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Abstract

The study explores the socio-economic and demographic inequalities that exist in

under-five mortality using Ghana DHS 2008 data.These inequalities were inves-

tigated using Classification trees developed by Breiman et al (CART). The data

was analyzed using the Rpart of the R software 3.01

At the end of the analysis, total number of children ever born by mothers, pre-

ceding birth interval, region of residence, ethnicity, highest educational level and

wealth index were identified to contribute positively to these inequalities in under-

five mortality. It was also observed that Sex of a child and whether a child was

born by cesarean does not contribute to these inequalities in the under-five mor-

tality in the GDHS data.
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Chapter 1

Introduction

1.1 Background to the Study

Health is certainly a basic need in all human societies. Equity which is defined

as “the absence of potentially remediable, systematic differences in one or more

aspects of health across socially, economically, demographically or geographically

defined population, groups or subgroups” (International Society for Inequity in

Health,2010) is a very important aspect of health. This implies that, health

equity is a well accepted ethical and human rights principle; that is all human

beings are entitled to have the highest attainable level of health care.

International Organizations such as the World Health Organization (WHO) and

United Nations Development Program (UNDP) have viewed health as the most

important goal for human development and the fundamental indicator of social

development (Feng and Yangyang, 2000). Health is not only instrumental in en-

abling people to earn a living and to enjoy the fruits of their labor, but is an

important element of well-being in its own right. It should therefore be accepted

that the health status of a nation is an important indicator of the well-being of

its citizenry. According to the WHO report ((UN/MDG, 2012)), the objectives

of good health are in two folds. “The best attainable average level (goodness)

and the smallest feasible differences among individuals and groups (fairness).”

An effort to improve health in developing countries faces many challenges. One

of the main challenges is under-five mortality.

Under-five mortality rates are basic indicators of a country’s socio-economic sit-
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uation and quality of life, as well as specific measures of health status. Each year

in the global village, approximately four million infants die within the first four

weeks of their birth. This number is conservative estimate given that children of

color in developing countries account for 98% of neonatal deaths worldwide and

two-thirds of the world’s population, many under-five deaths go unseen. Experts

estimates that these four million neonatal deaths comprise thirty six percent of

the mortality rate for all children younger than five years of age. In the year 2000,

99 percent of the 10.9 million childhood deaths occurred in the developing coun-

tries (WHO, 2001). One of the Millennium Development Goals is to reduce by

two-thirds, infant and under-five mortality rate by the year 2015 ((NDPC/GOG,

2012)).

Despite the fact that several studies has been done on under - five mortality and

its numerous determining socio-economic factors, they have not reconciled a com-

mon solution about how this problem needs to be solved in developing countries

of which Ghana is an emerging economy. The adoption of uniformly agreed de-

velopment policies for the reduction of high rates of child mortality would not be

a wise decision in many developing countries given the different socio-economic,

political, environmental and cultural settings.

On the other hand, the findings of some research studies have shown that certain

policies pursued by some developing countries have not been effective in battling

high rates of child mortality. It goes without saying that policies for reducing

high rates of child mortality in developing countries must take into consideration

economic, social, cultural, environmental and political factors. However, this does

not mean that there should not be any attempt to create a universal theoretical

framework that could explain which factors are the most important and which

policy actions could be the most effective in decreasing under-five mortality at

certain stages of economic development. This framework would help to shape

2



different policies to achieve a fast and sustain decrease in child mortality in de-

veloping populations.

So measuring health inequality in child mortality is the main part of assessing the

performance of a health system in a country. Despite an improvement in many

health indices in different countries during the past decades, health inequality

has not only remained but also increased in some of them. Investigating the in-

equality of a binary dependent variable (example health) has received attention

mainly in the last decade. One way to think of this inequality is in terms of

a univariate distribution. Some individuals have high health, others have low

health and health inequality is intended to indicate the extent of dispersion of

“health” within the population.

In this study, the focus is on this univariate approach using a fatal health out-

come, child mortality resulting in a binary index with “no” denoting a surviving

child and “yes” denoting a child that died within its first five years of birth. It

can be noticed that the WHO defined inequality as “differences in health status

which are unnecessary and avoidable, but in addition are considered unfair and

unjust” (Whitehead and Dahlgren (1992)). For example, it was estimated in the

GDHS data (2008) that mortality levels in the rural areas are consistently higher

than those in urban areas. In the ten-year period before the survey of GDHS,

infant mortality in rural areas was 56 deaths per 1,000 live births, compared with

46 deaths per 1,000 live births in urban areas. Also differences in mortality by

region are marked. The infant mortality rate varies from 36 deaths per 1,000

live births in Greater Accra to 97 deaths per 1,000 live births in the Upper West

region. Expectant mothers’ education is inversely related to a child’s risk of dy-

ing. Children of women with no education (61 deaths per 1,000 live births) are

much more likely to die in the first year than children of women with middle/

JSS education (46 deaths per 1,000 live births). These might be considered as
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inequalities. For this author, health equity implies that ideally everyone should

have a fair opportunity to attain their full health potential and more pragmati-

cally, no one should be disadvantaged from achieving this potential, if it can be

avoided. (Whitehead and Dahlgren, 1992) identifies seven possible determinants

of health inequalities:

i natural, biological variation; example, in the GDHS data, it was discovered

that under-five mortality rate for male and female children are 93 and 76

deaths per 1,000 live births, respectively. This excess mortality among male

children is most likely due to their higher biological risk during the first month

of life. Findings from the World Fertility Survey and DHS survey indicate that

births to young mothers (under age 20 years) and older mothers (35 years and

above) are at an elevated risk of dying.

ii health-damaging behavioral choices;

iii temporary health advantages occurring to one group when it adopts health

promoting behaviors (assuming other groups have equal chance of adopting

the behavior);

iv health-damaging behaviors where the degree of choice is severely restricted;

v exposure to unhealthy, stressful living and working conditions;

vi inadequate access to essential health and other basic services; and

vii natural selection or health-related social mobility involving the tendency for

sick people to move down the social scale.

She does not consider the first three of these as being unjust, while the last

four are both avoidable and unjust. Based on this explicitly pragmatic point,

she defines equity using two antonyms, ‘inequality’ and ‘inequity’. ‘Inequality’

refers to systematic, unavoidable, and meaningful differences among members of

a population; ‘inequity’ refers to the existence of variations which are not only

4



unnecessary and avoidable, but also unjust. Whitehead herself points out that

equity does not mean that everyone should enjoy the same level of health and

consume services and resources to the same degree. Rather the needs of each

individual should be addressed. To describe a situation as inequitable or unjust,

it needs to be examined and judged in a larger social context. To summarize,

any inequity is an inequality but not every inequality is an inequity. An inequity

is an unjust and potentially avoidable inequality.

Having measured inequalities in the health sector, a natural next step is to seek

to explain them. Variations in health as an example may be explained by a large

number of (unfair) factors like place of residence, religion, occupation, gender, age

differences, ethnicity, variation in education, socio-economic status (income), to

mention a few. Decomposition allows measuring the contributions of each factor

to such inequality. That is how much of the variability is explained by each of

the factors.

1.2 Statement of the Problem

Globally, under-five mortality rates has reduced from 88 deaths per 1,000 live-

births in 1990 to 57 per 1,000 in 2010. Despite this remarkable progress, dispar-

ity in under-five mortality rates still remains high. Children from rural, poorer

households and children of less-educated mothers are more likely to die before

their first or fifth birthday than children from urban, wealth quintile and well ed-

ucated mothers. Dealing with these health inequalities has become a challenge in

this country and other developing countries as well. In 2005, the WHO initiated

the Commission on Social Determinants of Health (CSDH) and its main work

was to understand the social determinants of health, how they operate and how

they can be changed to improve health and reduce health inequalities. One of

their recommendations was to measure and understand health inequality prob-

lems within countries and globally, which will be the platform for actions to be
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taken.

Although under-five mortality is higher in rural Ghana, the pattern of mortality

is more or less the same. Though, according to the GDHS report in 2008, there

seems to be a decline in infant mortality rate in Ghana, much attention has

not been given to it by our policy makers. Socio-economic factors such as place

of residence, ethnicity, occupation, gender, religion, education and social capital

(that are unfair and unjust) still has adverse effect on health inequalities in Ghana.

This requires decision makers to act in order to reduce health inequalities in

under - five mortality. It is against this backdrop that the researcher wants to

explore these socio-economic and demographic inequalities that exist in under-five

mortality in Ghana.

1.3 Objectives of the study

The objectives of the study are to use classification trees to identify;

• socio-economic and demographic inequalities in under-five mortality in the

rural areas

• socio-economic and demographic inequalities in under-five mortality in the

urban areas

• further evidence of the differentials in urban-rural under-five mortality.

1.4 Methodology

Classification tree will be used as a statistical methodology to decompose the

inequalities in child mortality. The building of classification tree begins with a

node, containing all the subjects and then through a process of yes/ no questions,

generates descendant nodes. Beginning with the first node, the idea is to find

the best variable. The R software (using the Rpart) checks all possible splitting
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variables, as well as all possible values to be used to split the node. In choosing the

best splitter, the program seeks to maximize the average “purity” of the two child

nodes. Through a process of tree building and pruning of trees, an optimal tree

is obtained. We propose the strength of each variable in reducing the impurity

or inequality as the measure which defines the variable’s contribution.

1.4.1 brief country profile

Ghana, a country of Western Africa, situated on the coast of the Gulf of Guinea,

has a population of 24,233,431 of which 11,801,661 (48.7%) are males and 12,421,770

(51.3%) are females The population structure is typical of a developing country

with about half of the total population below 15 years of age. Women have an av-

erage of 4 children, with average number of children per woman ranging from 3.1

in urban areas to 4.9 in rural areas. The gross national income (GNI) per capita

in 2011 was US 1,571 according to the Ghana Statistical service. The population

is predominantly of African origin, with the Akan tribe consisting of 44 percent

of the population, the Moshi-Dagomba 16 percent, the Ewe 13 percent, the Ga-

Adangbe 8 percent, the Yoruba 1.3 percent, and European and other nationalities

less than 1 percent (www.nationsencyclopedia.com). It has an area of 239,540

square kilometers (92,486 square miles). Water occupies 8520 square kilometers

(3,290 square miles) of the country, primary Lake Volta. Ghana has ten regions:

the Northern, Upper West, Upper East, Volta, Ashanti, Brong Ahafo, Eastern,

Central, Western and Greater Accra. Also it has 170 districts (9-27 per region),

800 sub-districts and 25,672 communities, its capital is Accra. English is the offi-

cial language with the other main languages being Akan, Moshi-Dagomba, Ewe,

and Ga. The country comprises of Christians, Muslims and Traditionalist.

7



1.5 Justification of the Work

The study would seek to provide the needed statistical evidence to justify the suc-

cess or failure of the set target with respect to Ghana Demographic and Health

Survey data. On the basis of available empirical evidence, this study would seek

to furnish decision makers and other stakeholders with vital information regarding

the inequalities in socio-economic factors of child mortality in Ghana for possible

policy interventions.

Additionally, this study would also contribute to knowledge in the use of classifi-

cation trees in the area of child mortality and other related areas with a view of

stimulating other research.

1.6 Limitations of the Study

Like any research work, this study is not without limitations. The Ghana DHS

2008 report outlined only the estimates of the deaths of under-five children with-

out the causes of these deaths. Furthermore, the issue of missing information in

data resulted in the dropping of some respondents from the final data thereby

decreasing the sample size used for the final analysis.

1.7 Organization of the Thesis

The thesis consists of five chapters. Chapter one gives a general background of

the thesis and how it was carried out. It includes a general introduction and

inequalities in under-five mortality in Ghana and the world as whole, statement

of the problem under study, objectives of the study, methodology, justification

and limitations of the study. In chapter two, selected research works that are

related to under-five mortality, inequalities in health and classification trees are

reviewed. Chapter three discusses the data and an in depth explanation of the

8



methods used. In chapter four, the data is explored, analyzed and discussed using

the R statistical software to get results. The last chapter presents the conclusions

and recommendations of the study.
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Chapter 2

Literature Review

This chapter discusses the literatures available on decomposition of inequality in

general. It also looks at child mortality and summary of abstracts on various

literatures with regard to the model being used and the general working title.

According to the Demographic Health Survey of Ghana (2008), child mortality

has declined from 61 deaths per 1,000 live births in the period 10−14 years before

the survey to 50 deaths per 1,000 live births in the period 0− 4 years before the

survey. Results from the five GDHS conducted in 1988, 1993, 1998, 2003, and

2008 show a remarkable decline in childhood mortality over the past 20 years as

shown in figure 2.0.

From Figure 2.0, the decline in mortality trends appeared to have halted during

the period 1999− 2003 but then declined further during the past five years from

2003 to 2008. This decline in infant and under-five mortality in the five years

preceding the 2008 GDHS indicates that the targets set by the Ghana Poverty
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Reduction Strategy, an infant mortality rate of 50 per 1,000 and an under-five

mortality rate of 95 per 1,000 by 2005 (World Bank, 2003) has been achieved and

the MDG’s target for childhood mortality is on track.

From the GDHS report, child survival is closely related to socio-economic char-

acteristics of mothers and children. Table 2.0 shows differentials in childhood

mortality by four socio-economic variables: Residence, Region, Mother’s educa-

tion, and Household wealth status (quintile).

