  otherwise 1 0x x  

Updating the temperature,  
3 0.5(5) 2.5T    

This process will continue until the final temperature and the optimal solution are 

obtained. 

 

3.4  Genetic Algorithm 

The genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin (1859)  

and recently discussed by Dawkins (1986) .Holland 1975 invented Genetic Algorithm 

as an adaptive search procedure. There has been a lot of intensive research on the use 

of  GA to solve problems such the TSP and Transportation Problem by (Rachev and 

Ruschendorf 1993, Datta 2000).Generalized chromosome genetic algorithm ( GCGA) 

was proposed for solving generalized traveling salesman 

problems(GTSP).Theoretically, the GCGA could be used used to solve classical 

traveling salesman problem (CTSP) by Yang 2008. 

 The GA have the following simulations of the evolutionary principles; 

Evolution Genetic Algorithm 

An individual is a genotype of the 

species 

An individual is a solution of the 

optimization  problem. 

Chromosomes defined the structure of an 

individual. 

Chromosomes are used to represent the 

data structure of the solution. 

Chromosomes consists of sequence of 

cells called genes which contain the 

Chromosomes consists of sequence of 

gene species which are placeholder 
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structural information. boxes containing string of data whose 

unique combination give the solution 

value. 

The genetic information or trait in each 

gene is called an allele 

An allele is an element of data structure 

stored in a gene placeholder. 

Fitness of an individual is an 

interpretation of how the chromosomes 

have adopted to competition 

environment. 

Fitness of a solution consists in 

evaluation of measures of the objective 

function for the solution and comparing it 

to the evaluations for other solutions 

A population is a collection of species 

found in a given location. 

A population is a set of solution that form 

domain search space. 

A generation is a given number of 

individuals of the population identified 

over a period of time. 

A population is a set of solutions taken 

from the population (domain) and 

generated at an instant of time or in an 

iteration  

Selection is pairing of individuals as 

parent for reproduction   

Selection is the operation of selecting 

parents from the generation to produce 

offsprings 

Crossover is mating and breeding of 

offsprings by chromosomes 

characteristics are exchanged to form new 

individuals 

Crossover is the operation whereby pairs 

of parents exchange characteristics of 

their data structure to produce two new 

individuals as offsprings 

Mutation is a random chromosomal 

process of modification whereby the 

inherited genes of the offspring from their 

Mutation is a random operation whereby 

the allele of a gene in a chromosome of 

the offspring is changed by a probability 
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parents are distorted. pm. 

Recombination is a process of nature‘s 

survival of the fittest 

Recombination is the operation whereby 

elements of the generation and elements 

of the offspring form an intermediate 

generation and less fit chromosomes are 

taken from the generation. 

.    Table:3.4.0 The relationship between Evolution and Genetic Algorithm 

 

Given a population at t, genetic operators are applied to produce a new population  

at time t+1.A stepwise evolution of the population from the time t to t+1 is called 

generation. The GA for a single generation is based on the general framework of 

selection, crossover, Mutation and Recombination. 

 

3.4.1 Representation of individuals 

For the purpose of crossover and mutation operations the variables in the genetic 

algorithm may be represented by an amenable data structure. 

Suppose we have the search space 0,1,2,...,10x   then the x  values form the 

individual.  The elements of the search space in a binary sequence are encoded by 

expressing x =10 and x =0 in binary sequence to obtain 
210 1010  and 

20 0000  

Thus x =10 is an individual and 1010 is its chromosome representation. The 

chromosome has 4 genes placeholder for the alleles. The allele information in the 

genes will be the binary numbers 0 and 1.the chromosome for x =9 is therefore 
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1 0 0 1 

 

There are 42 permutations for a binary string of length 4.These 42  permutation 

consist of both infeasible and feasible solutions. There are 11 feasible solutions which 

constitute the search space and the rest for the infeasible set. Since the solution set is 

restricted to the integers we look for suboptimal solution. In general the data structure 

used for the representation of individual depends on variables of the problem at hand. 

3.4.2 Fitness function 

This the measure associated with the collective objective functions of the optimization 

problem. The measure indicates the fitness of a particular chromosome representation 

of a particular individual solution. In the TSP, the fitness function is the sum of the 

path between the cities. 

1

11
( , )

n

i ii
f d c c




  

(.)d is a distance function 

n is the number of cities 

ic is the ith city  
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3.4.3 Initial population 

A GA begins with a population of potential solutions. . For function optimization, the 

vriable x  in the objective function ( )f x will be encoded in a chromosome consisting 

of a binary string. Thus x =13 is a represented as 
10 213 1101x   .For a tour of five 

cities in the TSP, the index 1,2,3,4,5 may be used for the cities and represent a tour T 

by the permutation [1,2,3,4,5]T  .Each potential solution must be a feasible as well 

as being a unique solution. 

 

3.4.5 Population Size 

The population size indicates how much of the search space the GA will search in 

each iteration. Smaller size could mean the algorithm takes smaller time to find the 

optimal solution. Similarly when the size is large the algorithm take a longer  time in 

sampling the large number of chromosomes in order to obtain the best chromosome. 

 

3.4.6 Selection Process  

The general selection process involves reproduction, crossover and mutation 

operations. 

The selection process is used to generate a new population from the current one. The 

objective is to select individuals from the high fitness range . It is used for selecting 

individuals for crossover and mutation. 
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3.4.6.1(Elitist) Selection 

A percentage of the current population which highly fits is copied directly as part of 

the new generation. 

 

3.4.6.2 Proportional Fitness (Roulette wheel) selection 

This is biased towards chromosomes with best fitness values. However a wide range 

of chromosomes are selected. In the first stage, a roulette wheel is constructed by 

computing the relative fitness of each chromosome as 

1

i
ni

kk

f
w

f





 

Where 
kf is the fitness of  kith chromosome 

We then find the cumulative fitness ( jc ) of the jth chromosome as 

1

j

j ii
c w


  

This creates the roulette wheel. 

In the second stage a random number jr  is chosen and if j jr c then the ith 

chromosome is selected. 

The above calculation is based on maximization problems. For minimization problem 

define 

max( ) 1i iF f f    
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And 

1

i
ni

kk

F
w

F





 

Where 
maxf  is the maximum fitness of all chromosomes 

kF  is the reverse magnitude fitness 

Selection is a process of choosing a pair of organism to reproduce. The selection 

function can be any increasing function and proportional fitness selection is a clear 

example. 

 

3.4.6.3 Tournament Selection 

Two chromosomes are chosen at random. The one with the higher fitness is then 

selected. 

The process is repeated until the required numbers of chromosomes are obtained .  

 

3.4.6.4 Random Selection 

Chromosomes may be selected irrespective of their fitness. 

 

3.4.7 Crossover 

After the required selection process the crossover is used to divide a pair of selected 

chromosome into or more parts. Parts of one of the pair are joined to parts of the other 

chromosome with the requirement that the length should be preserved. 
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The point between two alleles of a chromosome where it is cut is called crossover 

point. 

There can be more than one crossover point  in a chromosome .The crossover point I

is the space between the allele in the ith position and the one in (i+1)th position .For 

two chromosomes the crossover point are the same and the crossover operation may 

produce new chromosomes, which are less fit .In this sense that the crossover 

operation result in a non-improving solution. 

 

3.4.7 .1 Single point crossover 

A single point along a chromosome is selected. The parts of the parents on the left or 

right of the crossover point are swapped to get new chromosomes. 

