# KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI

# **COLLEGE OF HEALTH SCIENCE**

# THE USE OF COMPOUNDS CHEMICALLY RELATED TO ANALYTE

AS SURROGATE REFERENCE STANDARDS IN QUANTITATIVE

HPLC

# A THESIS SUBMITTED TO THE DEPARTMENT OF PHARMACEUTICAL CHEMISTRY

FACULTY OF PHARMACY AND PHARMACEUTICAL SCIENCES

COLLEGE OF HEALTH SCIENCES

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND

TECHNOLOGY, KUMASI

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE: PHARMACEUTICAL ANALYSIS AND QUALITY CONTROL

BY

# SAADA MOHAMMED

FEBRUARY 2008

### DECLARATION

It is hereby declared that this thesis is the outcome of research work undertaken by the author. Any assistance obtained has been duly acknowledged. It is neither in part nor whole been presented for another degree elsewhere.

| HEAD OF DEPARTMENT | SUPERVISOR       |
|--------------------|------------------|
| DR. N N A OKAINE   | PROF. J K KWAKYE |
| CANDIDATE          |                  |
| SAADA MOHAMMED     |                  |
|                    |                  |
|                    |                  |
|                    |                  |
|                    |                  |

## DEDICATION

To my parents, Shuaibu King Mohammed and Suwaibatu Abubakar.



#### ACKNOWLEDGEMENTS

First of all, I want to give credit and thanks to Allahu subhanahuu wataala, whose grace, has brought me this far. When the Lord defines work, He provides willing and capable hands to accomplish it. I therefore acknowledge with ineffable and profound gratitude the immense assistance given by Professor Kwakye, my project supervisor and Mr. Nkansah for their guidance, criticisms and suggestions.

Special thanks also go to Mrs. Biritwum, Mr. Atackie, Paul and Eric all of the Ghana Standard Board who made me use their HPLC instrument for this project. Many thanks go to all lecturers, my colleagues and staff in the department of pharmaceutical chemistry, Kwame Nkrumah University of Science and Technology (KNUST).

I cannot deny myself the pleasure of acknowledging my sisters, Rahina, Haira, Amina and my brother Mohammed for their prayers and support. I also thank my family, friends and well wishers.



#### ABSTRACT

The possibilities of using compounds chemically related to analyte as surrogate reference standards in quantitative high performance liquid chromatography (HPLC) have been explored. A quantitative high performance liquid chromatography method has been developed to determine a constant (K) with a surrogate reference that makes it possible to analyse paracetamol in a formulation in the absence of pure paracetamol as reference. Caffeine was used as internal standard while aspirin, phenacetin and benzoic acid were considered as surrogate references. The chromatographic apparatus consisted of Zobax C-18 column, UV detector at 257 nm and computer (Chromquest software) as a recorder. Elution was isocratic with a mobile phase consisting of methanol and 2.5% acetic acid 2:3. The retention times of the analyte were:  $3.0 \pm 0.01$  mins (paracetamol),  $4.7 \pm 0.02$ mins (caffeine),  $8.1 \pm 0.03$  mins (aspirin),  $11.1 \pm 0.06$  mins (phenacetin) and  $11.7 \pm 0.05$ mins (benzoic acid). The constant K for the pure standards obtained were, aspirin: 18.23  $\pm$  0.048, phenacetin: 1.15  $\pm$  0.051 and benzoic acid: 11.66  $\pm$  0.251. These constants were used in the analysis of nine samples of paracetamol tablets. The percentage content obtained for each sample was then compared with that obtained using the BP and the USP methods. The results showed that the surrogate reference standard can be used for the analysis of paracetamol without the use of pure paracetamol powder as reference.

| DECLARATIONii                               |
|---------------------------------------------|
| DEDICATIONiii                               |
| ACKNOWLEDGEMENTSiv                          |
| ABSTRACTv                                   |
| TABLE OF CONTENTS vi                        |
| LIST OF FIGURES xivv                        |
| LIST OF TABLES xvv                          |
| CHAPTER ONE 1                               |
| 1.1 GENERAL INTRODUCTION                    |
| 1.1.1 Justification                         |
| 1.1.2 Main Objective                        |
| 1.1.3 Specific Objectives                   |
| 1.1.4 Hypothesis of study7                  |
| 1.2 LITERATURE REVIEW                       |
| 1.2.1 Injectors                             |
| 1.2.2 Chromatographic column                |
| 1.2.3 Mobile phases                         |
| 1.2.4 Pumping system                        |
| 1.2.5 Detectors                             |
| 1.2.6 Stationary phases14                   |
| 1.2.7 Qualitative and Quantitative analysis |
| 1.2.8 Internal standard                     |

## TABLE OF CONTENTS

| 1.2.8.1 Choice of Internal Standard                                                                                                                                                                                                                                                                                                                                                                          | 19                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| 1.2.8.1.1 Stability                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                 |
| 1.2.8.1.2 Internal standard solubility                                                                                                                                                                                                                                                                                                                                                                       | 20                                                 |
| 1.2.8.1.3 Commercial availability                                                                                                                                                                                                                                                                                                                                                                            | 20                                                 |
| 1.2.8.1.4 Toxicity                                                                                                                                                                                                                                                                                                                                                                                           | 20                                                 |
| 1.2.8.2 How to use an internal standard                                                                                                                                                                                                                                                                                                                                                                      | 21                                                 |
| 1.2.9 Paracetamol                                                                                                                                                                                                                                                                                                                                                                                            | 22                                                 |
| 1.2.10 Caffeine                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |
| 1.2.11 Aspirin                                                                                                                                                                                                                                                                                                                                                                                               | 24                                                 |
| 1.2.12 Phenacetin                                                                                                                                                                                                                                                                                                                                                                                            | 25                                                 |
| 1.2.13 Benzoic Acid                                                                                                                                                                                                                                                                                                                                                                                          | 26                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                              | • •                                                |
| CHAPTER TWO                                                                                                                                                                                                                                                                                                                                                                                                  | 28                                                 |
| 2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS                                                                                                                                                                                                                                                                                                                                                             | 28                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                              | 28                                                 |
| 2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS                                                                                                                                                                                                                                                                                                                                                             | 28<br>28                                           |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> </ul>                                                                                                                                                                                                                             | 28<br>28<br>28<br>29                               |
| 2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.<br>2.1.1 Materials/ Reagents.<br>2.1.2 Instrumentation                                                                                                                                                                                                                                                                                                     | 28<br>28<br>28<br>29                               |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> </ul>                                                                                                                                                                                                                             | 28<br>28<br>28<br>29<br>29                         |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> <li>2.1.3.1. Preparation of 0.5M Sulphamic acid</li> </ul>                                                                                                                                                                        | 28<br>28<br>28<br>29<br>29<br>29                   |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> <li>2.1.3.1. Preparation of 0.5M Sulphamic acid</li> <li>2.1.3.2. Preparation of 0.5 M sodium hydroxide</li> </ul>                                                                                                                | 28<br>28<br>28<br>29<br>29<br>29<br>29<br>30       |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> <li>2.1.3.1. Preparation of 0.5M Sulphamic acid</li> <li>2.1.3.2. Preparation of 0.5 M sodium hydroxide</li> <li>2.1.3.3. Preparation of 0.5 M hydrochloric acid</li> </ul>                                                       | 28<br>28<br>28<br>29<br>29<br>29<br>29<br>30<br>30 |
| <ul> <li>2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.</li> <li>2.1.1 Materials/ Reagents.</li> <li>2.1.2 Instrumentation</li> <li>2.1.3 Preparation of solutions</li> <li>2.1.3.1. Preparation of 0.5M Sulphamic acid</li> <li>2.1.3.2. Preparation of 0.5 M sodium hydroxide</li> <li>2.1.3.3. Preparation of 0.5 M hydrochloric acid</li> <li>2.1.3.4. Preparation of 0.1M Perchloric Acid</li> </ul> | 28<br>28<br>28<br>29<br>29<br>29<br>30<br>30<br>31 |

| 2.1.4.2. Standardisation of (0.1 M) perchloric acid                             | 32    |
|---------------------------------------------------------------------------------|-------|
| 2.1.5 Assay of pure standards                                                   | 33    |
| 2.1.5.1 Aspirin                                                                 | 33    |
| 2.1.5.2 Benzoic acid                                                            | 33    |
| 2.1.5.3 Caffeine                                                                | 33    |
| 2.1.5.4 Paracetamol                                                             | 34    |
| 2.1.5.4 Paracetamol     2.1.5.5 Phenacetin                                      | 34    |
| 2.1.6 HPLC Method development                                                   |       |
| 2.1.6.1 Development of mobile phase and diluent                                 | 34    |
| 2.1.6.2 Limit of Detection (LOD) and Limit of Quantitation (LOQ)                | 35    |
| 2.1.6.3 Analytical performance parameters (reproducibility, accuracy and        |       |
| precision)                                                                      | 35    |
| 2.1.6.4 Determination of K using the surrogate reference standards              | 36    |
| 2.1.6.5 Analysis of paracetamol tablets using the surrogate reference standards | 3. 36 |
| 2.1.7 Standard method (USP method)                                              | 37    |
| 2.1.7.1 Standard preparation                                                    |       |
| 2.1.7.2 Preparation of mobile phase                                             | 37    |
| 2.1.7.3 Assay preparation                                                       | 37    |
| 2.1.7.4 Procedure for preparation                                               | 38    |
| 2.1.8 Standard method (BP)                                                      | 38    |
| CHAPTER THREE                                                                   | 40    |
| 3.1 RESULTS AND CALCULATIONS                                                    | 40    |
| 3.2 Calculation of percentage purity of aspirin                                 | 42    |

| 3.2.1 Sample A                                                              | 43 |
|-----------------------------------------------------------------------------|----|
| 3.2.2 Sample B                                                              | 43 |
| 3.2.3 Sample C                                                              | 44 |
| 3.3 Calculation of percentage purity benzoic Acid                           | 44 |
| 3.3.1 Sample A                                                              | 44 |
| 3.3.2 Sample B                                                              | 45 |
| 3.3.2 Sample B<br>3.3.3 Sample C                                            | 45 |
| 3.4 Calculation of percentage purity paracetamol powder                     |    |
| 3.5 Calculation of percentage purity phenacetin powder                      | 47 |
| 3.6 Calculation of percentage purity caffeine                               | 48 |
| 3.6.1 Sample A                                                              | 48 |
| 3.6.2 Sample B                                                              | 49 |
| 3.7 Calculation of limit of detection (LOD) and limit of quantitation (LOQ) | 50 |
| 3.8 Chromatographic conditions                                              | 50 |
| 3.9 Statistical analysis                                                    | 57 |
| CHAPTER FOUR                                                                | 58 |
| 4.0 Discussion, Conclusion and Recommendations                              | 58 |
| 4.1 Discussion                                                              | 58 |
| 4.1.1 Quality Assurance                                                     | 58 |
| 4.1.2 Method Development                                                    | 60 |
| 4.2 Conclusion                                                              | 63 |
| 4.3 Recommendations                                                         | 63 |
| REFERENCES                                                                  | 64 |

| APPENDIX                                                                                 |
|------------------------------------------------------------------------------------------|
| Fig A.1 Paracetamol standard                                                             |
| Fig A.2 Caffeine standard                                                                |
| Fig A.3 Aspirin standard                                                                 |
| Fig A.4 Benzoic acid standard                                                            |
| Fig A.5 Phenacetin standard 70                                                           |
| Fig A.5 Phenacetin standard    70      Table A.1 Percentage deviation of tablets; DN     |
| Table A.2 Percentage deviation of tablets; EC                                            |
| Table A.3 Percentage deviation of tablets; ET    73                                      |
| Table A.4 Percentage deviation of tablets; GR                                            |
| Table A.5 Percentage deviation of tablets; KP    75                                      |
| Table A.6 Percentage deviation of tablets; LP    76                                      |
| Table A.8 Percentage deviation of tablets;    78                                         |
| Table A.9 Determination of K using aspirin as the standard at paracetamol concentration  |
| of 0.0003                                                                                |
| Table A.10 Determination of K using aspirin as the standard at paracetamol concentration |
| of 0.0004                                                                                |
| Table A.11 Determination of K using aspirin as the standard at paracetamol concentration |
| of 0.0005                                                                                |
| Table A.11 Determination of K using aspirin as the standard at paracetamol concentration |
| of 0.0006                                                                                |
| Table A.12 Determination of K using aspirin as the standard at paracetamol concentration |
| of 0.0007                                                                                |

| Table A.13 Determination of K using benzoic acid as the standard at paracetamol |      |
|---------------------------------------------------------------------------------|------|
| concentration of 0.0002.                                                        | . 81 |
| Table A.14 Determination of K using benzoic acid as the standard at paracetamol |      |
| concentration of 0.0003.                                                        | . 81 |
| Table A.15 Determination of K using benzoic acid as the standard at paracetamol |      |
| concentration of 0.0004                                                         | . 82 |
| Table A.16 Determination of K using benzoic acid as the standard at paracetamol |      |
| concentration of 0.0005.                                                        | . 82 |
| Table A.17 Determination of K using benzoic acid as the standard at paracetamol |      |
| concentration of 0.0006.                                                        | . 83 |
| Table A.18 Determination of K using phenacetin as the standard at paracetamol   |      |
| concentration of 0.0002.                                                        | . 83 |
| Table A.19 Determination of K using phenacetin as the standard at paracetamol   |      |
| concentration of 0.0003.                                                        | . 84 |
| Table A.20 Determination of K using phenacetin as the standard at paracetamol   |      |
| concentration of 0.0004.                                                        | . 84 |
| Table A.21 Determination of K using phenacetin as the standard at paracetamol   |      |
| concentration of 0.0005.                                                        | . 85 |
| Table A.22 Determination of K using phenacetin as the standard at paracetamol   |      |
| concentration of 0.0006.                                                        | . 85 |
| Table A.23 Percentage content of using aspirin as the standard sample one       | . 86 |
| Table A.24 Percentage content of using aspirin as the standard sample two       | . 87 |
| Table A.25 Percentage content of using aspirin as the standard sample three     | . 88 |

 
 Table A.31 Percentage content of using aspirin as the standard sample nine
 94
 Table A.37 Percentage content of using benzoic acid as the standard sample six ...... 100 Table A.38 Percentage content of using benzoic acid as the standard sample seven.... 101 Table A.39 Percentage content of using benzoic acid as the standard sample eight..... 102 Table A.40 Percentage content of using benzoic acid as the standard sample nine ...... 103 Table A.42 Percentage content of using phenacetin as the standard sample two...... 105 Table A.43 Percentage content of using phenacetin as the standard sample three...... 106 Table A.44 Percentage content of using phenacetin as the standard sample four....... 107 Table A.45 Percentage content of using phenacetin as the standard sample five ...... 108 Table A.46 Percentage content of using phenacetin as the standard sample six ...... 109 Table A.47 Percentage content of using phenacetin as the standard sample seven...... 110 Table A.48 Percentage content of using phenacetin as the standard sample eight...... 111

| Table A.49 Percentage content of using phenacetin as the standard sample nine | 12 |
|-------------------------------------------------------------------------------|----|
| Table A. 50 Validation of developed method                                    | 13 |
| Table A.52 Statistical analysis for developed method and standard methods 1   | 14 |



## LIST OF FIGURES

| Fig. 3.1 The constant (K) curve for Phenacitin, Aspirin and Benzoic acid | 53  |
|--------------------------------------------------------------------------|-----|
| Fig 3.2 Standard Aspirin, Paracetamol and Caffeine                       | 53  |
| Fig 3.3 Standard Benzoic Acid, Paracetamol and Caffeine                  | .54 |
| Fig 3.4 Standard Phenacetin, Paracetamol and Caffeine                    | 54  |



## LIST OF TABLES

| Table 2.1 Profile of paracetamol samples (500mg).                                      | 29 |
|----------------------------------------------------------------------------------------|----|
| Table 2.2 Weight of sample equivalent to 0.10 g of pure paracetamol                    | 32 |
| Table 2.3 Weight of sample equivalent to 0.15 g of pure paracetamol                    | 39 |
| Table 3. 1 Melting range of the surrogate reference powders                            | 40 |
| Table 3.2 Percentage deviation of tablets; sample AD                                   | 40 |
| Table 3.3 Standardisation of 0.5M NaOH with sulphamic acid (aspirin analysis)          | 41 |
| Table 3.4 Assay of Aspirin.                                                            | 41 |
| Table 3.5 Blank Titration                                                              | 41 |
| Table 3.6 Assay of benzoic acid                                                        | 41 |
| Table 3.7 Assay of paracetamol                                                         | 42 |
| Table 3.8 Assay of phenacetin                                                          |    |
| Table 3.9 Assay of caffeine                                                            | 42 |
| Table 3.10 Comparison of percentages purities of samples to BP reference range         | 49 |
| Table 3.11 Limit of detection and quantification of the pure standards                 | 50 |
| Table 3.12 Mean retention time of the pure samples (n=10)                              | 51 |
| Table 3.13 Analytical performance parameters (assay of paracetamol)                    | 51 |
| Table 3.14 Constant (K) values of pure paracetamol using aspirin as standard at varyin | ng |
| concentrations                                                                         | 52 |
| Table 3.15 Constant (K) values of pure paracetamol using benzoic acid as standard      | at |
| verying concentrations                                                                 | 52 |
| Table 3.16 Constant (K) values of pure paracetamol using phenacitin as standard a      | t  |
| varying concentrations                                                                 | 52 |

| Table 3.17 Assay of paracetamol samples using the USP method.    55                |
|------------------------------------------------------------------------------------|
| Table 3.18 Assay of the paracetamol samples using the BP method                    |
| Table 3.19 Assay of the paracetamol samples using the developed method.       56   |
| Table 3.20 Comparative assay data of the USP, BP and developed methods 556         |
| Table 3.21 Comparism of K values at varying concentrations of the pure paracetamol |
| standard                                                                           |
| Table 3.22 Comparism of the developed method and the standard USP method 57        |
| Table 3.23 Comparism of the developed method and the standard BP method            |





#### **CHAPTER ONE**

#### **1.1 GENERAL INTRODUCTION**

High performance liquid chromatography (HPLC) is the technique most commonly used for the quantification of drugs in formulations. Pharmacopoeial assay still rely quite heavily on direct UV spectroscopy, but in industry, detection by UV spectrophotometry is usually combined with a preliminary separation by HPLC (1).

HPLC is a precise, sensitive, and quantitative separation technique. Its popularity rests on its ability to separate a variety of analytes, including organics, ions, polymers, and biomolecules. It is the most popular analytical technique in the pharmaceutical industry and is used in all phases of drug discovery, development and quality control (2).

In recent years, HPLC is extensively used, because HPLC is not limited by sample volatility or thermal stability. HPLC is able to separate macromolecules and ionic species, labile natural products, polymeric material and a wide variety of other high molecular weight polyfunctional group (3).

Although HPLC is widely considered to be a technique mainly for biotechnological, biomedical, and biochemical research as well as for the pharmaceutical industry, these fields currently comprise only about 50% of HPLC users. Currently HPLC is used by a variety of fields including cosmetics, energy, food, and environmental industries (4).

Increasingly, the determination of low concentrations of active ingredients either desired or undesired in complex mixtures, sold for human consumption, has become more necessary. Federal regulations have imposed strict limits on the type and concentrations of a host of substances sold as foods or drugs. Such requirements demand analytical techniques that are fast and reliable and combine the separation to alleviate interferences and analysis steps in a single operation (5).

In order to identify any compound by HPLC a detector must first be selected. Once the detector is selected and is set to optimal detection parameters, a separation assay must be developed. The parameters of this assay should be such that a clean peak of the known sample is observed from the chromatograph. The identifying peak should have a reasonable retention time and should be well separated from extraneous peaks at the detection levels which the assay will be performed. To alter the retention time of a compound, several parameters can be manipulated. The first is the choice of column, another is the choice of mobile phase, and last is the choice of flow rate (6).

HPLC method development is mostly a process of finding the right mobile phase and adjusting its solvent strength because resolution in HPLC is controlled primarily by the mobile phase. Paradoxically, with all the HPLC hardware sophistication and computerization, most method development is still performed manually via trial and error, the total method development time may last only 15 minutes. In method validation, analytical performance data such as precision, accuracy, robustness, linearity, and sensitivity are gathered, and hundreds of assays are required (2).

Internal standards are frequently used in chromatographic analysis. The internal standard is a compound deliberately added to the analyzed mixture to aid in the quantification process. For example, in an HPLC experiment, a solution of known analyte and internal standard concentration is first run under a particular set of column conditions. The ratio of the detector signal for the analyte (A) and the internal standard (S) is then calculated to measure the relative sensitivity of the technique for the two materials (A/S)<sub>known</sub>.

Next, the internal standard is added to the unknown solution and the concentration of the unknown is calculated. The ratio of the detector signal for the analyte and the internal standard in the unknown  $(A/S)_{unknown}$  is in direct proportion to the ratio of their concentrations. Hence the concentration ratio of [A]/[S] in the unknown is simply the concentration ratio in the known solution multiplied by  $((A/S)_{unknown})$ .

Theoretically, internal standards added to the mixture to be analyzed are desirable if any loss of sample is likely to occur, for example, during handling. In this way, the ratio of concentrations of analyte and the internal standard remains constant regardless of the amount of solution lost (7).

Rather than generating calibration curves for each compound, modern chromatographic software packages automatically calculate response factors (RFs). The ratio of the peak area or height of the target compound in the sample to the peak area or height of the internal standard in the sample is determined and is compared to the equivalent ratio derived for the target compound and internal standard in each calibration standard. The value is termed the response factor (RF) or relative response factor (RRF):

### Response Factor = $(Area of target compound) \times (Concentration of internal standard)$ (Area of internal standard) x (Concentration of target compound)

An ideal internal standard concentration would yield an RF of 1.0 for each analyte, but this is not practical when there are multiple target analytes for each internal standard. Generally, the amount of internal standard to include should produce a response that is no more than 100 times that produced by the lowest concentration of the least responsive target compound associated with that internal standard. So the minimum RF should be no less than 0.01 for that target compound (2). If the compound exhibits linear response over the concentration range analyzed, the plot of RF (y-axis) versus concentration (x-axis) will be a relatively flat line, and the RFs can be used to calculate the concentrations of target compounds in samples:

### Target Compound Concentration = (area target compound)x(concentration internal standard) (Area of internal standard) x (RF)

Although the internal standard technique compensates for changes in injection volume, retention time, or detector response, it is advisable to perform a continuing calibration check at regular intervals (5).

The majority of applications of HPLC in pharmaceutical analysis are for the quantitative determinations of drugs in formulations. Usually these analyses do not require a large amount of time to be spent in selecting mobile phases, column and detectors since most quality control applications can be carried out with methanol:water (1:1) as mobile phase, an Octadecylsilane (ODS) column and a UV detector. The main potential interferants in analysis of formulation are preservatives, colourant, possible degradation product of the formulated drugs and formulations with more than one active ingredient. These may present more

analytical challenges since different ingredient have different chemical properties and may elute at different time (1).

HPLC assay of formulated drugs can often be carried out against a standard; this may be either an external or internal standard. The use of an internal standard is best since all loses due to extraction are compensated for. An ideal internal standard should be closely related to the analyte, chromatographically resolved from the analyte and any excipients present in the formulation extract. The best compounds to be used as internal standard should be compounds of similar structure compared to that of the analyte (1).

The HPLC is the modern instrument used in pharmaceutical industry and the Food and Drug Board Ghana (FDB) is encouraging the use of HPLC for the quality management of the drug products on the market. But the problem of how to come by pure standards for each one of these drugs is still a problem. This research therefore seeks to develop an alternative analytical procedure that would make it possible to use quantitative HPLC for assays without using reference powders of the target analytes, but chemically related compounds analytes as surrogate reference standard.

#### **1.1.1 Justification**

Quite a number of researches has been undertaken to determine constants which help chemists the world over in both chemical and drug assays. An example is the use of A (1%, 1cm) in the UV analysis of compounds where there are no pure standards for analysis. From the BP, diazepam tablet is analysed using A (1%, 1cm) as 450 at a maximum wavelength of 284nm. Another example is the use of internal standard in quantitative Nuclear Magnetic Resonance (NMR), where drugs are quantified by measuring suitable proton signals against the intense singlet for the methyl groups in t-butanol used as the internal standard (1). The use of (NMR) in quantitative analysis of pharmaceuticals which utilized measurement of the area under selected signals both test and standard samples by means of electronic integrators has also been reported (46). The advantage of this method of quantitation is that a pure external standard for the drug is not required since the response is purely proportional to the number of protons present and this can be measured against a pure internal standard. Thus the purity or content of a substance can be determined without a pure standard of it being available (1). Paracetamol products are being used in this preliminary investigation because paracetamol is cheap and readily available both as a reference powder and as medicine. A lot of research has also been done on paracetamol and hence its data is readily available for comparison. Phenacetin, benzoic acid and aspirin are being investigated as the target surrogates because they are readily available and also show similar chemical properties as paracetamol.

#### **1.1.2 Main Objective**

This project is to investigate the use of compounds chemically related to the analyte as surrogates for pure reference samples in HPLC application.

#### **1.1.3 Specific Objectives**

The specific objectives of the research are:

1. To determine the retention times, limit of detection (LOD) and limit of quantitation (LOQ) of the analyte, an internal standard and all the target surrogate reference compounds by a suitable HPLC method.

2. To elute together the pure paracetamol sample, with an internal standard as well as a target surrogate reference to use the concentrations of analyte and chromatogram properties to determine a constant K, analogous to the response factor for the analytes.

3. To determine factors that affect the constants.

4. To use the determined constant to evaluate the content of paracetamol in selected samples.

5. To compare the results with that obtained by using British Pharmacopoeia (BP) and United State Pharmacopoeia (USP) methods.

