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ABSTRACT 

The Wiskott-Aldrich Syndrome Protein (WASP) has been implicated in many 

diseases such as Wiskott-Aldrich Syndrome (WAS) and Buruli ulcer. Mycobactrium 
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ulcerans is the main causative organism of Buruli ulcer (BU) disease. The bacteria 

secretes a polyketide lipid toxin (Mycolactone). The toxin not only diffuses through 

the cell membranes, but also binds, hijacks and disrupts the normal functions of 

WASP in the cytoplasm leading to over polymerization of actin filament, cytoskeletal 

rearrangement and eventually cell death through necrosis. In pre-ulcerative BU 

disease, toxins extend beyond the actual size of the lesion. A mathematical model is 

developed to describe the binding mechanism of the two conformations of WASP 

and the complexes formed using the idea of isomerization. The formulation utilizes 

ligand concentration-dependence (ligand-receptor), equilibrium and conservation 

principles. By this approach, we are able to determine the fractional response of 

WASP against change in concentration of its activators; Cell division cycle 42 

(Cdc42) and Mycolactone. There is a lag phase is the analysis of the binding process 

which explains the breaking of bonds between the GTPase-binding domain (GBD) 

and the VCA 

(verprolin, cofilin, acidic) of WASP. The analyses confirm the results obtained by 

Laure et al. [2013] and the need for competitive inhibitors of Mycolactone toxin, to 

prevent Mycolactone from binding to the hydrophobic region of WASP for effective 

treatment of BU. To further understand the intracellular behavior of the toxin and 

WASP binding, the reaction-diffusion system arising from the binding process is 

solved in the cell cytoplasm. A periodic geometry is introduced for computing quasi-

periodicity. Computational time and CPU memory have been drastically reduced as 

a result of simulating only one cell as a true representation of a layer of tissue, which 

consists of millions of cells. The complex system of coupled Partial Differential 

Equations (PDEs) arising from the Cdc42-WASP-Mycolactone binding is 
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implemented in Comsol Multiphysics. In the numerical simulation, two different 

geometrical representation of the cell membrane are implemented. The numerical 

results from the two implementations were identical. From the analysis the extent 

of diffusion of the toxin in the tissue can be predicted with time. To further probe 

the numerical results, the performance of three direct sparse solvers namely: 

UMFPACK, SPOOLES, and PARDISO were compared, mainly for their time, and CPU 

memory requirements in computing solutions. The PARDISO solver is found to 

perform better than the other two in the present study. The numerical solutions 

confirm experimental findings on BU disease, and further augment the 

understanding of the role of WASP in polymerization of actin filament and 

cytoskeletal rearrangement. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Buruli ulcer (BU), is an infectious disease in immunocompetent humans that is 

caused by Mycobacterium ulcerans (M. ulcerans). The World Health Organization 

(WHO) defines BU as an infectious disease involving the skin and the subcutaneous 

adipose tissue, characterized by a painless nodule, papule, plaque, which normally 

evolves into a painless ulcer with characteristically undermined edges. If left 

untreated it can lead to massive skin ulceration and complication such as disfiguring, 

loss of certain organs such as eyes, hands, limbs and ears. There is significant 

psychological burden on the patient and complicated cases require between three to 

eighteen months hospitalization for treatment [Siegmund et al., 2005]. The disease is 

one of the most neglected tropical diseases that largely affect the poor in remote rural 

areas [Siegmund et al., 2005, Richard et al., 2005]. BU is the third mycobacteriosis in 

prevalence, after leprosy and tuberculosis [Meyers, 1996]. The disease was first 

discovered in 1897, by Sir Albert Cook in Uganda when he described skin ulcers 

consistent with Buruli ulcer and in 1948, MacCallum, published the first confirmed 

case of the disease in Australia. In Australia, the disease was called Bairnsdale ulcer 

after the main town in the original endemic region. In Africa, it is called Buruli ulcer, 

named after a county in Uganda where large number of BU cases were reported in 

the 1950s [Portaels et al., 2001, Clancey et al., 1962]. 
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In March 2004, the WHO report indicated that BU has been reported or suspected 

in over 30 countries with tropical and subtropical climates worldwide [WHO, 2004]. 

BU has emerged as an important cause of human suffering. In BU endermic countries, 

the efficient use of scarce health care resources are undermined and knowledge, 

awareness, mode of transmission and spread of the disease, both within the medical 

community and among the general public is limited. Therefore the resultant effects 

are under-recognition and underreporting [WHO, 2004]. 

It is reported that after inoculation into the skin, M. ulcerans proliferates the 

extracellular region and exudes a polyketide lipid toxin (Mycolactone), that enters the 

cells by passive diffusion and causes necrosis of the dermis, panniculus, and deep 

fascia. Early lesions are closed, but as the necrosis spreads, the overlying dermis and 

epidermis eventually ulcerate, with undermined edges and a necrotic slough in the 

base of the ulcer (see Fig1.1). Histopathologic sections reveal a contiguous 

coagulation necrosis of the deep dermis and panniculus, with destruction of nerves, 

appendages, and blood vessels. Clumps of extracellular acid-fast bacilli are plentiful 

and are frequently limited to the base of the ulcer and adjacent necrotic 

subcutaneous tissues. In active lesions, inflammatory cells are conspicuously few, 

presumably as a result of the immunosuppressive activity of the toxin. After healing, 

there is a granulomatous response, and the ulcerated area is eventually replaced by 

a depressed 

scar. 

Currently, West Africa appears to be the most affected region. About 70 percent 

of those affected are children under the age of 15 years. Unfortunately, the 

epidemiology of the disease remains unclear [Boleira et al., 2010]. Furthermore, the 
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prevalence of the disease is not accurately known [Portaels et al., 2001]. Therefore, 

there is frequent misclassification and delayed diagnosis of BU disease with 

considerable socioeconomic impact in terms of treatment cost due to prolonged 

hospitalization [Siegmund et al., 2005]. 

Over 15,000 cases of BU were recorded in Cote d’Ivoire between 1978 and 1999 with 

an estimated 16 percent prevalence rates in some communities. About 4000 cases of 

BU were reported in Benin over a period of ten years and in Ghana, studies show 

about 6000 reported BU cases, and all 10 regions of the country are affected, with the 

Ashanti region recording the highest percentage. BU cases have also been reported 

in other West African countries such as Burkina Faso, Togo, and Guinea [WHO., 2001, 

Amofah et al., 2002]. 

1.2 Problem Statement 

In Boleira et al. [2010], the authors report that M. ulcerans is capable of producing 

Mycolactone, an immunomodulatory macrolide toxin that causes tissue necrosis and 

destroys the skin and soft tissues (from the cell level) with the formation of large 

ulcers, often in the arms or legs (although other parts of the body can equally be 

affected). An in vivo studies on a guinea pig model suggests that Mycolactone is 

responsible for both the extensive tissue damage and immunosuppression observed 

in Buruli ulcer cases [George et al., 1999]. In general, patients who do not seek early 

medical treatment often suffer functional disabilities and disfiguring originating 

from self-healing processes or surgical treatment, with majority of patients having 

deformities in their joints restricting their ability to execute and participate in every 
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day activities. Therefore, early diagnosis and specific treatment for BU associated 

disease with interventions that prevent disabilities are crucial. In the work of Simona 

et al. 

[2006] on the detection of Mycobacterium Ulcerans DNA in the margin of an excised 

BU lesion, they found that after an en bloc surgical removal of a clinically diagnosed 

BU, analysis conducted for the spread of Mycobacterium ulcerans and toxins in the 

margin of 2 to 3cm of healthy-looking tissue was positive. In pre-ulcerative BU 

disease, toxins extend beyond the actual size of the lesion [Bretzel et al., 2011]. The 

question is, to what margin must the surgeon cut to remove all infected tissue to 

prevent re-occurrence of the disease? 

This study provides a mathematical model that predicts the kinetics of the toxin 

and the reaction-diffusion of the Mycolactone and it metabolites in the tissue. The 

model can be used to predict the extent of infection and therefore be used for the 

treatment and eradication of Buruli Ulcer. The study proposes a ligand-receptor 

binding that models the kinetics of the polyketide lipid toxin in the cell. 

1.3 Research Objectives 

In this thesis, the objective is to study ligand-receptor kinetics and to determine 

active fractions of WASP complexes, in order to predict actin filament 

polymerization. Secondly, to investigate the binding mechanism of WASP, Cdc42 and 

Mycolactone to identify specific targets for drug discovery for BU disease. Thirdly, 

numerically solve the reaction-diffusion problem arising from the Mycolactone, 
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ligand and the receptor protein binding in the cytoplasm of the cell. The BU disease 

is as shown in Figure 1.1 

 
 (a) (b) 

Figure 1.1: Taken with permission from [WHO] 

1.4 Methodology 

Singular Perturbation Methods will be used to compute various complexes formed 

from Enzyme-substrate binding. Two time scales evolve in this approach which are 

not experimentally measurable. This becomes a limitation to the current study on 

computing active WASP complexes. An alternative approach is to apply the Law of 

Detri (see Chapter 3) to compute the fraction of the various complexes in the binding 

process. 

The concept of isomerixation is used to construct binding mechanisms for 

WASPCdc42, and WASP-Cdc42-Mycolactone binding respectively. The fractional 

activation of WASP at varying concentrations of Cdc42 and Mycolactone will be 

approximated to give an idea of the etiology of the BU disease. 

The law of Mass Action and the Fick’s Law are applied to write a system of 

reactiondiffusion equations from the binding mechanisms. The coupled system of 
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reactiondiffusion equations are solved numerically using Finite Element Method. The 

model is implemented in Comsol Multiphysics. The numerical results of three direct 

solvers are compared in the numerical solution. 

1.5 Overview of current BU models 

Most existing mathematical models for BU have been concentrated on economic 

and regional predictions. A thermal model has been developed and validated by 

Braxmeier et al. [2009], for the heat treatment of Mycobacterium ulcerans infection 

(Buruli ulcer). The heat application device is based on a phase change material (pcm). 

The first prototype trial in Cameroon produced good results consistent with available 

data. The thermal model allowed for the prediction of skin surface temperatures and 

the amount of pcm with respect to discharge time could be evaluated and optimized. 

Imran and Hal [2006] developed a model of a bacterial colonization of host tissue. 

The model took into account nutrient availability and innate immune response. Their 

model features a local infection-free state, which is not globally attracting, implying 

that there exist a super-threshold bacterial inoculum required for successful 

colonization and tissue infection. Hillen and Mark [2014] developed a model for cell 

movement in a network of tissues. They formulated the problem as an evolution 

equation in a Banach space of measure-valued functions and used methods from 

semigroup theory to show the global existence of mild and classical solutions. Their 

model revealed the existence of biologically meaningful measure valued solutions, 

which correspond to tissue and cell alignment. Siegmund et al. [2005], developed a 

dry-reagent-based PCR (Polymerase chain reaction) formulation for the early 

detection of M. ulcerans in a diagnostic specimen at the Bernard Nocht Institute for 
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Tropical Medicine. Currently this formulation is being used at the Kumasi Center for 

Collaborative Research in Tropical Medicine (KCCR). It gives information on the 

amount of bacterial load in tested tissues but can not predict the extent of infection 

with time. Schunk et al. [2009] studied the frequency and treatment outcome after 

surgery of Buruli Ulcer Disease (BUD) with or without antimycobacterial treatment 

in Ghana. They used the chi-square and the student t-test in their statistical analysis. 

Their investigation did not establish any relationship between recurrences and 

clinical or treatment specific factors, but they did emphasize the need for more 

research into the development and treatment of the wounds. In a paper by Bretzel et 

al. [2011], on post-surgical assessment of excised tissue from patients with Buruli 

ulcer, tissue samples were subjected to PCR and histopathology analysis. Although 

they determined the excision size microscopically by unrealistically assuming a 

complete removal of all infected tissues, they found the bacterial load to decrease 

from the center to periphery of the wound. Additionally, their study suggest a 

correlation between surgical techniques and local recurrences. Furthermore, their 

study shows that the removal of all infected tissues cannot always be visualized by 

the surgeon. These are the motivating factors for the proposed research work. It is 

worth mentioning that none of the works cited above have considered a reaction-

diffusion mechanism of the Mycolactone and receptor protein binding within cell 

tissues as is proposed in this study. 

In this thesis the words binding and reaction as well as compartment and domain 

will be used synonymously. 
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1.6 Thesis outline 

In the introductory chapter, a short overview of BU disease, review of related BU 

models and motivation for the current study of BU is outlined. The idea is to give 

some fundamental concepts so that the reader may understand the remaining 

chapters easily. In chapter 2, the cell, constituent structures and species involved in 

the pathogenesis of BU are discussed. In chapter 3 the concept of ligand-receptor 

binding mechanisms and fraction of bound receptor sites are introduced. In chapter 

4, models for ligand-receptor and ligand-receptor-lipid binding mechanisms to 

model Cdc42-WASP, and Cdc42-WASP-Mycolactone respectively, are discussed. In 

chapter 5, steady state of the model and parameterization of the species are 

discussed. In chapter 6 the reaction diffusion system from the binding mechanisms, 

is solved in the cytoplasm of the cell. Chapter 7 is a summary of the main results, 

recommendations and directions for future work.  
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CHAPTER 2 

Biological Background 

In this chapter, the cell, constituent structures, proteins and species involved in 

the pathogenesis of BU are discussed. 

2.1 The Cell 

The cell is the basic structural, functional and biological unit of all known living 

organisms. Cells are the smallest unit of life that can replicate independently. They 

are often called the building blocks of life. The cell has a cytoskeleton that acts to 

organize and maintain the cell’s shape, anchors organelles in place and move parts of 

the cell in processes of growth and mobility [Bruce et al., 2008]. The structure of the 

cell is as shown on Figure 2.1 [Seer]. 

Within the cell is the cytoplasm and the cytoskeletal apparatus. The cytoskeleton’s 

varied functions depends on the behavior of three families of protein molecular 

assemblies, namely: Intermediate, Microtubules and Actin filaments. Like our 

ligaments, bones and muscles work together, so do the three filament families work 

together to promote the proper function of the cytoskeleton. The three filaments, 

(Intermediate, Microtubules and Actin filaments), provide mechanical strength, 

determine the position of the membrane-enclosed organelles, direct intracellular 

transport, determine the shape of the cell surface and locomotion, respectively 

[Bruce 
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Figure 2.1: Structure of the cell 

et al., 2008] (pg 965). 

The actin filament is positioned under the plasma membrane of animal cells 

providing strength and shape to the cell through the lipid bilayer [Helfand et al., 2003, 

Howard, 2001]. The filaments form many types of cell surface projections of dynamic 

structures, such as the lamellipodia and filopodia that enable cells to explore and pull 

themselves around. 

With time, the actin-based contractile ring assembly divide cells into two or more 

stable arrays that allow cells to brace themselves against injury and enable muscle to 

contract. The intermediate filaments line the inner surface of the nuclear envelope 

and forms a protective cage for the cell’s Deoxyribonucleic acid (DNA). In the 

cytoplasm (cytosol), they are twisted into strong cables and can hold epithelial cell 

sheets together. The filaments allow cells to build large cytoskeletal structures that 

extend from one end to the other [Bruce et al., 2008]. The cytoskeletal filament 
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(assembly of subunits) form using a combination of end-to-end and side-to-side 

protein contacts. 

Covalent linkages between their subunits hold together many biological polymers, 

including DNA, RNA and proteins. In contrast, weak non-covalent interactions hold 

together the three types of cytoskeletal filaments. Consequently, their assembly and 

disassembly can occur rapidly, without covalent bond being formed or broken. It is 

important to note that filaments are formed from linkage of protein subunits. These 

subunits can move in the cytosol because of their small size, but filaments do not 

move, rather they can be rearranged [Luby-Phelps, 2000, Mitchison, 1995, Hill and 

Kirschner, 1982, Shih and Rothfield, 2006]. 

2.2 Protein Subunits are joined by Covalent Linkages 

A simple association reaction generally link protein subunits together to form a 

filament. A free subunit binds to the end of a filament that contains N subunits to 

generate a filament of length (N + 1). The initial aggregation of subunits, that is 

stabilized by many subunit-subunit contacts is called Filament Nucleation. As with 

other specific protein-protein interactions, many hydrophobic interaction and weak 

non-covalent bonds hold the subunit in a cytoskeletal filament together. There is a 

time lag (lag phase) and a saturation phase in the filament formation depending on 

how many subunits must come together to form the nucleus [Bruce et al., 2008]. 

The survival of eucaryotic cells depends on the balance assembly and disassembly 

of highly conserved cytoskeletal filaments formed from actin and tubuli. These two 
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types of filaments and proteins bind to initiate filament polymerization. The latter 

are frequent targets of natural toxins. Generally the toxins either disrupt filament 

polymerization reaction process or bind tightly to either the filament form or the free 

subunit form of the polymer driving the assembly reaction in the direction that favors 

the form to which the toxin binds. Therefore, either a net polymerization or 

depolymerization of the actin filament is formed and therefore the whole cell 

function is disrupted [Bruce et al., 2008]. The cytoskeleton is a dynamic structure in 

living cells that is maintained by a rapid and continual exchange of subunits between 

the soluble and filamentous forms. The subunit flux is necessary for normal 

cytoskeletal function [Bradshaw and Dennis, 2003, Palade, 1975]. Cells regulate the 

length and stability of their cytoskeletal filaments as well as their number and 

geometry [Howard, 2001]. By regulating the attachment to one another, and to other 

components of the cell, the filaments form a network of higher-order structures. 

Through direct covalent modification of filaments, subunits regulate some filament 

properties, most of the regulation is performed by a large array of accessory proteins 

that bind to either the filament or their free subunits. The nucleation of actin filament 

is catalysed by two different types of regulatory factors namely: the Actin related 

complex (Arp) and the formins. Arp is a complex of proteins that include Arp2/3 

which nucleate actin filament growth. In animals, the Arp2/3, complex is located in 

the lamellipodia and intracellular signaling molecules, and in the cytosolic face of the 

plasma membrane (i.e. regions of active filament growth) [Bruce et al., 2008]. 
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2.3 The Rho Protein Family and Cytoskeletal Rearrangements 

Cell directional migration require long distance communication between one end 

of the cell and the other. Carefully controlled polarization processes are required for 

oriented cell divisions in tissue, and in formation of a coherent, organized 

multicellular structure [Bruce et al., 2008]. For the cytoskeleton, diverse cell surface 

receptors trigger global structural rearrangements in response to external signals. 

But all these signals seem to converge inside the cell group of a closely related 

monomeric GTPases that are members of the Rho-protein family (Cdc42, Rac, and 

Rho) [Bruce et al., 2008] (pg. 1042). Rho proteins act as molecular switches to control 

cell processes by cycling between an active GTP-bound state and an inactive GDP- 

bound state [Howard, 2001]. Activation of Cdc42 on the plasma membrane triggers 

actin polymerization. Each of these molecular switches bind specific target protein 

and cause a dramatic structural change in the actin organization in the cell. Some key 

targets of the activated Cdc42 are members of the Wiskott- Aldrich Syndrome 

Proteins (WASP) family. Human patients, deficient in WASP suffer from Wiskott-

Aldrich Syndrom, a severe form of immunodeficiency where immune system cells 

have abnormal actin-based motility and platelets do not form normally. Secondly, 

mutations in the gene encoding WASP, results in an immune system disorder and 

affected individuals die unless they receive bone marrow transplant. Other related 

disorders like thrombocytopenia, eczema, and immunodeficiency in humans also 

exist due to specific mutations in WASP [Martinez et al., 2001, Bruce et al., 2008]. 

WASP can exist in an inactive, folded and active open conformations. Association 

with Cdc42-GTP stabilizes the open form of WASP, enabling it to bind to the Arp2/3 
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complex thus strongly enhancing this complex’s actin-nucleating activity. In this way, 

activation of Cdc42 increases actin nucleation [Bruce et al., 2008, Higgs and Pollard, 

2000, 2001]. In the literature [Clin, 2013, Bozzo, 2010], Mycolactone is believed to 

operate by hijacking the WASP family of actin-proteins and disrupting the auto-

inhibition WASP leading to an uncontrolled filament formation in the cell. Therefore 

it will not be out of place to speculate in this work that the covalent binding of 

Mycolactone toxin to WASP induces the immunodeficiencies, and the lack of acute 

inflammatory response observed in Buruli ulcer patients. 