 

3.4.7. 2 Double point crossover 

Two points are chosen as crossover points. This separates the chromosomes into three 

parts. The middle parts are swapped to obtain new chromosomes 

 

3.4..3 Uniform crossover 

Single allele in the same positions are considered for swapping . The probability of 

selecting an allele for swapping is called Mixing Rate. Mixing rates are set for the 

allele position. Random numbers are then generated and a position satisfying the 

mixing rate has the allele in the two chromosomes swapped. Crossover operation is an 
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exploratory operation that allows the GA to take ‗large jumps‘ during the search. As 

convergence is approached the exploratory power of the crossover diminishes. 

 

3.4.8 Mutation 

Mutation operation is performed on individual chromosome whereby the alleles are 

changed probabilistically.   

 

3.4.8.1  Random swap mutation 

In random swap two loci(position) are chosen at random and their values swapped. 

 

3.4.8.2  Move-and-insert gene mutation 

Using move-and-insert, a locus is chosen at random and its value is inserted before or 

after the value at another at another randomly chosen locus. 

 

3.4.8. 3  Move-and-sequence mutation 

Sequence mutation is very similar to the gene move-and-insert but instead of a single 

locus a sequence loci is moved and inserted before or after the value at another 

randomly chosen locus. 
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3.4.8. 4 Uniform mutation  

A probability parameter is set and for all the loci an allele with greater or same 

probability as the parameter is mutated by reversing its allele 

 

3.4.9  Termination Conditions\ 

The algorithm terminates when a set of conditions are satisfied. At that point the best 

solution is taken as the global solution or the algorithm may terminate if one or more 

of the following are satisfied; 

i) A specified number of total iteration is completed. 

ii) A specified number of iteration is completed within which the solution of 

best fitness has not changed. 

iii) A standard deviation of the generation of the population approaches a 

given value. 

iv) The average fitness of the generation of the population does not differ 

significantly from the solution of best fitness. 

 

Goldberg 1989 presented a standard Genetic Algorithm, which was also called Simple 

Genetic Algorithm(SGA).It is an algorithm that the most essential components of 

every genetic algorithm. The steps in SGA are; 

i) Start with a population of n random individuals ( x ) each with L-bit 

chromosome         representation. 

ii) Calculate the fitness ( )f x  of each individual 
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iii) Choose based on fitness two individual and call them parents. Remove the 

parents from the population. 

iv) Use a random process to determine whether to perform crossover. If so, 

refer the output of the crossover as children .if not, simply refer to the 

parents as the children. 

v) Mutate the children probability 
mp of mutation for each bit. 

vi) Put the children into an empty set called the new generation. 

vii) Return to step ii until the new generation contains n individual .Delete one 

child at random if n is odd. Then replace the old population with the new 

generations. Return to i 

       The simple Genetic algorithm can be summarized in the following steps 

Step 1: Code the individual of the search space. 

Step 2: Initialize the generation counter (g =1). 

Step 3 : Choose initial generation of the population(solution). 

Step 4: Evaluate the fitness of each individual in the population. 

Step 5: Select individuals of the best fitness ranking by fitness proportionate 

probability. 

Step 6: Apply crossover operation on selected parents. 

Step 7: Apply mutation operation on offspring. 

Step 8: Evaluate fitness of offspring. 

Step 9: Obtain a new generation of population by combining elements of the offspring 

and the old generation by keeping the generation size unchanged. 
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Step 10: Stop if termination condition is satisfied. 

Step 11: Else g=g+1   

  

3.5 Omicron Genetic Algorithm 

The literature in evolutionary computation has defined a great variety of GAs that 

maintain the same philosophy of varying operators and adding different principles 

like elitism in [Goldberg, (1989) and  M¨uhlenbein and Hans-Michael Voigt, (1995)]. 

Using the Simple Genetic Algorithm as a reference, this Section presents a new 

version, the Omicron Genetic Algorithm (OGA), a Genetic Algorithm designed 

specifically for the TSP. 

 

3.5.1Codification 

The OGA has a population P of p individuals or solutions, as the SGA does. Every 

individual Px of P is a valid TSP tour and is determined by the arcs (I, j) that compose 

the tour. Unlike the SGA, that uses a binary codification, the OGA uses an n-ary 

codification. Considering a TSP with 5 cities c1, c2, c3, c4 and c5, the tour defined by 

the arcs (c1, c4), (c4, c3), (c3, c2), (c2, c5) and (c5,c1) will be codified with a string 

containing the visited cities in order, i.e. [c1; c4; c3; c2; c5]. 

 

3.5.2 Reproduction 

The OGA selects randomly two parents (F1 and F2) from the population P, as does an 

SGA reproduction. The selection of a parent is done with a probability proportional to 
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the fitness of each individual Px, where fitness ( ) 1 ( )x xp l p . Unlike the SGA, 

where two parents generate two offspring, in the OGA, both parents generate only one 

offspring. In the SGA, p offspring are obtained first to completely replace the old 

generation. In the OGA, once an offspring is generated, it replaces the oldest element 

of P. Thus, the population will be a totally new one in p iterations and it would be 

possible to consider this population a new generation. In conclusion, the same 

population exchange as in the SGA is made in the OGA, but in a progressive way. 

 

3.5.3 Crossover and Mutation 

The objective of crossover in the SGA is that the offspring share information of both 

parents. In mutation, the goal is that new information is added to the offspring, and 

therefore is added to the population. In the SGA, the operators crossover and mutation 

are done separately. To facilitate the obtaining of offspring who represent valid tours, 

the crossover and the mutation operators are done in a single operation called 

Crossover-Mutation in OGA. Even so, the objectives of both operators previously 

mentioned will stay intact. 

To perform Crossover-Mutation, the arcs of the problem are represented in a roulette, 

where every arc has a weight w or a probability to be chosen. Crossover-Mutation 

gives a weight w of 1 to each arc (i; j) belonging to set A, i.e. i jw   = 1  (i; j)   A. 

Then, a weight of 2  is added to each arc (i; j) of F1, i.e.  i jw = j iw  + 2   (i; j)   

F1, where Omicron (O) is an input parameter of the OGA. Analogously, a weight of 

2
ij   is added to each arc (i; j) of F2. Iteratively, arcs are randomly taken 

using the roulette to generate a new offspring. While visiting city i, consider Ni as the 
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set of cities not yet visited and that allows the generation of a valid tour. Therefore, 

only the arcs (i; j) 
ij   participate in the roulette, with their respective weights 

i jw  . Even so the crossover is done breaking the parents and interchanging parts in the 

SGA instead of taking arcs iteratively with high probability from one of the parents in 

the OGA, the philosophy of both crossover operators is the same. 

To generate an offspring S1, an arc of one of the parents will be selected with high 

probability (similar to crossover). But it is also possible to include new information 

since all the arcs that allow the creation of a valid tour participate in the roulette with 

probability greater than 0 (similar to mutation). The value 2  is used because there 

are two parents, and then 
maxw = O + 1 can be interpreted as the maximum weight an 

arc can have in the roulette (when the arc belongs to both parents). When the arc does 

not belong to any parent, it obtains the minimum weight
minw   in the roulette, that is 

minw  = 1. Then, O determines the relative weight between crossover and mutation. 

Formally, while visiting city i, the probability of choosing an arc (i; j) to generate the 

offspring S1 is 

defined by equation (1)**. 

