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ABSTRACT
A prime number is a natural number greater than 1 which has only two factors among natural
numbers, namely, 1 and itself. That is equivalent to the assertion “a positive integer p is prime if, and
only if p > 1 and every positive integer which divides p is either 1 or p". Prime numbers have been

used to formulate many useful principles in Abstract Algebra. In fact there are many useful theorems

in Abstract Algebra which are based on prime numbers.

Prime numbers have been used to produce many useful theorems, especially on finite fields,
irreducibility of certain polynomial of the field of rational numbers and in group theory, to define

p-groups and sylow p-subgroup.

This thesis seeks to provide some of the most commonly used results which have prime numbers in

their background.
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Prime numbers and their properties were first studied extensively by the ancient Greek
Mathematicians. About twenty-five hundred years ago, the ancient Greek often got credit for
being the first to study prime numbers for their own sake. Eratosthenes came up with the sieve of
Eratosthenes, and Euclid proved many important basic facts about prime numbers which today
we take for granted, such as that there are infinitely many primes. Euclid also proved the

relationship between the Mersenne primes and the even perfect numbers.

With the Roman conquest of the Greeks, much of the written Greek knowledge was translated to
Latin, or at least preserved. As the Greeks taught the Romans what they knew, they preserved
Greek mathematical knowledge but made no further progress in the study of pure mathematics,
such as prime numbers. The Arab mathematicians of the Middle Ages studied the work of
ancient Greek mathematicians but with the added advantage of a numerical system more
amenable to computational work. Thabitibn Qurra, for example, proved the relationship between
consecutive prime Thabit numbers and amicable pairs. Pierre de Fermat stated an important
theorem (now known as Fermat's little theorem) which states that given a prime p and a coprime

base b, the congruence b?~* = 1mod p holds true.

In the 20th century, computers gradually became important in calculating data for theorists to
ponder; from the 13th Mersenne prime on all the largest primes since the middle of the century
have been found with the help of computers. The invention of public key cryptography in the late

1970s has precipitated the need—for larger prime numbers and motivated many advances in

1



integer factorization algorithms. From the 1990s onwards, distributed computing projects like the
Great Internet Mersenne Prime Search and Seventeen or Bust have discovered some of the

largest known prime numbers.

An integer greater than one is called a prime number, if it’s only positive divisors (factors) are
one and itself. For example, the prime divisors of 10 are 2 and 5; and the first six primes are
2,3,5,7,11, and 13. The Fundamental Theorem of Arithmetic shows that the primes are the
building blocks of the positive integers: every positive integer is a product of prime numbers in
one and only one way, except for the order of the factors. On the other hand, in the nineteenth

century it was shown that the number of primes less than or equal to n** prime is approximately

n
logn °

equal to

1.2 DEFINITION
A prime number is a natural number greater than 1 which has only two factors among natural

numbers, namely, 1 and itself. Examples of prime numbers are 2,3,5,7,11 etc.

For larger natural numbers, prime number can be determined by using the primality testing.
Since prime numbers do not follow any pattern. The primality testing is of two tests. The first is

deterministic primality test and the second is probabilistic primality test.

Deterministic primality test determine whether a number is prime. It is mostly based on

factorization techniques.



Probabilistic primality test determine whether a number is prime or not with a given degree of
confidence. Many important basic facts about prime numbers were proved by Euclid. For

example, there are infinitely many prime numbers.

1.2.1 EUCLID’S THEORY
There are infinitely many prime numbers

Proof

Suppose that there were only finitely many prime numbers. Then we could list all of them

Py, D32, -, Pn- Then consider the number M = p1p; oo Pp—1Pn + 1.

That is, M is the product of all the primes plus 1. Choose p € {p;, ..., P»} such that p is a factor

of M.

Then p cannot be in the list p;, P, .....Pn, since if it were in that list, then p would divide
M — (pyp> .....Pn) =1. Then there is a contradiction p divides 1 and p cannot divides 1 since

p > 1. Thus, there are infinitely many prime numbers.

1.3 PROBLEM OF STATEMENT

Prime number is one of the important numbers used in Mathematics. Even back in our primary
school days, prime numbers were featuring in factorization. Prime numbers play a vital role
when we talk about characteristics of a field.

With the definition of prime number, prime field is an example of how prime number has been

=

used. It also leadsto the studying of all finite fields.
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The study of p-groups, sylow p-subgroup and Sylow theorem of a finite field will also be

considered.

This thesis seeks to examine the role of prime numbers in abstract algebra.

1.4 OBJECTIVE

Prime numbers are used widely in both abstract algebra and number theory. The aim of this
thesis is to identify the main uses of prime number in abstract algebra and its importance. Also
to know how prime number helps to formulate certain theorems and prove them. Examples are
using prime numbers to describe all finite fields and using prime numbers to describe certain

important subgroups of finite groups like p-groups and sylow p-subgroup.

1.5 METHODOLOGY

To present an overview of the uses of prime numbers in abstract algebra considering the
following topics such as rings, commutative rings, fields, integral domain, finite fields,
characteristic of a field, groups, Cauchy’s theorem, p-subgroup, sylow p-subgroup, sylow

theorem, and Galois theory. Every finite integral domain is a field.

1.6 JUSTIFICATION

The study will be such that it will be easy to study it without going to look through any text
book. It will also help you to learn more about prime numbers. That is deduced from the
definition, how to identify that a number is prime and looking at its application in various accept

of abstract algebra:
e : ‘,__,.,—‘_':‘-_—___-_._



CHAPTER 2

RING

2.1 Basic Concepts
2.1.1 Definition
A nonempty set R is said to be a Ring if there are two defined binary operation namely
addition(+) and multiplication(-) such that the following conditions are satisfied.
R;: Foreverypaira,b €R a+b€R
R;: Addition is commutative
a+b=b+a VabeR
Ri: Addition is associative
(a+b)+c=a+(b+c) Vabc€ER
Rs: There is an element 0 in R such that

a+0=a Va€eR

Rs: There exist an element - a in R such that
a+(—a)=0
Rs: Foreverypaira, b ER a-b€ER
R;:  Multiplication is associative
(a'b):c=a-(b-c) Vab,cER
Rs:  Distributive law
a-(b+c)=a-b+a-c

and (b+c¢c)-a=b-a+c-a Va b,c ER



2.1.2 Commutative Ring

If the multiplication of aring Rissuchthata-b=b-a foreverya,b €E RthenRisa
commutative ring.

Ring with unit 1: A ring R is said to be a ring with unity 1 if R contains at least two distinct

elements and there exist 1 E Rsuchthatl1-a=a-1=a Va €R.

Example

1. Let Z be the set of all integers. Then Z is commutative ring with unity 1 under the usual
binary operation of addition and multiplication.

2. Let Q be the set of all rational numbers then Q is a commutative ring under the usual binary
operation of addition and multiplication.

3. Let C be the set of all complex numbers. Then C is a commutative ring under the usual binary

operation of addition and multiplication.

2.2 Ideal

Let R be a ring and S a nonempty subset of R that is closed under the operations of addition and
multiplication in R. If S is itself a ring under these operations then S is called a subring of R. A
nonempty subset fof a ring R is a left ideal if and only if forallx,y €  and 7 € R

)x,yEI =2x-yEl

Nxel,reER=2rxel

Similarly, [ is a right ideal if and only if for all x,y € Jand r € R
Dx,y€l =2x—ye€l

i)XELLrER=Xr€l ——/



If I is both a left and a right ideal then [ is called ideal.

Example

1: For aninteger Z, I = {2k|k € Z}

2: For each integer n the cyclic subgroup (n) = {kn| k € Z} is an ideal in Z.

3: Let R be any commutative ring with unity 1. If a € R, let (a) = {xa|x € R}, then {(a) is an

ideal.

Proof

Suppose that u, v € (a): thus u = xa, v = ya where x,y € R. Hence
u4+v=xa+ya
= (x + y)a € (a)

Also if u € {a) and r € R then u = xa. ru = rxa = (rx)a € (a). Thus (a) is an ideal of R.

