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ABSTRACT  

Insurance acts as a risk transfer mechanism and investment platform to protect against losses 

and to provide peace of mind. Insurance penetration which is defined as the contribution of 

total insurance to GDP is still 1%.The players of the insurance market consist of insurance 

companies (insurers) and policy holders. The insurance market is divided into Non-Life and 

Life insurance companies. This study focuses on the efficiency of the life insurance industry 

in Ghana. Data Envelopment Analysis was employed to evaluate the efficiencies of fourteen 

life insurance companies in Ghana for the period 2010to 2013. Data Envelopment Analysis, 

a non-parametric mathematical programming tool, has the capability of evaluating the 

relative efficiencies of companies or firms that use similar multiple inputs to produce similar 

multiple outputs. We used capital, commission and management expenses as inputs that are 

used by life insurers to produce net premiums, investment income and claims as outputs. 

The results of the study revealed that Ghanaian life insurance companies operated at an 

average overall efficiency of 82%, average scale efficiency of 93% and an average technical 

efficiency of 88%. This shows that the efficiency the of life insurers is largely due to their 

scale efficiency that is scale of operations rather than technical efficiency (managerial 

skills).The study also tested hypotheses relating to the roles dimension and market share 

play in the efficiency of Ghanaian life insurers. The study showed that large insurers in 

terms of capital do not necessarily tend to have higher efficiencies than smaller insurers. 

Also, the study revealed that life insurers with higher market shares tend to be more efficient 

than those with lower market shares.  

 



 

vi  

  

TABLE OF CONTENTS  

Title Page………………………………………………………………………….………..i 

Declaration ………………………………………………………………………………...ii  

Dedication ........................................................................................................................... iii  

Acknowledgement ...............................................................................................................iv  

Abstract .................................................................................................................................v  

List of Tables ........................................................................................................................ x 

List of Figures ......................................................................................................................xi  

  

CHAPTER 1 ....................................................................................................................... 1 

INTRODUCTION.............................................................................................................. 1  

1.1 Background of the study ................................................................................................. 1  

1.3 Objectives of the study.................................................................................................... 4  

1.4 Relevance of the study ....................................................................................................4  

1.5 Methodology ...................................................................................................................5  

1.5.1 The model of Hongliang and Michael: DEA Model Used .......................................... 5  

1.5.2 Mann-Whitney U-test .................................................................................................. 7  

1.6 Scope of study ...............................................................................................................10  

1.7 Limitations of the study ................................................................................................ 10  

1.8 Organization of the study .............................................................................................. 11  

  

CHAPTER 2 ...................................................................................................................12 

LITERATURE REVIEW ................................................................................................12  

2.1 Data Envelopment Analysis (DEA) ..............................................................................12 

2.2 Review of DEA Models and some Extensions .............................................................12 

2.2.1 The CCR Model ......................................................................................................... 13  



 

  

  

vii   

2.2.3 The BCC Model ......................................................................................................... 15  

2.3 Extensions of the DEA Models..................................................................................... 15  

2.3.1 Benchmarking in DEA ...............................................................................................16  

2.3.2 Efficiency ranking of DMUs ..................................................................................... 17  

2.4 Traditional Efficiency Measurement Concepts ............................................................ 18  

2.5 The Concept of Frontier Efficiency .............................................................................. 19  

2.5.1 Input-Oriented Measures ........................................................................................... 23  

2.6.2 Output-Oriented Measures .........................................................................................25  

2.5.3Ways of treating blank or missing data in DEA ......................................................... 27  

2.5.4 Units Invariance in DEA Models ............................................................................... 29  

2.5.5 Translation Invariance ............................................................................................... 30  

2.6 Applications of DEA in efficiency analysis in the insurance industry. ........................ 31  

2.6.1 Methodological issues in DEA .................................................................................. 31  

2.6.2 Geography of applications of DEA ........................................................................... 32  

2.6.3 Choice of input and output variables in DEA ............................................................ 32  

  

CHAPTER 3 ......................................................................................................................35 

METHODOLOGY .......................................................................................................... 35  

3.0 Introduction...................................................................................................................35  

3.1 Linear programming .................................................................................................... 35  

3.1.1Fundamental theorem of linear programming. ........................................................... 36  

3.1.2 The Simplex method ................................................................................................. 39  

3.1.3 The Ellipsoid method .................................................................................................40 

3.1.4 Interior point methods ................................................................................................41 



 

viii  

  

3.2 Derivation of Primal-Dual Interior-point Methods ....................................................... 43  

3.2.1 The Central path ........................................................................................................ 47  

3.2.2 Neighborhoods of the Central Path ............................................................................ 49  

3.2.3 Practical Implementation of Interior-point Methods ................................................. 50  

3.2.4 Termination Criteria for Interior-Point methods ....................................................... 50  

3.2.6The Predictor Direction............................................................................................... 53  

3.2.7 Termination Criterion ................................................................................................ 55  

3.2.8 An Interior-Point Algorithm Implemented on MATLAB ......................................... 56  

  

CHAPTER 4 ..................................................................................................................... 74  

DATA ANALYSIS AND RESULTS ............................................................................... 74  

4.1 Descriptive Statistics .................................................................................................... 74  

4.2 Overall Efficiencies of Ghanaian Life Insurers ............................................................ 75  

4.3 Technical Efficiencies of Ghanaian Life Insurers ........................................................ 77  

4.4 Scale Efficiencies of Ghanaian Life Insurers ................................................................ 80  

4.5 Average Overall, Technical and Scale Efficiencies of Ghanaian Life Insurers ........... 81  

4.6 Effects of Dimension and Market Share on Insurer Efficiency .................................... 83  

4.6.1 Effect of Dimension on Insurer Efficiency ................................................................ 84  

4.6.2 Effect of Market share on Insurer Efficiency ............................................................ 85  

  

CHAPTER 5 ......................................................................................................................88  

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS ..................................88  

5.1 Summary ...................................................................................................................... 88  

5.2 Conclusions ...................................................................................................................88 

5.3 Recommendations .........................................................................................................89 

REFERENCES ................................................................................................................ 90  



 

  

  

ix   

APPENDIX A ....................................................................................................................95 

APPENDIX B ................................................................................................................... 99  

LIST OF TABLES  

Table 4.1: Life insurer input/output data statistics for the period of study, 2010-2013 ..... 75  

Table 4.2: Overall Efficiencies of Ghanaian Life Insurers ................................................. 76  

Table 4.3: Technical Efficiencies of Ghanaian Life Insurers ............................................. 78  

Table 4.4:  Scale Efficiencies of Ghanaian Life Insurers ................................................... 80  

Table 4.5: Overall, Technical and Scale Efficiencies of Ghanaian Life Insurers ............... 82  

Table 4.6.1: Mann Whitney U test on differences in Life Insurers based on Dimension ... 84  

Table 4.6.2: Mann Whitney U test on differences in Life Insurers based on Market share .86 

LIST OF FIGURES  

Figure 2.1, the curve SS‟ represents a production function ................................................ 21  

Figure 2.2Piecewise Linear Convex Isoquant .................................................................... 24  

Figure 2.3Input- and output-oriented Technical Efficiency Measures and Returns to Scale 

........................................................................................................................................... 26  

Figure 2.4 Technical and Allocative Efficiency from an output orientation ...................... 26  

Figure 4.2: A Plot of Overall Efficiencies of Ghanaian Life Insurers for the period ......... 77  

Figure 4.3: A Plot of Technical Efficiencies of Ghanaian Life Insurers for the period ..... 79  

Figure 4.4: A Plot of Scale Efficiencies of Ghanaian Life Insurers for the period ............. 81  

Figure 4.5: A Plot of Average Overall, Technical and Scale Efficiencies of Ghanaian Life  

Insurers ............................................................................................................................... 83  



 

x  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



 

1  

  

CHAPTER 1  

INTRODUCTION  

This chapter captures the background of the study. It briefly explains the problem statement 

and outlines the objectives of the study. The methodology utilized is briefly considered and 

the limitations of the study stated.  

1.1 Background of the study  

The functions of insurance are to act as a risk transfer mechanism and investment platform 

to protect against losses and to provide peace of mind. Insurance schemes persuade a large 

number of individuals to pool their risks into a large group to minimize overall risk. 

Insurance is part of society such that some forms of cover are required by law in the 

developed nations. In developing countries, the need for such a safety net is much greater, 

particularly at the poorest levels where vulnerability to risks is much greater and there are 

fewer opportunities available to recover from a large loss. Therefore, in the developing 

countries which are characterized by low-income levels, lacking access to social security 

systems, healthcare and employment opportunities, the need for insurance as a risk transfer 

mechanism and investment platform is even more imperative. Insurance penetration which 

is defined as the contribution of total insurance premiums to GDP is still 1%. This can be 

compared to South Africa (14.8%), Namibia (7.3%), Kenya (2.8%), Nigeria (0.6%) and 

Malaysia (4.8%) [Source: Swiss Re Sigma Report].  

In today‟s world, no insurance company can afford to be an average performer in a highly 

competitive insurance market. Identifying an optimal performance path leads to 

benchmarking. Using Data Envelopment Analysis (DEA), not only can we identify top 
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performers in an industry such as insurance, but also discover the alternative ways to make 

under performing companies become top performers.  

The idea behind efficiency measurement is to measure a company‟s performance relative 

to “best practice” frontiers, which are determined by the dominant, i.e., most efficient 

companies in the industry. The underlying theory was originally developed by Farrell 

(1957). Modern frontier efficiency methods, similar to more traditional techniques such as 

financial ratio analysis, aim at benchmarking firms of an industry against each other. 

However, these methods are considered superior to other techniques because they integrate 

different measures of firm performance into a single and thus easily comparable statistic 

that differentiates between companies based on a sophisticated multidimensional 

framework (Cummins/Weiss, 2000). This statistic is in most cases standardized between 0 

and 1, with the most (least) efficient firm receiving the value of 1 (0). The difference 

between a company‟s assigned value and the value of 1 determines the company‟s  

improvement potential in terms of efficiency (Cooper/Seiford/Tone, 2007).  

Since the introduction of Data Envelopment Analysis (DEA) by Charnes et al [1978], a lot 

of efficiency and productivity studies have been carried out by researchers in various fields 

using different DEA models. DEA has been used to measure the performance of many 

organizations in recent times. Areas that have received a great deal of attention by 

researchers are manufacturing, governmental organizations and financial sectors with most 

studies involving the banking industry. The insurance industry has also gained increased 

attention.   

Most of the efficiency studies that we found in the literature concerning the insurance 

industry were done in developed countries [Michael Luhnen, 2008]. We found only four 

efficiency studies, using DEA undertaken in only two West African countries – Nigeria [4, 



 

3  

  

5] and Ghana [6, 46]. Even though the insurance industry in Ghana dates back to the colonial 

period and is gaining public attention in recent years, we could find two performance studies 

of the Ghanaian general insurance using DEA but no performance studies of the Ghanaian 

life insurance industry specifically that uses this well established and elegant performance 

measurement tool (DEA). Performance assessment in the private sector is typically based 

on ratios. The best known ones are financial ratios. The popularity of these ratios is mainly 

due to their simplicity and ease of calculation, however, each ratio gives only a partial 

picture of a company's performance outlook. We note however, that the National Insurance 

Commission normally present in its annual financial reports some performance measures 

using ratio analysis such as claims ratio, expense ratio, return on equity ratio, combined 

ratio, retention ratio, gross premium to equity ratio, investment to total assets ratio, return 

on assets ratio, among others, but these measurements do not allow for proper ranking of 

the life insurance companies in the country since they give different impressions about the 

companies. Using state-of-arts methods to study the efficiency of Ghanaian life insurance 

companies is therefore  

essential.  

1.2 Statement of the problem  

The need for life insurance companies to operate economically and efficiently in order to 

meet competitive pressures and take advantage of the opportunities to grow cannot be over 

emphasized. Companies that effectively address these issues will have a competitive 

advantage over their peers; others do not are likely to struggle and fizzle out.  

Data envelopment analysis has the potential to explore and expose the factors that enhance 

performance and efficiency of life insurance companies. Top performers can therefore serve 

as benchmarks for the low or relatively inefficient ones.  
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1.3 Objectives of the study  

     General Objective  

To use data envelopment analysis (DEA) to evaluate the relative efficiencies of some 

Ghanaian Life insurance companies in the five (5) year period 2010 – 2013.  

          Specific objectives  

(i) To examine whether or not larger (in terms of capital) life insurers are more 

efficient than smaller ones.  

(ii) To find out whether or not life insurers with higher (in terms of premiums 

collected) market shares are more efficient than those with small market 

shares.   

1.4 Relevance of the study  

Efficiency measurement methods can be divided into three main categories: ratio indicators, 

parametric and non-parametric methods. Ratios rank among the most simple methods but 

their drawback is that they evaluate just a handful of indicators and cannot influence overall 

corporate efficiency.  

DEA models can generate new alternatives to improve performance compared to other 

techniques. Linear programming is the backbone of DEA methodology that is based on the 

optimization platform. Thus, what differentiates the DEA from other methods is that it 

identifies the optimal ways of performance rather than the averages.  

This study will contribute to a stock of literature on insurance in Ghana and might serve as 

a source of reference for further research in the life insurance industry in Ghana. Life 

insurance managers who need broader perspectives on efficiency assessment of insurance 
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companies will find this research work helpful since knowledge of efficiency scores (static) 

and total factor productivity indices (dynamic) relative to a given bench are relevant and 

could represent the basis for strategic decision making.  

1.5 Methodology  

In this study we shall consider fourteen life insurance companies for the period 2010 to 

2013. Hence we obtain fifty six (56) observations (14 companies in 4 years). Our choice 

thus conforms to the DEA requirement that, the total number of observations be more than 

three times the sum of the number of inputs and outputs [Barros, 2008].  

The objective of this research is to study the relative efficiencies of Ghanaian life insurance 

companies and to find out how some variables commonly used in the insurance industry 

contribute to efficiency. To evaluate the relative efficiency, the DEA model of Hongliang 

and Michael [2007] will be used and in order to find out how some insurance variables 

contribute to efficiency, the Mann-Whitney U-test will be used to carry out the hypothesis.   

1.5.1 The model of Hongliang and Michael: DEA Model Used  

The DEA model used is briefly discussed. In efficiency analysis; the choice of the DEA 

model to be used usually depends on the type of data under consideration. Analysts usually 

will have to make sure their models are translation invariant if the data involves negative 

and/or zero value. They also will have to ensure that the DEA model they use is units 

invariant if the variables are of different dimensions.  

Most studies involving efficiency of insurance industries use claims as output as though 

claims are desirable to insurers, even though insurers would like to incur fewer claims 

[Owusu-Ansah etal, 2010]. In this study, we treat claims as an undesirable output by 

employing the model of Hongliang and Michael [2007]. Hongliang and Michael suggested 
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that when undesirable outputs are produced jointly with desirable outputs, it makes sense to 

credit a Decision Making Unit (DMU) for producing a desirable output and penalize it for 

producing undesirable output in calculating the efficiency of the DMU [Owusu-Ansah etal, 

2010]. Therefore, we use their model due to the fact that a claim incurred is an undesirable 

output to insurers.  

The model proposed by Hongliang and Michael [2007] is stated as follows:  

For a set of N (homogeneous) DMUs using m inputs to produce r outputs among which we 

have d desirable outputs and u undesirable outputs, the input-oriented DEA model used to 

evaluate the efficiency of DMUj is given as follows:  

Minimize θ Subject:  

Y d  ydj  

                                                            (1.1)  

 j   

  

Where   

is the input-oriented efficiency measurement score for DMU j    

Yd is a d-by-N matrix of desirable output 

is a vector of desirable output of DMUj  

Yu is a u-by-N matrix of undesirable output 

is a vector of undesirable output of DMUj.  

X is an m-by-N matrix of inputs and    
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λ is an N-by-1 vector of coefficients which represents the intensity levels for DMUs in the 

construction of the reference efficiency frontier.In order to calculate technical efficiencies 

of the insurance companies during the period of study we also employed the model (1.1) 

above under variable-returns-to-scale (VRS),which disentangles technical efficiency from 

overall efficiency.  

The VRS model is given as follows:  

Minimize   

Subject to:  

Y d  ydj  

Y u yu
j (1.2) 

X x j 

eN 1  

 0,    j=1,…, N.  

WhereeN is a 1-by-N vector of ones and the other variables are as already defined in equation 

(1.1) above.  