According to Table 2.0, differences in mortality by region are marked. The infant

mortality rate varies from 36 deaths per 1,000 live births in Greater Accra to 97

deaths per 1,000 live births in the Upper West region. A differential in under-

five mortality shows a similar pattern. Mother’s education on the other hand, is

inversely related to a child’s risk of dying. Under-five mortality among children

of mothers with no education (102 deaths per 1,000 live births) was substantially

higher than under-five mortality among children of women with middle/JSS level

11



education (68 deaths per 1,000 live births). The direct association between level

of education and under-five mortality was also seen in infant mortality. Children

in households in the highest wealth quintile have the lowest mortality rates for

both child mortality and under-five mortality. Infant mortality was lowest among

children in the second, fourth, and fifth wealth quintiles.

The report also revealed that demographic factors are strongly associated with

the survival chances of young children. Some of these factors include sex of child,

age of mother at birth, birth order, length of preceding birth interval, and size

of child at birth. Table 2.10 shows the relationship between childhood mortality

and these demographic variables.

From Table 2.10, childhood mortality is higher for males than females. The excess

mortality among male children was most likely due to their higher biological risk

12



during the first month of life. Findings from the World Fertility Survey and DHS

surveys indicate that births to young mothers (under age 20 years) and older

mothers (35 years and over) are at an elevated risk of dying. Results from the

2008 GDHS confirm the expected curvilinear relationship between mother’s age

at birth and childhood mortality. First births and higher-order birth’s typically

have an elevated risk of dying. Results from the 2008 GDHS generally confirm

this pattern. Mortality among children is negatively associated with the length

of the previous birth interval. This was particularly the case when the birth in-

terval is less than two years. The results of the GDHS 2008 indicate that this

pattern holds for all levels of childhood mortality except post-neonatal mortality.

A child’s size at birth has often been found to be an important indicator of the

chances of survival during infancy. Majority of births in Ghana take place out-

side a health facility setting, and these babies are seldom weighed at birth. The

mother’s assessment of the size of the baby at birth is used as a proxy for birth

weight. The GDHS results indicate that among babies assessed by their mother

as ‘small or very small’, infant mortality is twice the level observed for babies

assessed as ‘ average or larger’ at birth. The difference in infant mortality be-

tween the two groups is largely attributed to neonatal mortality, which is almost

twice as high among small or very small babies as among average or larger babies.

(Hosseinpoor et al., 2006) did a study on decomposing socioeconomic inequal-

ity in infant mortality in Iran. The objective of their paper was to quantify

the determinants’ contributions of socioeconomic inequality in infant mortality

in Iran. Households’ socio-economic status was measured using principal com-

ponent analysis. The concentration index of infant mortality was used as the

measure of socioeconomic inequality and decomposed into its determining fac-

tors. They made use of Iranian DHS data for their study. The result shows

that, the largest contribution to inequality in infant mortality is as a result of

household economic status (36.2%) and mother’s education (20.9%). Residency

13



in rural/urban areas (13.9%), birth interval (13.0%), and hygienic status of toi-

let (11.9%) also proved important contributors to the measured inequality. It

was concluded that, socioeconomic inequality in infant mortality in Iran is deter-

mined not only by health system functions but also by factors beyond the scope

of health authorities and care delivery system. This implies that in addition to

reducing inequalities in wealth and education, investments in water and sanita-

tion infrastructure and programmes (especially in rural areas) are necessary to

realize improvements of inequality in infant mortality across society.

(Nkoni, 2011) did a study titled “Explaining household socio-economic related

child health inequalities using multiple methods in three diverse settings in South

Africa”. Their objectives were to study where to measure inequalities in child

mortality, HIV transmission and vaccination coverage within a cohort of infants

in South Africa. They also applied decomposition technique to identify the fac-

tors that contribute to the inequalities in these three child health outcomes. A

relative index of household socioeconomic status was developed using principal

component analysis. This paper uses the concentration index to summarize in-

equalities in child mortality, HIV transmission and vaccination coverage. They

observed disparities in the availability of infrastructure between least poor and

most poor families, and inequalities in all measured child health outcomes. Over-

all, 75 (8.5%) infants died between birth and 36 weeks. Infant mortality and HIV

transmission was higher among the poorest families within the sample. Immu-

nization coverage was higher among the least poor. The inequalities were mainly

due to the area of residence and socioeconomic position. Their study proved

that, socio-economic inequalities are highly prevalent within the relatively poor

black population in South Africa. Poor socio-economic position exposes infants

to ill health. In addition, the use of immunization services was lower in the poor

households. These inequalities need to be explicitly addressed in future program

planning to improve child health for all South Africans.
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(Rahman and Sarkar, 2009) in “Determinants of Infant and Child Mortality in

Bangladesh” investigated the mortality of children under five years old using in-

formation from women’s birth histories pertaining to children born during the

10 years before the 1999 − 2000 Bangladesh Demographic and Health Survey.

The work specifically provided information on the levels, trends and differentials

in neonatal, post-neonatal, infant and child mortality and assessed the effects

of socio-economic, demographic and mother’s health-care characteristics on in-

fant and child mortality. They concluded that residence, education of father and

mother, preceding birth interval, family size, toilet facility, delivery place and

antenatal care are the major contributors of infant and child mortality.

(SEÇKIN, 2009) in his thesis “Determinants of infant mortality in Turkey” , ex-

amines regional, household and individual level characteristics that are associated

with infant mortality. For this purpose survival analysis was used in his anal-

ysis. He used data from 2003 − 2004 Turkey Demographic and Health Survey

that includes detailed information of 8,075 ever married women between the ages

15− 49. 7,360 mothers of these women gave birth to 22,443 children. The results

of the logistic regression show that intervals between the births of the infants are

associated with infant mortality at lower levels of wealth index. Children from

poorer families with preceding birth interval shorter than 14 months or children

whose mothers experience a subsequent birth fare badly. Breastfeeding was im-

portant for the survival chance of the infants under the age 3 months. Place of

delivery and source of water the family uses were also found to be correlated with

infant mortality risk. Curvilinear relation between maternal age at birth and in-

fant mortality risk was observed, indicating higher risk for teenage mothers and

mother’s having children at older ages.

(Maydana et al., 2009) did a study with an objective to evaluate socioeconomic
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inequalities and its relation to infant mortality in Bolivia’s municipalities in 2001.

An ecological study based on data from the 2001 National Census on Population

and Housing covering the 327 municipalities in Bolivia’s nine departments. The

dependent variable was the infant mortality rate (IMR); the independent vari-

ables were indirect socioeconomic indicators (the percentage of illiterates older

than 15 years of age, building materials and sanitation features of the houses).

The geographic distribution of each indicator was determined and the associations

between IMR and each socioeconomic indicator were calculated using Spearman’s

rank correlation coefficient and adjusted with Poisson regression models. The re-

sulting IMR for Bolivia in 2001 was 67 per 1,000 live births. Rates ranged from

< 0.1 per 1, 000 live births in the Magdalena municipality, Beni department,

to 170.0 per 1,000 live births in the Caripuyo municipality, PotosÃ department.

The mean rate of illiteracy per municipality was 17.5%; the mean percentage of

houses without running water was 90.4%, and for those lacking sanitation services,

67.6%. The IMR was inversely associated with all of the socioeconomic indica-

tors studied. The highest relative risk was found in housing without sanitation

services. Multi factorial models adjusted for illiteracy showed that the follow-

ing indicators were still strongly associated with the IMR: no sanitation services

(Relative risk (RR) = 1.54; 95% Confidence Interval (95%CI) = 1.38 − 1.66);

adobe, stone, or mud walls (RR = 1.54; 95%CI : 1.43 − 1.67); and, corrugated

metal, straw, or palm branch roof (RR = 1.34; 95%CI : 1.26 − 1.43). A signifi-

cant association was found between poor socioeconomic status and high IMR in

Bolivia’s municipalities in 2001. The municipalities in the country’s central and

southeastern areas had lower socioeconomic status and higher IMR. The lack of

education, absence of basic sanitation and precarious housing conditions were key

factors that tripled the risk of death.

(Kraft et al., 2013) conducted a study which uses data from the Philippines to

assess trends in the prevalence and distribution of child mortality and to evaluate
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the country’s socioeconomic-related child health inequality using the Philippines

as a case study. Using data from four Demographic and Health Surveys they es-

timated levels and trends of neonatal, infant, and under-five mortality from 1990

to 2007. Mortality estimates at national and sub national levels were produced

using both direct and indirect methods. Concentration indices were computed to

measure child health inequality by wealth status. Multivariate regression analyses

were used to assess the contribution of interventions and socioeconomic factors

to wealth-related inequality. The paper shows that, despite substantial reduc-

tions in national under-five and infant mortality rates in the early 1990s, the

rate of declines have slowed in recent years and neonatal mortality rates remain

stubbornly high. Substantial variations across urban-rural, regional and wealth

equity-markers were evident, and suggest that the gaps between the best and

worst performing sub-populations will either be maintained or widen in the fu-

ture. Of the variables tested, recent wealth-related inequalities were found to be

strongly associated with social factors (e.g. maternal education), regional loca-

tion and access to health services such as facility-based delivery. It was concluded

that, the Philippines has achieved substantial progress towards Millennium De-

velopment Goal 4, but this success masks substantial inequalities and stagnating

neonatal mortality trends. This analysis supports a focus on health interventions

of high quality,that is, not just facility-based delivery, but delivery by trained

staff at well-functioning facilities and supported by a strong referral system-to

re-start the long term decline in neonatal mortality and to reduce persistent

within-country inequalities in child health.

(Malderen et al., 2013a) conducted a study with the main objective of decom-

posing wealth-related inequalities in skilled birth attendance and immunization

into their contributing factors. Data from the Kenyan DHS (2008/09) was used.

The study investigated the effects of socio-economic determinants on coverage

and wealth-related inequalities of skilled birth attendance utilization and measles
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immunization. Techniques used were multivariate logistic regression and decom-

position of the concentration index (C). The results indicates that skilled birth

attendance utilization and measles immunization coverage differed according to

household wealth, parent’s education, skilled antenatal care visits, birth order and

father’s occupation. Skilled birth attendance utilization further differed across

provinces and ethnic groups. The overall C for skilled birth attendance was 0.14

and was mostly explained by wealth (40%), parent’s education (28%), antenatal

care (9%) and province (6%). The overall C for measles immunization was 0.08

and was mostly explained by wealth (60%), birth order (33%), and parent’s edu-

cation (28%). Rural residence (−19%) reduced this inequality. It was concluded

that both health care indicators require a broad strengthening of health systems

with a special focus on disadvantaged sub-groups.

(Malderen et al., 2013b) conducted another study of which the purpose was to

investigate and compare the main determinants of overall inequality and wealth-

related inequality in under-5 mortality in 13 African countries. Data were from

Demographic and Health Surveys conducted in 2007− 2010 in African countries.

The study assessed the contribution of determinants to overall inequality in under-

5 mortality measured by the Gini index and wealth related inequality in under-5

mortality measured by the concentration index. Techniques used were multivari-

ate logistic regression and decomposition of Gini and concentration indexes (C).

Normalized C(C∗) proposed by Erreygers was computed when comparing coun-

tries. The results indicated that birth order, birth interval and region contributed

the most to overall inequality in under-5 mortality in a majority of countries. A

significant wealth-related inequality was observed in five countries: DR Congo,

Egypt, Madagascar, Nigeria and Sao Tome and Principe. Under-5 mortality

ranged from 2.48% in Egypt to 11.14% in Nigeria. Across all countries, the median

under-5 mortality was 8.25% (Interquartile range: 6.12%−10.29%). Among coun-

tries with the lowest under-5 mortality, Sao Tome & Principe had the highest level
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of inequality compared with Egypt and Madagascar (C∗ = −0.032(−0.052to −

0.013), −0.012 (−0.018to− 0.005) and −0.013 (−0.022to− 0.004), respectively).

Among countries with the highest under-5 mortality, DR Congo and Nigeria had

the highest level of inequality compared with Sierra Leone and Lesotho (C∗ =

−0.050(−0.065−−0.035),−0.057(−0.065−−0.050),−0.007(−0.027−0.013) and

−0.018(−0.038to0.001), respectively). Overall, household wealth, father’s occu-

pation and mother’s education contributed the most to this inequality, though

the ranking of the most important determinants differed across countries. It was

concluded that assessing the contribution of determinants to overall inequality

and to wealth-related inequality in under-5 mortality help in prioritizing inter-

ventions aiming at improving child survival and equity.

(S et al., 2012) assessed the health system performance in their paper titled “De-

composing socioeconomic inequality in self-rated health in Tehran” Self-rated

health (SRH) and demographic characteristics, including gender, age, marital sta-

tus, educational years and assets were measured by structured interviews of 2464

residents of Tehran in 2008. A concentration index was calculated to measure

health inequality by economic status. The association of potential determinants

and SRH was assessed through multivariate logistic regression. The contribution

to concentration index of level of education, marital status and other determining

factors was assessed by decomposition. They found out that, the mean age of

respondents was 41.4 years of which 49% of them were men. The mean score of

SRH status was 3.72. 282 respondents (11.5%) rated their health status as poor

or very poor. The concentration index was -0.29. Age, marital status, level of

education and household economic status were significantly associated with SRH

in both the crude and adjusted analyses. The main contributors to inequality in

SRH were economic status (47.8%), level of education (29.2%) and age (23.0%).

