KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, KUMASI

COLLEGE OF SCIENCE

KNUST

EVALUATION OF TIGERNUT (Cyperus esculentus L., Brown variety) FLOUR IN

THE PRODUCTION OF WHEAT-TIGERNUT COMPOSITE BISCUIT

A THESIS SUBMITTED TO THE DEPARTMENT OF FOOD SCIENCE AND

TECHNOLOGY, IN PARTIAL FULFILMENT FOR THE AWARD OF THE

DEGREE OF (MASTER OF SCIENCE IN FOOD SCIENCE AND TECHNOLOGY)

Ms. ELLEASON GIFTY (MSc.)

APRIL, 2015

DECLARATION

Candidate's Declaration

I, Elleason Gifty hereby declare that this work, with the exception of the quotations and references contained in published works which have all, to the best of my knowledge, been identified and acknowledged, is entirely my own original work. As far as I know, this work has never been previously published or has it ever been submitted anywhere for a master qualification.

Elleason Gifty	Signature.	Date
(PG8009812)		
(Student name and ID No.)	NOm	
Supervisors' Declaration		
	eparation and presentation of this dis nes on supervision of dissertations ce and Technology.	
Certified by supervisors:		
Dr. (Mrs.) Faustina D. Wireko	o-Manu Signature	Date
(Supervisor)	W J SANE NO BADH	
Mr. John Barimah	Signature	Date
(Supervisor)		
Certified by:		
Prof. (Mrs.) Ibok Oduro	Signature	Date
(Head of Department)		

DEDICATION

I highly dedicate this work to God for giving me strength and knowledge to complete the research. I also dedicate this work to my parent Mr. Joseph Kwame Elleason and Mrs. Celestina Elleason, who have helped me in so many ways to bring me this far. It also goes to my love Paul Arthur, my son Michael Nana Kwame Arthur and my siblings: Linda Elleason, Alfreda Elleason, Isaac Elleason, Joseph Elleason, and Daniel Elleason, as well as my relatives: Daniel Kwaw Mieza, Daniel Darko, Gladys kofi and to all readers.

ACKNOWLEDGEMENT

Great thanks go to the almighty God, who made it possible for me to complete the master's programme successfully and also helped me to write this dissertation. My profound gratitude goes to my supervisors Mr. John Barimah and Dr. (Mrs.) Faustina Dufie Wireko-Manu for their love, support and patience in supervising my work.

A dedication to the KNUST students, Church of Christ Senior High School students, colleagues and friends for their immense support and contribution especially during the sensory evaluation of the biscuit products in this study.

I am grateful to my mentor Dr. Jacob Agbenorhevi for his immense contribution towards this research especially during the intervention stage of the work.

I am also grateful to Brother Damian Laryea, Sister Abena Boakye and Sister Zeenatu Adams for helping to compile this entire research report together for originality.

ABSTRACT

Tigernut is underutilized crop tuber despite its acclaimed nutrients composition. Biscuits were produced by compositing tigernut flour with wheat flour to explore the effect of tigernut in the product. Brown tigernuts were properly cleaned, dried and milled to obtain the flour. Wheat flour (WF) in the biscuit formulation was replaced at five levels, 10%, 20%, 30%, 40% and 50% with tigernut flour (TF). On a scale of 1 - 9; where 1 = dislike extremely and 9 = like extremely, the sensory attributes (appearance, taste, chewiness, mouthfeel, aroma and aftertaste) of wheat-tigernut biscuits were compared to 100% wheat biscuit (control). Proximate, minerals (Mg, Fe, K, Ca and P), colour and texture were conducted on the most preferred and control biscuit. Generally the biscuits had good consumer preference with the 30% tigernut flour blend being the most preferred with average scale score of 8.02. Incorporation of tigernut flour for the production of 30% wheat-tigernut biscuit resulted in an increase in fibre (1.50-6.20 g), ash (1.04-2.14 g) and (energy 419.90-464.97 kcal) but a decrease in protein content (12.21-9.14 g) as compared to the 100% wheat biscuit. Mineral content (Ca, K and P) for the most preferred formulation increased to (30.01-80.52, 91.50-105.50 and 187.87-198.11 (mg /100 g) as compared to the control biscuit. The tigernutcontaining biscuit exhibited dark brown colour as compared to the control biscuit. This can be attributed to the brown colour of tigernut flour in the blend. Measurement of baked biscuits texture showed that hardness and fracturability values decreased as tigernut flour content in the biscuit formulation increased. Differences in hardness and fracturability of the biscuits due to various levels of tigernut flour incorporation might be as a result of differences in protein and carbohydrate contents of the products. Wheat flour contains high amount of gluten and starch which may have contributed to the firmness of the control biscuit as compared to the tigernut flour substituted biscuits since the tigernut flour contains no gluten but high in fibre which may have interfered with the texture of wheat-tigernut biscuits. The Promotion and adoption of wheat-tigernut based biscuits would increase the tigernuts nut utilisation and may drive the chain of production of the tigernuts.