### **1.1.4 Hypothesis of study**

For the same compounds

 $\frac{A_{\text{analyte}}}{C_{\text{analyte}}} = \frac{A_{\text{s} \text{ tan dard}}}{C_{\text{s} \text{ tan dard}}}$ 

For different compounds

 $\frac{A_{\text{analyte}}}{C_{\text{analyte}}} \alpha \frac{A_{\text{s} \text{ tan dard}}}{C_{\text{s} \text{ tan dard}}}$ 

Therefore:

 $\frac{A_{\text{analyte}}}{C_{\text{analyte}}} = K \frac{A_{\text{s} \text{ tan dard}}}{C_{\text{s} \text{ tan dard}}}$ 

Hence

 $K = \frac{A_{analyte} \times C_{s \text{ tan dard}}}{C_{analyte} \times A_{s \text{ tan dard}}}$ 

Where K is a constant analogous to the response factor of the solute.

A<sub>analyte</sub> is the peak area ratio of the analyte.

A<sub>standard</sub> is the peak area ratio of the standard.

C standard is the concentration of the standard.

C<sub>analyte</sub> is the concentration of the analyte.

Once K, A<sub>analyte</sub> and C<sub>standard</sub> are known for a particular system, C<sub>analyte</sub> can be calculated.

Percentage content =  $\frac{\text{Actual concentration}}{\text{Nominal concentration}} \times 100$ 

#### **1.2 LITERATURE REVIEW**

The modern form of column liquid chromatography has been called high -performance, highresolution, high-pressure and high-speed liquid chromatography. However, the abbreviation HPLC is now universally understood to describe the technique that separates mixtures on columns filled with small particles by elution with a liquid under high pressure. The essential equipment consists of an eluent reservoir, a high-pressure pump, an injector for introducing the sample, a stainless steel column containing the packing material, a detector, and a chart recorder. HPLC equipment can be obtained as a complete system or assembled from individual modules (8).

HPLC is a separation technique that can be used for the analysis of organic molecules and ions. It is based on mechanisms of adsorption, partition, ion exchange or size exclusion, depending on the type of stationary phase used. It involves a solid stationary phase, normally packed inside a stainless-steel column, and a liquid mobile phase. Separation of the components of a solution results from the difference in the relative distribution ratios of the solutes between the two phases. HPLC has been used to assess the purity and/or determine the content of many pharmaceutical substances (9). It has also been used to determine enantiomeric composition, using suitably modified mobile phases or chiral stationary phases (9).

#### 1.2.1 Injectors

The primary goal for any injection is to introduce the sample into the column. The liquid samples are injected with small glass-syringes whose volume is between  $1-10\mu$ L for capillary columns and  $50\mu$ L for packed columns. Gaseous samples are normally injected with gas-tight glass-syringes with volumes between 1 and 10mL (10). The sample is typically dissolved in the mobile phase before injection into the sample loop. The sample is then drawn into a syringe and injected into the loop via the injection valve. A rotation of the valve rotor closes the valve and opens the loop in order to inject the sample into the stream of the mobile phase. Loop volumes can range between 10  $\mu$ l to over 500  $\mu$ l. In modern HPLC systems, the sample injection is typically automated (11).

### 1.2.2 Chromatographic column

Columns are usually made of polished stainless steel, of about 50 to 300mm long, with internal diameter of between 2 and 5mm and an outside diameter of 6.3mm. They are commonly filled with a stationary phase with a particle size of 5 -  $10\mu$ m (9). The outlet is terminated by a stainless steel mesh disk to retain the packing material. The mesh disk is held in position by the end-fitting with the end of the tubing to the detector flush against the center. This tubing should have an internal diameter of 0.25mm or less and be as short as possible to minimize peak broadening (8). Columns with internal diameters of less than 2 mm are often referred to as microbore columns. Ideally, the temperature of the mobile phase

and the column should be kept constant during an analysis. Most separations are performed at ambient temperature, but columns may be heated to give better efficiency. Normally, columns should not be heated above 60 °C because of the potential for stationary phase degradation or changes occurring to the composition of the mobile phase (9). The most efficient columns produce the sharpest peaks, which give better separation by minimizing band spreading (12).

There are two main classes of column, normal and reversed phase columns. The normal phase columns are most usually packed with silica gel and are used in partition or adsorption chromatography. Reversed phase columns are packed with a chemically bonded octadecylsilyl coated silica; such columns are referred to as C-18 and are very non-polar. This is the most popular column used in HPLC (13).

There are various columns that are secondary to the separating column or stationary phase. They are: Guard, Derivatizing, Capillary, Fast, and Preparatory Columns (14).

#### 1.2.3 Mobile phases

Mobile phase selection is the most important parameter in HPLC hence proper selection of the mobile phase is an important step in the development of separation methods. The main requirement for the mobile phase is that it has to dissolve the analytes up to the concentration suitable for the detection. Type of mobile phase used may have a big effect on the retention (15).

The mobile phase in HPLC refers to the solvent being continuously applied to the column, or stationary phase. The mobile phase acts as a carrier for the sample. A sample solution is

injected into the mobile phase of an assay through the injector port. As a sample solution flows through a column with the mobile phase, the components of that solution migrate according to the non-covalent interactions of the compound with the column. The chemical interactions of the mobile phase and sample, with the column, determine the degree of migration and separation of components contained in the sample. The mobile phase can be altered in order to manipulate the interactions of the sample and the stationary phase (16).

The choice of mobile phases is based on the desired retention behaviour and the physicochemical properties of the analyte. For normal-phase HPLC, using unmodified stationary phases, lipophilic solvents should be employed. The presence of water in the mobile phase must be avoided as this will reduce the efficiency of the stationary phase. In reverse-phase HPLC, aqueous mobile phases, with and without organic modifiers, are used.

The mobile phase should be filtered through suitable membrane-type filters with a porosity of 0.45µm to remove mechanical particles. Adjustment of the pH, if necessary, should be made using the aqueous component of the mobile phase and not the mixture. Buffers of high molarity should be avoided in the preparation of mobile phases. If buffers are used, the system should be rinsed with an adequate mixture of water and the organic modifier of the mobile phase to prevent crystallization of salts. Mobile phases may contain other components, e.g. a counter-ion for ion-pair chromatography or a chiral selector for chiral chromatography using an achiral stationary phase (9).

#### **1.2.4 Pumping system**

Pump refers to the device that forces the mobile phase through a liquid chromatography column at pressures up to 10,000 psi and varies in pressure capacity (17). Their performance is measured on their ability to yield a consistent and reproducible flow rate.

Modern HPLC systems have been improved to work at much higher pressures, and therefore be able to use much smaller particle sizes in the columns that are < 2 micrometres. These "Ultra Performance Liquid Chromatography" systems (UPLCs) can work at up to 15,000 lbf/in<sup>2</sup> (~100 MPa or about 1000 atmospheres) (18). HPLC pumping systems are required to deliver metered amounts of mobile phase at a constant flow rate.

Pumping systems that deliver solvent from one or more reservoirs are available (9). The flow rate through the column is generally between 1 and 3 ml/min, with pressures ranging from 500 to 4000Ib/ in2 (3.4-27.6MPa). The pumps must show minimum fluctuations within these ranges to achieve maximum stability of the detector response and reproducible retention data. The simplest pump consists of the direct application of gas pressure on to the surface of the eluent contained in a pressure bottle or holding coil. Such devices are relatively cheap but have the disadvantage that the pressure limit is low typically 1500Ib/in2, 10.3MPa. The gas dissolved in the eluent may reappear as bubbles in the detector flow-cell, and a change of eluent requires the apparatus to be dismantled, washed and refilled. Commercial HPLC pumps use pistons or diaphragms to displace eluent, hence avoiding problem of dissolved gas (8).

Modern computer- or microprocessor-controlled pumping systems are capable of accurately delivering a mobile phase of either constant (isocratic elution) or varying (gradient elution) composition, according to a defined programme. In the case of gradient elution, solvent mixing can be achieved on either the low or high-pressure side of the pump(s). Depending on the flow rate and composition of the mobile phase, operating pressures of up to 42000kPa (6000 psi) can be generated during routine analysis (9).

#### **1.2.5 Detectors**

A detector is a component in the chromatographic system which senses the presence of a compound passing through it, and provides an electronic signal to a recorder or computer data station. The output is usually peaks known as the chromatogram (12).

It is positioned immediately posterior to the stationary phase in order to detect the compounds as they elute from the column. The bandwidth and height of the peaks may usually be adjusted using the coarse and fine tuning controls, and the detection and sensitivity parameters may also be controlled (19). There are many types of detectors that can be used with HPLC. Some of the more common detectors include: Refractive Index (RI), Ultra-Violet (UV), Fluorescent, Radiochemical, Electrochemical, Near-Infra Red (Near-IR), Mass Spectroscopy (MS), Nuclear Magnetic Resonance (NMR), and Light Scattering (LS) (6).

There are four types of detectors that have found widespread of application; an important factor in the choice of a detector is the amount of peak broadening which occurs as the eluted compounds pass through. This is largely controlled by the volume and geometry of the

detector flow-cell but is also influenced by the connecting tubing between the column and the detector (8).

#### 1.2.6 Stationary phases

Separation of pharmaceuticals is usually achieved by partition of compounds in the test solution between the mobile and the stationary phases. HPLC systems consisting of polar stationary phases and nonpolar mobile phases are described as normal-phase chromatography; those with nonpolar stationary phases and polar mobile phases are called reversed-phase chromatography.

Many types of stationary phases are used including unmodified silica, HPLC alumina, or porous graphite. These are used in normal-phase chromatography, where separation is based on differences in adsorption. A variety of chemically modified supports prepared from polymers, silica, or porous graphite are used in reverse-phase HPLC, where separation is based principally on partition of the molecules between the mobile phase and the stationary phase. Resins or polymers with acid or basic groups are used in ion-exchange chromatography, where separation is based on competition between the ions to be separated and those in the mobile phase. Porous silica or polymers are used in size-exclusion chromatography, where separation is based on the relative molecular mass of the molecules.

Most separations are based on partition mechanisms using chemically modified silica as the stationary phase and polar solvents as the mobile phase (reverse-phase HPLC). The surface of the support, e.g. the silanol groups of silica, is reacted with various silane reagents to

produce covalently bonded silyl derivatives covering a varying number of active sites on the surface of the support. The nature of the bonded phase is an important parameter for determining the separation properties of the chromatographic system (9).

#### **1.2.7 Qualitative and Quantitative analysis**

Analytical instruments such as gas chromatography-mass spectroscopy (GC-MS), atomic absorption spectroscopy (AAS), or HPLC can provide a lot of information about the contents of a sample. They can tell us what is in a mixture and how much is there (20). Determining the identities of components is referred to as qualitative analysis. In qualitative analysis, comparison of retention times of samples with those of authentic samples can be employed in the identification of a compound.

Determining the amounts of these compounds is called quantitative analysis. In quantitative analysis, the HPLC methods are generally more rapid compared to other classical and chromatographic methods (37). All sample analysis instruments have some means of detecting the presence of analytes. Analytes enter a detector and generate an electronic signal called a response. The response can have other names depending on the instrument or the type of signal generated by its detector. Other names include absorbance, intensity, abundance, etc. The data system of the instrument has some way of storing and displaying that response. Usually, the response is displayed on a graph where the x-axis is retention time and the y-axis is a measure of the intensity of the response. In chromatography, this graph is called a chromatogram. During the course of running a sample, the graph is constantly updated to produce a line.

When the run begins, there are no analytes in the detector, the response is zero, and the line produced on the chromatogram is called the baseline. As the analyte enters the detector, the response intensity increases, usually very rapidly. The line on the graph shoots upward until the maximum response occurs. As the analyte is swept out of the detector, the line returns to the baseline until another analyte enters the detector. The chromatogram will show a peak. The size of the peak is proportional to the concentration of the analyte. If we measure the peak, we can evaluate the concentration of the analyte.

There are several measurements used to determine the size of the peak. They include height, width and area. However, height and width are affected by how fast the analyte moves through the detector. An analyte that is moved slowly will produce a short, broad peak. If we speed up the process, the analyte will produce a tall, thin peak. Therefore, the preferred measurement is the area of the peak. We can determine that area by treating the peak like a triangle, and using some geometry and algebra. However, most data systems can determine the area more precisely for us using complex computer algorithms.

Before an analyte can be quantified, the relationship between its peak area and concentration should be known. The simplest method is to determine a response factor. The response factor (RF) is the proportionality constant for the analyte. Each analyte will have a unique RF under given instrumental conditions. Equation 1 shows us that RF is simply the concentration (C) divided by the area (A).

$$RF = C/A$$

If a sample of a known concentration is prepared and analysed, the peak area can be measured and the RF determined. This process is referred to as a calibration. Once the RF for the target analyte is known, the concentration of that analyte in the sample can determined. Concentration is simply

 $C = RF \times A$ 

This method works fairly well provided the concentration in the calibrated standard is close to the concentration in the sample (20).

Drugs that previously required chemical derivatization for GC analysis can now be chromatographed by HPLC without any prior treatment. Also pharmaceuticals in complex matrices may not require a preliminary extraction procedure but be dissolved in a suitable solvent and infected directly into the system. HPLC presents the option of selecting solvents of different polarities and dielectric properties for use as the mobile or carrier phase to effect a greater margin of specificity and resolution in difficult separation problems. The capability of recovering the solute in the eluate on a preparative scale using greatly simplified fraction collectors for purposes of characterization can also be achieved. The major disadvantage is that no universally applicable detector system is yet available. The choice of HPLC for a particular analytical problem depends on the physical and chemical properties of the compounds to be analysed, the nature of sample and detection level required.

HPLC has found extensive usage throughout the whole spectrum of pharmaceutical analysis, from quality control of raw materials and qualitative and quantitative analyses of formulated products to the separation and estimation of the concentration of drugs and their degradation

17

products in body fluids and tissues. The application of HPLC to pharmacokinetics and bioavailability studies of drug products has been made possible by the development of sensitive detectors to monitor column effluent and thereby separate and quantify drugs and their metabolites (37). Ferguson used quantitative HPLC analysis in the separation and determination of caffeine in an analgesic and amitriptyline hydrochloride and perphenazine in phychotherapeutic medication. In another study, quantitative and qualitative HPLC analysis of thermogenic weight loss products was done by Schaneberg and Khan (2004), an HPLC qualitative and quantitative method of seven analytes (caffeine, ephedrine, forskolin, icariin, pseudoephedrine, synephrine, and yohimbine) in thermogenic weight loss preparations available on the market was also developed. After 45 min, the seven analytes were separated and detected in acetonitrile: water (80: 20) extract (40).

#### **1.2.8 Internal standard**

An internal standard is a known amount of a compound, different from analyte that is added to the unknown. Signal from analyte is compared with signal from the internal standard to find out how much analyte is present. Internal standards are especially useful for analyses in which the quantity of sample analysed or the instrument response varies slightly from run to run for reasons that are difficult to control. For example, gas or liquid flow rates that vary by a few percent in a chromatography experiment could change the detector response. A calibration curve is only accurate for the set of conditions under which it is obtained. However, the relative response of the detector to the analyte and standard is usually constant over a wide range of conditions. If signal from the standard increases by 8.4% because of a change in solvent flow rate, signal from the analyte usually increases by 8.4% also. As long as the concentration of standard is known, the correct concentration of analyte can be derived. Internal standards are widely used in chromatography because the small quantity of sample solution injected into the chromatograph is not very reproducible in some experiments. Internal standards are also desirable when sample loss can occur during sample preparation steps prior to analysis. If a known quantity of standard is added to the unknown prior to any manipulations, the ratio of standard to analyte remains constant because the same fraction of each is lost in any operation (21).

### 1.2.8.1 Choice of Internal Standard

Analysts are often reluctant to use internal standards in HPLC as selection of an appropriate standard can cause a significant increase in method development time. This increase results from the additional injections required to establish the elution position of each potential internal standard relative to the other peak(s) in the chromatogram. The migration position of peaks can be more easily predicted in free-solution capillary electrophoresis, as the migration time is related to the size and charge of the compound.

Therefore, to have an internal standard that migrates before a basic analyte of interest at low pH requires one with a smaller molecular weight or higher number of positive charges. The separation of anions at high pH would require an internal standard with larger molecular weight or fewer charges than the analyte to produce a peak that migrates before the solute peak. It is more difficult to predict an internal standard but solubility data can be useful, as a lower water-soluble compound will generally elute later than a more soluble one.

The nature and concentration of the exact substance selected depends on several factors. The main requirement is that the substance gives good peak shape and is resolved from the

analytes of interest and any other peaks in the separation. Other requirements for an appropriate internal standard include stability in solution, commercial availability in a high pure form, ready solubility in the diluent required, possession of acceptably high UV activity at desired wavelength, cheap and is non-toxic.

#### **1.2.8.1.1** Stability

The internal standard should be sufficiently stable in the sample dissolving solvent to prevent the formation of degradation products, which would interfere with the integration results. It should also be chemically stable in the solid state to allow suitable storage (22).

#### 1.2.8.1.2 Internal standard solubility

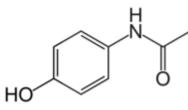
The internal standards should be freely soluble in the sample solvent. If low conductivity sample diluents are used then 'stacking' may result in a 10-fold increase in on-column concentration, which may cause problems of precipitation and/or peak tailing. This problem can also occur for the analyte and should be checked (22).

#### 1.2.8.1.3 Commercial availability

The material selected should be cheap and readily available in a high-purity form from commercial suppliers so that the method can be readily reproduced elsewhere (22).

#### 1.2.8.1.4 Toxicity

The toxicity of the internal standard should be minimal to reduce any handling precautions that may be required. The compound should have a good UV response at the detection wavelength so that a high signal can be obtained to reduce any integration-related variability generated with small peaks. Preferably, the internal standard should have a migration position near to the peak of interest so that if there is a drift in migration times throughout an injection sequence the migration times for both the solute and internal standard peaks will be similar (22).


The best internal standard is an isotopically labeled version of the molecule you want to quantify. An isotopically labeled internal standard will have a similar extraction recovery, ionization response in ESI mass spectrometry, and a similar chromatographic retention time. It may be difficult to justify such a standard since a special synthesis of an isotopically labeled standard can be expensive and time consuming. Often, medicinal chemists have a library of compound analogue that can be used as internal standards. These analogues were made in the evolution of the compound to be tested and will be similar to the compound to be quantified and more importantly will be slightly different by parent mass. The use of demethylated (-14) or hydroxylated (+16) analogues as internal standards are to be avoided since these are the most common mass shifts observed in naturally occuring metabolites of the parent compound. A common internal standard is a chlorinated version of the parent molecule. A chlorinated version of the parent molecule will commonly have a similar chromatographic retention time which is an important characteristic of an internal standard. It has been found that one of the most important characteristics of an internal standard is that it co-elutes with the compound to be quantified (23).

#### 1.2.8.2 How to use an internal standard

First of all an internal standard should be added at the beginning of the sample work-up, typically before the plasma crash or solid phase extraction. The internal standard should be added at the same level in every sample including the standards. An internal standard should

give a reliable HPLC response. Care should be taken that the amount of the internal standard is well above the limit of quantitation but not so high as to suppress the ionization of the analyte. The amount of internal standard added is important but can be accomplished by making trial analyses of an early, middle and late time point with perhaps one or two standard points. This information will be very valuable when building an appropriate standard curve and in knowing how much internal standard to add (24).

#### **1.2.9 Paracetamol**



#### Fig 1.1. Chemical structure of paracetamol (N-(4-hydroxyphenyl) acetamide)

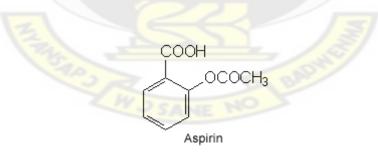
Paracetamol is a white, odourless crystalline powder with a bitter taste, soluble in 70 parts of water, 7 parts of alcohol (95%), 13 parts of acetone, 40 parts of glycerol, 9 parts of propylene glycol, 50 parts of chloroform, or 10 parts of methyl alcohol. It is also soluble in solutions of alkali hydroxides. It is insoluble in benzene and ether. A saturated aqueous solution has a pH of about 6 and is stable but stability decreases in acid or alkaline conditions, the paracetamol being slowly broken down into acetic acid and p-aminophenol.

Initially, paracetamol was found in the urine of patients who had taken phenacetin and in 1889, it was demonstrated that paracetamol was a urinary metabolite of acetanilide. Paracetamol, known as acetaminophen in the United States, is a painkiller that is popular throughout the world because it is remarkably safe and it does not irritate the stomach. It was first discovered to have both analgesic and antipyretic properties in the late nineteenth century (25).

The legal category of paracetamol ranges from prescription only, through pharmacy only to general sales list depending on the quantity and strength of paracetamol supplied in a container or packet. High risk of liver damage can occur if an overdose of paracetamol is taken. The hazards of paracetamol overdose are greater in persistent heavy drinkers and in people with alcoholic liver disease (26).

#### 1.2.10 Caffeine




Fig. 1.2 Chemical structure of caffeine (1,3,7-trimethylpurine-2,6dione)

The Caffeine is an alkaloid of the methylxanthine family, which also includes similar compounds such as theophylline and theobromine. In its pure state, it is an intensely bitter white powder. Its chemical formula is  $C_8H_{10}N_4O_2$ . Pure caffeine occurs as odourless, white, fleecy masses, glistening needles or powder. It is soluble in water (1 gm in 46 mls water) pH 6.9 (1% aqueous solution). The Chinese first discovered the effects of caffeine in the form of medicinal tea about five thousand years ago, for the purpose of staying awake. The active ingredient in coffee and tea was not identified until the nineteenth century and it was not until 1820 that caffeine was truly discovered (27).

Chemically speaking, pure caffeine is a plant-based alkaloid which stimulates the central nervous system of any creature that ingests it. It is also known as guaranine, mateine or theine depending on the source plant. It is considered a psychoactive drug. However, it has not been designated a controlled substance, so its use in teas, coffees and sodas is not illegal (28).

Caffeine is a chemical found in many different plants from all over the world and it is a stimulant. Of all caffeine consumed in the world, 54 % is in coffee, 43 % is in tea and the other 3 % is in other sources, such as cola drinks and medicines. Most of the caffeine in many young people's diets is in cola drinks. It is difficult to say exactly how much is too much caffeine, because individuals will have different reactions and responses to particular foods or substances. Some people seem to be able to tolerate much more caffeine than others. However, 250mg (approximately) will probably cause some mild effects. Most researchers say that 600mg per day is 'safe', however many people have problems from this, and would feel better if they had much less caffeine (29).

1.2.11 Aspirin



#### Fig. 1.3 Chemical structure of aspirin (Acetylsalicylic acid)

Aspirin is an odourless, colourless or a white crystalline powder with a molecular weight of about 180.15g/mol. It also has melting and boiling points of 135°C and 140°C respectively.

Aspirin, one of the first drugs to come into common usage, is still widely used in the world. Aspirin is prepared by chemical synthesis from salicylic acid, by acetylation with acetic anhydride. Aspirin is analgesic, anti-inflammatory, and antipyretic and is an inhibitor of platelet aggregation. It inhibits fatty acid cyclo-oxygenase by acetylation of the active site of enzyme and the pharmacological effects of aspirin are due to the inhibition of the formation of cyclo-oxygenase products including prostglandins, thromboxanes and prostacyclin (30).

The problem with aspirin is that it upsets the user's stomach fairly badly. In fact, some people had bleeding in their digestive tracts from the high doses of aspirin needed to control pain and swelling (31).

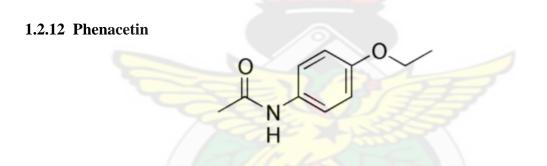
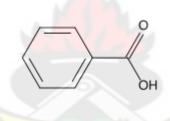




Fig. 1.4. Chemical structure of phenacetin N-(4-ethoxyphenyl)acetamide

Phenacetin, introduced in 1887, is used principally as an analgesic. Typical doses of 300 mg to 500 mg a day result in an analgesic effect. Its analgesic effects are due to its actions on the sensory tracts of the spinal cord. It also is an antipyretic, acting on the brain to decrease the temperature set point. It is also used to treat rheumatoid arthritis, intercostal neuralgia, and some forms of ataxia. In addition, phenacetin has a depressant action on the heart, where it acts as a negative inotrope (32).

Phenacetin, and products containing phenacetin have been shown in an animal model to be carcinogenic. In humans, many case reports have implicated products containing phenacetin in urothelial neoplasms, especially transitional cell carcinoma of the renal pelvis. In one prospective series, phenacetin was associated with an increased risk of death due to urologic or renal diseases, death due to cancers, and death due to cardiovascular diseases. In addition, people that are glucose-6-phosphate dehydrogenase deficient may experience acute hemolysis while taking this drug (33).

#### 1.2.13 Benzoic Acid



#### Fig. 1.5 Chemical structure of Benzoic acid (benzene carboxylic acid)

Benzoic acid, the simplest aromatic carboxylic acid containing carboxyl group bonded directly to benzene ring, is a white, crystalline organic compound; melting at 122 °C, boiling at 249 C; slightly soluble in water, soluble in ethanol, very slightly soluble in benzene and acetone. Its aqua solution is weakly acidic. The name derived from gum benzoin, which was for a long time the only source for benzoic acid. This weak acid and its salts are used as a food preservative. Benzoic acid is an important precursor for the synthesis of many other organic substances. Benzoic acid was discovered in the 16th century, Justus von Liebig and Friedrich Wöhler determined the structure of benzoic acid in 1832 while in 1875 Salkowski discovered the antifungal abilities of benzoic acid, which were used for a long time in the preservation of benzoate containing fruits (34).

Use of benzoic acid in the production of glycol benzoates for the application of plasticizer in adhesive formulations is increasing. It is also used in the manufacture of resins and drilling mud additive for crude oil recovery applications and as a rubber polymerization activators and retardants. Benzoic acid is converted to its salts and esters for the use of preservative application in foods, drugs and personal products. Sodium benzoate, sodium salt of benzoic acid, is used preferably as one of the principal anti-microbial preservatives used in foods and beverages but concentrations exceeding 0.1% is poisonous, as it is about 200 times more soluble than benzoic acid. Sodium Benzoate is also used in medications, anti-fermentation additives and tabletting lubricant for pharmaceuticals (35).

