
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI-GHANA

OPTIMAL CAMPAIGN VISITATION OF

PRESIDENTIAL ASPIRANTS

Case Study: Brong Ahafo Region of Ghana

Presented By

AGYEMANG KOFI EMMANUEL

(PG2006008)

THESES SUPERVISOR: DR. S.K AMPONSAH

1

CHAPTER 1

INTRODUCTION

1.1 Background to the study

The Brong Ahafo Region is located in mid-western Ghana, between the

Ashanti Region and Cote d‘Ivoire border. Its capital is Sunyani. Sunyani is linked to

Accra, the nation‘s capital by a first class road and is about seven hours drive between

them at a relatively regular pace. It is the second largest region in Ghana in terms of

landmass with a territorial size of 39,557km
2
 with a population of about 1,824,857

according to the 2000-population census.

The region has twenty four (24) constituencies out of the two hundred and thirty

constituencies in Ghana. According to the 2008 voter‘s register, the voter population

in the region is 1,175,221. As at September 2008, there were fifteen registered

political parties in Ghana. The twenty four (24) constituencies, their capitals and their

respective voter population according to the electoral commission are tabulated

below.

Table 1.1: Constituencies, their capitals and voter population in Brong Ahafo

CONSTITUENCY CAPITAL VOTER POPULATION

Asutifi North Kenyase 27,204

Asutifi South Kukuom 28,288

Atebubu-Amantin Atebubu-Amantin 43,285

Berekum Berekum 72,451

2

Dormaa West Dormaa-Ahenkro 70,103

Dormaa-East Wamfie 29,020

Jaman North Sampa 39,686

Jaman South Drobo 48,825

Kintampo North Kitampo 47,128

Kintampo South Jema 36,543

Nkoranza North Busuaa 28,919

Nkoranza South Nkoranza 47,050

Pru Yeji 56,771

Sene Kwamedanso 43,889

Sunyani East Suyani 79,829

Sunyani West Domase 55,282

Tain Nsokor 54,760

Tano North Duayaw Nkwanta 40,470

Tano South Bechem 41,818

Techiman North Tuobodom 36,529

Techiman South Techiman 86,113

Wenchi Wenchi 52,380

Asunafo North Goaso 64,190

Asunafo South Hwediem 44,688

 Out of the twenty-four(24) constituencies, the NPP has fifteen (15) members of

parliament whereas the NDC has nine (9).

3

1.2 STATEMENT OF THE PROBLEM

Parliamentary democracy is very important to every nation‘s development. The main

players in Ghana are the political parties. The political parties spend huge sums of

money, time, energy and resources campaigning.

 Political parties in Ghana rely on meager dues from party members and donation

from individuals for the running of the day to day activities. At some point in time, it

is difficult raising the money needed. Some interest groups in the Ghanian politics

have began asking government to support political parties. This is however difficult

for a developing nation like Ghana whose per capital income was about seven

hundred dollars as at 2007 and which rely on donors to finance about 40% of her

budget.

The political parties must therefore find a way by which they can minimize cost they

incur during campaigning or depend on multinational companies or rich individuals to

finance their campaign activities. Allowing multinationals or rich individuals to

finance campaign is not the best option since this opens the door to corruption as

these financiers would have to be compensated. More often than not, their

compensation is undue. It is therefore a necessity and as a matter of urgency for

political parties to find ways by which they can minimize cost.

Taking the optimal rout by the presidential aspirant in all his/her campaign visitation

is one sure way by which cost can be reduced. This is what this thesis seeks to do.

4

1.3 OBJECTIVES

The objectives of this thesis are

i.to formulate a mathematical model that takes into consideration the actual

distance between the constituency capitals of the twenty-four constituencies in

the Brong Ahafo Region.

ii. to determine the optimal rout for visiting all the twenty-four constituencies in

the region.

1.4 METHODOLOGY

 The campaign visitation by a presidential aspirant to the constituency capitals in

the Brong Ahafo region will be modeled as a Travelling Salesman Problem(TSP). The

Simulated Annealing Algorithm is the method that will be used for solving the TSP

model. This is because the simulated annealing which is a metaheuristic- based search

algorithm is capable of solving combinatorial optimization problems like the TSP.

The sources of data for the thesis are the internet and libraries for relevant literature,

electoral commission and feeder roads will also be consulted for information on the

voter population in the region and the distance of the network routes from one

constituency capital to the other respectively.

1.5 IMPORTANCE OF A VISIT BY A PRESIDENTIAL ASPIRANT

1. An aspirant‘s visit to a constituency enables him/her to be introduced to the

 electorate in the constituency. Some people get to see him/her for the first time.

2. It affords the candidate an opportunity to deliver his or her message/policies to the

people in the constituency.

5

3. Party members are energized to campaign even in the absence of the aspirant.

4. Electorates in the constituencies also feel the aspirant cares about the.

5. It gives the aspirant the opportunity to know the specific challenges in the various

constituencies and assures the electorate as to how such challenges would be dealt

with.

6. The visit also enables the aspirant to canvass for votes.

1.6 Organization of the thesis

Chapter one covers the introduction to the thesis, Chapter two the literature review,

Chapter three methodology, Chapter four the collection of data, analysis of data and

discussion. In Chapter five we shall put forward conclusions and recommendations of

the thesis.

1.7 SUMMARY

In this chapter, we presented brief history of Ghana, background to the study,

statement of the problem, objectives of the thesis, methodology, importance of a visit

by a presidential aspirant and the organization of the thesis.

In the next chapter, we shall review some literature in the field of travelling salesman

problem.

6

CHAPTER 2

LITERATURE REVIEW

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization

studied in operations research and theoretical computer science. Given a list of cities

and their pairwise distances, the task is to find the shortest possible tour that visits

each city exactly once.

 The Travelling Salesman Problem (TSP) has been studied during the last fifty years

and many exact and heuristic algorithms have been developed. These algorithms

include construction algorithms, iterative improvement algorithms, branch-and-bound

and branch-and-cut exact algorithms and many metaheuristic algorithms, such as

simulated annealing (SA), tabu search (TS), ant colony (AC) and genetic algorithm

(GA).

 Some of the well known tour construction procedures are the nearest neighbor

procedure by Rosenkratz et al, the Clark and Wright savings‘ algorithm, the insertion

procedures, the partitioning approach by Karp and the minimal spanning tree

approach by Christotides.

 The branch exchange is perhaps the best known iterative improvement algorithm

for the TSP. The 2-opt and 3-opt heuristics were described in Lin. Lin and Kernighan

(1973) made a great improvement in quality of tours that can be obtained by heuristic

methods. Even today, their algorithm remains the key ingredient in the successful

approaches for finding high quality tours and is widely used to generate initial

solutions for other algorithms or developed a simplified edge exchange procedure

7

requiring only Q(n
2
) operations at each step , but producing tour nearly as good as the

average performance of 3-opt algorithm.

One of the earliest exact algorithms is due to Dantzig et al(1954), in which

linear programming (LP) relaxation is used to solve the integer formulation by

suitably chosen linear inequality to the list of constraints continuously. Branch and

bound (B & B) algorithm are widely used to solve the TSP‘s. Several authors have

proposed B &B algorithm based on assignment problem (AP) relaxation of the

original TSP formulation. These authors include Eastman (1958), Held and

Karp(1970), Smith et al, Carpaneto and Toth, Balas and Christofides. Some Branch

and Cut (B & C) based exact algorithms were developed by Crowder and Padperg,

Padberg and Hong , Grotschel and Holland.

Besides the above mentioned exact and heuristic algorithms, metaheuristic

algorithms have been applied successfully to the TSP by a number of researchers. SA

algorithms for the TSP were developed by Bonomi and Lutton, Golden and Skiscim

and Nahr et al. Lo and Hus etc. Tabu search metaheuristic algorithms for TSP have

been proposed by Knox and Fiechter. The AC is a relative new metaheuristic

algorithm which is applied successfully to solve the TSP. some work based on SA

technology was reported by Dorigo et al. Genetic algorithms for the TSP were

reported by Goefenstetle et al.

Applegate et. al (1994) solved a traveling salesman problem which models the

production of printed circuit boards having 7,397 holes (cities), and in 1998, the same

authors solved a problem over the 13,509 largest cities in the U.S. For problems with

large number of nodes as cities the TSP becomes more difficult to solve.

8

In Homer's Ulysses problem of a 16 city traveling salesman problem, one

finds that there are 653,837,184,000 distinct routes (Grötschel and Padberg, 1993).

Enumerating all such roundtrips to find the shortest one took 92 hours on a powerful

workstation.

The TSP and its solution procedures have continued to provide useful test grounds for

many combinatorial optimization approaches. Classical local optimization techniques

Rossman (1958) ; Applegate et al.(1999) ; Riera-Ledesma,(2005) ; Walshaw,(2002) ;

Walshaw (2001) as well as many of the more recent variants on local optimization,

such as simulated annealing by Tian and Yang (1993), tabu search by Kolohan and

Liang, (2003), neural networks by Potvin, (1996) and genetic algorithms have all been

applied to this problem, which for decades has continued to attract the interests of

researchers.

 Although a problem statement posed by Karl Menger on February 5, 1930, at a

mathematical colloquium in Vienna, is regarded as a precursor of the TSP, it was

Hassle Whitney, in 1934, who posed the traveling salesman problem in a seminar at

Princeton University (Flood, 1956).

In 1949 Robinson, with an algorithm for solving a variant of the assignment problem

is one of the earliest references that use the term "traveling salesman problem" in the

context of mathematical optimization. (Robinson, 1949), However, a breakthrough in

solution methods for the TSP came in 1954, when Dantzig et al. (1954) applied the

simplex method (designed by George Dantzig in 1947) to an instance with 49 cities

by solving the TSP with linear programming.

There were several recorded contributions to the TSP in 1955. Heller, (1955)

discussed linear systems for the TSP polytope, and some neighbor relations for the

9

asymmetric TSP polytope. Also Kuhn, (1955) announced a complete description of

the 5-city asymmetric TSP polytope. Morton and Land (1955) presented a linear

programming approach to the TSP, alongside the capacitated vehicle routing problem.

Furthermore, Robacker (1955) reported manual computational tests of some 9 cities

instance using the Dantzig-Fulkerson-Johnson method, with average computational

times of about 3 hours. This time became the benchmark for the next few years of

computational work on the TSP (Robacker, 1955).

Flood (1956) discussed some heuristic methods for obtaining good tours, including

the nearest-neighbor algorithm and 2-opt while Kruskal, (1956) drew attention to the

similarity between the TSP and the minimum-length spanning trees problem. The year

1957 was a quiet one with a contribution from Barachet,(1957) described an

enumeration scheme for computing near-optimal tours.

 Croes (1958) proposed a variant of 3-opt together with an enumeration scheme for

computing an optimal tour. He solved the Dantzig-Fulkerson-Johnson 49-city

example in 70 hours by hand. He also solved several of the Robacker examples in an

average time of 25 minutes per example. Bock (1958) describes a 3-opt algorithm

together with an enumeration scheme for computing an optimal tour. The author

tested his algorithm on some 10-city instance using an IBM 650 computer.

By 1958, work related to the TSP had become serious research to attract Ph.D.

students. A notable work was a Ph.D. thesis Eastman, (1958) where a branch-and-

bound algorithm using the assignment problem to obtain lower bounds was described.

The algorithm was tested on examples having up to 10 cities. Also that same year,

Rossman and Twery (1958) solved a 13-city instance using an implicit enumeration

while a step-by-step application of the Dantzig-Fulkerson-Johnson algorithm was also

10

given for Barachet's 10-city example. Bellman (1960) showed the TSP as a

combinatorial problem that can be solved by dynamic programming method.

In Miller et al. (1960), an integer programming formulation of the TSP and its

computational results of solving several small problems using Gomory's cutting-plane

algorithm was reported. Lambert (1960) solved a 5-city example of the TSP using

Gomory cutting planes. Dacey, (1960) reported a heuristic, whose solutions were on

average 4.8 percent longer than the optimal solutions. TSP in 1960 achieved national

prominence in the United States of America when Procter & Gamble used it as the

basis of a promotional context. Prizes up to $10,000.00 were offered for identifying

the most correct links in a particular 33-city problem. A TSP researcher, Gerald

Thompson of Carnegie Mellon University won the prize in Applegate et al (2007).

Müuller- Merbach (1961) proposed an algorithm for the asymmetric TSP; he

illustrated it on a 7-city example. Ackoff et al. (1961) gave a good survey of the

computational work on the TSP that was carried out in the 1950‘s.

By 1962, when the computer was becoming a useful tool in exploring TSP, the

dynamic programming approach gained attention. Gonzales solved instances with up

to 10 cities using dynamic programming on an IBM 1620 computer by Gonzales,

(1962). Similarly, Held and Karp (1962) described a dynamic programming algorithm

for solving small instances and for finding approximate solutions to larger instances.

Little et al. (1963) coined the term branch-and-bound. Their algorithm was

implemented on an IBM 7090 computer and they gave some interesting

computational tests including the solution of a 25-city problem that was in the Held

and Karp test set. Their most cited success is the solution of a set of 30-city

asymmetric TSPs having random edge lengths. In an important paper (Lin, 1965): a

11

heuristic method for the TSP was published. The author defined k-optimal tours, and

gave an efficient way to implement 3-opt, extending the work of Croes (1958) with

computational results given for instances with up to 105 cities.

 The year 1966 was another fruitful one for the TSP in terms of published works.

Roberts and Flores (1966) described an enumerative heuristic and obtained a tour for

Karg and Thompson's 57-city example, having cost equal to the best tour found by

Karg and Thompson. Also, in a D.Sc. thesis at Washington University, St. Louis,

Shapiro (1966) describes an algorithm similar to Eastman's branch-and-bound

algorithm.

Gomory1966 gave a very nice description of the methods contained in Dantzig et

al.(1954), Held and Karp (1962) and Little et al. (1963). Similarly, in Lawler and

Wood (1966) descriptions of the branch-and-bound algorithms of Eastman 1958 and

Little et al. (1963) were given. The authors suggested the use of minimum spanning

trees as a lower bound in a branch-and-bound algorithm for the TSP.

Bellmore and Nemhauser (1968) presented an extensive survey of algorithms for the

TSP. They suggested dynamic programming for TSP problems with 13 cities or less,

Shapiro‘s branch-and-bound algorithm for larger problems up to about 70-100 and

Shen Lin's `3-opt' algorithm for problems that cannot be handled by Shapiro's

algorithm. Raymond (1969) is an extension to Karg and Thompson‘s 1964 heuristic

for the TSP where computational results were reported for instances having up to 57

cities.