1.5.2 Mann-Whitney U-test  

Other analyses that are usually considered in efficiency studies of insurance companies are 

statistical tests of hypothesis in the following forms.  
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(i). Scale of operation of an insurance company positively correlates with its efficiency. 

To test this hypothesis, the life insurance companies are classified by capital 

(shareholder funds) and then sample is divided into subsets on this basis.   

(ii). Market share of a life insurance company positively correlates with its efficiency. 

To test this hypothesis, the life insurance companies are classified according to the 

estimated market share by net premium and the sample is divided into two subsets on 

this basis.  

These tests of hypotheses can be carried out using the Mann-Whitney U-test. The 

MannWhitney U-test is a non-parametric test that is used in place of an unpaired t-test. It is 

used to test the hypothesis that two samples come from the same population (i.e. have the 

same median) or, alternatively, whether observations in one sample tend to be larger than 

observations in the other. Although it is a non-parametric test it does assume that two 

distributions are similar in shape.  

Suppose we have a sample of n observations (x1, x2...xn) in one group and a sample of m 

observations (y1,y2...ym) in another group. The Mann-Whitney test is based on a comparison 

of every observation xi in the first sample with every observation yjin the other sample. The 

total number of pair wise comparisons that can be made is nm. If the samples have the same 

median then each xi has an equal chance (i.e. probability =1/2) of being greater or smaller 

than each yj.   

The Mann-Whitney U-test uses the following hypothesis:  

Ho: The two samples are from the same population or P (xi>yj) = ½   

H1: The two samples are not from the same population or P (xi>yj) ≠ ½   
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We count the number of times an xi from sample 1 is greater than ayj from sample 2. This 

number is denoted by Ux. Similarly, the number of times an xi from sample 1 is smaller than 

a yj from sample 2 is denoted by Uy. Under the null hypothesis we would expect Ux and Uy 

to be approximately equal.  

Procedure for carrying out the test:  

(i). Arrange all the observations in order of magnitude.  

(ii). Under each observation, write down x or y (or some other relevant symbol) to indicate 

which sample they are from.  

       (iii). Under each x write down the number of ys which are to the left of it (i.e. smaller 

than it); this indicates xi>yj. Under each y write down the number of xs which are to the left 

of it (i.e. smaller than it); this indicates yj> xi.  

(iv). Add up the total number of times xi>yj denoted by Ux, add up the total number of 

times yj> xi denoted by Uy and check that Ux + Uy = nm.  

(v). Calculate U = min (Ux, Uy).  

(vi). Use statistical table for the Mann-Whitney U-test to find the probability of 

observing a value of U or lower. If the test is one-sided, this is our p-value. If the test is 

a two-sided test, double this probability to obtain the p-value.  

Making conclusion from the Mann-Whitney test  

If the critical p-value read from the statistical table is greater than the calculated p-value, 

then there is a significant difference between the populations from which the samples were 

drawn. In other words, the two samples are not from the same population. So we reject the 
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null hypothesis. We fail to reject the null hypothesis otherwise. We note here that for 

sufficiently large observations (nm > 20), the normal approximation can be used with  

  ,  

, where N = n + m. (1.3)  

It is possible that two or more observations might be the same.  

If this is the case we can still calculate by allocating half the tie to X value and half the tie 

to the Y value. However, if this is the case then the normal approximation must be used 

with an adjustment to the standard deviation. This becomes:  

  nm N3  N g t3j t j  (1.4)      

  N(N 1)  12 12  

  j 1 

Where g = number of groups of ties tj 

= number of tied ranks in group j.  

1.6 Scope of study  

This study involves life insurance companies that contribute by gross premiums over 90 % of 

the life market share during each year of the period of the study, 2010 – 2013 as well as 

representing over 80% of the life insurance sector, thus being abundantly representative of 

the Ghanaian life insurance market.  
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1.7 Limitations of the study  

1. Due to unavailability of data on prices of inputs and outputs, efficiency measurements 

such as cost and allocative efficiencies could not be studied.  

2. Missing data as a result of inefficient record keeping slightly affected research work.  

  

  

1.8 Organization of the study  

The study is organized into five chapters. Chapter one provides an overview of the research 

undertaken in this study. Chapter two entitled “Literature Review” summarizes some 

research work done in the area of efficiency measurement, data envelopment analysis and 

linear programming. The research methodologies utilized in this study are described in 

chapter three. Chapter four presents the data collection and analysis of the study. Chapter 

five is devoted for the summary of findings, conclusions and recommendation of the study  
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CHAPTER 2  

LITERATURE REVIEW  

2.0 INTRODUCTION  

This chapter reviews literature in the areas of performance measurement using mathematical 

programming. Frontier Efficiency analysis in the insurance industry, with emphasis on Data 

Envelopment Analysis (DEA) is sought to be reviewed. We shall review literature on topics 

on efficiency beginning from traditional approaches to efficiency analysis through Farrel‟s 

work [1957] to the introduction of Data Envelopment analysis (DEA) by Charnes et al 

[1978]. We continue to review literature on extensions of the DEA models by Charnes et al 

[1978] and finally narrow down our review to the application of DEA in the insurance 

subsector of the financial sector.  

2.1 Data Envelopment Analysis (DEA)  

Following Farrel‟s work [1957] on measurement of productive efficiency, Charnes et al 

[1978] developed the first DEA model called the CCR (Charnes, Cooper, and Rhodes) 

model. The CCR model is a mathematical programming model that measures a firm‟s 

efficiency by calculating a ratio of sum of weighted output to sum of weighted inputs and 

compares it with the efficiencies of all other firms in the set of firms under study. The 

efficiency therefore is said to be relative. The model finds (for each firm) a set of weights 
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that maximize the firm‟s efficiency while allowing other firms to strive for maximum 

efficiencies.  

2.2 Review of DEA Models and some Extensions  

After the CCR model, a good number of DEA models have been proposed by researchers in 

the field. These models all use the same concept as the CCR model but only differ in their 

specifics of the shape of the frontier and the method of projection of inefficient firms onto the 

frontier [Amit, 2001]. Next, we discuss some of the commonly used DEA models and some 

extensions.  

2.2.1 The CCR Model  

Assuming there are n DMUS, each using m inputs to produce s outputs, to measure the 

efficiency of say DMUp, Charnes et al [1978] proposed that we solve the following 

fractional programming problem, which is the CCR model  

s 

k ykp 

    km 1   

u j x jp 

j 1 

Subject to:                                                      (2.1)  

s 

k yki 

km 1

 1, i  

u j x ji 

j 1 
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Where k ≥ 0, u j    

K = 1, 2, ..., S 

j = 1, 2,..,, m i 

= 1, 2,..., n  

yki = Amount of output k produced by DMUi  

x ji = Amount of input j used by DMUi  

k = Weight assigned to output k u 

j = Weight assigned to input j The 

fractional programming problem 

given by equation (2.1) above is 

converted into a Linear 

programming problem by letting 

the weighted sum of inputs of the 

test DMU be unity and 

rearranging. Hence the linear form 

of the CCR model is given by:  

s 

k ykp  

k 1 

Subject to                                  (2.2)  

s 

u j x jp 1  

j 1 

s m 

k ykp u j x jp  0, i  

k 1 j 1 
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k  0,u j  0 k and i  

In order to find the relative efficiencies of all DMUs the linear programming problem (2.2) 

above is run n times. Each DMU chooses its input and output weights so as to maximize its 

efficiency. All DMUs obtaining an efficiency score of unity are said to be relatively efficient 

and inefficient otherwise. The dual of the LP above is preferable from the computational 

point of view. The dual of the CCR model is given by:  

Minimize   

Subject to  

n 

i yki  ykp ,0 k                   (2.3)  

i 1 

n 

i x ji xkp  0, j  

i 1 

Where  ≥ 0  are dual variables and  [0, 1] is the overall efficiency of the test  

DMU.  

2.2.3 The BCC Model  

A major drawback of the CCR model is that it assumes constant returns to scale for all 

DMUs. However, this is not always the case in reality. In order to eliminate this drawback, 

Banker et al. [1984] extended the CCR model to their BCC model, which assumes variable 

returns to scale and compares DMUs purely on the basis of technical efficiency. In order to 

generalize the CCR model to all economies of scale, Banker etal [1984] added an additional 
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constraint to the dual of CCR model. The constraint is that, all weights add up to unity. The 

BCC model thus is given as follows:  

Minimize   

Subject to:  

n 

i yki  ykp ,0 k .  

i 1 

n 

i x ji xkp  0, j                                                                              (2.4) i 1 

j 1  
j 

This transforms the model from being constant returns-to-scale to variable returns-to scale. 

The scores  from this model are sometimes called technical efficiency scores as they 

eliminate scale-efficiency from the analysis.  

2.3 Extensions of the DEA Models  

Several modifications have been made to the original CCR and BCC models in the literature 

by researchers in the field in order to accommodate some situations that the CCR and BCC 

models could not address. We shall, in the next brief, discuss some of these extensions.  

2.3.1 Benchmarking in DEA  

Best practice is the set of management and work practices which results in the highest 

potential. Best practice can be identified at a number of levels including departmental, 

organizational, national and international. Benchmarking is the process of comparing the 
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performance of an individual firm against a bench mark or ideal level of performance. 

Benchmarks can be set on the basis of performance over time or across a sample of similar 

firms or against some externally set standard. Benchmarking appeals most to firms with 

similar strategic orientations or facing comparable problems and opportunities (Smith, 

2005, Collis et al. 2007).It helps to enhance performance and facilitate learning and 

understanding of new best practices  

DEA identifies for all inefficient DMUs, a set of efficient DMUs that can be used as 

benchmarks for improving the efficiency of the inefficient DMU. These benchmarks are 

found by solving the dual problem represented by equation (2.5) below [Talluri, 2000].  

Minimize   

Subject to:  

n 

i yki  ykp  0 k (2.5)  

i 1 

i  0 i  

Where =Efficiency score and i =Dual variable assigned to DMU   

A linear combination of the set of identified efficient DMUs for each inefficient DMU is 

called a Composite DMU for the inefficient DMU. Based on the model in equation (2.5) 

above, a DMU is said to be inefficient if we can identify a composite DMU that utilizes less 

input to produce at least the same amount of output as the test DMU or produces more 

output whilst using almost the same amount of input as the test DMU. We note here that 

DEA only identifies targets for improvement but does not provide any strategy to make 

inefficient DMUs efficient. It is the responsibility of managers to study the operations of 

the benchmarks in order to identify ways of improving the efficiency of the inefficient 
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DMUs [Talluri, 2000].The difficulty that arises in the benchmarking process is that the 

inefficient DMU and its benchmarks may have totally different modes of operations due to 

the fact that the composite DMU is virtual(does not really exist). In order to evade this 

problem some researchers such as [John Doyle and Rodney Green, 1994] identified 

appropriate benchmarks by grouping DMUs that have similar modes of operations into 

clusters and identify the best DMUs in every cluster that is then used as a benchmark for 

improvement of their counterpart inefficient DMUs.  

2.3.2 Efficiency ranking of DMUs  

All the DEA models discussed above do not make room for ranking of DMUs especially the 

efficient ones. Also, since these models do not restrict the input and output factor  

weights, it is possible for a DMU to assign very high weight to some  

input(s)/output(s)(which might even be unimportant) whilst assigning very low weights to 

(or even ignoring) some very important input(s)/output(s). The resulting effect is that, some 

DMUs that are better overall performers might be identified to be inefficient while some 

DMUs which are niche performers might be identified as efficient DMUs. These niche 

performers take advantage of some few favorable input(s)/output(s) factors to achieve high 

efficiency scores whilst completely ignoring several input/output factors. Some models 

have been proposed in the literature to effectively rank efficient DMUs in  

DEA studies. An example is the Cross-Efficiency Method by Green and Doyle [1994]  

2.4 Traditional Efficiency Measurement Concepts  

We start our review from traditional concepts of efficiency since DEA became an efficiency 

measurement tool. Efficiency measurement is very old in academic literature. In fact, some 

authors trace efficiency studies back to the days of Aristotle (384-422 BC), when he 

discussed the efficiencies of different military organizations. Leonardo da Vinci also studied 
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performance issues concerning labor effort in shoveling [1994]. The nineteenth century 

scientist F. Taylor, however, is always crowned as the father of scientific management, even 

though some authors argue that there were several earlier publications containing many of 

Taylor‟s theories. In scientific management, laws from the natural sciences are employed 

in attempting to improve the efficiencies of decisionmaking units. From this perspective of 

scientific management, other disciplines such as economics, accounting and politics have 

also developed concepts of performance in management from their own perspectives. 

Traditionally, efficiency was measured using the average productivity of labor [ Farrel M. 

J, 1957]. In this case, all other factors of production were ignored. Hence, this concept of 

efficiency was considered inappropriate when multiple inputs were used to produce 

multiple outputs. Thus the traditional average productivity of labor concept of efficiency 

assessment had a serious drawback of not being able to handle multiple inputs and outputs 

situations.  

In order to address the major drawback of the average productivity of labor concept, 

attempts were made toward the development of concepts that included all the inputs and 

outputs in the efficiency analysis. One of such is the indices of efficiency concept. Using 

this concept, input and output quantities were converted into dimensionless quantities and 

their weighted sums were found. The efficiency was then measured as a ratio of weighted 

sum of dimensionless outputs to that of inputs. Efficiency comparison was therefore 

considered as a cost comparison and there was a difficulty in choosing appropriate set of 

weights[Amit, 2001]. This was a major drawback of the indices of efficiency approach.  

2.5 The Concept of Frontier Efficiency  

In 1957 Farrell developed an efficiency analysis concept which was meant to eliminate the 

drawbacks of the traditional concepts of efficiency analysis mentioned above. This concept 
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is the frontier efficiency concept, which employs the efficient production function. In this 

concept, a firm‟s efficiency is measured by comparing it with a hypothetical perfectly 

efficient firm represented by the production function.   

There are several empirical means for measuring efficiency. They are ratio analysis, 

regression analysis, parametric and non-parametric methods of which the two latter methods 

are superior. The parametric or econometric method is made up of Stochastic  

Frontier Approach (SFA), Thick Frontier Approach (TFA), and Distribution Free Approach 

(DFA).In this approach, the form of the production function is known or statistically 

estimated but in many cases, however, the functional form of the production is not known. 

Assumptions about the distribution of inefficiencies and random error are made in this 

approach.  

In the non-parametric method constituting Data Envelopment Analysis (DEA) and Free 

Disposal Hull (FDH), no assumptions are made about the form of the production function 

and distributional behaviors in the data. Instead, a best practice function is built empirically 

from observed inputs and outputs.  

 The econometric and mathematical approaches have their advantages and disadvantages. 

The econometric approach specifies a production, cost, and revenue or profit functional 

form on the frontier and makes assumptions about the distribution of inefficiencies and 

random error. A major drawback of the econometric approach is the imposition of the 

functional form which might be invalid. For instance, one might impose a trans log 

functional form on a frontier that does not assume this functional form. This will lead to 

incorrect results and consequently wrong deductions. In contrast to the econometric 

approach the mathematical programming approach has the advantage of not imposing any 

strong functional form on the frontier.  
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DEA enables us to compare several decision making units with each other and determine 

their relative efficiency. It produces a single score for each unit which makes the comparison 

easy. Unlike ratios, DEA can accommodate multiple inputs and multiple outputs and they 

can in different units of measurement. In contrast to regression methods,  

DEA focuses on individual observation and optimizes the performance measure of each 

DMU.A prior knowledge of weights or prices for inputs and outputs is not required unlike 

the parametric approach; however, managerial judgment can be accommodated when 

desired. Another advantage that attracts analysts and management is its ability to identify 

the potential improvement for each inefficient DMU. For DMUs enveloped by the frontier, 

DEA compares the inefficient units with the convex combination of DMUs located on the 

frontier and enables the analyst to indicate the sources and level of inefficiency for each 

firm below the efficient frontier.  

The mathematical programming approach has a major drawback of not making any 

assumption about inefficiencies and random error. The mathematical programming 

approach therefore considers all deviations from the frontier as inefficiencies [Berger and 

Humphrey, 1997]. Neither of the two approaches has been established to be superior 

[Cummins and Zi, 1998]. The methodology one employs in efficiency analysis therefore 

depends on the available data. For instance, it will be inappropriate to conduct frontier 

efficiency analysis involving "noisy" data using the mathematical programming approach. 