0

w ii j

wi jh Ni

if j N

i j otherwisep

 




 



                   (1)** 
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3.5.4  Example 

To clarify the previous procedure, an example considering the TSP with 5 cities 

mentioned above is presented next. O = 4 and p = 4 are considered for this case. 

 

3.5.4.1 Reproduction 

The example assumes an initial population P = {Px} composed of 4 randomly selected 

individuals with their respective fitnesses fx. This initial population is presented next. 

First randomly chosen individual: P1 = {c1; c4; c3; c2; c5} with f1 = 10 

Second randomly chosen individual: P2 = {c1; c3; c2; c5; c4} with f2 = 8 

Third randomly chosen individual: P3 = {c3; c5; c1; c2; c4} with f3 = 1 

Fourth randomly chosen individual: P4 = {c2; c5; c4; c1; c3} with f4 = 5 

Two parents are randomly selected through roulette, where the weights of the 

individuals in the roulette are their fitness. It is assumed that individuals P1 and P4 

are selected to be parents. 

F1 = {c1; c4; c3; c2; c5} = {(c1; c4); (c4; c3); (c3; c2); (c2; c5); (c5; c1)} 

F2 = {c2; c5; c4; c1; c3} = {(c2; c5); (c5; c4); (c4; c1); (c1; c3); (c3; c2)} 
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3.5.4.2 Crossover-Mutation. 

 Iteration 1  

First, an initial city is randomly chosen to perform Crossover-Mutation. c4 is assumed 

as the initial city. Then, Nc4 is composed by [c1; c2; c3; c5], i.e. the set of not yet 

visited cities. The arc (c4; c2) has a weight of 1 in the roulette because it does not 

belong to any parent. Arcs {(c4; c3); (c4; c5)} have a weight of 1+ 2  = 3 in the 

roulette because they belong to one parent. Finally, the arc (c4; c1) has a weight of 1 

+ O = 5 in the roulette because it belongs to both parents. It is assumed that the arc 

(c4; c3) is randomly chosen through the roulette. 

 

3.5.4.3 Crossover-Mutation.  

Iteration 2 

From c3 we do crossover mutation operation 

Nc3 is composed by {c1; c2; c5}. The arc (c3; c5) has a weight of 1 in the roulette 

because it does not belong to any parent. The arc (c3; c1) has a weight of 1 + 2  = 3 

in the roulette because it belongs to one parent. Finally, the arc (c3; c2) has a weight 

of 1+O = 5 in the roulette because it belongs to both parents. 

It is assumed that the arc (c3; c2) is randomly chosen through the roulette. 
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3.5.4.4 Crossover-Mutation. 

 Iteration 3 

From c2 we do crossover mutation operation 

Nc2 is composed by [c1; c5]. The arc (c2; c1) has a weight of 1 in the roulette 

because it does not belong to any parent. Finally, the arc (c2; c5) has a weight of 1 + 

O = 5 in the roulette because it belongs to both parents. It is assumed that the arc (c2; 

c1) is randomly chosen through the roulette. 

 

3.5.4.5 Crossover-Mutation.  

Iteration 4 

Nc1 is composed by [c5]. The arc (c1; c5) has a weight of 1 +  2 = 3 in the roulette 

because it belongs to one parent. The arc (c1; c5) is chosen because it is the unique 

arc represented in the roulette. The new offspring is S1 = [c4; c3; c2; c1; c5] = {(c4; 

c3); (c3; c2); (c2; c1); (c1; c5); (c5; c4)}. Notice that S1 has 3 arcs of F1 {(c4; c3); 

(c3; c2); (c1; c5)g and 2 arcs of F2 {(c3; c2); (c1; c5)}. Also, S1 has an arc {(c2; c1)} 

that does not belong to any parent. This shows that the objectives of the operators 

(crossover and mutation) have not been altered. 

 

3.5.4.6  Population Update 

The new individual S1 replaces the oldest individual P1. Next, the new population is 

shown. 
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P1 = {c4; c3; c2; c1; c5} with f (1) = 7 

P2 = {c1; c3; c2; c5; c4} with f (2) = 8 

P3 = {c3; c5; c1; c2; c4} with f (3) = 1 

P4 = {c2; c5; c4; c1; c3} with f (4) = 5 

The entire procedure above is done iteratively until an end condition is satisfied. 

 

3.10 Some Applications of TSP 

 The TSP has provided a test bed for the development of algorithms such as the 

nearest neighbour rule that approximate optimal solutions of combinatorial 

optimization 

problems whilst on the other hand it has prompted questions concerning the 

performance 

of such algorithms. The versatility of the application of TSP is briefly discussed 

below. 

 

3.10.1 Vehicle Routing Problem (VRP) 

With regard to a particular number of vehicles, Vehicle Routing is the problem of 

determining which customers should be served by which vehicles, and in what order 

each 
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vehicle should visit its customers. The constraints may include the available fuel, 

capacity of each vehicle and available time windows for customers. TSP-based 

algorithms have been applied in this kind of problem and may also be applied to 

routing problems in computer networks.(Gerard 1994). 

The figure below shows an example of Vehicle Routing Problem (VRP) with four 

routes where the square in the middle denotes the source node 

 

 

Figure 3.9 A typical solution for a VRP with 4 routes. The square in the middle 

denotes the source node. 

 

3.10.2 Computer Wiring 

This type of problem is common in the design of computers and digital systems. The 

systems comprise of a number of modules which in turn consists of several pins. The 
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physical module position has already been determined however a given subset of pins 

has to be interconnected by wires. Assuming two wires are attached to each pin in 

order to avoid signal cross talk and to improve ease of wiring, the aim is to minimizes 

the total wire length. Let i jC  symbolizes the actual distance between pin i and j. The 

requirements imply that a minimum Hamiltonian path length must be found. This is 

done by introducing a dummy pin 0 where c0j = cj0 for all j. The problem of wiring 

thus becomes an (n+1) city symmetric TSP. A difficulty may arise if the position of 

the modules is a variable which must be chosen to minimize the total wire length for 

all subsets of the pins that must be connected (Gerard 1994). 

3.10.3 Overhauling gas turbine engines 

An application found by Gerard (1994) is overhauling gas turbine engines in aircraft. 

Nozzle-guide vane assemblies, consisting of nozzle guide vanes fixed to the 

circumference, are located at each turbine stage to ensure uniform gas flow. The 

placement of the vanes in order to minimize fuel consumption can be modeled as a 

symmetric TSP. 

3.10.4 Scheduling of jobs 

The scheduling of jobs on a single machine given the time it takes for each job and 

the time it takes to prepare the machine for each job is also TSP. We try to minimize 

the total time to process each job. A robot must perform many different operations to 

complete a process. In this 22 applications, as opposed to the scheduling of jobs on a 

machine, we have precedence constraints. This is an example of a problem that cannot 

be modeled by a TSP but methods used to solve the TSP may be adapted to solve this 

problem   (Gerard 1994).  
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3.11 Branch and Bound Algorithm  

The Branch and Bound(BB) method which was first proposed by A. H Land and A.G 

Doig in 1960 is a general algorithm for finding optimal solutions of optimization 

problems such as combinatorial optimization. It consists of systemic enumeration of all 

candidate solutions, where large sub-sets of fruitless candidates are discarded, using 

upper and lower estimated bounds of the quantity being optimized. 