2.2.1 Maximal Ideal
An ideal M in a ring R is said to be a maximal ideal of R if M # R and whenever [ is an ideal of

R suchthat M c I c R theneither R =] or M = I.

Theorem 2.2.1

If R is a commutative ring such that R? = R, then every maximal ideal M in R is prime.

Proof

Suppose M # Rand ab € M buta & M and b € M. Then each M + (a) and M + (b) properly

contains M. M +(a)= R = M + (b). since R is commutative and ab € M, it implies



(a)(b) € {(ab) c M
R=R?*=(M + (a))(M + (b)) € M? + (a)M + M(b) + {a)(b) c M.

This contradicts the fact that M # R. Therefore a € Mor b € M. Hence M is prime.

2.2.2 Prime Ideal
An ideal P in aring R is said to be prime if P # R and for any ideal A, B in R

ABcP=>AcPorBc P Forexamplea €A, beE Bandab€EP=>a€Porb€EP

Theorem 2.2.2

If P is an ideal in a ring R such that P # R and foralla,b € Rabe P = b€ Pora € P then P
is a prime.

Proof

If A and B are ideals such that AB € P and A & P, then there exist an elementa € A — P.
Forevery b € B,ab € AB c P.Hence a € P or b € P. Since a € P, we must have b € P for all

b € B: thus B c P. Therefore P is prime .

Conversely, if P is any ideal and ab € P, then the principal ideal {(ab) is contained in P. If R is
commutative implies that (a){b) < (ab) hence(a){b) c P. If P is prime then either (a) P or

(b) c P. Hence a E Porb € P.



2.3 Quotient Ring

Let S be a multiplicative subset of a commutative ring R and let S™*R be the set of equivalence
classes of R X S under the equivalence relation then

i) S7'R is a commutative ring with identity, where addition and multiplication are defined by
r/s+r /s =(rs +rs)/ss and (r/s)(r'/s) =rr'/ss

ii) If R is a nonzero ring with no zero divisors and 0 € S, then S™'R is an integral domain.

i) If R is a nonzero ring with no zero divisors and S is set of all nonzero element of R, then

S~!R is a field. Therefore S™'R is a quotient ring.

2.4 Integral Domain

An integral domain is a commutative ring with unity 1 such that 1 # 0 and it has no zero
divisors. That is, a commutative ring Kwith unity 1 5 0 is an integral domain is an integral
domain, if for every pair @, b € K suchthat @ - b = 0 either a = 0 or b = 0 then K is called an
integral domain.

An irreducible element is an element which cannot be written as a product of two non units.

Example: The ring Z of all integers is an integral domain. Examples of finite integral domain are
Z3,23,2Zs, .... There are some finite commutative rings with unity which are not integral domain

such as Z4, Z¢, Zg, ...

' LIBRXRY
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Theorem 2.4.1
In a commutative ring R with identity 1z # 0 an ideal P is prime if and only if the quotient ring

R/P is an integral domain.

Proof

R/P is a commutative ring with identity 1 + P and zero element 0 + P = P. If P is prime, then
1z + P # P since P # R.

Furthermore, R/P has no zero divisors since

(a+P)b+P)=P

= ab+P=P

Thereforeab€ P =>a€Por bEP.Soa+P=Porb+P =P.

Hence R/P is an integral domain.

Conversely, if R/P is an integral domain, then 1z +P # 0 + P,
hence 15 & P.
=~ P # R. Since R/P has no zero divisors,

abeEP=>ab+P=P

=
(a+P)(b+P)=P hm'ﬂ-l“ a1y 1
VE
ypoMAR UR!
=>a+P=Por b+P=P,a€EP orb€EP. "‘l::ﬁ:gf_ ARD EHHHI:“
FyMASI-GHAN

Hence P is Prime
Therefore, in a commutative ring R with identity 1 # 0 an ideal P is prime if and only if the
quotient ring R/P is an integral domain.

e /_,_,-:"_""_-__._._
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2.5 Euclidean Algorithm
If m and n are integers with n > 0, then there exist integer g and r with 0 < r < n such that
m=qn-+r.

Proof

Let W = {m = tn|t € Z}. We claim that W contains some nonnegative integers, for if t is large
enough and negative, then m — tn > 0. Letv = {v € W|v = 0} by the well-ordering principle
v has a smallest element, 7 since r € v,7 2 0 and r = m — gn for some q. We claim thatr < n
ifnotr=m-—gn=n.Hencem—(g+1)n=0.

Butm — (g + 1)n € v yet m — (g + 1)n < r. Contradicting the minimal nature of r in v.

Hence the Euclidean Algorithm.

Well-ordering principle: Any nonempty set of nonnegative integers has a smallest element.

This is the well-ordering principle for nonnegative integers.

2.6 Definition on Factors

Let a and b be integers. Then a is said to be a factor of b if there is an integer k such that

b = ak.

Let x and y be integers, then an integer c is called a common factor of x and y if c is a factor of
x and c is a factor of y.

Let @ and b be integers. Then an integer c is said to be highest common factor of a and b if:

11



Theorem 2.6.1
Let D be an integral domain and a, b € D. Then these two statements are equivalent
1. a and b are associates
2. There exists an invertible element u € D such that a = ub
Proof
Suppose a and b are associates is true. Let a = ub where u €D
or b=vawhere veED
then a =uva
a(lur—1) =0
if a=0then b=0andso a=1-blet u=1
if a = 0 then from a(uv—1) =0 thenwegetuv—1=0
sur=1
Thus u is invertible.
Therefore a and b are associates implies there exist an invertible element u € D such that
a=ub
Suppose there exist an invertible element u € D such that @ = ub is true.
Let a = ub where u an invertible element in D.
Choose v € D suchthat uv =1
then va=wvub=0>b
then a=uband b =va
~ aand b are associate

Hence, there exist an invertible element u € D such that @ = ub implies a and b are associates

13



2.6.2 Relatively Prime
A pair of integers x, y are said to be relatively prime if 1 is the only positive integer which

divides both of x and y. For example 24 and 35 are relatively prime.

Corollary

If a and b are relatively prime, we can find integers m and n such that ma + nb = 1.

Lemma 2.6.2

If a is relatively prime to b but a/bc, then a/c

Proof

Since a and b are relatively prime, by the corollary, we find integers m and n such that

ma + nb = 1. Thus mac + nbc = ¢. Now a/mac and by assumption a/nbc.
Consequently, a/(mac + nbc) since mac + nbc = c. We conclude that a/c. Hence, if a is

relatively prime to b but a/bc then a/c.

2.6.3 Prime element
A non-zero element p of an integral domain D with unity is called prime element if

1) p is a nonzero nonunit

ii) if p/ab then p/a or p/b where a,b € D.

14



2.6.4 Unique Factorization Domain (U.F.D)

A unique factorization domain is any integral domain in which every nonzero noninvertible

element has a unique factorization.

Thus an integral domain R is a unique factorization domain provided that

i) every nonzero nonunit element a of R canbe writtena = ¢; ¢, ....c, with ¢, ¢; ....c,,
irreducible.

i) If a=c;¢;....cp and b = d,d,; ....dy(cyd; irreducible) then n = m and for some

permutation & of (1,2, ...n).c; and d; are associates for every i.

Theorem 2.6.4

In a unique factorization domain every irreducible element is prime.

Proof

Let D be a U.F.D. Let a be an irreducible element of D. Suppose x divides b(a, b € D). Suppose
there exists y € D such that xy = ab. Nowy, a and b are products of irreducible elements, say,

= €4.C3 s Cpyy B =dids ... AN P00 1

where ¢, €5, ..., Cnody, d3, ..., Ay and 14, 15, ..., T are irreducible elements.

Then xy =ab, x(rr;..1) = (€1€;...¢x)(d1d; ... d;,). But these are two factorizations into
irreducible elements and so, as D is a U.F.D, we must have 1 + t = n + m and, more
importantly, every irreducible element on the left-hand side must be an associate of an

irreducible element on the right-hand side. Thus x is an associate of some ¢; or some d;.

."-FFF
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But this implies that x divides a or x divides b.

2.7 Principal Ideal Domain (P.I.D)
An integral domain D is called a principal ideal domain if every ideal I in D is of the form

| = {xa| x € D} for some a € I.