2.4 A survey of Autoinhibitory Protein Functions in the Cell 

2.4.1 Autoinhibition 

Autoinhibition is a widespread phenomenon that plays a key role in the regulation 

of proteins by facilitating the response to signaling pathways. The precise regulation 

of protein activities is essential for normal growth and development. A common 

regulatory strategy to modulate protein function is provided by intramolecular 

interactions between separable domains (elements) within a single protein. 

Specifically one region of a protein interacts with another to negatively regulate its 

activity. Defining the mechanism of inhibition and the clarification of how the 

autoinhibition is counteracted or reinforced requires extensive mathematical 

modeling and additional experimental investigation. There are many examples of 

self-inhibited, induced and autoinhibited protein models but our main concern in this 

study is on inhibition of protein-protein interactions (example WASP, SNARE and 

ERM proteins). Within this diversity, there is a common thread in the mechanism of 

autoinhibition, that is an intramolecular interaction that either directly or 

allosterically interferes with the function of a targeted domain. The functional 
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domain could be directly blocked from a necessary ligand interaction or constrained 

in a nonfunctional conformation by a more indirect mechanism. In general, one can 

conclude that the modular organization of proteins facilitates regulation by 

autoinhibition. 

Autoinhibitory domains are regions of protein that negatively regulate the function 

of other domains via intramolecular interactions. Autoinhibition is a potent 

regulatory mechanism that provides tight on-site repression. The discovery of 

autoinhibition mechanisms have given rise to valuable clues as to how proteins are 

regulated. Mechanisms that counteract the autoinhibition of proteins often represent 

central regulatory pathways, and affect many downstream processes. Some 

instances in which autoinhibition acts in cell regulation include for example ERM, 

SNARE and WASP [Miles et al., 2002]. 

The modular design of proteins has several implications for the autoinhibitory 

phenomenon. First, autoinhibitory domains are distinct from domains that are the 

target of the inhibition. However, the relationship of an autoinhibitory domain to 

other domains vary. The autoinhibitory domain can be one whose sole purpose is 

inhibition or it can be a domain that mediates inhibition but also performs a second 

activity. Alternatively, there can be mutual inhibition between two domains that 

possess other activities. A second feature of the modularity of proteins is that 

domains are often linked by flexible regions. The transition from the inhibited to the 

activated state usually requires this flexibility. Also , a distinguishing feature for a 

module that functions as an autoinhibitory domain is the set of intramolecular 

interactions. Although most protein modules can function in isolation, an 
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autoinhibitory domain is structurally coupled to the targeted domain. Its inhibitory 

function is inextricably linked to the function of the remainder of the protein [Miles 

et al., 2002]. Furthermore the autoinhibitory domain restrains the targeted domain 

in a secure off state. In some cases, this is the default state, but there exist regulatory 

strategy that counteract the inhibition. Autoinhibition of a molecule presents a 

reversible barrier that prevents spurious activation of a signaling pathway. Among 

the various mechanisms for counteracting inhibition, the most common are the 

displacement of the inhibitory domain by a second molecule, thus replacing the 

intramolecular interaction with an intermolecular interactions and or binding of 

small molecules that allosterically alter the inhibitory domain. However, even this 

simple formulation comes with surprising diversity (e.g WASP, and SNAREs) as we 

shall see in chapter 

three. 

Though there are extremely divergent biological settings for known autoinhibitory 

phenomena, most mechanistic models of autoinhibition predict the existence of 

intramolecular interactions between the inhibitory elements and the functional 

domain [Buck et al., 2001, Miles et al., 2002]. Knowledge of species that activate, 

presumably by disrupting these interactions, and the mode of activation are 

informative. This intramolecular interaction model can be tested experimentally. 

Furthermore a variety of protein-protein interaction assays can also demonstrate 

intermolecular binding of an inhibitory domain to the targeted functional domain in 

experiments. 
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2.4.2 Wiscott-Aldrich Syndrome Protein (WASP) 

As mentioned in section 2.3, WASP regulate actin assembly via activation of the 

Arp2/3 complex. The activation function is masked by autoinhibition. The dynamic 

assembly and disassembly of actin filaments controls the shape of the membrane 

within a cell. In addition to providing a structural scaffold, actin filaments are 

involved in changing membrane shape in cell division, vesicular transport, and 

motility. Each of these processes requires characteristic networks of actin filaments 

[Chen et al., 2000]. 

The WASP family catalyzes actin nucleation and polymerization at the membrane by 

activating the Arp2/3 complex. The Arp2/3 complex alone nucleates actin poorly and 

requires the presence of an activator, including members of the WASP family 

[Higgs and Pollard, 2000, Zalevsky et al., 2001b,a]. The conserved C terminus of all 

WASP family members, termed the VCA domain (verprolin homology, cofilin 

homology, acidic region), is necessary for this activation (see Fig.2.2). The VCA 

domain has been shown to bind directly to the Arp2/3 complex, inducing a 

conformational change that converts Arp2/3 complex into an active form [Zalevsky 

et al., 2001b, Volkmann et al., 2001]. In isolation the VCA is fully active, but the 

activity of the 

VCA domain is inhibited in the context of the full-length protein by the N terminus 

[Higgs and Pollard, 2001]. 
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Figure 2.2: left WASP in Autoinhibition state, migration of activators, right activation of the Arp2/3 

complex and actin polymerization. Image from Higgs and Pollard [2001], Miles et al. 

[2002] with permission 

Figure 2.2, shows the domain structure of WASP. Notice the inhibited and 

activated region of WASP (the VCA domain stimulates actin polymerization and 

branching by activating the Arp2/3 complex). Intramolecular interactions between 

inhibitory elements, BR-GBD, and the VCA domain mask the activating function of 

WASP (left). Activated GTPase-Cdc42 and PIP2 displace the inhibitory elements GBD 

and BR (Basic Region), allowing the VCA domain to activate the Arp2/3 complex, 

which induces actin polymerization and actin branching, both necessary for the 

formation of filopodia [Miki et al., 1998]. Some biochemical studies further indicate 

that the binding of the GBD to Cdc42 and the VCA are mutually exclusive. 

Together, these studies indicate that the GBD is stabilized either intramolecularly by 

the VCA domain to create an inhibited WASP or intermolecularly by Cdc42 to create 

an activated WASP [Kim et al., 2000a]. 

Amide exchange experiments using a GBD-VCA fragment indicate that the GBD is 

only partially displaced by Cdc42, which again suggests that multiple inputs are 

necessary to relieve autoinhibition [Buck et al., 2004]. 



 

19 

WASP and its ubiquitously expressed homolog N-WASP share similar biochemical, 

biophysical, and structural features. In this introduction, my efforts is to summarize 

their general function and regulation instead of distinguishing their differences. 

2.5 Introduction to Actin Related Proteins of the Cell 

The actin cytoskeleton of the cell play major roles in numerous cellular processes 

and it plays a key role in maintaining cell activity and function. More than a hundred 

actin-related proteins have evolved in eukaryotic cells to regulate the actin 

cytoskeleton in both space and time [Siripala and D., 2007]. 

2.5.1 Regulated Dynamics of the Actin Cytoskeleton 

One of the most fundamental and abundant protein to life and death is the actin in 

eukaryotic cells. The cytoskeleton is a dynamic filament network that is essentially 

responsible for cell movement during embryo development, polymerization, cell 

division, immune system function and in the metastasis of cancer cells. Cells harness 

various actin binding proteins to build varied cellular structures and utilize the force 

generated by actin polymerization to drive these diverse processes. 

Cells regulate actin cytoskeleton dynamics in response to extracellular stimulation. 

These regulated pathways modulate actin assembly and disassembly by switching 

on the Rho family GTPases. During actin assembly, activated Rho GTPases (Rac and 

Cdc42) stimulate the actin nucleation and branching factor Arp2/3 complex via 

members of the Wiskott-Aldrich Syndrome Protein (WASP) family [Jaffe and A., 2005, 

Hall, 1998, Bruce et al., 2008, Pollard and Cooper, 2009]. WASP is involved in the 
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pathogenesis of many immune-related disorders and it is a key regulator of actin 

dynamics. 

It is not surprising that toxic substances, bacteria and viruses have evolved 

mechanisms to interrupt or hijack and usurp the host actin machinery (e.g. 

cytoskeleton) to serve their own needs during infection. Toxins and pathogens often 

target the host actin cytoskeleton as a means to facilitate intimate attachment to host 

membranes and mediate their entry into host cells [Munter et al., 2006, Stevens et 

al., 2006]. 

2.5.2 WASP Function in Actin Dynamics 

WASP family play a major role in regulating actin dynamics in cells. They are 

defined by a VCA domain. This protein family consists of WASP, N-WASP (neuronal 

WASP), WAVE (WASP family verprolin homolog) isoforms 1-3, and WASH 

(WASP/Scar homolog). All these proteins share similar C-terminal VCA domains, 

which are required for the biochemical activity of promoting actin polymerization by 

nucleation and branching factor Arp2/3 complex, but nearly all of them differ in their 

N-terminal domain organization, indicating that each member has distinct cellular 

localizations, modes of regulation, and biological functions [Bruce et al., 2008]. WASP 

is composed of an N-terminal, a basic region (BR), a GTPase binding domain 

(GBD) and a C-terminal VCA region. The VCA is the activity-bearing domain of WASP, 

whereas the other N-terminal domains mainly serve regulatory functions. WASP 

spatially and temporally coordinates numerous signal inputs via its various 

regulatory domains to give a specific functional output through the VCA. This process 

turns on the actin nucleating Arp2/3 complex. The major nucleation promoting 

activity of WASPs VCA is modulated by its N-terminal and the GBD. These regions 



 

21 

receive or engage with various active complexes to link extracellular stimulation to 

intracellular actin machinery. 

An important feature of WASP is its allosteric mechanism. The Rho-family small 

GTPase Cdc42, phosphatidylinositol 4,5-bisphosphate (PIP2), and SH2 

domaincontaining proteins are all major allosteric activators of WASP (see Figure 

2.3). WASP is the gene product responsible for the pathogenesis of Wiskott-Aldrich 

Syndrome, an X-linked recessive, immunosuppressive disease characterized by small 

platelet size, thrombocytopenia (low platelet count), eczema, and recurrent infections 

[Hussain and Jenna, 2001, Derry and Ochs, 1994]. Mainly WASP, is found in 

haematopoietic cell lineages, such as platelets, B cells, T cells, and monocytes 

[Stewart and Treiber-Held., 1996]. 

It has been reported that, the polyketide lipid toxin (mycolactone), the main virulence 

of Buruli ulcer operates by hijacking WASP thereby leading to an uncontrolled 

polymerization of actin filament in eukaryotic cells. Therefore a detailed study of 

WASP may provide insights into the pathogenesis of Buruli Ulcer (BU) and other 

WASP-related diseases. It may also explain the basis of immunosuppression and 

acute inflammatory response observed in BU patients. To summarize this section: 

activities of WASP resides in the VCA, which coordinates with Arp2/3 complex to 

nucleate actin filaments (Figure2.4). These WASP regulators and the nature of their 

interactions with WASP are reviewed below. 

2.5.3 WASP is Autoinhibited via Intramolecular Interactions between GBD and VCA Domains 

WASP alone is autoinhibited because the activity bearing VCA is masked by the 

GBD. The VCA binds to the GBD, but this interaction can be weakened by addition of 
activated Cdc42 that binds to the GBD [Miki et al., 1998, Kim et al., 2000a]. 
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The activity of WASP in actin assembly is enhanced by the presence of activated 

Cdc42. In contrast, the isolated VCA fragment at low nanomolar concentrations has 

at least a hundredfold higher activity than the full-length protein. The full length 

WASP does exhibit any detectable interaction with Arp2/3 complex, while under the 

conditions of isolated VCA it displays a strong binding interaction with Arp2/3 

complex. Data in the literature support the notion that WASP and N-WASP are 

autoinhibited via intramolecular interactions between their GBD and VCA. Binding 

to activated Cdc42 releases this inhibition and allows the VCA to bind and activate 

Arp2/3 complex (Figure 2.4). The question is how this autoinhibition is achieved. In 

the research works of Kim et al. [2000a], Panchal et al. [2003], the authors report on 

the Nuclear Magnetic Resonance (NMR) of actin polymerization show that when 

Cdc42 binds the VCA of WASP the intramolecular interaction sequesters the C region 

of the VCA and blocks residues needed for Arp2/3 activation, thus inhibiting WASP. 

2.5.4 The Rho family GTPase Cdc42 releases WASP Autoinhibition 

The works of Lamarche and Tapon [1996], show that Cdc42 binds to the WASP 

GBD, with a high affinity in the GTP state. This interaction links Cdc42 to the actin 

cytoskeleton in cells. Cdc42 competes with the VCA for binding to the GBD [Miki et 

al., 1998]. Importantly, this binding interaction is required for stimulation of WASP 

activity in actin assembly. In the active state, the GBD-VCA is largely unfolded and the 

VCA is readily able to bind and activate Arp2/3 complex; whereas in the closed and 

inactive state, interactions between the GBD and the VCA blocks the accessibility of 

the VCA to Arp2/3 complex. 

Research works from Buck et al. [2001], Abdul-Manan [1999], Kim et al. [2000a], 

have established a two-state allosteric equilibrium models to explain WASP 
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regulation. In these models binding of activated Cdc42 to the GBD, shifts the 

equilibrium to the open state and globally destabilizes the autoinhibited fold, hence 

releasing the VCA and activating WASP to stimulate actin assembly by Arp2/3 

complex. 

 

Figure 2.3: Actin Nucleation by ARP WASP complex Qiagen 

 

Figure 2.4: Autoinhibitory equilibrium of WASP 

The proposed model for WASP regulation invokes an isomeric constant M and 

afinity constant C to control intramolecular contacts between the regulatory GTPase 

Binding Domain (GBD) and the activity-bearing VCA domain of the protein. WASP 

activators (e.g. Cdc42) relieves autoinhibition allosterically by disrupting the 

intramolecular contact between GBD-VCA of WASP, enabling the VCA to activate 

Arp2/3 complex (Figure 2.4). 
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These observations suggest that important mechanism(s) of regulating the activity 
of WASP toward Arp2/3 complex, in addition to allostery, remain to be discovered. 

2.6 Effect of Mycolactone on WASP leads to Cytoskeletal Rearrangement 

Mycolactone is a diffusible lipid secreted by the human pathogen Mycobacterium 

ulcerans, which induces the formation of open skin lesions referred to as Buruli 

ulcers [Kathleen et al., 2000, McCallum et al., 1948]. Mycolactone operates by 

hijacking the Wiskott-Aldrich syndrome protein (WASP) family of actin-nucleating 

factors. By disrupting WASP autoinhibition, Mycolactone leads to uncontrolled 

activation of Arp2/3-mediated assembly of actin in the cytoplasm. In epithelial cells, 

Mycolactone-induced stimulation of Arp2/3 concentrated in the perinuclear region, 

resulting in defective cell adhesion and directional migration. 

In vivo, the injection of Mycolactone into mouse ears consistently altered the 

junctional organization and stratification of keratinocytes, leading to epidermal 

thinning, followed by rupture. These results clarify the molecular basis of 

Mycolactone activity and provide a mechanism for Buruli ulcer pathogenesis [Clin, 

2013, Belinda et al., 2014, Laure et al., 2011, Demangel et al., 2009]. In vitro, 

Mycolactone diffuses passively into the cytoplasm of mammalian cells to induce 

apoptotic cell death, although with highly variable efficacy [Hong et al., 2008]. 

Anchorage-dependent cells are the most susceptible to Mycolactone toxicity, which 

proceeds through cytoskeletal rearrangements and detachment [Bozzo, 2010, 

George et al., 2000, Snyder and Small, 2003, Laure et al., 2013]. Mycolactone gains 

access to WASP by passive diffusion through the plasma membrane [Snyder and 

Small, 2003] and it binds to WASP 100fold more strongly than its major regulator, 
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Cdc42 [Leung and Rosen, 2005], leading to a much greater capacity to stimulate actin 

assembly in vitro. 

Mycolactone is believed to relieve/ disrupt the intramolecular contacts that maintain 

WASP autoinhibition [Clin, 2013]. 

2.6.1 Implications of Disrupted Autoinhibition for Human Disease 

Autoinhibition can be disrupted in disease states. In a genetic disease, a mutated 

gene could be altered within the region that encodes the inhibitory element or the 

surface that interacts with the autoinhibitory domain. The mutated gene could direct 

synthesis of a protein that is constitutively active, having lost the negative control 

afforded by the intramolecular network. An example is the case of a human disease 

and WASP [Devriendt et al., 2001]. The position of the mutation suggests that it could 

result in release of VCA inhibition, leading to constitutive activation of Arp2/3 and 

mis-regulated actin polymerization [Devriendt et al., 2001]. 

Because an autoinhibitory mechanism is specific to the regulation of a particular 

activity within a unique protein, it is suitable for targeted therapeutics. An 

autoinhibitory domain could be targeted for either activation or further repression 

by a small molecule. The drug would be directed to a single protein to intervene with 

its unique regulatory mechanism. An understanding of the full repertoire of 

regulatory strategies for a particular protein, including autoinhibition, should 

facilitate such pharmaceutical research efforts. 

CHAPTER 3 

Kinetics and Model Mechanism for Ligand-Receptor Binding 
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3.1 Introduction 

In this chapter, we will consider the kinetics of ligand-receptor binding, and 

develop model mechanisms for fractions of bound receptor complexes. 

The modeling process begins with the enzyme-substrate kinetics proposed by Henry 

Michaelis and Menten (HMM). In the HMM model, two time scales appear in the 

solution of the complexes formed, which are experimentally not measurable, 

therefore an approach to find fractions of bound ligand-receptor complexes is 

introduced. This way, we are able to determine the fraction of bound WASP complex 

that can activate Arp2/3 complex to initiate polymerization of actin filament in the 

cell. The approach was first proposed by Briggs-Haldane (1925) using the law of 

adsorption and desorption. We find in the analysis that in ligand-receptor kinetics, 

the flux, though proportional to concentration gradient, is also proportional to the 

bound conformation(s) of the ligand-receptor complex(es). 

The model will be a formulation of concentration-dependent steady-state 

(equilibrium) formalism based on conservation principles. By the equilibrium 

approach, we distinguish between functional and binding response of receptors 

against a change in concentration of the ligand, or as fractional response of receptors 

against a change in concentration of the ligands. Obviously in biochemical reaction, 

just because there is a conformational change in the receptor unit when a ligand 

binds, this conformational change is not necessarily the one which activates (or 

inhibits) the receptive unit for function. Meanwhile since theories on binding and 

function have many overlapping and identical expressions, their analysis are easily 

confounded Bindslev [2008]. 
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From the law of reciprocity, if binding affects activation, then activation must affect 

binding (Colquhoun 1998). This law allows us to formulate reversible reactions at 

equilibrium. Before we develop the model for WASP, Cdc42 and Mycolactone toxin 

binding we give, a brief introductory theory of equilibrium reactions and chemical 

kinetics. 

3.1.1 Guldberg and Waag Law of Chemical Equilibrium (GWCE) 

Often many biological reactions are not completely irreversible and the 

transformation of the products back to reactants and reactants to products is 

possible. In biology it is often required to describe the kinetics of complex 

formulations (e.g. binding of ligand to receptor or binding of substrate to an enzyme). 

A precise example is given by: 

k1 

[C1] + [C2]   [C3] 

k−1 

Where [C1],[C2],[C3] are receptor, ligand and product concentrations, respectively. 

Here k1 and k−1 are the reaction rate constants. At equilibrium, the rate of production 

of [C3] by combining [C1] and [C2] is just as fast as the elimination of 

[C3] over the time generating [C1] and [C2]. 

From the law of mass action, the equilibrium concentration of the products and 

reactants is characterized by the equilibrium dissociation or association constant at 

steady state as: 

 , or  (3.1.1) 
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The equilibrium dissociation constant ( ) has unit of concentration and the 

equilibrium association constant Ka has unit of per concentration (concentration

1 ). Equation (3.1.1) has no unit of time. The right hand side of equation 

(3.1.1) states that the ratio between occupied receptive site C3 and non-occupied 

receptive site C1 is equal to the ligand concentration C2 times the ratio of association 

rate constant (k1) and dissociation rate constant (k−1). It is important to draw a 

distinction between k1 and k−1 in reaction kinetics. The equation (3.1.1) for the 

reaction above will not hold if any of the reactants and or products is volatile or forms 

a precipitate or is consumed in other chemical reactions. 