The steps below are used in the branch and bound algorithm 

STEP 1: Relaxed  problem
0P  with respect to integrality condition is called the relaxed 

problem . This leads to the following linear programming problem which is called the 

relaxed  problem,    

          
0 :P   Maximize 

1

n

j j

j

Z C X


  

     Subject to      
1

n

i j j i

j

a x b


   ,     1 i m   

              0jX     jX is  integer 

 We solve the relaxation  problem 
0P  by the simplex method.  

STEP 2: If  in the solution of 
0P  every variable that is supposed to be an integer  is 

indeed an integer , then we are done .If this is not the case, then there exist at least one 

variable which is required to be an integer and whose value in our solution is not an 

integer. Pick any such variable and branch on it as follows 
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STEP 3: Suppose that at least one variable  jX  where (1 j n  ) 

has a non-integer value jX = jK when it should been an integer. We define  [ jK ] to be 

the lower integer part of  jK  so that [ ] [ ] 1j j jK X K   .Since  jX  must be an 

integer, it follows that it must obey exactly one of the following constraints. 

(i) [ ]j jX K       or   (ii) [ ] 1j jX K   

STEP 4: To branch on jX  means solving the following problem.Form two subproblems 

1 2P and P  to replace the current problem 0P  adding a lower bound constraint to one and 

an upper-bound constraint to the other for the variable selected above in step 3.It then 

partition the current subset of solutions into two new subsets of solutions. 

We now solve the LP of  
1P  such that  (iv)  1 0: [ ]j jP P x k   and the proble 

       2 0: [ ] 1j jP P x k      The branching is illustrated in the tree of figure 3.11 below 

     

 

 

 

 

 

 

 

Figure 3.11 solution tree for the method of Daskin. 

* 1j jX K   

 

1P     :      Maximize 

1

n

j j

j

Z C X


                                                

 Subject to      
1

n

i j i

j

a x b


   ,          

*

j jX K     

 

    

   1 i m  0jX   and jX  is 

an integer 1 j n       

 

*

j jX K   

 

2P    :      Maximize 

1

n

j j

j

Z C X


                                                

 Subject to      
1

n

i j i

j

a x b


   ,      

* 1j jX K       

   1 i m  0jX   and jX  is 

an integer ,1 j n       

  

 

                                                      

0P  :   Maximize 
1

n

j j

j

Z C X


                                                

           

   1 i m  0jX   and jX  is an integer 

,1 j n       

  

 



53 
 

STEP 5: Let maximum objective function value of the two subproblems be Z=
iM  in 

iP ,

1,2i   Since the feasible region of problem  
iP  is a subset of the feasible region of  

0P , it 

follows that 
iM 0M , 1,2.i  Hence ,

0M  is an upper bound to the optimal solutions 0f the 

problems  
1P  and  

2P .Test the problems  
1P  and  

2P  , for feasibility, discard any infeasible  

problem and solve the feasible ones. If, in the solution of    
1P or

2P   all the variables in the 

original problem that satisfy integrality conditions are integers, we are done and our optimal 

value is either 
1M  or 

2M , depending on which is the larger one. 

STEP 6: If , in the solution of a problem 
iP , 1,2.i  , all the variables that should be integers 

are indeed integers , we say that the problem  
iP  is fathomed. If either 

1P or
2P  is not 

fathomed, we branch on it, choosing the problem with the higher bound. We continue in this 

manner until some problems have been fathomed and all the unfathomed problems have 

bounds lower than those in the fathomed problems. We then select the solution of the 

fathomed problems with the highest objective function value as our solution.  

3.11.1 Example 

Given that 

Minimize    Z= 
1` 24X X                      (i) 

Subject to ; 

                      
1` 22 8X X                   (ii) 

                       
1` 2 6X X                     (iii) 

                    
1` 0X   , 

2` 0X                 (iv 

                
1 2,X X  are integers           (v) 
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STEP 1 : The algorithm begins by solving  (i) to (iv) as an LP problem. This has the 

following optimal solutions for *

0 1

10
,

3
P X   , 

2

4

3
X    and 

26 2
8

3 3
Z     is the lower 

bound on the set of all feasible solutions .If this first solution had satisfied (v), it would have 

been optimal for the integer programming problem and the algorithm would have been 

terminated. However, as this is not the case , we shall proceed. 

 

 

 

 

 

 

 

 

 

Figure 3.11.1: Solution tree for Dakin‘s algorithm. 

 

STEP (2):Since  
* *

1 2X and X  both have non-integer values in step 1.Arbitrarily select one to 

branch on .The set of feasible solutions is partitioned into two subsets. One set contains all the 

feasible solutions with the addition of constraint  1
10[ ] 3

3
X     and the other contains the 

set of feasible solutions with the  addition of constraint 1
10[ ] 1 4

3
X     .This reduces the 

region of feasible solutions of the LP problem, but leaves the region of feasible solutions of 

1 4X  

 
1 3X  

 

Node 2 

 

1P : 9Z    

      

1 3X    

       

2
3

2
X    

Node 1 

0P

28
3

Z  

: 

 

1

10

3
X


  

2

4

3
X


  

Node 3 

 

2 :P Z 
 

Infeasible 

Solution 
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the integer Linear programming problem unchanged, since there are no integer solution 

between 3= 10[ ]
3

 and  4= 10[ ] 1
3
  .Therefore, iteration 1 begins by partitioning the entire 

set of solutions into the two subsets below. 

(1) Solution in which  
1 3X    

(2) Solutions in which  
1 4X   

     Two LP problems are now created as 
1P  and 

2P
  
 

      
1P    :  Minimize   

1 24Z X X   

            Subject to  
1 22 8X X   

                              
1 22 6X X    

                                   
1 3X    

                          
1 0X  , 

2 0X    
1 2,x x  integers 

      
2P       : Minimize   

1 24Z X X   

            Subject to  
1 22 8X X   

                              
1 22 6X X    

                                  
1 4X    

                          
1 0X  , 

2 0X   
1 2,x x  integers 
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 For problem 
1P , the corresponding LP problem is solved. The solution is  

1 3X   ,  2
3

2
X    and   9Z   . The solution is still non-feasible for the original 

problem, but 9Z    is the lower bound  on the set of all feasible solutions with  1 3X   ,as 

shown in figure(2).Also, the problem corresponding to  
2P  is  solved by using the 

corresponding LP problem. There is no feasible solution for problem  
2P . 

 

 

 

 

 

 

 

 

 

Figure 3.11.2 : The complete solution tree for Daskin‘s algorithm. 

 

STEP 3 : Node 2 of  problem 
1P  is the only one for branching. The solutions with 

*

2
3

2
X   

from problem 
1P  is partitioned into two subsets, one with 

*

2
3[ ] 1

2
X    and the other with  

2 2X   .These subsets correspond to Nodes 4 and 5 respectively of problems 
3P  and 

4P  as 

shown in figure2.4.2.Therefore the subproblem to solve at node 4 of problem 
3P  is  

1 3X    

Node 3 

 

2 :P Z 
 

Infeasible 

Solution 

 

1 4X    

Node 1 

0P

28
3

Z  

: 

 

1

10

3
X




 

2

4

3
X




 

 
Node 4 

3P   :   Z   

Infeasible 

solution 

Node 5 

4P : Z 

=10 

1 3X 
  

2 2X 
  

2 2X 


 
2 1X  

 

Node 2 

 

1P :

9Z    

      

1 3X    

       

2
3

2
X  
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3 :P   Minimize   
1 24Z X X   

            Subject to  
1 22 8X X   

                              
1 22 6X X   

                                   
1 3X   

                                 
2 1X   

                          
1 0X  , 

2 0X    
1 2,x x  

By solving the LP of problem  
3P  at Node 4, we find the solution to be infeasible. The 

subproblem 
4P  at Node 5 is   

  Minimize   
1 24Z X X   

      .     Subject to  
1 22 8X X   

                              
1 22 6X X   

                                   
1 3X   

                                
2 2X   

                           
1 0X  , 

2 0X  ,
1X and 

2X  are integers. 