If K is a commutative ring with unity 1 then the ring K[X] of all polynomials over K in
indeterminate X is a principal ideal. Also an integral domain in which every ideal is principal is

called a principal ideal domain.

Lemma 2.7.1

Let D be a Principal Ideal Domain (P.I1.D). Any two non-zero elements a and b of D have a
highest common factor given by Da + Db = Dd.

Proof

Da and Db are ideals of D and so Da + Db is also an ideal. Hence as D is a P.I.D there exist

d € D such that Da + Db = Dd. Certainly Da € Dd and so d divides a and similarly d divides
b. Thus d is a common divisor of @ and b. Suppose ¢ € D is also a common divisor of @ and b.
Now d € Da + Db and so there exist x,y € D such that d = xa + yb. But now if ¢ divides a

and ¢ divides b, we must know that ¢ divides d. Thus d is a highest common factor of a and b.

—_
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Theorem 2.7.2
A principal ideal domain is also a unique factorization domain.
Proof
Let D be a principal ideal domain and every non-zero element of D which is not a unit is a finite
product of irreducible elements. Let a € D and let a be expresses as
a=c¢yCy..Cp = dyd; ..d;y where c,,C;,...,C, and d,, d,, ..., d,, are irreducible elements of D.
Then ¢, divides d,d; ...d,, and so divides one of d,,d;, ..., d,,. Suppose ¢, divides d,. Then ¢,
and d, are irreducible elements which are associates and so d, = uc; where u is a unit of D.
Then ¢y¢;...¢p =dyd;...dy, = uc,d; ...d,, which implies that

C; C3 . Cp = ud,d; ...d,, = d’;d; ...d,, whered';, = ud, is an irreducible element.

Hence by induction, the theorem is proof.

Theorem 2.7.3

In a principal ideal domain (P.1.D), every irreducible element is prime.

Proof

Let D be P.L.D. Let P be an irreducible element of D. Let p divides ab where a,b € D. Suppose
p does not divide a, let ¢ € D be such that ¢ divides p and ¢ divides a. Since p is irreducible c is
a unit or an associate of p. If ¢ is an associate of p then as ¢ divides a so also does p divides a
which is false. Hence c is a unit. Hence by lemma 2.7.1

Da + Dp = Dd where d is necessarily a unit and so Dd = D, giving Da + Dp = D.

Hence there exist x,y € D suchthat xa+yp=1.

But then xab tybp =b ﬁ'nnlf_’h_jgh;p_d.i:vides b. Hence p is a prime.

17
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Theorem 2.7.4

The ring Z of all integers is an example of a principal ideal domain.

Proof

Oe . IfI # 0, choose any x € I such that x # 0 then |x| is a positive integer and |x|€el. Using the
well-ordering principle, for positive integers let a be the smallest positive integer in 1.

If xel use the Euclidean Algorithm to write x = ga + r where g, r are integers and

0 <r<a.Then,r =x —qaeC(a). C(a) is the principal ideal in Z. This implies C(a) c I.

Hence r cannot be positive integer. Hence 7 = 0, thus x = ga.

Theorem 2.7.5
If p is a prime then the square root of p is not a rational number.
Proof

To prove that if p is prime number then there is no rational number r such that r? = p; assume
that r is a rational number and 7* = p. Letr = 1—:- where m and n are positive integers such that
m and n are relatively prime. Then m? = n?p. It follows that m = pk, where k is a positive
integer. That also implies n? = k*p. Hence n = gp, where g is a positive integer. This
contradicts the assertion that m and n are relatively prime since p < 2. The assumption is false.

Hence there is no rational number r such that r* = p.

18



Theorem 2.7.6

If R is a principal ring and /; < I, C --- is a chain of ideals in R.then for some positive integer
n, L=5LVYjzn

Proof

Let A = U;>, [; We claim that A is an ideal. Ifa,b € Athen a € [;and b € I;. Eitheri < j or
i = j. Consequently I; € I; and a, b € I; since I; is an ideal a — b € I; < A. Therefore, 4 is an
ideal. By hypothesis A is principal. Say A = I, since a € A = U I; and a € I, for some n.
Therefore, foreveryj=nlIcl, cljcAcl

Hence I; = I,,.

Theorem 2.7.7
If a is an element in a principal ideal domain D such that @ # 0 and a is not invertible then there

exist a prime element such that p divides a.

2.8 Some Useful Results On Principal Ideal Domain
If a, b are elements in a principal ideal domain D then there exist y,n € D such that ay + bn is a
highest common factor of @ and b. If ¢ is a highest common factor of @ and b in D. Then there

exist ¥; ,77,€D such that ¢ = ay; + bn;.

Corollary 1: let a, b be elements of a principal ideal domain D. Then a and b are relatively

prime if and only if there exist u,w € D such that au + bw =1

s —
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Corollary 2: let p be a prime element in a principal ideal domain D. If x,y are elements of D
such that p divides xy then either p divides x or p divides y.

Corollary 3: If ais an element in a principal Ideal domain D such that a # 0 and a is not
invertible then there exist a prime element p in D such that p divides a.

Corollary 4: If a is an element in a principal ideal domain D such that a # 0 and a is not

invertible element v in D. There are finitely many prime elements py, ..., px in D and positive

integers vy, ..., v, such that a = vp,"* ... p ™
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CHAPTER 3

FIELD

3.1 DEFINITION
A commutative ring containing at least two distinct elements with an identity in which every
non-zero element is invertible is called a field. Equivalently a set F containing at least two

distinct elements with two binary operation; addition and multiplication is said to be a field if the

following conditions hold

F,: F is an additive Abelian group. Thatisa +b = b + a wherea,b € F
Fy: F — {0} is a multiplicative Abelian group.

Fi: The distributive laws hold.

Thatis a-(b+c)=a-b+a-c

and (b+c)-a=b-a+c-a va,b,c €EF

3.2 Subfield

Let F be a field. A subring S of F is called a subfield if S is also a field under the same binary
operation of multiplication and addition.

Example: Ris a subfield of the field C of all complex numbers
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Theorem 3.2.1

Every field is an integral domain

Proof

Let F be a field. Then F is a commutative ring with an identity 1. Suppose there exist a,b € F

suchthata b = 0.

1

Now as a # 0 there exist a~* such that a=* - @ = 1 and so write

he=1b
= (a"*-a)-b
=a"“*(a-b)

s =

Il

Similarly if b # 0 there exist b~ such that b~': b = 1 so write

H@ave shown that F is an integral domain. Thus every finite field is an integral domain.
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Theorem 3.2.2

Every finite integral domain is a field.

Proof

Let F be a finite integral domain. Suppose F contains exactly n distinct elements.

Thenn = 2and F = {a,,a,, ...,a,}. Ifa € F and a # 0 then q, ..., a™ cannot be all distinct

elements. Choose q € {1,...,n}and r € {1,...,n} suchthat g < r and a? = a’.

Ifr—q =1then a =1.Then a?(1 —a""%) = 0 and a? # 0 therefore 1 — a" 9= 0 and
l=a"9=aql-a=a""9 Ifr—q=2thena™ 9 *€Fand al:a=1ifal?=a""9"1

Thus in all cases a has an inverse. Hence every finite integral domain is a field.

Example
Let Z be the set of all integers. Also Z is an integral domain. If p is a prime number then Z,,
Z, ={0,1, ...,p — 1} is an integral domain. Since Z,, is finite integral domain then it is

field.

3.3 Finite Characteristic
Let D be an integrakdomain and is said to have finite characteristic if there exist an integer n

i ’_,..—-“"-—‘-_—___
(n > 0) such that 0 = 1 + 1 + ++- + 1 (n terms) or equivalently that n1 = 0.

— .
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Lemma 3.3.1

Let D be an integral domain with an identity 1. Let D have finite characteristic and suppose

that n1 = 0 (n > 0). Then for all elements a of D, na = 0.

Proof
na=a+a+ - +a(nterms)
=la+la+-+1a
=(1+1+-++1a
= (nl)a
=0
Theorem 3.3.2

Let D be an integral domain with identity 1 and of finite characteristic. Then there exists a
unique prime p such that P1 = 0.