They concluded that, sub-optimal SRH was more in lower economic status than

in higher economic status.
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(Mosquera et al., 2012) did a study on the impact of primary health care in

reducing inequalities in child health outcomes in Bogota, the capital of Colom-

bia. A Primary Health Care (PHC) strategy was implemented in 2004 to improve

health care and to address the social determinants of such inequalities. The study

aimed to evaluate the contribution of the Primary Health Care (PHC) strategy

to reducing inequalities in child health outcomes in Bogota. Their study made

use of an ecological analysis with localities as the unit of analysis. The variable

used to capture the socioeconomic status and living standards was the Quality of

Life Index (QLI). Concentration curves and concentration indices for four child

health outcomes (infant mortality rate (IMR), under-5 mortality rate, prevalence

of acute malnutrition in children under-5 and vaccination coverage for diphthe-

ria, pertussis and tetanus) were calculated to measure socioeconomic inequality.

Two periods were used to describe possible changes in the magnitude of the in-

equalities related with the PHC implementation (2003 year before-2007 year after

implementation). The contribution of the PHC intervention was computed by a

decomposition analysis carried out on data from 2007. The outcome of the results

showed that in both 2003 and 2007, concentration curves and indexes of IMR,

under-5 mortality rate and acute malnutrition showed inequalities to the disad-

vantage of localities with lower QLI. Diphtheria, pertussis and tetanus (DPT)

vaccinations were more prevalent among localities with higher QLI in 2003 but

were higher in localities with lower QLI in 2007. The variation of the concen-

tration index between 2003 and 2007 indicated reductions in inequality for all of

the indicators in the period after the PHC implementation. In 2007, PHC was

associated with a reduction in the effect of the inequality that affected disadvan-

taged localities in under-5 mortality (24%), IMR (19%) and acute malnutrition

(7%). PHC also contributed approximately 20% to inequality in DPT coverage,

favoring the poorer localities. It was concluded that, the PHC strategy developed

in Bogota appears to be contributing to reductions of the inequality associated
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with socioeconomic and living conditions in child health outcomes.

(WAGSTAFF, 2000) titled “socioeconomic inequalities in child mortality: com-

parison across nine developing countries” tried to analyze data from Brazil, Cote

d’Ivoire, Ghana, Nepal, Nicaragua, Pakistan, the Philippines, South Africa and

Vietnam. The paper aims to diminish this information gap by outlining methods

of measuring health inequalities between the poor and the non-poor and of testing

for significant differences across countries or temporal changes. Also to generate

evidence on the magnitude of inequalities between the poor and non-poor in a

particular dimension of health, namely mortality and in a particular section of

the population of the developing world, namely children aged under-five years.

The data used was obtained from the living Standards Measurement Study and

the Cebu Longitudinal Health and Nutrition Survey. Mortality rates were es-

timated directly where complete fertility histories were available and indirectly

otherwise. Mortality distributions were compared between countries by means of

concentration curves and concentration indices. Dominance checks were carried

out for all pair wise inter country comparisons. Standard errors were calculated

for the concentration indices and tests of inter country differences in inequality

were performed. The application of concentration curves and indices to the data

showed that inequalities in infant and under-five mortality were to the disadvan-

tage of the worse-off. Inequalities in under-five mortality were especially high

in Brazil and rather higher in Nicaragua and the Philippines. They were lower

in Cote d’Ivoire, Nepal and South Africa but higher in these countries than in

Ghana, Pakistan and Vietnam. The results suggested that, for the most part, in-

equalities in infant and under five mortality favour the better-off, and that these

inequalities vary between countries. However, nothing has been said about why

inequalities favour the better-off, why they are higher in some countries than in

others and what policies might be most cost-effective in reducing them. He then

concluded that these matters deserve special attention in future work.
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(JP et al., 2008) in their article socioeconomic inequalities in health in 22 Eu-

ropean countries compared the magnitude of inequalities in mortality and self-

assessed health among 22 countries in all parts of Europe. This comparison

among countries can help to identify opportunities for the reduction of inequal-

ities in health. They obtained data on mortality according to education level

and occupational class from census-based mortality studies. Deaths were classi-

fied according to cause, including common causes, such as cardiovascular disease

and cancer; causes related to smoking; causes related to alcohol use; and causes

amenable to medical intervention, such as tuberculosis and hypertension. Data

on self-assessed health, smoking, and obesity according to education and income

were obtained from health or multipurpose surveys. For each country, the asso-

ciation between socioeconomic status and health outcomes was measured with

the use of regression-based inequality indexes. The results indicated that, in al-

most all countries, the rates of death and poorer self-assessments of health were

substantially higher in groups of lower socioeconomic status, but the magnitude

of the inequalities between groups of higher and lower socioeconomic status was

much larger in some countries than in others. Inequalities in mortality were

small in some southern European countries and very large in most countries in

the eastern and Baltic regions. These variations among countries appeared to

be attributable in part to causes of death related to smoking or alcohol use or

amenable to medical intervention. The magnitude of inequalities in self-assessed

health also varied substantially among countries, but in a different pattern. It was

concluded that there are variations across Europe in the magnitude of inequal-

ities in health associated with socioeconomic status. These inequalities might

be reduced by improving educational opportunities, income distribution, health-

related behavior, or access to health care.

(Zere et al., 2012) studied “Inequities in maternal and child health outcomes
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and interventions in Ghana” examined the equity dimension of child and mater-

nal health outcomes and interventions using Ghana as a case study. Data from

Ghana Demographic and Health Survey 2008 report was analyzed for inequities in

selected maternal and child health outcomes and interventions using population-

weighted, regression-based measures: slope index of inequality and relative index

of inequality. The results indicated that no statistically significant inequities

were observed in infant and under-five mortality, perinatal mortality, wasting

and acute respiratory infection in children. However, stunting, underweight in

under-five children, anaemia in children and women, childhood diarrhoea and

underweight in women BMI(< 18.5) show inequities that are to the disadvantage

of the poorest. The rates significantly decrease among the wealthiest quintile as

compared to the poorest. In contrast, overweight BMI(25−29.9) and obesity BMI

(≥ 30) among women reveals a different trend-there are inequities in favour of the

poorest. In other words, in Ghana overweight and obesity increase significantly

among women in the wealthiest quintile compared to the poorest. With respect

to interventions: treatments of diarrhoea in children, receiving all basic vaccines

among children and sleeping under insecticide treated mosquito net (children and

pregnant women) have no wealth-related gradient. Skilled care at birth, deliveries

in a health facility (both public and private), caesarean section, use of modern

contraceptives and intermittent preventive treatment for malaria during preg-

nancy all indicate gradients that are in favour of the wealthiest. The poorest use

less of these interventions. Not unexpectedly, there is more use of home delivery

among women of the poorest quintile. It was concluded that significant Inequities

were observed in many of the selected child and maternal health outcomes and

interventions. Failure to address these inequities vigorously is likely to lead to

non achievement of the MDG targets related to improving child and maternal

health (MDGs 4 and 5). The government should therefore give due attention to

tackling inequities in health outcomes and use of interventions by implementing

equity-enhancing measure both within and outside the health sector in line with
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the principles of Primary Health Care and the recommendations of the WHO

Commission on Social Determinants of Health.

2.1 other related literatures

(P et al., 2006) in their paper titled “using classification trees to assess low birth

weight outcomes” used classification trees to study the interactive nature of risk

factors. In particular they identify subgroups of women who are at a high risk

of a low birth weight (LBW) outcome in seven geographical regions of Florida,

and study the predictive performance of classification trees by comparing the

tree-based results to those obtained using logistic regression. The data, 181,690

singleton births, were derived from Florida birth certificates recorded in 1998.

Classification trees and logistic regression models were built based on seven ge-

ographical regions. The outcome variable consisted of two classes, namely LBW

(< 2500g) and normal birth weight (2500g) cases, while a large number of known

risk factors was examined. Tree and logistic regression models were compared

using Receiving Operating Curves, and sensitivity and specificity analyses. The

use of classification trees revealed a number of high-risk subgroups. For instance,

White, Hispanic or Other non-white mothers who were healthy and smoked with

a weight gain less than 20 lbs had a higher risk of a LBW birth compared to those

with the same characteristics but with a weight gain of more than 20 lbs. Factors

such as parity and marital status were important predictors for pregnancy out-

comes among nonsmoker White, Hispanic or Other non-white. Furthermore, they

found that Black mothers were directly classified as a high-risk subgroup in the

regions of Panhandle, Northeast, North Central, while in the Southern regions

a series of other characteristics further defined the high-risk subgroup of Black

mothers. Overall, the differences in predictive performance between tree models

and logistic regression were minimal. Their study demonstrated that classifica-

tion trees can be used to identify high-risk subgroups of mothers who are at risk

of LBW outcomes. Although these exploratory tree analyses revealed a number
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of distinctive variable interactions for each geographical area, the variable selec-

tion was similar across all seven regions. Their study also demonstrated that

classification trees did not outperform logistic regression models or vice versa;

both approaches provided useful analyses of the data.

(Nagy et al., 2010) in their paper “Tree-Based Methods as an Alternative to

Logistic Regression in Revealing Risk Factors of Crib-Biting in Horses” tried to

establish the difference between tree-based methods and logistic regression. An

important difference between these two statistical approaches is that logistic re-

gression makes a number of assumptions about the underlying data, whereas

tree-based methods do not. Another difference is that logistic regression can

be used to derive odds ratios for the significant risk factors, whereas tree-based

methods create a tree where the ramifications represent the risk factors. The

probability of occurrence is assigned to each end of branch in the tree. Data

of horses used for non-competition purposes were analyzed with three statistical

approaches: logistic regression, classification tree, and conditional inference tree

methods. By this, they compared the advantages and disadvantages of these sta-

tistical methods. No difference was found between the two tree-based methods

regarding the structure and prediction accuracy of the trees. Compared to them,

logistic regression revealed fewer risk factors, and also the number of the stereo-

typic horses classified correctly by the model was less. The representation of the

tree-based methods is closer to medical reasoning and also high-order interaction

of the risk-factors can easily be visualized. Their results suggest that tree-based

methods can be a new alternative in revealing risk factors, even if used alone or

together with logistic regression.

In addition, (Kajungu et al., 2012) used classification tree modeling to investi-

gate drug prescription practices at health facilities in rural Tanzania. The aim of

their study was to understand the factors influencing prescription patterns and
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to develop strategies to mitigate the negative consequences associated with poor

practices in both the public and private sectors. A cross-sectional study was con-

ducted in rural Tanzania among patients attending health facilities, and health

workers. Patients, health workers and health facilities-related factors with the

potential to influence drug prescription patterns were used to build a model of

key predictors. Standard data mining methodology of classification tree analysis

was used to define the importance of the different factors on prescription pat-

terns. Their analysis included 1,470 patients and 71 health workers practicing

in 30 health facilities. Patients were mostly treated in dispensaries. Twenty two

variables were used to construct two classification tree models: one for polyphar-

macy (prescription of ≥ 3 drugs) on a single clinic visit and one for co-prescription

of artemether-lumefantrine (AL) with antibiotics. The most important predictor

of polypharmacy was the diagnosis of several illnesses. Polypharmacy was also

associated with little or no supervision of the health workers, administration of

AL and private facilities. Co-prescription of AL with antibiotics was more fre-

quent in children under five years of age and the other important predictors were

transmission season, mode of diagnosis and the location of the health facility. It

was concluded that Standard data mining methodology is an easy-to-implement

analytical approach that can be useful for decision-making. Polypharmacy is

mainly due to the diagnosis of multiple illnesses.

Lastly, a study was carried out by (Austin, 2008) to compare classification trees

grown using R with those grown using S-PLUS. R and S-PLUS are two statistical

programming languages that share a similar syntax and functionality. Both R

and S-PLUS allow users to fit classification and regression trees. Using data on

9,484 patients hospitalized with an acute myocardial infarction, they compared

the classification trees for predicting mortality that were grown using R and

S-PLUS. They also used repeated split-sample derivation to determine the pre-

dictive accuracy of classification trees grown using R and S-PLUS. Their findings
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show that classification tree grown using R was substantially more parsimonious

than the one grown using S-PLUS. The pruned classification tree grown using R

was equal to a classification tree that was obtained by removing six sub trees from

the pruned classification tree grown using S-PLUS. Repeated split-sample vali-

dation was then used to demonstrate that classification trees constructed using

S-PLUS had greater discrimination and accuracy compared to classification trees

grown using R. It was then concluded that R can produce different classification

trees than S-PLUS using the same data.

27



Chapter 3

Methodology

3.1 Introduction

Due to the advancement of technology especially in the field of computer science,

one can easily make analysis of data with little knowledge about the statistical

and mathematical concepts that underline it. It is important that one acquires

the best of knowledge and understanding about the theoretical and conceptual

framework of the statistical method that is used to analyze the data efficiently

and effectively. Therefore this chapter focuses on the theoretical and conceptual

frame work of classification trees which is the basic method used in this research

work.

3.1.1 Data description

The data utilized for this analysis was derived from the GDHS conducted in 2008.

The data makes use of a two-stage sample design. The first stage involves select-

ing sample clusters from an updated master sampling constructed from the 2000

Ghana population and housing census. A total of 412 clusters were selected us-

ing systematic sampling with probability proportional to size. The second stage

involves the systematic sampling of 30 of the households listed in each cluster.