By solving the LP of problem  
4P  at Node 5, the solution is  

    1 3X   , 2 2X   , and 10Z   . 

1 3X    and  2 2X    is the optimal solution of the original problem with an optimal value 

of the objective function being 10Z   . 
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3.12.1 Cutting Plane Method 

Cutting plane methods are exact algorithms for integer programming problems. They have 

proven to be very useful computationally in the last few years, especially when combined 

with a branch and bound algorithm in a branch and cut framework. These methods work by 

solving a sequence of linear programming relaxations of the integer programming problem. 

 The relaxations are gradually improved to give better approximations to the integer 

programming problem, at least in the neighborhood of the optimal solution. For hard 

instances that cannot be solved to optimality, cutting plane algorithms can produce 

approximations to the optimal solution in moderate computation times, with guarantees on the 

distance to optimality. 

Cutting plane algorithms have been used to solve many different integer programming 

problems, including the traveling salesman problem  (Gr¨otschel and Holland 1991, Padberg  

and Rinaldi 1991, Applegate et al 1994); the linear ordering problem  (Gr¨otschel et al 

1984, Mitchell and Borchers 1996,Mitchell  and Borchers 1997); maximum cut problems  in 

(Barahona, et al 1988, De Simone  et al 1995 and  Mitchell. 1997) and packing 

problems(Gr¨otschel, M and Weismantel (1996) , Nemhauser  and Sigismondi  (1992). 

   J¨unger et al. (1995) contains a survey of applications of cutting plane methods, as well 

as a guide to the successful implementation of a cutting plane algorithm. Nemhauser and 

Wolse (1992) provides an excellent and detailed description of cutting plane algorithms as 

well as other aspects of integer programming. Research by Schrijver 1986 and his article in 

(Schrijver 1995) are excellent sources of cutting plane applications. 

 

3.12.2 Using the fractional algorithm of cutting plane  

In this algorithm all coefficients including the right hand side need to be integer. This 

condition is necessary as all variables (original, slack and artificial) are supposed to be 
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integer. The elements of A and b need not be integer although this can be transformed into 

integers as shown below. 

In case a constraint with fractional coefficient exist then  both sides of the inequality 

(equality) are multiplied by the least common multiple of the denominator (LCMD). 

For instance 
1 2

3 45 3 10
1 2 1 25 3

x x becomes x x     

 

3.12.3 Procedure for cutting plane algorithm 

1. Solve the integer programming problem as a Linear Programming Problem.  

2. If the optimal solution is integer stop else go to step 3. 

3. Introduce secondary constraints (cut) that will push the solution towards integrality 

(Return to 1). 

We show how to constrait the secondary the secondary constraints in the following 

sections  

 

3.12.3The construction of the secondary constraints: 

Given the integer problem 

               Minimize    
TZ=C X  

               Subject to   AX   b 

                                     X 0 , integer 

X=Vector of decision variable. 

  TC =Vector coefficients 
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    A=the given matrix 

    B=vector coefficient 

The optimal tableau of the Linear programming Problem is given in table 2.0 below: 

For simplicity of notation let us have   ,X X X
B NB

  

    
1( ... )B MX X X    and    

1( ... )NB NX W W    

Table 3.12.0 Table showing the variables to be considered in the Cutting Plane 

Method. 

 Z X1 … Xi   … XM W1 …    WJ  …  WN solution 

Z 1 0         0          0 C1  …    Cj …      CN  0 

X1 

 

 

Xi 

 

 

XM 

 

0 

 

 

0 

 

 

0 

1         0          0                     

 

 

0         1          0 

 

 

0         0          1 

 11 …   1j …   1N 

 

 

 i1 …   ij …   iN 

 

 

 M1 …   Mj …   MN 

 1 

 

 

 i 

 

 

 M 

 

Consider the ith  equation where 
iX  was required to be integer but found not integer. 

                  
1

.
N

i i ij j

j

X W 


   and 
i  non integer : i = 1,…,M                                

(1)Any real number can be written as the sum of  two parts , integer part and the 

fractional part. 

…
 

…
 

…
 

…
 

…
 

…
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   Let 
i  =  [

i ]  +  
if   and ij = [ ij ]  + ijg                                                           (2) 

then 

 
1

[ ] [ ]
N

i i i i j i j j

j

x f g w 


       and  

     
1 1

N N

i ij j i i ij j

j j

f g W X W 
 

                                                                         (3) 

                                                            

  Where   a a  and ([a] is integer part of a); 0 1if   ;  0 1ijg  ( 

[ ] ([ ]and   is the integer part of   ) 

 ( note that  0if   as 
iX  is presently not integer) 

Since all    1,..., 1,...,i jx i M and all W j N   must be integer, the right-hand side is 

consequently integer and therefore the left-hand side is also integer thus from table 2.0 

                                 
1

( )
N

i ij j

j

f g W


     (Integer)                                                  (4)     

 
1

0 0 (3) [ ] 0
N

ij ij i i i ij j

j

g and W then from equation with X f g W


      

Therefore  

                  
1

( )
N

i i ij j

j

f f g W


   for all 1,...,i N                                               (5) 

Since 0 1if   we have 
1

( ) 1
N

i ij j

j

f g W


   and using  (4) we obtain 
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1

( ) 0
N

i ij j

j

f g W


                                                                                (6) 

  Constraint (6) is the cut and can be expressed as a secondary constraints by adding slack 

variable: 

This gives 

1 1

( ) 0 ( )
N N

i ij j i i ij j i

j j

f g W S S g W f
 

                                            (7) 

         for all 1,...,i M                             

Where  0iS   (integer slack variable). 

 

3.12.4 Choice of the cut 

Suppose two rows in table 2.0 gives non-integer solutions in
iX  and

kX then there will be 

two cuts based on  
iX  and 

kX  having the following conditions: 

(i) 
1

N

i ij j

j

f g W


  

(ii) 
1

N

k kj j

j

f g W


   

Cut (i) is stronger than cut (k) if 

       (iii)   
i kf f  and ij kjg g  for all j          

           With the strict inequality happening at least once. 

In other words a cut is deeper in the 
iX  direction as 

if  increases and ijg decreases. 
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The condition (iii) is difficult to implement computationally and therefore empirical rule 

that take into account the above definition have been developed. 

(a) 
1 1

; 1,..., ;
N N

r r k i i k i

j i

f g Max f g i M X for a specified k
 

 
  

 
   

(b) 
1 1

; 1,..., ; int
N N

r r j i i j i i

j i

f g Max f g i M X but X required tobe eger
 

 
   

 
    

(c)  ; 1,..., ,r ik i i kf g Max f g i M for a specified k   

Criterion  (b) is more efficient as this represents the definition  given by (iii) better. 