Proof _
-

By assumption thefe exist an integer 1t where n > 0 such that n1 = 0. Let P be chosen to be the
least positive integer such that P1 = 0. we claim that P is a prime. Suppose P is not a prime and

let P = p,p; where 1 < p, < p,;1 < p; <P where p;p; EN.

Then (p))(P2) =1 +1+ -+ 1)(2+1++1)
where we have p, terms in the first bracket and p; terms in the second bracket.
Expanding by distributive and collecting terms we have p,p, term of the form 11=1.
24 ..‘
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Thus (p;1)(p21) = (p1p2)1 = P1 = 0.
But D is an integral domain and so p;1 = 0 or p,1 = 0. But conclusion contradicts the choice

of P as least integer such that P1 = 0. Hence P is a prime and is unique.

Theorem 3.3.3
Let D be an integral domain of prime characteristic p and let a, b € D.

Then (a + b)? = aP + bP

Proof

Let p be a prime number. By using binomial theorem to expand

(a+b)? = aP +paP~th + 22 aP~2p? 4 o 4 bP

P@=1..(p=r+1) porpr

T where 1 < r < p — 1 is strictly positive

Now the middle term which is

integer and so 1 - 2 - ¥ must divide p(p —1) ... (p — r + 1). But p is a prime and p > 7 so none

of 1,2, ..., r can divide p but each must divide the product (p —1)(p—2) ..(p—7+1).In

p(p=1)..(p~r+1)
121

p(p-1)..(p=7+1)
121

consequence is an integer. Thus p divides

P(P—IJ---(P‘T*'llap—rbr -0

12007~ by
Thus, finally, (a + b)? = a? + b?

Hence

——
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3.4 Vector Space

A vector space V over a field F is an Abelian group under the operation "’ + " such that every
a € F and every v € V there is an element av € V, and such that :

1. a(vy +v,) = avy + av, ,fora € Fand vy, v, EV

2. (@a+pBv=av+pv,fora,fEFandv EV

3. a(pv) = (af)v,fora,fEFandv EV

4. 1v = v, for all v € V, where 1 is a the unit element of F.

3.5 Extension of a Field

Let K and F be fields. If F is a subfield of K then K is called an extension of the field F. Also if
K is a finite dimensional vector space over F then K is called a finite extension of F.Let [K: F]
denote the degree of extension of K over F.

Example 1: The field R of all real numbers is an extension of the field Q of all rational numbers.

Example 2: C is a 2-dimensional vector space over R. Hence C is an extension of degree 2 over

RI ..-""'.‘.'-’
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Theorem 3.5
Let F,K, L be fields. If K is a finite extension of F, the degree [K: F] = m and L is a finite
extension of K with degree [L: K] = n then L is a finite extension of Fand [L: F] = mn. Thus
[L:F] = [L:K][K: F]
Proof
K is an m-dimensional vector space over F and so choose a basis {ay, ..., @, } for K over F.
Also L is an n-dimensional vector space over K and so choose a basis {b,, ..., b, } for L over K.
Suppose A, j=1,..,m k=1,..,n areelements of F such that
Ty k=1 Axaibe = 0
then ELI{Z}”:lAfkaj}bk =0
it follows that X2 _, A;a; =0 vk € {1,..,n}
>4, =0 Vje{l,..,m}land VkE{L,..,n}
since 4, ..., Ay, are linearly independent over F.
This proves the set {ajby |1 <j<m, 1 <k < n} is linearly independent over F.
Finally, suppose z € L. Choose ¥1, ..., ¥n € k such that z = X3_, ¥icby.
Then for each k € {1,..,n}, ¥, = X7ty njxa; whereny, € FVj €{1,..,m}and VkE€ 110k
Hence z = Ltz;“:njjfajbk q.pd-ao{ajfrﬂ 1= <m-l<k < n} spans L over F.
That prove that mn elements{ajbk |1<j<m, 1<k< n} form a basis of L over F.

R

Hence [L: F] = [L:K][K: F]
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3.6 Primitive Polynomial
A polynomial f(x) = aq + a;x + -+ a,x" € Z[X] where a,, a,, ..., a,. are integers, is said to

be primitive if 1 is the positive integer which is a highest common factor of ay, ay, ..., a,
Examples: 5+ 18x — 2x? + 30x3 and x° — 6x + 1

Monic Polynomial

A polynomial ag + a;x + -+ a,x" over aring R is called monic if a,, = 1.

Theorem 3.6

If f,g € Z[X] and both of f and g are primitive, then the product fg is primitive.

Proof

let f = apx® + a;x' + ...+ apx™ and

g = box® + byx* + ...+ b,x™ where 1 the highest. common factor of is a,, ay,..,am and 1 is

the highest common factor of by, by, ..., by,.

Then fg = L2t Cex* where Gy = X4 aib; ie. Co = agby , C; = @by + a; by

Assume that fg is not primitive. Choose an integer t = 2 such that t divides every one of

Cn, Clr el ) Cm+n-

Nextchoose a prime number p such that p divides t, and then p divides every one of Cy,
Cy, ..., Cusn. Assume that p does not divide b, then p divides a,. Since p divides C; and p
divides agb, it follows that p divides-a, by. That implies p divides a,, since p does not divide

b,. Continuing the process, we find that p divides each of a,, ay, ..., @y.

28 DIBRERY
EWANE BKRUMAR UNIVERE(TY N
$BIENCE AND TECHNOLUGY
KUMASI-GHANA



This contradicts the fact that f is primitive. The assumption is false.

Hence fg is primitive.

Lemma
Let f(x) and g(x) be primitive polynomial in Z[x]. Suppose there exist

1,62 € Z,¢; # 0and c; # 0 such that ¢; f(x) = ¢,9(x). Then ¢; = +c, and f(x) = +g(x)

Proof
Let f(x) = ay + a;x + -+ a,x™ (a, # 0). Then the highest common factor of
@y, Ay, ..., 0y is 1 and so there exist &y, ¢y, ..., t, € Z such that
todo + tyay + -+ tpa, =1

since ¢, f (x) = c,g(x), c; divides ¢;a,, ¢ a4, ..., €, @, and so
¢, divides

tociag + tic1aq + - + 0 a,

= ¢;(to@p + 6183+ + thay) = 4.
Similarly ¢, divides c,. Thus ¢, = ¢, and f(x) = +g(x)

-
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3.6.1 Gauss Lemma

If f € Z[X] and f has a factorization f = gh where g,h € Q[X] degg > 1 anddegh > 1.
Then f has a factorization f = gh where g,h € Z[X],degg = 1anddeg h = 1.

Proof

Let fbe a primitive polynomial in Z[X]. Let f = gh where g, h € Q[X]. Choose integers
m, n such that mg is primitive and nh is primitive, then mngh is primitive. Hence mnf is
primitive. That implies mn is an invertible integer that is mn = 1. Therefore g € Z[X] and

h € Z[X]

Theorem 3.6.1

Let f(x) = ap + a;x + -+ @, X" * + x™ € Z[x] be a monic polynomial. If f(x) has a root
a€Q,thena €Zand a/ ay.

Proof

Let a = a/B, where @, f € Z and (a, ) = 1. Then

o a:'."l""l aﬂ
ﬂﬂ+ﬂ1§+"'+ﬂnsl ﬁ?l-l +F,E=U

Multiply the aqu{éﬁuat—iun by g/’“fjo.obt&m

an
anﬁn_l + ﬂiﬂﬁn_z o il o ﬂn_lﬂn_l = ——
————— ﬁ

Because a, 8 € Z, it follows that a™/f € Z, so f must be 1. The last equation also shows

a/ay. Hence,a = +ta € Z and a/ay_
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3.6.2 Eisenstein's Irreducibility Criterion

Let f =ag +a;x+ -+ a,x" € Z[X] where n 2 1. Suppose there exist a prime number p such

that;

. pdivides ay, a4, ..., @5y

p does not divide a, and

. p? does not divide a;,

Then f is irreducible over Q.