3.1.2 Reaction Kinetics 

The complexity of biological and biochemical processes is such that the 

development of simplifying models and reaction schemes are essential in trying to 

understand the phenomenon under consideration. For such models and reactions, it 

is important to use reaction mechanisms which are plausible biochemically. 

Biochemical reactions are continually taking place in all living organism and most of 

them involve proteins called enzymes/receptors, ligands etc. The most important 

features of enzymes are: regulatory, specificity on substrate and catalytic power. The 

clearest example is haemoglobin in red blood cells is an enzyme and oxygen, with 

which it combine is a substrate. 

In this study, reaction kinetics are introduced since the ideas mirror some general 

types of reactions or binding phenomena and their corresponding mathematical 

realization. A knowledge of these is essential in constructing a mathematical model 
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to reflect specific known biochemical properties of a mechanism. Next the HMM 

model for enzyme-substrate reaction is discussed in detail. 

3.1.3 Chemical reaction equilibrium approximation: HMM equation 

Below, the HMM model for enzyme-substrate reaction is described. HMM in 

(1913) proposed the reaction mechanism for the enzyme-catalyzed biochemical 

reaction based on experimental observations. In their model, an enzyme (E) reacts 

with a substrate (S) to form an intermediate complex (ES). This intermediate 

complex breaks down, not only to form back the reactants (E) and (S), but forms also 

the product (P), and the remaining enzyme (E), is recouped. In this work such a 

substrate is referred to as having one binding site 

3.1.4 Reaction of Proteins with One Binding-Site 

In this work the Michealis-Menten equation is referred to as one binding site 

substrate / protein reaction mechanism. See for example Murray [2001]. The 

reaction scheme is given by: 

 k1 k2 

[E] + [S]   [ES] → [E] + [P] 

k−1 

From the law of mass action, the equations describing the reaction mechanism can 

be written as: 
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  (3.1.2) 

The initial concentrations are: 

[S(0)] = s0,[E(0)] = e0,[SE(0)] = [P(0)] = 0 

where the [.] are concentrations and ki, i = 1,2 are reaction rate constants. Small 

letters are used to represent concentrations, s = [S], e = [E], c = [SE] and p = [P]. The 

last equation in (3.1.2) is uncoupled and can be solved provided c is known. 

  (3.1.3) 

Since part of the enzyme is used up in the formation of the intermediate complex (c) 

we can deduce from the conservation law that: 

 e(t) = e0 − c(t) (3.1.4) 

Equation (3.1.4) shows that from an initial concentration of the enzyme (e0), part of 

it is used up to form the intermediate complex (c). The concentration of the 

intermediate complex will increase to a maximum (very fast) whiles the enzyme 

concentration decreases until the complex begins to break down to form the product 

and reactants since it is a reversible reaction process. 
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Introducing the dimensionless quantities; 

(3.1.5) 

 , and 

where Km is the Michaelis constant and . Substituting (3.1.4) and (3.1.5) 

into (3.1.2) we obtain its dimensionless equivalent as: 

  and  (3.1.6) 

with the initial conditions 

 u(0) = 1, and v(0) = 0. (3.1.7) 

Using 3.1.4 to eliminate the second equation in (3.1.2), equation (3.1.6) is obtained 

from the first and third of 3.1.2. Note that K − λ > 0 from (3.1.6). The solutions u(τ) 

and v(τ) immediately gives the solutions to equations (3.1.3) and (3.1.4). Since 

1, the model system (3.1.6) is singular. 

Using singular perturbation techniques, we look for solutions to (3.1.6) of the form: 

  (3.1.8) 

The O(1) order solution of (3.1.8) is given by: 

  (3.1.9) 
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Notice that the first solution in (3.1.9) does not uniformly satisfy the initial condition 

in (3.1.7) since = 0. Inclusion of higher order terms in  does not remedy 

the problem. Therefore, the assumption that  is very small, which made 

0 is reframed to include solutions near τ → 0 (for v(τ)). Secondly, the 

assumption that the initial concentration of the enzyme-substrate complex is zero 

(c(0) = 0) is a mathematical interpretation since in reality, life (protein and enzyme 

binding) is a continuous process and such complexes can not be zero. This will be 

achieved by introducing a magnification factor around τ → 0. Let the new time scale 

be given by: 

  (3.1.10) 

Using the new time scale, equation (3.1.6) can be written as: 

  (3.1.11) 

Similarly, we look for solutions of the form: 

  (3.1.12) 

Up to O(1), the system becomes 
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  (3.1.13) 

The solution to equation (3.1.13) is of the same order as (3.1.12) and given by 

  (3.1.14) 

In most biological applications 0 1, therefore we only need the 0(1) order 

terms. The ) order terms contributions are negligible [Murray, 2001]. 

The matching conditions are given by: 

  (3.1.15) 

The two time scales give an inner and outer solution as follows: 

  (3.1.16) 

Outer solution 

where u0(τ) and v0(τ) are given by the first and implicitly by the second equation in 

(3.1.9) respectively, and V0(ϕ) is given by the second equation of (3.1.14). 

Remark: Generally, problems involving two time scales as the one discussed above, 

singular perturbation techniques are very important and powerful methods for 

determining asymptotic solutions of such systems of equations for small . The 

asymptotic solutions are remarkable approximations to the exact solutions. The 

u ( τ, )= u 0 ( τ )+0(  ) τ ≥ 0 

v ( τ, )= 

 
       

       

V 0 ( ϕ )+0(  0 ) <τ  1 

| { z } Innersolution 

v 0 ( τ )+0(  ) , τ  1 

| z { } 
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disadvantage in this current scenario is that the rapid changes in the enzyme-

substrate complexes in both dimensionless and dimensional times are so small that 

they are experimentally not measurable. Secondly we have assumed in the 

discussion above that 0, and therefore, mathematically 0. The question is 

what happens if the ratio of enzyme to substrate ( ) is not so small? This was studied 

by De Boer and Perelson (1994) for a situation that involved T-cell proliferation in 

response to an antigen. The model proposed in this study is analogous to that of De 

Boer and Perelson. 

Therefore, since it is our aim to determine the total concentrations of bound WASP 

and GTPase-Cdc42 complex as well as bound WASP and Mycolactone complexes in 

real time, this method can not be used. 

In the next section, a general approach is used to investigate a reaction system of 

enzyme/receptor and substrates binding without any assumption on the 

enzymesubstrate ratio. The approach can lead to the determination of fractions of 

concentrations of all the complexes in real time. Next the introduction of quasi-steady 

state assumptions. 

3.1.5 Quasi-Steady State Assumption (QSSA) 

It is assumed in the derivation of 3.1.2 that the formation of the complex (c) is very 

fast, such that it is in instantaneous equilibrium with the substrate s. Therefore, 

 . Thus k1se = k−1c (3.1.17) 

From equation (3.1.17), applying the law of Detri, (i.e. if = 0, then 

) the fraction of the complex [ES] can be written as: 

  (3.1.18) 
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where eT is the total concentration of enzymes (bound and unbound), eT = e + c. Kd is 

the equilibrium dissociation constant. Since the last equation in (3.1.2) is not coupled, 

we can write: 

  (3.1.19) 

where  is the speed at which the product (p) is formed and it is equivalent to 

equation (3.1.3). 
3.1.6 Quasi-Steady State Assumption: Briggs-Haldane Equation 

From the reaction scheme in 3.1.2, Briggs and Haldane (1925) suggested an 

alternative hypothesis: If the enzyme is present in catalytic amounts ( ), then 

shortly after mixing e and s, a steady state is established in which the concentration 

of c remains essentially constant with time, therefore 

 = 0 (3.1.20) 

From equation (3.1.2) and the condition given by (3.1.20) and eT = e + c we can 

write: 

 k1se − k−1c − k2c = 0. as  (3.1.21) 

where , and thus 

  (3.1.22) 

Equation (3.1.22) is time independent and can also be substituted into (3.1.3) to 

compute the product p(t). Notice that equation (3.1.1) from GWCE in section 3.1.1 

can also be rewritten as: 

 

where C3 = c,C2 = s,C1 = e. Thus, 
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Occupied receptive 

site 

 (3.1.23) Total receptive sites 

If we replace  in equation (3.1.23) where Ka is the equilibrium association 

constant we get: 

 Occupied receptive sites =  (3.1.24) 

where Ctot = C1+C3. Equation (3.1.24) is equivalent to the experimentally confirmed 

Langmuir (1918) equation for adsorption and desorption. 

Equations (3.1.24) and (3.1.23) suggests that the fraction of occupied (or bound) 

receptive sites is not a simple proportional function of the ligand concentration as in 

the Law of Mass Action. 

Again from the conservation of mass we can substitute (3.1.4) into the first equation 

of (3.1.2) as: 

  (3.1.25) 

If the intermediate reaction is very fast, substituting equation (3.1.22) into (3.1.25), 

and performing some algebraic manipulations lead to 

  (3.1.26) 

where Q = K2e0. Note that from equation (3.1.26), the term  is a saturation 

function, which tends to unity as s → ∞. Equation 3.1.26 has a solution of the form: 

 s(t) + Km ln(s) = −Qt + A (3.1.27) 



 

37 

where Km is the HMM equilibrium dissociation constant, Q and A are constants to be 

determined. The time-dependent concentration of the complex [ES] can be obtained 

with time if we substitute (3.1.27) into (3.1.22). 

The analysis above shows that enzymatic reactions do not necessarily follow the law 

of mass action directly. As the concentration of the substrate is increased, the rate of 

the reaction increases, reaching a maximal (saturation) reaction velocity at high 

substrate concentration. 

This is in contrast with the law of mass action which, when applied directly to the 

reaction with the enzyme predicts that the velocity increases linearly as the substrate 

concentration increases. Notice that if the desorption is faster ( ) then Km → 

Kd, and the HMM constant equals the equilibrium dissociation constant. Secondly the 

HMM equations are time-dependent expressions of initial concentrations. They 

become equal, at the steady state, to the GW model. 

3.2 Introduction to Ligand-Receptor Binding 

A receptor is a protein which may have more than one (active or inactive) binding 

sites. When a ligand is bound to a receptor binding site, there will be a conformational 

change in the receptor unit. The binding of a ligand to a receptor binding site may or 

may not influence the binding of another ligand to a second site on the receptor unit. 

Here we discuss two cases of a receptor with two binding sites: (1) the two binding 

sites are mutually exclusive (independent) and (2) they are mutually inclusive 

(cooperativity). The reaction mechanism is shown in Figure 3.1. 
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Figure 3.1: Reaction mechanism for receptor with two binding sites 

Let C1 denote a receptor bound on one site by a ligand and C2 denote a receptor 

bound on the two sites by ligand. The subscripts {1,2} indicates the number of sites 

on the receptor bound by ligand(s). The reaction scheme for such a reaction is shown 

as: 

k1 

2[[S] + [E]   [C1]] 

k−1 

k2 

2[[S] + [C1]   [C2]] 

k−2 

From the law of mass action we get 

  (3.2.28) 

where e and s are concentrations of receptor/protein, and substrate/ligand 

respectively. c1 = [C1] and c2 = [C2] are receptor and substrate complexes: 
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3.2.1 Case I: Two Mutually Exclusive Binding Sites 

Let 

et = e + 2c1 + c2 

Applying the quasi-steady state assumption, 

 = 0 (3.2.29) 

and denoting 

 , and  (3.2.30) 

 k1 = k2 = k+ and k−1 = k−2 = k−, 

and 

 

it holds that 

 , and . (3.2.31) 

Therefore the fraction of receptor sites in the bound states will be given by: 

 bound receptor sites (F) 2c1 + 2c2 

 = (3.2.32) 

 total receptor sites (unbound plus bound) e + 2c1 + c2 

In the right hand side of (3.2.32), the first 2 stands because there are 2 forms of c1, 

while the second 2 stands for the fact that there are 2 bound sites on c2. 

Substituting (3.2.31) into (3.2.32) we have: 

  (3.2.33) 

Equation (3.2.33) simplifies to 
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  (3.2.34) 

The equation (3.2.34) is two times (3.1.23), where F = C3,C2 = s, and et = C1 +C3 

(i.e. the equation for a receptor with one binding site). This is similar to the 

Michaelis- Menten equation for (  

3.2.2 Case II: Two Mutually Inclusive Binding Sites 

In this scenario, the binding of a ligand to a receptor site favors the binding of 

other ligands to the other receptor sites (cooperativity). In the reaction scheme 

above , 

 

Therefore, we can write 

 k2 = βk1 (3.2.35) 

where  is a dimensionless cooperativity constant. From the condition in 

(3.2.35), it holds that: 

  (3.2.36) 

  (3.2.37) 

Since 1, we can assume that C2 dominates. Then, equation (3.2.37) reduces to: 

  (3.2.38) 

  (3.2.39) 

Notice that equation (3.2.39) is time independent, and secondly cooperative binding 

does not follow the Michaelis-Menten function. The function in (3.2.39) has a 
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sigmoidal shape. Below, we generalize equation (3.2.39) for a receptor with N-finite 

cooperative binding sites. 

3.3 Receptor with N-finite Cooperative Binding Site 

We derive an equation for a receptor with N-finite cooperative binding sites. We 

assume that the more ligand molecules are already bound, the easier the binding of 

additional ligand molecules. (i.e. cooperativity implies ki > ki+1). Let Ki denote the 

equilibrium (dissociation) constant of the ith step of binding ( ). The receptor 

conformation is changed to favor the binding of more ligands to the receptor. 

We start with a receptor with four binding sites. The reaction mechanism is below. 

 

Figure 3.2: Co-operative mechanism for ligand-receptor binding 
For a receptor with N cooperative binding sites, we can write 

 ki = βiki−1 (3.3.40) 

where cooperativity in this case means 

ki > ki+1 

If we assume that all forms of the ligand-receptor complexes are possible, then a 

general equation for the fraction of bound receptive sites is given by: 

 . (3.3.41) 
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where K is a function of  

In enzyme kinetics n is called the Hill coefficient. Notice that equation (3.3.41) 

reduces to (3.1.22) if n = 1. Secondly, as S ' K, we can evaluate K in a plot of 

experimental data (ie when half of the total receptor sites are bound by ligands). 

Thirdly, equation (3.3.41) is sigmoidal and saturates as S → ∞. Fourth, the curve for 

equation (3.3.41) is similar to a Hill function. 

If the cooperativity between binding sites is very strong, then n is equal to the 

number of binding sites on the receptor. As stated earlier, the receptor has finite 

number of binding sites. A plot of equation (3.3.41) for different parameter values is 

shown in Figure 3.3. 

In Figure 3.3(a) the plot shows different values of the equilibrium dissociation 

constant (K) for the interval (0.5 ≤ K ≤ 10) and n = 1. In Figure 3.3(b), the plot shows 

n = 4 at same values of K as in Figure 3.3(a). When half of the total receptor sites are 

fully bound to ligands Kd can be computed. 

 
 (a) (b) 

Figure 3.3: Plot of the fraction of bound receptor sites against the concentration of the ligand S 
. 
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 (a) (b) 

Figure 3.4: Plot to show the effect of the parameter n on fraction of bound receptive unit against ligand 

concentration (a) K = 2 and (b) K = 6. 

Figure 3.4 shows the effect of the parameter n on the fraction of bound receptor 

sites F against concentration of [S]. In Figure 3.4(a) the plot show the effect of 

parameter n on saturation as n varies from 2 to 10 in steps of 2 while K = 2. In Figure 

3.4(b) K = 6 and 2 < n < 10. For small values of K the receptor protein saturates faster. 

The legend shows the values of n and the corresponding colors respectively. 

If the formation of the intermediate complex is fast, as assumed by the 

MichaelisMenten model, then the equilibrium dissociation or association constants 

can not be obtained from the graphs above. In both plots of Figure 3.4, all the curves 

pass through the point when the concentration of the ligand equals the equilibrium 

dissociation constant (K = [S]). At this point, the fraction of bound receptor sites 

equals half. Equation (3.3.41) can be linearized using the Lineweaver-Burk approach 

to approximate K . 

  (3.3.42) 
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The two parameters n and K have a strong effect on the saturation of the bound states. 

Secondly, as the parameter 1 increases, more products are dissolved to form 

reactants, and the graph shift towards the right. The shift indicates a lag phase in 

reaching the steady state (saturation) since more products are dissolved to form 

reactants. The reverse is true for decreasing K. 

Binding of proteins/receptors to ligands have the ability to activate or inhibit the 

binding of other molecules. 

In the next section we introduce the concept of allostery in receptor binding. 

3.4 Allosteric Effect in Ligand-Receptor Binding 

The concept of isomerization and conformational changes in receptor and ligand 

complexes reveals that allostery and cooperativity in reactions are similar. This 

notion is supported by Monod et al. [1963], in their study of cooperative and 

allosteric phenomena. Monod et al. [1963] concluded that the two were closely 

related and that conformational flexibility probably accounted for both. 

Subsequently, Monod et al. [1963] proposed a model to explain allostery / 

cooperativity phenomena in protein binding. Their allosteric model starts from the 

observation that each molecule of a typical cooperative protein contains several 

subunits. We will denote by α the number of subunits. A simple reaction scheme for 

allostery is shown below. (see for example Maurizio [2011], Jean-Pierre [2013], 

Bindslev [2008]). 
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Figure 3.5: Allosteric reaction scheme The R 

and T represent relaxed and tense states of the protein. 

3.4.1 Assumptions of the model: 

1. Each subunit can exist in two different conformations (isomers), denoted R and 

T. 

2. All subunits of the protein must be in one of two conformation at any time. 

Therefore, for a dimeric protein (with two binding sites) the conformational 

states R and T, are the only ones permitted, the mixed conformation RT being 

forbidden (this condition becomes much more restrictive when the protein 

(receptor) counts more than 2 subunits (e.g. for α = 4 the allowed states are R4 

and T4, while R3T,R2T2,RT3 are all forbidden). 

3. The ratio of the two conformational states of the protein in basal form (inactive 

T and active R), will be given by the constant . We refer to M as an 

isomerisation constant. In the basal form of the protein, M is a ratio of inactive 

and active states of the protein as we shall see later. 
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4. A ligand (X) can bind to a subunit in either conformation, but the equilibrium 

dissociation constant are different:  for each R subunit; 

for each T subunit. The ratio is the cooperativity constant or the 

affinity constant. 

If 0 < C < 1, the affinity of X to R is strong whiles if C > 1, the affinity of X to R is weak. 

Note that C is a ratio of two equilibrium dissociation constants. In other words the 

value of C indicates the affinity of X to the protein (R). 

The resulting equations from the above scheme are given by 

  (3.4.43) 

with initial conditions,   

 R(0) = R0, T(0) = T0, RX = TX = RX2 = TX2 = 0 (3.4.44) 

where  and . 

We describe here the derivation of the equations for the case of a dimeric protein 

with 2 subunits. We assume that the equilibrium dissociation constant KR are the 

same for X binding to R to form RX, and X binding to RX to form RX2 and same for the 

T binding complexes. We then discuss the generalization to the case of α 
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subunits. 

At steady state, we obtain the following useful concentrations and system constants 

from equation (3.4.43): 

  (3.4.45) 

In each equation, the factor 2,1/2 and 1 results from the fact that the dissociation 

constants are defined in terms of individual sites, but the expression are written for 

the complete molecules and receptor sites with two bound ligand count twice We 

define the fraction of sites bound by the ligand (fr) as: 

Number of sites bound by ligand 

 fr =  (3.4.46) 

Total number of limited receptive sites 

  (3.4.47) 

In the numerator the concentration of each molecule is counted according to the 

number of occupied sites it contains (the empty sites are not counted), but in the 

denominator, each molecule is counted according to how many sites it contains, 

whether it is occupied or not. Substituting the concentrations from (3.4.45) into 

(3.4.47). 
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Let  and  be normalized concentrations. Then, for the general case 

where the protein has α subunits, Equation (3.4.48) becomes: 

  (3.4.49) 

The shape of the saturation curve defined by equation (3.4.49) depends on the values 

of α,M,KR and KT , as can be illustrated by assigning some extreme values to these 

constants. If the value of M is significantly different from zero, the graph of fr as a 

function of χ is sigmoidal. If α = 1, (i.e. only one binding site on the protein) then 

(3.4.49) simplifies to: 

  (3.4.50) 

where KRT is the apparent dissociation constant for initial concentrations of both 

R and T in the binding process. The complexity of this dissociation constant does not 

however alter the fact that it is a constant, and thus no cooperativity is possible if α = 

1. 