Held and Karp in their 1970 paper introduced the 1-tree relaxation of the TSP and the

idea of using node weights to improve the bound given by the optimal 1-tree. Their

computational results were easily the best reported up to that time. Another notable

12

work on the TSP in the 70s is the S. Hong, Ph.D. Thesis, at The Johns Hopkins

University in 1972 written under the supervision of M. Bellmore, and the work was

the most significant computational contribution to the linear programming approach

to the TSP since the original paper of Dantzig et al. (1959). The Hong‘s algorithm

(1972) had most of the ingredients of the current generation of linear-programming

based algorithms for the TSP. He used a dual LP algorithm for solving the linear-

programming relaxations; he also used the Ford-Fulkerson max-flow algorithm to find

violated subtour inequalities.

The algorithm of Held and Karp (1971) was the basis of some major publications in

1974. In one case, Hansen and Krarup (1974) tested their version of Held-Karp (1971)

on the 57-city instance of Karg and Thompson 1964 and a set of instances having

random edge lengths. In 1976 a linear programming package written by Land and

Powell was used to implement a branch-and-cut algorithm using subtour inequalities.

Computational results for the 48-city instance of Held and Karp and the 57-city

instance of Karg and Thompson (1964) were given.

Smith and Thompson, 1977 presented some improvements to the Held-Karp

algorithm tested their methods on examples which included the 57-city instance of

Karg and Thompson 1964 and a set of ten 60-city random Eucliean instances. In

1979, Land described a cutting-plane algorithm for the TSP. The decade ended with a

survey on algorithms for the TSP and the asymmetric TSP in Buckard, (1979).

A very impressive work heralded the 1980s. Crowder and Padberg (1980) gave the

solution of a 318-city instance described in Lin and Kernighan (1973). The 318-city

instance would remain until 1987 as the largest TSP solved. Also, in 1980, Grötschel

gave the solution of a 120-city instance by means of a cutting-plane algorithm, where

13

subtour inequalities were detected and added by hand to the linear programming

relaxation in Grötschel, M. (1980).

In 1982, Volgenant and Jonker described a variation of the Held-Karp algorithm,

together with computational results for a number of small instances by Volgenant and

Jonker (1982). A very important work of 1985 is a book (Lawler et al., 1985)

containing several articles on different aspects of the TSP as an optimization problem.

Padberg and Rinaldi (1987) solved a 532-city problem using the so-called branch and

cut method.

The approach for handling the subtours elimination constraints of the TSP integer LP

is another area for re-examination. Researchers have identified the issue of feasibility

or subtour elimination as very crucial in the formulation of the TSP or similar

permutation sequence problem. ―No one has any difficulty understanding subtours,

but constraints to prevent them are less obvious,‖ says Radin L.R in Radin, (1998).

Methodologies or theoretical basis for handling these constraints within the context of

algorithm development has been the basis of many popular works on the TSP. A

classical example of this approach is in Crowder and Paderg (1980) where a linear

programming relaxation was adopted such that if the integral solution found by this

search is not a tour, then the subtour inequalities violated by the solution are added to

the relaxation and resolved.

Grötschel (1980) used a cutting-plane algorithm, where cuts involving subtour

inequalities were detected and added by hand to the linear programming relaxation.

Hong (1972) used a dual LP algorithm for solving the linear-programming

relaxations, the Ford-Fulkerson max-flow algorithm, for finding violated subtour

inequalities and a branch-and-bound scheme, which includes the addition of subtour

14

inequalities at the nodes of the branch-and-bound tree. Such algorithms are now

known as "branch-and-cut". The problem of dealing with subtour occurrences

algorithm development has been a major one in the in the TSP studies in the literature.

The works in the 1990‘s were mostly application in nature. A large number of

scientific/engineering problems and applications such as vehicle routing, parts

manufacturing and assembly, electronic board manufacturing, space exploration, oil

exploration, and production job scheduling, etc. have been modeled as the Machine

Setup problem (MSP) or some variant of the TSP are found in (Al-Haboub-Mohamad

and Selim Shokrik (1993), Clarker and Ryan (1989), Crama et al, (2002), Ferreir

(1995), Foulds and Hamacher (1993), G¨unther et al (1998), Keuthen (2003), Kolohan

and Liang (2000), Mitrovic-Minic and Krishnamurti, (2006)).

 One of the ultimate goals in computer science is to find computationally feasible

exact solutions to all the known NP-Hard problems; a goal that may never be reached.

Feasible exact solutions for the TSP have been found, but there are restrictions on the

input sizes. An exact solution was found for a 318-City problem by Crowder and

Padberg in (1980). The basic idea in achieving this solution involves three phases. In

the first phase, a true lower bound on the optimal tour is found. In the second phase,

the result in the first phase is used to eliminate about ninety-seven percent of all the

possible tours. Thus, only about three percent of the possible tours need to be

considered. In the third phase, the reduced problem is solved by brute force. This

solution has been implemented and used in practice. Experimental results by Apple

Gate et al (1998) showed that running this algorithm, implemented in the C

programming language and executed on a 400MHz machine, would produce a result

in 24.6 seconds of running time.

15

Other exact solutions have been found. As mention in 1998, a 120-city problem by

Grötschel (1980), a 532-city problem by Padberg and Rinaldi (1987) . However, none

of the algorithms that provide an exact solution for input instances of over a thousand

cities are practical for everyday use. Even with todays super computers, the execution

time of such exact solution algorithms for TSPs involving thousands of cities could

take days.

Computer hardware researchers have been making astonishing progress in

manufacturing evermore powerful computing chips. Moores Law in

(http://en.wikipedia.org/wiki/Moore's_law), which states that the number of

transistors that can fit on a chip will double after every 18 months, has held ground

since 1965. This basically means that computing power has doubled every 18 months

since then. Thus, we have been able to solve larger instances of NP-hard problems,

but algorithm complexity has still remained exponential. Moreover, it is highly

speculated that this trend will come to an end because there is a limit to the

miniaturization of transistors. Presently, the sizes of transistors are approaching the

size of atoms. With the speeds of computer processors rounding the 5GHz mark, and

talks about an exponential increase in speeds of up to 100GHz

(http://en.wikipedia.org/wiki/Moore's_law) , one might consider the possibility of us

exceeding any further need of computational performance. However, this is not the

case. Although computing speeds may increase exponentially, they are, and will

continue to be, surpassed by the exponential increase in algorithmic complexity as

problem sizes continue to grow. Moore‘s law may continue to hold true for another

decade or so, but different methods of computing are being researched.

16

CHAPTER 3

METHODOLOGY

The travelling salesman problem is combinatorial optimization problem. According to

Hillier and Lieberman (2005) it has been given this picturesque name because it can

be described in terms of a salesman (or saleswoman) who must travel to a number of

cities during one tour. Starting from his or her home city, the salesman follows to visit

each city exactly once before returning to his home city as to minimize the total

length of the tour.

The figure below shows an example of a small travelling salesman problem with

seven cities.

Figure 3.1 Traveling Salesman Problem

City 1 being the salesman‘s home city, he starts from this city, and must choose a

route to visit each of the other cities exactly once before returning to city 1. The

number next to each link between each pair of cities represents the distance between

these cities. The objective is to determine which route will minimize the total distance

1

2

4

3

5

6

9

12

12

10

12

9

7
6

10

11

11

11

1

11
3

7

8

17

that the salesman must travel. The Sub-tour Reversal Algorithm, the Tabu Search and

the simulated annealing will each be used to find the optimal solution for the

travelling salesmanm problem above later in this chapter.

There have been a number of applications of travelling salesman problems that

have nothing to do with salesmen. For example, when a presidential aspirant leaves

his home city and visits a number of cities campaigning and returns to his home city

after a period, the problem of determining the shortest route for doing this tour is a

travelling salesman problem. Another example involves the manufacture of printed

circuit boards for wiring chips and other components. When many holes need to be

drilled into a printed circuit board, the process of finding the most efficient drilling

sequence is a travelling salesman problem.

The difficulty of travelling salesman problems increases rapidly as the number

of cities increases. For a problem with n cities, the number of feasible routes to be

considered is (n- 1)!/2 since there are (n-1) possibilities for the first city after the

home city, (n-2) possibilities for the next city, and so forth. The denominator of 2

arises because every route has an equivalent reverse route with exactly the same

distance. Thus, while a 10-city travelling salesman problem require less than 200,000

feasible solutions to be considered, a 20-city problem has roughly 10
16

 feasible

solutions while a 50-city problem has about 10
62

 feasible solutions.

18

Formulation of TSP model

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph

with vertices V, |V|=n, where n is the number of cities, and edges E with edge length

dij for (i,j). The focus is on the symmetric TSP in which case dij = dji, for all (i,j). This

minimization problem can be formulated as an integer programming as shown below

in Equations (1) to (5). The problem is an assignment problem with additional

restrictions that guarantee the exclusion of sub-tours in the optimal solution. Recall

that a sub-tour in V is a cycle that does not include all vertices (or cities). Equation (1)

is the objective function, which minimizes the total distance to be travelled.

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that

each city is entered from only one other city, while (3) ensures that each city is only

departed to on other city. Constraint (4) eliminates sub-tours. Constraint (5) is a

binary constraint, where xij = 1 if edge (i,j) in the solution and xij = 0, otherwise.

 min i j i j

i v j v

c x
 

 (1)

 1i j

j v

j i

x i v




  (2)

1i j

i v

x j v

i j


 



 (3)

| | 1 ,i j

i s j s

x s s v s
 

     (4)

19

1 ,i jx or i j v (5)

However, the difficulty of solving TSP is that sub-tour constraints will grow

exponentially as the number of cities grows large, so it is not possible to generate or

store these constraints. Many applications in real world do not demand optimal

solutions.

3.2 The Sub-Tour Reversal Algorithm

This adjusts the sequence of cities visited in the current trial solution by

selecting a sub-sequence of the cities and simply reversing the order in

which that sequence of cities is visited.

Initialization: Start with any feasible tour as the initial trial solution.

Iteration: For the current trial solution, consider all possible ways of

performing a sub-tour reversal except reversal of the entire tour. Select the

one that provides the largest decrease in the distance travelled to the new

trial solution

Stopping Rule: Stop when no sub-tour reversal will improve the current

trial solution. Accept this solution as the final solution.

Applying this algorithm to the problem above and starting with 1-2-3-4-5-

6-7-1 as the initial trial solution, there are four possible sub-tour reversals

that would improve upon this solution as shown below

20

 1-2-3-4-5-6-7-1 = 69

Reverse 2-3: 1-3-2-4-5-6-7-1 = 68

Reverse 3-4: 1-2-4-3-5-6-7-1 = 65

Reverse 4-5: 1-2-3-5-4-6-7-1 = 65

Reverse 5-6: 1-2-3-4-6-5-7-1 = 66

The solution with distance = 65 tie for providing the largest decrease in the

distance travelled, so suppose that the first of these 1-2-4-3-5-6-7-1 is

chosen to be the next trial solution. This completes the first iteration.

The second iteration has only one sub-tour reversal that will provide an

improvement as shown below

 1-2-4-3-5-6-7-1 = 65

Reverse 3-5-6: 1-2-4-6-5-3-7-1 = 64

At this point there is no sub-tour reversal that will improve upon this new

trial solution. So the sub-tour reversal algorithm stops with this trial

solution as the final solution even though by other methods, 1-2-4-6-5-3-7-

1 is not the optimal solution.

3.3 Tabu Search

According to Hillier and Lieberman Tabu Search is a widely used

metaheuristic that uses some common sense ideas to enable the search

process to escape from a local optimum. The concept of tabu search (TS)

is derived from artificial intelligence where intelligent use of memory

21

helps in exploiting useful historical information. The restrictions put on

the information in the memory reminiscent of the definition of the word

‗tabu‘ as ―a set apart as charged with a dangerous supernatural power and

forbidden to profane use or contact‖. Tabu search can also incorporate

some more advanced concepts. One is intensification, which involves

exploring a portion of the feasible region more thoroughly than usual after

it has been identified as a particularly promising portion for containing

very good solutions. Another concept is diversification, which involves

forcing the search into previously unexplored areas of the feasible region.

The focus will however be on the basic form of tabu search summarized

below.

1. Initialization : A starting solution generated by choosing a random

solution, x Є S. The evaluating function f(x) is used to evaluate x. The

solution is stored in the algorithm memory called the tabu list.

2. Neighborhood exploration: All possible neighbours µ(x) of the

solution x are generated and evaluated. Solutions in the tabu list are

considered unreachable neighbours, they are taboo (tabu). An immediate

neighbor can be reached by making a sub-tour reversal.

3. New Solution: A new solution is chosen from the explored

neighbourhood. This solution should not be found in the tabu list before it

is discovered and has to have the best move evaluation value of f(x) for all

reachable neighbours of x.

Do tabu check on the new solution. If it is successful replace the current

solution and update the tabu list and other tabu attributes. Here the new

22

solution evaluation value can be worse compared with that of current

solution. This enables the solution not to be trapped at local optimum. The

tabu check applied based on the move being the best move.

(i) If the solution is in the tabu list then check the aspiration level. If

successful replace the current solution and update the tabu list and

other tabu attributes. The aspiration check uses the function

evaluation and the success of the check depends on the function

evaluation of the new solution being better than that of the current

best solution.

(ii) If checks (i) and (ii) are not successful then keep the current

solution otherwise replace the current solution by the new solution.

(iii) Compare the best solution to the current solution, if the current

solution is better than the best solution, replace the best solution.

(iv) Until loop condition is satisfied go to step Until termination

condition is satisfied go to step 1.

(v) Stop after three consecutive iterations without an improvement in

the best objective function value. Also stop at any iteration where

the current trial solution has no immediate neighbours that are

not ruled out by their tabu status.

To apply this tabu search algorithm to the problem above,

Let initial trial solution = 1-2-3-4-5-6-7-1 Distance = 69

Tabu list : Blank at this point

23

Iteration 1:

reverse 3-4

Delete Links: 2-3 and 4-5

Added links: 2-4 and 3-5

Tabu list : Links 2-4 and 3-5

New trial solution: 1-2-4-3-5-6-7-1 Distance = 65

Iteration 2

Reverse 3-5-6

Delete links: 4-3 and 6-7

Added links: 4-5 and 3-7

Tabu list: links 2-4, 3-5, 4-6 and 3-7

New trial solution: 1-2-4-6-5-3-7-1 Distance = 64

The tabu search algorithm now escapes from this local optimum by moving next to

the best immediate neighbor of the current trial solution even though its distance is

longer. Considering the limited availability of links between pairs of cities in fig…..,

the current trial solution has only the two immediate neighbours listed below.