Proof

Assume that f is not irreducible over Q. Let f = gh and g, h € Q[X], then f has a
factorization f = gh where g,h € Z|X], deg g = 1and deg h = 1 by Gauss’ Lemma.
Letg =Cox® + Cix* + ...+ Cx"and h = dox® + d,x' + ...+ d x? inZ[X]. Then
a, = Cyd, and so either p divides C, and p does not divide d, or p divides d;, and p
does not divide C,. We say without loss of generality consider the case where p divides
C, and p does not divide d,.

Then from a, = Cyd, + C,d, we conclude that p divides C,d, and since p does not
divide d, then p divides C,. Continuing the process we find that p divides each of

Co, Cy, .esCr. This leads to agéntradiction p divide each of a,, ay, ..., a, and p does not

divide a,, = C,d,. The assumption is false. Hence f is irreducible over Q.

——""'-..-
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Example

1. Let f(x) = x®> —4x + 22, Since 2/22,22 } 22 and 2 divides the other relevant
coefficients of f(x). Thus by Eisenstein Criterion, f(x) is irreducible in Q[x].
2. Let f(x) = x* — 6x* + 12x> + 30, since 3/30, 3% { 30 and 3 divides the other

relevant coefficients of f(x). Thus by Eisenstein Criterion, f(x) is irreducible in Q[x].

3.6.3 Cyclotomic Polynomial
The polynomial ¢, (x) are defined inductively by:

(@) p1(x) =x-1

(x"*=1)
[Mealx)

(b) Ifn > 1, then @, (x) =

where in the product in the denominator d runs over all the divisors of n except for n itself.

These polynomials are called the Cyclotomic Polynomials and @, (x)is called the nth Cyclotomic

Polynomial.
Example
— . _,..--"‘"'_-___-__—
_(x2-1) _ (x2-1) _
1. @(x) = Sy =x+1
Bt ==
_ (x*=1)
2. ¢(x) = (p1(x)p2(x))
o [(x%=1])
~ ((x-1)(x+1)) 2
ST i SRR
= (x*+1)
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3.6.4 The pth Cyclotomic Polynomial

If p is a prime number then the polynomial 1 + x + --- + xP~? is called the pth Cyclotomic

Polynomial. It is irreducible over Q.

Proof
Consider, A+x++xPYx—-1)=x" -1
xP —1
1+x++xP1=
x—1

We change the indeterminate x by writing x =y 4+ 1

.k
then1l+ x4+ -+ xP1 = (}’+1:3 1

== yp_l -4 p}!p_z +4 i p
if p>2, yP"'+pyP %+ -+ p isirreducible over @ by Eisenstein’s irreducible criterion.

Hence, 1 + x + --- + xP~ 1 is irreducible over Q.

3.7 Splitting Field

Let F be a field and f € F[x] a polynomial such that deg f = m = 1. A field K is called a

splitting field of f over F if K is a finite extension of F, f has m roots @, @3, ..., @, € K and the

degree of extension [K: F] is the smallest possible.

——
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3.8 Finite Field

A field F is finite if there exist a positive integer q such that F contains exactly g distinct
elements a;, @y, ..., a,. The commonest examples of finite fields are Z, = {0,1, ..., p — 1} where

p is a prime number.

Theorem 3.8.1

Let F be a finite field with g elements and suppose that F © K where K is also a finite field.
Then K has g™elements where m = [K: F].

Proof

K is a vector space over F and since K is finite it is certainly finite dimensional as a vector space
over F. Suppose that [K: F|] = m; then K has a basis of n elements over F. Let such a basis be
vy, V3, ..., V. Then every element in K has a unique representation in the form

@ Vg + AV, + - + AUy Where @y, @, ..., @, are all in F. Thus the number of elements in K
is the number of a;v; + a,v, +;i£nl,1?,n'as the @y, @3, .., @y, range over F. Since each

—

coefficient can have g values K must clearly have g™ elements.

._.—-—-"_—-_-
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Corollary |

Let F be a fintte field, then F has p™ clements where the prame number p & the chanscterstic of
F.

Proof

Since F has a finite number of clements, then f1 = 0 where [ is the number of clements i F.
Thus F has characteristics p for some prime number p.

Therefore F contains a ficld Fy, somorphic 0 Z,(rtog of integers with modulo prime p). Since
Fy has clements p, F has p™ clements where m = [F: Fy] by theorem 3.7.1. Hence ket F be a

finite ficld, then F has p™ clements where the prime number p is the characterstc of F.

Corollary 2

If the finite fickd F has p™ clements then every @ € F satisfies @* = a.

Proof

If @ = 0 the assertion of the corollary is trivially true. On the other hand, the nonzero clements of
F form a group under multiplication of order p™ — 1 thus this corollary @* ' = 1 fora # O m

F. Mukiplying this relation by a we obtain ¥ = a.




Corollary 3

[f the field F has p™ elements then F is the splitting field of the polynomial x?™ — x.

Proof

By lemma 3.3.1, xP" —x certainly splits in F. However, it cannot split in any smaller field for

that field would have to have all the roots of this polynomial and so would have to have at least

p™ elements. Thus F is the splitting field of xP™ — x.

Lemma 3.8.1

If the finite field F has p™ elements then the polynomial x?™ — x in F[x] factors in F[x] as

xP" —x = [Trer(x = 2).

Proof

The polynomial xP™ — x has at most p™ roots in F. However, by corollary 2 we know p™ such

roots, namely all the elements of F. Therefore, we conclude that x?" — x = [[;c-(x — ).

Theorem 3.8.2

— ‘__,_,..--‘""__—__-_ = . )
For every prime number p and every positive integer m there exist a field having p™ elements.

Proof=——""
Consider the polynomial xP™ — x in Z,[x], the ring of polynomials in x over Z,, the field of
integers mod p. Let K be the splitting field of this polynomial.

InKletF={a€K |aP™" = a}.The elements of F are thus the roots of x?" — x, which by

corollary 2 are distinct whence F has p™ elements. We now claim that F is a field.

36



Ifa,b EFthen a? =a, b*" =b
andso  (ab)?" =aP" bP" = ab; thusab € F.
Also since the characteristic is p, (a + b)P" = aP" + bP" =a+ b, hence a+ b € F.

Consequently F is a subfield of K and so is a field.
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CHAPTER 4

EXERPTS ON THE USE OF PRIME NUMBERS IN GROUP THEORY

4.1 GROUP
A nonempty set G is said to be a group, if there is a defined binary operation (*) and it must

satisfies the condition of a group or group axioms.

4.1.1 Axioms of a group

Axiom 1
The binary operation (*) is closed, ifa,b € Gthena*b E G
Axiom 2
The binary operation (*) satisfies the associative law.
Ifa,b,c EGthena*(b*c)=(axb)*c
Axiom 3
There is an existcnc:z_ of an identity element under the binary operation.

e .—-—""d-——_——_-—_
If3e EGsuchthata*e =e*a =a forall a €G.

S
Axiom 4

The existence of inverse in G. For every a € G there exist an element a’ € Gsuch that

a*a'=a'+a=e
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4.1.2 Commutative Group

A group G is called a commutative or Abelian group if for everya,b € G thena+ b = b * a.

4.1.3 Subgroup

Let H be a nonempty subset of a group G. A nonempty subset H is defined as a subgroup of G

under a binary operation defined in G, if it satisfies these conditions.

Hi:abeH = axbeH

Hy:a€H=a'€H

4.1.4 Normal Subgroup

A subgroup H of a group G is a normal subgroup of G if g h g € Hfor every g € G and

every h € H.

Example

If A is an Abelian group and H is a subgroup of A then H is a normal subgroup of A.

—

-

Ifa€ Aand h€H

Proof

henea=hdae=hl =hecH

Therefore H is a normal subgroup of A.
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Theorem 4.1.4

These two statements about a group G and a subgroup H of G are equivalent.