 

3.12.5 Prototype Example 

Maximize 
1 27 9Z x x   

Subject to  
1 23 6x x    

                     
1 27 35x x   

                     
1 0x  , 

2 0x  ,integer 

Solution 

Maximize 
1 2 1 27 9 0 0Z x x s s     

                                                              Subject to 

1 2 13 1 6x x s     

      
1 2 27 1 35x x s    

Table 3.12.1Final Tableau for first iteration 
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jC  7 9 0 0  

BC  Basic 

variable 

1x  
2x  

1s  
2s  Solution 

9 
2x  0 1 7

22
 

1

22
 

7

2
 

7 
1x  1 0 1

22


 

1

22
 

9

2
 

 
jZ  7 9 0 0 63 

 
j jC Z  0 0 28

11


 

15

11


 

 

Let 
1s = 

3x  , 
2s =

4x  , 
5Z x  

From the tableau the optimal solution becomes Z=63, where 
2x =

7

2
 and 

1x =
9

2
 

Since 
2x  and  

1x   are not integers, we apply the concepts of cutting plane techniques. 

                   
2x     + 

7

22
3x   +

1

22
4x =

7

2
                                    (1) 

1x       +0
2x    -     

1

22
3x +1/22

4x =
9

2
                                    (2) 

Choice of cut  

Taking equations (1) and (2) 

2x  + 3

7
0

22
x

 
 

 
 + 4

1
0

2
x

 
 

 
=

1
3

2

 
 

 
                                (1)a 

1x   - 3

21
1

22
x

 
 

 
 +   4

3
0

22
x

 
 

 
 =

1
4

2

 
 

 
                             (2)b 
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3 4 2 3 4

1 7 1
0 0

2 22 2
x x x x x     --------------(3)  integer……(1a) 

3 4 1 3 4

1 21 3
0

2 22 22
x x x x x     --------------(4) integer…….(2b) 

2 23 24

1 7 1
, ,

2 22 2
f g g    

3 33 34

1 21 3
, ,

2 22 22
f g g    

Using   

 
1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
    

2when i    , 3,4j                     

2

1

2
f     ,  

23

7

22
g   and  

24

1

22
g   

                      

4

3

i j

j

g


 =
7

22
+

1

22
=

8

22
 

3when i  , 3,4j   

   , 
33

21

22
g   and 

34

3

22
g   

                      

4

3

21 3 24

22 22 22
i j

j

g


    

1 1
2 2max ,

8 24
2222

    
    

      
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22 22
max ,

16 48

 
 
 

=
22

16
 

Hence (1a)  would be considered to be part of the new constraints. 

Thus 
3 4

1 7 1
0

2 22 22
x x    

and 
3 4 3

1 7 1
0

2 22 22
x x S     

3 4 3

7 1 1

22 22 2
x x s         

 The system of equations becomes; 

1 2 3 4 57 9 0 0 0Z x x x x x      

Subject to; 

2x     + 
7

22
3x   +

1

22
4x =

7

2
   

1x       +0
2x    -     

1

22
3x +

3

22
4x =

9

2
 

3 4 5

7 1 1

22 22 2
x x x      

3 5S X  
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Table 3.12.2 Final Tableau for the second iteration 

 
jc  7 9 0 0 0  

Bc  Basic 

variable 

1x  
2x  

3x  
4x  

3s  solution 

9 
2x  0 1 0 0 1 3 

7 
1x  1 0 0 1

7
 

1

7


 

32

7
 

0 
3x  0 0 1 1

7
 

22

7


 

11

7
 

 
jz  7 9 0 1 0 59 

 
j jc z  0 0 0 -1 -8  

 

  
maxz =59  ,

2x =3    , 
1x = 

32

7
  and     

3x =
11

7
    

Since  
1x   and 

3x  are not integers we apply the cutting plane techniques. 

Using the fractional algorithm; 

1 4 5

1 1 32

7 7 7
x x x   -------------(1)* 

1 4 5

1 6 4
0 1 4

7 7 7
x x x

   
          

   
  

1 4 5 4 5

4 1 6
0 1 4

7 7 7
x x x x x        ……….integer   (1a)*   

3 4 5

1 22 11

7 7 7
x x x   -----------(2)* 
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3 4 5

1 6 4
0 4 1

7 7 7
x x x

   
          

   
 

3 4 5 4 5

4 1 6
0 4 1

7 7 7
x x x x x

 
       

 
………….. integer  (2a)* 

Choice of Cut  

From (1a)*    
2 24 25

4 1 6
, ,

7 7 7
f g g    

From (2a)*   
3 34 35

4 1 6
, ,

7 7 7
f g g    

Using   

 
1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
    

When  2i  , 4,5j   

2

4

7
f            

24

1

7
g  ,  

25

6

7
g   

Therefore 

            

5

4

1 6
1

7 7
i j

j

g


    

When  3i  , 4,5j   

  
3

4

7
f                   

34 35

1 6
,

7 7
g g   

              

5

4

1 6
1

7 7
i j

j

g


    
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32

32

5 5

4 4

4 4
max , max ,

7 7

ii

i j i j

j j

ff

g g


 

 
 

        
 
  
 

=
4

7
 

Tie will be broken arbitrary by choosing equation (2)* as the new constraints to be added. 

Where  
3 5s x . 

The system of equations becomes; 

1 2 3 4 5 47 9 0 0 0 0Z x x x x x s       

Subject to 

                                   
2 3x   

                 
1 4 5

1 1 32

7 7 7
x x x    

                 
3 4 5

1 22 11

7 7 7
x x x    

                 
4 5 4

1 6 4

7 7 7
x x s      
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Table 3.12.3 Final tableau for the last iteration 

 
jc  7 9 0 0 0 0  

Bc  Basic 

variable 

1x  
2x  

3x  
4x  

5x  
4s  Solution 

9 
2x  0 1 0 0 0 0 3 

7 
1x  1 0 0 0 -1 1 4 

0 
3x  0 0 1 0 -4 1 1 

0 
4x  0 0 0 1 6 -7 4 

 
jz  7 9 0 0 -7 7 55 

 
jc - jz  0 0 0 0 7 -7  

Now the  
max 55Z    ,    

2x =3  ,  
1x =4  ,   

3x =1   and    
4x =4 

Since all the variables are integers, we stop here. 
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CHAPTER 4 

COLLECTION OF DATA, ANALYSIS OF DATA AND RESULTS 

4.1 Numerical Representation of Constituency Capitals 

For the purpose of this work, numbers have been allocated to the twenty four 

constituency capitals in the Brong Ahafo Region. This is illustrated in the table below. 

Constituency capital  Number Allocated 

Sunyani 1 

Berekum 2 

Wamfie 3 

Dormaa-Ahenkro 4 

Drobo 5 

Sampa 6 

Techiman 7 

Wenchi 8 

Kintampo 9 

Jema 10 

Nkoranza 11 

Atebubu-Amanteng 12 

Yeji 13 

Bechem 14 

Duayaw Nkwanta 15 

Goaso 16 

Nsokor 17 
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Kenyase 18 

Domase 19 

Busuaa 20 

Kwame Danso 21 

Tuobodom 22 

Kukuom 23 

Hwediem 24 

Table 4.1: Numbers allocated to constituency capitals in the Brong Ahafo Region 

 

4.2 Distance Matrix for the 24 Constituency Capitals in Brong Ahafo in 

kilometres(km) 

The table below shows the distance matrix obtained from distances between the 

capitals of the twenty-four constituencies. For cities which have no direct link, the 

minimum distance along the edges is considered. The cells indicated zero shows that 

there is no distance. 