Reverse 6-5-3: 1-2-4-3-5-6-7-1 Distance = 65

Reverse 3-7: 1-2-4-6-5-7-3-1 Distance = 66

Reversing 2-4-6-5-3-7 to obtain 1-7-3-5-6-4-2-1 is ruled out since it is simply the

same tour in the opposite direction. However the of these immediate neighbours must

24

be ruled out because it would require deleting links 4-6 and 3-7, which is tabu since

both of these links are on the tabu list. This move could still be allowed if it would

improve upon the best trial solution found so far but it does not.

Ruling out this immediate neighbor does not allow cycling back to the preceding trial

solution. Therefore by default, the second of these immediate neighbours is chosen to

be the next trial solution as summarized below.

Iteration 3

Reverse 3-7

Delete links: 5-3 and 7-1

Add links: 5-7 and 3-1

Tabu List: 4-5, 3-7, 5-7 and 3-1

New trial solution: 1-2-4-6-5-7-3-1 Distance = 66

The sub- tour reversal for this iteration can be seen in the fig……., where the dashed

lines show the links being deleted (on the left) and added (on the right) to obtain the

new trial solution.

The new trial solution has the four immediate neighbours listed below.

Reverse 2-4-6-5-6: 1-7-5-6-4-2-3-1 Distance = 65

Reverse 6-5: 1-2-4-5-6-7-3-1 Distance = 69

Reverse 5-7: 1-2-4-6-5-7-3-1 Distance = 63

Reverse 7-3: 1-2-4-6-5-3-7-1 Distance

25

Both of the deleted links 4-6 and 5-7 are on the tabu list. The second of these

immediate neighbours is therefore tabu. The fourth immediate neighbor is also tabu.

Thus, there are only two options, the first and the third immediate neighbours. The

third immediate neighbor is chosen since it has shorter distance.

Iteration 4

Reverse 5-7

Delete links: 6-5 and 7-3

Add links: 6-7 and 5-3

Tabu list: 5-7, 3-1, 6-7 and 5-3

(4-6 and 3-7 are now deleted from the list)

New trial solution: 1-2-4-6-7-5-3-1 Distance = 63

The only immediate neighbor of the current trial solution would require deleting links

6-7 and 5-3, both of which are on the tabu list so cycling back to to the preceding trial

solution is prevented. Since no other immediate neighbours are available, the stopping

rule terminates the algorithm at this point with 1-2-4-6-7-5-3-1 as the final solution

with Distance = 63.

3.3 Simulated Annealing

According to Amponsah and Darkwah(2007) the concept of Simulated Annealing is

derived from Statistical mechanics in the area of natural sciences. A piece of regular

metal in its natural state has the magnetic direction of its molecules aligned in uniform

26

direction. As the metal is heated, the kinetic energy of the molecules increases and the

cohesive force decreases till when the molecules are free to move about randomly.

The magnetic directions of the molecules are oriented randomly.

To achieve regularity of alignment of the magnetic direction so as to make the metal

stable for use, it must be cooled slowly. This slow cooling of the metallic material is

called annealing. In 1953 Metropolis and others recognised the use of Boltman‘s law

to stimulate the efficient equilibrium condition of a collection of molecules at a given

temperature and thus facilitate annealing. When the metal is heated to higher

temperature and it is being cooled slowly it is assumed that for a finite drop in

temperature the system state change in the sense that the molecules assume new

configuration of arrangement. The configuration depends on parameters like

temperature, the energy of the system and others. An energy function can be obtained

by combining the parameters.

In 1983 Kirk Patrick showed how Simulated Annealing of Metropolis could be

adapted to solve problems in Combinatorial Optimization.

The following analogy was made

1. a) Annealing looks for system state at a given temperature.

b) Optimization looks for feasible solution of the combinatorial problems

2. a) Cooling of the metal is to move from one system state to another

 b) Search procedure (algorithm scheme) tries one solution after another in

order to find the optimal solution.

3. a) Energy function is used to determine the system state and energy

27

 b) Objective (cost) function is used to determine a solution and the objective

function value.

 4. a) Energy results in evaluation of energy function and the lowest energy state

corresponds to stable state.

 b) Cost results in evaluation of objective function and the lowest objective

function value corresponds to the optimal solution

 5. a) Temperature controls the system state and the energy

 b) A control parameter is used to control the solution generation and the

objective function value

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global

optimization problem of applied mathematics, namely locating a good approximation

to the global minimum of a given function in a large search space. It is often used

when the search space is discrete (e.g., all tours that visit a given set of cities). For

certain problems, simulated annealing may be more effective than exhaustive

enumeration — provided that the goal is merely to find an acceptably good solution in

a fixed amount of time, rather than the best possible solution.

3.3.1 Using simulated Annealing to solve TSP

 The TSP was one of the first problems to which simulated annealing was applied,

serving as an example for both Kirk patrick et al. (1983) and Cerny (1985). Since then

the TSP has continued to be a prime test bed for the approach and its variants. Most

adaptations have been based on the simple schema presented in Figure below, with

28

implementations differing as to their methods for generating starting solutions (tours)

and for handling temperatures, as well as in their definitions of equilibrium, frozen,

neighbor, and random. Note that the test in Step g is designed so that large

steps uphill are unlikely to be taken except at high temperatures t. The probability that

an uphill move of a given cost Δ will be accepted declines as the temperature is

lowered. In the limiting case, when T = 0, the algorithm reduces to a randomized

version of iterative improvement, where no uphill moves are allowed at all.

3.3.2 General schema for a simulated annealing algorithm.

a. Generate a starting solution S and set the initial solution S * = S.

b. Determine a starting temperature T.

c. While not yet at equilibrium for this temperature, do the following:

 d. Choose a random neighbor S
*
 of the current solution.

e. Set Δ = Length(S
*
) = Length(S).

f. If ≤ 0 (downhill move):

Set S = S
*
.

If Length(S) < Length(S *), set S * = S.

 h. If length(S) < length(S
*
) (uphill move):

Choose a random number r uniformly from [0, 1].

If r < Te


 , set S = S*.

29

i. End ‗‗While not yet at equilibrium‘‘ loop.

j Lower the temperature T.

k. End ‗‗While not yet frozen‘‘ loop.

l. Return S *.

3.3.3 Example

Considering Figure 3.1

Taking the initial solution to be in the tour in the order :1-2-3-4-5-6-7-1

 using the parameters;

0 20T 
1k kT T  0.5 

Stop when 0.1T 

 First Iteration

Assuming 0x =1-2-3-4-5-6-7-1

d(0x)=d(1,2)+d(2,3)+d(3,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=69

Using the sub-tour reversal as local search to generate the new solution 1x =1-3-2-4-5-

6-7-1

d(1x)=d(1,3)+d(3,2)+d(2,4)+d(4,5)+d(5,6)+d(6,7)+d(7,1)=68

 1 0() ()d x d x   =68-69=-1

Since 0  , set 0 1x x

30

 Updating the temperature
1 0T T =0.5(20)=10

Second Iteration

d(0x)=68

By the sub-tour reversal as local search to generate the new solution 1-2-3-5-4-6-7-1

1x =1-2-3-5-4-6-7-1

d(1x)=d(1,2)+d(2,3)+d(3,5)+d(5,4)+d(4,6)+d(6,7)+d(7,1)=65

1 0() ()d x d x   =65-68=-3

Since 0  , set 0 1x x

Updating the temperature ,
2T =0.5(10)=5

Third Iteration

d(0x)=65

Using the sub-tour reversal as local search to generate the new solution 1-2-3-4-6-5-7-

1

1x =1-2-3-4-6-5-7-1

d(1x)=d(1,2)+d(2,3)+d(3,4)+d(4,6)+d(6,5)+d(5,7)+d(7,1)=66

1 0() ()d x d x   =66-65=1

Since 0  , then apply Boltzmann‘s condition 2T
m e



 =0.81

A random number would be generated from a computer say 

31

If m> then set 0 1x x otherwise 1 0x x

Updating the temperature,
3 0.5(5) 2.5T  

This process will continue until the final temperature and the optimal solution are

obtained.

3.4 Genetic Algorithm

The genetic algorithm (GA) is an evolutionary algorithm inspired by Darwin (1859)

and recently discussed by Dawkins (1986) .Holland 1975 invented Genetic Algorithm

as an adaptive search procedure. There has been a lot of intensive research on the use

of GA to solve problems such the TSP and Transportation Problem by (Rachev and

Ruschendorf 1993, Datta 2000).Generalized chromosome genetic algorithm (GCGA)

was proposed for solving generalized traveling salesman

problems(GTSP).Theoretically, the GCGA could be used used to solve classical

traveling salesman problem (CTSP) by Yang 2008.

 The GA have the following simulations of the evolutionary principles;

Evolution Genetic Algorithm

An individual is a genotype of the

species

An individual is a solution of the

optimization problem.

Chromosomes defined the structure of an

individual.

Chromosomes are used to represent the

data structure of the solution.

Chromosomes consists of sequence of

cells called genes which contain the

Chromosomes consists of sequence of

gene species which are placeholder

32

structural information. boxes containing string of data whose

unique combination give the solution

value.

The genetic information or trait in each

gene is called an allele

An allele is an element of data structure

stored in a gene placeholder.

Fitness of an individual is an

interpretation of how the chromosomes

have adopted to competition

environment.

Fitness of a solution consists in

evaluation of measures of the objective

function for the solution and comparing it

to the evaluations for other solutions

A population is a collection of species

found in a given location.

A population is a set of solution that form

domain search space.

A generation is a given number of

individuals of the population identified

over a period of time.

A population is a set of solutions taken

from the population (domain) and

generated at an instant of time or in an

iteration

Selection is pairing of individuals as

parent for reproduction

Selection is the operation of selecting

parents from the generation to produce

offsprings

Crossover is mating and breeding of

offsprings by chromosomes

characteristics are exchanged to form new

individuals

Crossover is the operation whereby pairs

of parents exchange characteristics of

their data structure to produce two new

individuals as offsprings

Mutation is a random chromosomal

process of modification whereby the

inherited genes of the offspring from their

Mutation is a random operation whereby

the allele of a gene in a chromosome of

the offspring is changed by a probability

33

parents are distorted. pm.

Recombination is a process of nature‘s

survival of the fittest

Recombination is the operation whereby

elements of the generation and elements

of the offspring form an intermediate

generation and less fit chromosomes are

taken from the generation.

. Table:3.4.0 The relationship between Evolution and Genetic Algorithm

Given a population at t, genetic operators are applied to produce a new population

at time t+1.A stepwise evolution of the population from the time t to t+1 is called

generation. The GA for a single generation is based on the general framework of

selection, crossover, Mutation and Recombination.

3.4.1 Representation of individuals

For the purpose of crossover and mutation operations the variables in the genetic

algorithm may be represented by an amenable data structure.

Suppose we have the search space 0,1,2,...,10x  then the x values form the

individual. The elements of the search space in a binary sequence are encoded by

expressing x =10 and x =0 in binary sequence to obtain
210 1010 and

20 0000

Thus x =10 is an individual and 1010 is its chromosome representation. The

chromosome has 4 genes placeholder for the alleles. The allele information in the

genes will be the binary numbers 0 and 1.the chromosome for x =9 is therefore

34

1 0 0 1

There are 42 permutations for a binary string of length 4.These 42 permutation

consist of both infeasible and feasible solutions. There are 11 feasible solutions which

constitute the search space and the rest for the infeasible set. Since the solution set is

restricted to the integers we look for suboptimal solution. In general the data structure

used for the representation of individual depends on variables of the problem at hand.

3.4.2 Fitness function

This the measure associated with the collective objective functions of the optimization

problem. The measure indicates the fitness of a particular chromosome representation

of a particular individual solution. In the TSP, the fitness function is the sum of the

path between the cities.

1

11
(,)

n

i ii
f d c c






(.)d is a distance function

n is the number of cities

ic is the ith city

35

3.4.3 Initial population

A GA begins with a population of potential solutions. . For function optimization, the

vriable x in the objective function ()f x will be encoded in a chromosome consisting

of a binary string. Thus x =13 is a represented as
10 213 1101x   .For a tour of five

cities in the TSP, the index 1,2,3,4,5 may be used for the cities and represent a tour T

by the permutation [1,2,3,4,5]T  .Each potential solution must be a feasible as well

as being a unique solution.

3.4.5 Population Size

The population size indicates how much of the search space the GA will search in

each iteration. Smaller size could mean the algorithm takes smaller time to find the

optimal solution. Similarly when the size is large the algorithm take a longer time in

sampling the large number of chromosomes in order to obtain the best chromosome.

3.4.6 Selection Process

The general selection process involves reproduction, crossover and mutation

operations.

The selection process is used to generate a new population from the current one. The

objective is to select individuals from the high fitness range . It is used for selecting

individuals for crossover and mutation.

36

3.4.6.1(Elitist) Selection

A percentage of the current population which highly fits is copied directly as part of

the new generation.

3.4.6.2 Proportional Fitness (Roulette wheel) selection

This is biased towards chromosomes with best fitness values. However a wide range

of chromosomes are selected. In the first stage, a roulette wheel is constructed by

computing the relative fitness of each chromosome as

1

i
ni

kk

f
w

f





Where
kf is the fitness of kith chromosome

We then find the cumulative fitness (jc) of the jth chromosome as

1

j

j ii
c w




This creates the roulette wheel.

In the second stage a random number jr is chosen and if j jr c then the ith

chromosome is selected.

The above calculation is based on maximization problems. For minimization problem

define

max() 1i iF f f  

37

And

1

i
ni

kk

F
w

F





Where
maxf is the maximum fitness of all chromosomes

kF is the reverse magnitude fitness

Selection is a process of choosing a pair of organism to reproduce. The selection

function can be any increasing function and proportional fitness selection is a clear

example.

3.4.6.3 Tournament Selection

Two chromosomes are chosen at random. The one with the higher fitness is then

selected.

The process is repeated until the required numbers of chromosomes are obtained .

3.4.6.4 Random Selection

Chromosomes may be selected irrespective of their fitness.

3.4.7 Crossover

After the required selection process the crossover is used to divide a pair of selected

chromosome into or more parts. Parts of one of the pair are joined to parts of the other

chromosome with the requirement that the length should be preserved.