In order to understand the concept of efficient production function, we illustrate within 

example. Suppose that a set of firms use two inputs to produce one output under constant 

returns to scale. By constant returns to scale (CRS), we mean a situation whereby an 

increase/decrease in firm‟s input leads to a proportional increase/decrease in the firm‟s 

output. An otherwise situation is said to be Variable Returns to Scale (VRS).An isoquant 

diagram is one in which all firms producing the same output lie in the same plane. The 
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isoquant is therefore a scatter diagram with each firm representing a point. An efficient 

production function is represented by a curve joining the most efficient firms in the isoquant.  

  

Figure 2.1, the curve SS’ represents a production function  

All firms located on the curve are said to be efficient and inefficient otherwise. Hence firm Q 

is efficient whilst firm P is inefficient. This is because both firms P and Q produce the same 

amount of output but firm P uses a fraction OQ/OP more of each of inputs X and Y. In other 

words firm P produces the same amount of output as Q but uses OP/OQ less of each of 

inputs X and Y. The Technical efficiency of firm Q is defined as the ratio OQ/OP. This 

technical efficiency measure does not include the extent to which each of inputs X and are 

used by each firm, in the light of their prices. That is, this technical efficiency measure does 

not include the prices of various factors of production. Another measure of efficiency that 

makes use of the input prices is the Price (Allocative) efficiency. If the tangent AA‟ in 

figure 2.1 has a slope representing the ratio of prices of the two inputs, then instead of Q, 
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Q‟ is an optimal method of production. The cost of production at Q‟ will be OR/OQ of that 

of Q. This ratio OR/OQ is called the allocative efficiency of firms  

P and Q. Overall efficiency is the product of technical efficiency and allocative efficiency. 

Hence the overall efficiency of firm P is given by the ratio OR/OP as shown in Figure 2.1.  

The frontier efficiency concept discussed above is elegant in the sense that it gives one the 

opportunity to calculate efficiency without having to use any theoretically justified 

production function and also decomposes efficiency into technical and allocative 

efficiencies. Technical efficiency measures a firm‟s success in its choice of optimal inputs 

with minimum cost whilst allocative efficiency measures the firm‟s success in producing 

maximum output using a given set of inputs.  

The production function of the fully efficient firm is not known in practice, and thus must 

be estimated from observations on a sample of firms in the industry concerned. In this study 

we use DEA to estimate the efficient frontier.  

  

2.5.1 Input-Oriented Measures  

Farrel illustrated his ideas using a simple example involving firms which use two inputs(x1 

and x2) to produce a single output(y), under the assumption of constant returns to scale. 

Knowledge of the unit isoquant of the fully efficient firm, represented by SS1 figure 2.1, 

permits the measurement of technical efficiency. If a given firm uses quantities of inputs 

defined by the point P, to produce a unit output, the technical inefficiency of that firm could 

be represented by the distance QP, which is the amount by which all inputs could be 

proportionally reduced without a reduction in output. This usually is expressed in 

percentage terms by the ratio QP/OP, which represents the percentage by which all inputs 
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could be reduced. The Technical Efficiency (TE) of a firm is most commonly measured by 

the ratio:  

TEi =OQ/OP=1-QP/OP                                            (2.6)  

It takes a value between zero and one, and hence provides an indicator of the degree of 

technical inefficiency or efficiency of the firm. A value of zero indicates the firm is 

technically inefficient and a value of one indicates the firm is technically efficient. For 

example, the point Q is technically efficient because it lies on the efficient isoquant.  

If the input price ratio represented by the line AA1 in figure2.1 is also known, allocative 

efficiency can also be calculated. TheAllocative Efficiency (AE) of the firm operating at P 

is defined to be the ratio:  

AEi=OR/OQ                                                         (2.7)  

Since the distance RQ represents the reduction in production costs that would occur if 

production were to occur at the allocatively (and technically) efficient point Q1, instead of 

at the technically efficient, but allocatively inefficient, point Q.  

The total economic efficiency (EE) sometimes referred to as overall efficiency is defined to 

be the ratio:  

EEi=OR/OP, where the distance RP can also be interpreted in terms of a cost reduction. The 

product of technical and allocative efficiency provides the overall economic efficiency.  

TEi AEi= (OQ/OP) (OR/OQ)=EEi                           (2.8)  

TEi, AEiand EEi 0,1   
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X1/y  

Figure 2.2Piecewise Linear Convex Isoquant  

These efficiency measures assume the production function of the fully efficient isoquant is 

known. In practice this is not the case and the efficient isoquant must be estimated from the 

sample data. Farrel suggested the use of:  

(a) A non-parametric piecewise linear convex isoquant constructed such that no observed 

point should lie to the left or below it(refer to figure 2.2) or  

(b) A parametric function such as the Cobb-Douglas form, fitted to the data, again such 

that no observed point should lie to the left or below it.  

2.6.2 Output-Oriented Measures  

The above input-oriented technical efficiency measure addresses the question “By how 

much can input quantities be proportionally reduced without changing the output quantities 

produced?” Alternatively, one could ask the question “By how much can output quantities 

X 2 /y            S      
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be proportionally expanded without altering the input quantities used?” This is the output-

oriented measure as opposed to the input-oriented measure earlier discussed. The difference 

between the input-oriented and output-oriented measures can be illustrated using a simple 

example involving one input and one output. This is depicted in figure 2.3(a) where we have 

decreasing returns to scale technology represented by f(x) and an inefficient firm operating 

at the point P. The Farrel input-oriented measure of TE would equal to the ratio AB/AP, 

while the output-based measure of TE would be CP/CD. Under the existence of constant 

returns to scale, the output and input oriented measures will be equivalent but unequal when 

increasing or decreasing returns to scale are present. The constant returns to scale is depicted 

in figure 2.3(b) where we observe that (AB/AP) = (CP/CD) for any inefficient point we care 

to choose.  

One can consider output oriented measures further by considering the case where 

production involves two outputs (y1 and y2) and a single input(x1). Again, if we assume 

constant returns to scale, we can represent the technology by a unit production possibility 

curve in two dimensions. This example is illustrated in figure2.4 where the line ZZ1 is the 

unit production possibility curve and the point A corresponds to an inefficient firm. The 

inefficient point A lies below the curve in this case because ZZ1 represents the upper bound 

of production possibilities set.  

(a)   DRTS                                                                                         (b) CRTS  
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Figure 2.3 Input- and output-oriented Technical Efficiency Measures and Returns to 

Scale  
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Figure 2.4 Technical and Allocative Efficiency from an output orientation  

The Farrel output-oriented efficiency measures would be defined as follows. In Figure 2.4, 

the distance AB represents technical inefficiency, That is, the amount by which outputs 

would be decreased without requiring extra inputs. Hence a measure of output-oriented 

technical efficiency is the ratio:  
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TEo=OA/OB                                              (2.10)  

If we price information then we can draw the isorevenue line DD1, and define the allocative 

efficiency to be:  

AEo=OB/OC                                              (2.11)  

Furthermore, overall efficiency can be defined as the product of these two measures.  

EEo=OA/OC=(OA/OB) X (OB/OC) =TEo X AEo.                 (2.12) All 

the above measures are bounded by zero and one.  

  

2.5.3Ways of treating blank or missing data in DEA  

Blank or missing data are a chronic problem in DEA [Talluri, 2000]. Researchers are often 

confronted with the problem of unavailable input(s) or output(s) quantities for some or all 

of the decision making units in their analysis. Conventionally, what researchers did was that 

they either ignore those inputs/outputs whose data are not available for some DMUs from 

the input/output data sets or they ignore those DMUs with missing or blank input/output 

data from the set of DMUs. Ignoring inputs/output can have a misleading effect on the 

efficiency studies since very important inputs/outputs might be left out in the study. 

Ignoring DMUs that fail to provide all input/output data reduces the total number of DMUs 

and this can have serious impact on the number of efficient DMUs since DEA usually 

requires a large number of DMUs to effectively discriminate between relatively efficient 

and inefficient DMUs. Very little has been done in the literature regarding how to handle 

this problem of missing data. [Kao and Lui, 2000] used fuzzy sets to model the ranges for 

missing data whilst [ Kuosmanen, 2002] proposed a quantitative procedure for handling 

blank data. We consider in this section the method of Kuosmanen [2002].  
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Treatment of missing data  

Suppose that we have n DMUs utilizing r inputs to produce s outputs. Using the standard 

notations, let the rxn and sxn matrices, X and Y be the input and output matrices 

respectively. The standard input-oriented radial DEA model is given by  

s 

Maximize u, , Ykju j   

j 1 

r 

Subject to:  X kj j 1(2.6)  

j 1 

s 

Yiju j X ij j  0  i 0,1   

j 1 

u j , j  0  

If for one reason or another, DMU k does not provide information about output j ( that is  

Ykj blank or missing), traditional DEA models either eliminate DMU k from the data set or 

ignore a potentially very important output. Kuosmanen [2002] proposed two  

alternatives for dealing with the situation:  

(i). Omit output j in the efficiency measure of DMU k (but keep it in the efficiency measures 

for other DMUs in the sample) or  

(ii). Give output j a value of zero. That is set kj = 0  

 Kuosmanen proved that both methods will yield same efficiency scores, arguing that the 

second method is computationally convenient since it does not require modification of the 

computation code for every DMU with missing or blank output.  
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2.5.4 Units Invariance in DEA Models  

Data Envelopment Analysis (DEA) models seek to find the efficiencies of DMUs by 

computing single measures of efficiency. These measures usually involve weighted sums 

of inputs and outputs which might be of varying units of measurements. A very important 

property of efficiency measures in DEA is that the score is independent of the dimensions 

of the input/output variables. The property that efficiency scores be independent of units of 

measurement of input/output variables is called units invariance.  

It is however not all DEA models that give efficiency scores which are independent of the 

units of measurement of the inputs/output variables. The CCR and BCC DEA models are 

commonly thought to be units invariant, but they are not. The radial component of the 

efficiency measure obtained from these models is units invariant, but the slack component 

is not. The additive model of Charnes et al. and the weighted additive model with constant 

weights proposed in [Lovell and Pastor, 1995] are also not units‟ invariant. Some DEA 

models known to be units invariant are:  

(i). The invariant multiplicative model of Charnes etal [1978]. This model, however, requires 

that input and output data be strictly positive  

(ii). The extended additive model of Charnes etal [1978].This model however requires that 

input and output data be non-negative.  

(iii). The normalized weighted additive DEA model proposed by Lovell and Pastor [1995] 

(iv). The normalized weighted BCC DEA model of Lovell and Pastor [1995].  

2.5.5 Translation Invariance  

Traditional DEA models require that input and output data be strictly positive. They are 

unable to yield meaningfully interpretable efficiency measures when the data involve zero 



 

31  

  

or negative values. When an input and/or output variable data involves negative and/or zero 

values the data usually will have to be transformed into strictly positive values by adding a 

sufficiently large value to the data of the variable. This transformation might not yield the 

same efficiency scores as the untransformed data would.  

One of the important properties of DEA models is that the efficiency measures they provide 

be independent of an affine transformation of the input and output variables. This property 

is called translation invariance. Not all DEA models are translation invariant. The CCR 

model of Charnes et al, the variant and invariant multiplicative models, and the extended 

additive model are known not to be translation invariant. Some DEA models which are 

known to be translation invariants are:  

(i). The additive model  

(ii). The weighted additive model with constant weights  

(iii). The BCC model is translation invariant in a limited sense, being invariant with respect 

to translation of inputs or outputs, but not both. The input oriented BCC model is translation 

invariant with respect to outputs whilst the output-oriented BCC model is translation 

invariant with respect to translation of inputs.  

(iv). The normalized weighted additive model proposed by Lovell and Pastor [1995]. It is 

worth noting here that no model in its multiplier form is translation invariant. It is only the 

envelopment forms of the models described above that are translation invariant.  

2.6 Applications of DEA in efficiency analysis in the insurance industry.  

Frontier efficiency analysis has, in recent years, been applied in several sectors of several 

economies. One such sector of great application is the financial sector, with the insurance 
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industry gaining increasing attention in recent years.  Luhnen[2008] found 82 and Luhnen 

et al. [2008] found 87 studies applying frontier efficiency analysis in the insurance industry 

alone. We shall, in this brief, review literature on the topic of frontier efficiency analysis in 

the insurance industry. We conduct our review considering studies involving 

methodological issues, Geography of applications, Choice of input and output variables.  

2.6.1 Methodological issues in DEA  

The insurance industry has, in recent years, seen a number of methodological improvements 

in frontier efficiency analysis methodology. These improvements seek to address the major 

drawbacks of the various approaches. In order to address the major drawback of the 

mathematical programming approach (lack of statistical test), Banker [1992] showed that 

DEA efficiency estimators could, under some conditions, serve as maximum likelihood 

estimators, thus providing a statistical base for DEA, even though the sampling distribution 

of the DEA efficiency estimators is still unknown [ Berger and  

Humphrey, 1997].Another innovation is the bootstrapping procedure introduced by Wilson 

et al. [1998]. This procedure seeks to address another drawback of the mathematical 

programming approach (upward bias in DEA efficiency estimators)[Berger and Humphrey, 

1997]. The bootstrapping procedure accounts for various efficiencies  

(Technical, cost and revenue) and scale economies (CRS and VRS).  

2.6.2 Geography of applications of DEA  

Following the implementation of a single European insurance license in 1994, intercountry 

efficiency studies have started to gain grounds [ Diacon etal, 2002]. Diacon et al [2002] in 

their paper „Size and Efficiency in European Long-Term Insurance  

Companies‟ sampled450 insurance companies from 15 EU countries for the period 

19961999 and found that insurers in the UK, Spain, Sweden and Denmark had higher 
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technical efficiencies than their counterparts in other parts of Europe and that UK insurers 

seem to have low levels of allocative and scale efficiencies. We found that almost all the 

efficiency studies in the insurance industry have been conducted in the developed nations. 

We found only two papers [ Barros and Obijiako, 2007; Carlos etal, 2008] considering the 

Nigerian insurance market and two papers on the Ghanaian insurance market [ Owusu-

Ansah etal,  

2012] in West Africa as well as one paper on non-life insurance in Kenya [Jackson I. Mdoe 

etal,2013].Owusu-Ansah etal evaluated the technical efficiencies of Ghanaian general 

insurance from 2002 to 2007 whilst Ansah-Adu and Andoh evaluated cost efficiency of 

insurance companies in Ghana. We could not find any studies in the Ghanaian life insurance 

industry. Hence as far as we know, this research is the first to be conducted on the Ghanaian 

life insurance industry.  

2.6.3 Choice of input and output variables in DEA  

The appropriate choice of inputs and outputs plays a major role in the study of efficiency 

using DEA. We discuss here the choice of inputs and outputs used in our research. There 

are basically three types of inputs in the insurance industry. These are labor, business 

services and material, and capital. Labor is divided into home-office labor and agent labor.  

This input is subdivided because most insurers employ the services of agencies in their 

marketing and sale of policies. For example most of the insurance companies in Ghana have 

agencies at most of the regional capitals and some district capitals.  

Business services and materials usually involve such items as traveling expenses, fuel 

expenses and telecommunication expenses. Capital is subdivided into physical capital, debt 

capital and equity capital. Physical capital is usually in the form of physical assets such as 

working premises and computers. Capital is used as an input because insurers must keep 
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equity capital to prove their promise to pay claims even if more-than-expected losses are 

incurred. Due to the problem of unavailability of data (as most of these inputs are not 

explicitly included in the annual reports of the insurance companies), we found it necessary 

to simplify the scheme of input choice by combining labor, and business services and 

materials in the form of management expenses(plus commissions).This simplification is 

done in most efficiency studies of the insurance industry such as in [ Owusu-Ansah etal, 

2010] and[ Luhnen, 2008]. Furthermore, Ennsfellner et al. [2004] argue that the operating 

expenses should be treated as a single input in order to reduce the number of parameters 

that will need to be estimated.  

As for capital, we use net assets represented by some insurance companies as total equity. 

Thus, the input variables in our study are three (3); operating/management expenses, capital 

and commission. As for output measures, there are basically three approaches in choosing 

them in the insurance industry-Intermediation approach, User-cost approach and the Value-

added approach. The intermediation approach considers insurers as financial intermediaries 

that collect funds from policy holders, invest them and pay claims, taxes and costs. The 

user-cost approach determines outputs by considering their net contribution to revenue. The 

value-added approach selects outputs by considering their contribution to value; those that 

contribute significantly to value based on cost allocations are considered as outputs. Luhnen 

et al[2008] found that  out of the 87 studies they reviewed 74 of them used the value-added 

approach to choose their outputs but stating that there is a controversy among researchers 

as to whether claims or premiums are the most appropriate for value-added. They also found 

that 40 of the studies reviewed used claims as output whilst 31 use premiums as output. 