Benzoic acid is present as part of hippuric acid (N-Benzoylglycine) in urine of mammals, especially herbivores. Humans produce about 0.44 g/L hippuric acid per day in their urine, and if the person is exposed to toluene or benzoic acid it can rise above that level. For humans the intercellular perfusions of cell (IPC) suggest a provisional tolerable intake of 5 mg/kg body weight per day and a lethal dose for humans is 500 mg/kg (46).



#### **CHAPTER TWO**

#### 2.1 EXPERIMENTAL METHODS, MATERIALS AND REAGENTS.

#### 2.1.1 Materials/ Reagents

Pure paracetamol (BDH), phenacetin (BDH), aspirin (BDH), benzoic acid (BDH), methanol (BDH), glacial acetic acid (BDH), acetic anhydride (BDH), toluene (BDH), sodium hydroxide(BDH), hydrochloric acid (BDH), ethanol (BDH), sulphuric acid (BDH), ammonium cerium (IV) sulphate and perchloric acid were provided by the Department of Pharmaceutical Chemistry, KNUST Kumasi, Ghana. Paracetamol tablets manufactured by Letap Pharmaceuticals, Kinapharma Ltd, Enerst Chemist, M&G Pharmaceuticals, Phyto Riker Ltd, Dannex, Eskay Therapeutics, Ayrton Drugs and G&R Pharmaceuticals were bought from retail pharmacies at Adum, Kumasi.

#### 2.1.2 Instrumentation

The component of the liquid chromatograph include; Zobax ODS column (4.6mm x 25cm), a pump (spectra system P4000), an auto sampler (spectra system AS3000) a detector (spectra system UV1000 and integrator (Dell Pentium IV with chromoquest software).

| Paracetamol sample | Manufacturing Company     | Batch number | Expiry date |
|--------------------|---------------------------|--------------|-------------|
| LP                 | Letap Pharmaceutical Ltd  | 6002116      | 01/08       |
| KP                 | Kinapharma Ltd            | 035          | 08/09       |
| EC                 | Ernest Chemist Ltd        | **           | **          |
| MG                 | M & G Pharmaceuticals Ltd | PA393H       | 09/08       |
| PR                 | Phyto Riker, Ltd.         | F03013       | 02/07       |
| DN                 | Dannex                    | **           | **          |
| ET                 | Eskay Therapeutics Ltd    | 75           | 07/08       |
| AD                 | Ayrton Drugs              | 11           | 01/09       |
| GR                 | G & R Pharmaceuticals Ltd | 13           | 01/08       |

Table 2.1. Profile of Paracetamol samples (500mg)

\*\* Information was not available

#### 2.1.3 Preparation of solutions

#### 2.1.3.1. Preparation of 0.5M Sulphamic acid

Sulphamic acid (4.4527g) was weighed into a beaker. Distilled water (40ml) was added and stirred with a clean rod to dissolve. It was transferred quantitatively into a clean dried 100 ml volumetric flask using a funnel. The beaker was rinsed with small amount of distilled water till the solution was made to volume. The funnel was then removed and the flask was stoppered, the solution was then labeled and dated.

#### 2.1.3.2. Preparation of 0.5 M sodium hydroxide

Sodium hydroxide (10.160 g) was weighed directly in a beaker, fast and carefully because it easily reacts with moisture in the atmosphere. Distilled water (200 ml) was poured into the beaker to dissolve it, the reaction is exothermic. The solution was stirred with a clean dried glass rod to ensure total dissolution. The solution was made to cool and quantitatively transferred into the 500ml volumetric flask using a cleaned and dried funnel. This was done to avoid expansion and contraction of the flask which can change the volume of the calibrated volumetric flask. The beaker was rinsed with distilled water and transferred into the flask. This was repeated two times to make sure everything was transferred into the flask. The funnel was also rinsed into the flask, and then it was removed. The solution was stoppered and shaken to ensure proper mixing. The solution was then topped to the mark carefully with a pipette. The solution was stoppered, gently shaken, labeled and dated. Aliquots were taken for the titrations.

#### 2.1.3.3. Preparation of 0.5 M hydrochloric acid

Small quantity of the stock HCl was carefully poured into a small clean and dried beaker to rinse it. Another quantity was carefully poured into the beaker again which was around the volume needed to avoid the contamination of the stock by pouring the rest into it. A dried clean 250ml volumetric flask was filled to about half its capacity with distilled water. The HCl (10ml) was pipetted from the beaker carefully using pipette filler. The acid was carefully released into the flask containing the distilled water by the wall of the flask. The solution was stoppered and shaken to ensure proper mixing. The solution was topped to the mark using a pipette. The solution was stoppered, shaken, labeled and dated. Aliquots of the solution were taken for the titrations.

#### 2.1.3.4. Preparation of 0.1M Perchloric Acid

Glacial acetic acid (900 ml) was measured into a 1L volumetric flask. Perchloric acid (10.2 ml of 60%) was slowly added with continuous and efficient mixing. The perchloric acid was well diluted with the glacial acetic acid before the addition of 30 ml acetic anhydride. This was done to prevent the danger of forming acetyl perchlorate. The addition was made slowly

with continuous and efficient mixing. The volume was adjusted to 1 L with glacial acetic acid. The solution was allowed to stand for 24 hrs before it was used. The acetic anhydride used was to react with any molecules of water in the perchloric acid and glacial acetic acid to make the solution virtually anhydrous.

#### 2.1.3.5. Preparation of solution of surrogate reference standards

Exactly 0.1000 g of the pure paracetamol, caffeine, aspirin, benzoic acid and phenacetin powders were weighed accurately into separate 100 ml clean volumetric flask. To each of the flask, a small amount of the diluent was added and shaken manually to aid dissolution. It was topped to the mark using the diluent and then filtered with a Whatmann's filter paper. The resultant solution was stored in a volumetric flask and labeled.

#### **2.1.3.6.** Assay preparation (paracetamol tablet sample solution)

A quantity of the powder equivalent to 0.1g of paracetamol was weighed into a 100 ml volumetric flask. A small amount of the diluent was added to the powder and shaken to dissolve. The volume was made to the mark by using the diluent and then filtered. One milliliter (1 ml) of the resultant solution was pipetted into another clean 100 ml volumetric flask and made to the mark using the diluent.

| Sample | Weight equivalent |
|--------|-------------------|
| LP     | 0.1180            |
| KP     | 0.1100            |
| EC     | 0.1123            |
| MG     | 0.1153            |
| PR     | 0.1108            |
| DN     | 0.1082            |
| ET     | 0.1225            |
| AD     | 0.1222            |
| GR     | 0.1194            |

Table 2.2 Weight of sample equivalent to 0.1 g of pure paracetamol

#### **2.1.4 Standardisation of solutions**

### 2.1.4.1. Standardisation of 0.1M ammonium cerium (IV) sulphate

An amount of ammonium cerium (IV) sulphate (65.0002g) was dissolved in a mixture of 30 ml  $H_2SO_4$  and 500 ml of water. This was allowed to cool and diluted to 1000 ml with water. To 25 ml of the resulting solution, 2.0000g of potassium iodide and 150 ml of water was added. This was immediately titrated with 0.1 M sodium thiosulphate vs using starch as indicator. Each ml of sodium thiosulphate is equivalent to 63.26 mg.

#### 2.1.4.2. Standardisation of (0.1 M) perchloric acid

Potassium hydrogen phthalate was used in the standardization of the perchloric acid. Potassium hydrogen phthalate (0.5064 g) was weighed into a cornical flask. Glacial acetic acid (25 ml) was pipetted into the cornical flask. The solution was warmed to dissolve the salt. The solution was allowed to cool and two drops of crystal violet were added to it. The resulting solution was then titrated potentiometrically with the 0.1M perchloric acid.

#### 2.1.5 Assay of pure standards

#### 2.1.5.1 Aspirin

One gram (1.0000 g) of Aspirin was dissolved in 10 ml of ethanol (96%), 50 ml of 0.5 M sodium hydroxide Vs was added. The flask was stoppered and allowed to stand for 1 hour. Dilute phenolphthalein solution (0.2 ml) was added to it and titrated with previously standardised 0.5 M HCl. The operation was repeated without the substance being examined. The difference between the titrations represents the amount of sodium hydroxide required. Each ml of 0.5 M sodium hydroxide Vs is equivalent to 0.0450 g of  $C_9H_8O_4$  (42).

#### 2.1.5.2 Benzoic acid

Benzoic acid (2.5000g) was dissolved in 15 ml of warm alcohol (95%) previously neutralized with phenolphthalein solution, 20 ml of water was added and titrated with 0.5 M sodium hydroxide using phenolphthalein solution as indicator. Each ml of 0.5 M sodium hydroxide is equivalent to 0.061006 g of  $C_7H_6O_2$  (41).

#### 2.1.5.3 Caffeine

Caffeine (0.1700 g) was dissolved in 5 ml of anhydrous glacial acetic acid with the aid of heat. It was allowed to cool, and 10 ml of acetic anhydride and 20 ml of toluene were added to it. A non-aqueous titration was carried out. Each ml of 0.1 M perchloric acid Vs is equivalent to 0.01942 g of  $C_8H_{10}N_4O_2$  (42).

#### 2.1.5.4 Paracetamol

Paracetamol (0.3000 g) was dissolve in a mixture of 10 ml of water and 30 ml of 1 M sulphuric acid. It was boiled under reflux for one hour, cooled and diluted to 100 ml with water. To 20 ml of the solution, 40 ml of water, 40 g of ice, 15 ml of 2 M hydrochloric acid, and 0.1 ml of ferroin sulphate solution were added and titrated with 0.1 M ammonium cerium (IV) sulphate Vs until a yellow colour was obtained. The procedure was repeated without the substance being examined. Each ml of 0.1 M ammonium cerium (IV) sulphate Vs is equivalent to 0.007560 g of  $C_8H_9NO_2$  (43).

#### 2.1.5.5 Phenacetin

Phenacetin (0.3000g) was dissolved in a mixture of 10ml of water and 30ml of 1M sulphuric acid. It was boiled under reflux for one hour, cooled and diluted to 100 ml with water. To 20 ml of the solution, 40 ml of water, 40 g of ice, 15 ml of 2 M hydrochloric acid and 0.1 ml of ferroin sulphate were added and titrated with 0.1 M ammonium cerium (IV) sulphate Vs until a yellow colour was obtained. The procedure was repeated without the substance being examined. Each ml of 0.1 M ammonium cerium (IV) sulphate Vs is equivalent to 0.008761 g of  $C_{10}H_{13}NO_2$  (43).

#### 2.1.6 HPLC Method development

#### 2.1.6.1 Development of mobile phase and diluent

From the literature searched on the physico-chemical properties such as solubility, stability in solution of paracetamol and the other selected surrogate references advantage was taken of these properties to try a number of mobile phase combinations which involved methanol and water. The ionic strength and pH of the mobile phase was modified with glacial acetic acid.

All the selected surrogate references dissolved in methanol and water in the ratio 1:1. This was chosen as the diluent. Another mobile phase tried was methanol, water and acetic acid mixture in the ratio 28: 69:3, this gave poor retention times and tailing peaks. Methanol and 2.5 % glacial acetic acid in the ratio of 2:3 was used as the mobile phase for the analysis. Since the volume of mixtures do not usually equal the sum of the separate volumes making up the mixture as a result of differences in density and volume, the mobile phase and diluent used were separately measured. These were mixed together filtered with filter paper. The resultant solution was stored in a conical flask and labeled.

#### 2.1.6.2 Limit of Detection (LOD) and Limit of Quantitation (LOQ)

A stock solution of 0.1% w/v of all the surrogate standards were prepared and serially diluted to different concentrations. Ten micro-litres (10  $\mu$ l) of the resultant solution was injected onto the column and eluted isocratically. Chromatograms were recorded and peak areas measured electronically. This was to help determine the LODs and LOQs so as to choose a good concentration for analytical work, using the formula given below

LOD = 3 x s/n

LOQ = 10 x s/n

Where s is the standard deviation of concentrations

n is the number of sample

#### 2.1.6.3 Analytical performance parameters (reproducibility, accuracy and precision)

Five milliliters (5 ml) of the 0.005% w/v pure paracetamol solution (analyte) was pipetted into a 10 ml clean volumetric flask. An aliquot of the 0.2% w/v caffeine solution (0.20 ml) (internal standard) was added. It was mixed and made to the mark using the diluent. Ten

micro-litres (10  $\mu$ l) of the resultant solution was injected onto the column and eluted isocratically. Chromatograms were recorded and peak areas measured electronically. There were ten replicate determinations for each concentration. The whole process was repeated using paracetamol tablets so as to determine its percentage content.

#### 2.1.6.4 Determination of K using the surrogate reference standards.

Five milliliters (5 ml) of the 0.004% w/v paracetamol solution (analyte) was pipetted into a 10 ml clean volumetric flask. An aliquot of the 0.2% w/v caffeine solution (0.20 ml) (internal standard) and 1 ml of the 0.1% w/v aspirin solution (as standard) were added. It was mixed and made to the mark using the diluent. Ten micro-litres (10 µl) of the resultant solution was injected onto the column and eluted isocratically. Chromatograms were recorded and peak areas measured electronically. The constant K was determined. The concentration of the paracetamol was varied to determine whether these variations would affect the constant K. There was ten replicate determinations for each concentration. The whole process was repeated using benzoic acid (0.6 ml of 0.06% w/v) and phenacetin (5ml of 0.005% w/v) sequentially in place of aspirin. Effort of variations in concentration of paracetamol on K was investigated in each case.

#### 2.1.6.5 Analysis of paracetamol tablets using the surrogate reference standards

Five milliliters (5 ml) of the paracetamol tablet sample solution (analyte) was pipetted into a clean 10 ml volumetric flask. An aliquot (0.2 ml) of the caffeine solution (internal standard) and 1ml of aspirin (as standard) were added. It was mixed and made to the mark using the diluent. Ten microlitres (10 ul) of the resultant solution was injected onto the column and

eluted; the major peaks, corresponding to paracetamol, caffeine and aspirin were measured and recorded. There were ten replicate determinations for each concentration. The whole process was repeated using benzoic acid (0.6 ml of 0.06% w/v) and phenacetin (5ml of 0.005% w/v) sequentially in place of aspirin. Effort of variations in concentration of paracetamol on K was investigated in each case. The concentration of the analyte was determined by making use of the constant earlier on elucidated.

#### **2.1.7 Standard method (USP method)**

#### 2.1.7.1 Standard preparation

An accurately weighed quantity (0.1002 g) of USP acetaminophen RS was dissolved in the mobile phase to obtain a solution having a known concentration of about 0.01 w/v.

#### 2.1.7.2 Preparation of mobile phase

Methanol and water were measured separately in the ratio of 1:1, mixed together and filtered before it was used for analysis.

#### 2.1.7.3 Assay preparation

Twenty tablets were weighed and finely powdered. An accurately weighed portion of the powder equivalent to about 100 mg of acetaminophen was transferred into a 200 ml volumetric flask; and 100 ml of mobile phase was added. It was mechanically shacken (Orbital shaker, Stuart SO1, speed 200) for 10 minutes and diluted with mobile phase to volume and mixed. Five milliliters (5 ml) of the solution was transferred into a 250 ml volumetric flask and diluted with mobile phase to volume and mixed. A portion of the solution was filtered through a finer porosity filter discarding the first 10ml of the filtrate. The clear filtrate was used as the assay preparation.

#### **2.1.7.4 Procedure for preparation**

Equal volumes (10 ul) of the standard preparation and assay preparation were separately injected into the chromatograph. The chromatograms were recorded and the response for the major peaks was measured. The quantity in mg of acetaminophen in the portion of tablets taken was calculated by the formula 10,000 C (ru/rs) in which C is the concentration in mg/ml of USP acetaminophen RS in the standard preparation and ru and rs are the acetaminophen peak response obtained from the assay preparation and the standard preparation respectively (44). This was repeated three times.

#### 2.1.8 Standard method (BP)

Twenty tablets each of the nine paracetamol brands were weighed and powdered. A quantity of the powder containing 0.15 g was added to 50 ml of 0.1 M sodium hydroxide. It was diluted to 100 ml with water, hand-shaken for 15 minutes and sufficient distilled water was added to produce 200 ml of solution. The resulting solution was filtered and 10 ml of the filtrate was diluted to 100 ml with water. Ten milliliters (10 ml) of the resulting solution was added to 10 ml of 0.1 M sodium hydroxide and diluted to 100 ml with water. The absorbance of the resulting solution was then measured at 257 nm using a double beam UV spectrophotometer 5000i (curry) with a glass cuvette of path length 1 cm. A 0.1 M solution of sodium hydroxide was prepared and used as the reference solution (45). 715, which is the A(1 %, 1 cm) for paracetamol was used for the calculation. This was repeated three times.

| Sample | Weight equivalent |
|--------|-------------------|
| LP     | 0.1782            |
| KP     | 0.1650            |
| EC     | 0.1689            |
| MG     | 0.1729            |
| PR     | 0.1663            |
| DN     | 0.1623            |
| ET     | 0.1838            |
| AD     | 0.1840            |
| GR     | 0.1716            |
|        |                   |

 Table 2.3 Weight of sample equivalent to 0.15 g of pure paracetamol



# **CHAPTER THREE**

# **3.1 RESULTS AND CALCULATIONS**

| Surrogate reference powders | Melting range <sup>o</sup> C | BP range ° C |
|-----------------------------|------------------------------|--------------|
| Aspirin                     | 140-142                      | about143     |
| Benzoic acid                | 122-124                      | 121-124      |
| Caffeine                    | 233-235                      | 234-239      |
| Paracetamol                 | 168-170                      | 168-172      |
| Phenacetin                  | 133-136                      | 134-136      |

# Table 3.1 melting range of the surrogate reference powders

# Table 3.2 Percentage deviation of tablets; sample AD

| Number | individual weight(g) | Deviation           | *% deviation |
|--------|----------------------|---------------------|--------------|
| 1      | 0.6150               | -0.0017             | -0.2772      |
| 2      | 0.6064               | 0.0069              | 1.1251       |
| 3      | 0.6067               | 0.0066              | 1.0761       |
| 4      | 0.6012               | 0.0121              | 1.9729       |
| 5      | 0.6391               | -0.0258             | -4.2067      |
| 6      | 0.5925               | 0.0208              | 3.3915       |
| 7      | 0.6132               | $1 \times 10^{-04}$ | 0.0163       |
| 8      | 0.6439               | -0.0306             | -4.9894      |
| 9      | 0.6228               | -0.0095             | -1.5490      |
| 10     | 0.6226               | -0.0093             | -1.5164      |
| 11     | 0.6120               | 0.0013              | 0.2120       |
| 12     | 0.5777               | 0.0356              | 5.8047       |
| 13     | 0.6201               | -0.0068             | -1.1088      |
| 14     | 0.6172               | -0.0039             | -0.6359      |
| 15     | 0.5803               | 0.0330              | 5.3807       |
| 16     | 0.6249               | -0.0116             | -1.8914      |
| 17     | 0.6157               | -0.0024             | -0.3913      |
| 18     | 0.5656               | 0.0477              | 7.7776       |
| 19     | 0.6205               | -0.0072             | -1.1740      |
| 20     | 0.6289               | -0.0156             | -2.5436      |

\* % Deviation =  $\underline{\text{Deviation}} \times 100$ 

Average

Average wt = 0.6133g

| Burette readings/ml | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination |
|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Final reading       | 21.00                         | 21.00                         | 21.00                         |
| Initial reading     | 0.00                          | 0.00                          | 0.00                          |
| Titre volume        | 21.00                         | 21.00                         | 21.00                         |

KNUST

# Table 3.3 Standardization of 0.5 M NaOH with sulphamic acid.

Mean titre =  $21.00 \pm 0.000$  ml

# Table 3.4 Assay of Aspirin powder.

| Burette readings/ml | 1 <sup>st</sup> determination<br>(1.0028 g) | 2 <sup>nd</sup> determination<br>(1.0020 g) | 3 <sup>rd</sup> determination<br>(0.9999 g) |
|---------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|
| Final reading       | 26.20                                       | 25.40                                       | 25.40                                       |
| Initial reading     | 0.00                                        | 0.00                                        | 0.00                                        |
| Titre volume        | 26.20                                       | 25.40                                       | 25.40                                       |

# Table 3.5 Blank titration (assay of aspirin)

| Burette readings/ml | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination |
|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Final reading       | 48.60                         | 48.60                         | 48.60                         |
| Initial reading     | 0.00                          | 0.00                          | 0.00                          |
| Titre volume        | <mark>48</mark> .60           | 48.60                         | 48.60                         |

# Table 3.6 Assay of benzoic acid powder

| Burette readings/ml | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination |
|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Final reading       | 43.80                         | 43.50                         | 43.30                         |
| Initial reading     | 0.00                          | 0.00                          | 0.00                          |
| Titre volume        | 43.80                         | 43.50                         | 43.30                         |

| Table 3.7 | ' Assay | of | paracetamol | powder |
|-----------|---------|----|-------------|--------|
|-----------|---------|----|-------------|--------|

| Burette readings/ml | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination |
|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Final reading       | 7.90                          | 7.90                          | 7.90                          |
| Initial reading     | 0.00                          | 0.00                          | 0.00                          |
| Titre volume        | 7.90                          | 7.90                          | 7.90                          |

# Average titre = $\frac{7.90 + 7.90 + 7.90}{3}$ = 7.90 ml

# Table 3.8 Assay of phenacetin powder

| Burette readings/ml | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination |
|---------------------|-------------------------------|-------------------------------|-------------------------------|
| Final reading       | 6.80                          | 6.80                          | 6.80                          |
| Initial reading     | 0.00                          | 0.00                          | 0.00                          |
| Titre volume        | 6.80                          | 6.80                          | 6.80                          |

Average titre =  $6.80 \pm 0.000$  ml

# Table 3.9 Assay of caffeine

| Burette readings/ml | 1 <sup>st</sup> determination<br>(0.1758 g) | 2 <sup>nd</sup> determination<br>(0.1762 g) |
|---------------------|---------------------------------------------|---------------------------------------------|
| Final reading       | 9.20                                        | 9.35                                        |
| Initial reading     | 0.00                                        | 0.00                                        |
| Titre volume        | 9.20                                        | 9.35                                        |
|                     |                                             |                                             |

# 3.2 Calculation of percentage purity of aspirin

Factor for sulphamic acid  $(H_2SO_3H) = actual wt$ Nominal wt

$$= \frac{4.4527g}{4.4545g} = 0.9996$$

Factor for NaOH =  $\frac{\text{factor of } H_2 \text{SO}_3 \text{H x volume of } H_2 \text{SO}_3 \text{H}}{\text{Volume of NaOH}}$ 

 $= \frac{0.9996 \text{ x } 20.00 \text{ ml}}{21.00 \text{ ml}}$ = 0.952

Factor for  $HCl = \frac{factor of NaOH x volume of NaOH}{Volume of HCl}$ 

 $= \frac{0.952 \text{ x } 20.00 \text{ ml}}{20.10 \text{ ml}}$ = 0.9473

#### 3.2.1 Sample A

Weight of sample A = 1.0028 g

Volume of HCl equivalent to NaOH that reacted with Aspirin:

= (48.60 - 26.20) ml= 22.40 ml

Actual volume of HCl = equivalent volume x factor of HCl

= 22.40 ml x 0.9473

= 21.21 ml

But 1ml of NaOH  $\equiv$  0.04504 g of aspirin (42)

Thus 21.21ml = 21.21 x 0.04504 g = 0.9553 g

Percentage purity of Aspirin =  $\frac{\text{Actual wt x}}{\text{Nominal wt}}$ 

= <u>0.9553 g</u> x 100 1.00280 g

= 95.26 %

#### 3.2.2 Sample B

Weight of sample B = 1.0020 g

Volume of HCl equivalent to NaOH that reacted with Aspirin:

$$= (48.60 - 25.40) \text{ ml}$$
  
= 23.2 ml

Actual volume of HCl = 23.2 ml x 0.9473 = 21.98 ml But 1ml of NaOH = 0.04504 g of aspirin Thus 21.98 ml = 21.98 x 0.04504 = 0.9900 g Percentage purity Aspirin = 0.9900 g x 100 1.0020 g =98.80 %

3.2.3 Sample C

Weight of sample C = 0.9999 g

Volume of HCl equivalent to NaOH that reacted with Aspirin:

= (48.60 - 25.40) ml = 23.2 ml

Actual volume of  $HCl = 23.2 \times 0.9473 = 21.98 \text{ ml}$ 

But 1 ml of NaOH  $\equiv$  0.04504 g of aspirin

Thus 21.98 ml  $\equiv$  21.98 x 0.04504 g = 0.9900 g

Percentage purity of Aspirin =  $\frac{0.9900}{0.9999}$  x 100

= 99.01 %

3

Average percentage purity = 95.26 + 98.80 + 99.01

= 97.69 ± 2.11 %

#### 3.3 Calculation of percentage purity benzoic Acid

Factor for sulphamic acid = 0.9996

Factor for NaOH =  $\frac{\text{factor of } H_2 \text{SO}_3 \text{H x volume of } H_2 \text{SO}_3 \text{H}}{\text{Volume of NaOH}}$ 

 $= \frac{0.9996 \text{ x } 20.00 \text{ ml}}{21.00 \text{ ml}}$ 

= 0.952

3.3.1 Sample A

Weight of sample A = 2.5104 g

Volume of NaOH that reacted with Benzoic Acid = 43.80 ml

Actual volume of NaOH = equivalent volume x factor of NaOH

But 1 ml of NaOH  $\equiv$  0.06106 g benzoic acid (41)

Thus  $41.6976 \text{ ml} \equiv 41.6976 \text{ x} 0.06106 \text{ g}$ 

= 2.5461 g

Percentage purity of Benzoic Acid =  $\frac{\text{Actual wt x}}{\text{Nominal wt}}$  100

$$= \frac{2.5461 \text{ g x } 100}{2.5104 \text{ g}}$$
$$= 101.42 \%$$

#### 3.3.2 Sample B

Weight of sample B = 2.5028 g

Volume of NaOH that reacted with Benzoic Acid = 43.50 ml

Actual volume of NaOH = equivalent volume x factor of NaOH

= 43.50 ml x 0.952= 41.412 ml

But 1 ml of NaOH  $\equiv 0.06106$  g benzoic acid

Thus 41.412 ml  $\equiv$  41.412 x 0.06106 g

= 2.5286 g

Percentage purity of Benzoic Acid =  $\frac{2.5286 \text{ g} \times 100}{2.5028 \text{ g}}$ 