38

The point between two alleles of a chromosome where it is cut is called crossover

point.

There can be more than one crossover point in a chromosome .The crossover point I

is the space between the allele in the ith position and the one in (i+1)th position .For

two chromosomes the crossover point are the same and the crossover operation may

produce new chromosomes, which are less fit .In this sense that the crossover

operation result in a non-improving solution.

3.4.7 .1 Single point crossover

A single point along a chromosome is selected. The parts of the parents on the left or

right of the crossover point are swapped to get new chromosomes.

3.4.7. 2 Double point crossover

Two points are chosen as crossover points. This separates the chromosomes into three

parts. The middle parts are swapped to obtain new chromosomes

3.4..3 Uniform crossover

Single allele in the same positions are considered for swapping . The probability of

selecting an allele for swapping is called Mixing Rate. Mixing rates are set for the

allele position. Random numbers are then generated and a position satisfying the

mixing rate has the allele in the two chromosomes swapped. Crossover operation is an

39

exploratory operation that allows the GA to take ‗large jumps‘ during the search. As

convergence is approached the exploratory power of the crossover diminishes.

3.4.8 Mutation

Mutation operation is performed on individual chromosome whereby the alleles are

changed probabilistically.

3.4.8.1 Random swap mutation

In random swap two loci(position) are chosen at random and their values swapped.

3.4.8.2 Move-and-insert gene mutation

Using move-and-insert, a locus is chosen at random and its value is inserted before or

after the value at another at another randomly chosen locus.

3.4.8. 3 Move-and-sequence mutation

Sequence mutation is very similar to the gene move-and-insert but instead of a single

locus a sequence loci is moved and inserted before or after the value at another

randomly chosen locus.

40

3.4.8. 4 Uniform mutation

A probability parameter is set and for all the loci an allele with greater or same

probability as the parameter is mutated by reversing its allele

3.4.9 Termination Conditions\

The algorithm terminates when a set of conditions are satisfied. At that point the best

solution is taken as the global solution or the algorithm may terminate if one or more

of the following are satisfied;

i) A specified number of total iteration is completed.

ii) A specified number of iteration is completed within which the solution of

best fitness has not changed.

iii) A standard deviation of the generation of the population approaches a

given value.

iv) The average fitness of the generation of the population does not differ

significantly from the solution of best fitness.

Goldberg 1989 presented a standard Genetic Algorithm, which was also called Simple

Genetic Algorithm(SGA).It is an algorithm that the most essential components of

every genetic algorithm. The steps in SGA are;

i) Start with a population of n random individuals (x) each with L-bit

chromosome representation.

ii) Calculate the fitness ()f x of each individual

41

iii) Choose based on fitness two individual and call them parents. Remove the

parents from the population.

iv) Use a random process to determine whether to perform crossover. If so,

refer the output of the crossover as children .if not, simply refer to the

parents as the children.

v) Mutate the children probability
mp of mutation for each bit.

vi) Put the children into an empty set called the new generation.

vii) Return to step ii until the new generation contains n individual .Delete one

child at random if n is odd. Then replace the old population with the new

generations. Return to i

 The simple Genetic algorithm can be summarized in the following steps

Step 1: Code the individual of the search space.

Step 2: Initialize the generation counter (g =1).

Step 3 : Choose initial generation of the population(solution).

Step 4: Evaluate the fitness of each individual in the population.

Step 5: Select individuals of the best fitness ranking by fitness proportionate

probability.

Step 6: Apply crossover operation on selected parents.

Step 7: Apply mutation operation on offspring.

Step 8: Evaluate fitness of offspring.

Step 9: Obtain a new generation of population by combining elements of the offspring

and the old generation by keeping the generation size unchanged.

42

Step 10: Stop if termination condition is satisfied.

Step 11: Else g=g+1

3.5 Omicron Genetic Algorithm

The literature in evolutionary computation has defined a great variety of GAs that

maintain the same philosophy of varying operators and adding different principles

like elitism in [Goldberg, (1989) and M¨uhlenbein and Hans-Michael Voigt, (1995)].

Using the Simple Genetic Algorithm as a reference, this Section presents a new

version, the Omicron Genetic Algorithm (OGA), a Genetic Algorithm designed

specifically for the TSP.

3.5.1Codification

The OGA has a population P of p individuals or solutions, as the SGA does. Every

individual Px of P is a valid TSP tour and is determined by the arcs (I, j) that compose

the tour. Unlike the SGA, that uses a binary codification, the OGA uses an n-ary

codification. Considering a TSP with 5 cities c1, c2, c3, c4 and c5, the tour defined by

the arcs (c1, c4), (c4, c3), (c3, c2), (c2, c5) and (c5,c1) will be codified with a string

containing the visited cities in order, i.e. [c1; c4; c3; c2; c5].

3.5.2 Reproduction

The OGA selects randomly two parents (F1 and F2) from the population P, as does an

SGA reproduction. The selection of a parent is done with a probability proportional to

43

the fitness of each individual Px, where fitness () 1 ()x xp l p . Unlike the SGA,

where two parents generate two offspring, in the OGA, both parents generate only one

offspring. In the SGA, p offspring are obtained first to completely replace the old

generation. In the OGA, once an offspring is generated, it replaces the oldest element

of P. Thus, the population will be a totally new one in p iterations and it would be

possible to consider this population a new generation. In conclusion, the same

population exchange as in the SGA is made in the OGA, but in a progressive way.

3.5.3 Crossover and Mutation

The objective of crossover in the SGA is that the offspring share information of both

parents. In mutation, the goal is that new information is added to the offspring, and

therefore is added to the population. In the SGA, the operators crossover and mutation

are done separately. To facilitate the obtaining of offspring who represent valid tours,

the crossover and the mutation operators are done in a single operation called

Crossover-Mutation in OGA. Even so, the objectives of both operators previously

mentioned will stay intact.

To perform Crossover-Mutation, the arcs of the problem are represented in a roulette,

where every arc has a weight w or a probability to be chosen. Crossover-Mutation

gives a weight w of 1 to each arc (i; j) belonging to set A, i.e. i jw = 1  (i; j)  A.

Then, a weight of 2 is added to each arc (i; j) of F1, i.e. i jw = j iw + 2  (i; j) 

F1, where Omicron (O) is an input parameter of the OGA. Analogously, a weight of

2
ij  is added to each arc (i; j) of F2. Iteratively, arcs are randomly taken

using the roulette to generate a new offspring. While visiting city i, consider Ni as the

44

set of cities not yet visited and that allows the generation of a valid tour. Therefore,

only the arcs (i; j)
ij  participate in the roulette, with their respective weights

i jw . Even so the crossover is done breaking the parents and interchanging parts in the

SGA instead of taking arcs iteratively with high probability from one of the parents in

the OGA, the philosophy of both crossover operators is the same.

To generate an offspring S1, an arc of one of the parents will be selected with high

probability (similar to crossover). But it is also possible to include new information

since all the arcs that allow the creation of a valid tour participate in the roulette with

probability greater than 0 (similar to mutation). The value 2 is used because there

are two parents, and then
maxw = O + 1 can be interpreted as the maximum weight an

arc can have in the roulette (when the arc belongs to both parents). When the arc does

not belong to any parent, it obtains the minimum weight
minw in the roulette, that is

minw = 1. Then, O determines the relative weight between crossover and mutation.

Formally, while visiting city i, the probability of choosing an arc (i; j) to generate the

offspring S1 is

defined by equation (1)**.

0

w ii j

wi jh Ni

if j N

i j otherwisep

 




 



 (1)**

45

3.5.4 Example

To clarify the previous procedure, an example considering the TSP with 5 cities

mentioned above is presented next. O = 4 and p = 4 are considered for this case.

3.5.4.1 Reproduction

The example assumes an initial population P = {Px} composed of 4 randomly selected

individuals with their respective fitnesses fx. This initial population is presented next.

First randomly chosen individual: P1 = {c1; c4; c3; c2; c5} with f1 = 10

Second randomly chosen individual: P2 = {c1; c3; c2; c5; c4} with f2 = 8

Third randomly chosen individual: P3 = {c3; c5; c1; c2; c4} with f3 = 1

Fourth randomly chosen individual: P4 = {c2; c5; c4; c1; c3} with f4 = 5

Two parents are randomly selected through roulette, where the weights of the

individuals in the roulette are their fitness. It is assumed that individuals P1 and P4

are selected to be parents.

F1 = {c1; c4; c3; c2; c5} = {(c1; c4); (c4; c3); (c3; c2); (c2; c5); (c5; c1)}

F2 = {c2; c5; c4; c1; c3} = {(c2; c5); (c5; c4); (c4; c1); (c1; c3); (c3; c2)}

46

3.5.4.2 Crossover-Mutation.

 Iteration 1

First, an initial city is randomly chosen to perform Crossover-Mutation. c4 is assumed

as the initial city. Then, Nc4 is composed by [c1; c2; c3; c5], i.e. the set of not yet

visited cities. The arc (c4; c2) has a weight of 1 in the roulette because it does not

belong to any parent. Arcs {(c4; c3); (c4; c5)} have a weight of 1+ 2 = 3 in the

roulette because they belong to one parent. Finally, the arc (c4; c1) has a weight of 1

+ O = 5 in the roulette because it belongs to both parents. It is assumed that the arc

(c4; c3) is randomly chosen through the roulette.

3.5.4.3 Crossover-Mutation.

Iteration 2

From c3 we do crossover mutation operation

Nc3 is composed by {c1; c2; c5}. The arc (c3; c5) has a weight of 1 in the roulette

because it does not belong to any parent. The arc (c3; c1) has a weight of 1 + 2 = 3

in the roulette because it belongs to one parent. Finally, the arc (c3; c2) has a weight

of 1+O = 5 in the roulette because it belongs to both parents.

It is assumed that the arc (c3; c2) is randomly chosen through the roulette.

47

3.5.4.4 Crossover-Mutation.

 Iteration 3

From c2 we do crossover mutation operation

Nc2 is composed by [c1; c5]. The arc (c2; c1) has a weight of 1 in the roulette

because it does not belong to any parent. Finally, the arc (c2; c5) has a weight of 1 +

O = 5 in the roulette because it belongs to both parents. It is assumed that the arc (c2;

c1) is randomly chosen through the roulette.

3.5.4.5 Crossover-Mutation.

Iteration 4

Nc1 is composed by [c5]. The arc (c1; c5) has a weight of 1 + 2 = 3 in the roulette

because it belongs to one parent. The arc (c1; c5) is chosen because it is the unique

arc represented in the roulette. The new offspring is S1 = [c4; c3; c2; c1; c5] = {(c4;

c3); (c3; c2); (c2; c1); (c1; c5); (c5; c4)}. Notice that S1 has 3 arcs of F1 {(c4; c3);

(c3; c2); (c1; c5)g and 2 arcs of F2 {(c3; c2); (c1; c5)}. Also, S1 has an arc {(c2; c1)}

that does not belong to any parent. This shows that the objectives of the operators

(crossover and mutation) have not been altered.

3.5.4.6 Population Update

The new individual S1 replaces the oldest individual P1. Next, the new population is

shown.

48

P1 = {c4; c3; c2; c1; c5} with f (1) = 7

P2 = {c1; c3; c2; c5; c4} with f (2) = 8

P3 = {c3; c5; c1; c2; c4} with f (3) = 1

P4 = {c2; c5; c4; c1; c3} with f (4) = 5

The entire procedure above is done iteratively until an end condition is satisfied.

3.10 Some Applications of TSP

 The TSP has provided a test bed for the development of algorithms such as the

nearest neighbour rule that approximate optimal solutions of combinatorial

optimization

problems whilst on the other hand it has prompted questions concerning the

performance

of such algorithms. The versatility of the application of TSP is briefly discussed

below.

3.10.1 Vehicle Routing Problem (VRP)

With regard to a particular number of vehicles, Vehicle Routing is the problem of

determining which customers should be served by which vehicles, and in what order

each

49

vehicle should visit its customers. The constraints may include the available fuel,

capacity of each vehicle and available time windows for customers. TSP-based

algorithms have been applied in this kind of problem and may also be applied to

routing problems in computer networks.(Gerard 1994).

The figure below shows an example of Vehicle Routing Problem (VRP) with four

routes where the square in the middle denotes the source node

Figure 3.9 A typical solution for a VRP with 4 routes. The square in the middle

denotes the source node.

3.10.2 Computer Wiring

This type of problem is common in the design of computers and digital systems. The

systems comprise of a number of modules which in turn consists of several pins. The

50

physical module position has already been determined however a given subset of pins

has to be interconnected by wires. Assuming two wires are attached to each pin in

order to avoid signal cross talk and to improve ease of wiring, the aim is to minimizes

the total wire length. Let i jC symbolizes the actual distance between pin i and j. The

requirements imply that a minimum Hamiltonian path length must be found. This is

done by introducing a dummy pin 0 where c0j = cj0 for all j. The problem of wiring

thus becomes an (n+1) city symmetric TSP. A difficulty may arise if the position of

the modules is a variable which must be chosen to minimize the total wire length for

all subsets of the pins that must be connected (Gerard 1994).

3.10.3 Overhauling gas turbine engines

An application found by Gerard (1994) is overhauling gas turbine engines in aircraft.

Nozzle-guide vane assemblies, consisting of nozzle guide vanes fixed to the

circumference, are located at each turbine stage to ensure uniform gas flow. The

placement of the vanes in order to minimize fuel consumption can be modeled as a

symmetric TSP.

3.10.4 Scheduling of jobs

The scheduling of jobs on a single machine given the time it takes for each job and

the time it takes to prepare the machine for each job is also TSP. We try to minimize

the total time to process each job. A robot must perform many different operations to

complete a process. In this 22 applications, as opposed to the scheduling of jobs on a

machine, we have precedence constraints. This is an example of a problem that cannot

be modeled by a TSP but methods used to solve the TSP may be adapted to solve this

problem (Gerard 1994).

51

3.11 Branch and Bound Algorithm

The Branch and Bound(BB) method which was first proposed by A. H Land and A.G

Doig in 1960 is a general algorithm for finding optimal solutions of optimization

problems such as combinatorial optimization. It consists of systemic enumeration of all

candidate solutions, where large sub-sets of fruitless candidates are discarded, using

upper and lower estimated bounds of the quantity being optimized.