They found that two studies used both claims and premiums and one used neither. They 

concluded that there is no recognizable trend as to which proxies are most appropriate. In 

our research, we use both premiums and claims as output measures as [ Owusu-Ansah etal, 
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2010] did. We also used investment income and premium as output measures. Investment 

income is included as an output variable because insurance companies can be considered as 

financial institutions seeking to maximize income from investments. Thus, our study uses 

three output variables; Net premiums earned, Net Incurred Claims and Investment Income. 

We used panel data of fifteen (15) insurance companies for the period 2009-20013. Thus, 

we obtained a total of seventy five (75) observations. Therefore, our choice of input and 

output variables ensures that we conform to the DEA convention that the total number of 

DMUs be more than three times the number of inputs and outputs.  

  

  

  

  

  

  

CHAPTER 3  

METHODOLOGY  

3.0 Introduction  

In this section we consider the concepts of linear programming discussing the methods with 

emphasis on interior point methods. We briefly explain further the models and 

methodologies utilized in this study.   
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3.1 Linear programming  

Linear programming is a relatively new discipline in the mathematical spectrum. It was 

developed as mathematical models and introduced for economic and military planning in 

the years immediately following the end of World War II. The realization of its usefulness 

came simultaneously with the development of a solution method, the simplex method. The 

introduction of the first computer calculators was crucial to the blossoming and increase of 

this newly born area of study. Historical accounts of the birth and development of linear 

programming can be drawn from many sources, such as [ Berghen, 2004] and [Schrijver, 

1986].   

A broad definition of linear programming has been given by Dantzig [1947]:  

“Linear programming can be viewed as part of the great revolutionary development which 

has given mankind the ability to state general goals and to lay out a path of detailed decisions 

to take in order to best achieve its goals when faced with practical situations of great 

complexity.” Further, Dantzig [1947] mentions the essential components of linear 

programming: “Our tools for doing this are ways to formulate real-world problems in 

detailed mathematical terms (models), techniques for solving the models (algorithms), and 

engines for executing the steps of algorithms(computers and software)."  

An optimization problem can be described in terms of an objective function, decision 

variables, and a set of constraints. The investigation of optimization problems stems from 

the natural desire to solve a problem in the best possible way. It is interesting to note that 

while the need for an objective function is obvious now, it was not clear when the first 

problems were modeled: the set of feasible solution used to be investigated with some adhoc 

criteria, instead of being guided by the optimization of some quantity [ Dantzig, 1947].  
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A linear programming problem is an optimization problem in which the objective function 

and constraints are linear. Linear programming problems arise directly from real-life 

applications (economics, transportation, finance, logistics, and other areas), or as 

approximations to more complex formulations, as most real-life relationships are nonlinear. 

Another important source of linear programs is the continuous relaxation of integer 

programming problems [Schrijver, 1986].Among the class of convex optimization 

problems; linear programming has a peculiar feature which is described by the following 

Theorem.  

3.1.1Fundamental theorem of linear programming.  

For a linear programming problem with a feasible domain P containing at least one extreme 

point, the optimal objective value is either unbounded or is achievable at one extreme point 

of P.  

The set of linear constraints defines a polyhedron that constitutes the feasible region.  

According to Theorem 3 1.1, in looking for a solution we can restrict our attention to the 

vertices of this polyhedron. The polyhedron corresponding to a linear system of m constraints 

in n variables (m < n) has a number of vertices equal to   

nm  = m!(nn ! m)! mn m  (3.0)  

This number is an overestimate, as not all of these choices correspond to feasible points. 

The fact that the number of vertices is finite guarantees termination of any algorithm that 

explores all vertices. However this number is exponential, as can be clearly seen by further 

manipulating (3.0):  
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m 

 
n 

  2m ¸ 2m for n  2m:  

m  

This observation gives rise to the need of defining an algorithm that uses an intelligent way 

to discover an optimal vertex among the multitude of non-optimal ones. An important 

feature of any algorithm is its efficiency, which is how much effort is needed for the 

algorithm to provide an answer for some given input. The concept of computational 

complexity was introduced in the 70s, as the greater availability of computing machines 

required a deeper insight on the computational performance of different algorithms. The 

computational complexity of an algorithm can be used as a measure of the growth in the 

computational effort as a function of the size of the problem. Therefore, it provides a worst-

case measure. The formal notion of efficiency is that a problem has an algorithm running in 

time proportional to a polynomial function of its input size. That is, we consider an 

algorithm efficient if it runs in time  (nk) on any input of size n, for some constant k > 0.   

  

Complexity proofs rely on two assumptions that are necessary simplifications:  

(i). Computations are performed in exact arithmetic;  

(ii). The numerical data of a problem for instance is rational.  

Computational complexity is measured by the number of elementary operations required to 

perform the algorithmic steps until termination. It often depends on the size of the binary 

representation of the input, usually denoted by L.Many algorithms have been proposed for 

solving a variety of optimization problems. However, despite their diversity, they are based 

on the same general framework which is summarized in the steps of Algorithm 1.1.  
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Algorithm 1.1 Generic optimization algorithm  

Given: An initial iterate ω;  

Repeat: Determine a search direction .  

Compute the distance  of how far to move along the search direction.  

Move to the next point .  

Until Some termination criteria are met.  

Each element of this generic framework (starting point, search direction, stepsize, and 

termination criteria) has to be accurately specified in order to define a particular algorithm. 

In what follows, we will introduce the main ideas behind three different solution methods 

for linear programming: the simplex method, the ellipsoid method, and the class of interior 

point methods with much emphasis on the latter.  

  

  

3.1.2 The Simplex method  

The simplex method was introduced in 1947 by Dantzig [1963]. The introduction of the 

simplex method happened simultaneously with the realization of linear programming as an 

efficient modeling tool for practical decision making. The simplex method exploits the 

insight provided by the fundamental theorem of linear programming (1.1), which states that 

the optimal solution, if it exists, is at one of the vertices of the feasible polytope. Thus it 

reaches a solution by visiting a sequence of vertices of the polyhedron, moving from each 

subsequent vertex to an adjacent one characterized by a better objective function value (in 

the non-degenerate case). Since the number of vertices is finite, termination is guaranteed.  
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Moreover, given the monotonic method of choosing the next vertex, the set of possible 

vertices decreases after each iteration, in the non-degenerate case. Degeneracy occurs when 

a vertex in Rm is defined by p > m constraints, and a step of length zero may be produced. 

In such a case, the simplex method does not actually move away from the current vertex, 

and thus no improvement in the objective function value can be achieved. In terms of 

practical efficiency, the simplex algorithm has long been considered the undisputed method 

for solving linear programming problems. However, the simplex method has exponential 

complexity. It is possible that all the vertices of the feasible polyhedron have to be visited 

before an optimal solution is reached.  

Klee and Minty [Klee and Minty, 1972] were the first to provide an example of pathological 

behavior of the simplex method. In their example, a linear program with n variables and2n 

inequalities, the simplex method visits each of the 2n vertices. However, no cases of 

exponential number of iterations have been encountered in real-life problems, and usually 

only a fraction of the vertices are actually traversed before the optimal one is found. 

Moreover, in most cases the simplex algorithm shows polynomial behavior, being linear in 

m and sub linear in n [Shu-Cherng and Puthenpura, 1993].  

A survey on the efficiency of the simplex method is done by Shamir [1987], where a 

probabilistic analysis (as opposed to worst-case analysis) is also presented. The gap between 

the observed and theoretical worst-case performances of the simplex method is still 

unexplained. Given this theoretical drawback, a great deal of effort has been put into finding 

an algorithm for linear programming which mischaracterized by a polynomialtime bound.  

3.1.3 The Ellipsoid method  

In 1979 a breakthrough occurred, as Khachiyan showed how to adapt the ellipsoid method 

for convex programming to the linear programming case, and determined the computational 
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complexity of linear programming. In Khachiyan's ellipsoid method, the feasible 

polyhedron is inscribed in a sequence of ellipsoids of decreasing size. The first ellipsoid has 

to be large enough to include a feasible solution to the constraints; the volumes of the 

successive ellipsoids shrink geometrically. Therefore it generates improving iterates in the 

sense that the region in which the solution lies is reduced at each iteration in a monotonic 

fashion. The algorithm either finds a solution, as the centers of the ellipsoids converge to 

the optimal point, or states that no solution exists.  

The exciting property of the ellipsoid method is that it finds a solution in  (n2L) iterations, 

and thus has polynomial complexity. However, since the ellipsoid algorithm generally 

attains this worst-case bound [Shu-Cherng and Puthenpura, 1993], its practical performance 

is not competitive with other solution methods. Besides, it displays other drawbacks related 

to large round-off errors and a need for dense matrix computation.  

Nevertheless, the ellipsoid method is often used in the context of combinatorial optimization 

as an analytic tool to prove complexity results for algorithms [ Nemhausa and  Wolsey, 

1988].  

3.1.4 Interior point methods  

Interior point methods were being developed in the 60s and the beginning of the 70s as 

methods to solve nonlinear programming problems with inequality constraints. However, 

they fell from favor and received less and less attention because of their inefficiency and 

the presence of strong competitors such as sequential quadratic programming [ Wright, 

1992].Since their reintroduction, this time to solve linear programs, following Karmarkar's 

groundbreaking paper [ Karmarkar,1984], interior point methods have attracted the interest 

of a growing number of researchers. This algorithm was also proved to have polynomial 
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complexity: indeed, it converges in  (nL) iterations. As opposed to Khachiyan's ellipsoid 

method, in practice, Karmarkar's algorithm actually performs much better than its worst-

case bound states. The main idea behind interior point methods is fundamentally different 

from theory that inspired the simplex algorithm. Here, the optimal vertex is approached by 

moving through the interior of the feasible region. This is done by creating a family of 

parameterized approximate solutions that asymptotically converge to the exact solution. 

Therefore, by embedding the linear problem in a nonlinear context, an interior point method 

escapes the “curse of dimensionality" characteristic of dealing with the combinatorial 

features of the linear programming problem.   

In the simplex method, the current solution is modified by introducing a nonzero coefficient 

for one of the columns in the constraint matrix. The interior point method allows the current 

solution to be modified by introducing several columns at once.  

Karmarkar announced that his method was extremely successful in practice, claiming to beat 

the simplex method by a large margin 50 times, as reported in[Wright, 1992]. A variant of 

Karmarkar's original algorithm was then proposed and implemented by Adler etal [1989]. 

Since then, the theoretical understanding has considerably improved, many algorithmic 

variants have been proposed and several of them have shown to be computationally viable 

alternatives to the simplex method.  

Over the last two decades, an impressive wealth of theoretical research has been published, 

and computational developments have brought life to the field of linear programming. 

Among the positive consequences of the renewed interest in linear programming are the 

improvements to the implementations of simplex-based solvers [Bixby, 1994; Todd and Ye, 

1990].There are classes of problems that are best solved with the simplex method, and 

others for which an interior point method is preferred. Size, structure and scarcity play a 
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major role in the choice of algorithm for computations. As a rule of thumb, with the increase 

of problem dimension, interior point methods become more efficient and effective [Zhang, 

1995]. However, this does not hold in the hyper-parse case, where the simplex method is 

virtually unbeatable [Todd and Ye, 1990; Colombo, 2007], and for network problems, 

where the specialized network simplex method can exploit the structure in an extremely 

efficient manner [ Mdoe etal, 2013]. They can be applied to a wide range of situations with 

no need of major changes. In particular, they have been successfully applied to 

complementarity problems, quadratic programming, convex nonlinear programming, 

second-order cone programming and semi-definite programming.  

  

  

  

3.2 Derivation of Primal-Dual Interior-point Methods  

Consider the following primal-dual pair of linear programming problems in standard form:  

min CTx max bT y  

 x y,s  

(P)     s.t      Ax=b                                (D)          s.t        AT y  s  c (3.1) x 0;                                                              

s  0,  

Where A m n , x,s,c m and y,b n , m n .We assume, without loss of  

generality, that A has full row rank, as linearly dependent rows can be removed without 

changing the solution set. This implies that a feasible s ¸ 0 determines in a unique way the 

value of y. In fact, the y variables can be eliminated thus producing the symmetric combined 

primal-dual form studied by Todd and Ye [2007].  
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We define some terminologies here:  

Definition: The set of primal feasible points is the set of feasible solutions to the primal 

problem (3.1a) defined by x: Ax  b,x  0 .     

Definition: The set of dual feasible solutions is the set of feasible solutions to the dual problem 

(3.1b) defined by D y,s : AT y s c,s  0   

Definition: The set P 0 of primal interior points is the set of primal feasible points excluding 

those on the boundary of the feasible region, defined as P0 = x P: x  0   

Definition: The set D0 of dual interior points is the set of dual feasible points excluding those 

on the boundary of the feasible region. This set is defined by D0= y,s D: s  0  

Definition: The set of feasible primal-dual points is the Cartesian product of the set of primal 

feasible points and the set of dual feasible points. This set is defined by F=P D  

Definition: The set of primal-dual interior points is the set of feasible primal-dual points 

that are not on the boundary of the feasible region. This set is a subset of the set of feasible 

primal-dual points and is defined by .Ŧ0= x, y,s F : y,s  0 .  

We state here some lemmas concerning the primal-dual feasible interior points.  

Lemma 3.1.2 (Weak Duality): For every x.y,s Ŧ, we havecT x  bT y . That is the primal 

and dual feasible interior points bound each other.  

Proof: Since x  P and (x, y)  D, then we have:  

cT x bT y  xT c xT AT y  xT c AT y  xT s  0  

cT x bT y  0and thus cT x  bT y  
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The difference cT x bT y is called the duality gap. When the duality gap is zero then the primal-

dual solution is optimal.  

Lemma 3.1.3 (Strong Duality): A point x  P is an optimal solution if and only if there exists 

(y, s) D such that cT x  bT y  

The problem (P) has a solution if P  and D  then both (P) and (D) have an optimal 

solution * x*, y*,s* . If either P or D is empty then either the solution of one or the 

other is empty too or it is unbounded. The difference cT x bT y  xT s is called the 

complementarity gap which measures the distance of the current primal-dual point from the 

optimal solution. Thus a zero complementarity gap implies optimality. Hence, the duality 

gap and the complementarity gap achieve equal values at optimal feasible  

solutions.  

To proceed with the development of the primal-dual interior-point methods we make the 

assumption that P   and D . This assumption is known as the interior point  

assumption. The primal-dual solutions to (3.1) can be shown to satisfy the following set of 

equations known as the Karush-Kuhn-Tucker conditions.  

AT y  s  c 

Ax  b 

                                      (3.2)  

xi si  0  i 1,n  

x,s  0 

Primal-dual methods solve the problem (3.1a) by finding the solution (x*, y*, s*) of the 

system (3.2) whilst modifying the search direction and length so as to ensure that the 
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solution is strictly in the interior of the feasible region(That is by ensuring that the 

inequalities xi si  0 in (3.2) are strictly satisfied; that is xi si > 0)  

The system (3.2) can be restated in a slightly different form by defining a mapping F  

from R2n m to R2n m as  

AT s c  

(x, y, s) = Ax b  0(3.3)  

 XSe  

(x, s) 0 (3.4)  

Where X =diag( x1,x2,...,xn ), S= diag(s1,s2,...,sn ) and e= 1,1,...,1 T .Primal-dual interiorpoint 

methods solve the primal and dual problems (3.1)by solving the system (3.3) using either line 

search or trust-region methods whilst ensuring that the iterates are strictly in the interior of the 

feasible region. Thus, interior point methods use line search methods or trust-region methods 

to find appropriate values for K and K and modifying the current feasible interior-point K 

using K 1 = K + K K .  

Some line search methods used in solving (3.3) are; Newton‟s method, Quasi-Newton 

methods and Coordinate Descent methods. Some trust-region methods that can be used to 

solve (3.3) are; the Dogleg method, two-dimensional subspace minimization method and 

the Steihaug‟s Approach.  
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Primal-dual interior-point methods use a modified version of the Newton‟s method for 

solving non-linear systems, to solve the system (3.2) by finding a search direction( x,  y, 

s) which is the solution to the linear system:  

x  J(x,y,s)= y
 
=-F(x, y, s)  where J is 

the Jacobian of F.  