A total of 12,323 households were selected of which 11,378 were successfully in-

terviewed yielding a response rate of 99%. Three questionnaires were used, the

household questionnaire, the women’s questionnaire and the men’s questionnaire.

The household questionnaire was used to record all deaths of household members

that occurred since January 2003, including child mortality. Based on this infor-

mation, in each household that reported the death of a child under age five years
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since 2005, field editors administered a Verbal Autopsy Questionnaire.

3.1.2 Classification trees

(Breiman L. and Stone, 1984) developed classification and regression tree (CART)

which is a sophisticated program for fitting trees to data. CART analysis is a

tree-building technique which is different from traditional data analysis methods.

In a number of studies CART has been found to be quite effective for creating

decision rules which perform well or better than rules developed using more tra-

ditional methods. Classification tree methods such as CART are convenient way

to produce a prediction rule from a set of observations described in terms of a

vector of features and a response value. The main aim is to define a general

prediction rule which can be used to assign a response value to the cases solely

on the bases of their explanatory variables. An attractive feature of the CART

methodology is that because the algorithm asks a sequence of hierarchical ques-

tions, it is relatively simple to understand and interpret the results.

A classification tree is the result of asking an ordered sequence of questions, and

the type of question asked at each step in the sequence depends upon the answers

to the previous questions of the sequence. The sequence terminates in a predic-

tion of the class. The unique starting point of a classification tree is called the

root node and consists of the entire learning set L at the top of the tree. A node

is a subset of the set of variables, and it can be a terminal or non terminal node.

A non terminal (or parent) node is a node that splits into two daughter nodes (a

binary split). Such a binary split is determined by a Boolean condition on the

value of a single variable, where the condition is either satisfied (“yes”) or not

satisfied (“no”) by the observed value of that variable. All observations in L that

have reached a particular (parent) node and satisfy the condition for that variable

drop down to one of the two daughter nodes; the remaining observations at that

(parent) node that do not satisfy the condition drop down to the other daughter
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node. A node that does not split is called a terminal node and is assigned a

class label. Each observation in L falls into one of the terminal nodes. When

an observation of unknown class is “dropped down” the tree and ends up at a

terminal node, it is assigned the class corresponding to the class label attached

to that node. There may be more than one terminal node with the same class

label. A single-split tree with only two terminal nodes is called a stump. The set

of all terminal nodes is called a partition of the data.

Example; given a recursive partitioning involving two input variables,X1 and X2.

Consider the tree diagram in Figure 3.1. The possible stages of this tree are as

follows:

1. Is X2 ≤ θ1? If the answer is yes, follow the left branch; if no, follow the

right branch.

2. If the answer to 1 is yes, then we ask the next question, Is X1 ≤ θ2?

An answer of yes yields terminal node τ1 with corresponding region R1 =

{X1 ≤ θ2, X2 ≤ θ1}; an answer of no yields terminal node τ2 with corre-

sponding region R2 = {X1 > θ2, X2 ≤ θ1}.

3. If the answer to 1 is no, we ask the next question: Is X2 ≤ θ3? If the

answer to 3 is yes, then we ask the next question: Is X1 ≤ θ4? An

answer of yes yields terminal node τ3 with corresponding region R3 =

{X1 ≤ θ4, θ1 < X2 ≤ θ3} ; if no, follow the right branch to terminal node

τ4 with corresponding region R4 = {X1 > θ4, θ1 ≤ X2 < θ3};

4. If the answer to 3 is no, we arrive at terminal node τ5 with corresponding

region R5 = {X2 > θ3}.
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The underlining assumption is that θ2<θ4 and θ1<θ3. The resulting 5-region

partition of R2 is given in Figure 3.2. For a classification tree, each terminal node

and corresponding region is assigned a class label.

3.1.3 Tree growing procedure

In order to grow a classification tree, there are four basic questions we need to

answer:

• How do we choose the binary conditions for splitting at each node?

• Which procedure should we use to split a parent node into its two daughter

31



nodes?

• How do we decide when a node become a terminal node (that is, stop

splitting)?

• How do we assign a class to a terminal node?

3.1.4 Splitting strategies

In determining how to divide subsets L to create two daughter nodes from a

parent node, the tree-growing algorithm at each node has to decide on which

variable it is “pure” to split. We need to consider every possible split over all

variables present at that node, then enumerate all possible splits, evaluate each

one, and decide which is best in some sense. For a continuous or ordinal variable,

the number of possible splits at a given node is one fewer than the number of

its distinctly observed values. For an equal interval predictor with m distinct

values, there are m − 1 splits that maintain the existing ordering of values. So,

m − 1 splits on that variable need to be evaluated. For example, if there are

40 distinct cumulated weighted average score possible for students, there are 49

possible splits that maintain the existing order.((Breiman L. and Stone, 1984)).

Suppose that a particular categorical variable is defined by M distinct categories,

{l1, l2, l3, · · · , lM}. The set S of possible splits at that node for that variable is

the set of all subsets of {l1, l2, l3, · · · , lM}. Denote by τL and τR the left daughter-

node and right daughter-node, respectively, emanating from a (parent) node τ .

If we let M = 3, then there are 2M − 2 = 6 possible splits (ignoring splits where

one of the daughter-nodes is empty). However, half of those splits are redundant;

for example, the split τL = {l1} and τR = {l2, l3} is the reverse of the split

τL = {l2, l3} and τR = {l1}. So, the set S of six distinct splits is given by Table

3.1:

In general, there are 2M−1 − 1 distinct splits in S for an M -categorical variable.
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Table 3.1: Categorical variable with six distinct splits

τL τR
l1 l2 l3
l2 l2 l3
l3 l1 l2

So in general to get the total number of splits for a classification tree, we add the

total number of continuous variables and that of the categorical variables.

Node impurity functions

At each stage of recursive partitioning, all of the allowable ways of splitting a

subset of L are considered. The one which leads to the greatest increase in

node purity is chosen. This can be achieved using “impurity function”, which

is a function of the proportion of the learning sample belonging to the possible

classes of the response variable. To choose the best split over all variables, we

first need to choose the best split over a given variable. The aim is to have as

little impurity overall as possible. Accordingly, the “best” split is the one that

reduces impurity the most. Let π1, π2, π3, · · · , πK be the K ≥ 2 classes. For node

τ , we define the node impurity function i(τ) as

i(τ) = φ(p(1|τ), p(2|τ), · · · , p(K|τ)) (3.1)

Where p(K|τ) is an estimate of p(X ∈ πK |τ),the conditional probability that an

observation X is in πK given that it falls into node τ . In i(τ) it is important

for φ to be symmetric functions, defined on the set of all K- tupples of prob-

abilities (p1, p2, · · · , pK) with unit sum,minimized at the points (1, 0, 0, · · · , 0),

(0, 1, 0, 0, · · · , 0), · · · , (0, 0, 0, · · · , 1) and maximize at the point ( 1
K
, 1
K
, · · · , 1

K
).

Assuming K = 2, then these conditions reduces to a symmetric φ(p) maximized

at the point p = 1
2
, with φ(0) = φ(1) = 0

There remains the need to define φ . Two of such functions are the Entropy

33



function and the Gini diversity index. The entropy function is defined as

i(τ) = −
K∑
k=1

p(k|τ) log p(k|τ) (3.2)

When k = 2, the entropy function will be,

i(τ) = −
2∑

k=1

p(k|τ) log p(k|τ) (3.3)

i(τ) = −(p(1|τ) log p(1|τ) + p(2|τ) log p(2|τ))

Letp = p(1|τ)then1− p = p(2|τ)

i(τ) = −p log p− (1− p) log(1− p) (3.4)

Using the Gini diversity Index for φ, we have

i(τ) =
∑
k 6=k′

p(k|τ)p(k′|τ) = 1−
∑
k

(p(k|τ))2 (3.5)

i(τ) = p(1|τ)p(2|τ) + p(2|τ)p(1|τ) = 2p(1− p) (3.6)

These two functions are concave, having minimum at p = 0 and p = 1 and a

maximum at p = 0.5 . The Gini Index is more likely to partition the data so that

there is one relatively homogeneous node having relatively few cases. Entropy

tends to partition the data so that all of the nodes for a given split are about

equal in size and homogeneity. Practically, there is not much difference between

these two types of node impurity functions.

Choosing the best split for a variable

Suppose, at node τ , we apply split s so that a proportion pL of the observations

drops down to the left daughter-node τL and the remaining proportion pR drops

down to the right daughter-node τR. For example, suppose we have a data set
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in which the response variable Y has two possible outcomes, “yes” and “no” .

Suppose that one of the possible splits of the input variable Xj is Xj ≤ c vs

Xj>c, where c is some value of Xj. Then, the 2 × 2 table can be prepared as

shown in Table 3.2. Estimate for pL = n•1
n••

and that of pR = n•2
n••

Table 3.2: Two-by-two table for a split on the variable Xj

yes No Row total

Xj ≤ c n11 n12 n1•
Xj>c n21 n22 n2•
colunm total n•1 n•2 n••

Using the Entropy function as our measure of impurity, the estimated impurity

function becomes

i(τ) = −
(
n•1
n••

)
log

(
n•1
n••

)
−
(
n•2
n••

)
log

(
n•2
n••

)
(3.7)

From Table 3.2, for Xj ≤ c, we estimate for pL = n11

n1•
and that of pR = n12

n1•
and

for Xj>c, we estimate pL = n21

n2•
and that of pR = n22

n2•
. We then compute the

estimates for the daughter nodes τL and τR

i(τL) = −
(
n11

n1•

)
log

(
n11

n1•

)
−
(
n12

n1•

)
log

(
n12

n1•

)
(3.8)

i(τR) = −
(
n21

n2•

)
log

(
n21

n2•

)
−
(
n22

n2•

)
log

(
n22

n2•

)
(3.9)

The goodness of split s at node τ is given by the reduction in impurity

gained by splitting the parent node τ into its daughter nodes, τL and τR

∆i(s, τ) = i(τ)−
(
n1•

n••

)
τL −

(
n2•

n••

)
τR (3.10)
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The best split for this single variable Xj is the one that has the largest value of

(3.10) over all sεSj, the set of possible distinct splits for Xj.

After splitting the root (parent) node, we continue to divide its two daughter

nodes. The partitioning principle is the same. For example to further divide τL

or τR we repeat the previous portioning process with a minor adjustment. That

is, the partition uses fewer variables this time. This implies, the number of splits

decreases. The recursive partitioning process may proceed until the tree is satu-

rated in the sense that the offspring nodes subject to further division cannot be

split. This happens, for instance, when there is only one subject in a node. Note

that the total number of allowable splits for a node drops as we move from one

layer to the next. As a result, the number of allowable splits eventually reduces

to zero, and the tree cannot be split any further. The saturated tree is usually

too large to be useful, because the terminal nodes are so small that we cannot

make sensible statistical inference; and this level of detail is rarely scientifically

interpretable. One way to counter this type of situation is to restrict the growth

of the tree. A minimum size of a node is set a priori. We stop splitting when a

node is smaller than the minimum. The choice of the minimum size depends on

the sample size (e.g., one percent). In some applications, we may also wish to

impose the condition that the resulting daughter nodes have a minimal size (say

four subjects) to allow meaningful comparisons.

(Breiman L. and Stone, 1984) argued that depending on the stopping threshold,

the partitioning tends to end too soon or too late. Accordingly, they made a

fundamental shift by introducing a second step, called pruning. Instead of at-

tempting to stop the partitioning, they propose to let the partitioning continue

until it is saturated or nearly so. Beginning with this generally large tree, we

prune it from the bottom up. The point is to find a subtree of the saturated tree

that is most “predictive” of the outcome and least vulnerable to the noise in the

data.
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3.1.5 Misclassification cost

In many applications, the tree-based method is used for the purpose of prediction.

That is, given the characteristics of a subject, we must predict the outcome of

this subject before we know the outcome. For example, in the study of Goldman

et al. (1982), physicians in emergency rooms must predict whether a patient with

chest pain suffers from a serious heart disease based on the information available

within a few hours of admission. To this end, we first classify a node τ to either

class 0 (normal) or 1 (abnormal), and we predict the outcome of an individual

based on the membership of the node to which the individual belongs. Unfor-

tunately, we always make mistakes in such a classification, because some of the

normal subjects will be predicted as diseased and vice versa. To weigh these mis-

takes, we need to compute an estimate of the within-node misclassification rate.

The resubstitution estimate of the misclassification rate R(τ) of an observation

in node τ is

r(τ) = 1−max
k
p(k|τ) (3.11)

For two class case, K = 2

r(τ) = 1−max(p, 1− p) = min(p, 1− p) (3.12)

The resubstitution estimate r(τ) in the two-class case is graphed in Figure 3.3

(blue curve). If p<1
2
, the resubstitution estimate increases linearly in p, and if

p>1
2
, it decreases linearly in p.
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Let T be the tree classifier and T̃ = {τ1, τ2, · · · , τL} denote the set of all terminal

nodes of T . Then the estimate of the true misclassification rate R(τ) is

R(τ) =
∑
τεT̃

R(τ)P (τ) =
k∑
l=1

R(τl)P (τl) (3.13)

Where P (τ) is the probability that an observation falls into node τ .If we estimate

P (τl) by the proportion p(τl) of all observations that falls into node τl , then, the

resubstitution estimate of R(τ) is

Rre(T ) =
L∑
l=1

r(τl)P (τl) =
L∑
l=1

Rre(τl) (3.14)

where Rre(τl) = r(τl)P (τl).