If M = 0, the T form of the protein does not exist under any condition, KRT = KR and the 

factor (1+χ)α−1 cancels between the numerator and the denominator, leaving 

 (3.4.51) 

which predicts hyperbolic (non-cooperative) binding with dissociation constant KR. 

A similar simplification occurs if M approaches infinity, (i.e. if the R → 0). In the 

second case, 
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 . (3.4.52) 

It follows that both R and T forms are needed if cooperativity is to be possible for a 

dimeric protein. It is also necessary for the two forms to be functionally different 

from each other, i.e. KR 6= KT . If KR = KT it is again possible to cancel the common factor 

(1 + χ)α−1, leaving a hyperbolic expression. This illustrates the reasonable expectation 

that if the ligand binds equally well to the two states of the receptor, the relative 

proportion in which they exist are irrelevant to the binding behaviour. 

If , i.e. if X binds only to the R state, we find: 

 . (3.4.53) 

where M is an intrinsic isomeric constant that describe the equilibrium of R and T in 

the absence of x.  
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CHAPTER 4 

Mathematical Model Mechanism for BU 

In this chapter, the mathematical models for the kinetics of polyketide lipid toxin 

(Mycolactone), and WASP binding is developed. Mycolactone has been implicated as 

the main virulence of the Buruli ulcer (BU) disease. Literature on BU suggests that 

the lipid toxin diffuses passively into the cell, binds the WASP and hijacks the 

autoinhibition of the WASP leading to an uncontrolled polymerization of actin 

filament and cytoskeletal rearrangement in eukaryotic cells [Laure et al., 2013]. 

WASP in its basal form exist in two conformations: an inactive (folded) conformation 

and an active (unfolded) conformation, which become stabilized on binding to Cdc42 

[Kim et al., 2000b]. The active complex then binds the Arp2/3 complex to initiate the 

polymerization of actin filament. The autoinhibition mechanism of WASP controls 

the actin polymerization in the cell for proper cell function. The identification of 

autoinhibitory domains in proteins derives primarily from functional studies. 

However for mathematical modeling, structural data is very essential. WASP, has a 

structural information for both the inhibited and activated species. Structural data 

for many proteins highlight the essential role of conformational change in the 

autoinhibitory mechanism. In the simplest model, the inhibitory domain sterically 

masks the active site on the targeted domain, and a conformational change unmasks 

the active site during activation. In WASP, the structure of the inhibitory GDB domain 

is induced by both the intramolecular and intermolecular interactions. Most models 
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approximate this with a simple model, showing two juxtaposed domains moving 

with respect to each other (see for example Buck et al. [2004], Devreotes and 

Sherring [1985]). However, the conformational changes are usually more complex, 

although there exist conformational flexibility of elements within a single domain. 

Mathematical modeling connects the fields of research in biology especially the 

lower levels of aggregation in biology (cell, tissue, organs) with tremendous progress 

in experimental data. There is no doubt that the role of mathematical modeling is 

becoming more and more significant, since modeling is the natural way to deduce 

insight into the mechanisms underlying the many processes driving living systems. 

In contrast to experimental approaches that characterize an autoinhibition 

phenomenon, mathematical modeling that considers the distinctive function of the 

protein within its biological context must be considered. A detailed mechanistic and 

structural model of autoinhibition is an invaluable tool in exploring and 

understanding the critical functions and allosteric effects of proteins as we provide 

in this study. 

4.1 Overview of past and current WASP-Cdc42 related models 

A mechanism, that involves destabilization of an autoinhibited structure on 

binding to Cdc42, has been proposed for the activation of p21-activated kinase (PAK) 

[Lei et al., 2000], another CRIB motif-containing effector. However, the regions of the 

structure that are affected by Cdc42 binding and the magnitude of their 

destabilization have not been determined and documented yet. 
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In this study we use the concept of isomerization (Same chemical content but 

different conformations) and present the WASP as existing in two isomeric 

conformations: an active unfolded isomeric conformation and an inactive folded 

isomeric conformation. We denote the WASP as receptor (R) and the Cdc42 will be 

referred to as the ligand (A). The model proposed by Buck et al. [2004], considers the 

two states of WASP as independent and mutually exclusive but for the model 

proposed in this work, the concept of Isomerization is used to model WASP. This way, 

we are able to model both mutually inclusive, and exclusiveness of the protein and 

ligand binding. 

4.2 Modeling WASP Auto-inhibition and Cdc42 Binding 

The GTPase-Cdc42 is a member of the Rho subfamily of Ras proteins that can 

signal to the cytoskeleton through its receptors. The WASP is a receptor of Cdc42 and 

its activation results in localized polymerization of new actin filaments. NMR on 

structures of WASP peptide models in the Cdc42-bound and free states suggest that 

GTPase binding weakens autoinhibitory contacts between the GTPase binding 

domain (GBD) and the C-terminal actin regulatory (VCA) region of the protein [Buck 

et al., 2001]. GTPases in the Ras super family function as molecular switches in 

diverse systems, controlling processes such as cytoskeletal change, cell growth, 

adhesion, motility, and vesicle transport [Hall, 1998, Johnson, 1999, Burbelo et al., 

1995]. Research in recent years have discovered multiple effectors for many 

members of this supper family. It is generally believed that the subset of these 

molecular targets, utilized in response to a particular stimulus, determines the 

resultant specific cellular response. But the structural and biophysical factors that 
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determine the engagement of a particular effector and the means by which 

interaction is coupled to activation are poorly understood [Boguski and McCormick, 

1993]. The WASP is a CRIB (Cdc42/Rac Interactive Binding) motif-containing Cdc42 

effector and a critical component of pathways that link extracellular signals to the 

actin cytoskeleton [Buck et al., 2001, Abdul-Manan et al., 1999, Mott et al., 1999, 

Morreale et al., 2000, Kim et al., 2000a, Lei et al., 2000, Carlier et al., 1999, Machesky 

and Insall, 1999, 

Higgs and Pollard, 2001] 

We develop a concentration-dependent mathematical model for the autoinhibited 

WASP and Cdc42 binding that controls actin filament polymerization and the 

cytoskeleton rearrangement of a human cell (eukaryotic cell). In the reaction scheme 

4.2 below, WASP is the receptor unit (R) and GTPase-Cdc42 is the ligand (A). As 

mentioned above, WASP can exist in two isomeric conformations: active unfolded 

conformation (R∗) and an inactive folded conformation (T). (see for example Monod 

et al. [1963, 1965], Blum [1955]), who were the pioneers in this area of research. By 

this notation they meant that protein had to relax (R-state) in order to bind substrate 

and in the tense (T-state) it is inactive. This does not mean the T-state isomeric 

conformation does not bind; it is rather inactive. Let R∗ denote the active part of the 

WASP to make it different from the receptor WASP (R). Therefore, these two isomeric 

conformation will constitute the two states of WASP ( T or R∗ ). The ligand (A) can 

bind to either sides of R independently or simultaneously (ie the concept of mutually 

exclusive and inclusive protein binding). Let us denote the binding of A to the left side 

of R (i.e. AR) as TA and the binding of A to the right side of R (i.e. RA) as R∗A. Here 

binding of a ligand to the left of R is assumed to prevent activation of the receptor 

unit, therefore the receptor conformations AR and ARA are possible but not active. 
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The AR∗A is the complex of a receptor unit with a ligand bound simultaneously to its 

left and right sites and it is assumed non-active. 

In the scheme only the R∗A and R∗ are active conformations and able to activate 

Arp2/3. 

The model developed here follows the scheme: 

Ligand → WASP → Arp complex → Actin filament 

The proposed reaction mechanism for WASP autoinhibition is shown below: 

 

Figure 4.1: Reaction mechanism for Cdc42 WASP binding 

Those complexes with arrows on them are active complexes and are assumed to 

activate Arp2/3 complex to initiate actin polymerization. The reaction scheme here 

is understood in the sense of weak reversibility because the rate constant for the 

formation of R∗A and AR are much bigger than the interconversion complex 

formation AR∗A. A detailed consideration of the complete reversible scheme and the 

interpretation of weak reversibility is treated in Chapter five. 

The reaction scheme for the reaction mechanism shown above (see Figure 4.1) 

can be written as: 
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Figure 4.2: Reaction scheme for figure 4.1 

We make the following assumptions: 

as1: Binding may precede conformational change. 

as2: The concentration of ligand is inexhaustible as3: 

There is a finite number of receptor sites. 

For an equilibrium reaction in a closed system , the sum of all conformations, bound 

and unbound (Rtot) is fixed as3. There will be a fixed number of bombardment of a 

finite number of receptor sites by ligand molecules with varying intensities as the 

ligand concentration varies as2. By this finite number of receptor sites we are able 

to determine the fraction of bound WASP at varying ligand concentration. This 

adsorption process is saturable because there is a limited number of binding sites. 

From the Law of Mass Action, the following set of equations can be written from the 

scheme of Figure 4.2 as: 
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  (4.2.1) 

Initial conditions   

 
R∗A = AR = AR∗A = 0att = 0 (4.2.2) 

where  and . Similar equation can be written for R and A. It is 

assumed that the binding of a second ligand to the active complex supersedes that of 

binding the inactive complex. Let the following receptor conformations and system 

constants be defined as: 

  (4.2.3) 

[AR∗A] is a result of mutually inclusive binding (cooperativity), C is the affinity 

constant and also called the cooperative factor in this model. [R∗A] and [AR] are both 

receptor complexes with different equilibrium dissociation constants KR and KT 

respectively. The concentration symbols [.] will be dropped for convenience. There 

will be three scenarios of fractional-activation function responses namely: self 

activation, activation induced on Cdc42 binding, and complete activation and 

inhibition of the WASP (sum of first two). Only the last two will be considered since 

our interest is on the effect of the ligand on the receptor. 

Scenario One: Fractional Activation of WASP Induced on Cdc42 Binding 

Functionally, we distinguish between the fraction of WASP in the active 

conformation induced on Cdc42 binding and the fraction of active protein in the 
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whole reaction scheme. We have assumed that in basal form WASP has an active part 

(R∗) and an inactive part T. The fraction of active conformation induced on Cdc42 

binding is: 

  (4.2.4) 

Substituting equations (4.2.3) into (4.2.4) gives: 

  (4.2.5) 

Where  and Rtot = R∗ + R∗A + AR + AR∗A + MR∗ and  is a 

normalized concentration of the ligand (A). 

Scenario Two: Self and Induced Fractional Activation of WASP on Cdc42 Binding The total 

fraction of WASP in active conformation is given by: 

[Free − R∗ − state] + [bound − R∗ − state] Fr = 
 

[Total R and T -states] 

Therefore 

(4.2.6) 

 (4.2.7) Making substitution into (4.2.7) 

from equations (4.2.3), we get 

  (4.2.8) 

Equation (4.2.5) shows the active fraction of WASP induced on GTPase-Cdc42 

binding while equation (4.2.8) shows the total fraction of active conformation of 

WASP. It is realized from equation (4.2.8) that when [A] = 0 (i.e. in the absence of a 

ligand), 

  (4.2.9) 

Secondly, at very high concentration of the ligand [A] → ∞, we have: 
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  (4.2.10) 

where Fr(0) and Fr(sat) are the active fractions of WASP in the absence of a ligand and 

at saturating concentration of the ligand, respectively. 

Equation (4.2.9) implies in the absence of a ligand, the WASP is regulated by the 

isomeric equilibrium constant M (it determines the stability of the reaction). If the 

concentration of the unfolded conformation of WASP far exceed the folded confor- 

mation, then the constant 1) steadily from one, Fr(0) ≈ 1, then 

the fraction of active conformation of the WASP complex and total WASP (Rtot) 

equalize and no binding occurs, there is saturation (Figure 4.3a). The reverse is also 

true if M rises steadily as unfolded conformation (R∗) decreases and we have all T 

conformation (i.e. M → ∞), Fr(0) decrease asymptotically, thus inhibition of the protein 

or inactive conformation of the protein (Figure 4.3b). 

At saturating concentration of the ligand, the fraction of active conformation of 

WASP depends on affinity constant C and the isomeric equilibrium constant M. If C < 

1, the affinity of the ligand A to R∗ is increased as M decreases asymptotically, hence 

the fraction of active conformation increases (Figure 4.4a). The reverse is true for 

increasing C. As M becomes large (all T-state) the fraction of active conformation of 

WASP decreases asymptotically. The asymptotic decrease in the plots (Figure 4.4b) 

and (Figure 4.3b) show inhibition (or deactivation). 

In Figure 4.3(b), the curve never touches the horizontal axis. This implies the 

fraction of active WASP complex does not reduce to zero. Biologically, it explains the 

importance of WASP in actin nucleation and control of cytoskeleton in the cell. 
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In Figure 4.5 fraction of active WASP in the absence of ligand (Fr(0)) is given 

 
 (a) (b) 

Figure 4.3: Fraction of the free WASP (Fr(0)) in the active conformation as a function of M. (a) 
M < 1, (b) M > 1 . 

 
 (a) (b) 

Figure 4.4: Fraction of the saturated WASP (Fr(sat)) in the active conformation as a function of M. 

showing the effect of C (a) M < 1, (b) M > 1 

by the blue curve, fraction of active WASP at saturation concentration of the ligand 

(Fr(sat)) is given by the red curve and the difference in the degree of activation due 

to Cdc42 binding (Fr(sat) − Fr(0)) is given by the green curve. The green curve 

explains the fact that there is activation and inhibition of the fraction of WASP on 

Cdc42 binding. Given that the Cdc42 binds the GBD domain of WASP to stabilize the 

active conformation of WASP, then stability of the active fraction increases from right 
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to left with the red curve (Fr(sat)) being the most stable. Equations (4.2.5) and (4.2.8) 

are plotted below: 

 

Figure 4.5: Plot of Fraction of active WASP at saturation (Fr(sat)) and absence of ligand (Fr(0)) vs 

stability log([M]). C = 0.05, 

 
 (a) (b) 

Figure 4.6: The plot shows Fraction of Active WASP complex vs Ligand concentration. 

In Figure 4.6(a) the equilibrium dissociation constant is in the range is 10−2 ≤ KR ≤ 

1, KT = M = 1 and C = KR. The highest fraction of active WASP complex 
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corresponds to KR = 10−2 and decreases as KR increases. It is observed that there is 

activation and inhibition of the fraction of WASP as the concentration of the ligand 

increases. This implies that in ligand-receptor binding where the protein can exist in 

two isomeric conformations (active and inactive), if the absorption rate is greater 

than the desorption rate, there will be an increase in the fraction of active WASP 

complex (ready to activate Arp2/3 complex) up to a certain maximum depending on 

the parameters M,C,KR, and KT any further increase in the ligand concentration 

inhibits the protein. It also means that if all active sites on the WASP are bound, any 

additional concentration of ligand inhibits the protein. In figure 4.6(b) KT is varied 

in the range 10−2 ≤ KT ≤ 1 in steps of 10 whiles KR = M = 1 and 1 ≤ C ≤ 100. Here, the 

highest fraction of active WASP complex corresponds to KT = 1 and decreases in that 

order. If KT ≥ 1 it implies desorption of the inactive complex of the WASP is greater 

than absorption. Therefore, the fraction of active WASP complex increases though 

there is a delay (lag phase) and the curve shift to the right and the fraction is reduced 

is Figure 4.6(b) compared to Figure 4.6(a). 

 
 (a) (b) 

Figure 4.7: The plot shows Fraction of Active WASP complex vs Ligand concentration. 
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Figure 4.7(a) and Figure 4.7(b) are plots of equation (4.2.8). Notice the rise in the 

fraction of active conformation of the WASP complex compared to Figure 4.6(a) and 

Figure 4.6(b) respectively. The fraction of active conformation of WASP complex 

Figure 4.6(a) increases by approximately 27% in Figure 4.7(a). In Figure 

4.6(b) and Figure 4.7(b) notice that varying KT shift the plots to the right. This is an 

indication of a delay (lag phase) in the formation of active WASP complex. The 

biologically implication is that first the GBD domain of WASP has high affinity for 

Cdc42 than VCA domain of WASP. The intramolecular interaction between the GBD 

and VCA domains of WASP autoinhibits the protein. We speculate that the lag phase 

observed in Figure 4.6(b) and Figure 4.7(b) is due to the breaking of this 

intramolecular interaction between the GBD and VCA when Cddc42 binds the GBD 

domain relieving the VCA domain. This result confirms the experimental report in 

the literature that the affinity of WASP GBD for Cdc42 is higher than its affinity for 

the VCA (affinity of GBD-Cdc42 > GBD-VCA) [Miki et al., 1998, Lamarche and Tapon, 

1996, Buck et al., 2001, Bruce et al., 2008]. 

Secondly, the ligand may compete with the VCA to bind the GBD domain of WASP 

[Miki et al., 1998]. The model above is not limited to autoinhibition of WASP but can 

also predict the models of Haldane’s and Laidler [Haldane, 1930, Laidler, 1958]. If the 

protein exist in only one conformational state, then M = 0, and the model can be used 

to predict Auto-intervention one state binding schemes. 

Next we introduce the concept of binding and differentiate it from fraction of 

active receptor conformations/ complexes. 
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Binding 

In this subsection an equation for fractions of bound WASP complexes in a 

concentration-binding regime is derived. Here receptor sites with two bound ligands 

count twice. The fraction of bound receptor sites is given by: 

  (4.2.11) 

Equation (4.2.11) simplifies to 

  (4.2.12) 

Further simplification gives: 

  (4.2.13) 

It can be observed that equations (4.2.13) and (4.2.8) are different. Equation (4.2.8) 

is the fraction of active conformation of the receptor whiles equation (4.2.13) is the 

fraction of bound conformation of the receptor. Similar results of equation (4.2.13) 

is given by Haldane [1930], Laidler [1958, 1956] for their one state auto-regulation 

schemes where M = 0. We only write their results from Bindslev [2008] as: 

  (4.2.14) 

where . 

The plots of equation (4.2.13) and (4.2.14) are shown below for varying parameters. 
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 (a) (b) 

 
 (c) (d) 

Figure 4.8: The plots show fraction of bound WASP complex verses ligand concentration 

In Figure 4.8, M is varied to show the stability of the fractions of bound WASP at 

steady state. In Figure 4.8(a) KR = C = 10−1, KT = 1 whiles 10−3 ≤ M ≤ 10 in steps of 100. 

In all the plots above the black, green and blue curves correspond to an increase in M 

in the given steps respectively for equation (4.2.13). The red curve for equation 

(4.2.14), Kss = 10−1 coincide exactly with the black curve in the current model. In 

Figure 4.8(b) desorption is increased by increasing the equilibrium dissociation 

constant (  = 10). The shift of the plot in Figure 4.8(b) to the right compared 

to the plots in Figure 4.8(a) is the effect of the equilibrium dissociation constant KR. 

The plots in Figure 4.8(a) saturates faster and at lower concentration of the ligand 

compared to Figure 4.8(b) implying when the adsorption rate is less than the 

desorption rate, binding is slower. In the plots of Figure 4.8(c) and Figure 
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4.8(d), KR = C = 0.1 and 10 whiles KT take values 10 and 10−1 respectively. 

4.3 Mycolactone Activation of WASP lead to Uncontrolled Polymerization of 

Actin Filament 

In this section the polyketide lipid toxin (Mycolactone ) is introduced as a second 

ligand (B) into the model. The lipid toxin (hydrophobic) sticks non-specifically to all 

lipids and most proteins. Mycolactone is the main virulence factor of the BU disease. 

Mycolactone is cytotoxic to fibroblasts and adipocyte cells in vitro and has a 

modulating activity on immune cell function [Belinda et al., 2014, Laure et al., 2011]. 