   

s  

Thus we have:  

0 AT 1  x  0  

A 0 0
 

y  = 0                                             (3.5)   

    

S 0 X  s   XSe  

The new iterate then is given by (x, y, s)k 1 = (x, y, s)k + k ( x, y, s) for some line search 

parameter k  (0, 1]. k is kept in the half-open interval (0,1] in order to ensure that the 

new iterate is kept within the interior of the feasible region. The question one might ask 

now is how we can determine an appropriate value for k for each iteration and how can we 

solve the system (3.5)?  

Before we proceed to the answer the question of how to an appropriate value of k solve the 

system (3.5), we consider some few concepts which are important prerequisites.  
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3.2.1 The Central path  

Recall that our emphasis is on path-following interior-point methods. Restricting our 

attention to the locus of points described by the logarithmic barrier function, we can write, 

for every linear program in standard form, a corresponding problem known as the barrier 

problem given by:  

n 

Pu mincT x u Inxi                       s.t        xi P0  

i 1 

The problem ( Pu ) defines a family of problems characterized by the scalar u > 0, called the 

barrier parameter. The logarithmic term in ( Pu ) ensures that all iterates stay in the interior 

of the feasible region by penalizing all iterates that tend to move close to the boundary of 

the feasible region. We note that the limit of the problem ( Pu )as u → 0 is the problem ( P 

).  

Since the objective function of problem ( Pu ) is convex it either has one minimizer or it is 

unbounded. If the minimizer exists then it satisfies the following Karush-Khun-Tucker 

conditions.  

Ax  b uX 1e AT 

y c(3.6) x 0  

Substituting s = uX 1e in equation (2.1) we obtain.  

Ax  b  

AT y s c 

XSe ue      (3.7)  
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x,s  0  

^ 

If there exists some u > 0 that solves (3.7) then every u > 0 solves (3.7). As u → 0 the 

solution of system (3.7)is uniquely defined by a continuous smooth curve given by u  

= ( x u , y u ,s u ). This curve is known as the Central path.  

The duality gap for a particular u > 0 that solves (3.7) can be written as.  

g u  = cT x u bT y u  xT u s u (3.8)  

But since XSe  uecorresponds to xi si u , we have  

X T u s u  nu (3.9)  

The parameter u measures the average of the pairwise product xi si . As u → 0 we observe in 

equation (3.9) that g u  → 0.  

If x* is the feasible solution of primal problem (P) and (y*,s*) is the feasible solution to the 

dual problem (D) then cT x u cT x* bT y* bT y u  and we can conclude that as u  

→ 0, cT x u  cTx * and bT y u bT y  *. Thus the objective function values of the 

perturbed problem (3.7) converge to the values achieved by an optimal solution(x*, y*, s*) 

of the original problem. Thus, the following theorem holds.  

Theorem 2.7.4: Let the primal and dual problems (P) and (D) respectively be feasible and the 

matrix A be of full row rank. Then as u → 0 we have:  

x u x and y u ,s u y ,s . This theorem suggests that under primal and 

dual feasible coupled with full row rank of A; the central path converges to an optimal 

solution of the problem (3.1). The central path can thus be used to reach the optimal solution 
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of the problem (3.1). Path-following interior-point algorithms use the central path in finding 

solutions to the problem (3.1).  

3.2.2 Neighborhoods of the Central Path  

Recall that path-following interior-point methods seek the optimal solutions to the original 

problem (3.1) by searching along the central path. However it is practically impossible to 

traverse strictly on the central path. Hence, the iterates are allowed to stay within some 

neighborhood of the central path. It is these neighborhoods that form the topic of this 

subsection. Several neighborhoods can be defined around the central path for any particular 

u > 0.  

However, there exist two most important neighborhoods that are of practical and theoretical 

interest. These are the 2-norm (or the tight) neighborhood 2  and the onesided norm 

(or wide) neighborhood  defined as follows. x  

2 x, y,s F0 : XSe ue 2 u (3.10)  

x, y,s F0 : xi si u (3.11) for some ,  (0, 1]. 

Typical values of  and  are  = 0·5, 10 3  

2  defines points that lie very close to the central trajectory than those points definedby 

.  

Path-following algorithms seek iterates that lie in the neighborhood  by ensuring thatthe pair-

wise products xi si are reduced to zero at the same rate.  
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3.2.3 Practical Implementation of Interior-point Methods  

The general framework of path-following interior-point algorithms is as follows.  

Modify the mapping F in equation (3.3) so that the primal-dual iterates k xk , yk ,sk  lie 

strictly in some neighborhood of the central path. That is, modify F to obtain  

AT s c  

F  Ax b  0(3.12)  

XSe ue  

The Newton‟s method is then used to linearize the system (3.12). The linearization yields   

0 AT 1  x   AT s c  c  

A 0 0  y    Ax b
 

 b                                          (3.13)    

S 0 X  s   XSe ue  u  

3.2.4 Termination Criteria for Interior-Point methods  

Recall that path-following interior-point algorithms seek optimal solutions to linear 

programs by traversing a neighborhood of the central path, which ensures that the iterates 

always lie in the interior of the feasible region. Thus attainment of exact optimal solutions 

is never possible. A criterion for termination of the algorithm is thus necessary for proper 

implementation. Some common termination criteria suggested in the literature are as 

follows:  

Ax b 10 p , 10 p , cT x bT y 10 q                         (3.14)  

1  x 1  bT y  

T 

s 

c s y A 

   

  

1 
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, 10 p , 
u 

10 q                             (3.15)  Ax b 10 p 

1  b 1  bT  

The values of p and q in the above criteria are problem dependent. However, some common 

values are p q = 8 for criteria in (3.14) and p q = 10 for criteria in (3.15).  

3.2.5 Solving the Newton’s System  

In the implementation of the primal-dual interior-point algorithms, the most tedious 

computation is that of solving the step equations in system (3.13). The coefficient matrix in 

this system is usually very huge and sparse. Hence, it is worth restructuring the coefficient 

matrix into a more compact symmetric one which will allow for easier solution of the system 

than the original matrix.  

In order to reformulate the system (3.13) we note from the last row that  

S x X s b and hence  

s  X 1
b S x   

We can therefore eliminate s and thus obtain  

X 1S AT x  c X 1 U                                           (3.16)  

 A 0 y  b  

Also from the first row in (3.16) we observe that  

x S 1X c X 1 u AT y ].  

Substituting this into the second row yields the set of normal equations given by  

AD2AT y  AD2
C x 1

u AT y (3.17)  

T 

s 

c s y A 

   

  

1 
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 Where, D2 S 1X  

  Thus, solving the Newton‟s step equations is equivalent to solving the normal equations 

given by:  

AD2AT y  AD2 c X 1 u b       (3.18)  

x S 1X c X 1 u AT y          (3.19)        

s  X 1 b S x                               (3.20)  

Most primal-dual interior-point methods use direct sparse Cholesky algorithms to factor the 

coefficient matrix AD2AT in (3.18) and then perform triangular back solutions to find the 

step y. The other steps x and s are then found using (3.19) and (3.20) respectively.  

The computation of the Cholesky factors dominates the cost of each iteration. As thesis 

usually a major computational task, the efforts in the theory and practice of interior point 

methods concentrate on reducing the number of times the Newton system matrix (3.13) has 

to be factorized. In particular, it is worth adding more (cheap) back solves if this reduces 

the number of (expensive) factorizations. Mehrotra predictor corrector algorithm and 

multiple centrality correctors are two algorithms that have proven to be very efficient in 

reducing the number of iterations in practical algorithms.  

3.2.6Mehrotra’s Predictor-Corrector Algorithm  

The material in this section is based on [ MdSaad and Idris, 2011;  Berghen, 2004].The 

Mehrotra predictor-corrector algorithm forms the basis of most existing interior-point codes 

for general-purpose Linear Programming Problems. This is because; the Mehrotra‟s 

algorithm is usually very fast and reliable. The algorithm has three main steps; the predictor, 
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the corrector step and the Centering step. The predictor step is used to make advancement 

towards optimality. The corrector step is used to remedy the error in the predictor step and 

the centering step is used to move the iterate near the central path.  

3.2.6The Predictor Direction  

The predictor direction aff xaff , yaff , saff  is calculated by solving the  

Newton system (3.13) with the right-hand-side given by  

 b  Ax  

r   c  AT y s                                                      (3.21)  

  XSe  

This direction is often called the affine scaling direction.  

In order to measure the effectiveness of this direction we find aff
pri and aff

dual(with anupper 

bound of 1) to be the longest possible step lengths that can be taken along this direction 

before exiting the interior of the feasible region. That is before violating thenon-negativity 

constraint (x, s) > 0.  

affpri deff  min 1, minaff  xi  (3.22)  

i| x i 0 xaff i 

  

affdual 
deff    aff i 

si                                           (3.23) 

min 1
, min 

 aff   i| x 0 si  
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We define uaff to be the value of u that would be obtained by a full step to the boundary. That 

is  

uaff x affpri xaff T s affpri saff n(3.24)  

uaff 
3 

and set the damping parameter  to be   u   

The Corrector Step  

The corrector step is obtained by replacing the right hand side of (3.13) by  

0,0, X aff S aff e   

The Centering Step  

The Centering step is obtained by replacing the right hand side of (3.16) by (0, 0,ue ).  

The complete Mehrotra‟s step can be obtained by combining all the three steps above (by 

adding all the right hand sides in the above three steps) into one step and solving the 

following system:  

0 

 

A 

 

S 

 

AT 

0 

0 

I x  b  Ax  

0 y   c  AT y s  (3.25)  

X s   XSe X aff S aff 

e ue  

The maximum steps that can be taken along these directions before violating the nonnegativity 

condition are obtained using the following formulae.  

maxpri  min 1, imin: xi 0  

xxiki  (3.26)  deff 

 

deff 
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 dual min 1, min  sk  

max   i: si 0  si i (3.27)  

The primal and dual step lengths are then chosen as follows:  

kpri  min 1, maxpri and kdual  min 1, maxdual (3.28)  

Where  (0·9, 1·0) is chosen so that  → 1 near the solution, to accelerate asymptotic 

convergence.  

3.2.7 Termination Criterion  

Recall that path-following interior-point algorithms seek optimal solutions to linear 

programs by traversing a neighborhood of the central path, which ensures that the iterates 

always lie in the interior of the feasible region. Thus attainment of exact optimal solutions 

is never possible. A criterion for termination of the algorithm is thus necessary for proper 

implementation.  

Some common termination criteria suggested in the literature are stated above (3.14 and3.15).  

.The Mehrotra‟s algorithm is presented in algorithm 1.  

Initialization: Given ( x0, y0,s0) with ( x0,s0 ) > 0;  

Repeat Set x, y,s xk , yk ,sk  and solve (3.21) for xaff , yaff , saff ;  

Calculate aff
pri, aff

dualand uaff using (3.22),(3.23) and (3.24);  

Set (3.25) for x, y, s ;  

Calculate k
pri and k

dualusing (3.28);  
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Set xk 1  xk kpri x, yk 1,sk 1 yk ,sk kdual y, s ;  

Until Convergence Criterion (3.28) is achieved for some p and q ;  

Algorithm 1: Mehrotra‟s Algorithm  

  

3.2.8 An Interior-Point Algorithm Implemented on MATLAB  

We discuss, in this brief, the Linear Interior-Point Solver (LIPSOL) proposed by Zang Yi  

in 1995, which was implemented on MATLAB by University of Maryland  

BaltimoreCounty and the Math works Inc.LIPSOL is a variant of the Mehrotra‟s  

algorithm proposed in [ Mehrotra S, 1992].  

Consider the linear optimization problem:  

Min cTx  

subject to:  

Aeq x beq(3.29) A * 

x ≤ b  

l  x  u  

In order to apply the algorithm, the following are performed on the problem (3.29).  

(i). Transform the bounds l  x  u into the form x ≥ 0  

(ii). Add slacks to all inequality constraints  

(iii). Remove all variables with equal upper and lower bounds are removed.  

(iv). Remove rows of all zeros in the constraint matrix.  
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(v). Remove columns of all zeros in the constraint matrix.  

(vi). When a significant number of singleton rows exist in the constraint matrix, the associated 

variables are solved for and the rows removed.  

After the above operations, the problem becomes of the form  

  

Min cTx 

Subject to :(3.30)  

A b  B  

0 ≤ x  u  

Adding primal slack variables changes problem (3.30) into one of the form  

Min cTx  

Subject to:  

A x  b(3.31) x s u  

x ≥ 0,s ≥ 0  

(Problem (3.31) is a primal problem with x being the primal variable and s being the primal 

slack variable.  

The associated dual of problem (3.31) is given by  

Max bT   

subject to:  

AT y z c(3.32)         

z 0, 0  

Where y and  are dual variables and z is a dual slack variable.  
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The Karush-Khun-Tucker equations (Optimality conditions) of the problem (3.32) are given 

by:  

 A  x b  

    s u

  x 

F x, y,z,s,w AT  y  a c   0                         (3.33)  

   

 xi zi  

 si i  

x ≥ 0, z ≥ 0, s ≥ 0, and  ≥ 0  

Where the linear equations in (3.33) above are called the feasibility conditions and the 

quadratic equations xi zi = 0 and si i = 0 are called complementarity conditions.  

The quantity xTz sT  is called the duality gap.  

The algorithm solves the problem (3.30) by solving the non-linear problem (3.33) as follows:  

For the iterate x, y,z,s, T , calculate the prediction direction  

P FT 1F (3.34)  

and then the corrector direction  

i F T 1 F P ue^ (3.35)  

^ where u ≥ 0 is called the centering 

parameter and e is a zero-one vector with zeros corresponding to the linear equations and 

ones corresponding to the quadratic equations in (3.35).The next improved interior-point 
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iterate is then given by p i  with  chosen such that  remains in the 

interior of the feasible region.  

  

  

The convergence criterion for the algorithm is given by:  

 rb rc cT x bT y uT  

    tol (3.36)  

max 1, b  max 1, c  max 1, cT x , bT y uT   

Where rb  Ax b, Primal residual rc  

AT y z c, Dual residual ru  

x s u, upper-bound feasibility  

This algorithm is elegantly implemented on MATLAB as the lipsol function.  

The following are the equations from the model used. These have solved using the algorithm 

above and the results are analyzed in chapter 4.  