The resubstitution estimate Rre(T ), however, does not work well as an estimate of

R(T ). First, bigger trees have smaller values of Rre(T ); that is, Rre(T ′) ≤ Rre(T ),

where T ′ is formed by splitting a terminal node of T . For example, if a tree is

allowed to grow until every terminal node contains only a single observation, then

that node is classified by the class of that observation and Rre(T ) = 0. Second,

using only the resubstitution estimate tends to generate trees that are too big

for the given data. Third, the resubstitution estimate Rre(T ) is a much-too-

optimistic estimate of R(T ). Hence we introduce the pruning as a real estimate
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of R(T )

3.1.6 Pruning Tree

Given a classification tree T and an inner node τ . Then pruning of T with respect

to τ is the deletion of all successor nodes of τ in T. A pruned tree is a sub tree of

the original large tree. How to prune a tree is an important aspect in classification

tree. Because there are many different ways to prune a large tree, we decide which

is the “best” of those sub trees by using an estimate of R(T ).

The pruning algorithm is as follows;

1. Grow the tree, say, Tmax, where we keep splitting until the nodes each

contain fewer than nmin observations.

2. Compute an estimate of R(τ) at each node τεTmax.

3. Prune Tmax upwards towards its root node so that at each stage of pruning,

the estimate of R(T ) is minimized (Izenman, 2008).

Let α ≥ 0 be a complexity parameter. For any node τεT , set

Rα(T ) = Rre(τ) + α (3.15)

We define a cost - complexity pruning measure for a tree as;

Rα(T ) =
L∑
l=1

Rα(τl) = Rre(T ) + α|T̃ |, (3.16)

Where |T̃ | = L is the number of terminal nodes in the subtree T of Tmax. α|T̃ |

is considered as a penalty term for tree size, so that Rα(T ) penalizes Rre(T ) for

generating too large a tree. For each α, we then choose that subtree T (α) of Tmax

that minimizes Rα(T ):

Rα(T (α)) = min
T
Rα(T ) (3.17)
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The value α defined on the interval [0,∞), quantifies the penalty for each

additional terminal node. The larger the value of α, the heavier the penalty for

complexity. When α = 0, there is no penalty and a saturated tree results. So,

α is the means by which the size of the tree can be determined. For example,

Suppose, for α = α1, the minimizing subtree is T1 = T (α1). As we increase

the value of α, T1 continues to be the minimizing subtree until a certain point,

say, α = α2, is reached, and a new subtree,T2 = T (α2), becomes the minimizing

subtree. As we increase α further, the subtree T2 continues to be the minimizing

subtree until a value of α is reached, α = α3, say, when a new subtree T3 = T (α3)

becomes the minimizing subtree. This argument is repeated a finite number of

times to produce a sequence of minimizing subtrees T1, T2, T3, · · · .

How do we get Tmax to T1?. Suppose the node τ in the tree Tmax has daughter

node τL and τR, both of which are terminal nodes. Then,

Rτ ≥ Rre(τL) +Rre(τR) (3.18)

If equality occurs at node τ , then prune the terminal nodes τL and τR from the

tree. Continue this method until no further pruning of this type is possible. The

resulting tree is T1. Next we find T2. Let τ be any nonterminal node of T1, let Tτ

be the subtree whose root node is τ , and let T̃ = {T ′1, T
′
2, · · · , T

′
Lτ
} be the set of

terminal nodes of Tτ . Let

Rre(Tτ ) =
∑
τ ′εT̃τ

Rre(τ ′) =
Lτ∑
l′=1

Rre(τ
′

l′) (3.19)

Then Rre(τ)>Rre(Tτ ). Now set

Rα(Tτ ) = Rre(Tτ ) + α|T̃τ | (3.20)

If Rα(τ)>Rα(Tτ ), then the subtree Tτ has a smaller cost-complexity than its root

node τ , and therefore it is important to maintain Tτ . Substituting (3.15) and
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(3.20) into this condition and solving for α yields

α<
Rre(τ)−Rre(Tτ )∣∣∣T̃τ ∣∣∣− 1

(3.21)

For τεT1, define

g1(τ) =
Rre(τ)−Rre(T1,τ )∣∣∣T̃1,τ ∣∣∣− 1

τ /∈ T̃ (α1) (3.22)

Where T1,τ = Tτ

Then, g1(τ) can be considered as a critical value for α as long as g1(τ)>α1, we

do not prune the nonterminal nodes τεT1.

We define the weakest-link node τ̃ as the node in T1 that satisfies

g1(τ̃1) = min
τεT1

g1(τ) (3.23)

As α increases, τ̃1 is the first node for which Rα = Rα(Tτ ), so that τ̃1 is preferred

to Tτ̃1 . Set α2 = g1(τ̃1) and define the subtree T2 = T (α2) of T1 by pruning away

the subtree Tτ̃1 from T1. Next, to find T3, we find the weakest-weakest link node

τ̃2εT2 through the critical value

g2(τ) =
Rre(τ)−Rre (T2,τ )∣∣∣T̃1,τ ∣∣∣− 1

τ /∈ T̃ (α2), τεT (α2) (3.24)

Where T2,τ is that part of Tτ which is in T2. We then set

α3 = g2(τ̃2) = min
τεT2

g2(τ) (3.25)

And define the subtree T3 of T2 by pruning away the subtree Tτ̃2 so that τ̃2 becomes

a terminal node from T2. This process is continued for a number of steps.

Theorem 3.1.1 ((Breiman L. and Stone, 1984)) For any value of the com-
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plexity parameter α, there is a unique smallest subtree of T0 that minimizes the

cost-complexity

Since there may be several minimizing subtrees for each α ,then , for a given α

we call T (α) the smallest minimizing subtree if it is a minimizing subtree and

satisfies the following condition:

if Rα(T ) = Rα(T (α)) then T>T (α)

Hence, T (α) is a subtree of T and in the event of any ties, T (α) is taken to be

the smallest tree out of all those trees that minimize Rα. This produces a finite

increasing sequence of complexity parameters,

0 = α1<α2<α3 · · ·<αM

Which corresponds to a finite sequence of nested subtrees of Tmax,

Tmax = T0>T1>T2> · · ·>TM

Where Tk = T (αk) is the unique smallest minimizing subtree for αε (αk, αk+1),

and TM is the root-node subtree.

Choosing the Best subtree

The sequence of subtrees produced by the pruning procedure serves as the set

of candidate subtrees for the model and to obtain the classification tree, all that

remains to be done is to select the one which will hopefully have the smallest

misclassification rate for future observations. Breiman et al (1984) offered two

estimation methods, which is the independent test sample or cross-validation.

Independent Test Set

Independent test is used to estimate the error rates of the various trees in the

nested sequence of subtrees, and the tree with minimum estimated misclassifica-

tion rate can be selected to be used as the tree-structured classification model.
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For this purpose, the observations in the learning dataset (D) are randomly as-

signed to two disjoint datasets, a training dataset (L) and a test set (T ), where

L∩ T = φ and L∪ T = D. Suppose there are nτ observations in the test set and

that they are drawn independently from the same underlying distributions as the

observations in L. Then the tree Tmax is grown from the learning set only and it is

pruned from bottom up to give the sequence of subtrees T1 > T2 > T3 > · · · > TM ,

and a class is assigned to each terminal node.

Once a sequence of subtrees has been produced, each of the nτ test-set obser-

vations are dropped down the tree Tk. Each observation in T is then classified

into one of the different classes. Because the true class of each observation in

T is known, R(Tk) is estimated by Rts(Tk) which is (3.16) with α = 0; that is

Rts(Tk) = Rre(Tk), the resubstitution estimate computed using the independent

test set. When the costs of misclassification are identical for each class, Rts(Tk)

is the proportion of all test set observations that are misclassified by Tk. These

estimates are then used to select the best pruned subtree T ∗ by the rule,

Rts(T∗) = min
k
Rts(Tk) (3.26)

and R(T∗) is its estimated misclassification rate.

The standard error of Rts(T ) is estimated as follows. When test set observations

are dropped down the tree T , the chance that any one of these observations are

misclassifified is p∗ = R(T ). Thus, it is a binomial sampling situation with nτ

Bernoulli trials and probability of success p∗. If p = Rts(T ) is the proportion of

misclassified observations in T ,then p is unbiased for p∗ and the variance of p is

p∗(1− p∗)
nτ

(3.27)
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The standard error of Rts(T ) is therefore estimated by

ŜE(Rts(T )) =

{
Rts(1−Rts(T ))

nτ

} 1
2

(3.28)

Cross-validation estimate

For a V-fold cross-validation (CV/V ), the learning dataset D is divided into V

roughly equal-sized, disjoint subsets,

D =
v⋃
v=1

Dv (3.29)

where Dv ∩ Dv′ = ∅, v 6= v′, and V is taken to be 5 or 10. Next, V different

datasets are obtained from the Dv by taking Lv = D − Dv as the v-th training

set and Tv = Dv as the v-th test set,v = 1, 2, 3, · · · , V . The v-th tree Tmax(v) is

grown using v-th training set Lv, v = 1, 2, 3, · · · , V . The value of the complexity

parameter α is fixed to a certain value. Let, T (v)(α) be the best pruned subtree

of Tmax(v). Now, each observation in the v-th test Tv is dropped down the

T (v)(α), v = 1, 2, 3, · · · , V . Let n
(v)
ij be the number of j-th class observations

in Tv that are classified as being from the i-th class, i, j = 1, 2, 3, · · · , K, v =

1, 2, 3, · · · , V . Because

D =
v⋃
v=1

Tv (3.30)

is a disjoint sum, the total number of j-th class observations that are classified as

being from the i-th class is

nij =

(v)∑
ij

(α), i, j = 1, 2, 3, · · · , K (3.31)

If nj is the number of observations in D that belong to the j-th class,
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j = 1, 2, 3, · · · , J , and assuming equal misclassification cost for all classes, then

for a given α,

RCV/V (T (α)) = n−1
K∑
i=1

K∑
j=1

nij(α) (3.32)

Is the misclassification rate over D, where T (α) is a minimizing subtree of Tmax.

The final step in this process is to find the right sized subtree. For different

values of α, RCV/V is evaluated. If for a sequence of values αk, corresponding

cross-validation error of the minimizing subtree T (α) = Tk is given by,

RCV/V (Tk) = RCV/V = (T (αk)) (3.33)

Then, the best-pruned subtree T∗ is selected by the rule,

RCV/V (T∗) = min
k
RCV/V (Tk) (3.34)

and RCV/V (T∗) is used as its estimated misclassification rate.
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Chapter 4

Data Analysis and Results

4.1 Data Collection

This chapter deals with exploratory analysis of the data, inferential analysis and

modeling based on the study objectives and the information gathered. Data

from the Demographic and Health Survey (DHS) conducted in Ghana in 2008

was used for the study. The survey was conducted from 8th September, 2008 to

25th November 2008 on a nationally representative sample of 12,323 households.

Each of these households was visited to obtain information about the household

using the Household Questionnaire. This was used to identify deaths of chil-

dren under-five years occurring in the household since January 2005. The sample

was selected in such a manner as to allow for separate estimates of key indicators

for each of the ten regions in Ghana as well as for urban and rural areas separately.

The study was conducted by Ghana Statistical Service(GSS) and the Ghana

Health Service(GHS). Inner City Fund (ICF) Macro, an ICF International Com-

pany, provided technical support for the survey through the MEASURE DHS

program. Funding for the survey came from the United States Agency for Inter-

national Development (USAID), through its office in Ghana, and the Government

of Ghana, with support from the United Nations Population Fund (UNFPA), the

United Nations Children’s Fund(UNICEF), the Ghana AIDS Commission (GAC),

and the Danish Development Agency (DANIDA).

The 2008 GDHS utilized a two-stage sample design. The first stage involved

selecting sample points or clusters from an updated master sampling frame con-
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structed from the 2000 Ghana Population and Housing Census. A total of 412

clusters were selected from the master sampling frame. The clusters were se-

lected using systematic sampling with probability proportional to size. A com-

plete household listing operation was conducted from June 2008 to July 2008 in

all the selected clusters to provide a sampling frame for the second stage selection

of households. The second stage of selection involved the systematic sampling of

30 of the households listed in each cluster. The primary objectives of the second

stage of selection were to ensure adequate numbers of completed individual in-

terviews to provide estimates for key indicators with acceptable precision and to

provide a sample large enough to identify adequate numbers of under-five deaths

to provide data on causes of death. Data were not collected in one of the selected

clusters due to security reasons, resulting in a final sample of 12,323 selected

households.

The selection criteria used to select ever conceived or ever born mothers in the

survey. In this study, sample is limited to 1,295 respondents who gave birth or

have children up to 60 months prior to the survey. Even though this is only 27%

of the entire sample, the number is large enough for our analysis.

4.2 Exploratory Analysis of Study Variables

The dependent variable in the analysis was under-five mortality. It was evaluated

using “yes” for ever experienced mortality child and “no” for not experienced child

mortality.

Table 4.1: Extracted Under-five mortality Data for GDHS 2008

Mortality number(%)
No 816 (63.0)
Yes 479 (37.0)
Total 1295 (100)

From Table 4.1, the total number of children who survived at the age of five
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were 816 which represents 63.0% whilst the number of children who died before

attaining the age of five were 479 which represents 37.0% of the children under

consideration. This sample represents 1295 mothers who gave birth from the year

2004 to 2008.