Cij  =  The distance from city i to city j 

Cii  =  Cjj  =  0  =  There is no distance. 
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4.3  Formulation of the TSP model 

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with 

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for (i,j). 

We focus on the symmetric TSP case in which i j j iC C , for all (i,j). 

 We formulate this minimization problem as an integer programming, as shown in Equations 

(1) to (5).  

  P1:  min i j i j

i v j v

c x
 

                                                                                   ( 1) 

C ij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 0    33 56 79 64 114 64 60 123 105 92.5 263 334 48 33.5 83.7 91 43 7 110 299 71.5 100 90 

2 33 0 34 56 32 82 97 93 156 138 125 126 367 81 66 107 66 138 40 143 331 104 124 132 
3 56 33.5 0 23 65 116 120 116 179 161 149 319 390 104 90 74 100 105 63 166 354 128 91 98 
4 79 56 23 0 88 170 143 138 202 174 172 342 413 127 113 100 122 127 86 189 378 151 113 121 

5 64 32 65 88 0 50 128 124 187 169 157 327 398 112 98 139 98 170 71 174 363 136 156 163 
6 114 82 115.5 170 50 0 111 80 170 152 139 246 317 162 147 189 50 219 121 157 246 118 205 213 
7 64 97 120 143 128 111 0 30 59 41 29 135 206 112 98 148 60 107 71 46 171 7.5 164 154 
8 60 93 116 138 124 80 30 0 89 71 59 165 236 108 94 144 30 103 67 76 201 38 160 150 
9 123 156 179 202 187 170 59 89 0 18 55 115 186 171 157 207 119 166 130 72 151 67 223 213 

10 105 138 161 174 169 152 41 71 18 0 37 133 204 153 139 189 101 148 112 54 168 34 205 195 
11 92.5 125 149 172 157 139 29 59 55 37 0 107 178 141 126 176 89 136 100 18 142 36 193 183 
12 263 126 319 342 327 246 135 165 115 133 107 0 71 311 297 347 195 306 270 86 35.5 143 363 353 
13 334 367 390 413 398 317 206 236 186 204 178 71 0 382 368 418 266 377 341 157 107 214 434 424 

14 48 81 104 127 112 162 112 108 171 153 141 311 382 0 15 66 139 91 55 158 347 71.5 82 42 

15 33.5 66 90 113 98 147 98 94 157 139 126 297 368 15 0 80 125 76.5 41 144 332 105 116 75.5 
16 83.7 107 74 100 139 189 148 144 207 189 176 347 418 66 80 0 175 30.5 91 194 382 155 16.5 23.7 
17 91 66 100 122 98 50 60 30 119 101 89 195 266 139 125 175 0 134 98 106 227 70 191 181 
18 43 138 105 127 170 219 107 103 166 148 136 306 377 91 76.5 30.5 134 0 50 153 342 115 47 6.5 
19 7 40 63 86 71 121 71 67 130 112 100 270 341 155 41 91 98 50 0 117 306 79 107 97 

20 110 143 166 189 174 157 46 76 72 54 18 86 157 158 144 194 106 153 117 0 121 54 210 200 

21 299 331 354 378 363 246 171 201 151 168 142 35.5 107 347 332 382 227 342 306 121 0 178 399 389 

22 71.5 104 128 151 136 118 7.5 38 67 34 36 143 214 71.5 105 155 70 115 79 54 178 0 172 162 

23 100 124 91 113 156 205 164 160 223 205 193 363 434 82 116 16.5 191 47 107 210 399 172 0 40.2 

24 90 132 98 121 163 213 154 150 213 195 183 353 424 42 75.5 23.7 181 6.5 97 200 389 162 40.2 0 
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Subject to 

    1i j

j v

j i

x i v




                                                                                   (2) 

1i j

i v

x j v

i j


 



                                                                                  (3) 

| | 1 ,i j

i s j s

x s s v s
 

      0 1 ,i jx or i j v                      (4) 

0 1 ,i jx or i j v                                                                         (5) 

The problem is an assignment problem with additional restrictions that guarantee the 

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does 

not include all vertices (or cities). Equation (1) is the objective function, which minimizes the 

total distance to be traveled. 

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each city 

is entered from only one other city, while (3) ensures that each city is only departed to on 

other city. Constraint (4) eliminates subtours. Constraint (5) is a binary constraint, where i jx  

= 1 if edge (i,j) in the solution and i jx  = 0, otherwise. 

 

4.4.  ANALYSIS 

To satisfy constraints (2) and (3) we choose the random  

 initial tour ( 0x )= 19 - 2 – 5 – 6 – 17 – 8 – 7 – 22- 10 –  9 – 11 – 20 – 12 – 21- 13 – 15 – 14 – 

24 – 18 -19   

From objective function (1) the initial distance =d ( 0x ) = 
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d(19,2)+d(2,5)+d(5,6)+d(6,17)+d(17,8)+d(8,7)+d(7,22)+d(22,10)+d(10,9)+d(9,11)+d(11,2)

+d(20,12)+d(12,21)+d(21,13)+d(13,15)+d(15,14)+d(14,24)+d(24,18)+d(18,19)= 1113.5km 

The initial temperature is taken to be  (
0T ) =4069.00   , 0.99   

Temperature is updated by using the formula 
1k kT T   where k is the number of iteration 

Stop  when 42.03T   

Simulated annealing algorithm was used to obtain the final solution. Toshiba  Laptop 

Computer with processor speed of 2.00GHz was used in finding the solution after 1601 

iterations in 382.95 seconds. The execution time varied with the number of iterations.   

 

4.5 Results 

 After performing 1601 iterations the optimal tour = 19  -  15  -  14   -   24  -   18  -   23   -  16  

-  3  -  4  - 2 -  5 - 6  -  17 – 8 – 7 -  11 – 20 – 21 – 12 – 10 – 22 – 1 -19   

Thus, 

d(19,15)+d(15,14)+d(14,24)+d(24,18)+d(18,23)+d(23,16)+d(16,3)+d(3,4)+d(4,2)+d(2,5)+d(5

,6)+d(6,17)+d(17,8)+d(8,7)+d(7,11)+d(11,20)+d(20,21)+d(21,12)+d(12,10)+d(10,22)+d(22,)

+d(1,19)  =  980km 

The optimal tour was found to be the same after it was run ten times. 

 

The optimal tour is therefore as follows: 

SSuunnyyaannii                DDoommaassee                      DDuuaayyaaww  NNkkwwaannttaa            BBeecchheemm    HHwweeddiieemm    KKeennyyaassee  

KKuukkuuoomm            GGooaassoo      WWaammffiiee      DDoorrmmaaaa--AAhheennkkrroo    BBeerreekkuumm    DDrroobboo                

SSaammppaa                NNssoorrkkoorr  WWeenncchhii                      TTeecchhiimmaann        NNkkoorraannzzaa    BBuussuuaaaa 

  KKwwaammee  DDaannssoo      AAtteebbuubbuu  JJeemmaa      TTuuoobbooddoomm                  SSuunnyyaannii    
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

The simulated annealing algorithm can be a useful tool to apply to hard combinatorial 

problems like that of TSP. Using simulated annealing  as a method in solving  the symmetric 

TSP model has been proved that it is possible to converge to the best solution.  