The steps below are used in the branch and bound algorithm

STEP 1: Relaxed problem
0P with respect to integrality condition is called the relaxed

problem . This leads to the following linear programming problem which is called the

relaxed problem,

0 :P Maximize

1

n

j j

j

Z C X




 Subject to
1

n

i j j i

j

a x b


 , 1 i m 

 0jX  jX is integer

 We solve the relaxation problem
0P by the simplex method.

STEP 2: If in the solution of
0P every variable that is supposed to be an integer is

indeed an integer , then we are done .If this is not the case, then there exist at least one

variable which is required to be an integer and whose value in our solution is not an

integer. Pick any such variable and branch on it as follows

52

STEP 3: Suppose that at least one variable jX where (1 j n )

has a non-integer value jX = jK when it should been an integer. We define [jK] to be

the lower integer part of jK so that [] [] 1j j jK X K   .Since jX must be an

integer, it follows that it must obey exactly one of the following constraints.

(i) []j jX K or (ii) [] 1j jX K 

STEP 4: To branch on jX means solving the following problem.Form two subproblems

1 2P and P to replace the current problem 0P adding a lower bound constraint to one and

an upper-bound constraint to the other for the variable selected above in step 3.It then

partition the current subset of solutions into two new subsets of solutions.

We now solve the LP of
1P such that (iv)  1 0: []j jP P x k  and the proble

  2 0: [] 1j jP P x k   The branching is illustrated in the tree of figure 3.11 below

Figure 3.11 solution tree for the method of Daskin.

* 1j jX K   

1P : Maximize

1

n

j j

j

Z C X




 Subject to
1

n

i j i

j

a x b


 ,

*

j jX K   

 1 i m  0jX  and jX is

an integer 1 j n 

*

j jX K   

2P : Maximize

1

n

j j

j

Z C X




 Subject to
1

n

i j i

j

a x b


 ,

* 1j jX K   

 1 i m  0jX  and jX is

an integer ,1 j n 

0P : Maximize
1

n

j j

j

Z C X




 1 i m  0jX  and jX is an integer

,1 j n 

53

STEP 5: Let maximum objective function value of the two subproblems be Z=
iM in

iP ,

1,2i  Since the feasible region of problem
iP is a subset of the feasible region of

0P , it

follows that
iM 0M , 1,2.i  Hence ,

0M is an upper bound to the optimal solutions 0f the

problems
1P and

2P .Test the problems
1P and

2P , for feasibility, discard any infeasible

problem and solve the feasible ones. If, in the solution of
1P or

2P all the variables in the

original problem that satisfy integrality conditions are integers, we are done and our optimal

value is either
1M or

2M , depending on which is the larger one.

STEP 6: If , in the solution of a problem
iP , 1,2.i  , all the variables that should be integers

are indeed integers , we say that the problem
iP is fathomed. If either

1P or
2P is not

fathomed, we branch on it, choosing the problem with the higher bound. We continue in this

manner until some problems have been fathomed and all the unfathomed problems have

bounds lower than those in the fathomed problems. We then select the solution of the

fathomed problems with the highest objective function value as our solution.

3.11.1 Example

Given that

Minimize Z=
1` 24X X (i)

Subject to ;

1` 22 8X X  (ii)

1` 2 6X X  (iii)

1` 0X  ,

2` 0X  (iv

1 2,X X are integers (v)

54

STEP 1 : The algorithm begins by solving (i) to (iv) as an LP problem. This has the

following optimal solutions for *

0 1

10
,

3
P X  ,

2

4

3
X   and

26 2
8

3 3
Z    is the lower

bound on the set of all feasible solutions .If this first solution had satisfied (v), it would have

been optimal for the integer programming problem and the algorithm would have been

terminated. However, as this is not the case , we shall proceed.

Figure 3.11.1: Solution tree for Dakin‘s algorithm.

STEP (2):Since
* *

1 2X and X both have non-integer values in step 1.Arbitrarily select one to

branch on .The set of feasible solutions is partitioned into two subsets. One set contains all the

feasible solutions with the addition of constraint 1
10[] 3

3
X    and the other contains the

set of feasible solutions with the addition of constraint 1
10[] 1 4

3
X     .This reduces the

region of feasible solutions of the LP problem, but leaves the region of feasible solutions of

1 4X  

1 3X  

Node 2

1P : 9Z  

1 3X  

2
3

2
X  

Node 1

0P

28
3

Z  

:

1

10

3
X




2

4

3
X




Node 3

2 :P Z 

Infeasible

Solution

55

the integer Linear programming problem unchanged, since there are no integer solution

between 3= 10[]
3

 and 4= 10[] 1
3
 .Therefore, iteration 1 begins by partitioning the entire

set of solutions into the two subsets below.

(1) Solution in which
1 3X 

(2) Solutions in which
1 4X 

 Two LP problems are now created as
1P and

2P

1P : Minimize

1 24Z X X 

 Subject to
1 22 8X X 

1 22 6X X 

1 3X 

1 0X  ,

2 0X 
1 2,x x integers

2P : Minimize

1 24Z X X 

 Subject to
1 22 8X X 

1 22 6X X 

1 4X 

1 0X  ,

2 0X 
1 2,x x integers

56

 For problem
1P , the corresponding LP problem is solved. The solution is

1 3X   , 2
3

2
X   and 9Z   . The solution is still non-feasible for the original

problem, but 9Z   is the lower bound on the set of all feasible solutions with 1 3X   ,as

shown in figure(2).Also, the problem corresponding to
2P is solved by using the

corresponding LP problem. There is no feasible solution for problem
2P .

Figure 3.11.2 : The complete solution tree for Daskin‘s algorithm.

STEP 3 : Node 2 of problem
1P is the only one for branching. The solutions with

*

2
3

2
X 

from problem
1P is partitioned into two subsets, one with

*

2
3[] 1

2
X   and the other with

2 2X   .These subsets correspond to Nodes 4 and 5 respectively of problems
3P and

4P as

shown in figure2.4.2.Therefore the subproblem to solve at node 4 of problem
3P is

1 3X  

Node 3

2 :P Z 

Infeasible

Solution

1 4X  

Node 1

0P

28
3

Z  

:

1

10

3
X




2

4

3
X




Node 4

3P : Z 

Infeasible

solution

Node 5

4P : Z 

=10

1 3X 


2 2X 


2 2X 


2 1X  

Node 2

1P :

9Z  

1 3X  

2
3

2
X  

57

3 :P Minimize
1 24Z X X 

 Subject to
1 22 8X X 

1 22 6X X 

1 3X 

2 1X 

1 0X  ,

2 0X 
1 2,x x

By solving the LP of problem
3P at Node 4, we find the solution to be infeasible. The

subproblem
4P at Node 5 is

 Minimize
1 24Z X X 

 . Subject to
1 22 8X X 

1 22 6X X 

1 3X 

2 2X 

1 0X  ,

2 0X  ,
1X and

2X are integers.

By solving the LP of problem
4P at Node 5, the solution is

 1 3X   , 2 2X   , and 10Z   .

1 3X   and 2 2X   is the optimal solution of the original problem with an optimal value

of the objective function being 10Z   .

58

3.12.1 Cutting Plane Method

Cutting plane methods are exact algorithms for integer programming problems. They have

proven to be very useful computationally in the last few years, especially when combined

with a branch and bound algorithm in a branch and cut framework. These methods work by

solving a sequence of linear programming relaxations of the integer programming problem.

 The relaxations are gradually improved to give better approximations to the integer

programming problem, at least in the neighborhood of the optimal solution. For hard

instances that cannot be solved to optimality, cutting plane algorithms can produce

approximations to the optimal solution in moderate computation times, with guarantees on the

distance to optimality.

Cutting plane algorithms have been used to solve many different integer programming

problems, including the traveling salesman problem (Gr¨otschel and Holland 1991, Padberg

and Rinaldi 1991, Applegate et al 1994); the linear ordering problem (Gr¨otschel et al

1984, Mitchell and Borchers 1996,Mitchell and Borchers 1997); maximum cut problems in

(Barahona, et al 1988, De Simone et al 1995 and Mitchell. 1997) and packing

problems(Gr¨otschel, M and Weismantel (1996) , Nemhauser and Sigismondi (1992).

 J¨unger et al. (1995) contains a survey of applications of cutting plane methods, as well

as a guide to the successful implementation of a cutting plane algorithm. Nemhauser and

Wolse (1992) provides an excellent and detailed description of cutting plane algorithms as

well as other aspects of integer programming. Research by Schrijver 1986 and his article in

(Schrijver 1995) are excellent sources of cutting plane applications.

3.12.2 Using the fractional algorithm of cutting plane

In this algorithm all coefficients including the right hand side need to be integer. This

condition is necessary as all variables (original, slack and artificial) are supposed to be

59

integer. The elements of A and b need not be integer although this can be transformed into

integers as shown below.

In case a constraint with fractional coefficient exist then both sides of the inequality

(equality) are multiplied by the least common multiple of the denominator (LCMD).

For instance
1 2

3 45 3 10
1 2 1 25 3

x x becomes x x   

3.12.3 Procedure for cutting plane algorithm

1. Solve the integer programming problem as a Linear Programming Problem.

2. If the optimal solution is integer stop else go to step 3.

3. Introduce secondary constraints (cut) that will push the solution towards integrality

(Return to 1).

We show how to constrait the secondary the secondary constraints in the following

sections

3.12.3The construction of the secondary constraints:

Given the integer problem

 Minimize
TZ=C X

 Subject to AX  b

 X 0 , integer

X=Vector of decision variable.

 TC =Vector coefficients

60

 A=the given matrix

 B=vector coefficient

The optimal tableau of the Linear programming Problem is given in table 2.0 below:

For simplicity of notation let us have  ,X X X
B NB



1(...)B MX X X and

1(...)NB NX W W

Table 3.12.0 Table showing the variables to be considered in the Cutting Plane

Method.

 Z X1 … Xi … XM W1 … WJ … WN solution

Z 1 0 0 0 C1 … Cj … CN  0

X1

Xi

XM

0

0

0

1 0 0

0 1 0

0 0 1

 11 …  1j …  1N

 i1 …  ij …  iN

 M1 …  Mj …  MN

 1

 i

 M

Consider the ith equation where
iX was required to be integer but found not integer.

  
1

.
N

i i ij j

j

X W 


  and
i non integer : i = 1,…,M

(1)Any real number can be written as the sum of two parts , integer part and the

fractional part.

…

…

…

…

…

…

61

 Let
i = [

i] +
if and ij = [ij] + ijg (2)

then

 
1

[] []
N

i i i i j i j j

j

x f g w 


    and

     
1 1

N N

i ij j i i ij j

j j

f g W X W 
 

        (3)

 Where  a a and ([a] is integer part of a); 0 1if  ; 0 1ijg  (

[] ([]and   is the integer part of )

 (note that 0if  as
iX is presently not integer)

Since all    1,..., 1,...,i jx i M and all W j N  must be integer, the right-hand side is

consequently integer and therefore the left-hand side is also integer thus from table 2.0

1

()
N

i ij j

j

f g W


   (Integer) (4)

 
1

0 0 (3) [] 0
N

ij ij i i i ij j

j

g and W then from equation with X f g W


    

Therefore

1

()
N

i i ij j

j

f f g W


  for all 1,...,i N (5)

Since 0 1if  we have
1

() 1
N

i ij j

j

f g W


  and using (4) we obtain

62

1

() 0
N

i ij j

j

f g W


  (6)

 Constraint (6) is the cut and can be expressed as a secondary constraints by adding slack

variable:

This gives

1 1

() 0 ()
N N

i ij j i i ij j i

j j

f g W S S g W f
 

       (7)

 for all 1,...,i M

Where 0iS  (integer slack variable).

3.12.4 Choice of the cut

Suppose two rows in table 2.0 gives non-integer solutions in
iX and

kX then there will be

two cuts based on
iX and

kX having the following conditions:

(i)
1

N

i ij j

j

f g W




(ii)
1

N

k kj j

j

f g W




Cut (i) is stronger than cut (k) if

 (iii)
i kf f and ij kjg g for all j

 With the strict inequality happening at least once.

In other words a cut is deeper in the
iX direction as

if increases and ijg decreases.

63

The condition (iii) is difficult to implement computationally and therefore empirical rule

that take into account the above definition have been developed.

(a)
1 1

; 1,..., ;
N N

r r k i i k i

j i

f g Max f g i M X for a specified k
 

 
  

 
 

(b)
1 1

; 1,..., ; int
N N

r r j i i j i i

j i

f g Max f g i M X but X required tobe eger
 

 
   

 
  

(c)  ; 1,..., ,r ik i i kf g Max f g i M for a specified k 

Criterion (b) is more efficient as this represents the definition given by (iii) better.

3.12.5 Prototype Example

Maximize
1 27 9Z x x 

Subject to
1 23 6x x  

1 27 35x x 

1 0x  ,

2 0x  ,integer

Solution

Maximize
1 2 1 27 9 0 0Z x x s s   

 Subject to

1 2 13 1 6x x s   

1 2 27 1 35x x s  

Table 3.12.1Final Tableau for first iteration

64

jC 7 9 0 0

BC Basic

variable

1x
2x

1s
2s Solution

9
2x 0 1 7

22

1

22

7

2

7
1x 1 0 1

22



1

22

9

2

jZ 7 9 0 0 63

j jC Z 0 0 28

11



15

11



Let
1s =

3x ,
2s =

4x ,
5Z x

From the tableau the optimal solution becomes Z=63, where
2x =

7

2
 and

1x =
9

2

Since
2x and

1x are not integers, we apply the concepts of cutting plane techniques.

2x +

7

22
3x +

1

22
4x =

7

2
 (1)

1x +0
2x -

1

22
3x +1/22

4x =
9

2
 (2)

Choice of cut

Taking equations (1) and (2)

2x + 3

7
0

22
x

 
 

 
 + 4

1
0

2
x

 
 

 
=

1
3

2

 
 

 
 (1)a

1x - 3

21
1

22
x

 
 

 
 + 4

3
0

22
x

 
 

 
 =

1
4

2

 
 

 
 (2)b

65

3 4 2 3 4

1 7 1
0 0

2 22 2
x x x x x     --------------(3) integer……(1a)

3 4 1 3 4

1 21 3
0

2 22 22
x x x x x     --------------(4) integer…….(2b)

2 23 24

1 7 1
, ,

2 22 2
f g g  

3 33 34

1 21 3
, ,

2 22 22
f g g  

Using

1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
  

2when i  , 3,4j 

2

1

2
f  ,

23

7

22
g  and

24

1

22
g 

4

3

i j

j

g


 =
7

22
+

1

22
=

8

22

3when i  , 3,4j 

 ,
33

21

22
g  and

34

3

22
g 

4

3

21 3 24

22 22 22
i j

j

g


  

1 1
2 2max ,

8 24
2222

    
    

      

66

22 22
max ,

16 48

 
 
 

=
22

16

Hence (1a) would be considered to be part of the new constraints.