The Independent variables considered were categorized into continuous variables

and categorical variables. Categorical variables have two main types of measure-

ment scales, that is the nominal and the ordinal scale. The ordinal measurement

scales were; highest educational level (HEL) and wealth index (WI) of respondents

while the nominal measurement scales includes ethnicity (ETH) of respondents,

child born by caesarean (CBC), sex of child (SEX), defacto type of residence

(DTOR) and defacto region of residence (DROR). The continuous variables that

were considered include age of respondents at birth (AORAB), total number of

children ever born (TNOCB), preceding birth interval (PBI). These variables

were selected based on related studies example (Hosseinpoor et al., 2006), which

suggest that they have predictive power for the question at hand.

The age of respondents at the time of interview and the age of the respondents

at birth of a child were categorized into four groups (15− 19 years; 20− 29 years;

30− 39 years and 40− 49 years). Defacto region of residence by design was clas-

sified into ten groups (Ashanti ; Brong Ahafo; Greater Accra ; Volta; Eastern;

Western; Central; northern; Upper East; Upper West). Defacto type of residence

was divided into two ( urban and rural) whilst respondents were asked to report

their highest level of education completed, for which responses were grouped as

“no education”, “primary”, “middle” and “higher”. Ethnicity was also classi-

fied into five and these were “Akan”, “Ewe”, “Ga/ dangme”, “Mole-dagbani”

and “others”. Wealth index (quintile) was also grouped into poor, middle and

rich. The wealth index, computed by GDHS, comprises household assets (type of

flooring, water supply, sanitation facilities, electricity, persons per sleeping room,
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ownership of agricultural land, domestic servant and other assets).

Table 4.2: Under-five mortality distribution by socio-economic and demographic
characteristics

Variable Total(n) mortality( %) 95% C.I.
Residents
Urban 368 160(33.4) (0.113,0.422)
Rural 927 319(66.6) reference

Region
Western 83 33(6.9) reference
Central 110 39(8.1) (-0.481, 0.355)
Greater Accra 62 35(7.3) (0.067, 1.169)
Eastern 126 39(8.1) (-0.644, 0.163)
Volta 80 (28(5.8) (-0.273, 0.875)
Brong Ahafo 148 41(8.6) (-0.881, -0.138)
Northern 196 96(20.0) (-0.003, 0.752)
Upper East 112 39(8.1) (-0.385, 0.439)
Upper West 135 56(11.7) (-0.714, 0.201)
Ashanti 233 73(15.2) (-0.720, 0.075)

Mother’s Education
no education 508 209(43.6) (-0.091, 0.534)
primary 311 115(24.0) (-0.104, 0.515)
secondary 454 147(30.7) reference
higher 22 8(1.7) (-1.070, 0.369)

Ethnicity
Akan 524 171(35.7) (-0.295, 0.275)
Ewe 132 38(7.9) (-0.998, -0.108)
Ga/Adangme 49 19(4.0) (-0.646, 0.467)
Mole-dagbani 348 138(28.8) (-0.117, 0.558)
Others 242 113(23.6) reference

Wealth quintile
Poor 508 156(32.6) (-0.497, 0.155)
Middle 364 130(27.1) (-0.252, 0.108)
Rich 423 193(40.3) reference

Table 4.2 shows differentials in childhood mortality by five socio-economic and

demographic variables with 95% Wald confidence interval for each variable: resi-

dence, region, mother’s education, ethnicity and household wealth status (quin-
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tile). The observed mortality levels in rural areas are higher than those in urban

areas without correction in population densities. The total number of under-five

children that were born in the rural area was 927 (71.6%) with observed mortality

counts of 319 as compared to that of the urban area with total under-five been

368 (28.4%) and mortality counts of 160 under-fives.

The differences in under-five mortality counts by regions are marked. The under-

five mortality counts ranges from a low of 28 observed deaths out of a total of

80 (6.2%) children below the age of five in the Volta region, followed by Western

region with under-five mortality count of 33, Greater Accra with under-five mor-

tality count of 35 then Central, Eastern and Upper East regions have under-five

mortality counts of 39. Brong Ahafo also recorded an under-five mortality count

of 41, Upper West recorded 56 under-five mortality and to a high of 73 and 96

deaths in the Ashanti and Northern regions respectively.

4.3 Statistical Analysis

This aspect of the analysis presents in detailed how the selected statistical tech-

niques have been used to investigate the data and report the findings accordingly.

The statistical technique the study deems it suitable for this investigation is clas-

sification trees using the R software (Rpart). Detailed computer outputs of this

technique would be observed and interpreted.

According to (Adu Brenya,1999), one of the major characteristics of the Ghanaian

space economy is the existence of spatial development disparities. He emphasized

that disparities exist between the ‘North’ and the ‘South’ with the distribution of

social and economic infrastructure skewed in favour of the regions in the south;

there is also a wide disparity between urban and rural areas; Wide disparities

also exist among the districts in all the regions, especially between the rural and

urban areas of Ghana.
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Test of association between DTOR (urban,rural) and mortality

From table A in appendix, the Pearson chi square test of association reveals

that χ(1) = 9.290, p = 0.002. This tells us that there is statistically significant

association between defacto type of residence (DTOR) and under-five mortality.

In view of this, the data was first divided into two (rural and urban) and the

factors considered for each. The entire data set was also considered and the factors

observed and the inequalities that exist between these two areas are considered.

This will help us to explore the socio-economic and demographic differentials that

exist.

4.4 Classification Tree

4.4.1 Splitting strategy

At each node, the tree-growing algorithm has to decide on which variable it is

“best” to split as discussed in the methodology. In the data, we have four contin-

uous variables; TNOCB (26 possible splits), AORAB (34 possible splits), NOAV

(26 possible splits) and PBI (144 possible splits). The total number of possible

splits from these continuous variables is therefore, 230. There are also seven cate-

gorical variables; HEL (7 possible splits), WI (3 possible splits), ETH (15 possible

splits), CBC (1 possible splits) DTOR (1 possible splits), SEX (1 possible split)

and DROR (511 possible splits). The total number of possible splits for these

categorical splits are therefore 539.

Adding the number of possible splits from the categorical variables (539) to the

total number of possible splits from continuous variables (230), we have 769 pos-

sible splits over all the 11 variables at the root node. In other words, there are

769 possible splits of the root node into two daughter nodes.
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4.4.2 Analysis on Urban

The data consist of 368 observations (160 experienced under-five mortality, 208

has not experience under-five mortality). The classification tree is displayed in

Figure 4.1 where we used the entropy measure as the impurity function for split-

ting (equation 3.3). There are 16 splits and 17 terminal nodes in this tree.

The root node (DROR) with 368 observations is split according to whether DROR

= WR, VR, NR, UE, UW (58 observations) or DROR = AR, GA, BA, CR, ER

(310 observations). The node with 58 observations was declared a terminal node

for “yes” because of 50 − 0 majority in favour of “yes”. The node with the 310

observations which consist of 102 under-five mortality and 208 not experienced

mortality, is then split by whether TNOCB < 1.5 (16 observations) or TNOCB

≥ 1 majority in favour of “yes”. The node with 294 observations, which consists

of 86 experienced mortality and 208 not experienced mortality, is split by whether

DROR = GA (39 observations) or DROR = AR, BA, CR, ER (255 observations).

The node with 39 observations is then split by whether PBI≥ 29 (16 observations)

or PBI < 29 (23 observations). The node with 16 observations is declared a

terminal node because of 16 − 0 majority in favour of “yes”, while that of 23

observations was also declared a terminal node because of 4 − 19 majority in

favour of “no”. The node with 255 observations which consist of 66 observations

experienced mortality and 189 did not experienced mortality, is split by whether

AORAB ≥ 14.5 (247 observations) or AORAB < 14.5 (8 observations). The node

with 8 observations is declared terminal node because of 0− 8 majority in favour

of “no”, and the node with 247 observations, which consist of 66 experienced

mortality and 181 not experienced mortality is then split by whether PBI < 104

(220 observations) or PBI≥ 104 (27 observations). The node with 27 observations

is declared a terminal node because of 3− 24 majority in favour of “no”, and the

node with 220 observations which consist of 63 experienced mortality and 157 not

experienced mortality is then split by whether TNOCB ≥ 3.5 (110 observations)
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or TNOCB < 3.5 (110 observations). The rest of the results are shown in Figure

4.1.

Estimating the misclassification rate

From Figure 4.1 and Table 4.3, out of the 368 observations in the data, the

classification tree misclassifies 43 of the observations who has experienced under-

five mortality (yes) as not experienced it before (no), whereas of the 208 who has

not experienced mortality before (no), 12 are misclassified as having experienced

mortality before (yes). This gives the resubstitution estimate as

Rre(T ) =
12 + 43

368
= 0.149 (4.1)

Table 4.3: Misclassification rate for urban
Predicted

Mortality Yes No

Yes 117 43
No 12 196

Pruning the tree

The Breiman et al (1984) philosophy of growing trees is to grow the tree “large”

and then prune off branches from the bottom up until the tree is of “right size”.

A pruned tree is a subtree of the original tree.

Table 4.4: Cross Parameter table for urban

CP nsplit rel error xerror(Rcv/10) xstd(Tk)
0.3625000 0 1.00000 1.00000 0.059436
0.1000000 1 0.63750 0.63750 0.053666
0.0500000 2 0.53750 0.53750 0.050738
0.0089286 4 0.43750 0.50000 0.049454
0.0062500 13 0.35625 0.53750 0.050738
0.0031250 14 0.35000 0.58125 0.052103
0.0010000 16 0.34375 0.60625 0.052823

Table 4.4 provides a brief summary of the overall fit of the model. The table is

printed from the smallest tree (no splits that is 0) to the largest tree (16 splits)
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Figure 4.1: Classification tree for under-five mortality in the urban DHS data
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Figure 4.2: A pruned classification tree with 4 splits and 5 terminal nodes

and this is shown by the column “nsplit”. The number of nodes is always one

plus the number of splits. The “CP” column lists the values of the complexity

parameter (α) (equation 3.21) at each stage of the tree growing process, and the

column “xerror” contains cross-validated classification error rates; the standard

deviation of the cross-validation error rates are in the “xstd” column. The relative

error (rel error) continues to decrease as the tree becomes more complex, it then

begins to rise to some point. This is shown in Figure 4.3. From Table 4.4, the

1−SE rule yields a minimum of CV error+SE = 0.50000+0.049454 = 0.549454,

which leads to the choice of a classification tree with 4 splits (5 terminal nodes)

based upon the cross-validation. The corresponding pruned classification tree is

displayed in Figure 4.2.

Variable of importance

Variable of importance describes the role of a variable in a specific tree. It is

arranged or ranked from the most important to the less important. According to

the discriminatory power in the CART analysis, age of respondents which is the

root node emerged as the strongest discriminating factor for under-five mortality,

followed by Total number of children ever born (63.70%), Preceding birth interval

(59.70%), Ethnicity (40.40%), wealth index (19.33%), Highest educational level
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Figure 4.3: A plot of CP against relative error showing different size of trees for
urban

(18.80%) and sex of child (4.80%) as the least factor that contributes to under-five

mortality in Ghana. (Table 4.5).

Table 4.5: Ranking the predictors of inequalities in under-five mortality in the
urban area

Independent variable Power(%)
Age of respondents at first birth 100.00
Total number of children ever born 63.7
Preceding birth interval 59.70
Region of Residence 48.00
Ethnicity 30.40
Wealth index 19.33
Highest educational level 18.80
Sex of child 4.80

4.4.3 Analysis on Rural

The data consist of 927 (319 experienced under-five mortality, 608 has not ex-

perience under-five mortality). The classification tree is displayed in Figure 4.4

where we used the entropy measure as the impurity function for splitting. There
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are 27 splits and 28 terminal nodes in this tree

The root node (TNOCB) with 927 observations is split according to whether

TNOCB < 1.5 (56 observations) or TNOCB ≥ 1.5 (871 observations). The node

with 56 observations is declared a terminal node because of 56 − 0 majority in

favour of “yes”. The node with the 871 observations which consist of 263 under-

five mortality and 608 not experienced mortality, is then split by whether WI =

rich (208 observations) or WI =middle, poor (663 observations). The node with

208 is then split by whether ETH = other (26 observations) or ETH = akan, ewe,

ga/adagme, mole-dagbani (182 observations). The node with 26 observations is

declared a terminal node for “yes” because of the 26−0 majority in favour of “yes”.

The node with 182 observations, which consists of 63 experienced mortality and

119 not experienced mortality, is split by whether PBI < 17.5 (8 observations) or

PBI ≥ 17.5 (174 observations). The node with 174 observations which consist of

56 experienced mortality and 118 not experienced mortality, is split by whether

DROR = AR,ER,GA,NR,UW, UE (80 observations) or DROR = VR, WR, BA,

CR (94 observations). The node with 80 observations is then split by whether

AORAB < 17.5(9 observations) or AORAB≥ 17.5 (71 observations). The node

with 9 observations is declared terminal node because of 8− 1 majority in favour

of “yes”, and the node with 71 observations, which consist of 26 experienced

mortality and 45 not experienced mortality is then split by whether PBI ≥ 67.5

(13 observations) or PBI < 67.5 (58 observations). The node with 13 respondents

is declared a terminal node because of 9 − 4 majority in favour of “yes” whilst

the node with 58 observations is also declared a terminal node because of 17− 41

majority in favour of “no”. The rest of the results are shown in the Figure 4.4.