We conclude that the objective of finding the minimum tour from the symmetric TSP model 

by the use of simulated annealing algorithm was successfully achieved. The study shows 

clearly that, any presidential aspirant who visits the Brong Ahafo Region must visit the 

constituencies in the order below to minimize cost.  

The order is as follows:  

SSuunnyyaannii                DDoommaassee                      DDuuaayyaaww  NNkkwwaannttaa            BBeecchheemm    HHwweeddiieemm    KKeennyyaassee  

KKuukkuuoomm            GGooaassoo      WWaammffiiee      DDoorrmmaaaa--AAhheennkkrroo    BBeerreekkuumm    DDrroobboo                

SSaammppaa                NNssoorrkkoorr                WWeenncchhii                      TTeecchhiimmaann        NNkkoorraannzzaa    BBuussuuaaaa 

  KKwwaammee  DDaannssoo      AAtteebbuubbuu  JJeemmaa      TTuuoobbooddoomm                  SSuunnyyaannii    
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5.2 Recommendations 

After a comprehensive study of TSP and Simulated annealing algorithm, the following 

recommendation should be considered. 

1. Presidential Candidates who visit the Brong-Ahafo Region to Campaign should 

consider the routes below in other to minimize their cost. 

SSuunnyyaannii                DDoommaassee                      DDuuaayyaaww  NNkkwwaannttaa            BBeecchheemm    HHwweeddiieemm    KKeennyyaassee  

KKuukkuuoomm            GGooaassoo      WWaammffiiee      DDoorrmmaaaa--AAhheennkkrroo    BBeerreekkuumm    DDrroobboo                

SSaammppaa                NNssoorrkkoorr              WWeenncchhii                      TTeecchhiimmaann        NNkkoorraannzzaa    BBuussuuaaaa 

  KKwwaammee  DDaannssoo      AAtteebbuubbuu  JJeemmaa      TTuuoobbooddoomm                  SSuunnyyaannii    

2.     Students can use this work for further research covering all key towns in the Brong-

Ahafo Region. 
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                                                                            APPENDIX A 

Matlab Program 

%function simanneal() 

% **********Read distance (cost) matrix from Table 3.2 ****** 

clc 

d = xlsread('dist.xls'); 

d_orig = d; 

start_time = cputime; 

summ=0; 

dim1 = size(d,1); 

dim12 = size(d); 

for i=1:dim1 

d(i,i)=10e+06; 

end 

for i=1:dim1-1 

for j=i+1:dim1 

d(j,i)=d(i,j); 

end 

end 

%d 

% *****************Initialise all parameters********************** 

d1=d; 

tour = zeros(dim12); 

cost = 0; 

min_dist=[]; 

short_path=[]; 

%***************************************************************** 

%************Initialize Simulated Annealing paratemers************ 

%T0 Initial temperature is set equal to the initial solution value 
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Lmax = 400; %Maximum transitions at each temperature 

ATmax = 200; %Maximum accepted transitions at each temperature 

alfa = 0.99; %Temperature decrementing factor 

Rf = 0.0001; %Final acceptance ratio 

Iter_max = 1000000; %Maximum iterations 13 

start_time = cputime; 

diary output.txt 

% *******Generate Initial solution - find shortest path from each node**** 

% if node pair 1-2 is selected, make distance from 2 to each of earlier 

%visited nodes very high to avoid a subtour 

k = 1; 

for i=1:dim1-1 

min_dist(i) = min(d1(k,:)); 

short_path(i) = find((d1(k,:)==min_dist(i)),1); 

cost = cost+min_dist(i); 

k = short_path(i); 

% prohibit all paths from current visited node to all earlier visited nodes 

d1(k,1)=10e+06; 

for visited_node = 1:length(short_path); 

d1(k,short_path(visited_node))=10e+06; 

end 

end 

tour(1,short_path(1))=1; 

for i=2:dim1-1 

tour(short_path(i-1),short_path(i))=1; 

end 

%Last visited node is k; 

%shortest path from last visited node is always 1, where the tour 

%originally started from 

last_indx = length(short_path)+1; 
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short_path(last_indx)=1; 

tour(k,short_path(last_indx))=1; 

cost = cost+d(k,1); 

% A tour is represented as a sequence of nodes startig from second node (as 

% node 1 is always fixed to be 1 

crnt_tour = short_path; 

best_tour = short_path; 

best_obj =cost; 

crnt_tour_cost = cost; 

  

obj_prev = crnt_tour_cost; 

fprintf('\nInitial solution\n'); 

crnt_tour 

fprintf('\nInitial tour cost = %d\t', crnt_tour_cost); 

nbr = crnt_tour; 

T0 = 1.5*crnt_tour_cost; 

T=T0; 

iter = 0; 

iter_snc_last_chng = 0; 

accpt_ratio =1; 

%*********Perform the iteration until one of the criteria is met*********** 

%1. Max number of iterations reached*************************************** 

%2. Acceptance Ratio is less than the threshold 

%3. No improvement in last fixed number of iterations 

while (iter < Iter_max && accpt_ratio > Rf) 

iter = iter+1; 

trans_tried = 0; 

trans_accpt = 0; 

while(trans_tried < Lmax && trans_accpt < ATmax) 

trans_tried = trans_tried + 1; 



89 
 

city1 = round(random('uniform', 1, dim1-1)); 

city2 = round(random('uniform', 1, dim1-1)); 

while (city2 == city1) 

city2 = round(random('uniform', 1, dim1-1)); 

end 

if (city2>city1)     

i=city1; 

j=city2; 

else 

i=city2; 

j=city1; 

end 

nbr(i)=crnt_tour(j); 

nbr(j)=crnt_tour(i); 

  

if i==1 

if j-i==1 

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1)); 

else 

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))- 

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j- 

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i)); 

end 

else 

if j-i==1 

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1)); 

else 
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nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))- 

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))- 

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j- 

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i)); 

end 

end 

delta = nbr_cost - crnt_tour_cost; 

prob1 = exp(-delta/T); 

prob2 = random('uniform',0,1); 

if(delta < 0 || prob2 < prob1) 

summ = summ+delta; 

crnt_tour = nbr; 

crnt_tour_cost = nbr_cost; 

trans_accpt = trans_accpt + 1; 

if crnt_tour_cost < best_obj 

best_obj = crnt_tour_cost; 

best_tour = crnt_tour; 

end 

else 

nbr = crnt_tour; 

nbr_cost = crnt_tour_cost; 

end 

  

end 

accpt_ratio = trans_accpt/trans_tried; 

fprintf('\niter# = %d\t, T = %2.2f\t, obj = %d\t, accpt ratio=%2.2f', iter,T,crnt_tour_cost,accpt_ratio); 

if crnt_tour_cost == obj_prev 

iter_snc_last_chng = iter_snc_last_chng + 1; 

else 

iter_snc_last_chng = 0; 
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end 

if iter_snc_last_chng == 10 

fprintf('\n No change since last 10 iterations'); 

break; 

end 

obj_prev = crnt_tour_cost; 

T = alfa*T; 

iter = iter + 1; 

end 

fprintf('\nbest obj = %d', best_obj); 

fprintf('\n best tour\n'); 

best_tour 

end_time = cputime; 

exec_time = end_time - start_time; 

fprintf('\ntime taken = %f\t\n', exec_time); 

diary off 

 

 

 