Thus
3 4

1 7 1
0

2 22 22
x x  

and
3 4 3

1 7 1
0

2 22 22
x x S   

3 4 3

7 1 1

22 22 2
x x s    

 The system of equations becomes;

1 2 3 4 57 9 0 0 0Z x x x x x    

Subject to;

2x +
7

22
3x +

1

22
4x =

7

2

1x +0
2x -

1

22
3x +

3

22
4x =

9

2

3 4 5

7 1 1

22 22 2
x x x    

3 5S X

67

Table 3.12.2 Final Tableau for the second iteration

jc 7 9 0 0 0

Bc Basic

variable

1x
2x

3x
4x

3s solution

9
2x 0 1 0 0 1 3

7
1x 1 0 0 1

7

1

7



32

7

0
3x 0 0 1 1

7

22

7



11

7

jz 7 9 0 1 0 59

j jc z 0 0 0 -1 -8

maxz =59 ,

2x =3 ,
1x =

32

7
 and

3x =
11

7

Since
1x and

3x are not integers we apply the cutting plane techniques.

Using the fractional algorithm;

1 4 5

1 1 32

7 7 7
x x x   -------------(1)*

1 4 5

1 6 4
0 1 4

7 7 7
x x x

   
          

   

1 4 5 4 5

4 1 6
0 1 4

7 7 7
x x x x x       ……….integer (1a)*

3 4 5

1 22 11

7 7 7
x x x   -----------(2)*

68

3 4 5

1 6 4
0 4 1

7 7 7
x x x

   
          

   

3 4 5 4 5

4 1 6
0 4 1

7 7 7
x x x x x

 
       

 
………….. integer (2a)*

Choice of Cut

From (1a)*
2 24 25

4 1 6
, ,

7 7 7
f g g  

From (2a)*
3 34 35

4 1 6
, ,

7 7 7
f g g  

Using

1 1

; 1,..., ; int
N N

r r j i i j i i

j j

f g Max f g i M X but X required tobe eger
 

 
   

 
  

When 2i  , 4,5j 

2

4

7
f 

24

1

7
g  ,

25

6

7
g 

Therefore

5

4

1 6
1

7 7
i j

j

g


  

When 3i  , 4,5j 

3

4

7
f 

34 35

1 6
,

7 7
g g 

5

4

1 6
1

7 7
i j

j

g


  

69

32

32

5 5

4 4

4 4
max , max ,

7 7

ii

i j i j

j j

ff

g g


 

 
 

        
 
  
 

=
4

7

Tie will be broken arbitrary by choosing equation (2)* as the new constraints to be added.

Where
3 5s x .

The system of equations becomes;

1 2 3 4 5 47 9 0 0 0 0Z x x x x x s     

Subject to

2 3x 

1 4 5

1 1 32

7 7 7
x x x  

3 4 5

1 22 11

7 7 7
x x x  

4 5 4

1 6 4

7 7 7
x x s    

70

Table 3.12.3 Final tableau for the last iteration

jc 7 9 0 0 0 0

Bc Basic

variable

1x
2x

3x
4x

5x
4s Solution

9
2x 0 1 0 0 0 0 3

7
1x 1 0 0 0 -1 1 4

0
3x 0 0 1 0 -4 1 1

0
4x 0 0 0 1 6 -7 4

jz 7 9 0 0 -7 7 55

jc - jz 0 0 0 0 7 -7

Now the
max 55Z  ,

2x =3 ,
1x =4 ,

3x =1 and
4x =4

Since all the variables are integers, we stop here.

71

CHAPTER 4

COLLECTION OF DATA, ANALYSIS OF DATA AND RESULTS

4.1 Numerical Representation of Constituency Capitals

For the purpose of this work, numbers have been allocated to the twenty four

constituency capitals in the Brong Ahafo Region. This is illustrated in the table below.

Constituency capital Number Allocated

Sunyani 1

Berekum 2

Wamfie 3

Dormaa-Ahenkro 4

Drobo 5

Sampa 6

Techiman 7

Wenchi 8

Kintampo 9

Jema 10

Nkoranza 11

Atebubu-Amanteng 12

Yeji 13

Bechem 14

Duayaw Nkwanta 15

Goaso 16

Nsokor 17

72

Kenyase 18

Domase 19

Busuaa 20

Kwame Danso 21

Tuobodom 22

Kukuom 23

Hwediem 24

Table 4.1: Numbers allocated to constituency capitals in the Brong Ahafo Region

4.2 Distance Matrix for the 24 Constituency Capitals in Brong Ahafo in

kilometres(km)

The table below shows the distance matrix obtained from distances between the

capitals of the twenty-four constituencies. For cities which have no direct link, the

minimum distance along the edges is considered. The cells indicated zero shows that

there is no distance.

Cij = The distance from city i to city j

Cii = Cjj = 0 = There is no distance.

73

4.3 Formulation of the TSP model

The problem can be defined as follows: Let G = (V,E) be a complete undirected graph with

vertices V, |V|=n, where n is the number of cities, and edges E with edge length dij for (i,j).

We focus on the symmetric TSP case in which i j j iC C , for all (i,j).

 We formulate this minimization problem as an integer programming, as shown in Equations

(1) to (5).

 P1: min i j i j

i v j v

c x
 

 (1)

C ij 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 0 33 56 79 64 114 64 60 123 105 92.5 263 334 48 33.5 83.7 91 43 7 110 299 71.5 100 90

2 33 0 34 56 32 82 97 93 156 138 125 126 367 81 66 107 66 138 40 143 331 104 124 132
3 56 33.5 0 23 65 116 120 116 179 161 149 319 390 104 90 74 100 105 63 166 354 128 91 98
4 79 56 23 0 88 170 143 138 202 174 172 342 413 127 113 100 122 127 86 189 378 151 113 121

5 64 32 65 88 0 50 128 124 187 169 157 327 398 112 98 139 98 170 71 174 363 136 156 163
6 114 82 115.5 170 50 0 111 80 170 152 139 246 317 162 147 189 50 219 121 157 246 118 205 213
7 64 97 120 143 128 111 0 30 59 41 29 135 206 112 98 148 60 107 71 46 171 7.5 164 154
8 60 93 116 138 124 80 30 0 89 71 59 165 236 108 94 144 30 103 67 76 201 38 160 150
9 123 156 179 202 187 170 59 89 0 18 55 115 186 171 157 207 119 166 130 72 151 67 223 213

10 105 138 161 174 169 152 41 71 18 0 37 133 204 153 139 189 101 148 112 54 168 34 205 195
11 92.5 125 149 172 157 139 29 59 55 37 0 107 178 141 126 176 89 136 100 18 142 36 193 183
12 263 126 319 342 327 246 135 165 115 133 107 0 71 311 297 347 195 306 270 86 35.5 143 363 353
13 334 367 390 413 398 317 206 236 186 204 178 71 0 382 368 418 266 377 341 157 107 214 434 424

14 48 81 104 127 112 162 112 108 171 153 141 311 382 0 15 66 139 91 55 158 347 71.5 82 42

15 33.5 66 90 113 98 147 98 94 157 139 126 297 368 15 0 80 125 76.5 41 144 332 105 116 75.5
16 83.7 107 74 100 139 189 148 144 207 189 176 347 418 66 80 0 175 30.5 91 194 382 155 16.5 23.7
17 91 66 100 122 98 50 60 30 119 101 89 195 266 139 125 175 0 134 98 106 227 70 191 181
18 43 138 105 127 170 219 107 103 166 148 136 306 377 91 76.5 30.5 134 0 50 153 342 115 47 6.5
19 7 40 63 86 71 121 71 67 130 112 100 270 341 155 41 91 98 50 0 117 306 79 107 97

20 110 143 166 189 174 157 46 76 72 54 18 86 157 158 144 194 106 153 117 0 121 54 210 200

21 299 331 354 378 363 246 171 201 151 168 142 35.5 107 347 332 382 227 342 306 121 0 178 399 389

22 71.5 104 128 151 136 118 7.5 38 67 34 36 143 214 71.5 105 155 70 115 79 54 178 0 172 162

23 100 124 91 113 156 205 164 160 223 205 193 363 434 82 116 16.5 191 47 107 210 399 172 0 40.2

24 90 132 98 121 163 213 154 150 213 195 183 353 424 42 75.5 23.7 181 6.5 97 200 389 162 40.2 0

74

Subject to

 1i j

j v

j i

x i v




  (2)

1i j

i v

x j v

i j


 



 (3)

| | 1 ,i j

i s j s

x s s v s
 

     0 1 ,i jx or i j v  (4)

0 1 ,i jx or i j v (5)

The problem is an assignment problem with additional restrictions that guarantee the

exclusion of subtours in the optimal solution. Recall that a subtour in V is a cycle that does

not include all vertices (or cities). Equation (1) is the objective function, which minimizes the

total distance to be traveled.

Constraints (2) and (3) define a regular assignment problem, where (2) ensures that each city

is entered from only one other city, while (3) ensures that each city is only departed to on

other city. Constraint (4) eliminates subtours. Constraint (5) is a binary constraint, where i jx

= 1 if edge (i,j) in the solution and i jx = 0, otherwise.

4.4. ANALYSIS

To satisfy constraints (2) and (3) we choose the random

 initial tour (0x)= 19 - 2 – 5 – 6 – 17 – 8 – 7 – 22- 10 – 9 – 11 – 20 – 12 – 21- 13 – 15 – 14 –

24 – 18 -19

From objective function (1) the initial distance =d (0x) =

75

d(19,2)+d(2,5)+d(5,6)+d(6,17)+d(17,8)+d(8,7)+d(7,22)+d(22,10)+d(10,9)+d(9,11)+d(11,2)

+d(20,12)+d(12,21)+d(21,13)+d(13,15)+d(15,14)+d(14,24)+d(24,18)+d(18,19)= 1113.5km

The initial temperature is taken to be (
0T) =4069.00 , 0.99 

Temperature is updated by using the formula
1k kT T  where k is the number of iteration

Stop when 42.03T 

Simulated annealing algorithm was used to obtain the final solution. Toshiba Laptop

Computer with processor speed of 2.00GHz was used in finding the solution after 1601

iterations in 382.95 seconds. The execution time varied with the number of iterations.

4.5 Results

 After performing 1601 iterations the optimal tour = 19 - 15 - 14 - 24 - 18 - 23 - 16

- 3 - 4 - 2 - 5 - 6 - 17 – 8 – 7 - 11 – 20 – 21 – 12 – 10 – 22 – 1 -19

Thus,

d(19,15)+d(15,14)+d(14,24)+d(24,18)+d(18,23)+d(23,16)+d(16,3)+d(3,4)+d(4,2)+d(2,5)+d(5

,6)+d(6,17)+d(17,8)+d(8,7)+d(7,11)+d(11,20)+d(20,21)+d(21,12)+d(12,10)+d(10,22)+d(22,)

+d(1,19) = 980km

The optimal tour was found to be the same after it was run ten times.

The optimal tour is therefore as follows:

SSuunnyyaannii DDoommaassee DDuuaayyaaww NNkkwwaannttaa BBeecchheemm HHwweeddiieemm KKeennyyaassee

KKuukkuuoomm GGooaassoo WWaammffiiee DDoorrmmaaaa--AAhheennkkrroo BBeerreekkuumm DDrroobboo

SSaammppaa NNssoorrkkoorr WWeenncchhii TTeecchhiimmaann NNkkoorraannzzaa BBuussuuaaaa

 KKwwaammee DDaannssoo AAtteebbuubbuu JJeemmaa TTuuoobbooddoomm SSuunnyyaannii

76

CHAPTER 5

CONCLUSION AND RECOMMENDATION

5.1 Conclusion

The simulated annealing algorithm can be a useful tool to apply to hard combinatorial

problems like that of TSP. Using simulated annealing as a method in solving the symmetric

TSP model has been proved that it is possible to converge to the best solution.

We conclude that the objective of finding the minimum tour from the symmetric TSP model

by the use of simulated annealing algorithm was successfully achieved. The study shows

clearly that, any presidential aspirant who visits the Brong Ahafo Region must visit the

constituencies in the order below to minimize cost.

The order is as follows:

SSuunnyyaannii DDoommaassee DDuuaayyaaww NNkkwwaannttaa BBeecchheemm HHwweeddiieemm KKeennyyaassee

KKuukkuuoomm GGooaassoo WWaammffiiee DDoorrmmaaaa--AAhheennkkrroo BBeerreekkuumm DDrroobboo

SSaammppaa NNssoorrkkoorr WWeenncchhii TTeecchhiimmaann NNkkoorraannzzaa BBuussuuaaaa

 KKwwaammee DDaannssoo AAtteebbuubbuu JJeemmaa TTuuoobbooddoomm SSuunnyyaannii

77

5.2 Recommendations

After a comprehensive study of TSP and Simulated annealing algorithm, the following

recommendation should be considered.

1. Presidential Candidates who visit the Brong-Ahafo Region to Campaign should

consider the routes below in other to minimize their cost.

SSuunnyyaannii DDoommaassee DDuuaayyaaww NNkkwwaannttaa BBeecchheemm HHwweeddiieemm KKeennyyaassee

KKuukkuuoomm GGooaassoo WWaammffiiee DDoorrmmaaaa--AAhheennkkrroo BBeerreekkuumm DDrroobboo

SSaammppaa NNssoorrkkoorr WWeenncchhii TTeecchhiimmaann NNkkoorraannzzaa BBuussuuaaaa

 KKwwaammee DDaannssoo AAtteebbuubbuu JJeemmaa TTuuoobbooddoomm SSuunnyyaannii

2. Students can use this work for further research covering all key towns in the Brong-

Ahafo Region.

78

REFERENCES

1. Applegate D, Bixby R.E., Chvatal V., and Cook W. (1994) "Finding cuts in the

TSP" a preliminary report distributed at The Mathematical Programming Symposium,

Ann Arbor, Michigan.

2. Ackoff, R.L., Arnoff, E.L., and Sengupta, S.S. (1961). "Mathematical Programming". In:

Progress in Operations Research. R.L. Ackoff, editor. John Wiley and Sons: New York: NY.