= 101.03%

#### 3.3.3 Sample C

Weight of sample C = 2.5009 g

Volume of NaOH that reacted with Benzoic Acid = 43.30 ml

Actual volume of NaOH = equivalent volume x factor of NaOH

= 43.30 ml x 0.952

= 41.2216 ml

But 1 ml of NaOH  $\equiv$  0.06106 g benzoic acid

Thus  $41.6976 \text{ ml} \equiv 41.2216 \text{ x} 0.06106 \text{ g}$ 

= 2.5170 g

Percentage purity of Benzoic Acid ==  $\frac{2.5170}{2.5009}$  g x 100

= 100.64 %

Average Percentage purity of Benzoic Acid = 101.42 + 101.03 + 100.64

 $= 101.03 \% \pm 0.39$ 

3

#### 3.4 Calculation of percentage purity paracetamol powder

Factor for ammonium cerium (IV) sulphate  $(2(NH_4)_2SO_4Ce(SO_4)_2.2H_2O) = 1.0056$ 

Weight of sample = 0.3019 g

Volume of  $2(NH_4)_2SO_4Ce(SO_4)_2.2H_2O$  that reacted with paracetamol = 7.90 ml

But 20ml of  $2(NH_4)_2SO_4Ce(SO_4)_2.2H_2O \equiv 7.90$  ml

Therefore 100 ml  $= \frac{100}{20} \times 7.90$ 

= 39.5 ml

Actual volume of  $2(NH_4)_2SO_4$ . Ce $(SO_4)_2.2H_2O =$ 

Equivalent volume x factor of 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>Ce(SO<sub>4</sub>)<sub>2</sub>.2H<sub>2</sub>O

= 39.5 ml x 1.0056

But 1 ml of  $2(NH_4)_2SO_4Ce(SO_4)_2.2H_2O \equiv 0.007560$  g of paracetamol (43)

Thus  $39.7212 \text{ ml} \equiv 39.7212 \text{ ml} \ge 0.007560 \text{ g} = 0.3003 \text{ g}$ 

Percentage purity of paracetamol =  $\frac{\text{actual wt. x 100}}{\text{nominal wt.}}$ =  $\frac{0.3003}{0.3019}$  g x 100 = 99.47 %

#### 3.5 Calculation of percentage purity phenacetin powder

Weight of sample (phenacetin) = 0.3002 g

Volume of  $2(NH_4)_2SO_4Ce(SO_4)_2.2H_2O$  that reacted with phenacetin = 6.80 ml

But 20 ml of  $2(NH_4)_2SO_4$ . Ce $(SO_4)_2.2H_2O = 6.80$  ml

Therefore 100 ml =  $\frac{100}{20}$  x 6.80 = 34.00 ml

Actual volume of  $2(NH_4)_2SO_4$ . Ce $(SO_4)_2.2H_2O =$ 

Equivalent volume x factor of 2(NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>Ce(SO<sub>4</sub>)<sub>2</sub>.2H<sub>2</sub>O

= 34.00 ml x 1.0056

= 34.1904 ml

But 1 ml of  $2(NH_4)_2SO_4$ . Ce $(SO_4)_2$ .  $2H_2O \equiv 0.008761$  g of phenacetin

Thus  $34.1904 \text{ ml} \equiv 34.1904 \text{ ml} \ge 0.008761 \text{ g}$ 

= 0.2995 g

Percentage purity of phenacetin =  $\frac{\text{actual wt. x 100}}{\text{nominal wt.}}$ 

$$= \frac{0.2995}{0.3002} \text{ g x 100}$$
$$= 99.77 \%$$

#### 3.6 Calculation of percentage purity caffeine

Factor for Potassium hydrogen phthalate (KHP) =  $\frac{actual wt}{Nominal wt}$ .

$$= \frac{0.5064}{0.5000}$$
 g  
= 1.0128

Factor for perchloric acid (HClO<sup>4-</sup>);  $F_1V_1 = F_2V_2$ 

Therefore  $F_2 = \frac{F_1 V_1}{V_2}$ 

Where  $F_1$  is the factor for KHP

 $F_2$  is the factor for HClO<sub>4</sub>

V<sub>1</sub> is the pipetted volume

V<sub>2</sub> is the titre volume

Therefore  $F_2 = \frac{1.0128 \times 25 \text{ ml}}{25.15 \text{ ml}}$ 

= 1.0068

#### 3.6.1 Sample A

Sample A mass = 0.1758 g

Titre value = 9.20 ml

Actual titre value = titre value x factor for  $HClO_4^{-1}$ 

= 9.20 x 1.0068

= 9.26 ml

1 ml HClO<sub>4</sub><sup>-</sup> = 0.01942 g of caffeine (42)

Therefore ml =  $\frac{9.26}{1}$  ml x 0.01942 g 1 ml = 0.1798 g % content =  $\frac{\text{actual wt}}{\text{nominal wt}}$  x 100  $\frac{0.1798}{0.1758}$  g x 100 0.1758 g = 102.29 %

# 3.6.2 Sample B

Sample B mass = 0.1762 g

Titre value = 9.35 ml

Actual titre value = titre value x factor for  $HClO_4^-$ 

= 9.35 x 1.0068

= 9.41 ml

1 ml HClO<sub>4</sub><sup>-</sup>  $\equiv$  0.01942 g of caffeine

Therefore 9.41 ml  $\equiv \underline{9.41}$  ml x 0.01942 g 1 ml = 0.1828g % content = actual wt x 100

nominal wt

 $= \frac{0.1828}{0.1762} g \times 100$ = 103.75 %

Average % content =  $\frac{102.29 + 103.75}{2}$  = 103.02 % ± 1.03

| Pure sample  | Calculated      | BP percentage              | Comment |
|--------------|-----------------|----------------------------|---------|
|              | percentages (%) | (%)                        |         |
| Aspirin      | 97.69           | 99.5 - 101.0               | Failed  |
| Benzoic acid | 101.03          | Not less than 95           | Passed  |
| Caffeine     | 103.02          | <mark>98.5 – 1</mark> 01.5 | Failed  |
| Paracetamol  | 99.47           | 99.5 - 101.0               | Passed  |
| Phenacetin   | 99.77           | 99.5 - 101.0               | Passed  |

| Table 3.10 Comparison of percentages purities of sample to BP reference r |
|---------------------------------------------------------------------------|
|---------------------------------------------------------------------------|

| Pure powders | Limit of detection (w/v) | Limit of quantification (w/v) |  |
|--------------|--------------------------|-------------------------------|--|
| Aspirin      | 0.007                    | 0.02                          |  |
| Benzoic acid | 0.001                    | 0.004                         |  |
| Caffeine     | 0.0006                   | 0.002                         |  |
| Paracetamol  | 0.0004                   | 0.001                         |  |
| Phenacetin   | 0.0001                   | 0.0004                        |  |
|              | K VIII C                 | T                             |  |
|              |                          |                               |  |

#### Table 3.11 Limit of detection and quantification of the pure standards.

3.7 Calculation of limit of detection (LOD) and limit of quantitation (LOQ)

LOD = 3 x s/n

$$LOQ = 10 x s/n$$

Where s is the standard deviation of concentrations

n is the number of sample

eg. aspirin the concentrations (% w/v) were: 0.00005, 0.0005, 0.001, 0.005, 0.01 – 0.06

n = 10 and s = 0.022203

Therefore LOD =  $3 \times 0.022203$ 

= 0.006661

$$LOQ = 10 \times \frac{0.022203}{10} = 0.022203$$

10

## **3.8** Chromatographic conditions

Wave length: 257 nm

Flow rate: 1ml/min

Column: Zobax C-18 column

Detector: UV detector

| Pure sample  | Mean Retention time (minutes) |
|--------------|-------------------------------|
| Aspirin      | $8.05\pm0.028$                |
| Benzoic acid | $11.73 \pm 0.054$             |
| Caffeine     | $4.72\pm0.019$                |
| Paracetamol  | $3.02\pm0.012$                |
| Phenacetin   | $11.11 \pm 0.060$             |
|              | KNUST                         |

 Table 3.12 Mean Retention time of the pure samples (n=10).

| ble 3.13 Analytical performance parameters (assay of paracetamol tablet) |                 |                  |             |  |
|--------------------------------------------------------------------------|-----------------|------------------|-------------|--|
| Replicates                                                               | Aspirin         | Benzoic acid     | Phenacetin  |  |
| 1                                                                        | 94.0            | 110.0            | 97.5        |  |
| 2                                                                        | 95.7            | 114.8            | 96.3        |  |
| 3                                                                        | 96.0            | 110.8            | 101.7       |  |
| 4                                                                        | 95.5            | 110.3            | 98.0        |  |
| 5                                                                        | 95.1            | 114.6            | 98.8        |  |
| 6                                                                        | 93.4            | 114.0            | 97.9        |  |
| 7                                                                        | 103.6           | 114.5            | 97.1        |  |
| 8                                                                        | 96.6            | 113.2            | 97.2        |  |
| 9                                                                        | 93.9            | 115.6            | 98.8        |  |
| 10 🥪                                                                     | 94.4            | 110.2            | 98.8        |  |
| Mean                                                                     | $95.8 \pm 2.93$ | $112.8 \pm 2.21$ | 98.2 ± 1.48 |  |
| *RSD                                                                     | 3.05            | 1.96             | 1.51        |  |
| **SEM                                                                    | 0.93            | 0.70             | 0.47        |  |

\* Relative Standard Deviation

\*\* Standard Error of Mean

| Concentration mg/ml | Mean K            |
|---------------------|-------------------|
| 0.0003              | $18.26\pm0.917$   |
| 0.0004              | $18.22\pm0.862$   |
| 0.0005              | $18.19\pm0.732$   |
| 0.0006              | $18.19 \pm 1.286$ |
| 0.0007              | $18.30 \pm 1.065$ |

Table 3.14 Constant (K) values of pure paracetamol using aspirin as standard at varying concentration.

# Table 3.15 Constant (K) values of pure paracetamol using benzoic acid as standard at varying concentration.

| Concentration mg/ml | Mean K            |
|---------------------|-------------------|
| 0.0002              | $11.75 \pm 0.239$ |
| 0.0003              | $11.73 \pm 0.533$ |
| 0.0004              | $11.25 \pm 0.543$ |
| 0.0005              | $11.93 \pm 0.406$ |
| 0.0006              | $11.66 \pm 0.411$ |

# Table 3.16 Constant (K) values of pure paracetamol using phenacetin as standard at varying concentration.

| Concentration mg/ml | Mean K           |
|---------------------|------------------|
| 0.0002              | $1.24 \pm 0.065$ |
| 0.0003              | $1.15 \pm 0.038$ |
| 0.0004              | $1.14 \pm 0.043$ |
| 0.0005              | $1.12 \pm 0.046$ |
| 0.0006              | $1.16\pm0.055$   |

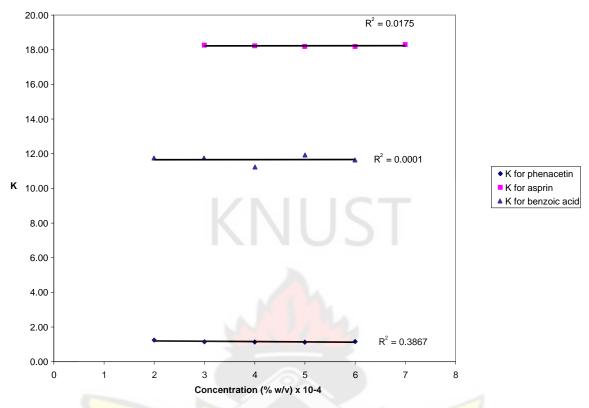



Fig. 3.1 The constant (K) curve for Phenacitin, Aspirin and Benzoic acid

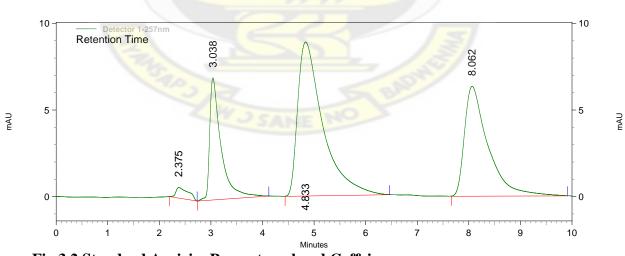
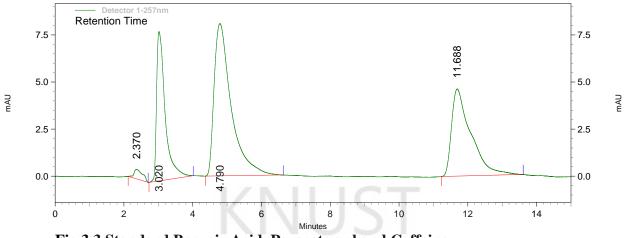
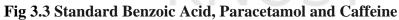
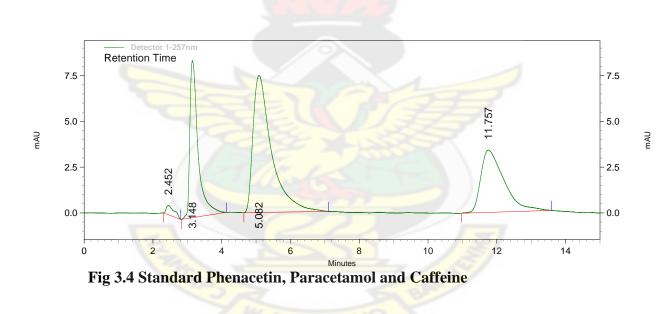






Fig 3.2 Standard Aspirin, Paracetamol and Caffeine







| Samples | 1 <sup>st</sup> determination | 2 <sup>nd</sup> determination | 3 <sup>rd</sup> determination | Mean              |
|---------|-------------------------------|-------------------------------|-------------------------------|-------------------|
| AD      | 96.51                         | 95.85                         | 95.33                         | $95.90\pm0.593$   |
| DN      | 93.14                         | 91.62                         | 93.82                         | $92.86 \pm 1.131$ |
| EC      | 99.44                         | 98.11                         | 99.68                         | $99.08\pm0.847$   |
| ET      | 107.73                        | 108.15                        | 110.42                        | $108.77\pm1.453$  |
| GR      | 103.29                        | 97.83                         | 101.67                        | $100.93\pm2.805$  |
| KP      | 98.05                         | 96.61                         | 96.93                         | $97.20\pm0.756$   |
| LP      | 98.58                         | 97.29                         | 98.65                         | $98.18\pm0.764$   |
| MG      | 104.48                        | 97.29                         | 105.18                        | $102.32\pm4.364$  |
| PR      | 98.03                         | 96.89                         | 97.68                         | $97.53 \pm 0.587$ |

Table 3.17 Assay of paracetamol samples using the USP method.

Monograph requirement: 90-110%

# Table 3.18 Assay of paracetamol samples using the BP method.

|        | Mean                | Actual concentration | Nominal concentration |          |
|--------|---------------------|----------------------|-----------------------|----------|
| Sample | Absorbance          | % w/v                | % w/v                 | %content |
| AD     | 0.561               | 0.000785             | 0.00075               | 104.62   |
| DN     | 0.526               | 0.000736             | 0.00075               | 98.09    |
| EC     | 0.5 <mark>59</mark> | 0.000782             | 0.00075               | 104.24   |
| ET     | 0.550               | 0.000769             | 0.00075               | 102.56   |
| GR     | 0.571               | 0.000799             | 0.00075               | 106.48   |
| KP     | 0.563               | 0.000787             | 0.00075               | 104.99   |
| LP     | 0.562               | 0.000786             | 0.00075               | 104.80   |
| MG     | 0.572               | 0.000800             | 0.00075               | 106.67   |
| PR     | 0.559               | 0.000782             | 0.00075               | 104.24   |

Monograph requirement: 95-105%

|         | Surrogate reference | standards          |                    |
|---------|---------------------|--------------------|--------------------|
| Samples | Aspirin             | Benzoic acid       | Phenacetin         |
| AD      | $103.90\pm4.720$    | $101.30 \pm 4.609$ | $97.13 \pm 2.563$  |
| DN      | $101.92 \pm 1.795$  | $95.82\pm1.917$    | $90.64 \pm 1.751$  |
| EC      | $104.83\pm4.910$    | $103.40\pm3.619$   | $99.70 \pm 1.524$  |
| ET      | $106.77\pm3.023$    | $98.75 \pm 1.802$  | $94.40\pm2.931$    |
| GR      | $111.26 \pm 2.636$  | $109.30 \pm 6.931$ | $98.60\pm3.758$    |
| KP      | $106.33\pm6.370$    | $113.30 \pm 4.940$ | $97.70\pm3.490$    |
| LP      | $106.14\pm3.432$    | $97.55 \pm 4.540$  | $95.63 \pm 4.016$  |
| MG      | $98.85\pm2.996$     | $101.90 \pm 1.987$ | $99.25\pm2.761$    |
| PR      | 122.95 ± 4.626      | $100.40 \pm 2.339$ | $102.00 \pm 4.844$ |

 Table 3.19 Assay of paracetamol tablet using the developed method.

Table 3.20 Comparative assay data of the USP, BP and methods developed method.

| Developed method |                      |              |            |            |           |
|------------------|----------------------|--------------|------------|------------|-----------|
| Samples          | Aspirin              | Benzoic acid | Phenacetin | USP method | BP method |
| AD               | 103.90               | 101.30       | 97.13      | 95.90      | 104.61    |
| DN               | 101.92               | 95.82        | 90.64      | 92.86      | 98.09     |
| EC               | 104.83               | 103.40       | 99.70      | 99.08      | 104.24    |
| ET               | 10 <mark>6.77</mark> | 98.75        | 94.40      | 108.76     | 102.56    |
| GR               | 111.26               | 109.30       | 98.60      | 100.93     | 106.48    |
| KP               | 106.33               | 113.30       | 97.70      | 97.20      | 104.99    |
| LP               | 106.14               | 97.55        | 95.63      | 98.18      | 104.80    |
| MG               | 98.85                | 101.90       | 99.25      | 102.31     | 106.67    |
| PR               | 122.95               | 100.40       | 102.00     | 97.53      | 104.24    |

### 3.9 Statistical analysis

| Table 3.21 Comparison of values at varying concentration of the pure paracetamol |
|----------------------------------------------------------------------------------|
| standard.                                                                        |

| Standards used | p-values | Comments (p at 0.01) |
|----------------|----------|----------------------|
| Phenacetin     | 0.466    | Not significant      |
| Benzoic acid   | 0.999    | Not significant      |
| Aspirin        | 0.230    | Not significant      |

### Table 3.22 Comparison of the developed method and the standard USP method

| Standards used | p-values | Comments (p at 0.01) |
|----------------|----------|----------------------|
| Phenacetin     | 0.022    | Not significant      |
| Benzoic acid   | 0.212    | not significant      |
| Aspirin        | 0.750    | not significant      |

### Table 3.23 Comparison of the developed method and the standard BP method

| Standards used | p-values            | Comments (p at 0.01) |  |
|----------------|---------------------|----------------------|--|
| Phenacetin     | 0.348               | Not significant      |  |
| Benzoic acid   | 0.314               | not significant      |  |
| Aspirin        | 0.2 <mark>48</mark> | not significant      |  |
| Aspirin        | 0.240               | not significant      |  |

#### **CHAPTER FOUR**

### 4.0 Discussion, Conclusion and Recommendations

### 4.1 Discussion

### **4.1.1 Quality Assurance**

Quality assurance involves the sampling and testing of starting materials, intermediate, finished and packaging materials to ensure compliance with appropriate standards and specifications. The pharmaceutical industries have an obligation to design, test and produce dosage forms that provide the customer with products having attributes of quality, purity, uniformity of content, stability, safety and physiological availability. Quality must be safeguarded for the purpose of clinical trials just as much as for the manufacturer and sales of product of proven efficacy since in the absence of adequate safeguards, the trial may well be rendered uninformative or in an extreme case be completely vitiated if the product of doubtful composition or stability were used.(37)

The state of pure standards used in analytical work is a requirement of the pharmacopoeia since it affects the outcome. A state of absolute purity is virtually unattainable but may be approached as closely as desired, provided sufficient care is taken in the manufacturing process (37). The melting points of compounds are determined to help in the identification of the compounds and their levels of purity. The melting points of the surrogate reference standards were therefore determined to confirm their identities. Refer table 3.1. The purity levels of the chosen standards (paracetamol, caffeine, aspirin, benzoic acid and phenacetin) were compared with the standards in the BP. For paracetamol, phenacetin and benzoic acid their purities were found to be 99.47%, 99.77% and 101.03% respectively. Their purity levels

were within the BP range of 99.5-101.0 for paracetamol and phenacetin and not less than 95% for benzoic acid. The percentage purity of caffeine and aspirin, were 103.02% and 97.69% respectively. That for caffeine was not within the BP range of 98.5-101.5%, although it failed the purity test it was still used because it was used as an internal standard hence its effect would cancel out. Aspirin on the other hand also fell without the BP range of 99.5-101.0%. The purities of all the standards were taken into consideration during the analysis. Refer to Table 3.10

All tablets are subjected to a test for uniformity of weight to control the extent of deviation from the average. The permitted percentage deviation decreases with increase in size of the tablet. The uniformity of weight is a standard requirement in the pharmacopoeia. This is to ensure that tablets from a batch will have uniform weight (45). From the BP, it is expected that for every twenty tablets which are taken through the weight uniformity test, not more than two should deviate by  $\pm$  5% for uncoated tablet and none must deviate by more than twice that limit. Among the nine tablets from different manufacturers analysed, they all passed the uniformity of weight test, signifying a control over the dosage of active ingredients in the tablets from the manufacturers. Refer to Tables 3.2 and Appendix 1-8.

The determination of percentage active ingredient or content is a pharmacopoeia requirement. This is to ensure that the amount of active ingredient stated on the drug falls within acceptable range. Since individual tablets may vary in weight, twenty tablets are selected at random for the determination, where twenty tablets are not available, a smaller number not less than five tablets may be used. In spite of variations of the selected tablets for

analysis, the tablet granules from which the determination was made had reasonable composition so that determination of the active ingredient content of the powdered tablets is an accurate measure of the amount of active principal present (50). The BP and USP methods were used in the percentage content determinations of the nine samples. With the USP method all the samples fell within the range of 90-110% making them pass the percentage content. Refer table 3.16. All tablets with the exception of GR and MG samples fell within the BP range of 95-105%. Refer table 3.18.

#### 4.1.2 Method Development

The High Performance Liquid Chromatography (HPLC) method was developed using an internal standard so as to minimize errors due to sample preparation, injection of sample, detector responds and power fluctuations. In this method development, surrogate reference standards were chosen based on their structures and solubility properties. The structures were taken into consideration because theoretically, compounds with similar chemical structures are expected to have similar elution properties (1). The solubility property of the compounds was important because HPLC deals solely with liquid, that is, every sample has to be in the liquid state before the analysis can be made possible. There was therefore the need to select a solvent in which the selected compounds could easily dissolve. Here a compound may have a similar structure as that of the analyte but may not be selected because it does not dissolve in the chosen solvent. The choice of different solvents for different compounds for analysis may lead to difficulties in the selection of a mobile phase. The first mobile phase tried was methanol, water and acetic acid mixture in the ratio 28: 69:3. The analyte was paracetamol while caffeine was the internal standard. Their retention times were 4 and 7 minutes

respectively. The retention times of the surrogate standards (aspirin, benzoic acid and phenacetin) were beyond 20 minutes with tailing peaks. This was not convenient because of long analysis time which would lead to poor quantitation as a result of poor resolution of peaks. The mobile phase was then changed to methanol and water mixture in the ratio1:1. Unfortunately poor resolution was obtained because all the drugs had almost the same retention time. The ideal mobile phase was found when methanol and 2.5 % glacial acetic acid were combined in the ratio of 40:60. Emphasis was placed on shortening run time, resolution of key components, optimizing selectivity, and understanding potential interferences by reaction components. The chosen method was highly selective for all the surrogate reference standards. Refer fig. 3.2-4

Retention times of the surrogate standards were determined and found to range between 3.025 – 11.729 minutes. This range is a reasonably good running time for analytical purposes. Refer to Table 3.12 and Fig 3.2-4.

Since the work was purely instrumental analysis, analytical performance factors such as reproducibility, LOD, LOQ, precision and accuracy were evaluated. This was required to demonstrate that the developed method was suitable for intended use. Ten injections of one sample solution were made to evaluate the performance of the analytical procedure. This type of precision study is known as instrument precision or injection repeatability (48). The instrument precision (RSD) was found to be 1.51%, 1.96% and 3.05% when phenacetin, benzoic acid and aspirin were used respectively (Table 3.13). Comparing these to the (RSD) standard value (2 %), only aspirin value which was higher than the standard. Therefore any

effort to improve this method would be to improve the precision of the aspirin method. The RSD of the replicates provides the analysis variation or how precise the test method was. The mean of the replicates, expressed as percentage label claim, indicates how accurate the test method was (47).

With UV detectors, it is difficult to assure the detection precision of low level compounds due to potential gradual loss of sensitivity of detector lamps with age, or noise level variation by detector manufacturer. At low levels, assurance is needed that the detection and quantitation limits are achievable with the test method each time. The detection limit was estimated early in the method development-validation process (49). Refer table 3.11

The concentrations were varied to ascertain its effect on the constant K. Refer fig 3.1 It can be deduced that there was no relation between the concentration and the constant K. This means change in concentration has no effect on the constant K. The statistical analysis also confirmed this by the p-value being insignificant compared with the standard p-value, meaning that, the constant obtained could be used irrespective of the concentration prepared for a given assay of paracetamol tablet. Refer to Table 3.21

After all these were done to obtain the constant, nine samples of paracetamol bought from nine manufacturers were analysed, both with the standard methods and the developed method. The standard methods used were the BP method (which was UV analysis) and the USP method, (which was HPLC), these were then compared with the developed HPLC method. It was observed that the difference between the BP method and developed method, and between the USP method and developed method using the aspirin, benzoic acid and phenacetin as surrogate reference standards at 99% confidence limit were not significant. (Refer to Tables 3.22 & 23).