  

2010  

DMU1 DONEWELL 

LIFE  Minimize  subject to 

: 

1  
   

2  
 

3  
   

4  
5  
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6  

947.6 5906.7 192.7 1597.8 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8 7 
 

947.61   84.8 1883.5 50.6 

443.1 215.7 277.5 760.4 86.3 226.1 138.1 32.4 434.6 117.2 13.8 8  84.82  

9  

10  
   

11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   
6  
  

420.6 1011.1 28.7 492 258.1 163.4 1629 86.4 588.7 1.3 23.7 1096.2 326.1 75.4  7 420.6  
8  

9  
10  

   
11  
12  

   
13  

14  

1  

 

 2  
 

3  
   

4  
5  

   

33596.8.113102607..9921944..12862249..86 197389.1.61264.3 2770.2 223.1 589.5 219.6 237.5 3860112.4 38470..96

 22217.6.3 76 33576.8.1  
 170.3 328 37.5 94.7 11.9 51.7  

 

 507.2 1365.4 86.9 640.8 313.4 858.9 1603.7 270.5 538.8 305.1 389.5 876.9 308.9191.9 89  507.2 

 

10  
   

11  
12  
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13  

 14
   

j  0; j 1,...,14 and  is the iput  oriented efficiency measurement score for DMU j 
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DMU1 ENTERPRISE 

LIFE  Minimize  subject to : 

1  
   

2  
 

3  
   

4  
5  

   
6  

947.6 5906.7 192.7 1597.8 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8 7 
 

5906.7   84.8 1883.5 50.6 

443.1 215.7 277.5 760.4 86.3 226.1 138.1 32.4 434.6 117.2 13.8 8  1883.5  

9  
10  

   
11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   
6  
  

420.6 1011.1 28.7 492 258.1 163.4 1629 86.4 588.7 1.3 23.7 1096.2 326.1 75.4  7  1011.1  
8  

9  
10  

   
11  
12  

   
13  

14  

1  
   



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

64  

  

2  
 

3  
   

4  
5  

   

596.1 2607.9 219.2 862.8 1973.6 1264.3 2770.2 223.1 589.5 219.6 237.5 3860.4 384.6 222.3 76 

13102607..99  

 
33.8 1310.9 44.1 249.6 89.1 170.3 328 37.5 94.7 11.9 51.7 112 70.9 17.6 

  

 507.2 1365.4 86.9 640.8 313.4 858.9 1603.7 270.5 538.8 305.1 389.5 876.9 308.9 191.9 89 

 1365.4  

10  
   

11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented efficiency measurement score for DMU j 

  

  

DMU1 GHANA 

UNION  Minimize  

subject to : 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

65  

  

 84.8 

420.6 

5906.7 
1883.5 

1011.1 

192.7 1597.8 1345.6 
50.6 443.1 215.7 

277.5 

1629 

1264.3 
170.3 
858.9 

760.4 86.3 
226.1 

23.7 

589.5 

94.7 
538.8 

138.1 

1096.2 

219.6 
11.9 
305.1 

32.4 

326.1 

237.5 

51.7 
389.5 

434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

   
6  
  

7 

13.
8 

8  

9  
 

10  
   

11  
12  

   
13  
14  

 

192.7  
 50.6  
 

219.2  

28.7 492 258.1 163.4 86.4 

588.7 

1.3 

75.4  7  28.7  

  8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 

222.3 
17.6 

191.9 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  596.1 2607.9 219.2 862.8 1973.6 

 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5 

 7  44.1  
8    

9   86.9 

 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

66  

  

112 70.9 
876.9 308.9 

 
10  

   
11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 
j 

  

  

DMU1 METROPOLITAN 

LIFE  Minimize  subject to : 

 5906.7 192.7 1597.8 1345.6 7 1597.8  

 84.8 1883.5 50.6 443.1 215.7 277.5 760.4 86.3 226.1 138.1 32.4 434.6 117.2 13.8 8   443.1  

9  

10  
   

11  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

67  

  

12  
   

13  

14  

1  
   

2  
 

3  
   

4  
5  

   
6  
  

420.6 1011.1 28.7 492 258.1 163.4 1629 86.4 588.7 1.3 23.7 1096.2 326.1 75.4  7  492  
8  

9  
10  

   
11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   

596.1 2607.9 219.2 862.8 1973.6 1264.3 2770.2 223.1 589.5 219.6 237.5 3860.4 384.6 222.3 76 

862249..86  

 
33.8 1310.9 44.1 249.6 89.1 170.3 328 37.5 94.7 11.9 51.7 112 70.9 17.6 

  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

68  

  

 507.2 1365.4 86.9 640.8 313.4 858.9 1603.7 270.5 538.8 305.1 389.5 876.9 308.9 191.9 89 

 640.8  

10  
   

11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented efficiency measurement score for DMU j 

  

  

DMU1 PROVIDENT 

LIFE  Minimize  subject to 

: 

 84.8 
5906.7 
1883.5 

192.7 1597.8 1345.6 
50.6 443.1 215.7 

277.5 
760.4 86.3 

226.1 138.1 32.4 434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

7 

13.
8 

8  

9  
 

10  
   

11  
12  

   
13  
14  

 

91345.6  

 215.7  

28.7 492 258.1 163.4 86.4 588.7 1.3 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

69  

  

420.6 1011.1 1629 

1264.3 
170.3 
858.9 

23.7 

589.5 

94.7 
538.8 

1096.2 

219.6 
11.9 
305.1 

326.1 

237.5 

51.7 
389.5 

   
6  
  

 

1973.6  

75.4  7  258.1  

  8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 
112 70.9 
876.9 308.9 

222.3 
17.6 

191.9 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  596.1 2607.9 219.2 862.8 1973.6 

 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5  7  89.1  

8    

9  313.4 

 
 

10  
   

11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

70  

  

j 

  

  

DMU1 STAR 

LIFE  Minimize  

subject to : 

 5906.7 192.7 1597.8 1345.6 7 2694.4  

 84.8 1883.5 50.6 443.1 215.7 277.5 760.4 86.3 226.1 138.1 32.4 434.6 117.2 13.8 8   277.5  

9  

10  
   

11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   
6  
  

420.6 1011.1 28.7 492 258.1 163.4 1629 86.4 588.7 1.3 23.7 1096.2 326.1 75.4  7  163.4  
8  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

71  

  

9  
10  

   
11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   

33596.8.1 13102607..9921944..12 862249..86197389.1.61264.32770.2 223.1 589.5 219.6 237.5 3860112.4

 38470..9622217.6.3 76 1264170..33  
 170.3 328 37.5 94.7 11.9 51.7 

 

 507.21365.4 86.9 640.8 313.4 858.9 1603.7 270.5 538.8 305.1 389.5 876.9 308.9 191.9 98 

 858.9  

10  
   

11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 
j 

  



1 

 

 

 
 

2 

 

3 

 
 

  

4 

 

5 

 
 

  

6 

 
947.6

 

2694.4

 

7173.8

 

401.3

 

2519.9

 

81.2

 

389.5

 

3159.5

 

582.9 207.8   

 

   

  

  

72  

  

  



1 

 

 

  
 2  

3 

 
   

4 

 
5 

 
   

6 

 

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

73  

  

DMU1 SIC LIFE  
Minimize  subject 

to : 

 84.8 

420.6 

5906.7 
1883.5 

1011.1 

192.7 1597.8 
50.6 443.1 

215.7 

163.4 

277.5 

1629 

1264.3 
170.3 
858.9 

760.4 86.3 
226.1 

23.7 

589.5 

94.7 
538.8 

138.1 

1096.2 

219.6 
11.9 
305.1 

32.4 

326.1 

237.5 

51.7 
389.5 

434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

   
6  
  

7 

13.
8 

8  

9  
 

10  
   

11  
12  

   
13  
14  

 

7173.8  
 760.4 

 
 

2770.2  
28.7 492 258.1 86.4 

588.7 

1.3 

75.4  7  1629.0  

  8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 

222.3 
17.6 

191.9 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  596.1 2607.9 219.2 862.8 1973.6 

 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5 

 7  328.0  
8    

9 

 1603.7  



1 

 

 

  
 2  

3 

 
   

4 

 
5 

 
   

6 

 

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

74  

  

112 70.9 
876.9 308.9 

 
10  

   
11

 
12

 
   

13

 

 14   

j  0; j 1,...,14 and  is the iput oriented efficiency measurement 

score for DMU j 

  

  

  

  

DMU1 UNIQUE 

LIFE  Minimize  

subject to : 

1  
   

2  
 

3  
   

4  
5  

   
6  

947.6 5906.7 192.7 1597.8 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8 7 
 

401.3   84.8 1883.5 50.6 

443.1 215.7 277.5 760.4 86.3 226.1 138.1 32.4 434.6 117.2 13.8 8    86.3  



 

  

  

75  

  

9  

10  
   

11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   
6  
  

420.6 1011.1 28.7 492 258.1 163.4 1629 86.4 588.7 1.3 23.7 1096.2 326.1 75.4  7  86.4  
8  

9  
10  

   
11  
12  

   
13  

14  

1  
   

2  
 

3  
   

4  
5  

   

33596.8.1 13102607..9921944..12 862249..86197389.1.61264.32770.2 223.1 589.5 219.6 237.5 3860.4

 384.6222.3 76 22337.5.1  
 

 170.3 328 37.5 94.7 11.9 51.7 112 70.9 17.6 
 

 507.21365.4 86.9 640.8 313.4 858.9 1603.7 270.5 538.8 305.1 389.5 876.9 308.9 191.9 98 

 270.5  

10  
   



1  
   

 2  
3  

   
4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

76  

  

11  
12  

   
13  

 14
   

j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 
j 

  

DMU1 VANGUARD 

LIFE  Minimize  subject to 

: 

 84.8 

420.6 

5906.7 
1883.5 

1011.1 

192.7 1597.8 
50.6 443.1 

215.7 

163.4 

277.5 
760.4 86.3 

226.1 138.1 32.4 434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

   
6  
  

7 

13.
8 

8  

9  
 

10  
   

11  
12  

   
13  
14  

 

2519.9  
 226.1 

 

28.7 492 258.1 86.4 588.7 1.3 75.4  7  588.7  



 

  

  

77  

  

1629 

1264.3 
170.3 
858.9 

  23.7 

589.5 

94.7 
538.8 

1096.2 

219.6 
11.9 
305.1 

326.1 

237.5 

51.7 
389.5 

8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 
112 70.9 
876.9 308.9 

222.3 
17.6 

191.9 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  

 

589.5  

596.1 2607.9 219.2 862.8 1973.6 
 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5 

 7  94.7  
8    

9 

 538.8  
 

10  
   

11

 
12

 
   

13

 

 14

   
j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 
j 

  



1 

 

 

 
 

2 

 

3 

 
 

  

4 

 

5 

 
 

  

6 

 
947.6

 

1345.6

 

2694.4

 

7173.8

 

401.3

 

2519.9

 

81.2

 

389.5

 

3159.5

 

582.9 207.8   

 

   

  

  

78  

  

  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

79  

  

DMU1 EXPRESS 

LIFE  Minimize  subject 

to : 

 84.8 

420.6 

5906.7 
1883.5 

1011.1 

192.7 1597.8 50.6 

443.1 215.7 
277.5 

760.4 86.3 
226.1 138.1 32.4 434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

   
6  
  

13.8 

7 

8  

9  
 

10  
  

11  
12  

  
13  
14  

81.2  
138.1  

28.7 492 258.1 163.4 86.4 588.7 1.3 

75.4  7  

1.3  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

80  

  

1629 

1264.3 
170.3 
858.9 

  23.7 

589.5 

94.7 
538.8 

1096.2 

219.6 
11.9 
305.1 

326.1 

237.5 

51.7 
389.5 

8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 
112 70.9 
876.9 308.9 

222.3 
17.6 

191.9 

 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  

 

219.6  

596.1 2607.9 219.2 862.8 1973.6 
 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5 

 7  11.9  
8    

9 

 305.1  
 

10  
   

11

 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

81  

  

12

 
   

13

 

 14

   
j  0; j 1,...,14 and  is the iput oriented 

efficiency measurement score for DMU 
j 

  

  

DMU1 PHOENIX 

LIFE  Minimize  subject 

to : 

5906.7 192.7 1597.8 
50.6 443.1 760.4 86.3 

7 
389.5  



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

82  

  

 84.8 

420.6 

1883.5 

1011.1 

28.7 492 258.1 

215.7 

163.4 

277.5 

1629 

1264.3 
170.3 
858.9 

86.4 

588.7 

1.3 

226.1 

23.7 

589.5 

94.7 
538.8 

138.1 

1096.2 

219.6 
11.9 
305.1 

32.4 

326.1 

237.5 

51.7 
389.5 

434.6 117.2 

1  
  

 
 2  

3  
   

4  
5  

   
6  
  

13.
8 

8  

9  
 

10  
   

11  
12  

   
13  
14  

 

 32.4  
 

237.5  

75.4  7  23.7  

  8  

9  
 

10  
   

11  
12  

   
13  

14  
 

3860.4 384.6 
112 70.9 
876.9 308.9 

222.3 
17.6 

191.9 

1  
  

 
 2  

3  
  

4  
5  

  
6  
  596.1 2607.9 219.2 862.8 1973.6 

 
33.8 

1310.9 44.1 249.6 89.1 
 

 507.2 1365.4 86.9 640.8 313.4 

2770.2 
328 

1603.7 

223.1 
37.5 
270.5 

 7  51.7  
8    

9 

 389.5  
 

10  
   

11

 
12

 



1  

 

  
 2  

3  
   

4  
5  

   
6  

947.6 1345.6 2694.4 7173.8 401.3 2519.9 81.2 389.5 3159.5 582.9 207.8   
    

  

  

83  

  

   
13

 

 14

   
j  0; j 1,...,14 and  is the iput oriented 
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 is the iput oriented efficiency measurement score for DMU j 

  

This is replicated for each Decision making unit for each year. The equation above 

represents that of all DMUs for 2010. For the entire period there are a total of 56 equations 

in matrix representation. Scaled data has been used in model construction and analysis.   



 

90  

  

CHAPTER 4  

DATA ANALYSIS AND RESULTS   

We present the results of the study in this chapter vis-à-vis technical, scale, pure, and overall 

efficiencies. Results of the tests of hypotheses concerning the dimension and market shares 

of Ghanaian Life Insurance Companies on their efficiencies using the Mann Whitney U test 

are also presented.   

The data used for the analysis can be found in Appendix A.  

4.1 Descriptive Statistics  

The descriptive statistics of the outputs and inputs of the life insurance companies are 

presented here. Within the period of analysis, SIC life and Enterprise life had the highest 

amount of output: Enterprise life recorded the highest investment income and SIC life 

maximum in net premiums and claims. Express life recorded the lowest in all the outputs. 

For the inputs, Enterprise recorded the highest in capital and commission while SIC life 

recorded the highest in management expenses. Done well life had the lowest capital; Glico 

life recorded the minimum in management expenses and Express life had the minimum 

commission.  
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Table 4.1: Life insurer input/output data statistics for the period of study, 2010-2013  

Statistics  Life Insurer  Input Data (GH¢)  Life Insurer Output Data (GH¢)  

Capital  Commission  Management 

Expenses  

    Net  

Premiums  

Investment 

Income  

Claims 

Incurred  

  Minimum          

(8,563,608)  

               

79,300   

                       

26,783   

             

541,202   

                    

90,063   

                 

8,427   

   

Maximum  

        

58,090,930   

        

23,934,676   

                

21,406,152   

      

126,790,109   

             

57,083,110   

        

68,845,574   

 Mean          

10,345,513   

          

2,250,869   

                  

5,593,972   

        

22,158,520   

               

4,565,593   

          

7,430,197   

 Standard 

Deviation  

14732218.08  4374661.357  4956418.194  29697385.89  8853863.397  11848814  

4.2 Overall Efficiencies of Ghanaian Life Insurers  

Briefly we present the overall efficiencies of the life insurers for the period of study. The 

overall efficiencies overall efficiencies are obtained when the constant returns to scale 

assumption is made. That is, to say the performance of an insurer continuous to increase if 

the insurer continuous to increase inputs. Table 4.2 and Figure 4.2 show the overall 

efficiencies of the insurers for the period of study.  

  

  

  

  

  

  

  

Table 4.2: Overall Efficiencies of Ghanaian Life Insurers  
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Company  2010  2011  2012  2013  

Donewell  1  1  1  1  

Enterprise  1  0.949933431  1  1  

Ghana 

Union  

0.79067194  0.628365069  0.608904353  0.731629462  

Metropolitan  0.68054626  0.661438165  0.905843013  1  

Provident  0.77034  1  1  1  

Star Life  1  1  0.779188703  0.746772121  

SIC Life  0.88946718  1  0.953307258  1  

Unique  0.69712064  0.750410244  0.731448272  0.769712271  

Vangaurd  1  0.963144946  0.777982898  0.657893438  

Express Life  1  1  1  0.513759159  

Phoenix Life  0.84155562  1  0.615473771  0.582752263  

Glico Life  1  1  1  1  

Ghana Life  0.44218017  0.412715443  0.483802502  0.519251879  

UT life  0.49016563  0.497615977  0.54881188  0.616718078  
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Figure 4.2: A Plot of Overall Efficiencies of Ghanaian Life Insurers for the period 

We observe from Figure 4.2 and Table 4.2 that:  

1. Ghana Life Insurance Company recorded the minimum overall efficiency for the 

period of study in 2011. This stood at 41% (0.4127).  

2. Glico Life and Donewell Life recorded 100% consistently for the period of the 

study. Enterprise Life, Provident Life and Express Life also recorded 100% for three 

different years.  

3. Though a few life insurers performed at 100% efficiency, majority of them 

underperformed during the study.  

4. The average overall efficiency of the life insurers for the period of study stood at 

82%. This is an indication that Ghanaian life insurers still need to explore avenues 

for improving and increasing efficiency.  