The effect of Mycolactone and the mechanism of its toxicity is presently not fully 

understood. However it is known that the toxin diffuses passively into the cytoplasm 

of mammalian cells to induce necrotic cell death by hijacking and or disrupting the 

functions of WASP. Mycolactone toxicity to cells proceeds through cytoskeletal 

rearrangement. In the proposed model we hypothesize that the lipid toxin, 

Mycolactone, binds to the hydrophobic region (VCA) of WASP. This abhorrent binding 

disrupts the autoinhibition of the WASP leading to an uncontrolled polymerization of 

actin filament. The reaction scheme Figure 4.9 describe the above process. Here it is 

proposed that the ligand Cdc42 (A) binds to WASP to form the active complex R∗A. 

The complex R∗A then binds to Mycolactone (B) to form the active complex 

BR∗A. The lipid toxin can also bind the active part of R to form the complex BR∗. In 

addition to the complexes R∗ and R∗A, all the complexes formed on binding to the 

toxin (B) are active complexes that can bind Arp2/3 and actin monomers to initiate 

actin filament formation. The complexes BR∗ and BR∗A are lipid-proteins and lipid-

protein-protein respectively, whiles R∗A and AR are protein-protein complexes. 
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Figure 4.9: Reaction scheme for Mycolactone and Cdc42 binding to WASP 

The dot(·) is used to indicate multiplication of two species. Secondly the 

concentration notation [·] used in the previous sections have been dropped for 

simplicity. 

  (4.3.15) 

Initial conditions  

TA = RB = R∗A = BR∗A = AR∗A = 0. (4.3.16) 

where  and  are equilibrium dissociation constants 
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of the ligand binding to the right, left and the toxin binding respectively. The receptor 

conformations and system constants derived from the kinetic equations at quasi-

steady state, are: 

(4.3.17) 

, 

It is assumed that the toxin binds at the same rate, therefore only one equilibrium 

dissociation constant (KB) is used. Here α is a dimensionless co-operativity constant. 

In this case, the fraction of WASP complex in active conformation ready to bind the 

Arp2/3 complex to initiate polymerization of actin filament in the cell is given by: 

  (4.3.18) 

We have assumed in the reaction mechanism above that the binding is mutually 

inclusive (co-operative). Therefore substituting expressions from equation (4.3.17) 

into (4.3.18) and simplifying, we have 

  (4.3.19) 

where . 

In the absence of a ligand (A = 0 ) and at saturating concentration of the ligand 

(A → ∞ ) we have 

  and , respectively. (4.3.20) 
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In the absence of the lipid toxin (B = 0), equation (4.3.19) reduces to 

  (4.3.21) 

Biologically the first expression on the left in equation (4.3.20) confirms that like 

Cdc42 the lipid toxin is able to activate WASP independently, confirming precisely 

experimental work in the literature [George et al., 1999, Bozzo, 2010, George et al., 

2000, Snyder and Small, 2003]. Therefore, in the absence of Cdc42, fractions of active 

WASP complex will be formed and actin filaments nucleation will be initiated. There 

is a sharp saturation of WASP complex which depends on the concentration of the 

lipid toxin. The expression on the right of equation (4.3.20) is equal to (4.2.10). 

Therefore the analysis are similar. It is found that Fm(sat) in equation (4.3.20), 

confirm that when all active sites on the WASP are fully bound, the lipid toxin has 

no effect. 

From equation (4.3.19) it can be concluded that only a small amount / concentration 

of the lipid toxin is required to fully activate and saturate the fraction of active WASP 

complex. Data from Laure et al. [2013], support the view that ternary complex can be 

formed, through which GTPase-CDC42 and Mycolactone bind distinct sites on WASP. 

Though both Mycolactone and Cdc42 activate WASP by releasing the VCA from the 

GBD, the former has a 100-fold higher affinity and is a stronger activator than the 

later [Leung and Rosen, 2005]. Therefore the model confirms that the presence of the 

polyketide lipid toxin in the cell leads to an uncontrolled polymerization of the actin 

filament and cytoskeletal rearrangement, which is in agreement with experimental 

data. 
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The absence of the R conformation from equations (4.2.13), (4.3.19), (4.3.20) and 

(4.3.21) suggests that in actin filament polymerization, WASP is just needed to 

initiate the process and it is in itself not involved in the actin polymerization. 

 
 (a) (b) 

Figure 4.10: Plot shows active fractions of WASP complex vs concentration of ligand (a) C = KR, 
B = 10−6M, KT = M = 1, (b) C = KR , B = 10−9M, KT = 1, and M = 10. 

The value of the equilibrium dissociation constant (KT ) is maintained equal to one 

in most of the analysis. This idea is to ensure that in the worse case of WASP 

activation, adsorption and desorption are equal for the folded conformation. 

In Figure 4.10(a), notice that the introduction of the lipid toxin, increases the fraction 

of active WASP complex. Increasing the concentration of the ligand, it is found that 

there is a lag phase in the fraction of active WASP complex, as the ligand 

concentration is increased. It is speculated in this work that this lag phase is the 

period of intramolecular disruption between the GBD-VCA domain of WASP when it 

binds the Cdc42 and toxin. 

Egidio et al. [2007] in their study on microphage growth phase of Mycobacterium 

ulcerans, explains the observed lag phase as a delay-type hypersensitivity response 

in BU patients. Also, it can be concluded that the lipid toxin affects the steady-state 
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equilibrium and the stability of the model. Again, this confirms the claim that the 

binding of Cdc42 to the GBD of WASP stabilizes the unfolded conformation of the 

WASP complex. 

The plots also confirm the claim by Buck et al. [2004], that the ligand (Cdc42) 

partially shift the GBD domain from the VCA domain in WASP and that further inputs 

are required to fully activate WASP. The shift of the plot to the right gives an 

indication of the affinity of the GBD of WASP for the ligand (Cdc42). 

 
 (a) (b) 

Figure 4.11: (e) B = 10−3,M = 1,C = KR, 10−2 ≤ KR ≤ 1, (f) B = 10−6, M = 1, C = KR, 10−2 ≤ KR,KT ≤ 1. 

Figure 4.11(b), the concentration of the folded conformation is increased (M = 10), 

all other parameters remain the same as in Figure 4.11(a). In figure 4.11(a), the effect 

of the lipid toxin concentration (B = 10−3) is shown. The highest fraction of WASP 

correspond to KR = 10−2. Figure 4.11(b), the effect of both dissociation constants are 

observed. KT = 10−2 correspond to the light blue curve at the bottom, which indicate 

inhibition while the highest fraction of active WASP complex correspond to KR = 10−2. 

The intermediates are shown in the legend. When both adsorption and desorption 

are equal for the two equilibrium dissociation constants 
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(i.e. KT = KR = 1) the green curve, there is a lag phase in the fraction of active WASP 

complex at a constant value 0.5, followed by a decease as the ligand concen- 

tration increases. 

Further experimental work is required to explain the biological significance of this 

scenario. As the dissociation constant (KT ) decreases, the fraction of active WASP 

complex decreases, whiles a decrease in the dissociation constant (KR) increases the 

fraction of active WASP complex, with an increasing concentration of the ligand 

(Cdc42). 

From the analysis, it can be concluded that a competitive inhibitor of Mycolactone is 

needed to prevent the toxin from binding to the hydrophobic region of WASP as an 

effective way of treating BU. 

The proposed model can produce results on existing protein model from Laidler and 

Haldane on dose response, and shows an improvement to the model of Buck et al. 

[2004] on two state allosteric model for WASP autoinhibition. While the model 

proposed in this study takes into account the isomeric conformation of WASPs, the 

Buck et al. [2004] model instead considers WASP as having two distinct juxtaposed 

domains moving with respect to each other. The mutually inclusive and 

exclusiveness of ligand-receptor binding are also fully captured by this model, whiles 

the Mathias model can only account for mutually exclusive binding of proteins. 

The model further accounts for the equilibrium of this isomeric conformations and 

whether or not a particular isomeric conformation of the protein has strong affinity 

for a ligand over the other with the parameters M and C, respectively. 

CHAPTER 5 
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Steady State Analysis of The WASP-Cdc42 Model 

5.1 Steady State Analysis of the Ligand Receptor Model 

In this Chapter, the effect of variation of ligand concentration on steady state of 

the model is analyzed. The complexes are parameterized and written in terms of the 

reaction rate constants. Values of the parameterized constants are then computed 

from experimental data and compared with existing models constants. For 

convenience the reaction rates for the complexes are represented as kij for the ith row 

and the jth column. 

 

Figure 5.1: Reaction scheme 
Let RA → C1, AR → C2 and ARA → C3. 

The model equations for the reaction scheme in Figure 5.1 is given by: 
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  (5.1.1) 

From conservation of mass 

 = 0 (5.1.2) 

Therefore, 

R(t) + C1(t) + C2(t) + C3(t) = R0 

The initial concentrations of the species are R(0) = R0,C1(0) = C2(0) = C3(0) = 0. Let m 

be the number of complexes in the reaction scheme. R forms C1 and C2 respectively 

whiles C3 is a result of mutually inclusive binding. Consider the four complexes 

R,C1,C2,C3 and assume the ligand A is in abundance. We adopt the word node from 

graph theory and use it to denote the positions of the complexes. Then each node i = 

1,....n is represented by a vector zi. Each zi contains the information on which 

individual species participate as reactants at each node. Thus zi ∈ Rn whose 

coordinates are zi = (z1i,z2i,.....zni)0 with zli 6= 0 if species yi is part of the node zi. In the 

specific problem, the form the column vectors of the matrix Z ∈ Rn×m. 

Z := (z1,z2,.....zm) 

where R + A z1, C1 z2, C2 z3 and C3 z4.  
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 1 0 0 0 

         

         

  0   1   0   0  

z1 =  ,z2 =  ,z3 =  ,z4 =  , 

         

  0   0   1   0  

         

         

 0 0 0 1 (5.1.3) 

Therefore, the matrix Z is 4 × 4 identity matrix I4. The links between individual nodes 

can now be represented by a matrix that contains all the kinetic constants. By this 

definition, if reactants in node zi are products resulting from the reactant node zj, then 

there is an arrow pointing from zj to zi with corresponding kinetic constant 

kij. 

Let KF = kij ∈ Rm×m be the matrix representing reactants ending at a node, where kij 

6= 0, if and only if there exist an arrow from zj to zi. 

A second matrix KB which contains in its ith diagonal entry the information on all the 

reactions that start from node zi is given by: 

 KB = Diag  (5.1.4) 

   

 0 k12 k13 0 

   

   

  k21 0 0 k24  

 KF =   (5.1.5) 

   

  k31 0 0 k34  
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 0 k42 k43 0 

and 

  k21 + k31 0 0 0 

   

   

  0 k12 + k42 0 0  

 KB =   (5.1.6) 

    

  0 0 k13 + k43 0  

   

 0 0 0 k24 + k34 

The net contribution of both matrices is given by 

   

 −(k21 + k31) k12 k13 0 

   

   

  k21 −(k12 + k42) 0 k24  

K = KF − KB =       

  k31 0 −(k13 + k43) k34  
   

 0 k42 k43 −(k24 + k34) 

(5.1.7) Let θ be a matrix containing the complexes (mass action elemental events), 

then we 

define 

  y111 y2z21 . . . ynzn1 

   

   

  y1z12 y2z22 . . . ynzn2  
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 . . . . . .  θI =  

 (5.1.8) 

   

  . . . . . .  

   

   

  . . . . . .  

 

   

 z1m yz2m . . .

 ynznm  y1 

0 
Then for our model equation with y = (R,C1,C2,C3) . θI(y) is given by 

  

RA 

  

  

 C1  θI(y) =   (5.1.9) 

  

 C2  

  

  

C3 

The evolution equation for the concentration of the n species for the ligand-receptor 

model in equation (5.1.1) can then be written in compact form as: 

 ) (5.1.10) 

Equation (5.1.10) is equivalent to equation (5.1.1), but has the advantage that the 

information on the system is condensed into three objects: (1) The identity matrix 

which defines the nodes involved in the reactions, (2) The matrix K which specifies 
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the kinetic constants, and (3) The vector θI(y), which specifies the elemental events. 

5.2 Steady-States 

The steady state concentration of the component biochemical species given by the 

system of equations (5.1.10) are given by the vector y ∈ Rn defined by 

 f(y) = KIθI(y) = 0, ∀ y > 0 at coordinates i (5.2.11) 

Note that each of the steady states of the vector y is positive and globally 

asymptotically stable [Monod et al., 1963]. Next we find the steady states of the 

system of equations in (5.1.10) in terms of the kinetic constants kij. 

Normalize the system of equations in (5.1.10) with the concentration R.A at steady 

state and compute the scalars e2,e3,e4 where the equivalent scaled terms are C1 = 

e2,C2 = e3,C3 = e4, give:  

 0 = −(k21 + k31) + k12e2 + k13e3 (5.2.12) 

 0 = k21 − (k12 + k42)e2 + k24e4 (5.2.13) 

 0 = k31 − (k13 + k43)e3 + k34e4 

Then the components in the vector y can be computed as 

(5.2.14) 

 (5.2.15) From equation 5.2.15 we have 

  and  (5.2.16) 

The term  is equivalent to the Henry Michaelis and Menten constant Km. 

The identity matrix I4 has full column rank (i.e. vectors z1.......zm are linearly 

independent and none of its rows vanish). 

Secondly the matrix KF is irreducible (i.e. ∃ m > 0 such that (KF )mij > 0). The second 

condition amounts to the requirement of weak reversibility [Feinberg, 1995]. There 

is a chemical pathway connecting each pair of nodes. For example there exist a 
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chemical pathway from nodes R + A to node C3 by passing through C1 and it is possible 

to travel from C2 to R + A by another chemical pathway. Although our model happens 

to be all reversible, generally complete reversibility is not a necessary condition. The 

conditions on I4 and KF guarantee existence and uniqueness of steady state solutions 

for equation (5.1.10) [Monod et al., 1963, Feinberg, 1995]. This is essentially a 

mathematical way to describe the property of weak reversibility of a biochemical 

reaction. From conservation law it holds that 

R(t) + C1(t) + C2(t) + C3(t) = Rtot and R(0) + C1(0) + C2(0) + C3(0) = Rtot 

(5.2.17

) Equation (5.2.17) is valid provided none of the reacting species or complexes 

formed vanish. Initially there are no ligand-receptor complexes hence 

C1(0) = C2(0) = C3(0) = 0 

Therefore, it follows that 

(5.2.18) 

R0 = Rtot (5.2.19) 

Using similar analysis we define A0 = Atot for the ligand. The constants e2,e3,e4 in terms 

of the kinetic constants kij were obtained by using the concentration RA to scale the 

system of equation in (5.1.10) at steady state therefore, e1 = 1. 

Proposition: The vector y is a steady state if and only if the vector θI(y) belongs to the 

null space of K. To give characterization to the terms of the kinetic constants 

kij, let 

0 nullspace(K) := {e = 
(e1,e2,e3,e4) : Ke = 0} (5.2.20) Then the steady state satisfy 

y ∈ f(y) ⇐⇒ KIθI(y) = 0 ⇐⇒ KθI(y) = 0 ⇐⇒ θI(y) ∈ nullspace(K) 

(5.2.21) 
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where the second equivalence is justified because the matrix I4 has full column rank 

and the third equivalence is simply the definition of the nullspace of K Monod et al. 

[1963]. 

It follows immediately that the nullspace of K is spanned by a positive vector. This 

means that the nullspace of K can be characterized by a scaling factor ℵ and positive 

constants e2,e3 and e4 as: 

0 nullspace(K) = {ℵ(1,e2,e3,e4) : ℵ ∈ R} (5.2.22) 

Note that R is an isomer and can exist in two conformations (R∗orT). Furthermore we 

have shown that the WASP itself does not take part in the actin polymerization, 

therefore it is useful to use this scaling. The parameters e2,e3,e4 are positive constants 

that depend on the kinetic constants kij only. 

There exist an appropriate positive value of ℵ for each steady state such that 

  (5.2.23) 

where ℵ depends on the initial condition y(0). 

The complete characterization is given by the equations (5.2.17) and (5.2.23) 
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  (5.2.24) 

and   

RAg + Cf1 + Cf2 + Cf3 = Rtot, Ae+ Cf1 + Cf2 + Cf3 = Atot (5.2.25) 

The parameter ℵ recast the ligand-receptor model in terms of products of the steady 

state amounts of the basic conformation R and free ligand A. The constants e2,e3,e4 

gives a summary of all the information needed about the kinetic constants. They 

group the eight kinetic constants Kij and together with ℵ, provide a complete 

description of the steady state condition for the model with minimal number of 

parameters. The authors Woolf et al. [2001] remark that only three out of the eight 

constants that describe the network of reactions would be independent. Therefore, 

by this formulation we are able to find the dependent constants as well as their 

physical meaning. 

Equation (5.2.24) confirms that the  are indeed equilibrium constants that give the 

fraction of the steady state values of the elemental events relative to one another. 

Example e2 is the fraction of the steady state concentration of the ligand receptor 

complex C1 relative to the value RA. 

5.3 Steady State Activity of the Isomeric Receptor Model 

Here the isomeric receptor model is examined in detail to obtain explicit 

expressions for the quantities of interest. We analyze the steady state for fractions of 

the complexes with varying concentrations of the ligand. It is realized from the steady 

state analysis that the model provides a good description for ligand-receptor 
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interactions by varying the relative values of the kinetic constants. The steady state 

response for different initial conditions of a similar model has been determined 

experimentally using ligand binding assays by Woolf et al. [2001]. Furthermore, a 

typical concentration response to determine the fraction of receptors in one of two 

possible state has been discussed by Bywater et al. [2002], Leo et al. [1971]. The 

authors plotted the concentration response curves: as was done in 

Chapter 

4 of this study (log plot of ligand because of the small amounts of the concentration). 

Next, in explicit terms the steady state values of R,e Cf1,Cf2 and Cf3 are solved for and 

expressed in terms of the kinetic constants kij and the initial concentration R0 and A0 

from equations (5.2.24) and (5.2.25). 

The system of equations in (5.1.10) can be solved numerically for the values e2,e3,e4 

but such a solution does not give explicitly the functional dependence of the variables 

at steady states on the kinetic constants (kij). The explicit solutions are necessary to 

confirm experimental results. 

5.4 Fraction of Receptor Response at Steady State 

In this section we examine the fractions of steady state response and dependence 

on the kinetic constants kij. From equation (5.2.24) we have 

 Cf1 = ℵe2, Cf2 = ℵe3, Cf3 = ℵe4 (5.4.26) 

From conservation principles, an expression for the concentration of ligand can be 

written as 
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 . and Ae = A0 − (e2 + e3 + e4)ℵ (5.4.27) 

Then from equation (5.2.24) we can write 

  (5.4.28) 

Substituting equation (5.4.28) into equation (5.2.25) we have 

  (5.4.29) 

Equation (5.4.29) leads to a quadratic equation in ℵ. Let V = (e2 + e3 + e4) 

−(V ℵ)2 + ℵ + A0V ℵ − R0V ℵ + R0A0 = 0 (5.4.30) 

(V ℵ)2 − [(A0 + R0)V + 1]ℵ + R0A0 = 0 (5.4.31) 

There are two solutions to the quadratic equation (5.4.31) above but only one of the 

solutions has biological significance whiles the other violate the conservation law 

(5.2.17). The solutions are given by: 

  (5.4.32) 

We know from equation (5.4.28) that A0 − (e2 + e3 + e4)ℵ > 0 since A0 > 0 

(5.4.33) 

(5.4.34) Analyzing the expression under the square root sign in equation 

(5.4.33) we have 

 0 (5.4.35) 
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 0 (5.4.36) 

Therefore 

 0 (5.4.37) 

Equation (5.4.37) is indeed a positive quantity for all A0 ≥ 0 and R0 ≥ 0. 

From equations (5.2.25) the second solution to the quadratic equation violates the 

conservation law. Therefore, the steady state solutions of the complexes in the model 

are given by Ce1,Ce2,Ce3 and ℵ in terms of the kinetic constants (kij) and the 

concentrations R0 and A0. All the information on the kinetic constants (kij) and the 

initial conformations of the receptor and ligand (A0 and R0) at steady state are 

condensed in the three constants e2,e3 and e4. 

5.5 Effect of Ligand on Steady State 

In this section the dependence of the model on the ligand at steady state is 

investigated. Ligand-receptor binding takes a long time to reach steady state. In this 

regard Segel et al. [1986] proposed that the final steady state is a linear combination 

of the ligand-receptor complexes. Let this linear combination be defined as 

 Ψ = α1RAg + α2Cf1 + α3Cf2 + α4Cf3 (5.5.38) 

where the coefficients α1,α2,α3 and α4 are arbitrary nonnegative real constants. 