### 4.2 Conclusion

The maximum retention times for each standard used during the analysis were 10 minute for aspirin and 15 minutes each for phenacetin and benzoic. This is very convenient for analytical work using High Performance Liquid Chromatography (HPLC). The constant K, when the pure standards were used was: aspirin  $18.23 \pm 0.048$ , phenacetin  $1.15 \pm 0.051$  and benzoic acid  $11.66 \pm 0.251$ . The concentration of the pure paracetamol powder was observed to have no effect on the constant K.

The results presented in the study suggest that the surrogate reference standard can be used for the analysis of paracetamol without the use of pure paracetamol powder as reference. Hence the developed method can replace the standard method in the absence of a pure standard for analysis.

#### **4.3 Recommendations**

- 1. This method was only used in the analysis of paracetamol tablets; it should also be tried with the syrups.
- Use of test method in analysis of a combination two drugs like paracetamol-caffeine, aspirin-caffeine and paracetamol-aspirin or a combination of all three drugs should be explored.
- 3. The test method should be tried on other drugs and validated.

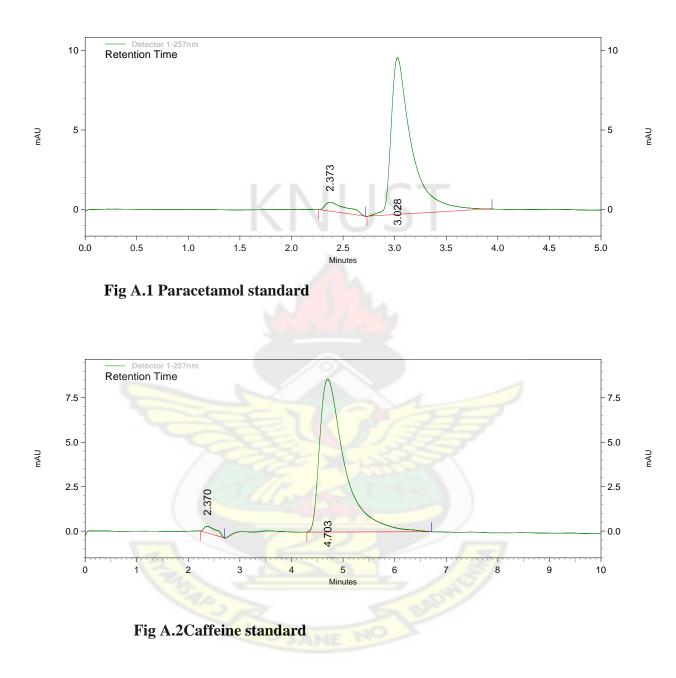
#### REFERENCES

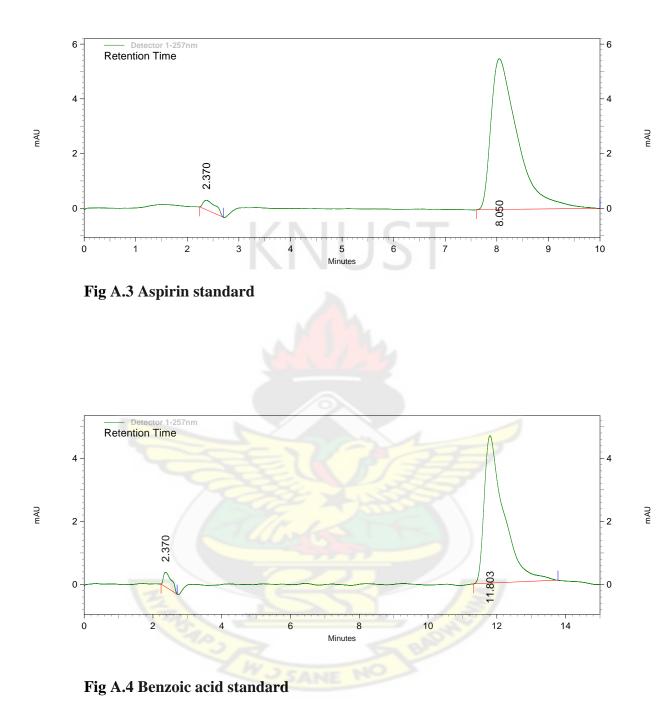
- Watson, D. G. (1999) Pharmaceutical analysis, Churchill Livingstone Edinburgh. pp 163, 238-75.
- Dong, W.M. (2000) The time is now for fast LC in Today's Chemist at work, 9.No.2, 46-48, 51. http://pubs.acs.org/hotarc/tcaw/oo/feb/dong.html 3/11/05
- Gang, G. Daharwal, S. J. and Saraf, S. Various UV spectroscopy stimulaestimation methods pg 2 of 7. <u>www.gov.de/contents-1104.htm</u> 3/11/05
- 4. internet: http://www.chromatographyonline.org/HPLC 3/11/05
- 5. <u>www.epa.gov/sw-846/pdfs/8000b.pdf</u> 3/11/05
- 6. Internet: http:// Kerouac.pharm.uky.edu 3/11/05
- 7. http://www.cem.msu.edu/~cem333/InternalStandard.html 3/11/05
- 8. Clarke's Isolation and Identification of Drugs, (1986) Second edition, the pharmaceutical press London.
- 9. International Pharmacopoeia (IP) (2003) July, CD-ROM.
- 10. http://www.zal.tu-cottbus.de/zal/prakt/gaschrom.htm 3/11/5
- 11. Willard, H. Merritt, L. Dean, J.A. Settle Jr., F.A. (1988) Instrumental Methods of Analysis, 7th ed., Wadsworth Publishing Co. http:// Kerouac.pharm.uky.edu/asgr/hplc/injectors.html 3/11/05
- 12. http://www.waters.com/WatersDivision/ContentD.asp?watersit=JDRS-5LTGBH
- Harris, D.C. "Quantitative Chemical Analysis; 5th Edition"; W.H. Freeman and Company: New York. http://www.chemistry.adelaide.edu.au/external/socrel/content/expts/hplcexpt.htm 3/11/05

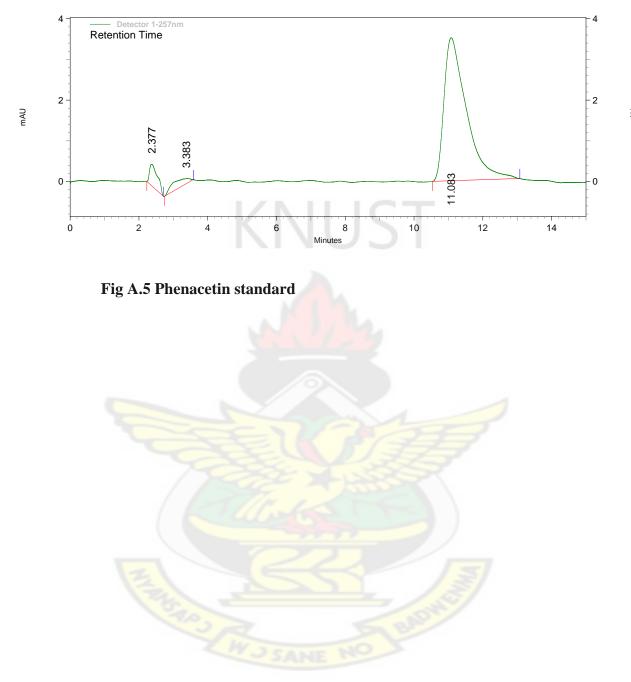
- Brown, P.R. (1990) Analytical Chemistry, Vol. 62, pp. 995-998
   <u>http://kerouac.pharm.uky.edu./ASRG/HPLC/columns.html</u> 3/11/05
- 15. http://hplc.chem.shu.edu/NEW/HPLC\_Book/Rev.Phase/rp\_mobph.html 3/11/05
- 16. <u>Synder, L.R. Stadalius, M.A. Quarry, M.A. (1983)</u> Analytical Chemistry, Vol. 55, pp. 1412-30. http:// Kerouac.pharm.uky.edu 3/11/05
- 17. http://www.chromatography-online.org/topics/pump.html 3/11/05
- 18. http://en.wikipedia.org/wiki/High\_performance\_liquid\_chromatography 3/11/05
- 19. http://kerouac.pharm.uky.edu/asrg/hplc/detectors.htm 3/11/05
- 20. http://www.gmu.edu/departments/SRIF/tutorial/gcd/quant.htm 3/11/05
- 21. http://www.chemistry.adelaide.edu.au/external/soc-rel/content/int-std.htm 3/11/05
- 22. Kevin D. A. Improved Performance in Capillary Electrophoresis Using Internal Standards, GlaxoSmithKline R&D, Ware, Hertfordshire, UK.

http://www.lcgceurope.com/lcgceurope/data/articlestandard/lcgceurope/362002/3047/

### article.pdf 6/11/05


- 23. <u>http://www.findguru.com/ProductInfo~Productid~201163~ProductName~Internal-</u> Standards.html 6/11/05
- 24. http://www.ionsource.com/tutorial/msquan/is.htm 6/11/05
- 25. http://www.assistpainrelief.com/info/paracetamol/ 6/11/05
- 26. http://netdoctor.co.uk/medicines/showpreparation.asp?=2005 6/11/05
- 27. http://www.chemistryabout.com/od/moleculescompounds/a/caffeine.htm 6/11/05
- 28. http://www.wisegeek.com/what-is-caffeine.htm 6/11/05
- 29. <u>http://www.cyh.com/HealthTopics/HealthTopicDetails.aspx?p=243&np=163&id=21</u> 55 6/11/05


- 30. http://www.aspirin-foundation.com/what/chemistry.htm 6/11/05
- 31. http://www.howstuffworks.com/aspirin.htm 2/11/05
- 32. http://www.answers.com/topic/phenacetin 2/11/05
- 33. Dubach UC et al. (1968 to 1987) An epidemiologic study of abuse of analgesic drugs: effects of phenacetin and salicylate on mortality and cardiovascular morbidity, N
  Engl J Med 1991 Jan 17; 324:155-160 <u>http://en.wikipededia.org/wki/phenacetin</u>
  2/11/05
- 34. http://en.wikipedia.org/wki/benzoic\_acid 2/11/05
- 35. <u>http://www.chemicalland2l.com/arokorhi/industrialchem/organic/BENZOIC%20ACI</u> <u>D.htm</u> 2/11/05
- 36. http://www.answers.com/topic/benzoic-acid 2/11/05
- 37. Olaniyi, A.A (2000) Principles of Drug Quality Assurance and Pharmaceutical Analysis, Mosuro publishers, pp193-201.
- 38. http://www.jce.divched.org/Journal/issues/1998/Apr/abs467.html
- 39. <u>http://jce.divched.org/journal/Issues/1998/Dec/abs1615.html</u>
- 40. http://www.atpon-link.com/GVR/doi/10.5555/phmz.2004.11.819
- 41. British Pharmacopoeia (1973) volume I, Her Majesty's Stationery Office, London, U.K. pp 50.
- 42. British Pharmacopoeia (1988) volume I, Her Majesty's Stationery Office, London,U.K.pp 48 & 84.
- 43. British Pharmacopoeia (1980) volume I, Her Majesty's Stationery Office, London,U.K. pp 326.
- 44. United State Pharmacopoeia (2004) pp 17-19


- 45. British Pharmacopoeia (2002) volume I and II CD-ROM Her Majesty's Stationery Office, London, U.K.
- 46. Kwakye, J.K. (1985)Use of NMR for Qualitative Analysis of Pharmaceuticals, Talanta, vol. 32 no. 11
- 47. Miller, J.C. and miller, J.N. (1993) Statistics for Analytical Chemistry, 3<sup>rd</sup> edition, Ellis Harwood London.
- 48. http://www.fda.gov/CDER/GUIDANCE/cmc3.pdf. (10/2/2006)
- 49. Green, J.M. (1996) A Practical Guide to Analytical Method Validation, Analytical Chemistry (68).
- 50. Beckett, A.H. and Stenlake, J.B. (1988), Practical Pharmaceutical Chemistry, 4th edition Part II. The Athlone Press, London, U.K. pp.85-166.











mAU

| Number | individual weight | Deviation | % deviation |
|--------|-------------------|-----------|-------------|
| 1      | 0.5627            | -0.0217   | -4.0110     |
| 2      | 0.5523            | -0.0113   | -2.0887     |
| 3      | 0.5509            | -0.0099   | -1.8299     |
| 4      | 0.5739            | -0.0329   | -6.0813     |
| 5      | 0.5721            | -0.0311   | -5.7486     |
| 6      | 0.5709            | -0.0299   | -5.5268     |
| 7      | 0.5713            | -0.0303   | -5.6007     |
| 8      | 0.5585            | -0.0175   | -3.2347     |
| 9      | 0.5582            | -0.0172   | -3.1793     |
| 10     | 0.5822            | -0.0412   | -7.6155     |
| 11     | 0.5729            | -0.0319   | -5.8965     |
| 12     | 0.5805            | -0.0395   | -7.3013     |
| 13     | 0.5745            | -0.0335   | -6.1922     |
| 14     | 0.5640            | -0.0230   | -4.2514     |
| 15     | 0.5805            | -0.0395   | -7.3013     |
| 16     | 0.5670            | -0.0260   | -4.8059     |
| 17     | 0.5785            | -0.0375   | -6.9316     |
| 18     | 0.5702            | -0.0292   | -5.3974     |
| 19     | 0.5776            | -0.0366   | -6.7653     |
| 20     | 0.5775            | -0.0365   | -6.7468     |

# Table A.1 Percentage deviation of tablets; DN



| Number | individual wt | Deviation             | % deviation |
|--------|---------------|-----------------------|-------------|
| 1      | 0.5600        | 0.0013                | 0.2316      |
| 2      | 0.5641        | -0.0028               | -0.4988     |
| 3      | 0.5626        | -0.0013               | -0.2316     |
| 4      | 0.5708        | -0.0095               | -1.6925     |
| 5      | 0.5608        | 0.0005                | 0.0891      |
| 6      | 0.5574        | 0.0039                | 0.6948      |
| 7      | 0.5709        | -0.0096               | -1.7103     |
| 8      | 0.5663        | -0.0050               | -0.8908     |
| 9      | 0.5639        | -0.0026               | -0.4632     |
| 10     | 0.5614        | -1E-04                | -0.0178     |
| 11     | 0.5602        | 0.0011                | 0.1960      |
| 12     | 0.5720        | -0.0107               | -1.9063     |
| 13     | 0.5649        | -0.0036               | -0.6413     |
| 14     | 0.5668        | -0.0055               | -0.9799     |
| 15     | 0.5667        | -0.0054               | -0.9621     |
| 16     | 0.5689        | -0.007 <mark>6</mark> | -1.3540     |
| 17     | 0.5662        | -0.0049               | -0.8730     |
| 18     | 0.5595        | 0.0018                | 0.3207      |
| 19     | 0.5605        | 0.0008                | 0.1425      |
| 20     | 0.5637        | -0.0024               | -0.4276     |

# Table A.2 Percentage deviation of tablets; EC



# Table A.3 Percentage deviation of tablets; ET

| Number | individual wt | Deviation | % deviation |
|--------|---------------|-----------|-------------|
| 1      | 0.6032        | 0.0094    | 1.5344      |
| 2      | 0.6046        | 0.0080    | 1.3059      |
| 3      | 0.6173        | -0.0047   | -0.7672     |
| 4      | 0.6011        | 0.0115    | 1.8772      |
| 5      | 0.614         | -0.0014   | -0.2285     |
| 6      | 0.5723        | 0.0403    | 6.5785      |
| 7      | 0.6204        | -0.0078   | -1.2732     |
| 8      | 0.6124        | 0.0002    | 0.0326      |
| 9      | 0.6053        | 0.0073    | 1.1916      |
| 10     | 0.6244        | -0.0118   | -1.9262     |
| 11     | 0.5808        | 0.0318    | 5.1910      |
| 12     | 0.5983        | 0.0143    | 2.3343      |
| 13     | 0.6017        | 0.0109    | 1.7793      |
| 14     | 0.6111        | 0.0015    | 0.2449      |
| 15     | 0.6066        | 0.006     | 0.9794      |
| 16     | 0.6028        | 0.0098    | 1.5997      |
| 17     | 0.6299        | -0.0173   | -2.8240     |
| 18     | 0.604         | 0.0086    | 1.4039      |
| 19     | 0.6066        | 0.006     | 0.9794      |
| 20     | 0.6031        | 0.0095    | 1.5508      |



| Number | individual wt | Deviation             | % deviation |
|--------|---------------|-----------------------|-------------|
| 1      | 0.5610        | 0.0110                | 1.9231      |
| 2      | 0.5613        | 0.0107                | 1.8706      |
| 3      | 0.5686        | 0.0034                | 0.5944      |
| 4      | 0.5753        | -0.0033               | -0.5769     |
| 5      | 0.5724        | -0.0004               | -0.0699     |
| 6      | 0.5608        | 0.0112                | 1.9580      |
| 7      | 0.5583        | 0.0137                | 2.3951      |
| 8      | 0.5725        | -0.0005               | -0.0874     |
| 9      | 0.5576        | 0.0144                | 2.5175      |
| 10     | 0.5808        | -0.0088               | -1.5385     |
| 11     | 0.5716        | 0.0004                | 0.0699      |
| 12     | 0.5749        | -0.0029               | -0.5070     |
| 13     | 0.5572        | 0.0148                | 2.5874      |
| 14     | 0.5731        | -0.0011               | -0.1923     |
| 15     | 0.5671        | 0.0 <mark>04</mark> 9 | 0.8566      |
| 16     | 0.5734        | -0.0014               | -0.2448     |
| 17     | 0.5730        | -0.0010               | -0.1748     |
| 18     | 0.5677        | 0.0043                | 0.7517      |
| 19     | 0.5726        | -0.0006               | -0.1049     |
| 20     | 0.5582        | 0.0138                | 2.4126      |

 Table A.4 Percentage deviation of tablets; GR



| Number | individual wt | deviation | % deviation |  |
|--------|---------------|-----------|-------------|--|
| 1      | 0.5334        | 0.0166    | 3.0182      |  |
| 2      | 0.5483        | 0.0017    | 0.3091      |  |
| 3      | 0.5476        | 0.0024    | 0.4364      |  |
| 4      | 0.5517        | -0.0017   | -0.3091     |  |
| 5      | 0.5543        | -0.0043   | -0.7818     |  |
| 6      | 0.5433        | 0.0067    | 1.2182      |  |
| 7      | 0.5603        | -0.0103   | -1.8727     |  |
| 8      | 0.5411        | 0.0089    | 1.6182      |  |
| 9      | 0.5526        | -0.0026   | -0.4727     |  |
| 10     | 0.5455        | 0.0045    | 0.8182      |  |
| 11     | 0.5523        | -0.0023   | -0.4182     |  |
| 12     | 0.5437        | 0.0063    | 1.1455      |  |
| 13     | 0.5463        | 0.0037    | 0.6727      |  |
| 14     | 0.5617        | -0.0117   | -2.1273     |  |
| 15     | 0.5480        | 0.0020    | 0.3636      |  |
| 16     | 0.5573        | -0.0073   | -1.3272     |  |
| 17     | 0.5530        | -0.003    | -0.5455     |  |
| 18     | 0.5552        | -0.0052   | -0.9455     |  |
| 19     | 0.5497        | 0.0003    | 0.0545      |  |
| 20     | 0.5523        | -0.0023   | -0.4182     |  |

# Table A.5 Percentage deviation of tablets; KP



| Number | individual wt | deviation             | % deviation |
|--------|---------------|-----------------------|-------------|
| 1      | 0.5975        | -0.0035               | -0.5892     |
| 2      | 0.5726        | 0.0214                | 3.6027      |
| 3      | 0.6570        | -0.0630               | -10.6060    |
| 4      | 0.5775        | 0.0165                | 2.7778      |
| 5      | 0.5928        | 0.0012                | 0.2020      |
| 6      | 0.5998        | -0.0058               | -0.9764     |
| 7      | 0.5997        | -0.0057               | -0.9596     |
| 8      | 0.5917        | 0.0023                | 0.3872      |
| 9      | 0.5980        | -0.0040               | -0.6734     |
| 10     | 0.5932        | 0.0008                | 0.1347      |
| 11     | 0.6144        | -0.0204               | -3.4343     |
| 12     | 0.5868        | 0.0072                | 1.2121      |
| 13     | 0.6032        | -0.0092               | -1.5488     |
| 14     | 0.6075        | -0.0 <mark>135</mark> | -2.2727     |
| 15     | 0.5942        | -0.0002               | -0.0337     |
| 16     | 0.6120        | -0.0180               | -3.0303     |
| 17     | 0.5733        | 0.0207                | 3.4848      |
| 18     | 0.5840        | 0.0100                | 1.6835      |
| 19     | 0.5921        | 0.0019                | 0.3199      |
| 20     | 0.5773        | 0.0167                | 2.8114      |

# Table A.6 Percentage deviation of tablets; LP



| Number | individual wt | deviation | % deviation |
|--------|---------------|-----------|-------------|
| 1      | 0.5797        | -0.0034   | -0.5900     |
| 2      | 0.5765        | -0.0002   | -0.0347     |
| 3      | 0.5642        | 0.0121    | 2.0996      |
| 4      | 0.5764        | -1E-04    | -0.0174     |
| 5      | 0.5735        | 0.0028    | 0.4859      |
| 6      | 0.5700        | 0.0063    | 1.0932      |
| 7      | 0.5959        | -0.0196   | -3.4010     |
| 8      | 0.5835        | -0.0072   | -1.2493     |
| 9      | 0.5651        | 0.0112    | 1.9434      |
| 10     | 0.5907        | -0.0144   | -2.4987     |
| 11     | 0.5798        | -0.0035   | -0.6073     |
| 12     | 0.5717        | 0.0046    | 0.7982      |
| 13     | 0.5729        | 0.0034    | 0.5900      |
| 14     | 0.5732        | 0.0031    | 0.5379      |
| 15     | 0.5762        | 1E-04     | 0.0174      |
| 16     | 0.5810        | -0.0047   | -0.8155     |
| 17     | 0.5723        | 0.0040    | 0.6941      |
| 18     | 0.5695        | 0.0068    | 1.1799      |
| 19     | 0.5723        | 0.0040    | 0.6941      |
| 20     | 0.5805        | -0.0042   | -0.7288     |

 Table A.7 Percentage deviation of tablets; MG



| Number | individual wt | deviation | % deviation |
|--------|---------------|-----------|-------------|
| 1      | 0.5523        | 0.0019    | 0.3428      |
| 2      | 0.5549        | -0.0007   | -0.1263     |
| 3      | 0.5542        | 0         | 0           |
| 4      | 0.5491        | 0.0051    | 0.9202      |
| 5      | 0.5529        | 0.0013    | 0.2346      |
| 6      | 0.5492        | 0.0050    | 0.9022      |
| 7      | 0.5595        | -0.0053   | -0.9563     |
| 8      | 0.5496        | 0.0046    | 0.8300      |
| 9      | 0.5574        | -0.0032   | -0.5774     |
| 10     | 0.5506        | 0.0036    | 0.6496      |
| 11     | 0.5566        | -0.0024   | -0.4331     |
| 12     | 0.5551        | -0.0009   | -0.1624     |
| 13     | 0.5523        | 0.0019    | 0.3428      |
| 14     | 0.5490        | 0.0052    | 0.9383      |
| 15     | 0.5545        | -0.0003   | -0.0541     |
| 16     | 0.5562        | -0.0020   | -0.3609     |
| 17     | 0.5612        | -0.0070   | -1.2631     |
| 18     | 0.5482        | 0.0060    | 1.0826      |
| 19     | 0.5572        | -0.0030   | -0.5413     |
| 20     | 0.5608        | -0.0066   | -1.1909     |