105-210.

3. Al-Hboub-Mohamad, H. and Selim Shokrik, Z. (1993). A Sequencing Problem in the

Weaving Industry. European Journal of Operational Research (The Netherlands).

66(1):6571.

4. Applegate, D., Bixby, R., Chv'atal, V., and Cook, W. (1999). ―Finding Tours in the TSP‖.

Technical Report 99885. Research Institute for Discrete Mathematics, Universitaet Bonn:

Bonn, Germany.

5. Applegate, D., Bixby, R., Chvatal, V., Cook, W., and Helsghaun, K. (2004). ―The Sweden

Cities TSP Solution‖. http://www.tsp.gatech.edu//sweeden/cities/ cities.htm.

6. AppleGate D, Bixby R., Chvatal V and Cook W. (1998). On the Solution of the Traveling

Salesman Problems. Documenta Mathematica – Extra Volume ICM, chapter 3, pp. 645-656

 7. Applegate, D., Bixby, R., Chv'atal, V. and Cook, W. (2007). The Traveling Salesman

Problem. Princeton University Press: Princeton, NJ.

8. Amponsah, S .K and F.K Darkwah (2007) .Lecture notes on operation Research ,IDL

KNUST 62-67

9.Applegate, D., Bixby, R., Chv´atal, V., and Cook, W. (1994): Finding Cuts in the

TSP (A preliminary report), Tech. rep., Mathematics, AT&T Bell Laboratories, Murray Hill,

NJ.

10. Barahona, F., Gr¨otschel, M., J¨unger, M., and Reinelt, G. (1988): ‗An application of

combinatorial optimization to statistical physics and circuit layout design‘, Operations

Research 36(3) ,493–513

 11. Balas, E. and Simonetti, N. (2001). ―Linear Time Dynamic Programming Algorithms for

New Classes of Restricted TSPs: A Computational Study.‖ INFORMS Journal on Computing.

13(1): 56-75.

12. Barachet, L.L. (1957). "Graphic Solution of the Traveling-Salesman Problem".

Operations Research. 5:841-845.

13. Bellman, R. (1960). "Combinatorial Processes and Dynamic Programming". In:

Combinatorial Analysis. R. Bellman and M. Hall, Jr., eds. American Mathematical Society:

Washington, DC. 217-249.

 14. Bellman, R. (1960). ―Dynamic Programming Treatment of the TSP‖. Journal of

Association of Computing Machinery. 9:66.

15. Bellmore, M. and Nemhauser, G.L. (1968). "The Traveling Salesman Problem: A

Survey". Operations Research. 16:538-558.

79

16. Bock, F. (1958). "An Algorithm for Solving Traveling-Salesman' and Related

Network Optimization Problems". Research Report, Operations Research Society of

America Fourteenth National Meeting: St. Louis, MO. Problems". Research Report,

Operations Research Society of America Fourteenth National Meeting: St. Louis,

MO.

17.Bellmore .M and. Nemhauser G. L, (1968) The Traveling Salesman Problem: A Survey

Operations Research, Vol. 16, No. 3 pp. 538-558. http://www.jstor.org/stable/168581

18 Burkard, R.E. (1979). "Traveling Salesman and Assignment Problems: A Survey". In:

Discrete Optimization 1. P.L. Hammer, E.L. Johnson, and B.H. Korte, eds. Annals of Discrete

Mathematics Vol. 4, North-Holland: Amsterdam. 193-215.

19.Carpaneto, G., Toth, P., (1980).‖ Some new branching and bounding criteria for the

asymmetric traveling salesman problem‖, Management Science 21, pp.736–743.

20. Charles–Owaba, O.E.(2001). ―Optimality Conditions to the Accyclic Travelling Salesman

Problem‖. Operational Research Society of India. 38:5.

21.Carpaneto, G., Dell‘Amico, M. and Toth, P., (1995), ―Exact Solution of Large-scale

Asymmetric Traveling Salesman Problems‖, ACM Transactions on Mathematical Software,

21, pp.394–409.

 22. Charles–Owaba, O.E. (2002). ― Set-Sequencing Algorithm to the Cyclic TSP‖. Nigerian

Journal of Engineering Management. 3(2):47-64.

23.Clarker, R.J. and Ryan, D.M. (1989). ―Improving the Performance of an X-ray

Diffractometer‖. Asia-Pacific Journal of Operational Research (Singapore). 6(2):107-130.

24. Crama,Y. ,Van de Klundert, J., and Spieksma, F. C.R. (2002). ―Production Planning

Problems in Printed Circuit Board Assembly‖. Discrete Applied Mathematics. 123:339-361.

25. Croes, G.A. 1958. "A Method for Solving Travelling-Salesman Problems". Operations

Research. 6:791-812.

 26. Crowder, H. and Padberg, M.W. (1980). "Solving Large-Scale Symmetric Travelling

Salesman Problems to Optimality". Management Science. 26:495-509.

27.Cerny, V. (1985) "Thermodynamical Approach to the Traveling Salesman Problem: An

Efficient Simulation Algorithm", J. Opt. Theory Appl., 45, 1, 41-51.

 28. Dacey, M.F. 1960. ―Selection of an Initial Solution for the Traveling-Salesman Problem".

Operations Research. 8:133-134. Darwin.C, (1859).On the origin of spacies,1
st
 edition

(facsimile-1964),Harvard University Press,MA

29.Datta,S,(2000).Application of operational Research to the Transportation Problems

in Developing Countries:A review,Global Business Review, Volume 18,No.1 pages

113-132
 30.Dantzig, G.B., Fulkerson, D.R., and Johnson, S.M. (1954). "Solution of a Large-Scale

Traveling-Salesman Problem". Operations Research. 2: 393-410.

31.Dawkins, R,(1986).The Blind Watchmaker,Penguin,London.
32.David Goldberg, (1989). Genetic Algorithms in Search, Optimization, and Machine

Learning.

http://www.jstor.org/stable/168581?origin=JSTOR-pdf

80

33. Deı˘neko Addison-Wesley, V.G., Hoffmann, M., Okamoto, Y. and Woeginger, G.J.(

2006). "The Traveling Salesman Problem with Few Inner Points". Operations Research

Letters. 34(1):106-110.

34. Eastman, W.L. (1958). "Linear Programming with Pattern Constraints". Ph.D.

Dissertation. Harvard University: Cambridge, MA.

35. Ferreir, J.V. (1995). ―A Travelling Salesman Model for the Sequencing of Duties in Bus

Crew Rotas‖. Journal of Operational Research Society (UK). 46(4): 415-426.

36. Flood, M.M.(1956). ―The TSP‖. Operation Research. 4:6.

 37.Foulds, L.R. and Hamacher, H.W. (1993). ―Optimal Bin Location and Sequencing in

Printed Circuit Board Assembly.‖ European Journal of Operational Research (Netherlands).

66(3):279-

290.

38. Goldberg, D.E, (1989). Genetic Algorithm for Search,Optimization and Machine

Learning, Addison-Wesley.

39.Fischetti, M., Lodi, A., Toth, P., (2002). Exact Methods for the Asymmetric Traveling

Salesman Problem. In: Gutin, G., Punnen, A.P. (Eds.),The Traveling Salesman Problem and

its Variations. Kluwer, Dordrecht, pp. 169–194 (Chapter 9).

 40.Gomory, R.E. (1996). "The Traveling Salesman Problem". In: Proceedings of the IBM

Scientific Computing Symposium on Combinatorial Problems. IBM: White Plains, NY. 93-

121.

41.Gomory, R.E. (1960). Solving linear programming problems in integers. In Bellman, R.,

Hall Jr., M. (eds) Combinatorial Analysis: Proceedings of Symposia in Applied Mathematics

X. American Mathematical Society, Providence, Rhode Island, pp. 211–215.

42.Gonzales, R.H. (1962). "Solution to the Traveling Salesman Problem by Dynamic

Programming on the Hypercube". Technical Report Number 18, Operations Research Center,

Massachusetts Institute of Technology: Boston, MA.

43.Gr¨otschel, M., J¨unger, M., and Reinelt, G. (1984):‗A cutting plane algorithm for the

linear ordering problem‘, Operations Research 32, 1195

44.Garey M.R. and Johnson D.S. (1979).Computers and Intractability: A

Guide to the Theory of NP Completeness, W.H. Freeman, San Francisco.Hitchcock F.L., The

Distribution of Product from Several Sourcesto Numerous Localities, J. Math. Phys., 20, No.

2, 1941, 217–224.

45.Gr¨otschel, M., Martin, A., and Weismantel, R. (1996),: ‗Packing Steiner trees: a cutting

plane algorithm and computational results‘, Mathematical Programming 72 ,125–145.

46.Grötschel, M. (1980). "On the Symmetric Travelling Salesman Problem: Solution of a

120-City Problem". Mathematical Programming Study. 12: 61-77.

 47.G¨unther, H.O., Gronalt, M., and Zeller, R. (1998). ―Job Sequencing and Component Set-

Up on a Surface Mount Placement Machine.‖ Production Planning & Control. 9(2):201–211.

81

48. Gutin, G. and Punnen, J. (2002). The TSP and its Variations. Kluwer Academic

Publishers.

49.Grötschel .M and Padberg .M., (1993). "Ulysses 2000: In Search of Optimal

Solutions to Hard Combinatorial Problems," Technical Report, New York University

Stern School of Business.

50.Gerard Reinelt ,(1994). The Traveling Salesman: Computational Solutions for TSP

Applications. Springer-Verlag.

51.Golden B.L., Wasil E.A., Kelly J.P, and. Chao I-M, (1998). Metaheuristics in Vehicle

Routing. In Fleet Management and Logictics, T.G. Crainic and G. Laporte (eds), Kluwer,

Boston, 33-56.

52.Golden B.L. and Assad A.A., (1988).Vehicle Routing: Methods and

Studies, Elsevier Science, Amsterdam
53.Hillier F.S and Lieberman G.J (2005): Introduction to operations Research. McGraw-hill

companies inc,1221 Avenue of the Americas, New York ,NY 10020.

53.Hoffman A. J. and Wolfe P. (1985), "History" in The Traveling Salesman

Problem, Lawler, Lenstra, Rinooy Kan and Shmoys, eds., Wiley, 1-16

 Holland, J, (1975).Adaptation in Natural and Artificial Systems, Michigan University

Press
54.Hoffman K.L. and Padberg M., (1991) LP-based Combinatorial Problem Solving, Annals

Operations Research, 4, 145–194.

55.Heinz M¨uhlenbein and Hans-Michael Voigt, (1995). Gene Pool Recombination in

Genetic Algorithms. In Ibrahim H. Osman and James P. Kelly, editors, Proceedings of the

Meta-heuristics Conference, pages 53–62, Norwell, USA,. Kluwer Academic Publishers

56. Helbig, H.K. and Krarup, J. (1974). "Improvements of the Held-Karp Algorithm for the

Symmetric Traveling-Salesman Problem". Mathematical Programming. 7:87-96.

57. Held, M. and Karp, R.M. (1962). "A Dynamic Programming Approach to Sequencing

Problems", Journal of the Society of Industrial and Applied Mathematics. 10:196-210.

58. Held, M. and Karp, R.M. (1970). "The Traveling-Salesman Problem and Minimum

Spanning Trees". Operations Research. 18:1138-1162.

59. Held, M. and Karp, R.M. (1971). "The Traveling-Salesman Problem and Minimum

Spanning Trees: Part II". Mathematical Programming. 1:6-25.

60. Heller, I. (1955). "On the Travelling Salesman's Problem". Proceedings of the Second

Symposium in Linear Programming: Washington, D.C. Vol. 1.

61.Hong, S. (1972). "A Linear Programming Approach for the Traveling Salesman Problem".

Ph.D. Thesis. The Johns Hopkins University: Baltimore, MD.

62. Johnson D.S and Mcgeoch L.A (2002): Experimental Analysis of Heuristics for STSP, In

The Traveling Salesman Problem and its Variations (G. Gutin and A. P. Punnen, eds.),

Kluwer.

82

62. Johnson, D.S., Gutin, G. McGeoch, L.A., Yeo, A., Zhang, W., and Zverovitch, A.

(2002). ―Experimental Analysis of Heuristics for the Asymmetric Traveling Salesman

Problem‖. In: Gutin G and Punnen H (eds). The Traveling Salesman Problem and it

Variations. Kluwer Academic Publishers.
63.Kahng, A.B. and Reda, S. (2004). 'Match Twice and Stitch: A new TSP Tour Construction

Heuristic‖. Operations Research Letters. 32(6): 499-509.

64. Karg, R.L. and. Thompson, G.L. (1964). "A Heuristic Approach to Solving Travelling

Salesman Problems". Management Science. 10:225-248.

65. Keuthen, R. (2003). ―Heuristic Approaches for Routing Optimization‖. PhD thesis at the

University of Nottingham: UK.

66. Kolohan, F. and Liang, M. (2000). ―Optimization of Hole Making: A Tabusearch

Approach‖. International Journal of Machine Tools & Manufacture. 50:1735-1753.

67. Kruskal, J.B. (1956). "On the Shortest Spanning Subtree of a Graph and the Traveling

Salesman Problem". Proceedings of the American Mathematical Society. 2:48-50.

68.Karp, R.M., Steele, J.M., (1990),‖ Probabilistic Analysis of Heuristics. In: The Traveling

Salesman Problem‖, Wiley, New York, pp. 181–205 .

69.Kirkpatrick, S., Gelatt, C.D. Jr., and Vecchi, M.P. (1983). Optimizations by simulated

annealing. Science, 220, 671-681.

70. Kwon, S., Kim, H., and Kang, M. (2005). "Determination of the Candidate Arc Set for the

Asymmetric Traveling Salesman Problem". Computers and Operations Research. 32(5):

1045-1057.

71.Kirkpatrick, S., C. D. Gelatt Jr., M. P. Vecchi, (1983) "Optimization by Simulated

Annealing",Science, 220, 4598, 671-680.

72. Lambert, F. (1960). "The Traveling-Salesman Problem". Cahiers du Centre de Recherche

Opérationelle. 2:180-191.

73.Lawler, E.L. and Wood, D.E. (1966). "Branch-and-Bound Methods: A Survey".

Operations Research. 14:699-719.

74.Lawler, E.J., Lenstra, J.K., Rinnoy Kan, A.H.G., and Shmoys, D.B. (1985). ―The

Travelling Salesman Problem: A Guided Tour of Combinatorial Optimization‖. John Wiley &

Sons: New York, NY.