1. H is a normal subgroup of G.

2. Ha = aH forevery a € G.

Proof
Suppose H is a normal subgroup of G is true. If a € G then Yh € H
aha'e Hand a'ha € H Leta'ha =y € H, then ha = ay € aH ~ Ha < aH
Let aha'=1n € Hthenah =na € Ha ~.aH c Ha . Ha =aH Va €G
Thus H is a normal subgroup of G implies Ha = aH for every a € G.
On the other hand, suppose Ha = aH foreverya € G istrue. If g € G and h € H then
hg € Hg = gH = hg = gf where fEH
then g"hg = f € HTherefore Ha = aH for every a € G implies H is a normal subgroup of G.

Hence, the two statements are equivalent.

4.1.5 Center of a Group
Let G be a group anﬂf(G)be theWments a € G suchthat ga = ag ,Vg €G.

Then C(G) is called the centre of a group G.

__n——'-'-'_'-—.__
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Theorem 4.1.5

The centre of a group C(G) is a normal subgroup of G.

Proof

Let I be the identity in G. ThenIg =gl = g Vg €G -~ | € C(G).

Ifa € C(G)thenag = ga, VgEG

= aga'=g VgeEG.a'€C(G) ifa€eC(G)

Ifa and b are elements of C(G) then abg = agh = gab, Yg € G - ab € C(G),
ifa € C(G)and b € C(G)

That show that C(G) is a subgroup of G.

Finally for every g € G and every h € C(G)g'hg = g'gh =1h =h € C(G)

% C(G) is a normal subgroup of G.

4.1.6 Cyclic Group

If G is a group and there exists an element @ € G such that G is the same as the subgroup of G
generated by (a) then G is called a cyclic group. It is denoted by C,, where n is a positive
integer. For every posit_ive integer n there exist a group C, comprising exactly n elements

R e whereﬁ;= I, the identity—Stuch a group C; is called a cyclic group of order n. For

example, where n=2, then C;= {-1, 1} then C; is a cyclic group of order 2.
—

4.1.7 Homomorphism
Let G and B be group under binary operation o and * respectively. A mapping h: G — B is
called a homomorphism if h(a o b) = h(a) = h(b) for every pair a,b € G.
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4.1.8 Isomorphism
Ifh : G — B is a homomorphism and h is bijective then h is called an isomorphism.
When h is bijective, it means h is both injective and surjective.
Ifh: G — B forevery g, g; € G such that
h(g1)= h(g2) = g1= g2 then h is injective and h is said to be a monomorphism.
Also if h : G — B for every b € B there exist g € G such that h(g) = b then, h is surjective

and h is said to be an epimorphism.

4.2 Automorphisms of a Group
Let G be a group. If h : G — G is an isomorphism then h is called an automorphism of G.
Characteristic subgroup of G: a subgroup H of G is said to be a characteristic subgroup of G if

(H)T < H for all automorphisms T of G.

4.2.1 Kernel of a Group
Given groups G andB with ident,ifrﬁm'/aﬁd_ﬁ_respectively and homomorphism h: G = B. Let

ker h = {x € G|h(x) = e} then ker h is called the kernel of h.

-_-I—'-'-_-‘__
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4.2.2 Left Cosets and Right Cosets of a Subgroup

Given a group &, a subgroup H of G and an element a € G. Let

aH = {ah|h € H} and Ha = {halh € H}

then aH is called a left coset of H in G and Ha is called a right coset of H in G.

In the case where H is a normal subgroup of G. Then aH = Ha.

4.3 Finite Group

A group whose underlying set G has finitely many elements is known as finite group. The order
of a group is the number of elements in the group.

For example, the number of elements in G is called the order of G and is denoted by | G|. A

group having finite group order is also called a finite group.

4.3.1 Lagrange Theorem

If G is a finite group and H is a finite subgroup of G then the order of Hdivides the order of G.

Proof

e

Let n be the order of G and q be the order of H.
- = _.--“"‘-—--—_-_
Choose finitely many elements g, ..., g in G such that G = U Hy; and H, N H; = @ where
ever}'?;ﬁhen n=v,++v, =qk foreachj € {1,..., k}
where V; is the number of elements in Hy;
Since each right coset of H contains exactly q elements. Hence g divides n.
Therefore, if G is a finite group and H is a finite subgroup of G then the order of H divides the

order of G
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NOTE: The integer k = E 1s called the index of H in G. We write [G; H] as the index.

4.3.2 Normaliser and Centraliser

Definitions:

i,

iii.

1v.

vi.

Let H be a subset of G. The subset g"*Hg = {g~'hg: h € H} is called the conjugate of
H by g in G. We denote g~*Hg by HY.

If H, K are subsets of G we say that K is conjugate to H in G ifthere exist in G an element
g such that H9 = K_1t follows that K9~ = H.

ie. g 'Kg=g"{g* Hglg = g 'gHgg "' = H. Hence we conclude that H and K
are conjugate in G.

If H9 = K where H and K have exactly one element say H = {x}, K = {y}. Then for
g € G, x? = y which implies y is conjugate to x in G. By the preceding definition, we
deduce that x is a conjugate to ¥ in G. Thercfnfc x and y are conjugate in G.

The subset N;(H) = {g: g € G and H9 = H} is called the nermaliser of H inG.

[f H contains exactly one element x, we have

Ne({x) ={g:9€Gand g7'xg =x} = {g:g € Gandxg = gx}. Then N;({x}) is

called the centraliser of x 7 G. Let us denote the centraliser of g € G by

Gl = {x € Glxg = gx ).

Conjugacy determines an equivalence relation on the set of all subsets of G and also on
the set of all subgroups of G. In each equivalence relation there corresponds an

equivalence class. These equivalence classes are called conjugacy classes.
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Class Equation

Let G be a group. Suppose a € G and let C;(a) be the centralizer of a in G, Z,(G) the conjugate

class of a in G, K, the set of all right coset of in G. Then there exists a bijective mapping
Ya:Zo(G) = K,

defined by

Ya(g~tag) = Cc(a)g
Corrollary: If G is a finite group, then the number of elements in Z, (G) is the index [G; C;(a)]

Definition of Class Equation

If G is a finite group of order n, then there exist elements ay, ..., a, in G such that

n = i[ﬂ: ¢s(g;)]

This equation is termed as Class equation.

4.3.3 Cauchy Theorem
If G is a finite group and p is a prime number such that p divides the order of G then there exists

a € G such that the order of a is p.

Proof = ——

First _‘E"E’E]—S‘E-G is abelian. Choose an element b € G such that b is not identity. If order of b is
pr where r is positive. In this case let @ = b" then the order of a is @

On the other hand if p does not divide the order of b.

Let H be the subgroup generated by the G/H is a group whose order is invisible by p and whose

is less than the order of G.
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If the hypothesis is true for all group whose orders are less than that of G and are divisible by
p then there exist t € G/H such that the order of t is p.

Let Y: G — G/H be the projection of G onto.
Choose a € G such that y(u) = t. Then the order of u is pa where « is a positive integer. In this
case let a = u“ then the order of a is p. On the other hand if p does not divide the order of b.
This proves Cauchy’s theorem if G is Abelian.
If G is not Abelian, let k be the order of the centre C(G) and the order of G be pA where Ais a
positive integer. Then we can choose elements @, ...a,. € 6 — C(G) such that the class equation
of G is pA = k + X_4[G; Z4,;(G)]
If there exist a € C(G) such that the order of a is p then the result is done. If k and p are
relatively prime then there exist j € {1, ...} such that the index [G : Zqi(G )] is not divisible by p.
That implies the order of Z,,;(G) is divisible by p and the order of Z,;(G) is less than the order
of G using induction hypothesis we choosea € Z,;(G) such that the order of a is p.

Then the theorem is proved in all cases.

4.4 p-Group

"

Let p be a prime. p-group is a periodiegroup which its elements has a power p as its order. In
this each element has a prime power order. A p-group is also defined as a group in which every
—-——l-'-"__-'__

element has finite order and these orders are powers of p. A finite group can also be defined as

p-group if the order is a of a prime p.
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In fact, every finite group has subgroup which is a p-group by the Sylow theorems in which they

are called sylow p-subgroup. p-group can arise as subgroup and as subgroup for a given prime p

one has the sylowp-subgroup.

Theorem

A finite group G is a p-group if and only if the order of G, |G|, is a power of p.