### Table A.8 Percentage deviation of tablets; PR

 Table A.9 Determination of K using aspirin as the standard at paracetamol concentration of 0.0003

|         | Area f <mark>or</mark> | Area for | PAR for  | PAR for                  | concentration | concentration of |          |
|---------|------------------------|----------|----------|--------------------------|---------------|------------------|----------|
| aspirin | paracetamol            | caffeine | aspirin  | paracetamol              | of aspirin    | paracetamol      | K        |
| 200423  | 107776                 | 300640   | 0.666654 | 0.3584886                | 0.009767      | 0.0002984        | 17.60098 |
| 206341  | 107814                 | 306484   | 0.673252 | 0 <mark>.3</mark> 517769 | 0.009767      | 0.0002984        | 17.1022  |
| 198689  | 108542                 | 309383   | 0.64221  | 0.3508338                | 0.009767      | 0.0002984        | 17.88078 |
| 203842  | 109881                 | 301152   | 0.676874 | 0.3648689                | 0.009767      | 0.0002984        | 17.64377 |
| 206573  | 108997                 | 313323   | 0.659297 | 0.3478742                | 0.009767      | 0.0002984        | 17.27044 |
| 180160  | 107907                 | 303778   | 0.593065 | 0.3552166                | 0.009767      | 0.0002984        | 19.6044  |
| 185800  | 105097                 | 307662   | 0.603909 | 0.3415989                | 0.009767      | 0.0002984        | 18.51429 |
| 186555  | 105821                 | 307886   | 0.605922 | 0.3437019                | 0.009767      | 0.0002984        | 18.56638 |
| 185377  | 106329                 | 302884   | 0.61204  | 0.3510552                | 0.009767      | 0.0002984        | 18.77406 |
| 179606  | 107904                 | 306528   | 0.585937 | 0.35202                  | 0.009767      | 0.0002984        | 19.66433 |

| Area for    | Area for                                                                                              | PAR for                                                                                                                         | PAR for                                                                                                                                                                                                     | concentration                                                                                                                                                                                                                                                                                          | concentration of                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| paracetamol | caffeine                                                                                              | aspirin                                                                                                                         | paracetamol                                                                                                                                                                                                 | of aspirin                                                                                                                                                                                                                                                                                             | paracetamol                                                                                                                                                                                                                                                                                                                                                                              | К                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 142846      | 288811                                                                                                | 0.631454                                                                                                                        | 0.4946003                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 19.22647                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 139414      | 291159                                                                                                | 0.63839                                                                                                                         | 0.4788243                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 18.411                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 140011      | 286004                                                                                                | 0.610775                                                                                                                        | 0.4895421                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 19.67416                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 136975      | 283956                                                                                                | 0.62123                                                                                                                         | 0.4823811                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 19.06009                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 139660      | 290994                                                                                                | 0.643835                                                                                                                        | 0.4799412                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 18.29789                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 141900      | 287325                                                                                                | 0.69806                                                                                                                         | 0.4938658                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 17.36615                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 140384      | 288645                                                                                                | 0.693818                                                                                                                        | 0.4863552                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 17.20662                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 145655      | 291254                                                                                                | 0.687407                                                                                                                        | 0.5000961                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 17.85776                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 141239      | 285869                                                                                                | 0.694696                                                                                                                        | 0.494069                                                                                                                                                                                                    | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 17.45742                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 142392      | 277700                                                                                                | 0.713864                                                                                                                        | 0.5127548                                                                                                                                                                                                   | 0.009767                                                                                                                                                                                                                                                                                               | 0.0003979                                                                                                                                                                                                                                                                                                                                                                                | 17.63119                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | paracetamol<br>142846<br>139414<br>140011<br>136975<br>139660<br>141900<br>140384<br>145655<br>141239 | paracetamolcaffeine142846288811139414291159140011286004136975283956139660290994141900287325140384288645145655291254141239285869 | paracetamolcaffeineaspirin1428462888110.6314541394142911590.638391400112860040.6107751369752839560.621231396602909940.6438351419002873250.698061403842886450.6938181456552912540.6874071412392858690.694696 | paracetamolcaffeineaspirinparacetamol1428462888110.6314540.49460031394142911590.638390.47882431400112860040.6107750.48954211369752839560.621230.48238111396602909940.6438350.47994121419002873250.698060.49386581403842886450.6938180.48635521456552912540.6874070.50009611412392858690.6946960.494069 | paracetamolcaffeineaspirinparacetamolof aspirin1428462888110.6314540.49460030.0097671394142911590.638390.47882430.0097671400112860040.6107750.48954210.0097671369752839560.621230.48238110.0097671396602909940.6438350.47994120.0097671419002873250.698060.49386580.0097671403842886450.6938180.48635520.0097671456552912540.6874070.50009610.0097671412392858690.6946960.4940690.009767 | paracetamolcaffeineaspirinparacetamolof1428462888110.6314540.49460030.0097670.00039791394142911590.638390.47882430.0097670.00039791400112860040.6107750.48954210.0097670.00039791369752839560.621230.48238110.0097670.00039791396602909940.6438350.47994120.0097670.00039791419002873250.698060.49386580.0097670.00039791403842886450.6938180.48635520.0097670.00039791456552912540.6874070.50009610.0097670.00039791412392858690.6946960.4940690.0097670.0003979 |

Table A.10 Determination of K using aspirin as the standard at paracetamol concentration of 0.0004

Table A.11 Determination of K using aspirin as the standard at paracetamol concentration of 0.0005

| Area    |                       | Area                 | 1        |             |               |               |          |
|---------|-----------------------|----------------------|----------|-------------|---------------|---------------|----------|
| for     | Area for              | for                  | PAR for  | PAR for     | concentration | concentration |          |
|         |                       | 0                    |          | 3           |               | of            |          |
| aspirin | paracetamol           | caffeine             | aspirin  | paracetamol | aspirin       | paracetamol   | Κ        |
| 189923  | 175781                | 276786               | 0.686173 | 0.63507909  | 0.009767      | 0.0004974     | 18.17397 |
| 197076  | 171294                | 277651               | 0.709798 | 0.61693997  | 0.009767      | 0.0004974     | 17.06726 |
| 194799  | 173252                | 270188               | 0.720976 | 0.64122759  | 0.009767      | 0.0004974     | 17.46413 |
| 193826  | 1 <mark>7138</mark> 7 | 272799               | 0.710508 | 0.62825377  | 0.009767      | 0.0004974     | 17.36286 |
| 195658  | 176896                | 275563               | 0.71003  | 0.64194395  | 0.009767      | 0.0004974     | 17.75317 |
| 185660  | 177059                | 279165               | 0.665055 | 0.63424498  | 0.009767      | 0.0004974     | 18.72643 |
| 181159  | 170540                | 278812               | 0.649753 | 0.61166664  | 0.009767      | 0.0004974     | 18.4851  |
| 180383  | 172183                | 2771 <mark>35</mark> | 0.650885 | 0.62129648  | 0.009767      | 0.0004974     | 18.74347 |
| 179059  | 172433                | 274865               | 0.651443 | 0.62733706  | 0.009767      | 0.0004974     | 18.90948 |
| 177551  | 173334                | 275662               | 0.64409  | 0.62879178  | 0.009767      | 0.0004974     | 19.16973 |

| Area    |             | Area     |          |             |               |               |          |
|---------|-------------|----------|----------|-------------|---------------|---------------|----------|
| for     | Area for    | for      | PAR for  | PAR for     | concentration | concentration |          |
|         |             |          |          |             |               | of            |          |
| aspirin | paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol   | K        |
| 182106  | 214680      | 278600   | 0.653647 | 0.77056712  | 0.009767      | 0.0005968     | 19.293   |
| 175855  | 216267      | 286283   | 0.61427  | 0.75543081  | 0.009767      | 0.0005968     | 20.12648 |
| 178340  | 212371      | 282774   | 0.63068  | 0.75102732  | 0.009767      | 0.0005968     | 19.48852 |
| 181479  | 207801      | 282849   | 0.641611 | 0.73467115  | 0.009767      | 0.0005968     | 18.73931 |
| 180183  | 209934      | 282401   | 0.63804  | 0.74338972  | 0.009767      | 0.0005968     | 19.06783 |
| 193866  | 205084      | 279320   | 0.694064 | 0.73422598  | 0.009767      | 0.0005968     | 17.31261 |
| 194871  | 203994      | 278139   | 0.700625 | 0.73342465  | 0.009767      | 0.0005968     | 17.13178 |
| 197624  | 203710      | 270392   | 0.73088  | 0.75338767  | 0.009767      | 0.0005968     | 16.86961 |
| 194127  | 206059      | 280197   | 0.692823 | 0.73540759  | 0.009767      | 0.0005968     | 17.37153 |
| 204129  | 205796      | 274291   | 0.744206 | 0.75028346  | 0.009767      | 0.0005968     | 16.49926 |

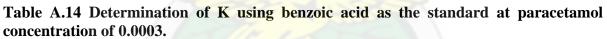

Table A.11 Determination of K using aspirin as the standard at paracetamol concentration of 0.0006

 Table A.12 Determination of K using aspirin as the standard at paracetamol concentration of 0.0007

| Area    | 0           | Area     |          |             | 251           |               |          |
|---------|-------------|----------|----------|-------------|---------------|---------------|----------|
| for     | Area for    | for      | PAR for  | PAR for     | concentration | concentration |          |
|         |             | 100      |          |             | ><            | of            |          |
| aspirin | paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol   | Κ        |
| 195688  | 240445      | 279264   | 0.700728 | 0.86099533  | 0.009767      | 0.0006963     | 17.2352  |
| 194150  | 238512      | 281893   | 0.688737 | 0.84610828  | 0.009767      | 0.0006963     | 17.23208 |
| 193828  | 237237      | 285729   | 0.678363 | 0.83028674  | 0.009767      | 0.0006963     | 17.16843 |
| 194685  | 245682      | 287572   | 0.676996 | 0.85433213  | 0.009767      | 0.0006963     | 17.70132 |
| 197208  | 243435      | 288483   | 0.683604 | 0.84384522  | 0.009767      | 0.0006963     | 17.31503 |
| 181175  | 246116      | 289017   | 0.626866 | 0.85156236  | 0.009767      | 0.0006963     | 19.05489 |
| 179205  | 245344      | 285872   | 0.626871 | 0.85823026  | 0.009767      | 0.0006963     | 19.20393 |
| 178711  | 240564      | 286168   | 0.624497 | 0.84063907  | 0.009767      | 0.0006963     | 18.88183 |
| 180294  | 256677      | 286314   | 0.629707 | 0.89648777  | 0.009767      | 0.0006963     | 19.96965 |
| 179205  | 245344      | 285872   | 0.626871 | 0.85823026  | 0.009767      | 0.0006963     | 19.20393 |

|          |             | r        |            |             |               |               |             |
|----------|-------------|----------|------------|-------------|---------------|---------------|-------------|
| Area for | Area for    | Area for | PAR for    | PAR for     | concentration | concentration |             |
| benzoic  |             |          | benzoic    |             | of benzoic    | of            |             |
| acid     | paracetamol | caffeine | acid       | paracetamol | acid          | paracetamol   | К           |
| 192756   | 75641       | 282384   | 0.68260241 | 0.26786574  | 0.006067      | 0.0001989     | 11.96984614 |
| 203031   | 76516       | 281859   | 0.72032825 | 0.27146907  | 0.006067      | 0.0001989     | 11.49553311 |
| 197994   | 72746       | 286806   | 0.69034121 | 0.25364183  | 0.006067      | 0.0001989     | 11.20717879 |
| 186621   | 72843       | 280273   | 0.66585436 | 0.25990017  | 0.006067      | 0.0001989     | 11.90601768 |
| 184152   | 73807       | 282715   | 0.65136975 | 0.26106503  | 0.006067      | 0.0001989     | 12.22532251 |
| 192088   | 72690       | 279439   | 0.68740584 | 0.26012833  | 0.006067      | 0.0001989     | 11.54286579 |
| 194597   | 75350       | 280673   | 0.69332283 | 0.26846188  | 0.006067      | 0.0001989     | 11.81099071 |
| 188194   | 72749       | 278072   | 0.67678155 | 0.26161929  | 0.006067      | 0.0001989     | 11.79126681 |
| 194926   | 73974       | 283098   | 0.68854602 | 0.26130174  | 0.006067      | 0.0001989     | 11.57573414 |
| 186675   | 73063       | 283545   | 0.65836111 | 0.25767691  | 0.006067      | 0.0001989     | 11.93852168 |

Table A.13 Determination of K using benzoic acid as the standard at paracetamol concentration of 0.0002.



| Area for<br>benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for                   | concentration<br>of benzoic | concentration of |             |
|---------------------|-------------|----------|--------------------|---------------------------|-----------------------------|------------------|-------------|
| acid                | paracetamol | caffeine | acid               | paracetamol               | acid                        | paracetamol      | К           |
| 186199              | 107903      | 304720   | 0.61104949         | 0.35410541                | 0.006067                    | 0.0002984        | 11.78233459 |
| 190541              | 110370      | 309403   | 0.61583436         | 0.35671923                | 0.006067                    | 0.0002984        | 11.77708416 |
| 187280              | 110417      | 304724   | 0.61458894         | 0.36 <mark>2350</mark> 85 | 0.006067                    | 0.0002984        | 11.9872543  |
| 196948              | 108355      | 306859   | 0.64181921         | 0.35311006                | 0.006067                    | 0.0002984        | 11.18594186 |
| 194057              | 107214      | 305211   | 0.6358126          | 0.3512783                 | 0.006067                    | 0.0002984        | 11.23304147 |
| 190588              | 113012      | 306786   | 0.62124086         | 0.36837405                | 0.006067                    | 0.0002984        | 12.05602623 |
| 194687              | 108500      | 302466   | 0.64366573         | 0.358718                  | 0.006067                    | 0.0002984        | 11.33099274 |
| 189294              | 120719      | 317272   | 0.59663002         | 0.38049056                | 0.006067                    | 0.0002984        | 12.96623704 |
| 192441              | 107553      | 303554   | 0.63395969         | 0.35431258                | 0.006067                    | 0.0002984        | 11.36318559 |
| 191651              | 109286      | 307163   | 0.62393908         | 0.35579155                | 0.006067                    | 0.0002984        | 11.59387509 |

| Area for<br>benzoic | Area for    | Area for | PAR for benzoic | PAR for     | concentration<br>of benzoic | Concentration<br>Of |          |
|---------------------|-------------|----------|-----------------|-------------|-----------------------------|---------------------|----------|
| acid                | paracetamol | caffeine | acid            | paracetamol | acid                        | paracetamol         | к        |
| 192199              | 152304      | 329900   | 0.58259776      | 0.46166717  | 0.006067                    | 0.0003979           | 12.0826  |
| 185324              | 135613      | 311135   | 0.59563855      | 0.43586546  | 0.006067                    | 0.0003979           | 11.15757 |
| 190281              | 133759      | 302792   | 0.62842149      | 0.44175209  | 0.006067                    | 0.0003979           | 10.71834 |
| 192968              | 137349      | 311151   | 0.62017477      | 0.44142233  | 0.006067                    | 0.0003979           | 10.85276 |
| 190569              | 133739      | 311609   | 0.61156449      | 0.4291885   | 0.006067                    | 0.0003979           | 10.70054 |
| 185613              | 136665      | 305060   | 0.60844752      | 0.44799384  | 0.006067                    | 0.0003979           | 11.22662 |
| 183288              | 139844      | 312416   | 0.5866793       | 0.44762112  | 0.006067                    | 0.0003979           | 11.63349 |
| 190884              | 152269      | 334023   | 0.57146963      | 0.45586382  | 0.006067                    | 0.0003979           | 12.16304 |
| 190376              | 134605      | 307959   | 0.61818619      | 0.4370874   | 0.006067                    | 0.0003979           | 10.78075 |
| 190647              | 139651      | 313125   | 0.60885269      | 0.44599122  | 0.006067                    | 0.0003979           | 11.169   |

Table A.15 Determination of K using benzoic acid as the standard at paracetamol concentration of 0.0004

Table A.16 Determination of K using benzoic acid as the standard at paracetamol concentration of 0.0005.

| Area for<br>benzoic | Area for       | Area for | PAR for benzoic | PAR for                   | concentration<br>of benzoic | Concentration<br>Of |          |
|---------------------|----------------|----------|-----------------|---------------------------|-----------------------------|---------------------|----------|
| acid                | paracetamol    | caffeine | acid            | paracetamol               | acid                        | paracetamol         | K        |
| 186393              | 175261         | 283074   | 0.65846033      | 0.61913493                | 0.006067                    | 0.0004974           | 11.46896 |
| 183317              | 1 <b>79644</b> | 283775   | 0.64599419      | 0.63305083                | 0.006067                    | 0.0004974           | 11.95303 |
| 184681              | 189703         | 303735   | 0.60803332      | 0.62 <mark>456</mark> 747 | 0.006067                    | 0.0004974           | 12.52911 |
| 189261              | 190493         | 302659   | 0.62532751      | 0.6293981                 | 0.006067                    | 0.0004974           | 12.27683 |
| 195861              | 180525         | 293464   | 0.66741065      | 0.61515211                | 0.006067                    | 0.0004974           | 11.24236 |
| 185607              | 185958         | 301453   | 0.61570792      | 0.61687228                | 0.006067                    | 0.0004974           | 12.22049 |
| 191171              | 187355         | 304355   | 0.62811848      | 0.61558049                | 0.006067                    | 0.0004974           | 11.95395 |
| 189501              | 190274         | 307615   | 0.61603303      | 0.61854591                | 0.006067                    | 0.0004974           | 12.24718 |
| 196093              | 186367         | 298666   | 0.65656285      | 0.62399804                | 0.006067                    | 0.0004974           | 11.59245 |
| 194231              | 187625         | 295484   | 0.6573317       | 0.63497516                | 0.006067                    | 0.0004974           | 11.78258 |

| Area for | Area for    | Area for | PAR for                   | PAR for     | concentration | concentration |          |
|----------|-------------|----------|---------------------------|-------------|---------------|---------------|----------|
| benzoic  |             |          | benzoic                   |             | of benzoic    | of            |          |
| acid     | paracetamol | caffeine | acid                      | paracetamol | acid          | paracetamol   | K        |
| 186148   | 216194      | 300677   | 0.61909624                | 0.71902407  | 0.006067      | 0.0005968     | 11.80675 |
| 186326   | 218183      | 299763   | 0.62157771                | 0.72785167  | 0.006067      | 0.0005968     | 11.90399 |
| 188327   | 215607      | 295416   | 0.63749763                | 0.72984199  | 0.006067      | 0.0005968     | 11.63846 |
| 188479   | 215991      | 295892   | 0.63698579                | 0.72996566  | 0.006067      | 0.0005968     | 11.64978 |
| 194865   | 216829      | 291761   | 0.66789256                | 0.74317335  | 0.006067      | 0.0005968     | 11.31172 |
| 184846   | 216129      | 296567   | 0.6232858                 | 0.72876955  | 0.006067      | 0.0005968     | 11.88634 |
| 184131   | 217703      | 282859   | 0.6509 <mark>639</mark> 1 | 0.76965202  | 0.006067      | 0.0005968     | 12.0194  |
| 194820   | 204596      | 275175   | 0.707 <mark>9858</mark> 3 | 0.74351231  | 0.006067      | 0.0005968     | 10.67601 |
| 190370   | 217102      | 292834   | 0.65009528                | 0.74138249  | 0.006067      | 0.0005968     | 11.59339 |
| 184096   | 218543      | 303348   | 0.60688055                | 0.72043659  | 0.006067      | 0.0005968     | 12.06807 |

Table A.17 Determination of K using benzoic acid as the standard at paracetamol concentration of 0.0006.

Table A.18 Determination of K using phenacetin as the standard at paracetamolconcentration of 0.0002.

| Area for   | Area for            | Area for | PAR for    | PAR for     | concentration            | concentration of |          |
|------------|---------------------|----------|------------|-------------|--------------------------|------------------|----------|
| phenacetin | paracetamol         | caffeine | phenacetin | paracetamol | of phenacetin            | paracetamol      | K        |
| 165213     | 92576               | 324432   | 0.509238   | 0.28534793  | 0.0004989                | 0.0001989        | 1.405507 |
| 165892     | <mark>826</mark> 29 | 311611   | 0.532369   | 0.26516715  | 0. <mark>00049</mark> 89 | 0.0001989        | 1.249355 |
| 163585     | 78350               | 311386   | 0.525345   | 0.25161696  | 0.0004989                | 0.0001989        | 1.201363 |
| 159292     | 75178               | 305645   | 0.521167   | 0.24596509  | 0.0004989                | 0.0001989        | 1.183792 |
| 159368     | 79236               | 300186   | 0.530898   | 0.26395635  | 0.0004989                | 0.0001989        | 1.247097 |
| 159429     | 79694               | 309717   | 0.514757   | 0.25731232  | 0.0004989                | 0.0001989        | 1.253825 |
| 159781     | 78541               | 308241   | 0.518364   | 0.25480387  | 0.0004989                | 0.0001989        | 1.232963 |
| 156824     | 79795               | 306178   | 0.512199   | 0.26061637  | 0.0004989                | 0.0001989        | 1.276268 |
| 166300     | 79806               | 303863   | 0.547286   | 0.2626381   | 0.0004989                | 0.0001989        | 1.20371  |
| 159292     | 75178               | 305645   | 0.521167   | 0.24596509  | 0.0004989                | 0.0001989        | 1.183792 |

| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | concentration of |          |
|------------|-------------|----------|------------|-------------|---------------|------------------|----------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | of phenacetin | paracetamol      | К        |
| 162902     | 107138      | 280601   | 0.580547   | 0.38181617  | 0.0004989     | 0.0002984        | 1.099593 |
| 164509     | 108719      | 275460   | 0.597216   | 0.39468162  | 0.0004989     | 0.0002984        | 1.104919 |
| 157666     | 113680      | 293405   | 0.537366   | 0.38745079  | 0.0004989     | 0.0002984        | 1.205482 |
| 158297     | 108860      | 275591   | 0.574391   | 0.39500564  | 0.0004989     | 0.0002984        | 1.149768 |
| 160668     | 106060      | 273302   | 0.587877   | 0.38806888  | 0.0004989     | 0.0002984        | 1.103664 |
| 157318     | 111284      | 275186   | 0.571679   | 0.40439557  | 0.0004989     | 0.0002984        | 1.182685 |
| 155956     | 110078      | 279650   | 0.557683   | 0.39362775  | 0.0004989     | 0.0002984        | 1.180085 |
| 164197     | 110339      | 280905   | 0.584529   | 0.39279828  | 0.0004989     | 0.0002984        | 1.123514 |
| 157883     | 110732      | 277450   | 0.56905    | 0.39910615  | 0.0004989     | 0.0002984        | 1.172607 |
| 161923     | 110653      | 277151   | 0.584241   | 0.39925167  | 0.0004989     | 0.0002984        | 1.142535 |

Table A.19 Determination of K using phenacetin as the standard at paracetamol concentration of 0.0003.

Table A.20 Determination of K using phenacetin as the standard at paracetamol concentration of 0.0004.

| Area for   | Area for       | Area for | PAR for    | PAR for     | concentration | concentration     |          |
|------------|----------------|----------|------------|-------------|---------------|-------------------|----------|
| phenacetin | paracetamol    | caffeine | phenacetin | paracetamol | of phenacetin | of<br>paracetamol | к        |
| 160105     | 147869         | 278893   | 0.574073   | 0.5302      | 0.0004989     | 0.0003979         | 1.158009 |
| 162013     | 143892         | 273931   | 0.591437   | 0.525286    | 0.0004989     | 0.0003979         | 1.113593 |
| 161277     | <u>1459</u> 97 | 274670   | 0.587166   | 0.531536    | 0.0004989     | 0.0003979         | 1.13504  |
| 159916     | 145357         | 281366   | 0.568356   | 0.516612    | 0.0004989     | 0.0003979         | 1.139682 |
| 162297     | 142123         | 278059   | 0.583678   | 0.511125    | 0.0004989     | 0.0003979         | 1.097977 |
| 165798     | 153794         | 292375   | 0.567073   | 0.526016    | 0.0004989     | 0.0003979         | 1.163053 |
| 155999     | 151085         | 290357   | 0.537266   | 0.520342    | 0.0004989     | 0.0003979         | 1.214337 |
| 161220     | 141335         | 272633   | 0.591344   | 0.518408    | 0.0004989     | 0.0003979         | 1.099184 |
| 163105     | 154125         | 293878   | 0.555009   | 0.524452    | 0.0004989     | 0.0003979         | 1.184801 |
| 161629     | 138804         | 273212   | 0.591588   | 0.508045    | 0.0004989     | 0.0003979         | 1.076768 |

| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | concentration of |          |
|------------|-------------|----------|------------|-------------|---------------|------------------|----------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | of phenacetin | paracetamol      | К        |
| 161697     | 183234      | 297765   | 0.543036   | 0.615364    | 0.0004989     | 0.0004974        | 1.136611 |
| 162286     | 185213      | 303906   | 0.534001   | 0.609442    | 0.0004989     | 0.0004974        | 1.144717 |
| 155021     | 186110      | 309678   | 0.500588   | 0.600979    | 0.0004989     | 0.0004974        | 1.204167 |
| 161411     | 185695      | 302519   | 0.533557   | 0.613829    | 0.0004989     | 0.0004974        | 1.153918 |
| 161285     | 182044      | 299597   | 0.53834    | 0.60763     | 0.0004989     | 0.0004974        | 1.132114 |
| 156677     | 173125      | 282243   | 0.555114   | 0.61339     | 0.0004989     | 0.0004974        | 1.108313 |
| 165371     | 173065      | 280771   | 0.588989   | 0.616392    | 0.0004989     | 0.0004974        | 1.049682 |
| 161462     | 170276      | 282641   | 0.571262   | 0.602446    | 0.0004989     | 0.0004974        | 1.057769 |
| 161219     | 175010      | 282235   | 0.571223   | 0.620086    | 0.0004989     | 0.0004974        | 1.088816 |
| 156605     | 176930      | 287140   | 0.545396   | 0.61618     | 0.0004989     | 0.0004974        | 1.133192 |

Table A.21 Determination of K using phenacetin as the standard at paracetamol concentration of 0.0005.