Estimating the misclassification rate

From Figure 4.4 and Table 4.6, out of the 927 subjects in the data, the classifi-

cation tree misclassifies 154 of the observations who has experienced under-five
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Figure 4.4: Classification tree for under-five mortality in the rural DHS data
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mortality (yes) as not experienced it before (no), whereas, out 608 who has not

experienced mortality before (no), 37 are misclassified as having experienced mor-

tality before (yes) . This gives the resubstitution estimate as

Rre(T ) =
37 + 154

927
= 0.206 (4.2)

Table 4.6: Misclassification rate for rural
Predicted

Mortality Yes No

Yes 165 154
No 35 571

Pruning the Tree

Table 4.7: Cross Parameter table for urban

CP nsplit rel error xerror(Rcv/10) xstd(Tk)
0.1755486 0 1.00000 1.00000 0.045344
0.0407524 1 0.82445 0.82445 0.043026
0.0188088 3 0.74295 0.74295 0.041636
0.0109718 4 0.72414 0.74608 0.041693
0.0094044 7 0.68652 0.74303 0.041087
0.0062696 8 0.67712 0.80564 0.042724
0.0054859 11 0.65831 0.81818 0.042927
0.0047022 16 0.62696 0.84639 0.043364
0.0031348 20 0.60815 0.85266 0.043458
0.0031000 23 0.59875 0.87774 0.043823
0.0020899 31 0.57367 0.90282 0.044169
0.0015674 34 0.56740 0.91223 0.044294
0.0010449 40 0.55799 0.94671 0.044731
0.0007837 43 0.55486 0.95925 0.044882
0.0000000 47 0.55172 0.98433 0.045171

Table 4.7 provides a brief summary of the overall fit of the model for rural data.

The relative error (rel error) continues to decrease as the tree becomes more

complex, it then begins to rise to some point. This is shown in Figure 4.6. From

Table 4.7, the 1 − SE rule yields a minimum of CV error + SE = 0.74303 +

0.041087 = 0.784117, which leads to the choice of a classification tree with 7
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splits (8 terminal nodes) based upon the cross-validation. The corresponding

pruned classification tree is displayed in Figure 4.5.

Variable of importance

According to the discriminatory power in the CART analysis, total number of chil-

dren born (root node) emerged as the strongest discriminating factor for under-

five mortality, followed preceding birth interval (79.97%), Ethnicity (60.00%),

Age of respondents at birth (37.88%), wealth index (30.77%), Highest educational

level (19.33%) and sex (4.80%) as the least factor that contributes to under-five

mortality in Ghana. (Table 4.8).

Table 4.8: Ranking the predictors of inequalities in under-five mortality in the
rural area

Independent variable Power(%)
Total number of children born 100.00
Preceding birth interval 79.97
Ethnicity 60.00
Age of respondents at first birth 37.88
Wealth index 30.77
Region of Residence 29.00
Highest educational level 19.33
Sex of child 4.80

4.4.4 Analysis on the overall data

The data consist of 1,295 observations. Out of this, 479 experienced under-five

mortality and 816 has not experience under-five mortality. The classification

tree is displayed in Appendix B where we used the entropy measure as the im-

purity function for splitting. There are 70 splits and 71 terminal nodes in this tree

The root node (TNOCB) with 1295 observations is split according to whether

TNOCB < 1.5 (81 observations) or TNOCB ≥ 1.5 (1214 observations). The

node with 81 observations is declared a terminal node because of 81− 0 majority

in favour of “yes”. The node with the 1214 observations which consist of 398
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Figure 4.5: A pruned classification tree with 8 splits and 9 terminal nodes
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Figure 4.6: A plot of CP against relative error showing different size of trees for
rural

under-five mortality and 816 not experienced mortality, is then split by whether

DROR = GA, NR, UW, WR (443 observations) or DROR = AR, BA, CR, ER,

UE, VR (771 observations). The node with 443 is then split by whether DTOR

= UR (80 observations) or DTOR = RU (363 observations). The node with 80

observations is then split by whether PBI >= 26 (48 observations) or PBI < 26

(32 observations). The node with 48 observations is declared a terminal node for

“yes” because of 48−0 majority in favour of “yes”. The node with 32 observations

is then split by whether DROR = NR, UW, WR (9 observations) or DROR =

GA (23 observations). The node with 9 observations is declared a terminal node

for “yes” because of 9 − 0 majority in favour of “yes” whiles the node with 23

observations is also declared a terminal node for “no” because of 4− 19 majority

in favour of “no”. The rest of the results are shown in the appendix B.

Estimating the misclassification rate

From appendix B and Table 4.9, out of the 1,295 subjects in the data, the classi-

fication tree misclassifies 188 of the observations who has experienced under-five

mortality (yes) as not experienced it before (no), whereas, out 816 who has not
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experienced mortality before (no), 81 are misclassified as having experienced mor-

tality before (yes) . This gives the resubstitution estimate as

Rre(T ) =
81 + 188

1295
= 0.208 (4.3)

Table 4.9: Misclassification rate for overall analysis
Predicted

Mortality Yes No

Yes 291 188
No 81 735

Pruning the tree

Table 4.10: Cross Parameter table for urban

CP nsplit rel error xerror(Rcv/10) xstd(Tk)
0.1691022965 0 1.0000000 1.0000000 0.03626957
0.0438413361 1 0.8308977 0.8308977 0.03466310
0.0156576200 3 0.7432150 0.7453027 0.03357107
0.0135699374 5 0.7118998 0.7348643 0.03342387
0.0052192067 8 0.6680585 0.7118998 0.03308880
0.0041753653 14 0.6346555 0.7286013 0.03333403
0.0031315240 15 0.6304802 0.7703549 0.03391160
0.0020876827 32 0.5657620 0.8058455 0.03436412
0.0008350731 46 0.5219207 0.8956159 0.03536040
0.0006958942 60 0.5010438 0.9144050 0.03554324
0.0002982404 63 0.4989562 0.9311065 0.03569857
0.0000000000 70 0.4968685 0.9331942 0.03571752

Table 4.10 provides a brief summary of the overall fit of the model for the entire

data. The relative error (rel error) continues to decrease as the tree becomes more

complex. This is shown in Figure 4.8. From table 4.10, the 1 − SE rule yields

a minimum of CV error+ SE = 0.7118998 + 0.0330880 = 07449886, which leads

to the choice of a classification tree with 8 splits (9 terminal nodes) based upon

the cross-validation. The corresponding pruned classification tree is displayed in

Figure 4.7.
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Figure 4.7: A pruned classification tree for overall analysis
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Figure 4.8: A plot of CP against relative error showing different size of trees for
overall analysis

Variable of importance

According to the overall discriminatory power in the CART analysis, Total num-

ber of children ever born which is the root node emerged as the strongest overall

discriminating factor for under-five mortality in Ghana, followed by Preceding

birth interval (84.60%), Defacto region of residence (57.70%), Ethnicity (38.50%),

Age of respondents at birth (30.80%), Defacto type of residence (26.90%),Wealth

index (23.10%), Highest educational level (19.23%) and Sex of child (3.8%) as

the least contributing factor(Table 4.11).

Table 4.11: Ranking the predictors of inequalities in under-five mortality in the
GDHS data

Independent variable Power(%)
Total number of children ever born 100.00
Preceding birth interval 84.60
Defacto region of residence 57.70
Ethnicity 38.50
Age of respondents at first birth 30.80
Defacto type of residence 26.90
Wealth index 23.10
Highest educational level 19.23
Sex of child 3.80

65



4.5 Discussion

This work demonstrates the application of classification tree analysis models

which is a non-parametric modeling methodology to explore socio-economic and

demographic factors influencing child mortality in Ghana. In this analysis, the

classification tree method revealed logical results of the relationships between the

outcome of interest(under-five mortality) and the predictor variables. Classifi-

cation tree analysis helps in determining population segments that need specific

attention in relation to the outcome. Segmenting populations supports decision

makers in focusing their efforts to specific areas or subgroups. It is important to

note that this analysis does not support any claim of superiority of one method-

ology compared to the other.

In Ghana, most determinants shows a positive contribution socioeconomic in-

equality in the under-five mortality. This implies the combined effect of the

marginal effect of the explanatory variable in under-five mortality and its dis-

tribution by economic status is to raise socioeconomic inequality in under-five

mortality such that under-five mortality is greater among the poor. This effect

may arise either because the particular determinant is more prevalent among peo-

ple of lower economic status and is associated with a higher under-five mortality

risk or because the determinant in question is more prevalent among people of

higher economic status and associated with a lower under-five mortality risks.

From the contributions expressed in Table 4.5, it was evident that the highest

contributor of under-five mortality in the urban data is age of mother at first

birth (AORAB). It’s predicting power was 100% even though age of mother at

birth did not appear at the terminal node but in the analysis, its contribution

to under-five mortality was great. The second predictor was total number of

children ever born (TNOCB) (63.7%). It was observed in the classification tree
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in Figure 4.2 that mothers whose total birth are less than two contributes posi-

tively to under-five mortality (16− 0 majority) than mothers whose total births

(TNOCB) are more than one. Preceding birth interval (PBI) which is defined

as difference between the current birth and the previous birth was another im-

portant predictor of under-five child mortality in Ghana. Mothers whose birth

interval are less than 19 months are likely to experience under-five mortality in

the urban analysis compared to those whose preceding birth interval is greater

than 19 months. This confirms the report by GDHS (2008) which says mothers

with first birth and higher order births have an elevated risk of dying. Mothers

whose highest educational level (HEL) is up to the primary school have 55.5%

chance of experiencing under-five mortality compared to mothers whose educa-

tional level is above primary school (23.3%). It was also observed from the urban

analysis that children from rich wealth quintiles (WI) have 74.1% chance of not

experiencing under-five mortality. But those from poor and middle wealth quin-

tiles have only 40% chance of not experiencing under-five mortality. It was also

observed that regions like Northern, Upper East, Upper West, Volta and Western

regions of Ghana experience under-five mortality than those in the other regions.

Considering the analysis on the rural data, it was observed that total number

of children ever born (TNOCB) is the highest contributor of under-five mortal-

ity. From figure 4.4, it is observed that mothers with TNOCB equal to one has

greater chance of experiencing under-five mortality than mothers whose TNOCB

are greater than one. Preceding birth interval (PBI) was the second highest dis-

criminatory power. It was observed from Figure 4.4 that mothers whose birth

interval are less than 17 months and those whose birth interval are more than 68

months experience under-five mortality (87.5%) than those whose birth interval

falls within that range. Ethnicity which is a demographic factor shows a positive

relation to under-five mortality in the rural data. It was observed that 57.1%

of mothers who belongs to ethnic groups like Ewe and Mole-dagbani stands the
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chance of experiencing under-five mortality than those in different ethnic groups

of Ghana. Age of mother at birth (AORAB) in the rural analysis was also signifi-

cant (60%) in decomposing inequalities in the under-five mortality. Mothers who

age are less than 17 years experience under-five mortality than mothers whose

age are above 17 years. Other factors that also contributed positively include

highest education level (HEL) and wealth index (WI) with predicting factor of

19.33% and 30.77% respectively.

Considering the overall data, it was clear that TNOCB contribution to under-five

mortality was high. Mothers with less than two children experience under-five

mortality than those with more than one child. It was also observed that pre-

ceding birth interval (PBI) contributed positively to child mortality. Mothers

whose birth intervals are less than 16 months stands the chance of experienc-

ing under-five mortality (99%) than those with birth interval above 16 months.

From appendix B it was observed that mothers in Northern (87.7%), Greater Ac-

cra (69.2%) and Central, Upper East and Upper West (64.7%) regions of Ghana

experiences under-five mortality compared to the other regions of Ghana. It was

also evident that mothers in the rural areas stands 62.5% chance of experienc-

ing under-five mortality than those in the urban areas of Ghana. Other factors

that also contributed positively in the overall analysis are age of mothers at birth

(57.8%), ethnicity, wealth index and highest educational levels.

It was observed that sex and whether the child is born by cesarean does not con-

tribute to socio-economic and demographic inequalities in Ghana.

Some differentials were also identified considering the ranking of the predictors

of urban and rural. It was identified that Total number of children ever born

in the rural areas was the highest contributing factor to under-five mortality

in the DHS data compared with that of the urban (63.7%). This was evident
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from the overall analysis were total number of children ever born was ranked

highest (100%) among all the predictors. Also, there were differentials in age of

respondents at birth. This was the highest contributing factor to the inequalities

that exist in under-five mortality in the urban area compared with that of the

rural area (37.88%) which was ranked fourth in the analysis. Other differentials

that were identified include preceding birth interval and Ethnicity. These factors

were higher in the rural area 79.97% and 60.00% respectively than in the urban

area 59.70% and 30.40% respectively.
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Chapter 5

Conclusion and Recommendations

5.1 Conclusion

Among the predictor variables considered in the study to decompose inequality in

under-five mortality, it was observed that socio-economic inequalities in under-

five mortality favours the better-off (middle and rich quintile) than the poor.

These inequalities vary between regions. It was observed that regions such as

Northern, Central, Upper East and Upper West contributes positively to under-

five mortality than the other regions of Ghana. Other socio-economic factors that

affects under-five mortality positively includes mother’s educational level (HEL)

and Defacto place of residence. The study revealed that child born by caesarean

does not contribute to under-five mortality in Ghana.