Proof

If G is a p-group and q is a prime which divides |G|, then G contains an element of order q.
Since every element of G has a power of p, ¢ = p. Hence |G| is a power of p.

Conversely, if G is not a p-group then there exist a prime g # p which divides |G|. Cauchy’s

theorem provides an element in G of order g and this is not a power of p.

Example

Cyclic group of order 4 is a p-group

GROUP | ORDER
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Corollary
The center C(G) of a nontrivial finite p-group G contains more than one element.

Proof

Consider the class equation of G

161 =11 + ) [6: o))

since each [G; C;(x;)] > 1 and divides |G| = p™(n = 1), p divides each [G; C;(x;)] and |G]|.

Therefore p divides |C(G)|. Now since |C(G)| = 1,C(G) has at least p elements.

4.4.1 Nilpotent
A group G is called nilpotent if it has a central series that is a normal series
1 = GoC G,C€ G; C --- € G,= Gsuch that G, /G, is contained in the centre of G /G, for all

1{1=0,1,...n}.

4.5 Finite p-group
A finite p-group has-erder p" for someTonnegative integer n. An elementary Abelian group p-
group is a finite abelian p-group in which the p-th power of every element is 1. Such a group is a

1L e
direct product of cyclic group of order p and it may be considered to be a vector space over field

z, of integers modulo p. Equivalently, let G be a group such that every element of G has a p-

power order for some fixed prime p, then G is called a p-group. By Lagrange’s theorem any

finite group of order p™ where n € N is a finite p-group.
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Properties about finite p-group are

Let F be a nontrivial finite p-group

a) The center of F is nontrivial

b) Every proper subgroup of F is contained in a subgroup of index p and all subgroup of index
pare normal.

C) F is nilpotent.

Proof of F is nilpotent

Let F be a finite p-group of order > 1. Then by (a) the center of F is nontrivial shows that

7F #* 1. Hence F /1F is nilpotent by induction on | F|. By forming the preimages of the terms of a
central series of F /tF under the natural homomorphism F — F/tF and adjoining 1, we arrive

at a central series of F.

Lemma 4.5.1

Let A be a finite Abelian group. Let p be a prime such that every element of A has an order
which is a power of p. Then A is a p-group.

Proof

Let A be a finite Abeliin group as given. Assume the result is true for all groups of order strictly
less than [A]. Suppose A is not cydm a € A, a # 0. Then the subgroup (a) generated by
a has an order which is a power of p. Further A/{a) has the property that every element has an

order which is a power of p since if x € A and x has order p® then
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p'(x + (a)) = p°x + (a)
=0+ (a)
= (a)
and so x + (a) has order dividing p*. By the induction assumption A/{a) is a p-group and so, as

|A| = |(a)| = |[{a)||A/(a)], A is a p-group

4.6 Frattini subgroup

Let H be a group, the intersection of all maximal subgroup of h is defined as the Frattini
subgroup of a group of H. the Frattini subgroup of H is denoted by ®(H).

Critical subgroup: A critical subgroup of G is a characteristic subgroup H of G such that

®(H) € C(H), |G,H) € C(H) and C;(H) = C(H).

Theorem 4.6.1
Each p-group possess a critical subgroup.
Proof

let S be the set of characteristic subgroup H of G with ®(H) < C(H) and [G,H] < C(H).

ot be s maximaEantaber of S

Claim H is a critical subgroup of G. Assume not and let K = Ce(H),C =C(H) and X
by € = a,(€(G/C))NK/C.Then K & H and € = H N K, so, as K normal subgroup of G,

X+ 2.



Hence XH € §, contradicting the maximality of H. Therefore p-group possess a critical
subgroup.
A p-group is special if ®(G) = C(G) = G'"). A special p-group is said to be extraspecial if its

center is cyclic.

Theorem 4.6.2

The center of a special p-group is elementary Abelian,

Proof
Let G be special and g,h € G. Then gP € ®(G) = C(G), so 1 = [gP,h] = [g,h]".

Hence GVis elementary.

4.7 p-subgroup
If H is a subgroup of a finite group G and His a p-group. H is said to be a p-subgroup of G. In

particular (e) is a p-subgroup of G for every prime p, since l(e)] =1 =p°.

Lemma 4.7.1
If H is a p-subgroup of a finite me_n [Ng(H); H] = [G; H](mod p).

Proof

e

let S be the set of the left cosets of H in G and let H act on 5 by left translation.

3 |



Then |S| = [G; H], also

xH €Sy © hxH =xH forallh € H

& x *hxH=Hforallhe H = x‘hxe Hforallhe H

& x*Hx=H © xHx™* = H & x € N;(H).
Therefore |Sp| is the number of cosets xH with x € N;(H); that is,

Sol = [Ne(H); H] = |S| = [G; H](mod p)

Remarks: If a group H of order p™(where p is prime) is on a finite set S and

if S; = {x € S|hx = x for all h € H} then |§| = |S,|(mod p).

Corollary 4.7.2

If H is p-subgroup of a finite group G such that p divides [G; H], then Ns(H) # H
Proof

0 = [G; H] = [N;(H); H](mod p). Since [Ng(H); H] = 1 in any case, we must

have [Ng(H); H] > 1. Therefore No(H) # H

Lemma 4.7.3
LetG bea gmupz;nd let P and Q be-p-subgroups. Suppose that Q normalizes P.

Then PQ is also a p-subgroup.
_..--'-""-—-
Proof

P|- .
Since Q normalizes P, then PQ is a subgroup. Now |PQ| = ﬁ and so PQ is p-group.
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Theorem 4.7.4

A group of order p™ for any positive integer n and every prime index has non-trivial centre.

Proof

Let C;, Gy, .. ..., C;- be the equivalence classes of conjugate elements of G where C; is the class
containing just the identity elements of G. Let C;, ....., C,(t < r) denote the remaining
equivalence classes, if any, which contains just one element. Then U;<;<; C; = C(G) the centre
of G, and C; are pairwise disjoint. That implies |G| = |C(G)| + ZX.,[G: C(a))]

(this is called the class equation of G).

But each of the [G: C(aj)] divides |G| by Lagrange, and hence is a power of p.

Now p/|G| and p/[G: C(aj)] for I =t +1,.....,r. Thus p/Z5_,[G:C(a;)] = t. It follows that

t > 1 and hence that G has non- trivial centre,

Example
Let G be a group of order p? where p is a prime. Then we may prove that G is Abelian as

follows. Certainly we now know that the centre C(G) of G is non- trivial and so must be of order

p or p2. But if C(G) is of order p then G/C(G) is also of order p and so is cyclic.
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Theorem 4.7.5

If p is a prime then all groups of order p? are Abelian.

Proof

Let |G| = p® and € = ©G. Then the |C| = p or p? and |G: C| = p or 1. Hence G / C is cyclic

generated by xC. Then G = (x, C) which implies that G is Abelian.

Proposition

Let p and g be primes such that p > q. If g { p — 1, then every group of order pq is isomorphic
to the cyclic group Z,,,. If ¢/p — 1, then there are exactly two distinct groups of order pq:

the cyclic group Z,, and a non Abelian group k generated by elements ¢ and d such that

lc| = p, |d| = q and dec = c°d where s Z 1(mod p) s? = 1(mod p).

Theorem 4.7.6

If p is a prime number such that p > 2, then every finite group of order Zp is isomorphic either
to the cyclic group Z,, or the dihedral group Dy,
Proof
Apply above proposition with g = 2. Let G be a finite group. If G is not cyclic, then conditions
on s imply =

——, .-""’—_‘_——-_._F :
s = —1(mod p). Hence G = {c,d), |d| =2, |c| =pand dc = c™"d. Therefore G = D,

-_-——-"--—_
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4.8 Sylow’s Theorem

There are some results that serve as a partial converse to the theorem of Lagrange results which
establish the existence of subgroup corresponding to certain divisors of the order of the group.

These results are collected in what is known as Sylow’s theorem.