4.3 Technical Efficiencies of Ghanaian Life Insurers  

Here, the technical efficiencies of life insurers is briefly considered. The BCC model 

assumes a convex combination of observed DMUs as the efficient frontier and provides 
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technical efficiency. If a unit is fully efficient in both the CCR and BCC models, it is 

operating in the most productive scale size (MPSS). If a DMU is BCC efficient but 

inefficient in the CCR model, then it is locally efficient but not globally. The constant 

returns to scale model identifies the overall efficiency whereas the variable returns to 

scale model differentiates between technical efficiency and scale efficiency [Charnes, 

1978]. It is computed using the variable returns to scale hypothesis which assumes that 

firms do not necessarily increase their efficiency by simply increasing inputs. The 

variable returns to scale decompose overall efficiency into technical efficiency and scale 

efficiency. The technical efficiencies of the  

Ghanaian life insurers are shown in Table 4.3 and graphically in Figure 4.3  

Table 4.3: Technical Efficiencies of Ghanaian Life Insurers  

Company  2010  2011  2012  2013  

Donewell  1  1  1  1  

Enterprise  1  0.951  1  1  

Ghana Union  1  0.955223  0.826925  0.872068  

Metropolitan  0.702164  0.671303  0.908986  1  

Provident  0.843587  1  1  1  

Star Life  1  1  0.801507  0.823239  

SIC Life  0.893797  1  1  1  

Unique Life  0.934659  0.914065  0.873697  0.83025  

Vanguard  1  0.975725  0.785078  0.674492  

Express Life  1  1  1  0.515762  

Phoenix Life  1  1  0.688907  0.594028  

Glico Life  1  1  1  1  

Ghana Life  0.637626  0.501429  0.527924  0.53891  

UT life  1  0.796827  0.635899  0.670237  
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Figure 4.3: A Plot of Technical Efficiencies of Ghanaian Life Insurers for the period 

We notice from Table 4.3 and Figure 4.3 that:  

1. The minimum technical efficiency of the life insurers for the study period was 

recorded by Ghana Life in 2011 which stood at 50% (0.5014).  

2. The life insurers demonstrated higher technical efficiencies than they did for overall 

efficiencies.  

3. In 2010, Donewell  Life, Enterprise Life, Star Life, Vanguard Life, Express  Life 

and  Glico Life operated  in the most  productive scale size whereas Donewell  Life,  

Provident Life, Star Life, SIC Life  and Glico Life were fully efficient in  

2011. Similarly, in 2012, Donewell Life, Enterprise Life, Provident Life, Express 

Life  and Glico Life were globally  efficient while Donewell Life, Enterprise  Life,  

Provident Life, SIC Life and Glico Life were fully efficient.  

4. Donewell Life and Glico Life operated in the most productive scale size and thus 

were globally efficient for the period of study.  

  

  



 

96  

  

4.4 Scale Efficiencies of Ghanaian Life Insurers  

Scale efficiency shows the effect of a DMU‟s size on efficiency. It indicates inefficiency 

due to inappropriate size of a DMU and if a DMU moved towards the best size, the overall 

and technical efficiency can be improved at the same level inputs. It is the extent to which 

a company can take advantage of returns to scale by altering its size towards optimal scale 

(which is defined as the region in which there are constant returns to scale in the relationship 

between outputs and inputs). The scale efficiency of a firm can be computed by taking the 

ratio of the firm‟s overall efficiency to its technical efficiency. The scale efficiencies of the 

Ghanaian life insurers as evaluated using the DEA model of Holiang and Michael [2007] 

are shown in table 4.4 and figure 4.4.  

Table 4.4:  Scale Efficiencies of Ghanaian Life Insurers  

Company  2010  2011  2012  2013  

Donewell  1  1  1  1  

Enterprise  1  0.998878  1  1  

Ghana Union  0.790672  0.65782  0.736348  0.838959  

Metropolitan  0.969213  0.985304  0.996542  1  

Provident  0.913172  1  1  1  

Star Life  1  1  0.972154  0.907115  

SIC Life  0.995155  1  0.953307  1  

Unique  0.745856  0.820959  0.837188  0.927085  

Vangaurd  1  0.987107  0.990962  0.975391  

Express Life  1  1  1  0.996117  

Phoenix Life  0.841556  1  0.893407  0.981018  

Glico Life  1  1  1  1  

Ghana Life  0.693479  0.823078  0.916425  0.963523  

UT life  0.490166  0.624497  0.863049  0.920149  
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Figure 4.4: A Plot of Scale Efficiencies of Ghanaian Life Insurers for the period We 

observe from Table 4.4 and Figure 4.4 that:  

1. The minimum scale efficiency was recorded by Ghana Union in 2011 which stood 

at 49 %( 0.490166).  

2. The life insurance companies exhibited higher scale efficiencies than they did for 

technical efficiencies. This implies that the various companies could increase their 

efficiency by among other things altering their size towards optimal scale.  

3. The average scale efficiency of the life insurers for the period of study stood at 

93%.This shows that, on the average, Ghanaian life insurers operated at increasing 

returns to scale for the period of the study.  

4.5 Average Overall, Technical and Scale Efficiencies of Ghanaian Life Insurers  

The average overall, technical and scale efficiencies of the life insurers for the period of the 

study are  shown in  Table  4.5 and graphically in Figure 4.5  that, apart from  Ghana Life, 

all  the other insurance  companies performed above average. There is still need for 

improvement since they all operated below 100%.  
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Table 4.5: Overall, Technical and Scale Efficiencies of Ghanaian Life Insurers  

Company  Overall 

efficiencies  

    Scale 

efficiencies  

Technical 

efficiencies  

Donewell  1  1  1  

Enterprise  0.987483358  0.999719517  0.987750098  

Ghana Union  
0.689892705  0.7559499  0.913553862  

Metropolitan  0.820613371  0.987764817  0.820613371  

Provident  0.942585001  0.978292913  0.960896824  

Star Life  0.881490206  0.969817269  0.906186515  

SIC Life  0.960693609  0.98711566  0.973449322  

Unique  0.737172857  0.83277208  0.888167523  

Vangaurd  0.849755321  0.988365046  0.858823847  

Express Life  0.87843979  0.999029343  0.878940418  

Phoenix Life  0.759945413  0.928995163  0.820733624  

Glico Life  1.000000001  1.000000001  1  

Ghana Life  0.464487498  0.849126495  0.551471996  

UT life  0.53832789  0.724465077  0.77574085  

Average  0.822206216  0.928672377  0.881166304  
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Figure 4.5: A Plot of Average Overall, Technical and Scale Efficiencies of Ghanaian 

Life Insurers  

We observe from Figure 4.5  

1. The scale efficiency scores are higher than the technical and overall efficiency 

scores. This implies that Ghanaian life insurers‟ inefficiencies are largely due to 

inefficient management operations.  

2. Donewell Life and Glico Life outperformed the other companies. These relative 

inefficient companies can improve by observing the mode of operations of these 

efficient ones and implementing those things contributing to the efficiency of the 

two companies.  

4.6 Effects of Dimension and Market Share on Insurer Efficiency  

We seek to test some hypotheses related to the efficiency scores of the insurance 

companies obtained. The Mann Whitney U test is utilized. The Mann Whitney U test 

tests whether two samples are from the same population and is recommended for the 

non- parametric analysis of DEA results. It is used because the efficiency scores here 
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do not fit within a standard normal distribution. We use the overall efficiency scores for 

the test.  

4.6.1 Effect of Dimension on Insurer Efficiency  

To test this hypothesis, we classify the life insurance companies by capital and 

then divide the sample into two subsets.  

(i)  H0: Large life insurers are not more efficient than small life insurers H1: 

Large life insurers are more efficient than small life insurers.  

(ii). Significance level: α = 0.05  

(iii). Rejection Region: This is a two-tailed test with  n1=7 and n2=7. Reject the 

null hypothesis if p-value <  0.05  

(iv). The test statistic, p-value= Assymp.Sig.(2-tailed) = 0.142  

Table 4.6.1: Mann Whitney U test on differences in Life Insurers based on  

Dimension  

                                     Ranks  

  Dimension  N  Mean Rank  Sum of Ranks  

Large  7  9.14  64.00  

Overall  

Small  

Efficiencies  7  5.86  41.00  

Total  14      
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Test Statistics  

  Overall Efficiencies  

Mann-Whitney U  13.000  

Wilcoxon W  41.000  

Z  -1.469  

Asymp. Sig. (2-tailed)  .142  

Exact  Sig.  [2*(1-tailed  

Sig.)]  .165b  

       (v).    Decision: Since the p-value= 0.142 >0.05=α, we retain the null hypothesis.  

(vi).   Conclusion:  At the α =0.05 level of significance, there is enough evidence to 

show that large life insurers in terms of capital are not more efficient than small life 

insurers.   

4.6.2 Effect of Market share on Insurer Efficiency  

To test this hypothesis, the insurance companies are classified by net premiums 

to determine estimated market share. We further divide the sample into two 

constituting large and small insurers.  

(i). H0: Life insurers with higher market shares are not more efficient than life 

insurers with lower market shares.  

H1:  Life insurers with higher market shares are more efficient than those 

with lower shares.  

(ii). Significance level: α=0.05  

(iii).Rejection region: This is a two-tailed test with n1=7 and n2=7.Reject the null 

hypothesis if the p-value < 0.05.  
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(iv). The test statistic, p-value= Assymp. Sig.(2-tailed) = 0.035  

  

Table 4.6.2: Mann Whitney U test on differences in Life Insurers based on Market 

share  

                                                              Ranks  

  Market share  N  Mean Rank  Sum of Ranks  

Large  

Overall efficiencies Small  

Total  

7  9.86  69.00  

7  5.14  36.00  

14      

  

  

               Test Statistics  

  Overall efficiencies  

Mann-Whitney U  8.000  

Wilcoxon W  36.000  

Z  -2.108  

Asymp. Sig. (2-tailed)  .035  

Exact Sig. [2*(1-tailed Sig.)]  .038b  

    

(v), Decision: Since the p-value = 0.035< 0.05= α, we reject the null hypothesis.  

(vi). Conclusion: At the α = 0.05 level of significance, there is enough evidence 

to show that life insurers with higher market shares are more efficient than life 

insurers with lower market shares.  
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Thus, from the above hypotheses tests performed at 5% significance level, we can state  

that:  

1. Large life insurers in terms of capital do not necessarily tend to have higher 

efficiency than small life insurers. Conclusions about size efficiency could be 

significantly affected by methodological choice. Yuengert (1993) found that 

efficiency and size were statistically unrelated.  

2. Life insurers with higher market shares do tend to more efficient than those with 

lower market shares. This result is consistent with previous study in the insurance 

industry [4, 6] and the findings of Gardner and Grace (1993).  

  

  

  

  

  

  

  

  

  

CHAPTER 5  

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS  
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5.1 Summary  

The study revealed that Ghanaian life insurance companies with higher scale-size are 

relatively efficient which is evidenced by the scores in table 4.4. The average scale 

efficiency or the Ghanaian life insurance companies stood at 93% whereas the average 

technical efficiency stood at 88%. This indicates that although life insurers operated at high 

technical efficiency, the life insurers operated with higher scale efficiencies. Thus, there is 

need for Ghanaian life insurers to develop and upgrade their technical and managerial skills 

to enable them get to the efficient frontier.  

Also, we note that large life insurers with high capital do not necessarily tend to have higher 

efficiency scores than life insurers with lower capital.  Moreover, life insurers with higher 

market shares tend to be more efficient than life insurers with lower market shares, an effect 

that is explained by economies of scale in this particular activity [ Owusu-Ansah etal, 2010;  

Cummins and Zi,1998].  

5.2 Conclusions  

In this research, we sought to evaluate relative efficiencies of Ghanaian life insurance 

companies. We used Data Envelopment Analysis, a mathematical programming tool that 

allows for the incorporation of multiple inputs and outputs in determining relative 

efficiencies of life insurance companies. The general conclusion is that a good number of 

the life insurers operated with relatively high managerial skills and higher scale efficiency. 

Also size-efficiency of Ghanaian life insurance companies was significantly affected by 

choice of classification and efficiency and size are statistically unrelated.  

5.3 Recommendations  

We give the following recommendations  
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1. Though a good number of life insurance companies are doing well in Ghana, they 

can improve their performance by employing managerial best practices from top 

performers and increase efficiency through altering their size towards optimal scale.  

2. There is need for more research into performance and productivity analysis of the 

life insurance industry as well as other areas of the financial sector such as the 

banking industry. This will enlighten the  public about the life insurance industry in 

Ghana and also help  life insurer know the opportunities and threats to their 

effectiveness and efficiency to enable them position themselves for higher 

performance  

3. Data Envelopment Analysis should   be employed as a technique for the measuring 

the efficiency and productivity of government service delivery such as health, 

education, etc.  

  

  

  

  

  

  

  

  

  

REFERENCES  

Yaga H. and Pollit M (2007). Incorporating both desirable and uncontrollable variables into 

dea:  the performance of Chinese coal-fired power plants. Technical report, Judge 

Business School, University of Cambridge, Cambridge.  



 

106  

  

 Charnes A. Cooper W.W. and   Rhodes E. (1978). Measuring the efficiency of decision 

making units. European Journal of Operational Research, 2:428-444.  

 Luhnen M. (2008). Frontier efficiency measurement in the insurance industry: 

Systematization, overview, and recent developments. Technical report, University 

of St. Gallen, Institute of Insurance Economics.  

 Barros C.P. and Obijiako E.L. (2007). Technical efficiency of Nigerian insurance 

companies.  Working Paper, School of Economics and Management, Technical 

University of Libson.  

 Barros C.P., Caporrale G.M., and Ibiwoye A. (2008). A two stage efficiency analysis of 

the insurance industry in Nigeria. JEL.  

Owusu-Ansah,E., Dontwi, I.K., Seidu, B., Abdulai, G. and Sebil,C.,(2010) Technical 

efficiencies of Ghanaian general insurers, AJSMS.  

Farrel M. J. (1957). The measurement of productive efficiency. Journal of royal statiscal 

society, 120 (3): 253-282.  

AmitK.(2001). Mathematical modeling for data envelopment analysis with fuzzy 

restrictions on weights. Master‟s thesis, Faculty of the Virginia Polytechnic Institute 

and State University.  

 Banker R.D., Charnes A., and Cooper W.W. (1984). Some models for estimating technical 

and scale inefficiencies. Management Science, 30: 1078-1078.  

Talluri S. (2000). Data   envelopment analysis:  models and extensions. 

Production/Operations Management, decision Line, May.  



 

107  

  

 Doyle J. and Green R. (1994). Efficiency and cross efficiency in dea: Derivations, 

meanings and uses. Journal of Operations Research Society, Vol.45, No.5, 578: 567-

57.  

 Cummins J.D. and Zi H. (1998). Comparison of frontier efficiency methods: An application 

to the US. Life insurance industry. Journal of productivity analysis, 10: 131-152.  

Kao C. and Tai Lui S. (2000). Data envelopment analysis with missing data: An application 

to university libraries in Taiwan. The Journal of the Operational Research Society, 

51 (8): 897-905.  

 Athanassopoulos A.D. (1994). The evolution of non-parametric frontier analysis methods: 

a review and recent developments. JEL, 45.  

 Berger A.N. and Humphrey D.B. (1997). Efficiency of financial institutions: International 

survey and directions for future research. European Journal of Operational 

Research, 98: 175-212.  

 Berger A.N. (2000). The integration of the financial services industry: Where are the 

efficiencies? North American Actuarial Journal, 4: 25-53.  

KuosmanenT.(2002). Modeling blank data entries in data envelopment analysis. Technical 

report, Wageningen University, Department of Social Sciences.  

 Diacon S.R., Starkey K, and OšBrien C. (2002). Size and efficiency in European longterm 

insurance companies. General paper on insurance, 27 (3): 444-446.  

Berghen F.V (2003/2004). CONDOR. a constrained, non-linear, derivative-free parallel 

optimizer for continuous high computing load, noisy objective functions. PhD 

thesis, University of Bruxelles, Faculty of Applied Sciences.  



 

108  

  

 Knox Lovell C.A. and Pasto J.T. (1995). Units invariant and translation invariant dea 

models. Operations Research Letters, 18:147-151.  

Eling M. and Luhnen M. (2008). Frontier efficiency methodologies to measure performance 

in the insurance industry: Overview and new empirical evidence. Technical report, 

University of St.Gallen, Institute of Insurance Economics.  

 Banker R.D and Thrall R.M. (1992). Theory and methodology: Estimation of returns to 

scale using data envelopment analysis. European Journal of Operational Research, 

16: 74-84.  

Simar L and Wilson P. W (1998). Sensitivity analysis of efficiency scores: How to bootstrap 

in non-parametric frontier models. Management Science, 44: 49-62, JAN.  

 Diacon S., OšBrien C., Starkey K. and Odindo C. (2002). The most successful insurers in 

the UK long-term market. Working Paper, Centre for Risks and Insurance studies, 

The University of Nottingham.  

Schrijver A. (1986). Theory of linear and integer programming. John Wiley and Sons,  

New York.  