Let Ψ = Ψ(A0) such that the function Ψ is now written in terms of the ligand (A0), and 

as mentioned earlier the receptor concentration is assumed to be finite (Rtot) whiles 

the ligand concentration is in abundance. The idea is to find limA0→0 Ψ(A0) and limA0→∞ 

Ψ(A0). Substituting for  in terms of e2,e3 and e4, equation 

(5.5.38) becomes 
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Ψ(A0) = α1RAg + α2e2ℵ(A0) + α3e3ℵ(A0) + α4e4ℵ(A0) (5.5.39) From equation 

(5.4.33) it holds to write ℵ = ℵ(A0), then define the function 

  (5.5.40) 

Equation (5.5.39) simplifies to: 

 Ψ(A0) = α1τ(A0) + (α2e2 + α3e3 + α4e4)ℵ(A0) (5.5.41) 

Let 

  (5.5.42) 

where V = (e2 + e3 + e4), then from equation (5.4.33) 

  (5.5.43) 

Rationalizing equation (5.5.43) gives 
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  (5.5.44) 

  where we take lim 

It holds that 

 ) = 0 (5.5.45) 

Next we find an expression for the term limA0→0 τ(A0) by substituting for ℵ(A0). 

 

(5.5.46

) The result in equation (5.5.46) proves that in the absence of a ligand, there are no 
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complexes formed and we have the initial receptor conformation R0. A confirmation 

of the results in Chapter 4. 

Substituting equations (5.5.46) and (5.5.44) into (5.5.41) we have 

  (5.5.47) 

The equation on the right of (5.5.47) is the fraction of concentration response at 

steady state defined earlier. This is a weighted average with respect to the constants 

e2,e3,e4 and defines the capacity of the ligand to saturate the receptors. The second 

term on the right of equation (5.5.47) reaffirm our earlier results that for large 

amounts of the ligand, (limA0→∞ Ψ(A0)), all the receptors tends to be bounded. The 

first term on the left of equation (5.5.47) (limA0→0 Ψ(A0)) is the steady state 

concentration response in the absence of a ligand, when the constant . 

Let the steady-state affinity coefficient Θ be defined as: 

  (5.5.48) 

Given that α1 6= 0, a situation which necessitate the existence of the two 

conformational forms of the receptor (folded and unfolded) at steady-state, then the 

affinity constant is well defined for each set of the coefficients in (5.5.48) above. If 

there is binding of the receptor and ligand then either α2 6= 0, or α3 6= 0 and α4 6= 0 

therefore the numerator in equation 5.5.48 is strictly positive. Notice that in a 

situation when no free receptor in any conformation contributes to the final steady-

state activity (i.e. α1 = 0), the steady-state affinity constant takes the value +∞. Next 

we show that ℵ(A0) is a strictly increasing function of A0 by differentiating and 

checking that it is always positive. From equation (5.4.33) we have 
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  (5.5.49) 

 

(5.5.50) 

From the last expression in 5.5.50, if 0, then clearly  is a positive 

quantity. Otherwise if 0, then notice that the negative term is of the 

form  where r > 2pq. Therefore 

 1 (5.5.51) 

therefore  is strictly positive. This shows that ℵ is an increasing function of A0. 

Furthermore, the quantity τ(A0) is a strictly decreasing function of A0. Using the same 

procedure as we have done above, equation (5.4.29) can be rewritten as 

 τ(A0) + (e2 + e3 + e4)ℵ(A0) = R0 (5.5.52) 

Differentiating equation (5.5.52) with respect to A0 and noting that e2,e3,e4 are 

positive constants. The right-hand side of this equation is given by the initial 

concentration of the receptor R0 which is a constant therefore. 
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  (5.5.53) 

It is observed that 0 for all A0, and e2,e3,e4 are positive constants therefore, 

0 for all A0. We have shown from the analysis above that for fixed receptor sites 

and an inexhaustible ligand, binding there will be activation and inhibition as we 

have shown for the model introduced in chapter 4 for WASP autoinhibition. 

5.6 The Significance of Parameterized Constants 

In this section we explain the biochemical significance of the parameterized 

constants e2,e3 and e4 in the biochemical reaction network. Consider the two chemical 

reactions below 

k31 

R + A   C2 

k13 

k21 

R + A   C1 

k12 

Let the equilibrium dissociation constants for the inactive and active complexes 

be KT and KR respectively. From the law of mass action it holds that: 

 Rt = −k31AR + k13C2 and Rt = −k21RA + k12C1. (5.6.54) 

Using the same normalization procedure as used before and remembering that e1 is 

set to unity we can write 
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  (5.6.55) 

and 

  (5.6.56) 

Next, we consider an alternative approach to determine the constants  in terms of 

the kinetic constants kij. The steady state assumptions used here is supported by the 

works of Lauffenburger and Linderman [1993] (chapter 2). 

From equation (5.2.24), 

 RA = ℵ and  (5.6.57) 

Equation (5.6.57) is equivalent to 5.6.55. From the scaled system of equations 

(5.2.125.2.14) 

 0 = −(k21 + k31) + k12e2 + k13e3 

 0 = k21 − (k12 + k42)e2 + k24e4 

 0 = k31 − (k13 + k43)e3 + k34e4 

Substituting for e2 and solving, estimates for e3 and e4 are obtained as: 

   (5.6.58) 

The e4 has two estimates, because it is a result of the mutually inclusive binding (see 

Figure 6.1). Biologically, it represents additional inputs required to fully activate 

WASP protein. The specific inputs that constitutes e4 is yet not clear. 

Biologically the e0is contain all the information on network routs and direct 

reversibility between products and reactants. Therefore, it can generally be 

concluded that the e0is are a generalization of the equilibrium constants in the 
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context of biochemical networks. The summary for estimates of the e0is in terms of 

the kinetic and equilibrium dissociation constants are: 

 

where  and  are equilibrium dissociation constants. The affinity 

constant C, can therefore, be defined in terms of the e0is as: 

 

5.6.1 Computation and Comparison of Model Constants with Empirical Data 

In this section the model constants are computed from empirical data and 

compared with existing constants computed from experimental data. Two different 

models of two-state ligand-receptor binding are considered in Figure 5.2 below. 

 
 (a) (b) 

Figure 5.2: The models studied by (a) Devreotes et al. (1985) and (b) Buck et. al (2004) 

It must be stated, here, that all the models were proposed in order to study specific 

problems. 

In Figure 5.2a of Devreotes and Sherring [1985], a two-state receptor conformations 

for the cAMP receptor of Dictyostelium was studied. Dictyostelium provides a 

convenient model system for the study of adaptation, a process which occurs in a 

wide variety of receptor-mediated responses. The affinity of the two receptor 

conformations for the ligand are the same and the reaction system is at steady state. 

Though in the present model there is no assumption on the affinities of the two 
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receptor conformations to be equal, it is assumed that most of the interactions 

between the ligand (cAMP) and its receptors can be described by the model 

presented in this study. Furthermore the concentration-response curve can be 

determined by the fraction of active complex (Fr) as a function of the ligands. It is 

hoped that the proposed model produces and validates results from other models of 

similar nature. In Devreotes and Sherring [1985], the constants determined by the 

authors are stated on the left and their equivalents in the present model are provided 

on the right. 

k1 = 0.012min−1 = k31, k−1 = 0.104min−1 = k13 

(5.6.59) 

k2 = 0.222min−1 = k42, k−2 = 0.055min−1 = k24 

The following constants can also be computed from the experimental concentration 

response model. 

 = 15nM = KR, 30nM = KT 

  (5.6.60) 

From these experimental values, the corresponding fractions of active WASP 

complex at saturating ligand concentration FR(sat) can be computed. This is 

compared with the computations from the experimental concentration-response 

curve in Devreotes and Sherring [1985], the saturation values are: 

 . (5.6.61) 

where the values on the left and right of equation (5.6.61) are computations from 

Devreotes and Sherring [1985] and the present model respectively. The computed 

value 0.818 in our model compares well with the computed value from experimental 

data of 0.806. The ratio  is the intrinsic intermolecular constant that controls 
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the steady state distribution of receptor forms in the absence of the ligand. It is 

computed from the interconversion step 

k1 

R   D 

k−1 

in the model of Devreotes and Sherring [1985]. KR and KT are the equilibrium 

dissociation constants for the active and inactive forms of WASP respectively, and 

e2,e3 and e4 are constants. Equation (5.6.61) confirms that the stability of the model 

depends on the constant (M) ( the ratio of isomeric conformation of WASP in the 

absence of the ligand). 

The second model by Buck et al. [2004], the authors proposed a two-state 

allosteric model for autoinhibition of WASP. The authors report on the 

thermodynamic and structural analysis of WASP. Their two-state allosteric model is 

shown in Figure 5.2b. The protein exist in two states: an inactive and more stable T-

state and a less stable but active R-state. The activating ligand is Cdc42. The major 

difference between the present model and that of Buck et al. [2004] is that, where as 

both the active and inactive conformations are embedded in R in the present model 

using the concept of isomerization and the intrinsic intramolecular constant M to 

regulate the concentrations of the two forms of WASP, they are presented as separate 

states in the model of Buck et al. [2004]. 

It should be noted, here, that this presentation is quite misleading since the protein 

is a single unit which behaves as an isomer (can change shape). Secondly, whereas 
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the present model can account for both mutually inclusive and exclusive binding, 

their model can only account for independent and mutually exclusive binding. 

Three constructs that have been used to model WASP were thoroughly examined, 

GBD-C, GBD-VCA, and GBD-PVCA. These three structures have different stabilities for 

their autoinhibited structure because of the different linkers that join their common 

GBD to the C-region helix (VCA). The table below is a summary of the 

constructs and their dissociation constants. 

In Buck et al. [2004], the following approximations for respective dissociation 
Table 5.1: Three constructs of WASP and dissociation constants 

Number Protein construct Dissociation constant (nM) 

1 GBD ∆ 22.9 ± 3.7 
2 B.GBD ∆ 12.8 ±2.6 
3 GBD-PVCA 3200 ± 400 
4 GBD-VCA 1500±700 
5 GBD-C 6700±300 
6 B.GBD-C 3700±300 

constants 

  and  (5.6.62) 

The equivalent dissociation constants in the present model are KDT = KT and 

KDR = KR. 

Also the fraction of active WASP in the absence, and at saturating concentration of 

the ligand were computed in their model as: 

 fR(0) = 4.3 × 10−4 and fR(sat) = 0.1134 (5.6.63) 
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Using the experimental approximations of dissociation constants above, we compute 

the fraction of active conformation of WASP complex in the absence and at saturating 

concentration of ligand. 

 Fr(0) = 4.346 × 10−4 and FR(sat) = 0.1133 (5.6.64) 

The two values in equation 5.6.64 compares very well with 5.6.63 . We can now 

compute the constants e2,e3, and e4 from these experimental data with M = 2300. Once 

these constants are known, the fraction of active WASP in the active conformation 

can be determined. 

 e2 = 4.367 × 107M−1, e3 = 1.493 × 105M−1,e4 = ae2 (5.6.65) 

where the constant  (not measured in experiment) and . 

The values of e2 and e3 are consistent with experimental observations. 

In the experimental work for the cAMP receptor binding in the Dickyostelium 

reaction, the authors Devreotes and Sherring [1985], made the observation that the 

binding of ligand to the receptor is very fast compared to the intermediate binding 

reaction. This notion is in agreement with the HMM model where . 

This is also confirmed in the estimation of the constants (e2,e3) above. Further 

confirmation is given in the experimental work of Lauffenburger and Linderman 

[1993] (Chapter 2) that the constants k21 and k31 are much larger (of order 106,107) 

than comparable constants k12 and k13 (of order 10−1,10−2).  
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CHAPTER 6 

Reaction and Diffusion of Mycolactone Toxin and WASP in the 

cytoplasm of the cell 

6.1 Introduction 

Modeling a system of reaction-diffusion in a biological cell is a challenging task 

because of the complexity of the cytoplasm. The cytoplasm consists of nucleus, 

mitochondria, golgi bodies, and various subdomains that if considered will make the 

model computationally expensive (see Figure 2.1). Here, we discuss COMSOL 

Multiphysics-based methods in the study of intracellular ligand-receptor-toxin 

binding, and the intermediate complexes formed on the surface of the cytoplasm. The 

computational domain consist of two domains: an extracellular space and cytoplasm 

denoted by Ωext and Ωcell, respectively. 

In the proposed model, the WASPs, referred to as the receptor (R), are restricted to 

remain in the cytoplasm ( subdomain Ωcell), while the Cdc42, referred to as the ligand 

(A), and the Mycolactone, referred to as the toxin (B) are allowed to freely diffuse into 

the cytoplasm (Ωcell) from the extracellular space (Ωext) with diffusion constants Di, 

where i represents the species in the binding process. The concentrations will be 

denoted by ux with the subscript (x) to indicate the reacting species and the 

complex(s) formed. 

In the model, no reactions take place in the extracellular space of the cell. The species 

only bind in the cytoplasm. The ligand (A) binds with receptor to form the protein-

protein complex referred to as RA in the model. The toxin can then bind this complex 
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to form the lipid-protein-protein complex referred to as BRA. It is assumed in this 

model that a third lipid-protein complex (RB) is formed when the toxin binds the 

receptor (hydrophobic region) directly. 

It is reasonable to assume that R and its complexes formed do not also diffuse out of 

the cytoplasm, but rather, there is accumulation of these complexes on the surface of 

the cytoplasm. 

By this approach the total amount of complexes that are produced to bind Arp2/3 

complex to initiate actin polymerization can (approximately) be computed. 

The complexes (RA,RB and BRA) are assumed to be activators of the Arp2/3 complex 

in the cytoplasm to initiate actin filament polymerization. It is important to note that 

over production of these complexes in the cell will lead to cytoskeletal 

rearrangement and eventual cell death through apoptosis or necrosis (as in BU pa- 

tients). 

The concentration of receptors in the cytoplasm is assumed to be constant. This 

implies that a saturation level is reached in the complexes formed when all binding 

sites on the receptors are fully bound. Such situations lead to a simple linear 

dynamics for the reactions terms. 

In Chaudry et al. [2012], Kreamer et al. [2009], Hamilton [2003], the standard 

procedure of adsorption and desorption of surface reactions on cytoplasm 

membrane have been considered for polycyclic aromatic hydrocarbons using 

homogenization methods. 

Mathematically, the ligand-receptor or ligand-receptor-toxin binding in the 

cytoplasm can be modelled by a set of Partial Differential Equations (PDEs). We 

employ numerical methods to solve the problem to determine the complexes formed 

on a 2D domain. The COMSOL Multiphysics with its predefined equations and in-built 
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material libraries offer several approaches to model ligand-receptor binding with an 

additional opportunity to restrain complexes/species and reactions to specific 

compartments whiles coupling the species to other reactions. 

6.2 Modeling BU Spread as a Diffusive Process 

Diffusion is the phenomenon of transportation of molecules from a region of 

higher concentration to a region of lower concentration. The diffusion of chemicals 

in an arbitrary domain follows classical diffusion process, and therefore, Fick’s Law 

of diffusion applies. Important to us is to find the relation between the concentration 

of the diffusing species (C) and the flux J in an arbitrary domain Ω . An applicable 

constitutive law states that the steady state diffusive flux (J) is proportional to the 

concentration gradient. Let D denote the diffusion coefficient in this thesis. 

 ) (6.2.1) 

The value of D depends on the size of C, as well as the medium in which it is diffusing 

with dimension of (length)2/time. X is a vector. In three dimensions, when D is a 

constant, the flux is of the form, 

 J = −D∇C (6.2.2) 

where ). The diffusion equation without reaction terms can gener- 

ally be written as: 

 . (6.2.3) 
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Reaction-diffusion Mechanism 

Considering a general situation involving a reaction-diffusion process, the 

governing equations can be derived from balance laws as follows: Let Ω ⊂ R3 denote 

an open, bounded and smooth region of a cell, say, with boundary ∂Ω. let S be an 

arbitrary surface enclosing a volume V ⊂ Ω. If C is allowed to move randomly by 

passing through the volume surface S, the rate of change of material within the 

volume, according to the conservation law, is given by 

  (6.2.4) 

where J is the flux of material, dA is the surface integration element, n is the outward 

normal vector to the boundary. The presence of C(X,t) in the source term allows for 

the possibility that the rate of production of C depends upon itself as in an enzymatic 

reaction. Then from the divergence theorem, the surface integral can be replaced by 

the volume integral as: 

Z 

∇.Cdx = Ω 

The flux integral in (6.2.4) becomes: 

Z 

C.ndx. 

∂Ω 

(6.2.5) 

Z 

J.ndA = 
S0 

Therefore, 

Z 

∇.JdV. 
V 

(6.2.6) 

  (6.2.7) 

where ∇ is the divergence operator. If the function C(X,t) is smooth enough, then 

integration and differentiation can be interchanged, and equation (6.2.7) can be 

written as: 

 . (6.2.8) 

Since the volume V is arbitrary, the integrand can be equated to zero. 
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 . (6.2.9) 

Equation (6.2.9) is called a reaction-diffusion equation. It holds for a general flux 

transport J, whether diffusion or some other related processes. Here, ∇.J is the 

diffusion term which describes the movement of the chemical species C within the 

domain (Ω), and f(X,t,C(X,t)) is the reaction term which describes the reaction 

occurring inside the domain (Ω). Substituting equation (6.2.2) into (6.2.9) gives the 

parabolic equation: 

 . (6.2.10) 

As described in chapters 3 and 4, the reaction term f will be determined from the 

binding of Cdc42 and Mycolactone to WASP in the cytoplasm of the cell. 

6.3 General Modeling Approach 

The equations are formulated as a coupled reaction-diffusion equations of the form 

  (6.3.11) 

where Si denote the reaction terms, Si couples the equations for the different species 

Xi. Di is the diffusion constant for component i and ∇ is the nabla operator. 

The following reactions will be considered in the cell cytoplasm. 

ka 

 R + A C 

−→ 

kb 

 C + B C2 

−→ 
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kb 

 R + B C3 

−→ 

where R, A and B denote the receptor protein (WASP), ligand and the toxin 

respectively whiles C, C2 and C3 represent active complexes of WASP. The ka and kb 

are reaction rate constants. It is assumed that the toxin bind to the receptor protein 

(R) and the protein complex (C) at the same rate (kb). 

The governing equations in the different subdomains are written as reaction-

diffusion system though some of the reactions could be described by simple Ordinary 

Differential Equations (ODEs). These species are allowed to diffuse in the cytoplasm 

since their diffusion does not alter the total concentrations as we want to compute. 

Based upon the description in section 6.1 we propose the following: 

Subdomain One (Extracellular space) 

  (6.3.12) 

Subdomain Two (Cytoplasm) 

. 

(6.3.13) 

Boundary and Initial 

conditions 

On geometry one, define 

Neumann boundary 

condition (see Figure 6.4) 

 n.∇uA = −kauAuR, and n.∇uB = −kbuBuR on ∂Ycell (6.3.14) 
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Geometry two, (cell membrane is represented as a separate compartment, Figure 

6.4(b)). Assuming concentration on both sides of the cell membrane are in rapid 

equilibrium, we define concentration 

 uAcell = uAext and uBext = uBcell on 

The model problem can be written in compact form as 

∂Ycell. (6.3.15) 

 ) = Fi in ∂Y 

 = 0 on ∂Y × [0,T] 

(6.3.16) 

 = g on Ycell × {t = 0} 

 on ∂Ycell × [0,T] 

where n is the outward normal vector, ∇ is the two dimensional nabla operator, g is 

the Dirichlet data of initial concentration of species in the cytoplasm and h is the flux 

on the boundary. Ui is a vector of the reacting species with the subscript i indicating 

the species and Fi is a vector of all the reaction terms. The terms in the vector Fi 

couples the systems of reacting species. In the numerical treatment, we consider two 

geometrical representations of the cell. The problem in equation (6.3.16) can not be 

solved analytically therefore, the problem is solved numerically. The finite element 

method is used and it is based on a discrete representation of the weak form of 

equation (6.3.16). The numerical treatment will consider only one cell, since it is 
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assumed that the tissue is a periodic arrangements of cells. This reduces memory 

requirements and computational time. 