Demographic factors that was significant to under-five mortality includes Total

number of children ever born by mothers, preceding birth interval, age of mother

at birth and ethnicity.

It was observed that sex of a child has a negative contribution to under-five mor-

tality in Ghana.

Lastly, there differentials in some socio-economic and demographic factor. these

includes total number of children ever born by mothers,age of respondents, pre-

ceding birth interval and Ethnicity.
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5.2 Recommendations

Since the study used only one method (classification trees), it is recommended

that other methodological approach should be used in addition to classification

trees to ascertain the best model for this research work.

The analysis by regions highlighted inequalities between regions and wealth-

related inequality within regions. A more in-depth analysis determining the lo-

cation of the most vulnerable sub-groups within regions would help in better

reaching the whole population during interventions. It is highly recommended

that each intervention should be consistent with the socioeconomic and political

context which plays a role in the process to equity illustrated in the concep-

tual framework proposed by the commission on Social Determinants of Health

(CSDH) in the year 2005.

As a future work, it is recommended that determinants of mortality risk among

children between the months of 1− 12 in Ghana in addition to the determinants

of under-five mortality risk can be analyzed. Socio-economic and demographic

factors associated with under-five mortality risk might be different than those

associated with infant mortality. Therefore explanatory variables other than the

ones used in this study can be included to the model.

Lastly,further research should be conducted in subsequent Ghana Demographic

and Health Surveys in order to monitor the causes and progress of under-five

mortality.
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APPENDICES

5.2.1 appendix B

R-SOFTWARE OUTPUT FOR OVERALL ANALYSIS

n= 1295

node), split, n, loss, yval, (yprob)

∗ denotes terminal node

1) root 1295 479 yes (0.36988417 0.63011583)

2) TNOCB< 1.581 0 no (1.00000000 0.00000000) ∗ 3) TNOCB>= 1.51214398

yes (0.32784185 0.67215815)

6) DROR=GA,NR,UW,WR 443 187 yes (0.42212190 0.57787810)

12) DTOR=UR 80 19 no (0.76250000 0.23750000)

24) PBI>= 2648 0 no (1.00000000 0.00000000) ∗

25) PBI< 26 32 13 yes (0.40625000 0.59375000)

50) DROR=NR,UW,WR 9 0 no (1.00000000 0.00000000) ∗

51) DROR=GA 23 4 yes (0.17391304 0.82608696) ∗

13) DTOR=RU 363 126 yes (0.34710744 0.65289256)

26) WI=rich 70 34 no (0.51428571 0.48571429)

52) ETH=other 13 0 no (1.00000000 0.00000000) ∗
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53) ETH=akan,ewe,ga/dangme,mole-dagbani 57 23 yes (0.40350877 0.59649123)

106) PBI>=45.5 20 6 no (0.70000000 0.30000000)

212) ETH=mole-dagbani 10 0 no (1.00000000 0.00000000) ∗

213) ETH=akan,ga/dangme 10 4 yes (0.40000000 0.60000000) ∗

107) PBI< 45.5 37 9 yes (0.24324324 0.75675676) ∗

27) WI=middle,poor 293 90 yes (0.30716724 0.69283276)

54) PBI< 101 283 90 yes (0.31802120 0.68197880)

108) DROR=GA,NR 156 58 yes (0.37179487 0.62820513)

216) PBI< 15.57 2 no (0.71428571 0.28571429) ∗

217) PBI>=15.5 149 53 yes (0.35570470 0.64429530)

434) AORAB< 18.5 73 32 yes (0.43835616 0.56164384)

868) SEX=male 38 18 no (0.52631579 0.47368421)

1736) PBI >=50.5 14 4 no (0.71428571 0.28571429) ∗

1737) PBI< 50.5 24 10 yes (0.41666667 0.58333333)

3474) PBI< 34 16 7 no (0.56250000 0.43750000) ∗

3475) PBI>=34 8 1 yes (0.12500000 0.87500000) ∗

869) SEX=female 35 12 yes (0.34285714 0.65714286)

1738) ETH=other 13 6 no (0.53846154 0.46153846) ∗

1739) ETH=akan,ewe,mole-dagbani 22 5 yes (0.22727273 0.77272727) ∗

435) AORAB>= 18.5 76 21 yes (0.27631579 0.72368421)

870) PBI< 52.5 62 20 yes (0.32258065 0.67741935)

1740) PBI>= 36 22 11 no (0.50000000 0.50000000)

3480) PBI< 42.5 8 1 no (0.87500000 0.12500000) ∗

3481) PBI>= 42.5 14 4 yes (0.28571429 0.71428571) ∗

1741) PBI< 36 40 9 yes (0.22500000 0.77500000) ∗

871) PBI>=52.5 14 1 yes (0.07142857 0.92857143) ∗

109) DROR=UW,WR 127 32 yes (0.25196850 0.74803150)

218) TNOCB< 5.5 99 29 yes (0.29292929 0.70707071)

436) TNOCB>= 2.5 67 24 yes (0.35820896 0.64179104)
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872) AORAB>=16.5 55 22 yes (0.40000000 0.60000000)

1744) PBI>= 23.5 45 20 yes (0.44444444 0.55555556)

3488) PBI< 29.5 10 4 no (0.60000000 0.40000000) ∗

3489) PBI>=29.5 35 14 yes (0.40000000 0.60000000)

6978) TNOCB>=3.5 19 9 no (0.52631579 0.47368421) ∗

6979) TNOCB< 3.5 16 4 yes (0.25000000 0.75000000) ∗

1745) PBI< 23.5 10 2 yes (0.20000000 0.80000000) ∗

873) AORAB< 16.5 12 2 yes (0.16666667 0.83333333) ∗

437) TNOCB< 2.5 32 5 yes (0.15625000 0.84375000) ∗

219) TNOCB>=5.5 28 3 yes (0.10714286 0.89285714) ∗

55) PBI>= 101 10 0 yes (0.00000000 1.00000000) ∗

7) DROR=AR,BA,CR,ER,UE,VR 771 211 yes (0.27367056 0.72632944)

14) PBI< 21.5 83 38 yes (0.45783133 0.54216867)

28) ETH=ga/dangme,other 7 1 no (0.85714286 0.14285714) ∗

29) ETH=akan,ewe,mole-dagbani 76 32 yes (0.42105263 0.57894737)

58) TNOCB< 7.5 68 31 yes (0.45588235 0.54411765)

116) WI=poor,rich 48 23 no (0.52083333 0.47916667)

232) ETH=ewe 8 1 no (0.87500000 0.12500000) ∗

233) ETH=akan,mole-dagbani 40 18 yes (0.45000000 0.55000000)

466) AORAB>= 21.5 11 3 no (0.72727273 0.27272727) ∗

467) AORAB< 21.5 29 10 yes (0.34482759 0.65517241)

934) DROR=AR,CR,UE 20 9 yes (0.45000000 0.55000000)

1868) AORAB< 18.5 11 4 no (0.63636364 0.36363636) ∗

1869) AORAB>= 18.5 9 2 yes (0.22222222 0.77777778) ∗

935) DROR=BA,ER,VR 9 1 yes (0.11111111 0.88888889) ∗

117) WI=middle 20 6 yes (0.30000000 0.70000000) ∗

59) TNOCB>= 7.5 8 1 yes (0.12500000 0.87500000) ∗

15) PBI>= 21.5 688 173 yes (0.25145349 0.74854651)

30) AORAB>= 13.5 676 173 yes (0.25591716 0.74408284)
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60) ETH=other 81 30 yes (0.37037037 0.62962963)

120) WI=middle,rich 48 23 yes (0.47916667 0.52083333)

240) DTOR=RU 24 9 no (0.62500000 0.37500000)

480) WI=rich 11 0 no (1.00000000 0.00000000) ∗

481) WI=middle 13 4 yes (0.30769231 0.69230769) ∗

241) DTOR=UR 24 8 yes (0.33333333 0.66666667)

482) TNOCB>= 4.5 7 3 no (0.57142857 0.42857143) ∗

483) TNOCB< 4.5 17 4 yes (0.23529412 0.76470588) ∗

121) WI=poor 33 7 yes (0.21212121 0.78787879)

242) HEL=NO 21 7 yes (0.33333333 0.66666667)

484) DROR=AR,BA,VR 8 3 no (0.62500000 0.37500000) ∗

485) DROR=ER,UE 13 2 yes (0.15384615 0.84615385) ∗

243) HEL=PRI,SEC 12 0 yes (0.00000000 1.00000000) ∗

61) ETH=akan,ewe,ga/dangme,mole-dagbani 595 143 yes (0.24033613 0.75966387)

122) PBI< 34.5 171 53 yes (0.30994152 0.69005848)

244) TNOCB>= 3.5 91 37 yes (0.40659341 0.59340659)

488) HEL=NO,PRI 53 26 yes (0.49056604 0.50943396)

976) TNOCB>=5.5 24 9 no (0.62500000 0.37500000)

1952) PBI< 27.5 12 2 no (0.83333333 0.16666667) ∗

1953) PBI>= 27.5 12 5 yes (0.41666667 0.58333333) ∗

977) TNOCB< 5.5 29 11 yes (0.37931034 0.62068966)

1954) DROR=AR,ER,UE,VR 21 10 yes (0.47619048 0.52380952)

3908) SEX=male 11 4 no (0.63636364 0.36363636) ∗

3909) SEX=female 10 3 yes (0.30000000 0.70000000) ∗

1955) DROR=BA,CR 8 1 yes (0.12500000 0.87500000) ∗

489) HEL=HI,SEC 38 11 yes (0.28947368 0.71052632)

978) DROR=BA 7 2 no (0.71428571 0.28571429) ∗ 979) DROR=AR,CR,ER,UE,VR

31 6 yes (0.19354839 0.80645161) ∗

245) TNOCB< 3.5 80 16 yes (0.20000000 0.80000000)
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490) AORAB>= 22.5 20 9 yes (0.45000000 0.55000000)

980) HEL=SEC 9 3 no (0.66666667 0.33333333) ∗

981) HEL=HI,NO,PRI 11 3 yes (0.27272727 0.72727273) ∗

491) AORAB< 22.5 60 7 yes (0.11666667 0.88333333) ∗

123) PBI>= 34.5 424 90 yes (0.21226415 0.78773585)

246) PBI>= 36.5 393 88 yes (0.22391858 0.77608142)

492) PBI< 167 386 88 yes (0.22797927 0.77202073)

984) PBI>= 72.5 112 33 yes (0.29464286 0.70535714)

1968) PBI< 106 78 28 yes (0.35897436 0.64102564)

3936) PBI>= 98.5 14 6 no (0.57142857 0.42857143) ∗ 3937) PBI< 98.5 64 20 yes

(0.31250000 0.68750000)

7874) DROR=AR,ER 30 14 yes (0.46666667 0.53333333)

15748) PBI>= 87.5 7 2 no (0.71428571 0.28571429) ∗

15749) PBI< 87.5 23 9 yes (0.39130435 0.60869565)

31498) AORAB< 18.5 10 4 no (0.60000000 0.40000000) ∗

31499) AORAB>=18.5 13 3 yes (0.23076923 0.76923077) ∗

7875) DROR=BA,CR,UE,VR 34 6 yes (0.17647059 0.82352941) ∗

1969) PBI>= 106 34 5 yes (0.14705882 0.85294118) ∗

985) PBI< 72.5 274 55 yes (0.20072993 0.79927007)

1970) PBI< 58.5 214 48 yes (0.22429907 0.77570093)

3940) ETH=akan 131 34 yes (0.25954198 0.74045802)

7880) AORAB>= 26.5 7 3 no (0.57142857 0.42857143) ∗

7881) AORAB< 26.5 124 30 yes (0.24193548 0.75806452)

15762) PBI>= 54.5 15 6 yes (0.40000000 0.60000000) ∗

15763) PBI< 54.5 109 24 yes (0.22018349 0.77981651)

31526) PBI< 38.5 15 6 yes (0.40000000 0.60000000) ∗

31527) PBI>=38.5 94 18 yes (0.19148936 0.80851064)

63054) AORAB< 23.5 87 18 yes (0.20689655 0.79310345)

126108) WI=poor,rich 65 16 yes (0.24615385 0.75384615)
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252216) PBI>= 43.5 43 13 yes (0.30232558 0.69767442)

504432) TNOCB>= 3.5 20 8 yes (0.40000000 0.60000000)

1008864) DROR=AR,ER 9 4 no (0.55555556 0.44444444) ∗

1008865) DROR=BA,CR 11 3 yes (0.27272727 0.72727273) ∗

504433) TNOCB< 3.5 23 5 yes (0.21739130 0.78260870) ∗

252217) PBI< 43.5 22 3 yes (0.13636364 0.86363636) ∗

126109) WI=middle 22 2 yes (0.09090909 0.90909091) ∗

63055) AORAB>= 23.5 7 0 yes (0.00000000 1.00000000) ∗

3941) ETH=ewe,ga/dangme,mole-dagbani 83 14 yes (0.16867470 0.83132530) ∗

1971) PBI>= 58.5 60 7 yes (0.11666667 0.88333333) ∗

493) PBI>= 167 7 0 yes (0.00000000 1.00000000) ∗

247) PBI< 36.5 31 2 yes (0.06451613 0.93548387) ∗

31) AORAB< 13.5 12 0 yes (0.00000000 1.00000000) ∗
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