Lewis K.C.E., Anderson D, and Randy I (2004). Production efficiency in the Austrian 

insurance industry: a bayesian examination. Journal of Risk and Insurance, 71 (1):  

135-159.  

 Dantzig G.B. (1947). Linear programming. Operations Research: 50 (1) :42-47.  

 Klee V. and Minty G.J. (1972). How good is the simplex algorithm?  In O. Shisha, editor, 

inequalities-III pages 159-175, Academic Press, New Jersey.  

 Dantzig G.B. (1963). Linear programming and Extensions. Princeton University Press,  



 

109  

  

Princeton, New Jersey.  

Shu-Cherng F. and Puthenpura S. (1963). Linear optimization and extensions. Prentice  

Hall, Englewood Cliffs, New Jersey.  

 Shamir R. (1987). The efficiency of the simplex method: a survey. Management Science,  

33 (3): 301-334.  

Nemhausa G.L. and Wolsey L.A. (1988). Integer and combinatorial optimization. John  

Wiley and Sons, New York.  

 Wright M.H. (1992). Interior methods for constrained optimization. In ActaNumerica, 

pages 341-407. Cambridge University Press.  

NarendraK. (1984). A new polynomial-time algorithm for linear programming. 

Combinatorica, 4: 373-395.  

 Adler I., Resende M.G.C., Verga G. and NarendraK. (1989). An implementation of  

Karmarkar‟s algorithm for linear programming. Mathematical programming, 

44:297-335.  

 Bixby R.E. (1994): Progress in linear programming. ORSA Journal on computing, 6 (1):   

15-20.  

 Todd M.J. and Ye Y. (1990). A centred projective algorithm for linear programming. 

Mathematics of Operations Research, 15 (3): 508-529.  

 Colombo M. (2007). Advances in interior point methods for large-scale linear 

programming. PhD thesis, University of Edinburgh.  



 

110  

  

 Mdoe J.I, Gachanja P.M, MuchaiD.M.(2013). Total factor productivity change in non-life 

insurance sector. International Journal of Science, Commerce and Humanities.  

 Diboky F., Ubl E. (2007). Ownership and Efficiency in the German Life Insurance  

Market: A DEA Bootstrap Approach.  

Ansah-Adu K. and Andoh C. (2012). Evaluating the cost efficiency of insurance companies 

in Ghana.  

 MdSaad N., Idris H. (2011). Efficiency of Life insurance companies in Malaysia and 

Brunei: A comparative analysis. International Journal of Humanities and Social 

Science: 1 (3), page 111.  

Zhang Y. (1995). Solving large-scale linear programs by interior point methods under the 

matlab environment. Technical report, Department of Mathematics and Statistics, 

University of Maryland, Baltimore County, Baltimore, MD.  

Mehrotra S. (1992). On the implementation of primal-dual interior point method. SIAM  

Journal on optimization, 2: 576-601.  

APPENDIX A  

Data Used in the Study  

Company  Capital  Commission  

Management 

expenses  

    Net  

Premiums   

Investment 

Income  

Claims 

incurred  

Donewell  

     

(3,840,526)  

             

225,026   3381142  6317379  565471  2804248  

Enterprise  

    

17,385,799   

           

8,739,098   9102447  39377727  12556776  6740895  

Ghana 

Union  

      

1,461,597   

             

293,940   579255  1284369  337209  191299  
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Metropolitan  

      

5,752,000   

           

1,664,000   4272000  10652000  2954000  3280000  

Provident  

    

13,157,606   

             

593,716   2089038  8970448  1437908  1720592  

Star Life  

      

8,428,655   

           

1,135,656   5726656  17962779  1850076  1089173  

SIC Life  

    

18,468,028   

           

2,186,936   10691090  47825527  5069108  10860265  

Unique  

      

1,487,488   

             

250,284   1803281  2675531  575083  576301  

Vangaurd  

      

3,930,182   

             

631,195   3591691  16799683  1507497  3924947  

Express Life  

      

1,464,307   

               

79,300   2033984  541202  920978  8427  

Phoenix Life  

      

1,583,134   

             

344,756   2596494  2596494  216303  158284  

Glico Life  

    

25,735,743   

             

746,887   5846012  21063014  2897566  7307842  

Ghana Life  

      

2,564,330   

             

473,041   2059760  3886491  781392  2173875  

UT life  

      

1,481,848   

             

117,147   1279642  1385578  92033  502893  

TableA.1:  Input/output Data of life insurers for 2010 (GH¢) TableA.2:  

Input/output Data of life insurers for 2011 (GH¢) 

Company   Capital  Commission  

Management 

expenses  

  Net  

Premiums   

Investment 

Income  

  Claims 

incurred  

Donewell  

     

(6,110,671)  

             

289,447   2669439  7065168  922859  3150348  

Enterprise  

    

25,939,529   

         

13,740,608   13275345  60608946  4049455  10463796  

Ghana 

Union  

      

1,410,787   

             

276,383   727960  1292772  281793  207573  

Metropolitan  

      

5,533,000   

           

1,996,000   4956000  13825000  3712000  5322000  

Provident  

    

24,109,813   

             

668,758   2620632  15991601  1685233  1374585  

Star Life  

      

9,117,664   

           

1,762,941   7654803  27249777  2486483  2615414  
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SIC Life  

    

21,304,013   

           

2,777,233   12489574  71494097  6980012  15238945  

Unique  

         

361,351   

             

262,489   1987398  3299766  620808  940230  

Vangaurd  

      

3,948,275   

             

563,267   4052328  13212747  2668415  6382227  

Express Life  

      

1,571,981   

               

86,226   6451823  1164195  886500  39095  

Phoenix Life  

      

1,858,445   

             

558,556   3562146  3562146  314334  155147  

Glico Life  

    

29,392,766   

           

1,234,574   7035977  34215551  3097366  12858276  

Ghana Life  

      

4,271,278   

             

781,876   3456993  6168288  637538  2508700  

UT life  

      

1,550,605   

             

283,805   1984663  2458784  201838  596917  

  

  

  

  

  

  

TableA.3:  Input/output Data of life insurers for 2012 (GH¢) 

Company  Capital  

  

Commission  

Management 

expenses  

    Net  

Premiums   

Investment 

Income  

  Claims 

incurred  

Donewell  

     

(7,841,172)  

             

272,522   8382557  7073375  2046557  5358224  

Enterprise  

    

39,718,819   

         

18,643,122   16608983  87481395  17970770  15506699  

Ghana Union        

1,562,747   

             

434,853   867105  1975773  464054  422836  

Metropolitan  

      

6,302,000   

           

2,555,000   6148000  19383000  6359000  5454000  

Provident  

      

6,092,823   

             

713,822   2870894  15713378  3750936  4572069  

Star Life  

    

10,678,128   

           

2,974,549   10210546  39687950  4398579  11403633  

SIC Life  

    

26,684,132   

           

4,324,558   18409188  99660986  14229886  43196739  
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Unique  

         

492,623   

             

252,664   2061881  3409919  566569  958421  

Vangaurd  

      

4,636,875   

             

683,966   5218587  12271055  3136177  6572310  

Express Life  

      

7,638,244   

             

115,009   2033984  1781307  90063  92398  

Phoenix Life  

      

2,013,293   

             

830,990   2483740  5841694  826181  1638980  

Glico Life  

    

47,142,000   

           

1,936,000   26783  35970000  6131000  14149000  

Ghana Life  

      

3,457,162   

             

967,534   4068982  8278234  809000  3202148  

UT life  

      

5,995,912   

             

725,445   3468816  6337182  664548  815682  

  

  

  

  

  

  

  

  

TableA.4:  Input/output Data of life insurers for 2013 (GH¢) 

Company  Capital  Commission  

Management 

expenses  

Net  

Premiums   

Investment 

Income  

Claims 

incurred  

Donewell  

  

(8,563,608)       301,512   8479128  8060266  3148623  4867158  

Enterprise   58,090,930    23,934,676   20048637  122331166  57083110  32217309  

Ghana 

Union    1,672,041        947,978   1098542  3515811  722089  833844  

Metropolitan    9,922,000      3,313,000   6113000  21161000  12071000  10285000  

Provident    3,332,410        835,096   4167679  15308194  5381644  15395554  

Star Life   15,799,649      4,020,286   12698590  53211010  8238867  24447156  

SIC Life   37,651,373      6,267,473   21406152  126790109  30340078  68845574  

Unique       209,599        194,585   2754155  3691697  924675  1689678  
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Vangaurd    5,810,291        824,838   4982339  11069780  3241398  7239814  

Express Life    3,563,752      1,361,560   6451823  5375023  401515  986454  

Phoenix Life    2,399,784        788,088   3134847  6892858  1700246  3395073  

Glico Life   56,727,000      2,253,000   40033  53710000  7471000  23367000  

Ghana Life    3,820,588      1,445,350   4664664  10533671  1140978  4107884  

UT life   11,020,323      1,368,034   6385250  11414222  2058636  1878118  

  

  

  

  

  

  

  

  

APPENDIX B  

MATLAB Codes Used for the Study  

Function    [Windows Average Windows table]=... 

WindowHongliangMichael CRS (X, Y_d,Y_u, DMUs,Years) 

p=6; w=3; n=14; wr=(p-w+1)*n; nw=p-w+1;  

%p is the number of windows, n is number of DMUs, wr is the number of  

%individual DMUs in a window and nw is  

Window=cell (p-w+1,p,n);  
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%Create a cell array of empty entries to contain window results 

NumericWindow=zeros (p-w+1,p,n); for  i=1:p-w+1  

% For every window Compute the efficiency scores and assign it to efficiency efficiency= 

HongliangMichaelCRS (X(1+n*(i-1):n*(w+i-1),:),...  

Y_d (1+n*(i-1):n*(w+i-1),:),Y_u(1+n*(i-1):n*(w+i-1),:));  

Window1=[ efficiency(1:n,:) efficiency(n+1:2*n,:) efficiency(2*n+for j=1:n  

%Decompose the efficiencies obtained above into their respective Window 

(i,i:w+i1,j)=num2cell(Window1(j,:));  

Numeric Window( i,i:w+i-1,j)=Window1(j,:); 

end end  

Windows=Window (:,:,1);  

Numeric Windows=Numeric Window(:,:,1);  

for  i=2:n  

Windows= [Windows; Window(:,:,i) ];  

Numeric Windows=[NumericWindows;NumericWindow(:,:,i) ]; 

end temp1=cell(n*(p-w+1)+n,1); for i=1:n  

temp1{1+(1+nw)*(i-1)}=DMUs{i+1}; 

temp1{(1+nw)*i}=‟Moy/An‟; end for 

i=1:n for j=1:p  

WindowsAverage(i,j)=mean(NumericWindows(...find(NumericWindows(1+nw*(i- 

1):nw*i,j)>0)+nw*(i-1),j)); end temp2{i}=[Windows(1+nw*(i-

1):nw*i,:);num2cell(WindowsAverage(i,:))]; end temp3=temp2{1};  
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for i=2:n temp3=[temp3;temp2{i}]; end temp3=[temp1 

temp3];temp3=[[DMUs(1) num2cell(Years)];temp3]; 

Windowstable=temp3; 

function[WindowsAverageWindowstable]=... 

WindowHongliangMichaelVRS(X,Y_d,Y_u,DMUs,Years) 

p=6;w=3;n=14;wr=(p-w+1)*n;nw=p-w+1;  

%Create a cell array of empty enteries to contain window results  

Window=cell(p-w+1,p,n); NumericWindow=zeros(p-w+1,p,n); 

for i=1:p-w+1 efficiency=HongliangMichaelVRS(X(1+n*(i-

1):n*(w+i-1),:),...  

Y_d(1+n*(i-1):n*(w+i-1),:),Y_u(1+n*(i-1):n*(w+i-1),:));  

Window1=[efficiency(1:n,:) efficiency(n+1:2*n,:) efficiency(2*n+for j=1:n  

Window(i,i:w+i-1,j)=num2cell(Window1(j,:)); 

NumericWindow(i,i:w+i-1,j)=Window1(j,:); 

end end  

Windows=Window (:,:, 1);  

NumericWindows=NumericWindow(:,:,1);  

for i=2:n  

Windows=[Windows;Window(:,:,i) ];  

NumericWindows=[NumericWindows;NumericWindow(:,:,i) ]; end  
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temp1=cell(n*(p-w+1)+n,1); for 

i=1:n  

temp1{1+(1+nw)*(i-1)}=DMUs{i+1}; 

temp1 {(1+nw)*i}=‟Mean‟; end for 

i=1:n for j=1:p  

WindowsAverage(i,j)=mean(NumericWindows(find...(NumericWindows(1+nw*(i1):nw*

i 

,j)>0)+nw*(i-1),j)); end temp2{i}=[Windows(1+nw*(i-

1):nw*i,:);num2cell(WindowsAverage(i,:))]; end temp3=temp2{1};  

for i=2:n temp3=[temp3;temp2{i}]; end temp3=[temp1 

temp3];temp3=[[DMUs(1) num2cell(Years)];temp3]; 

Windowstable=temp3;  

function  

[WindowsAverageWindowstable]=...WindowHongliangMichaelScale(X,Y_d,Y_u,DMUs, 

Years) p=6; w=3;n=14;wr=(p-w+1)*n;nw=p-w+1;  

Window=cell(p-w+1,p,n);%Create a cell array of empty enteries to contain 59 

NumericWindow=zeros(p-w+1,p,n); for i=1:p-w+1 

efficiency=HongliangMichaelScale(X(1+n*(i-1):n*(w+i-1),:),...  

Y_d(1+n*(i-1):n*(w+i-1),:),Y_u(1+n*(i-1):n*(w+i-1),:));  

Window1=[efficiency(1:n,:) efficiency(n+1:2*n,:) efficiency(2*n+for j=1:n  

Window(i,i:w+i-1,j)=num2cell(Window1(j,:)); 

NumericWindow(i,i:w+i-1,j)=Window1(j,:); 

end end  
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Windows=Window(:,:,1);  

NumericWindows=NumericWindow(:,:,1);  

for i=2:n  

Windows=[Windows;Window(:,:,i) ];  

NumericWindows=[NumericWindows;NumericWindow(:,:,i) ]; 

end temp1=cell(n*(p-w+1)+n,1); for i=1:n  

temp1{1+(1+nw)*(i-1)}=DMUs{i+1}; 

temp1{(1+nw)*i}=‟Moy/An‟; end for 

i=1:n  

for j=1:p  

WindowsAverage(i,j)=mean(NumericWindows(find...(NumericWindows(1+nw*(i- 

1):nw*i,j)>0)+nw*(i-1),j)); end temp2{i}=[Windows(1+nw*(i-

1):nw*i,:);num2cell(WindowsAverage(i,:))]; end temp3=temp2{1};  

for i=2:n temp3=[temp3;temp2{i}]; end temp3=[temp1 

temp3];temp3=[[DMUs(1) num2cell(Years)];temp3];  

Windowstable=temp3;  

%We seek to develop a code that generates latex tables from tables  

%imported from Excel  

% To use this function first launch notebook so as to get the table % on word for you to 

copy and paste in your latex file.  

function excel2latex1(A,label,caption) 

ifisnumeric(A) A=num2cell(A); end  
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[r,c]=size(A); 

p=1;columnstyle=‟l‟; for i=1:c-1 

columnstyle=[columnstyle ‟l‟]; 

end deleteTableName.tex 

diaryTableName.tex 

disp([‟\begin{longtable}{‟ 

columnstyle ‟}‟]) 

disp(strcat(‟\caption[‟,caption,‟]{‟

,caption,‟}\\‟)) 

disp(‟\endfirsthead‟) 

disp(‟\caption{(continued)}\\‟) 

disp(‟\hline‟) 

disp(‟\endhead\hline‟) 

disp(‟\endfoot\hline‟) 

disp(‟\endlastfoot\hline‟) 

disp(strcat(‟\label{‟,label,‟}‟)) for 

i=1:r temp=‟‟; for j=1:c-1 if 

(isnan(A{i,j})) temp=[temp ‟&‟];  

else ifisnumeric(A{i,j}) 

temp=[temp 

num2str(A{i,j}) ‟&‟]; 
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else temp=[temp A{i,j} 

‟&‟]; end end end 

if(isnan(A{i,c})) 

temp=[temp ‟\\‟]; else 

ifisnumeric(A{i,c}) 

temp=[temp 

num2str(A{i,c}) ‟\\‟]; 

else temp=[temp 

A{i,c} ‟\\‟]; end end 

disp(temp) end 

disp(‟\end{longtable}‟

) end  