Next the topological setup of the model 

6.4 Topological Setup of the Tissue in the Model 

The setup below describes the simplified model of the tissue. Let Ω ⊂ RN be a 

bounded Lipschitz domain with periodic arrangements of cells and the reference unit 

cell Y = (0,1)N be an open set in RN, where N = 2. Lattice of copies of Y spans the entire 

region of Ω as shown on the left of figure 6.1. By this representation Ω, represents a 

layer of tissue. 

 

Figure 6.1: Left Periodic domain and Right unit cell 
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 Figure 6.2: unit cell 
Within the unit cell Y , we define a geometrical structure Ycell (see Figure 6.2) as 

the cytoplasm (i.e. a closed subset of Y ) and Yext := Y \Ycell the extracellular space. To 

distinguish the complexes and reacting species in the two domains ( Ycell and Yext), we 

supplement the concentrations with the indices cell and ext to indicate cytoplasm and 

extracellular space respectively. Example by uBcell, we mean the concentration of the 

lipid toxin in the cytoplasm. 

Also we assume that any two neighboring subdomains Ycell do not touch each other 

 
and the two parts of the unit cell satisfy Y cell ∩Y ext = Γ. Γ ⊂ Y is a one-dimensional 

boundary (cell membrane) that separates Y into two connected components Ycell 

 
and Yext. Therefore Γ = ∂Ycell, Y cell ⊂ Y and such that Y = Yext ∪ Ycell ∪ Γ. It is reasonable 

to assume the surface of the one-dimensional boundary (cell membrane) to be 

amphipathic in nature that has hydrophobic and hydrophilic regions. 

The following assumptions and conditions are useful: 

 
1. Ycell and Yext have strictly positive measure in Y with ∂Ycell ∩ ∂Y = ∅. 
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2. Yext is an open set with a local Lipschitz boundary. 

3. The concentrations of the ligand and toxin on the cell membrane boundary are in 

rapid equilibrium. 

4. The Continuum hypothesis is adopted to enable molecules in the cell and 

extracellular space to be described using concentrations uxi. 

5. The cytoplasm and the cell membrane have constant physical and chemical prop- 

erties. 

6. The flux through the membrane is normal to the surface of the membrane. 

7. A layer of tissue constitutes an aggregation of similar cells. 

Assumptions 4-6 are modifications from [Dreij et al., 2011, Chaudry et al., 2012]. 

One elementary cell (Y ) consists of both the cytoplasm and extracellular space as 

depicted in Figure 6.2, assumption 1. If the boundary of the extracellular space 

(Yext) is sufficiently regular, the second assumption 2 is fulfilled. The binding species 

(R, A, and B) and all the active complexes in the model are denoted by their 

concentrations, assumption 4 with the species as subscripts (i.e. uR,uB,uA,uRA,uRB and 

uBRA). Next the periodic arrangement of the cells in the domain. 

For a small parameter ε > 0, we generate copies of cells εY of regular mesh of size 

ε to span the domain Ω ⊂ RN. Denote each re-scaled cell by Yiε = (0,ε)N (see Figure6.1) 

where N = 2 in this model, 1 ≤ i ≤ N(ε). The number of cells in the domain of Ω is given 

by N(ε) = ε−1 | Ω |. Then each cell now become homeomorphic to Y , by a linear 

homeomorphism Πεi with ratio of magnification ε−1. It holds that 

 . (6.4.17) 

 . (6.4.18) 
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It holds further that , and . 

The extracellular space is obtained by removing the periodically distributed 

cells. That is 
N(ε) 

Ωεext = Ω\ [ Yiε. 

i=1 

and 

(6.4.19) 

N(ε) 

Ωεcell = [ Yiε. 

i=1 

Also define the boundary of the extracellular space by 

(6.4.20) 

 . (6.4.21) 

where ∂Ωεcell = Γ is the cell membrane boundary. 

For T > 0, let S := (0,T) denote the time interval. The space-time domains then 

becomes 

 Q := S × Ω and . 

The domains  and  are assumed to be extracellular space and cytoplasm of 

cell respectively. 

It suffices to state that the domain  as well as the domain  of this repetition are 

Y-periodic in the language of Homogenization Theory. Through this concept, periodic 

Homogenization Methods can also be used to compute solutions for the problem. 

Some basic ideas of the Finite Element Method related to this study is introduced 

next. 

6.5 Elements of Function Spaces 

The finite element method depends on assumptions on regularity of solution. 

Therefore, the classes of functions with specific differentiability and integrability 
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called function spaces are very essential. This section is devoted to summarizing the 

elements of the theory of function spaces and reviewing some basic definitions and 

results from the theory of partial differential equations related to this work. The 

concepts and notational conventions introduced here will be used systematically 

throughout the rest of the thesis. (see for example, Dietrich [2007], Philippe [1987], 

Jacob and Ted [2007], Brenner and Scott [1994], Johnson [1990] for a comprehensive 

introduction to finite element methods). 

Function Spaces 

The definitions of some function spaces 

Definition 6.5.1. Let the domain Ω ⊂ Rn be Lebesgue measurable with non-empty 

interior. The class of all measurable functions u is defined as: 

Z 

Lp(Ω) := {u : Ω → R | |u|pdx < +∞},( 1 ≤ p < +∞). Ω 

(6.5.22) 

 p = 2, L2(Ω), p = ∞, L∞(Ω) = {u : Ω → R,measurable} 

Remark: u is essentially bounded if 

(6.5.23) 

 ess.sup | u |:= inf{k > 0 :| u(x) |≤ k or nearly all x ∈ Ω} < ∞ (6.5.24) 
Ω 

Lp(Ω) is a Banach space and these spaces are equipped with the norms: 

  (6.5.25) 

and  

kuk0,∞ = ess.sup | u | 

Ω 

L2(Ω) is a Hilbert space with scaler product 

(6.5.26) 

Z 

(u,v) := uvdx Ω 

with support of 

(6.5.27) 
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u : Ω → R (6.5.28) 

 
supu := {x ∈ Ω | u(x) 6= 0} 

The space of non-empty test function is defined by: 

(6.5.29) 

  Support of u is compact} (6.5.30) 

As an example 

  (6.5.31) 

  , otherwise 

6.6 Notation 

The weak derivative 

n 

 Dα for , with | α |= Xαj is given by 
j=1 

(6.6.32) 

  (6.6.33) 

Definition 6.6.1. A function in u ∈ L2(Ω) is called weakly differentiable with index α 

if there is a function w ∈ L2(Ω) such that: 

 ) (6.6.34) 

Equation (6.6.34) is called the partial integration. 

Also important are vector subspaces of Lp(Ω), termed as the Sobolev spaces 

Definition 6.6.2. Let m ≥ 0 and p ≥ 1 the space Wm,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ 

Lp(Ω),| α |≤ m} is called a Sobolev space 
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The Sobolev space Wm,p(Ω) is equipped with the norm: 

  (6.6.35) 

Correspondingly, a semi-norm on this space is defined as: 

  (6.6.36) 

respectively  

k u km,∞:= X k Dαu k0,∞ (6.6.37) 
|α|≤m 

Remark 

The functions in Wm,p(Ω) are the functions from Lp(Ω) whose weak derivatives are in 

Lp(Ω). For p = 2, it holds that Hm(Ω) := Wm,2(Ω). Define the scalar product defined on 

Hm(Ω) as 

(u,v)m := X (Dαu,Dαv)0. 
|α|≤m 

Of great use will be H1 (Ω) a closed subspace of H1(Ω) defined as: 

Γ 

(6.6.38) 

 HΓ1 (Ω) = {v ∈ H1(Ω) | v = 0 on Γ}. (6.6.39) 

It consists of square integrable functions whose trace vanishes on the boundary Γ. 

We define  as the completion of ) with respect to the norm 

  (6.6.40) 

Theorem 6.1. For m ≥ 1, p ≥ 1 

The space (Wm,p(Ω),k . km,p) is a Banach space 

The space (Hm(Ω),(.,.)m) is a Hilbert space 
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Note that functions in a Sobolev space need not be continuous but for large m and 

p Sobolev functions are continuous. 

For the model problem, because of the nature of the extracellular space and the 

cytoplasm, we need more smoothness on the boundaries. Here, we limit ourselves to 

only Lipschitz domains 

Definition 6.6.3. : A bounded domain Ω ∈ Rn has Lipschitz boundary, if for every x ∈ 

∂Ω there is a sphere B(x) which lies in an open set Oi,i = 1,...,M. Such that Oi ∩ Ω = Oi ∩ 

Ωi where 

 Ωi = {(x1,x2) ∈ Rn : x1 
∈ Rn−1,x2 

∈ R, x2 < φi(x1)} (6.6.41) 

where the functions φi are Lipschitz continuous. That is | φi(x)−φi(y) |≤ L | x−y |, for 

some constant L > 0. 

Theorem 6.2. (Trace-mapping Theorem) 

Let Ω be bounded with Lipschitz boundary and let p ≥ 1, then there exist a unique 

continuous mapping tr : W1,p(Ω) → Lp(∂Ω) such that tr(u) = u |∂Ω, ∀ u ∈ 

 
C1(Ω), such that tr(u) is called the generalized boundary of u. 

From Theorem 6.2 we have the following identities. 

Theorem 6.3. : W1,p = {u ∈ W1,p | tr(u) = 0} 

 

Then the following Lemma holds (Poincare- Friedreich’s Inequality). Let Γ ⊆ ∂Ω 

have a non-vanishing (n − 1)-dimensional measure. Then, there exist constants, 

depending only on Ω and Γ, such that for u ∈ H1(Ω), 
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  (6.6.42) 

If u vanishes on Γ , 

  (6.6.43) 

and thus 

  (6.6.44) 

See for example Andrea and Olof [2005], Lawrence and Evans [2002] for the proof. 

Next we describe the existence and uniqueness solutions of the model problem. 

6.7 General Second-Order Parabolic PDEs 

The general parabolic equation for a uniformly elliptic operator L on Ω × (0,T) is 

given by 

 ut + Lu = f (6.7.45) 

where the divergence form of L is given by 

  (6.7.46) 

where the coefficients aij(x,t),bj(x,t),c(x,t) are coefficient functions with aij = aji. In 

equation (6.7.46), it is assumed that there exist β > 0 and ξ ∈ Rn such that 

 ) (6.7.47) 

Equation 6.7.45 is complete with the addition of initial and boundary values. The 

model problem is obtained if bj = 0 = c. 
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Variational Formulation 

In order to apply the finite element method, we must develop a computable form 

of our problem, the so called weak form. For simplicity we do the variational 

formulation for the initial/ boundary value problem (IBVP) of the receptor in the 

cytoplasm of the cell. The IBVP can be written as 

   

 uRt 

uR 

uR(x,0) 

= ∇.(DR∇uR) + f 

= 0 on ∂Ycell 

= R0 on Ycell 

(6.7.48) 

where f = −(kauAuR + kbuBuR) is a sink. The variational formulation of the model in 

equation (6.7.48) with the Dirichlet boundary is formulated. From now we omit the 

subscripts on the concentration and write u instead of uR. 

We first suppose that the domain Y , the diffusion coefficients and the solution are 

smooth. The equation (6.7.48) is multiplied by a test function ), and 

integrated over Y , and the divergence theorem applied. This gives 

(ut,v)L2 + a(u(t),v : t) = (f(t),v)L2 

where (.,.)L2 denote the L2-inner product 

for 0 ≤ t ≤ T (6.7.49) 

  (6.7.50) 

and the associated bilinear form a is given by 

 ) (6.7.51) 

In equation (6.7.49) we mean u(t) = u(.,t) and to generalize the weak solution, it is 

assumed that Y ⊂ Rn is bounded and open for T > 0 
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Then 

• The diffusion coefficient aij ∈ L∞(Y × (0,T)); • aij = aji and the 

condition in 6.7.47 is satisfied 

• f ∈ L2(0,T;H∗(Y )) and g ∈ L2(Y ). 

Here f is allowed to take values in ), where H∗(Y ) is the dual space of 

). The duality pairing between H∗(Y ) and ) is denoted by 

  (6.7.52) 

The coefficient of a are uniformly bounded in time, therefore it holds that 

  (6.7.53) 

If there exist constants C > 0 and α ∈ R such that for each  

  and 

(6.7.54) 

 

Let u be associated with the mapping 

 ) (6.7.55) 

defined by 

 [u(t)](x) := u(x,t) (u ∈ Y,0 ≤ t ≤ T) (6.7.56) 

Now u is not considered as a function of x and t together but as a mapping u of t into 

the space ) of functions of x. 
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Then in problem equation (6.7.48) we can similarly define 

f : [0,T] → L2(Y ) 

by 

(6.7.57) 

 [f(t)](x) := f(x,t) (x ∈ Y,0 ≤ t ≤ T) (6.7.58) 

This guarantees the choice of ) for a weak solution 

We can now define the weak solution to the model problem in equation (6.7.48) as: 

Definition 6.7.1. A function ) is a weak solution to (6.7.48) if: 

) and ut ∈ L2(0,T;H∗(Y )) and for every  

 hu(t),vi + a(u(t),v;t) = hf(t),vi (6.7.59) 

for t pointwise almost everywhere in [0,T] and u(0) = R0 in the cytoplasm Remark It 

is not clear how to interpret the time derivative of a function which is in L2 and also 

u(0) = R0 (measure zero) The following theorem holds: 

Theorem 6.1. Suppose  with u0 ∈ L2(0,T;H∗(Y )), 

then 

(i) u ∈ C([0,T];L2(Y )) 

after possibly being redefined on a set of measure zero, 

(ii) The mapping 

(6.7.60) 

t 7→k u(t) k2L2(Y ) 

is absolutely continuous with 

(6.7.61) 

  (6.7.62) 

for almost everywhere 0 ≤ t ≤ T 

Furthermore, we have the estimate 
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 ) (6.7.63) 

The constant C depends on T only. 

See for example Lawrence and Evans [2002] for the proof of Theorem 6.1. 

Furthermore, from the evolution triple (Golfand triple), we have for example 

 ) (6.7.64) 

Comment: For u ∈ w(0,T;V ) = {V ∈ L2(0,T;V ) | V 0 ∈ L2(0,T;V ∗)} and 

, we have u = [0,T] → L2 is continuous nearly everywhere. Then u(0) = R0 make 

sense. 

Theorem 6.2. Suppose that the condition in Theorem 6.1 are satisfied, then for every f 

∈ L2(0,T;H∗(Y )) and  there is a weak solution 

 )) (6.7.65) 

of 6.7.48 with ut ∈ L2(0,T;H∗(Y )) Next we 

proceed as follows: 

1. Partition the domain (Y ) into triangles. 

2. Construct a finite dimensional subspace (Vh) consisting of piecewise-

polynomials, and 

3. Define the transition conditions 
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6.7.1 Triangulation 

Let Y ⊂ Rd be a bounded domain with a Lipschitz continuous boundary. A 

triangulation or mesh is a non-overlapping partition of Y into elements. 

Definition 6.7.2. Let Y ⊂ Rd be a bounded domain. A partition Zh of Y into 

subsets T ∈ Zh is called a triangulation if the following are satisfied 

1. For each T ∈ Zh, T is closed and T ◦  6= 0, and connected. Where T ◦  = T\∂T 

denote interior of T. 

2. Y¯ = ST∈Zh T. 

3. If G = Ti◦  ∩ Tj◦  = ∅, ∀ Ti,Tj ∈ Zh, i 6= j, then G is a common edge, face or vertex of 

T1 and T2. 

4. Zh = {T1,.....TM}. 

5. h = maxi diam(Ti), ∀ Ti ∈ Zh. 

Now we can assume that the domain Y and all Ti are polyhedron. 

Then Zh is called a triangulation of Y¯ [Chamakuri, 2007]. h is called the diameter of 

Zh, and the family Zh satisfying the above properties is said to be geometrically 

conforming. 
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Definition 6.7.3. A triangulation Zh is called admissible if each edge of Ti is either the 

edge of another Tj or part of ∂Y . 

Definition 6.7.4. A finite element in Rd is a triple (T,PT ,PT ) satisfying the following 

properties: 

• T is a closed subset of Rd with a non empty interior and a Lipschitz continuous 

boundary. 

• PT is a finite dimensional function space defined on T and N = dimPT . 

• P
T consists of linearly independent functionals, or it is a set of degrees of 

freedom. such that a function v ∈ PT is determined by the degrees of freedom PT 

. 

The nodal basis function Φi is now defined by 

 

if i = j 
(6.7.66) 

 0 if i 6= j 

6.8 Finite Dimensional Space 

The finite-element method is a numerical implementation of the Galerkin method 

which uses a space Vh of piecewise polynomial functions that are supported on 

elements. Finite-element basis functions, are supported on a small number of 

adjacent elements. Furthermore, one can approximate functions on domains with 
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complicated geometry in terms of the finite-element basis functions by subdividing 

the domain into smaller elements, and refine the decomposition in regions where 

higher resolution is required. The finite-element basis functions are not exactly 

orthogonal, but they are almost orthogonal since they overlap only if they are 

supported on nearby elements. As a result, the associated Galerkin equations involve 

sparse matrices, which is crucial for their efficient numerical solution. The basic idea 

of the existence 

of a solution is to approximate, ) by functions uh;[0,T] → Vh that take 

values in a finite-dimensional subspace ). To obtain the uh, we project the 

PDE onto Vh, meaning that we require that uh satisfies the PDE up to a residual which 

is orthogonal to Vh. This gives a system of ODEs for uh, which has a solution by 

standard ODE theory. Each uh satisfies an energy estimate of the same form as the a 

priori estimate for solutions of the PDE. 

 dim , and Vh ∈ H (6.8.67) 

In more detail, the existence of uniform bounds implies that the sequence {uh} is 

weakly compact in a suitable space and hence, by the Banach-Alaoglu theorem, since 

the PDE and the approximating ODEs are linear, linear functionals are continuous 

with respect to weak convergence. Therefore, the weak limit of the solutions of the 

ODEs is a solution of the PDE. 
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6.9 Finite Element 

6.9.1 Weak form 

: finite dimentional subspace 

(6.9.68) 

Find uh(t) ∈ Vh with uh(0) = IhR(0), such that 

  (6.9.69) 

Vh = Span{Φ1............ΦN} → basis function (6.9.70) M uh(t,x) = 

Xui(t)Φi(x) (6.9.71) 

i=1 

vh = Φj 

 ) (6.9.72) 
 N M 

 X 0 X 

 u (t)(Φi,Φj) + ui(t)a(Φi,Φj) = (f,Φj) (6.9.73) 
 i i=1 

Then 

 A = (a(Φi,Φj)), F = (f,Φj), u = (ui)i ∈ Rm, M = (Φi,Φj)i,j (6.9.74) 

and 

 Mu0 + Au = F, u = u(t) ∈ Rm (6.9.75) 

where M is the mass matrix, A is the stiffness matrix. A is large, sparse and positive 

definite. See for example Thomee [1984] for a detail discussion on the lumping of 
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the mass matrix and further reading in [Axelsson and Barker, 2001, Dautray and 

Luis, 

1988]. 

The direct method (noniterative) of solving finite element computations is used in 

this study. 

In Comsol Multiphysics, there are three stages in solving the problem using the direct 

solve namely: Get an initial solution on a coarse mesh, Estimate, and Refine mesh. 

• We get an initial solution of the finite element discretized problem on a coarse 

mesh. 

• Set a tolerance TOL > 0. Then the global discretization error denoted by k E k is 

estimated using the local discretization error denoted by k E kT . 

  (6.9.76) 

where  

k E kT =k u − uh kT ≤ TOL (6.9.77) 

• The mesh is refined by subdividing the elements into finer mesh. This procedure 

is repeated until the error tolerance level is reached by every element in the 

discretized domain. 

6.10 Numerical formulation 

Galerkin Finite Element Method (GFEM) is used for the discretization, with 

triangular elements used for the discretization of the domain. The system of 

equations obtained from the GFEM is solved using a direct solver. The discretization 
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of the governing PDEs by the GFEM scheme result in a set of linear equations. The 

core of the resulting coupled system of equations is the solution of sparse linear 

system, which is the most intensive part of the solver. 

The numerical algorithm can broadly be classified into three categories: 

• Numerical formulation with finite element discretization. 

• Solution strategy for solving the resultant linear equations. 

• Solution of the linear system. 

The solution of the linear system is the most difficult part in terms of computational 

time and memory requirement. Next, an overview of one of the sparse direct solvers 

(UMFPACK) used in this work. 