 Table A.22 Determination of K using phenacetin as the standard at paracetamol concentration of 0.0006.

| Area for   | Area for             | Area for | PAR for    | PAR for                   | concentration            | concentration |          |
|------------|----------------------|----------|------------|---------------------------|--------------------------|---------------|----------|
|            |                      |          |            | -                         |                          | of            |          |
| phenacetin | paracetamol          | caffeine | phenacetin | paracetamol               | of phenacetin            | paracetamol   | К        |
| 140136     | <mark>1916</mark> 57 | 250918   | 0.558493   | 0.76382324                | 0. <mark>00049</mark> 89 | 0.0005968     | 1.143299 |
| 143417     | 192985               | 249386   | 0.57508    | 0.77384055                | 0.0004989                | 0.0005968     | 1.124884 |
| 145939     | 190364               | 249803   | 0.584216   | 0.7620565                 | 0.0004989                | 0.0005968     | 1.090431 |
| 142387     | 191282               | 244047   | 0.583441   | 0.78 <mark>37916</mark> 5 | 0.0004989                | 0.0005968     | 1.123022 |
| 145617     | 190623               | 244900   | 0.594598   | 0.77837076                | 0.0004989                | 0.0005968     | 1.094329 |
| 147073     | 193597               | 252596   | 0.582246   | 0.7664294                 | 0.0004989                | 0.0005968     | 1.100399 |
| 147845     | 206131               | 273369   | 0.540826   | 0.75403941                | 0.0004989                | 0.0005968     | 1.165524 |
| 148499     | 190034               | 245702   | 0.604387   | 0.77343286                | 0.0004989                | 0.0005968     | 1.069775 |
| 144303     | 191659               | 254628   | 0.566721   | 0.75270198                | 0.0004989                | 0.0005968     | 1.110295 |
| 139037     | 200443               | 258235   | 0.538413   | 0.77620385                | 0.0004989                | 0.0005968     | 1.205161 |

| Area for | Area for    | Area for | PAR for  | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|----------|-------------|----------|----------|-------------|---------------|--------------------------|--------------------------|------------|
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol              | paracetamol              | percentage |
| 193775   | 173031      | 292836   | 0.661719 | 0.59088022  | 0.009767      | 0.000478395              | 0.0004974                | 96.17908   |
| 188615   | 175699      | 292099   | 0.645723 | 0.60150497  | 0.009767      | 0.000499061              | 0.0004974                | 100.33386  |
| 195299   | 175842      | 291500   | 0.669979 | 0.60323156  | 0.009767      | 0.000482373              | 0.0004974                | 96.978852  |
| 196907   | 185680      | 309364   | 0.63649  | 0.60019912  | 0.009767      | 0.000505201              | 0.0004974                | 101.56835  |
| 193115   | 180207      | 301300   | 0.640939 | 0.59809824  | 0.009767      | 0.000499938              | 0.0004974                | 100.51019  |
| 174878   | 171046      | 291390   | 0.600151 | 0.58700024  | 0.009767      | 0.000524008              | 0.0004974                | 105.34943  |
| 174584   | 186635      | 286541   | 0.609281 | 0.65133785  | 0.009767      | 0.000572729              | 0.0004974                | 115.14447  |
| 174195   | 178435      | 293880   | 0.592742 | 0.60716959  | 0.009767      | 0.000548788              | 0.0004974                | 110.33132  |
| 170041   | 171410      | 290442   | 0.585456 | 0.59016947  | 0.009767      | 0.000540061              | 0.0004974                | 108.57678  |
| 173695   | 173387      | 292232   | 0.594374 | 0.59331969  | 0.009767      | 0.000534798              | 0.0004974                | 107.51861  |

# Table A.23 Percentage content of using aspirin as the standard sample one



|          |             |          |          |             |               | А             | Ν             |            |
|----------|-------------|----------|----------|-------------|---------------|---------------|---------------|------------|
| Area for | Area for    | Area for | PAR for  | PAR for     | concentration | concentration | concentration |            |
|          |             |          |          |             |               | of            | of            |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol   | paracetamol   | percentage |
| 190083   | 169411      | 280263   | 0.678231 | 0.60447151  | 0.009767      | 0.000477484   | 0.0004974     | 95.99592   |
| 189497   | 162676      | 280770   | 0.674919 | 0.57939239  | 0.009767      | 0.000459919   | 0.0004974     | 92.46462   |
| 190618   | 162487      | 277526   | 0.686847 | 0.58548388  | 0.009767      | 0.000456683   | 0.0004974     | 91.814052  |
| 192303   | 163116      | 280429   | 0.685746 | 0.58166595  | 0.009767      | 0.000454434   | 0.0004974     | 91.361863  |
| 193174   | 165969      | 281312   | 0.68669  | 0.58998194  | 0.009767      | 0.000460297   | 0.0004974     | 92.540693  |
| 157139   | 161758      | 281119   | 0.558977 | 0.57540757  | 0.009767      | 0.000551496   | 0.0004974     | 110.87566  |
| 156471   | 199427      | 293513   | 0.533097 | 0.67944861  | 0.009767      | 0.000682826   | 0.0004974     | 137.27914  |
| 157689   | 161329      | 280452   | 0.562267 | 0.57524639  | 0.009767      | 0.000548114   | 0.0004974     | 110.19591  |
| 155178   | 158448      | 278950   | 0.556293 | 0.56801577  | 0.009767      | 0.000547037   | 0.0004974     | 109.97933  |
| 156291   | 161774      | 277673   | 0.56286  | 0.58260616  | 0.009767      | 0.000554543   | 0.0004974     | 111.48828  |

Table A.24 Percentage content of using aspirin as the standard sample two



|          |             |          |          |             | _             | A             | N             |            |
|----------|-------------|----------|----------|-------------|---------------|---------------|---------------|------------|
| Area for | Area for    | Area for | PAR for  | PAR for     | concentration | concentration | concentration |            |
|          |             |          |          |             |               | of            | of            |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol   | paracetamol   | percentage |
| 185277   | 174660      | 284322   | 0.651645 | 0.6143035   | 0.009767      | 0.000505047   | 0.0004974     | 101.53748  |
| 184008   | 174085      | 286562   | 0.642123 | 0.60749506  | 0.009767      | 0.000506856   | 0.000503      | 100.76667  |
| 182213   | 183292      | 286097   | 0.636892 | 0.64066383  | 0.009767      | 0.00053892    | 0.000503      | 107.14117  |
| 188032   | 185188      | 282436   | 0.665751 | 0.65568129  | 0.009767      | 0.000527644   | 0.000503      | 104.89948  |
| 189903   | 171541      | 283442   | 0.669989 | 0.60520671  | 0.009767      | 0.000483945   | 0.000503      | 96.211803  |
| 169524   | 173420      | 287068   | 0.590536 | 0.60410774  | 0.009767      | 0.00054806    | 0.000503      | 108.95828  |
| 168873   | 187236      | 279064   | 0.605141 | 0.67094287  | 0.009767      | 0.000594004   | 0.000503      | 118.09224  |
| 167065   | 172448      | 282918   | 0.590507 | 0.6095335   | 0.009767      | 0.00055301    | 0.000503      | 109.94233  |
| 165314   | 169403      | 286638   | 0.576734 | 0.5909998   | 0.009767      | 0.000548999   | 0.000503      | 109.14496  |
| 165916   | 192562      | 278666   | 0.595394 | 0.69101361  | 0.009767      | 0.000621788   | 0.000503      | 123.61596  |

# Table A.25 Percentage content of using aspirin as the standard sample three



|          |             |          |          |             |               |             | Ν             |            |
|----------|-------------|----------|----------|-------------|---------------|-------------|---------------|------------|
| Area for | Area for    | Area for | PAR for  | PAR for     | concentration |             | concentration |            |
|          |             |          |          |             |               |             | of            |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol | aspirin       |             | paracetamol   | percentage |
| 185249   | 176067      | 274686   | 0.674403 | 0.64097551  | 0.009767      | 0.000509193 | 0.0004974     | 102.3709   |
| 186448   | 167744      | 282244   | 0.660592 | 0.59432264  | 0.009767      | 0.000482003 | 0.000503      | 95.825591  |
| 187098   | 193955      | 303221   | 0.617035 | 0.63964897  | 0.009767      | 0.000555382 | 0.000503      | 110.41398  |
| 187592   | 178287      | 283135   | 0.662553 | 0.62968902  | 0.009767      | 0.000509173 | 0.000503      | 101.22729  |
| 188708   | 169483      | 281783   | 0.669693 | 0.60146638  | 0.009767      | 0.000481167 | 0.000503      | 95.659492  |
| 157500   | 207959      | 303265   | 0.519348 | 0.6857336   | 0.009767      | 0.000707388 | 0.000503      | 140.6337   |
| 152024   | 190641      | 275516   | 0.551779 | 0.69194167  | 0.009767      | 0.000671838 | 0.000503      | 133.56615  |
| 155481   | 168230      | 280049   | 0.555192 | 0.6007163   | 0.009767      | 0.000579677 | 0.000503      | 115.24401  |
| 154294   | 167989      | 279298   | 0.552435 | 0.60146868  | 0.009767      | 0.0005833   | 0.000503      | 115.96423  |
| 153594   | 169404      | 280802   | 0.546983 | 0.6032863   | 0.009767      | 0.000590894 | 0.000503      | 117.47397  |

 Table A.26 Percentage content of using aspirin as the standard sample four



|          | A           |          |          |             |                        | A             | N             |            |
|----------|-------------|----------|----------|-------------|------------------------|---------------|---------------|------------|
| Area for | Area for    | Area for | PAR for  | PAR for     | concentration          | concentration | concentration |            |
|          |             | <i></i>  |          |             |                        | of            | of            |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol | aspirin                | paracetamol   | paracetamol   | percentage |
| 182178   | 195852      | 301175   | 0.604891 | 0.65029302  | 0.009767               | 0.00057596    | 0.000503      | 114.50497  |
| 179550   | 182427      | 293889   | 0.610945 | 0.62073436  | 0.009767               | 0.000544332   | 0.000503      | 108.21711  |
| 183615   | 184833      | 287036   | 0.639693 | 0.64393665  | 0.009767               | 0.000539301   | 0.000503      | 107.21699  |
| 182128   | 172516      | 285162   | 0.638683 | 0.60497542  | 0.0 <mark>09767</mark> | 0.000507473   | 0.000503      | 100.88925  |
| 186373   | 200440      | 311023   | 0.599226 | 0.64445395  | 0.009767               | 0.000576185   | 0.000503      | 114.54962  |
| 165223   | 172265      | 288050   | 0.573591 | 0.59803853  | 0.009767               | 0.000558582   | 0.000503      | 111.05006  |
| 163982   | 173189      | 281713   | 0.582089 | 0.61477106  | 0.009767               | 0.000565828   | 0.000503      | 112.49063  |
| 164608   | 171428      | 290754   | 0.566142 | 0.58959808  | 0.009767               | 0.000557945   | 0.000503      | 110.92337  |
| 164407   | 171497      | 289113   | 0.56866  | 0.59318329  | 0.009767               | 0.000558852   | 0.000503      | 111.10368  |
| 166181   | 202965      | 302139   | 0.550015 | 0.67176035  | 0.009767               | 0.000654335   | 0.000503      | 130.08644  |

# Table A.27 Percentage content of using aspirin as the standard sample five



| Area for | Area for    | Area for | PAR for  | PAR for                  | concentration |             | N<br>concentration |            |
|----------|-------------|----------|----------|--------------------------|---------------|-------------|--------------------|------------|
| Alea IUI | Alea Iui    | Alea Iui | FAR IOI  | PAR IUI                  | concentration |             | of                 |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol              | aspirin       |             | paracetamol        | percentage |
| 182162   | 193248      | 296860   | 0.613629 | 0.65097352               | 0.009767      | 0.000568352 | 0.000503           | 112.99246  |
| 179937   | 167430      | 283900   | 0.633804 | 0.58974991               | 0.009767      | 0.000498509 | 0.000503           | 99.107163  |
| 181875   | 169970      | 283017   | 0.642629 | 0.60056463               | 0.009767      | 0.000500679 | 0.000503           | 99.538595  |
| 182400   | 183342      | 283917   | 0.642441 | 0.64575915               | 0.009767      | 0.000538514 | 0.000503           | 107.06053  |
| 182880   | 180754      | 285879   | 0.639711 | 0.63227449               | 0.009767      | 0.000529519 | 0.000503           | 105.27226  |
| 165026   | 206015      | 307871   | 0.536023 | 0.66916014               | 0.009767      | 0.000668816 | 0.000503           | 132.96542  |
| 165294   | 203803      | 300714   | 0.549672 | 0.67773034               | 0.009767      | 0.000660562 | 0.000503           | 131.32449  |
| 163486   | 205041      | 306391   | 0.533586 | 0.66921352               | 0.009767      | 0.000671924 | 0.000503           | 133.58337  |
| 162158   | 173535      | 287849   | 0.563344 | 0.60286817               | 0.009767      | 0.000573336 | 0.000503           | 113.98323  |
| 162435   | 208094      | 307837   | 0.527666 | 0. <mark>67598762</mark> | 0.009767      | 0.000686341 | 0.000503           | 136.44957  |

 Table A.28 Percentage content of using aspirin as the standard sample six



|          |             |          |          |                         |                         | А             | Ν             |            |
|----------|-------------|----------|----------|-------------------------|-------------------------|---------------|---------------|------------|
| Area for | Area for    | Area for | PAR for  | PAR for                 | concentration           | concentration | concentration |            |
|          |             |          |          |                         |                         | of            | of            |            |
| aspirin  | paracetamol | caffeine | aspirin  | paracetamol             | aspirin                 | paracetamol   | paracetamol   | percentage |
| 167139   | 168185      | 291689   | 0.573004 | 0.5765901               | 0.009767                | 0.0005391     | 0.000503      | 107.177    |
| 167409   | 168677      | 287664   | 0.58196  | 0.5863681               | 0.009767                | 0.000539805   | 0.000503      | 107.3172   |
| 162533   | 171801      | 298256   | 0.544945 | 0.5760186               | 0.009767                | 0.000566297   | 0.000503      | 112.5839   |
| 167881   | 167699      | 288166   | 0.582584 | 0.5819528               | 0.00 <mark>976</mark> 7 | 0.000535167   | 0.000503      | 106.395    |
| 167131   | 165979      | 289727   | 0.576857 | 0.5728807               | 0. <mark>009767</mark>  | 0.000532055   | 0.000503      | 105.7763   |
| 179229   | 170213      | 287740   | 0.622885 | 0.5915514               | 0.009767                | 0.000508797   | 0.000503      | 101.1525   |
| 181020   | 198465      | 307568   | 0.588553 | 0.6452719               | 0.009767                | 0.000587378   | 0.000503      | 116.7749   |
| 181707   | 181197      | 289409   | 0.627855 | 0.6260932               | 0.009767                | 0.000534244   | 0.000503      | 106.2115   |
| 182193   | 196801      | 314043   | 0.580153 | 0.626669                | 0.009767                | 0.000578703   | 0.000503      | 115.0503   |
| 182462   | 175560      | 306061   | 0.596162 | 0.57 <mark>36111</mark> | 0.009767                | 0.000515482   | 0.000503      | 102.4815   |

 Table A.29 Percentage content of using aspirin as the standard sample seven



|             |          |          |             |               | А             | Ν             |            |
|-------------|----------|----------|-------------|---------------|---------------|---------------|------------|
| Area for    | Area for | PAR for  | PAR for     | concentration | concentration | concentration |            |
|             |          |          |             |               | of            | of            |            |
| paracetamol | caffeine | aspirin  | paracetamol | aspirin       | paracetamol   | paracetamol   | Percentage |
| 167890      | 284699   | 0.623072 | 0.589710536 | 0.009767      | 0.000507062   | 0.0004974     | 101.942443 |
| 167288      | 282341   | 0.630454 | 0.592503391 | 0.009767      | 0.000503498   | 0.0004974     | 101.225962 |
| 168822      | 285748   | 0.618507 | 0.590807285 | 0.009767      | 0.000511755   | 0.0004974     | 102.885935 |
| 167667      | 277340   | 0.650004 | 0.604553977 | 0.009767      | 0.000498287   | 0.0004974     | 100.178324 |
| 168434      | 283858   | 0.622325 | 0.593374152 | 0.009767      | 0.000510824   | 0.0004974     | 102.698866 |
| 203784      | 293758   | 0.507285 | 0.693713873 | 0.009767      | 0.000732637   | 0.0004974     | 147.293263 |
| 170213      | 282396   | 0.521704 | 0.60274579  | 0.009767      | 0.000618971   | 0.0004974     | 124.441382 |
| 210293      | 302142   | 0.491329 | 0.696007175 | 0.009767      | 0.00075893    | 0.0004974     | 152.579481 |
| 174831      | 293435   | 0.494631 | 0.595808271 | 0.009767      | 0.000645336   | 0.0004974     | 129.741759 |
| 169750      | 284693   | 0.521811 | 0.596256318 | 0.009767      | 0.000612181   | 0.0004974     | 123.076186 |

 Table A.30 Percentage content of using aspirin as the standard sample eight



|             |          |          |             |               |             | Ν             |             |
|-------------|----------|----------|-------------|---------------|-------------|---------------|-------------|
| Area for    | Area for | PAR for  | PAR for     | concentration |             | concentration |             |
|             |          |          |             |               |             | of            |             |
| paracetamol | caffeine | aspirin  | paracetamol | aspirin       |             | paracetamol   | Percentage  |
| 171142      | 271477   | 0.527643 | 0.630410679 | 0.009767      | 0.000640094 | 0.0004974     | 128.6878779 |
| 175773      | 273121   | 0.519015 | 0.643571897 | 0.009767      | 0.00066432  | 0.0004974     | 133.5584244 |
| 179188      | 273401   | 0.515711 | 0.655403601 | 0.009767      | 0.000680867 | 0.0004974     | 136.8852251 |
| 186275      | 281485   | 0.503274 | 0.661758175 | 0.009767      | 0.000704458 | 0.0004974     | 141.6281285 |
| 173735      | 269948   | 0.52649  | 0.643586913 | 0.009767      | 0.000654903 | 0.0004974     | 131.6652856 |
| 179676      | 271726   | 0.65459  | 0.661239631 | 0.009767      | 0.00054119  | 0.0004974     | 108.8038472 |
| 173573      | 267919   | 0.657591 | 0.647856255 | 0.009767      | 0.000527817 | 0.0004974     | 106.115187  |
| 176038      | 272411   | 0.651115 | 0.646222069 | 0.009767      | 0.000531721 | 0.0004974     | 106.9001355 |
| 175594      | 272765   | 0.642531 | 0.643755614 | 0.009767      | 0.000536769 | 0.0004974     | 107.9148743 |
| 205822      | 282089   | 0.621144 | 0.729634973 | 0.009767      | 0.000629323 | 0.0004974     | 126.5224286 |

## Table A.31 Percentage content of using aspirin as the standard sample nine



| Area for<br>benzoic | Area for    | Area for | PAR for benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|-----------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid            | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 183723              | 139636      | 285588   | 0.6433148       | 0.488942    | 0.006067      | 0.000395436              | 0.0003979                | 99.38066   |
| 181210              | 152751      | 299457   | 0.6051286       | 0.510093    | 0.006067      | 0.000438575              | 0.0003979                | 110.2224   |
| 181702              | 137676      | 279602   | 0.6498594       | 0.4924      | 0.006067      | 0.000394222              | 0.0003979                | 99.07556   |
| 184127              | 136871      | 279328   | 0.6591785       | 0.490001    | 0.006067      | 0.000386755              | 0.0003979                | 97.19903   |
| 185452              | 145335      | 285447   | 0.6496898       | 0.509149    | 0.006067      | 0.000407737              | 0.0003979                | 102.4723   |
| 172527              | 141853      | 280060   | 0.6160358       | 0.506509    | 0.006067      | 0.000427783              | 0.0003979                | 107.5101   |
| 190446              | 144558      | 284073   | 0.6704122       | 0.508876    | 0.006067      | 0.000394923              | 0.0003979                | 99.25177   |
| 188663              | 142331      | 282818   | 0.6670827       | 0.50326     | 0.006067      | 0.000392514              | 0.0003979                | 98.64629   |
| 193456              | 144394      | 281138   | 0.6881176       | 0.513605    | 0.006067      | 0.000388337              | 0.0003979                | 97.59665   |
| 183723              | 139636      | 285588   | 0.6433148       | 0.488942    | 0.006067      | 0.000395436              | 0.0003979                | 99.38066   |

# Table A.32 Percentage content of using benzoic acid as the standard sample one

| Area for<br>benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|--------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid               | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 185183              | 135290      | 285716   | 0.6481366          | 0.473512    | 0.006067      | 0.000380108              | 0.0003979                | 95.52841   |
| 191225              | 138102      | 284028   | 0.6732611          | 0.486227    | 0.006067      | 0.000375748              | 0.0003979                | 94.43289   |
| 183754              | 137374      | 276792   | 0.6638703          | 0.496308    | 0.006067      | 0.000388964              | 0.0003979                | 97.75427   |
| 181650              | 134522      | 279739   | 0.6493553          | 0.480884    | 0.006067      | 0.000385301              | 0.0003979                | 96.83356   |
| 181822              | 134082      | 283727   | 0.6408343          | 0.472574    | 0.006067      | 0.000383677              | 0.0003979                | 96.42553   |
| 186107              | 133678      | 277345   | 0.6710307          | 0.481992    | 0.006067      | 0.000373714              | 0.0003979                | 93.92154   |
| 184330              | 129854      | 271082   | 0.6799788          | 0.479021    | 0.006067      | 0.000366523              | 0.0003979                | 92.11435   |
| 181466              | 133609      | 272581   | 0.6657324          | 0.490163    | 0.006067      | 0.000383074              | 0.0003979                | 96.27387   |
| 180122              | 132524      | 272719   | 0.6604674          | 0.485936    | 0.006067      | 0.000382798              | 0.0003979                | 96.20458   |
| 180098              | 135933      | 274262   | 0.6566641          | 0.495632    | 0.006067      | 0.000392697              | 0.0003979                | 98.69247   |

# Table A.33 Percentage content of using benzoic acid as the standard sample two



| Area for<br>benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|--------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid               | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 187471              | 159643      | 285147   | 0.65745387         | 0.5598621   | 0.006067      | 0.000443055              | 0.0003979                | 111.34835  |
| 180796              | 139226      | 275422   | 0.65643267         | 0.5055006   | 0.006067      | 0.000400658              | 0.0003979                | 100.69305  |
| 187808              | 144738      | 273244   | 0.68732708         | 0.5297024   | 0.006067      | 0.000400969              | 0.0003979                | 100.77121  |
| 185028              | 142744      | 274431   | 0.67422412         | 0.5201453   | 0.006067      | 0.000401386              | 0.0003979                | 100.87613  |
| 174280              | 143968      | 277229   | 0.62864996         | 0.5193108   | 0.006067      | 0.000429794              | 0.0003979                | 108.01558  |
| 188796              | 148206      | 275031   | 0.68645353         | 0.5388702   | 0.006067      | 0.000408427              | 0.0003979                | 102.64575  |
| 187678              | 144144      | 275156   | 0.68207853         | 0.5238628   | 0.006067      | 0.0003996                | 0.0003979                | 100.42716  |
| 187369              | 147351      | 275255   | 0.68071061         | 0.5353254   | 0.006067      | 0.000409164              | 0.0003979                | 102.83083  |
| 185970              | 144895      | 277485   | 0.67019839         | 0.5221724   | 0.006067      | 0.000405371              | 0.0003979                | 101.87755  |
| 183827              | 146579      | 278659   | 0.65968442         | 0.5260157   | 0.006067      | 0.000414863              | 0.0003979                | 104.26305  |

 Table A.34 Percentage content of using benzoic acid as the standard sample three



| Area for<br>Benzoic | Area for    | Area for | PAR for benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|-----------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid            | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 179765              | 134767      | 268504   | 0.6695059       | 0.501918    | 0.006067      | 0.00039005               | 0.0003979                | 98.02716   |
| 177357              | 134141      | 266795   | 0.6647688       | 0.502787    | 0.006067      | 0.000393509              | 0.0003979                | 98.89656   |
| 178202              | 133621      | 268541   | 0.6635933       | 0.497581    | 0.006067      | 0.000390125              | 0.0003979                | 98.04606   |
| 185252              | 136843      | 268502   | 0.6899464       | 0.509654    | 0.006067      | 0.000384328              | 0.0003979                | 96.589     |
| 183307              | 139525      | 264760   | 0.6923516       | 0.526987    | 0.006067      | 0.000396018              | 0.0003979                | 99.52701   |
| 184956              | 142549      | 282438   | 0.6548552       | 0.504709    | 0.006067      | 0.000400994              | 0.0003979                | 100.7775   |
| 186026              | 137130      | 270702   | 0.6871985       | 0.506572    | 0.006067      | 0.000383531              | 0.0003979                | 96.38885   |
| 180095              | 138682      | 274119   | 0.6569957       | 0.505919    | 0.006067      | 0.000400646              | 0.0003979                | 100.69     |
| 191611              | 142396      | 271828   | 0.704898        | 0.523846    | 0.006067      | 0.000386651              | 0.0003979                | 97.17294   |
| 180826              | 140212      | 270169   | 0.669307        | 0.518979    | 0.006067      | 0.000403428              | 0.0003979                | 101.3893   |

## Table A.35 Percentage content of using benzoic acid as the standard sample four



| Area for<br>Benzoic | Area for    | Area for | PAR for<br>benzoic     | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|------------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid                   | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 184322              | 152940      | 276319   | 0.66706234             | 0.55349071  | 0.006067      | 0.000431704              | 0.0003979                | 108.49554  |
| 187147              | 141699      | 271821   | 0.68849353             | 0.52129526  | 0.006067      | 0.000393936              | 0.0003979                | 99.003808  |
| 184388              | 146076      | 268083   | 0.68780191             | 0.54489095  | 0.006067      | 0.000412181              | 0.0003979                | 103.58913  |
| 190567              | 149234      | 269289   | 0.70766723             | 0.55417785  | 0.006067      | 0.000407438              | 0.0003979                | 102.3972   |
| 182424              | 147442      | 275436   | 0.66230994             | 0.53530403  | 0.006067      | 0.000420515              | 0.0003979                | 105.68351  |
| 159623              | 138991      | 264687   | 0.60306324             | 0.52511457  | 0.006067      | 0.000453036              | 0.0003979                | 113.85686  |
| 165454              | 142110      | 266746   | 0.62026797             | 0.53275401  | 0.006067      | 0.000446878              | 0.0003979                | 112.30921  |
| 169521              | 142016      | 269267   | 0.62956471             | 0.52741702  | 0.006067      | 0.000435869              | 0.0003979                | 109.54227  |
| 167879              | 156616      | 285704   | 0.58759765             | 0.54817573  | 0.006067      | 0.00048538               | 0.0003979                | 121.98537  |
| 165331              | 146352      | 267304   | 0.618 <mark>513</mark> | 0.54751145  | 0.006067      | 0.00046056               | 0.0003979                | 115.7477   |

## Table A.36 Percentage content of using benzoic acid as the standard sample five



| Area for<br>Benzoic | Area for    | Area for | PAR for benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|-----------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid            | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 167750              | 144754      | 274584   | 0.61092416      | 0.52717565  | 0.006067      | 0.000448962              | 0.0003979                | 112.83297  |
| 170535              | 138793      | 266906   | 0.63893281      | 0.52000704  | 0.006067      | 0.000423444              | 0.0003979                | 106.4197   |
| 162627              | 140003      | 270842   | 0.60044971      | 0.51691761  | 0.006067      | 0.000447906              | 0.0003979                | 112.56741  |
| 170514              | 140877      | 270703   | 0.62989328      | 0.52041167  | 0.006067      | 0.000429855              | 0.0003979                | 108.03091  |
| 154130              | 141640      | 267812   | 0.57551566      | 0.52887847  | 0.006067      | 0.000478124              | 0.0003979                | 120.16188  |
| 159623              | 138991      | 264687   | 0.60306324      | 0.52511457  | 0.006067      | 0.000453036              | 0.0003979                | 113.85686  |
| 165454              | 142110      | 266746   | 0.62026797      | 0.53275401  | 0.006067      | 0.000446878              | 0.0003979                | 112.30921  |
| 169521              | 142016      | 269267   | 0.62956471      | 0.52741702  | 0.006067      | 0.000435869              | 0.0003979                | 109.54227  |
| 167879              | 156616      | 285704   | 0.58759765      | 0.54817573  | 0.006067      | 0.00048538               | 0.0003979                | 121.98537  |
| 165331              | 146352      | 267304   | 0.618513        | 0.54751145  | 0.006067      | 0.00046056               | 0.0003979                | 115.7477   |