4.8.1 Sylow’s First Theorem

Let G be a group of order p"m withn > 1, p prime and (p, m) = 1. Then G contains a
subgroup of order p* for each 1 < i < n and every subgroup of G of order p' (i < n) is normal
in some subgroup of order p***

Proof

Since p/|G|, G contains an element a, and therefore, a subgroup (a) of order p by Cauchy’s
theorem. By induction, assume H is a subgroup of G of orderp'(1 < i < n). Then p/[G; H] and
by lemma 4.7.1 and corollary 4.7.2, H is normal in Ng (H), H # Ng(H) and

1 < |Ng(H)/H| = [Ng(H); H] = [G; H] = 0.

Hence p/|Ng (H)/H| and N (H)/H contains a subgroup of order p as above. This group is of

the form H, /H where H; is a subgroup of N; (H) containing H. Since H is normal in Ng (H), it is

necessarily normal in H.

Finally |H,| = |H||H,/H| = p'p = p***

— /_,_.-—-""-_'_-_._.—
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4.8.2 Sylow p-Subgroup

A sylow p- subgroup of Gis a subgroup of G which has its order been the highest power of

p dividing [G; 1]. For example, A can be a sylow p-subgroup of Gif it is a p-group and its index
in G is prime p. In other words, if p* is the highest power of a prime p dividing the order of a
finite group G, then a subgroup of Gof order p* is called a sylow p-subgroup of G.

Also a subgroup H ofa group G is said to be a sylow p-subgroup (p is prime) if H is a maximal

p-subgroup of G. Thatis H © § € G with S a p-group implies H = S.

Example
A group G of order 8897850 = 2 - 3* - 5% . 13* hag sylow subgroup corresponding to primes

2,3,5 and 13. These sylow subgroups have orders 2,81,25 and 2197 respectively.

Lemma 4.8.2

Let P be a normal sylow p-subgroup of the finite group G. Let @ be a p-subgroup of G. Then
gcP.

Proof

Since P is normal in G, PQ is a subgroup of G. Since PQ/P is isomorphic to Q/(P N Q) it
follows that |PQ/P| = |Q/(P n Q)| and so |PQ/P| is a power of P. Thus PQ is a p-subgroup of

G.But P c PQ and P is a sylow p-subgroup of G. Thus P = PQ and hence @ < P.

S r,,.-""'-"-__ﬁ_
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Corollary 4.8.2

Let P be a sylow p-subgroup of the finite group G. Let Q be a p-subgroup of the normalize
N;(P) of P.Then Q c P.

Proof

Let P is a normal sylow p-subgroup of Ng(P). Since Q © N;(P) we deduce from lemma 4.8.2

that Q c P.

4.8.3 Sylow’s Second Theorem

If H is p-subgroup of a finite group Gand Bis any Sylow p-subgroup of G, then there exists
x € G such that H € xBx™*. In particular, any two Sylow p-subgroups of Gare conjugate.
Proof

Let S be the set of left cosets of B in G and let H act on S by left translation,

1So| = |S| = [G; B]. Butp t [G; B]  |Spl # Oand there exists xB € S;.

xB € So & hxB = xB forallh € H

< xhxB=Bforalhe H e x"'Hxc B & H c xBx™".

If H is a Sylow p-subgroup then |H| = [B|. Hence H = xBx™.

Theorem
If P is a Sylow p:s;:bgroup of a finite-group G, then N; (Ng(P)) = N5 (P)

Proof

_-I-'-'-'._-._. ;
Every conjugate of P is a Sylow p-subgroup of G and of any subgroup of G that contains it.

Since P is normal in N = Ng(P), P is the only Sylow p-subgroup of N.
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x € Ng(N)=xNx1 =N
=>xPx~* c N

= xPx"1=p

= x €EN.

Hence Ng(Ng(P)) € N

Example
Let G be a finite group and let P be a sylow p-subgroup of G. Let H be a subgroup of G such that
N (P) € H. Therefore N;(H) = H.
Proof
Let x € G be such that x ™ Hx = H. Then we wish to prove that x € H. Certainly
x"1Px cx"IN,(PlxEx *Hx =i
Then P and x *Px are both sylow p-subgroup of H. Thus we have h € H such that

h~*Ph = x~1Px

But then
Pi=sh®_ 1 Pxh="%= {xh=2)AP(LR"?)

and so xh~! € N;(P) c H from which x € Hh = H. Hence N;(H) = H.

58



4.8.4 Sylow’s Third Theorem

[f G is a finite group and p is a prime number which divides the |G|, then the number of Sylow
p-subgroups of Gdivides |G| and is of the form kp + 1 for some k = 0.
Proof
By the second Sylow Theorem the number of Sylow p-subgroup is the number of conjugates of
any one of them, say p. But this number is [G; N; (P)], a divisor of |G|. Let S be the set of all
Sylow p-subgroups of Gand let U act on S by conjugation. Then Q € S, if and only if

xQx~1 = Q for all v € U. The latter condition hoelds if and only if U € N;(Q).Both U and Q
are Sylow p-subgroups of Gand hence of N;(Q) and are therefore conjugate in N;(@Q). But since
Q is normal in N;(Q), this can only occur if @ = U. Therefore, Q = U and |S]| = |S,] = 1.

Hence |S| = kp + 1

Example
A group G of order 175 is necessarily Abelian. From the factorization, 175 = 5 - 7, the group G

has sylow 5-subgroup of order 25 and sylow 7-subgroup of order 7.
Proof

Suppose there are m sylow 5-subgroup and n sylow 7-subgroup.

Then m divides 52 - 7and m = 1 + 57 for some r € {0,1,2, ... }. If r > 0 then m must divide 7

which is impossible. Thus 7 = 0 and m = 1.

S - /..4-"_——-_-_-_'_
Also n divides 52 - 7and n = 1 + 7s for some s € {0,1,2, ... }. If s > 0 then n must divide 5%

whmpossiblc. Hence the slow 5-subgroup P and the sylow 7-subgroup @ are both unique.



Thus G 1s 1somorphic to the direct product P X @ and is therefore Abelian as P and Q are

Abelian.

4.9 Simple Group

A simple group is one with no proper nontrivial normal subgroups. A group G is said to be

simple if and only if it has exactly two normal subgroups, namely {e} and G.

Theorem 4.9.1

A nontrivial group G is simple if and only if any nontrivial group homomorphism out of G is an
embedding.

Proof

Suppose G is simple. Let f: G — H be a homomorphism, with f(g) # e for some g. Then the
kernel of f is a proper normal subgroup of G. Since G is simple, its only proper normal subgroup
is trivial, so the kernel of f is trivial, which means f is an embedding.

Conversely, suppose all nontrivial homomorphism out of G are embeddings. If N is a normalizer

G and N # G then the reduction map G — G /N is a homomorphism with kernel N.

The image is not just the identity, so by hypothesis this is embedding. Therefore, the kernel N is

trivial so G is simple.
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Theorem 4.9.2

If p and g are distinct primes with p < q then every group G of order pq has a single subgroup

of order g and this subgroup is normal in G. Hence G cannot be simple. Furthermore,

if ¢ 1 (mod p), then G is cyclic.

Proof

Given that G contains a subgroup H of order p. The number of conjugates of H divides pg and is
equal to 1 + kq for k = 0,1, ... However, 1 4 g is already too large to divide the order of the
group. Hence H can only be conjugates to itself. That is, H must be normal in G. The group G
also has a sylow p-subgroup, say k. The number of conjugates of k must divide g and be equal to
1+ kpfork = 0,1,...since q is prime, either 1 + kp =qorl+ kg =1.1f1 + kp = 1, then k

is normal in G. Since H is isomorphic to Z, and k is isomorphic to Z,,, G =7, X Z; = Zp,

Example

Every group of order 15 is cyclic. This is true because 15 = 5 - 3 and 5 # 1(mod 3)
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CHAPTER 5

5.1 CONCLUSION
The definition of prime number was clearly stated. There are so many uses of prime numbers,

especially prime numbers help in proving certain theories in abstract algebra. With the help of

prime number, a new group was discovered that is the p-group.

5.2 RECOMMENDATION
There are so many uses of prime numbers that was not look at. I will recommend that other
students should research into the other uses. Also, ideals and theorems considered in this thesis

were all in Abstract Algebra and there are others in number theory which can be consider.
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