6.11 The Solver 

6.11.1 Sparse direct solver (UMFPACK) 

The UMFPACK is a routine developed for solving sparse linear systems using the 

Unsymmetric MultiFrontal method. The Multifrontal method is the upgraded version 

of the frontal method developed for solving finite element problems of symmetric 

positive definite systems by Amestoy and Duff [1989]. It was later further improved 

to include unsymmetric systems by Davis [2004]. This implies the matrix A need not 

be symmetric. COMSOL Multiphysics has in-built direct and iterative solvers which 

can be selected depending on the type of problem being solved, and the symmetric 
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nature of the matrix. The UMFPACK solver automatically select different strategies 

for pre-ordering the rows and columns in the matrix [Raju and Khaitan, 2009]. 

The direct solver solves 

 Ax = b (6.11.78) 

where the matrix A is large, sparse and typically ill-conditioned. It computes a 

decomposition of A (e.g. LU decomposition). Sparse, direct solvers have the 

advantage of saving memory and CPU time. They are very robust and the work grows 

as 

 0(N1+2(d−1)/d) (6.11.79) 

where d is the dimension and thus we have the system here growing as 0(N2) on a 

2d. 

Furthermore, the memory also grows as: 

 0(N1+(d−1)/d) (6.11.80) 

that gives 0(N3/2) for 2d. 

6.12 Computational Details 

The model is implemented in COMSOL 3.5 using the coefficient form PDE with the 

variables fully coupled. The description of the ligand-receptor-toxin binding lead to 

a system of PDEs. These problems are difficult to solve analytically therefore we find 

approximate solution to the problem numerically. The COMSOL Multiphysics 

software is based on the finite element method (FEM) described earlier by 

subdividing the solution domain of the problem into a large number of finite 

elements to find approximate solution to the governing equation(s) Figure 6.5. FEM 



 

122 

method uses simple piecewise linear, or quadratic functions to compute solutions for 

the unknown variables. This way, the error in the approximation can be determined 

by substituting the piecewise approximation function for the unknown to compute 

the residuals. 

COMSOL uses a predefined equation system, users can not change the numerical 

methods but can modify the variables to suit a specific problem. COMSOL 

Multiphysics has an integrated environment with a variety of model libraries for 

solving single and coupled system of stationary or transient first, second and third 

order in space PDEs on one, two or three dimensional domains. Modeling in COMSOL 

Multiphysics follow the steps below. 

 

Figure 6.3: Steps in COMSOL modeling 

6.13 Choice of PDE 

The coefficient form of PDE in comsol Multiphysics can be written as: 

  (6.13.81) 

with the following boundary conditions 

hu = r 

n.(c∇u + ηu − γ) + qu = g − hT µ 



 

123 

where n is the unit normal perpendicular to the membrane and da,c,η,γ,β,a,f,h,g are 

scalar function. The model problem is realized by setting ea = η = β = γ = a = 0 6.14 

Geometry 

In the numerical analysis, we compare two geometrical representation of the cell. 

The two geometries are different in the implementation of the cell membrane 

boundary. First the cell membrane is implemented as one-dimensional boundary 

Figure 

6.4a and second as a separate subdomain Figure 6.4b. The two boundaries differ in 

the coupling of the equations on the cell membrane boundary. We use the features in 

COMSOL to define flux on the boundary of the first geometry and concentration on 

the boundary of the second geometry. 

 
 (a) (b) 

Figure 6.4: Schematic representation of geometries (a) membrane as 1D boundary (b) membrane as a 

separate compartment / subdomain 

We find in the numerical simulations that the system of equations is reaction 

dominant. Although the complexes formed could be described by ODEs, for the sake 
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of the geometrical comparison, all the evolution equations are written as reaction-

diffusion equations (6.3.12-6.3.13). Note that only the ligand and the toxin are 

allowed to freely diffuse in the extracellular space and the cytoplasm. All other 

species are restricted to the cytoplasm. By this approach the numerical results are 

not affected since we are interested in the total concentration of all complexes 

formed. An integral of the concentration over the subdomains gives the total 

concentration of the species. Therefore, the diffusion of a species in a subdomain does 

not affect the result. 

6.15 Coupling of the Subdomains 

In COMSOL, the model can be implemented in two ways: first using a set of global 

PDEs with different parameters in the different domains. Secondly separate PDEs can 

be defined in the different domains and suitably coupling the species in the different 

subdomains. These approaches have been used in Menshykau and Iber [2012], 

Vollmer et al. [2013]. In this study we implement a simple 2D model as described 

above using the second approach to solve the system of equations in (6.3.12-6.3.13). 

In the cytoplasm the concentration of the ligand (uAcell), the toxin (uBcell) and the 

receptor (uRcell) are being consumed and there is formation of the complexes 

(uCcell,uC2cell,and uC3cell). 

The 2D geometry used in the numerical simulation is shown in Figure 6.4. Figure 6.4a 

consists of an extracellular space (Ωext), a one dimensional cell membrane boundary 

and the inner subdomain representing the cytoplasmic surface (Ωcell). Figure 6.4b 

differ from Figure 6.4a in the implementation of the cell membrane as a separate 

compartment. The extracellular space and the cytoplasm are represented by squares 

of size 1 and 0.5, respectively. The thickness of the cell membrane in Figure 6.4b is 
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0.05. 

6.16 Model implementation in COMSOL 

In this section we compare the two approaches in modeling the cell membrane. 

The cell membrane separates the extracellular space from the cytoplasm. In both 

geometries the species are coupled between the extracellular space and the 

cytoplasm.The numerical solution are computed using three direct solvers namely: 

UMFPACK, SPOOLES (Sparse object oriented linear equation solver) and PARDISO 

(Parallel direct sparse solvers). The performance of these solvers with respect to the 

computational time and memory requirement on a 64−bit windows HP-Z1 

workstation machine with 16GB RAM is evaluated. 

 

Figure 6.5: Meshed Geometry 

In Ycell the following parameters were used DR = DC = DC2 = DC3 = 1, kb = 0.1 

, ka = 0.5 and DA = 100. 

In the extracellular space (Yext), DR = DC = DC1 = DC2 = 0. 

The initial concentrations are uC = uC2 = uC3 = 0 in all compartments. Since the 

complexes formed are restricted to the cytoplasm, 
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 n.∇uC = n.∇uC2 = n.∇uC3 = 0. on 

For the ligand, Mycolactone toxin and receptor, we have 

Z 

∂Ycell (6.16.82) 

uAdA = 2 
Yext 

Z 

 (6.16.83) 

uBdA = 0.5 
Yext 

Z 

 (6.16.84) 

uRdA = 1  (6.16.85) 

Ycell 

as initial conditions respectively. This implies that, at time zero (t = 0) concentrations 

of the ligand and receptors are present in Yext and Ycell respectively. The PDEs are 

coupled on the boundary by imposing the condition uAcell = uAext and uBcell = uBext on ∂Ycell 

in geometry 2. By this we mean the concentration of the ligand on the cell membrane 

are always in rapid equilibrium (assumption 3). An alternative boundary condition 

for geometry 2 is: 

. 

where S = uA,uB and next = −ncell. 

6.17 Numerical results 

In this section the numerical result from the simulations are presented. The 

numerical solutions presented here were obtained by integrating over respective 

subdomains or compartments. In the plots, the ligand, toxin and receptor will be 

represented by black, deep dashed purple and deep blue lines whiles the complexes 

formed (C, C2 and C3) are represented by red, dashed red or dashed-dotted light blue, 
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and dashed purple lines respectively. For simplicity ux(t) = xt, on the legend where x 

denote the specie. The other concentrations are represented similarly on the ligand. 

 
 (a) (b) 

Figure 6.6: Numerical solution for concentration of complex C formation 
Figure 6.6 shows the numerical results for ligand (A) receptor (R) binding to form 

the complex (C). The plots in Figure 6.6a and Figure 6.6b shows the result for 

implementation of membrane as boundary (1D) and membrane implemented as 

separate compartment respectively. The results agree for the two geometries. The 

only difference is the coupling of the equations on the boundary. Note that the ligand 

and the receptor are consumed in the binding process to form the complex (C). After 

the value 15 on the time axis, notice that the ligand, receptor and complex are at 

steady state. 
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 (a) (b) 

Figure 6.7: Numerical solution for concentration of species (a) Shows depletion of ligand and receptor 

concentration and formation of complexes C and C2, (b) Sum of C and C2 is shown in 

dashed-dotted blue line 

Figure 6.7 shows the numerical solution for five coupled PDEs from ligand-

receptortoxin binding and formation of the complexes C and C2. The results in Figure 

6.7 is without the toxin (B) binding directly to the receptor. In Figure 6.7b the sum of 

the two complexes formed C+C2 is shown. The light blue dashed-dotted line is the 

integral of the two complexes over the cytoplasm. The formation of the complexes C 

and C2 are restricted to the cytoplasm. The numerical results show an increase in 

active WASP complex with the introduction of the toxin as shown by the dashed-

dotted blue line. Next the binding rate of the ligand and toxin are investigated. 

 
 (a) (b) 

Figure 6.8: Time course for ligand-receptor binding (a) Ka = 0.5, Kb = 0.1, (b) Ka = 0.1, Kb = 0.5 

Figure 6.8a shows the effect of an increase in the binding rate of the ligand over 

the binding rate of the toxin. There is a significant rise in the formation of the complex 

C2. Furthermore there is a sharp increase in the formation of the complex C followed 

by a decrease and becomes steady as time increase. In Figure 6.8b shows a reverse 

in the binding rates with the toxin binding faster than the ligand. Notice the 
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significant drop in the formation of the complexes C and C2. The ligand is not 

consumed as in Figure 6.8a though this is expected. The formation of the complex C3 

appear to be small compared to C and C2. This supports the information in the 

literature that WASP is autoinhibited in its basal form and the autoinhibited domain 

is relieved on binding to the ligand Cdc42 which then exposes the hydrophobic region 

for the toxin binding and hyperactivation. 

In the next plot we study the behavior of the solution if the binding rates of both 

ligand and toxin are kept equal and the initial concentration of the toxin is increased. 

The rate at which both ligand and toxin bind the receptor are made equal (Ka = Kb 

= 0.1) in Figure 6.9. In Figure 6.9b the initial concentration of B is increased from 0.5 

to 1 (i.e. RYcell uBdA = 1). It is found that formation of the complex (C2) 

 
 (a) (b) 

Figure 6.9: Numerical solution for concentration of species (a) ka = 0.1, kb = 0.1, (b) ka = 0.1, kb = 0.1 

exceed the initial concentrations of the ligands and the receptor. This supports the 

fact that a small amount of the toxin can disrupt the functions of WASP in the cell. It 
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gives an idea of how these complexes activate Arp2/3 complex leading to the over 

production of actin filament in the cytoplasm. 

Figure 6.10 shows the surface plots of the concentration of ligand (uA) in 2D and 3D 

views in Figure 6.10a and Figure 6.10b respectively. It is found that the direction of 

the concentration of ligand in Figure 6.10a and the highest concentration is at the 

center of the cytoplasm. The plot in Figure 6.10b is one of the features in COMSOL 

Multiphysics where a 3D plot can be obtained from a 2D model. 

The plot shows the concentration distribution of the ligand (A) on the surface of 

the cytoplasm. The numerical solution show the concentration of A is maximum at 

the center of he domain as shown in both Figure 6.10a and Figure 6.10b. 

Figure 6.11a show numerical solution in the second geometry where the 

membrane is implemented as a separate compartment. The numerical solution in 

Figure 6.11a is equal to Figure 6.8b for implementation of the membrane as a one-

dimensional boundary. Figure 6.11b shows the surface plot for the formation of the 

complex C 

 
 (a) (b) 

Figure 6.10: Surface plot of concentration (a) 2D surface plot of uA (A) (b) 3D surface plot of uA 



 

131 

 
 (a) (b) 

Figure 6.11: Concentration and surface plot (a) Numerical solution for the concentration of species (b) 

2D initial surface plot of complex C 

restricted to the cytoplasm of the cell. An important result in this work is the surface 

plots in Figure 6.10a, Figure 6.10b and Figure 6.11b, that given the right parameters, 

the extent of diffusion of any of the reacting species and most especially the toxin in 

the tissue can be predicted. This result is crucial in the treatment of BU disease. The 

numerical results confirm the report in the literature that the concentration of the 

Mycolactone toxin decreases from the center to the margin of the BU (see Figure 

6.12). In Laure et al. [2013], experimental epithelial cells show that 

Mycolactoneinduced stimulation of Arp2/3 concentrated in the perinuclear region of 

the cell, resulting in defective cell migration and adhesion followed by rapture. 
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Figure 6.12: Surface plot of toxin 

Next we numerically solve the reversible reactions given below in the cell. 

k1 

[R] + [A]   [C] 

k−1 

k2 

[C] + [B]   [C2] 

k−2 

k3 

[R] + [B]   [C3] 

k−3 
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The evolution equations for the coupled reaction-diffusion system are: 

, 

(6.17.86) 

where k±i i ∈ {1,2,3} are reaction rate constants. The description of the equations 

follow as in section 6.3. The boundary conditions, initial conditions, and the constant 

diffusion coefficients used in section 6.3 remain the same. The rate constants used in 

the numerical simulations are shown under Figure 6.13. The numerical solution for 

the formation and depletion of the species in the binding or reaction process is as 

shown in Figure 6.13. 

 

Figure 6.13: Numerical solution for the concentration of species, k1 = 0.5,k−1 = 0.01,k2 = 
0.1,k−2 = 0.25,k3 = 1,k−3 = 0.02 
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Figure 6.13 is the numerical solution for solving the coupled system of reversible 

reaction-diffusion equations (6.17.86). It is observed in the numerical analysis that 

though the number of degrees of freedom solved for remains the same, the time 

and memory requirements are increased about two times and six times 

respectively due to the inclusion of the reversible part (values not shown). 

The red, light dashed-dotted blue, and purple lines represent the complexes C, C2 and 

C3 respectively whiles the blue line represents the receptor R. The point where the 

red line meets the blue line is an equilibrium point. At this point the formation of C 

equals the depletion of R. The point where the red line meet the deep purple line is 

the equilibrium between the complex C and the toxin B. The formation of C equalize 

the depletion of B faster than with R at the respective equilibrium points. We also 

find that the equilibrium points between C and C2, C and C3 decrease with time 

respectively. The numerical results confirms that the toxin binds WASP faster than 

the ligand. 

The table below is a summery of the performance of the three direct solvers in 

terms of solution time, memory usage, number of degrees of freedom solved for, and 

number of elements in the mesh. 

Table 6.1: Performance of solvers on a coarse mesh 

Solver ] dof’s Time (sec.) Memory (GB) Elements 

UMFPACK 42440 131.804 566 648 
SPOOLES 42440 87.961 596 648 
PARDISO 42440 36.339 595 648 

Table 6.2: Performance of solvers on a fine mesh 

Solver ] dof’s Time (sec.) Memory (GB) Elements 

UMFPACK 42440 134.774 701 2592 
SPOOLES 42440 88.78 712 2592 
PARDISO 42440 35.726 665 2592 
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The tables 6.1 and 6.2 show the performance of the solvers. In the numerical 

simulation, about 95% of the time used by the solvers were used in the matrix 

factorization step. The general observation is that the number of degrees of 

freedom solved for are the same in both meshes (coarse and fine). An increase in 

the number of mesh elements increases the computational time and memory 

requirement increase which is expected. 

The UMFPACK solver takes the longest time to solve the linear system of equations. 

It is more than three times slower than the time taken by PARDISO and about one 

and a half times slower than the SPOOLES solver. In terms of memory requirement, 

the SPOOLES solver requires the largest memory and UMFPACK rquires the least in 

the coarse mesh. There is a little deviation when the mesh elements increased from 

648 to 2592. The SPOOLES solver still requires the largest amount of memory 

followed by UMFPACK and PARDISO respectively. From tables 6.1 and 6.2 it can be 

observed that in terms of memory requirement and computational time, the 

PARDISO solver performs better than SPOOLES and UMFPACK although on a coarse 

mesh the UMFPACK requires less memory. 

CHAPTER 7 

Conclusions Recommendations and future work 

Understanding the functions of WASP in eukaryotic cells is a major step in 

understanding the etiology of many diseases, including Buruli ulcer and Wiskott-

Aldrich syndrome. 
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In this thesis, the mechanism of ligand-receptor and ligand-receptor-Mycolactone 

toxin binding and associated reaction-diffusion mechanisms is studied. The aim of 

the work was to develop a mathematical model for the Buruli Ulcer disease. A new 

model has been formulated to mimic the binding mechanism, operation and 

functions of WASP with its activators. The idea of isomerization was used to develop 

a concentration-dependent model for WASP. The isomeric structure of WASP 

allowed us to model mutually exclusive and mutually inclusive binding of proteins, 

and most importantly, account for other inputs to fully activate WASP. 

From the modeling approach used, the fractional response of WASP complex at 

varying concentrations of Cdc42 and Mycolactone toxin in the cytoplasm, can be 

determined. From this, an idea of how actin filament polymerization in the cell is 

manifested is realized. The results show differences in fraction of active bound WASP 

complexes, and fraction of bound WASP complexes. 

In the absence of a ligand, it is found that the fraction of active WASP complex is 

controlled by the intrinsic isomeric equilibrium constant M whiles at saturating 

concentration of the ligand (Cdc42), it is controlled by the affinity constant C, and 

M. 

From the analysis, it is shown that there is a lag phase in the ligand-protein-toxin 

binding process. Biologically this is explained as the period for breaking of bonds 

(i.e. when the ligand binds and displaces the intramolecular interaction between the 

GBD and the VCA of WASP). Also, Egidio et al. [2007] explain this lag phase as a delay-

type hypersensitivity response in BU patience in accordance with cell mediated 

development. 
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From the steady state analysis, parameterized constants and expressions were 

obtained for the fraction of species in terms of the kinetic and equilibrium constants. 

Biologically, the parameterized constants (e0is) contained all the information of 

network routs and direct reversibility between products and reactants. It is 

concluded that the e0is are a generalization of the equilibrium constants in the context 

of biochemical networks. The reaction rates, equilibrium constants, fraction of active 

WASP in the absence, and at saturating concentration of the ligand, compare well 

with experimental results (see for example Buck et al. [2004], Devreotes and 

Sherring 

[1985]). 

For the numerical treatment of reaction-diffusion systems in the cell, a periodic 

geometry for computing quasi-periodicity in tissue modeling is introduced. This 

technique allows us to simulate one cell as a true representation of the tissue, and 

drastically reduced computational costs and CPU memory. The coupled system of 

reactiondiffusion equations were solved in the cytoplasm of the cell. The two 

geometrical representations of the cell membrane produced similar results. The 

numerical results confirm that the concentration of the toxin is highest at the center 

and decreases as it moves towards the boundary of the domain. 

Importantly, the extent of diffusion of the toxin in the tissue is predicted with time. 

This is very crucial in the treatment of the BU (see Figure 6.12). 

The numerical results show that though Mycolactone can solely activate WASP, the 

toxin binds well when the hydrophobic region on WASP is exposed as a result of 

Cdc42-GBD interaction. The performance of three direct solvers were compared. The 

PARDISO solver was found to perform better in terms of computational time and CPU 

memory usage. 
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Finally, it is concluded that the results obtained in this thesis are unique; it 

confirms existing experimental results, and give further insights into the etiology of 

BU disease. In Figure 4.11(a) and Figure 6.9b, an idea of what happens to the actin 

filament polymerization process when the concentration of Mycolactone toxin 

increases in the cell is given. Furthermore, the analysis confirm the result in Laure et 

al. [2013], that competitive inhibitors of Mycolactone toxin are needed to prevent the 

toxin from binding the hydrophobic region of WASP for effective treatment of BU. 

7.0.1 Recommendations and Future work 

In this study, the numerical simulation in a square domain of the cell cytoplasm 

was considered. In future, it will be necessary to extend the model to include other 

geometrical representations of the cell. Secondly, the system of reaction-diffusion 

equations can be coupled with heat equation to investigate the effect of temperature 

on the model. The model can be extended to include a moving mesh boundary. 

Work has already started to solve the model problem using the idea of periodic 

homogenization. It is also important to get an experimentalist on board to verify 

some of the parameters in the model.  
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