## Table A.37 Percentage content of using benzoic acid as the standard sample six



| Area for<br>Benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|--------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid               | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 189963              | 134233      | 277251   | 0.68516615         | 0.484157    | 0.006067      | 0.000367648              | 0.0003979                | 92.397083  |
| 181977              | 140598      | 283485   | 0.64192814         | 0.4959627   | 0.006067      | 0.00040198               | 0.0003979                | 101.02541  |
| 183426              | 136227      | 283357   | 0.64733181         | 0.480761    | 0.006067      | 0.000386406              | 0.0003979                | 97.111415  |
| 190378              | 139696      | 282311   | 0.67435559         | 0.4948302   | 0.006067      | 0.000381776              | 0.0003979                | 95.947839  |
| 184998              | 140008      | 284888   | 0.64937098         | 0.4914493   | 0.006067      | 0.000393757              | 0.0003979                | 98.958659  |
| 181268              | 137869      | 286526   | 0.63264067         | 0.4811745   | 0.006067      | 0.000395719              | 0.0003979                | 99.451988  |
| 191616              | 136720      | 282602   | 0.67804191         | 0.4837899   | 0.006067      | 0.000371229              | 0.0003979                | 93.297126  |
| 189272              | 139902      | 289258   | 0.65433627         | 0.4836582   | 0.006067      | 0.000384574              | 0.0003979                | 96.650819  |
| 190577              | 135693      | 281694   | 0.67653908         | 0.4817036   | 0.006067      | 0.000370449              | 0.0003979                | 93.101128  |
| 182752              | 150301      | 292656   | 0.62446012         | 0.5135757   | 0.006067      | 0.000427899              | 0.0003979                | 107.53943  |

 Table A.38 Percentage content of using benzoic acid as the standard sample seven



| Area for<br>Benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|--------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid               | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 188079              | 140890      | 276640   | 0.67986914         | 0.5092901   | 0.006067      | 0.000389746              | 0.0003979                | 97.950768  |
| 185325              | 142544      | 273950   | 0.67649206         | 0.5203285   | 0.006067      | 0.000400181              | 0.0003979                | 100.57335  |
| 182496              | 145134      | 272998   | 0.66848841         | 0.5316303   | 0.006067      | 0.000413769              | 0.0003979                | 103.98814  |
| 180278              | 143135      | 272114   | 0.6625091          | 0.5260112   | 0.006067      | 0.00041309               | 0.0003979                | 103.81763  |
| 188053              | 143812      | 278443   | 0.67537342         | 0.5164863   | 0.006067      | 0.000397884              | 0.0003979                | 99.99605   |
| 186495              | 146247      | 282358   | 0.66049129         | 0.5179488   | 0.006067      | 0.000408001              | 0.0003979                | 102.53869  |
| 184444              | 145602      | 274082   | 0.67295189         | 0.5312352   | 0.006067      | 0.000410719              | 0.0003979                | 103.22165  |
| 187317              | 144051      | 276652   | 0.67708529         | 0.5206939   | 0.006067      | 0.000400111              | 0.0003979                | 100.55579  |
| 182676              | 143584      | 278189   | 0.65666148         | 0.5161383   | 0.006067      | 0.000408946              | 0.0003979                | 102.7762   |
| 184269              | 145499      | 274486   | 0.67132386         | 0.530078    | 0.006067      | 0.000410818              | 0.0003979                | 103.24659  |

Table A.39 Percentage content of using benzoic acid as the standard sample eight



| Area for<br>Benzoic | Area for    | Area for | PAR for<br>benzoic | PAR for     | concentration | A<br>concentration<br>Of | N<br>concentration<br>of |            |
|---------------------|-------------|----------|--------------------|-------------|---------------|--------------------------|--------------------------|------------|
| acid                | paracetamol | caffeine | acid               | paracetamol | benzoic acid  | paracetamol              | paracetamol              | Percentage |
| 191518              | 145429      | 261226   | 0.73315061         | 0.5567172   | 0.006067      | 0.000395078              | 0.0003979                | 99.29089   |
| 185242              | 138088      | 258353   | 0.71701122         | 0.5344935   | 0.006067      | 0.000387845              | 0.0003979                | 97.473029  |
| 183953              | 141518      | 258404   | 0.7118814          | 0.5476618   | 0.006067      | 0.000400264              | 0.0003979                | 100.59417  |
| 187306              | 146695      | 265066   | 0.7066391          | 0.5534282   | 0.006067      | 0.000407479              | 0.0003979                | 102.40746  |
| 186101              | 139824      | 262569   | 0.70876989         | 0.5325229   | 0.006067      | 0.000390908              | 0.0003979                | 98.242861  |
| 188079              | 140890      | 276640   | 0.67986914         | 0.5092901   | 0.006067      | 0.000389746              | 0.0003979                | 97.950768  |
| 185325              | 142544      | 273950   | 0.67649206         | 0.5203285   | 0.006067      | 0.000400181              | 0.0003979                | 100.57335  |
| 182496              | 145134      | 272998   | 0.66848841         | 0.5316303   | 0.006067      | 0.000413769              | 0.0003979                | 103.98814  |
| 180278              | 143135      | 272114   | 0.6625091          | 0.5260112   | 0.006067      | 0.00041309               | 0.0003979                | 103.81763  |
| 188053              | 143812      | 278443   | 0.67537342         | 0.5164863   | 0.006067      | 0.000397884              | 0.0003979                | 99.99605   |

 Table A.40 Percentage content of using benzoic acid as the standard sample nine



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 159412     | 142452      | 280427   | 0.5684617  | 0.50798247  | 0.0004989     | 0.000386193              | 0.0003979                | 97.057877  |
| 156103     | 141265      | 281451   | 0.5546365  | 0.50191685  | 0.0004989     | 0.000391093              | 0.0003979                | 98.289374  |
| 158010     | 146351      | 276200   | 0.5720854  | 0.52987328  | 0.0004989     | 0.000400284              | 0.0003979                | 100.59916  |
| 154492     | 142779      | 279671   | 0.5524062  | 0.51052487  | 0.0004989     | 0.000399407              | 0.0003979                | 100.3787   |
| 159025     | 143410      | 278399   | 0.5712125  | 0.51512398  | 0.0004989     | 0.000389737              | 0.0003979                | 97.948385  |
| 163385     | 142938      | 280200   | 0.5831014  | 0.51012848  | 0.0004989     | 0.000378088              | 0.0003979                | 95.020818  |
| 161238     | 141551      | 279578   | 0.5767192  | 0.50630236  | 0.0004989     | 0.000379405              | 0.0003979                | 95.351776  |
| 166668     | 141314      | 279062   | 0.5972436  | 0.50638926  | 0.0004989     | 0.000366429              | 0.0003979                | 92.090793  |
| 159762     | 144314      | 280273   | 0.5700228  | 0.51490511  | 0.0004989     | 0.000390384              | 0.0003979                | 98.111117  |
| 163892     | 145469      | 282441   | 0.5802699  | 0.51504208  | 0.0004989     | 0.000383592              | 0.0003979                | 96.404198  |

## Table A.41 Percentage content of using phenacetin as the standard sample one



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 155776     | 133367      | 280250   | 0.5558466  | 0.47588582  | 0.0004989     | 0.000370003              | 0.0003979                | 92.988894  |
| 155535     | 135478      | 284552   | 0.5465961  | 0.47610981  | 0.0004989     | 0.000376442              | 0.0003979                | 94.607135  |
| 158520     | 131316      | 279014   | 0.5681435  | 0.47064305  | 0.0004989     | 0.000358006              | 0.0003979                | 89.973959  |
| 162870     | 134210      | 280639   | 0.5803541  | 0.47823004  | 0.0004989     | 0.000356124              | 0.0003979                | 89.500823  |
| 165014     | 135932      | 284839   | 0.5793238  | 0.47722398  | 0.0004989     | 0.000356007              | 0.0003979                | 89.471385  |
| 156189     | 129665      | 283716   | 0.5505118  | 0.45702393  | 0.0004989     | 0.000358781              | 0.0003979                | 90.16865   |
| 159836     | 131598      | 278581   | 0.5737505  | 0.47238685  | 0.0004989     | 0.000355821              | 0.0003979                | 89.424791  |
| 154729     | 128835      | 280920   | 0.5507938  | 0.45861811  | 0.0004989     | 0.000359848              | 0.0003979                | 90.436842  |
| 154085     | 128124      | 273533   | 0.5633141  | 0.46840418  | 0.0004989     | 0.000359358              | 0.0003979                | 90.313645  |
| 163259     | 134477      | 283514   | 0.5758411  | 0.47432226  | 0.0004989     | 0.000355982              | 0.0003979                | 89.465198  |

 Table A.42 Percentage content of using phenacetin as the standard sample two



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 159846     | 145666      | 272292   | 0.5870389  | 0.53496247  | 0.0004989     | 0.000393834              | 0.0003979                | 98.978227  |
| 160608     | 145723      | 280103   | 0.5733891  | 0.52024791  | 0.0004989     | 0.000392119              | 0.0003979                | 98.547174  |
| 157327     | 147265      | 282060   | 0.5577785  | 0.52210523  | 0.0004989     | 0.000404533              | 0.0003979                | 101.66689  |
| 161546     | 147509      | 278366   | 0.5803367  | 0.52991026  | 0.0004989     | 0.00039462               | 0.0003979                | 99.175764  |
| 155242     | 146615      | 278848   | 0.5567262  | 0.52578824  | 0.0004989     | 0.000408156              | 0.0003979                | 102.57757  |
| 158997     | 145041      | 271714   | 0.5851631  | 0.53380025  | 0.0004989     | 0.000394239              | 0.0003979                | 99.079796  |
| 157541     | 141951      | 277653   | 0.5674025  | 0.51125325  | 0.0004989     | 0.000389405              | 0.0003979                | 97.865159  |
| 162358     | 148894      | 274121   | 0.5922859  | 0.54316889  | 0.0004989     | 0.000396333              | 0.0003979                | 99.606287  |
| 155448     | 144741      | 274267   | 0.5667762  | 0.52773757  | 0.0004989     | 0.000402405              | 0.0003979                | 101.13225  |
| 159518     | 145079      | 284751   | 0.5602017  | 0.50949426  | 0.0004989     | 0.000393054              | 0.0003979                | 98.782066  |

 Table A.43 Percentage content of using phenacetin as the standard sample three



| Area for   | Area for    | Area for | PAR for                | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin             | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 158656     | 144378      | 273878   | 0.579294               | 0.5271617   | 0.0004989     | 0.00039328               | 0.0003979                | 98.83887   |
| 155991     | 136914      | 273831   | 0.569662               | 0.4999945   | 0.0004989     | 0.00037932               | 0.0003979                | 95.33043   |
| 158556     | 138534      | 278253   | 0.569827               | 0.4978706   | 0.0004989     | 0.000377599              | 0.0003979                | 94.89797   |
| 152346     | 139350      | 270700   | 0.562785               | 0.5147765   | 0.0004989     | 0.000395306              | 0.0003979                | 99.34801   |
| 163246     | 136412      | 278597   | 0.585957               | 0.4896392   | 0.0004989     | 0.000361133              | 0.0003979                | 90.75975   |
| 161246     | 134869      | 268650   | 0.600208               | 0.5020249   | 0.0004989     | 0.000361477              | 0.0003979                | 90.84613   |
| 157063     | 137503      | 270525   | 0.580586               | 0.508282    | 0.0004989     | 0.000378352              | 0.0003979                | 95.08708   |
| 155304     | 133759      | 270427   | 0.574292               | 0.4946215   | 0.0004989     | 0.000372218              | 0.0003979                | 93.54565   |
| 151254     | 128833      | 268579   | 0.56 <mark>3164</mark> | 0.4796838   | 0.0004989     | 0.00036811               | 0.0003979                | 92.51316   |
| 156264     | 134120      | 269275   | 0.580314               | 0.4980782   | 0.0004989     | 0.00037093               | 0.0003979                | 93.22188   |

Table A.44 Percentage content of using phenacetin as the standard sample four



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 159816     | 139023      | 273073   | 0.58525    | 0.5091056   | 0.0004989     | 0.000375944              | 0.0003979                | 94.48212   |
| 152047     | 140914      | 275074   | 0.552749   | 0.5122767   | 0.0004989     | 0.000400529              | 0.0003979                | 100.6606   |
| 158188     | 141523      | 272738   | 0.58       | 0.5188973   | 0.0004989     | 0.000386643              | 0.0003979                | 97.17101   |
| 165540     | 139043      | 268110   | 0.617433   | 0.5186043   | 0.0004989     | 0.000362997              | 0.0003979                | 91.22827   |
| 159567     | 141262      | 270636   | 0.5896     | 0.5219631   | 0.0004989     | 0.000382595              | 0.0003979                | 96.15359   |
| 157469     | 147099      | 268989   | 0.585411   | 0.5468588   | 0.0004989     | 0.000403712              | 0.0003979                | 101.4607   |
| 156837     | 144118      | 271120   | 0.578478   | 0.5315654   | 0.0004989     | 0.000397125              | 0.0003979                | 99.80515   |
| 158483     | 145937      | 264337   | 0.599549   | 0.5520869   | 0.0004989     | 0.00039796               | 0.0003979                | 100.0152   |
| 156103     | 145916      | 269104   | 0.580084   | 0.542229    | 0.0004989     | 0.00040397               | 0.0003979                | 101.5254   |
| 161460     | 153753      | 270226   | 0.5975     | 0.5689793   | 0.0004989     | 0.000411544              | 0.0003979                | 103.4289   |

 Table A.45 Percentage content of using phenacetin as the standard sample five



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | A<br>concentration<br>of | N<br>concentration<br>of |            |
|------------|-------------|----------|------------|-------------|---------------|--------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | paracetamol              | paracetamol              | Percentage |
| 159892     | 141874      | 281675   | 0.567647   | 0.5036798   | 0.0004989     | 0.000383472              | 0.0003979                | 96.37388   |
| 156419     | 138686      | 274965   | 0.568869   | 0.5043769   | 0.0004989     | 0.000383178              | 0.0003979                | 96.30002   |
| 159736     | 155890      | 289679   | 0.551424   | 0.5381474   | 0.0004989     | 0.000421767              | 0.0003979                | 105.9983   |
| 157047     | 144065      | 277968   | 0.564982   | 0.5182791   | 0.0004989     | 0.000396448              | 0.0003979                | 99.63504   |
| 161513     | 145104      | 288681   | 0.559486   | 0.5026448   | 0.0004989     | 0.000388266              | 0.0003979                | 97.57873   |
| 154618     | 138732      | 278806   | 0.554572   | 0.4975933   | 0.0004989     | 0.00038777               | 0.0003979                | 97.45404   |
| 160567     | 143559      | 281684   | 0.570025   | 0.5096456   | 0.0004989     | 0.000386395              | 0.0003979                | 97.10853   |
| 154957     | 135769      | 281629   | 0.550217   | 0.4820846   | 0.0004989     | 0.000378658              | 0.0003979                | 95.164     |
| 159213     | 137681      | 282613   | 0.56336    | 0.4871715   | 0.0004989     | 0.000373725              | 0.0003979                | 93.92447   |
| 159892     | 141874      | 281675   | 0.567647   | 0.5036798   | 0.0004989     | 0.000383472              | 0.0003979                | 96.37388   |

# Table A.46 Percentage content of using phenacetin as the standard sample six



|            |             |          | 5.5.                    | 545 (       |               | A                | N                |            |
|------------|-------------|----------|-------------------------|-------------|---------------|------------------|------------------|------------|
| Area for   | Area for    | Area for | PAR for                 | PAR for     | concentration | concentration of | concentration of |            |
| phenacetin | paracetamol | caffeine | phenacetin              | paracetamol | phenacetin    | paracetamol      | paracetamol      | Percentage |
| 160945     | 144189      | 278557   | 0.5777812               | 0.5176283   | 0.0004989     | 0.000387179      | 0.0003979        | 97.305612  |
| 158716     | 143694      | 285343   | 0.5562288               | 0.5035834   | 0.0004989     | 0.000391269      | 0.0003979        | 98.333426  |
| 149166     | 143215      | 290074   | 0.5142343               | 0.4937188   | 0.0004989     | 0.000414931      | 0.0003979        | 104.28021  |
| 162908     | 142504      | 284889   | 0.5718297               | 0.5002089   | 0.0004989     | 0.000378044      | 0.0003979        | 95.009688  |
| 168382     | 142742      | 280889   | 0.599461                | 0.5081794   | 0.0004989     | 0.000366364      | 0.0003979        | 92.074498  |
| 166346     | 139675      | 284802   | 0.584076                | 0.4904284   | 0.0004989     | 0.00036288       | 0.0003979        | 91.198893  |
| 155982     | 132805      | 275407   | 0.566369                | 0.4822136   | 0.0004989     | 0.000367957      | 0.0003979        | 92.474755  |
| 155745     | 132185      | 266676   | 0.5840233               | 0.4956764   | 0.0004989     | 0.000366797      | 0.0003979        | 92.1831    |
| 146730     | 132413      | 272687   | 0.5380895               | 0.485586    | 0.0004989     | 0.000390004      | 0.0003979        | 98.015544  |
| 150697     | 132402      | 276844   | 0.54433 <mark>91</mark> | 0.4782549   | 0.0004989     | 0.000379706      | 0.0003979        | 95.427421  |

 Table A.47 Percentage content of using phenacetin as the standard sample seven



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | Actual<br>concentration | Nominal<br>concentration |            |
|------------|-------------|----------|------------|-------------|---------------|-------------------------|--------------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | of<br>paracetamol       | of<br>paracetamol        | percentage |
| 161360     | 141284      | 296813   | 0.543642   | 0.4760034   | 0.0004989     | 0.000378403             | 0.0003979                | 95.099962  |
| 162406     | 148653      | 294949   | 0.550624   | 0.5039956   | 0.0004989     | 0.000395575             | 0.0003979                | 99.415673  |
| 168623     | 162346      | 302505   | 0.5574222  | 0.5366721   | 0.0004989     | 0.000416085             | 0.0003979                | 104.57022  |
| 159546     | 145793      | 288428   | 0.5531571  | 0.5054745   | 0.0004989     | 0.000394919             | 0.0003979                | 99.250796  |
| 160006     | 145326      | 284064   | 0.5632745  | 0.511596    | 0.0004989     | 0.000392522             | 0.0003979                | 98.648457  |
| 171845     | 150716      | 292610   | 0.5872834  | 0.5150747   | 0.0004989     | 0.000379035             | 0.0003979                | 95.258931  |
| 159211     | 148676      | 287324   | 0.5541166  | 0.5174507   | 0.0004989     | 0.000403576             | 0.0003979                | 101.42641  |
| 160056     | 145838      | 287504   | 0.5567088  | 0.5072556   | 0.0004989     | 0.000393782             | 0.0003979                | 98.965082  |
| 161510     | 147483      | 290272   | 0.5564092  | 0.5080855   | 0.0004989     | 0.000394639             | 0.0003979                | 99.180386  |
| 159312     | 147630      | 290626   | 0.5481684  | 0.5079724   | 0.0004989     | 0.000400482             | 0.0003979                | 100.64898  |
| 161360     | 141284      | 296813   | 0.543642   | 0.4760034   | 0.0004989     | 0.000378403             | 0.0003979                | 95.099962  |

 Table A.48 Percentage content of using phenacetin as the standard sample eight



| Area for   | Area for    | Area for | PAR for    | PAR for     | concentration | Actual concentration | Nominal concentration |            |
|------------|-------------|----------|------------|-------------|---------------|----------------------|-----------------------|------------|
| phenacetin | paracetamol | caffeine | phenacetin | paracetamol | phenacetin    | of<br>paracetamol    | of<br>paracetamol     | percentage |
| 154360     | 144753      | 275703   | 0.5598778  | 0.5250324   | 0.0004989     | 0.000405275          | 0.0003979             | 101.85352  |
| 158438     | 142887      | 278570   | 0.5687547  | 0.5129303   | 0.0004989     | 0.000389754          | 0.0003979             | 97.952745  |
| 154419     | 147911      | 273169   | 0.5652874  | 0.5414633   | 0.0004989     | 0.000413959          | 0.0003979             | 104.03584  |
| 154437     | 144820      | 277938   | 0.5556527  | 0.5210515   | 0.0004989     | 0.000405261          | 0.0003979             | 101.84986  |
| 161950     | 147231      | 277029   | 0.5845958  | 0.5314642   | 0.0004989     | 0.000392894          | 0.0003979             | 98.741917  |
| 160060     | 149814      | 281795   | 0.5680016  | 0.5316418   | 0.0004989     | 0.000404508          | 0.0003979             | 101.66064  |
| 148680     | 146634      | 280246   | 0.5305339  | 0.5232332   | 0.0004989     | 0.000426225          | 0.0003979             | 107.11872  |
| 147496     | 152602      | 281616   | 0.5237487  | 0.5418797   | 0.0004989     | 0.000447133          | 0.0003979             | 112.37332  |
| 165456     | 147563      | 277581   | 0.5960639  | 0.5316034   | 0.0004989     | 0.000385436          | 0.0003979             | 96.867525  |
| 165214     | 148400      | 285423   | 0.5788391  | 0.5199301   | 0.0004989     | 0.00038819           | 0.0003979             | 97.559665  |
| 154360     | 144753      | 275703   | 0.5598778  | 0.5250324   | 0.0004989     | 0.000405275          | 0.0003979             | 101.85352  |

## Table A.49 Percentage content of using phenacetin as the standard sample nine



| Table A. 50 | Validation | of developed | method |
|-------------|------------|--------------|--------|
|-------------|------------|--------------|--------|

|             | Aspirin     |            |             | Benzoic acid |            |             | Phenacetin  |            |
|-------------|-------------|------------|-------------|--------------|------------|-------------|-------------|------------|
|             | PAR for     |            |             | PAR for      |            |             | PAR for     |            |
| PAR for     | pure        |            | PAR for     | pure         | CT         | PAR for     | pure        |            |
| Paracetamol | paracetamol | Percentage | Paracetamol | paracetamol  | Percentage | Paracetamol | paracetamol | Percentage |
| tablet      | powder      | content    | tablet      | powder       | content    | tablet      | powder      | content    |
| 0.601505    | 0.628678    | 95.7       | 0.510093    | 0.444445     | 114.8      | 0.501917    | 0.521202    | 96.3       |
| 0.603232    | 0.628678    | 96.0       | 0.4924      | 0.444445     | 110.8      | 0.529873    | 0.521202    | 101.7      |
| 0.600199    | 0.628678    | 95.5       | 0.490001    | 0.444445     | 110.3      | 0.510525    | 0.521202    | 98.0       |
| 0.598098    | 0.628678    | 95.1       | 0.509149    | 0.444445     | 114.6      | 0.515124    | 0.521202    | 98.8       |
| 0.587       | 0.628678    | 93.4       | 0.506509    | 0.444445     | 114.0      | 0.510128    | 0.521202    | 97.9       |
| 0.651338    | 0.628678    | 103.6      | 0.508876    | 0.444445     | 114.5      | 0.506302    | 0.521202    | 97.1       |
| 0.60717     | 0.628678    | 96.6       | 0.50326     | 0.444445     | 113.2      | 0.506389    | 0.521202    | 97.2       |
| 0.590169    | 0.628678    | 93.9       | 0.513605    | 0.444445     | 115.6      | 0.514905    | 0.521202    | 98.8       |



|          |                | Sum of<br>Squares | df | Mean Square | F     | Sig. |
|----------|----------------|-------------------|----|-------------|-------|------|
| VAR00007 | Between Groups | .092              | 4  | .023        | .023  | .999 |
|          | Within Groups  | 44.092            | 45 | .980        |       |      |
|          | Total          | 44.184            | 49 |             |       |      |
| VAR00008 | Between Groups | 2.525             | 4  | .631        | 3.159 | .023 |
|          | Within Groups  | 8.994             | 45 | .200        |       |      |
|          | Total          | 11.519            | 49 |             |       |      |
| VAR00012 | Between Groups | .005              | 3  | .002        | .870  | .466 |
|          | Within Groups  | .063              | 36 | .002        | 112   |      |
|          | Total          | .068              | 39 |             | 147   |      |

#### Table A.51 Statistical analysis for varying K

#### Table A.52 Statistical analysis for developed method and standard methods

|                        | Paired Differences |           |            |                                           |         |        |    |            |
|------------------------|--------------------|-----------|------------|-------------------------------------------|---------|--------|----|------------|
|                        |                    | Std.      | Std. Error | 99% Confidence Interval of the Difference |         |        |    | Sig.       |
|                        | Mean               | Deviation | Mean       | Lower                                     | Upper   | t      | df | (2-tailed) |
| ASPIRIN - BP           | 2.9152             | 7.02032   | 2.34011    | -4.9368                                   | 10.7671 | 1.246  | 8  | .248       |
| BENZOIC ACID - BP      | -1.6700            | 4.66772   | 1.55591    | -6.8907                                   | 3.5506  | -1.073 | 8  | .314       |
| <b>BP - PHENACITIN</b> | 5.4589             | 2.15690   | .71897     | -3.0465                                   | 7.8713  | 7.593  | 8  | .348       |
| USP - ASPIRIN          | -7.7952            | 8.27184   | 2.75728    | -17.0469                                  | 1.4566  | -2.827 | 8  | .022       |
| USP - BENZOIC ACID     | -3.2100            | 7.09504   | 2.36501    | -11.1455                                  | 4.7256  | -1.357 | 8  | .212       |
| USP - PHENACITIN       | .5789              | 5.26122   | 1.75374    | -5.3056                                   | 6.4634  | .330   | 8  | .750       |