 75.Lin, S. and Kernighan, B.W. (1973). "An Effective Heuristic Algorithm for the Traveling-

Salesman Problem". Operations Research. 21:498-516.

 76.Little, J.D.C., Murty, K.G., Sweeney, D.W., and Karel, C. (1963). "An Algorithm for the

Traveling Salesman Problem". Operations Research. 11: 972-989.

 77.Mitrovic-Minic, S. and Krishnamurti, R. (2006). "The Multiple TSP with Time Windows:

Vehicle Bounds Based on Precedence Graphs". Operations Research Letters. 34(1): 111-120.

 78.Morton, G. and Land, A.H. (1955). "A Contribution to the Travelling-Salesman'

Problem". Journal of the Royal Statistical Society, Series B. 17:185-194.

83

79. Oladokun, V.O. (2006). ―The Development of a Subtour-Free Set Sequencing Algorithm

and the Software for Solving the Machine Set-Up Problem‖. Ph.D. thesis at the University Of

Ibadan: Ibadan, Nigeria.

80.Padberg, M.W. and Rinaldi, G. (1987). "Optimization of a 532-city Symmetric Traveling

Salesman Problem by Branch and Cut". Operations Research Letters. 6:17.

81. Pinedo, M. (1995). Scheduling Theory, Algorithm and Systems. Prentice Hall Pub: New

Jersey.

82. Potvin, J.Y. (1996). ―The Traveling Salesman Problem: A Neural Network Perspective‖.

ORSA Journal on Computing. 5:328-347.

83.Rego C and Glover, F (2002) Local Search and Metaheuristic, in G. Gutin and A.P.

Punnen (eds.): The Traveling Salesman Problem and its Variations , Kluwer, Dordrecht.

 84.Radin, L.R. (1998). Optimisation in Operations Research. Prentice Hall Inc. New Jersey.

85. Rajkumar, K. and Narendran, T.T. (1996). ―A Heuristic for Sequencing PCB Assembly to

Minimize Set-up Times‖. Production Planning & Control. 9(5): 465–476.

86. Raymond, T.C. (1969). "Heuristic Algorithm for the Traveling-Salesman Problem". IBM

Journal of Research and Development. 13:400-407.

87. Riera-Ledesma, J. and Salazar-González, J.J. (2005). ―A Heuristic Approach for The

Travelling Purchaser Problem‖. European Journal of Operations Research. 162(1):142-152.

88. Robacker, J.T. (1955). "Some Experiments on the Traveling-Salesman Problem". RAND

Research Memorandum.

89. Roberts, S.M. and Flores, B. (1966). "An Engineering Approach to the Traveling

Salesman Problem". Management Science. 13:269-288.

 90.Robinson, B. (1949). "On the Hamiltonian Game (A Traveling-Salesman Problem)".

RAND Research Memorandum.

91. Rossman, M.J and Twery, R.J. (1958). "A Solution to the Travelling Salesman Problem".

Operations Research. 6:687.

92. Shapiro, D. (1966). "Algorithms for the Solution of the Optimal Cost Traveling Salesman

Problem". Sc.D. Thesis, Washington University: St. Louis, MO.

93. Smith, T.H.C. and Thompson, G.L. (1977). "A LIFO Implicit Enumeration Search

Algorithm for the Symmetric Traveling Salesman Problem using Held and Karp's 1-

Tree Relaxation". In: Studies in Integer Programming. P.L. Hammer, E.L. Johnson,

B.H. Korte, and G.L. Nemhauser (eds.). Annals of Discrete Mathematics 1: North-

Holland, Amsterdam. 479-493.
94.Turkensteen,M.,Ghosh , D., Goldengorin ,B., Sierksma ,G.,(2007), ―Tolerance-based

Branch and Bound algorithms for the ATSP‖, European Journal of Operational Research 189:

775–788, Available online at www.sciencedirect.com

95.Tian, P. and Yang, S. (1993). An Improved Simulated Annealing Algorithm with Generic

Characteristics and Travelling Salesman Problem. Journal of Information and Optimization

Science. 14(3):241-254.

http://www.sciencedirect.com/

84

96. Volgenant, T. and Jonker, R. (1982). A Branch and Bound Algorithm for the Symmetric

Traveling Salesman Problem Based on the 1-Tree Relaxation. European Journal of

Operational Research. 9:83-89.

97.Walshaw, C.A. (2001). Multilevel Lin-Kernighan-Helsgaun Algorithm for the Travelling

Salesman Problem. CMS press Centre for Numerical Modelling and process Analysis.

University of Greenwich: London, UK.

98. Walshaw, C.A. (2002). Multilevel Approach to the Travelling Salesman Problem.

Operations Research. 50(5):862-877.

99.Lawler E.L., Lenstra J.K. ,. Rinnooy Kan A.H.G, and Shmoys D.B., (1986).. The

Traveling Salesman. JohnWiley and Sons .

100.Rachev and Ruschendorf (1993), constrained transportation Problems, Decision

and Control,Proceedings of the 32
nd

 IEEE conference ,Volume 3,Pages 2896-2900

101.Yang,J ,Wu C,Lee H,Liang Y, (2008) .Solving traveling Salesman problems

generalized chromosome genetic algorithm ,Progress in Natural Science,Volume

18,Issue 7,10
th

 July Pages 887-892.

102.Hatfield, D. J. AND J. F. Pierce, (1966).Production Sequencing by

Comnbinatorial Programming, IBM Cambridge Scientific Center, Cambridge, Mass.

103.Lawler and. Wood D. E, (1966) Branch-and-Bound Methods: A Survey, Opns.

Res. 14, 69-719

104. Little, J. D. C., K. G.Murty , D. W. Sweeney, AND C. Karel , (1963). An Algo-

rithm for the Traveling Salesman Problem, Opns. Res. 11, 979-989 .

105. Shapiro, D., (1966) Algorithms for the Solution of the Optimal Cost Traveling

Salesman Problem, Sc.D. Thesis, Washington University, St. Louis,

106. Gr¨otschel, M.,and Holland, (1991) O.: ‗Solution of large-scale travelling salesman

problems‘,Mathematical Programming 51(2), 141–202.

107. Padberg, M., and Rinaldi, G. (1991): A branch-and-cut algorithm for the resolution of

large-scale symmetric traveling salesman problems,SIAM Review 33(1)), 60–100.

108.De Simone, C., Diehl, M., J¨unger, M., Mutzel,P., Reinelt, G., and Rinaldi, G. (1995):

‗Exact ground states of Ising spin glasses: New experimental results with a branch and cut

algorithm‘, Journal of Statistical Physics 80 ,487–496.

109 Mitchell, J. E(1997): Computational experience with an interior point cutting plane

algorithm, Tech. rep.,Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY

12180–3590.

110. Nemhauser, G. L., and Sigismondi, G. (1992): A strong cutting plane/branch-and-bound

algorithm for node packing, Journal of the Operational Research Society 43 443–457.

 111.Nemhauser, G. L., and Wolsey, L. A. (1988).:Integer and Combinatorial Optimization,

John Wiley, New York.

112.Schrijver, A. (1986): Theory of Linear and Integer Programming, John Wiley,

Chichester.

85

113.Schrijver, A. (1995): ‗Polyhedral Combinatorics‘, Handbook of Combinatorics,in

R.L.Graham,M. Gr¨otschel, and L. Lov´asz (eds.), Vol. 2. Elsevier Science, ch. 30, pp. 1649–

1704.

114.Mitchell, J. E., and Borchers, B. (1996): Solving real world linear ordering problems

using a primal-dual interior point cutting plane method, Annals of Operations Research 62

,253–276.

115.Miller, D. and Pekny, J. (1991),Exact Solution of Large Asymmetric Traveling Salesman

Problems, Science, 251: 754–761

116.Mitchell, J. E., and Borchers, B. (1997): Solving linear ordering problems with a

combined interior point/simplex cutting plane algorithm, Tech. rep.,Mathematical Sciences,

Rensselaer Polytechnic Institute, Troy, NY 12180–3590, , Accepted for publication in

Proceedings of HPOPT97,Rotterdam, The Netherlands.

117.Metropolis, M., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller, E. (1953).

Equation of state calculations by fast computing machines. Journal of Chemical Physica,2l,

1087-1092.

118.Metropolis,N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, (1953). "Equation of

State Calculations by Fast Computing Machines", J. Chem. Phys.,21, 6, 1087-1092.

119. Notes on Tabu Search Retrieved from http//itc.ktu.it/itc32/Misev32.pdf

120.Padberg M. and Rinaldi G. (1991) A branch-and-cut algorithm for the resolution of large-

scale traveling salesman problem, SIAM Review,33, 60–100.

121.Papadimitriou C.H. and Steiglitz K.(1982). Combinatorial Optimization:

Algorithms and Complexity, Prentice-Hall Inc., Englewood Cliffs, New Jersey

125.Wikipedia, the free encyclopedia - Moore's law (2009). Retrieved from

http://en.wikipedia.org/wiki/Moore's_law
126. Zhang, W. (2004). Phase Transitions and Backbones of the Asymmetric Traveling

Salesman Problem. Journal of Artificial Intelligence Research. 21:471-497.

86

 APPENDIX A

Matlab Program

%function simanneal()

% **********Read distance (cost) matrix from Table 3.2 ******

clc

d = xlsread('dist.xls');

d_orig = d;

start_time = cputime;

summ=0;

dim1 = size(d,1);

dim12 = size(d);

for i=1:dim1

d(i,i)=10e+06;

end

for i=1:dim1-1

for j=i+1:dim1

d(j,i)=d(i,j);

end

end

%d

% *****************Initialise all parameters**********************

d1=d;

tour = zeros(dim12);

cost = 0;

min_dist=[];

short_path=[];

%***

%************Initialize Simulated Annealing paratemers************

%T0 Initial temperature is set equal to the initial solution value

87

Lmax = 400; %Maximum transitions at each temperature

ATmax = 200; %Maximum accepted transitions at each temperature

alfa = 0.99; %Temperature decrementing factor

Rf = 0.0001; %Final acceptance ratio

Iter_max = 1000000; %Maximum iterations 13

start_time = cputime;

diary output.txt

% *******Generate Initial solution - find shortest path from each node****

% if node pair 1-2 is selected, make distance from 2 to each of earlier

%visited nodes very high to avoid a subtour

k = 1;

for i=1:dim1-1

min_dist(i) = min(d1(k,:));

short_path(i) = find((d1(k,:)==min_dist(i)),1);

cost = cost+min_dist(i);

k = short_path(i);

% prohibit all paths from current visited node to all earlier visited nodes

d1(k,1)=10e+06;

for visited_node = 1:length(short_path);

d1(k,short_path(visited_node))=10e+06;

end

end

tour(1,short_path(1))=1;

for i=2:dim1-1

tour(short_path(i-1),short_path(i))=1;

end

%Last visited node is k;

%shortest path from last visited node is always 1, where the tour

%originally started from

last_indx = length(short_path)+1;

88

short_path(last_indx)=1;

tour(k,short_path(last_indx))=1;

cost = cost+d(k,1);

% A tour is represented as a sequence of nodes startig from second node (as

% node 1 is always fixed to be 1

crnt_tour = short_path;

best_tour = short_path;

best_obj =cost;

crnt_tour_cost = cost;

obj_prev = crnt_tour_cost;

fprintf('\nInitial solution\n');

crnt_tour

fprintf('\nInitial tour cost = %d\t', crnt_tour_cost);

nbr = crnt_tour;

T0 = 1.5*crnt_tour_cost;

T=T0;

iter = 0;

iter_snc_last_chng = 0;

accpt_ratio =1;

%*********Perform the iteration until one of the criteria is met***********

%1. Max number of iterations reached***************************************

%2. Acceptance Ratio is less than the threshold

%3. No improvement in last fixed number of iterations

while (iter < Iter_max && accpt_ratio > Rf)

iter = iter+1;

trans_tried = 0;

trans_accpt = 0;

while(trans_tried < Lmax && trans_accpt < ATmax)

trans_tried = trans_tried + 1;

89

city1 = round(random('uniform', 1, dim1-1));

city2 = round(random('uniform', 1, dim1-1));

while (city2 == city1)

city2 = round(random('uniform', 1, dim1-1));

end

if (city2>city1)

i=city1;

j=city2;

else

i=city2;

j=city1;

end

nbr(i)=crnt_tour(j);

nbr(j)=crnt_tour(i);

if i==1

if j-i==1

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))-

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));

else

nbr_cost=crnt_tour_cost-d(1,crnt_tour(i))+d(1,crnt_tour(j))-

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))-

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j-

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));

end

else

if j-i==1

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))-

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1));

else

90

nbr_cost=crnt_tour_cost-d(crnt_tour(i-1),crnt_tour(i))+d(crnt_tour(i-1),crnt_tour(j))-

d(crnt_tour(j),crnt_tour(j+1))+d(crnt_tour(i),crnt_tour(j+1))-

d(crnt_tour(i),crnt_tour(i+1))+d(crnt_tour(j),crnt_tour(i+1))-d(crnt_tour(j-

1),crnt_tour(j))+d(crnt_tour(j-1),crnt_tour(i));

end

end

delta = nbr_cost - crnt_tour_cost;

prob1 = exp(-delta/T);

prob2 = random('uniform',0,1);

if(delta < 0 || prob2 < prob1)

summ = summ+delta;

crnt_tour = nbr;

crnt_tour_cost = nbr_cost;

trans_accpt = trans_accpt + 1;

if crnt_tour_cost < best_obj

best_obj = crnt_tour_cost;

best_tour = crnt_tour;

end

else

nbr = crnt_tour;

nbr_cost = crnt_tour_cost;

end

end

accpt_ratio = trans_accpt/trans_tried;

fprintf('\niter# = %d\t, T = %2.2f\t, obj = %d\t, accpt ratio=%2.2f', iter,T,crnt_tour_cost,accpt_ratio);

if crnt_tour_cost == obj_prev

iter_snc_last_chng = iter_snc_last_chng + 1;

else

iter_snc_last_chng = 0;

91

end

if iter_snc_last_chng == 10

fprintf('\n No change since last 10 iterations');

break;

end

obj_prev = crnt_tour_cost;

T = alfa*T;

iter = iter + 1;

end

fprintf('\nbest obj = %d', best_obj);

fprintf('\n best tour\n');

best_tour

end_time = cputime;

exec_time = end_time - start_time;

fprintf('\ntime taken = %f\t\n', exec_time);

diary off