Keywords: Tigernut flour, Biscuits, Sensory evaluation, Parameters, Colour and Texture analysis

CONTENT	PAGE
TITLE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT. KNUST	iv
ABSTRACT	V
TABLE OF CONTENTS.	vi
LIST OF TABLES.	
LIST OF PLATES.	2xiii
FTTP. LATE	xiii
CHAPTER ONE.	1
1.0 INTRODUCTION.	1
1.1 Background	1
1.2 Statement of the Problem	
1.3 Justification	2
1.4.1 Aim of the Study	3
1.4.2 Objectives	3

TABLE OF CONTENTS

СНА	PTER TWO4
2.0	LITERATURE REVIEW4
2.1	The History of Tigernuts4
2.2	Cultivation of tigernuts5
2.3	Harvesting, Drying and Storage of tigernuts6
2.4	Local Identification of Tigernut7
2.5	Production of the Crop7
2.6	Chemical composition of Tigernut7
2.7	Toxicological State of Tigernut
2.8	Benefits of Tigernut Consumption9
2.8.1	Nutrient Benefits
2.8.2	Health Benefits
2.9	Uses of the plant tuber
2.9.1	Use in medicine and cosmetic industry
2.9.2	Use as oil11
2.9.3	Use as food11
2.10	Wheat flour

2.11 Biscuit14
2.11.1 Function ingredients in biscuit
2.12 Sensory Characteristics16
2.12.1 Appearance and Colour
2.12.2 Taste
2.13 Texture
CHAPTER THREE
3.0 MATERIALS AND METHODS
3.1 Source of Tigernut and Wheat flour
3.2 Preparation of Tigernut flour
3.3 Proximate Composition
3.3.1 Determination of Moisture Content
3.3.2 Determination of Total Ash
3.3.3 Determination of Crude Protein Content
3.3.4 Determination of Crude Fat Content
3.3.5 Determination of Crude Fibre
3.4 Determination of Carbohydrate24

3.5	Determination of Energy24
3.6	Determination of Some Essential Minerals in Samples24
3.6.1	Preparation of sample solution for mineral analysis
3.6.2	Determination of Fe, Ca, Mg and K25
3.6.3	Determination of Phosphorus
3.7	Preparation of composite biscuits26
3.7.1	Biscuit ingredient
3.7.2	Procedure for Preparing the Biscuit
3.8	Sensory Analysis
5.0	Sensory Anarysis
3.9	Colour Measurements
3.10	Instrumental Texture Profile Analysis
3.11	Statistical Analysis
	Stausucal Analysis
CHA	PTER FOUR
CHA 4.0	BROWER BROWE
	APTER FOUR
4.0 4.1	APTER FOUR

4.1.3 Fat Content	32
4.1.4 Protein Content	34
4.1.5 Fibre Content	35
4.1.6 Carbohydrate	36
4.1.7. Energy	37
4.2 Mineral Composition	37
4.3 Sensory Properties of Biscuit Prepared from Wheat and Tigernut	
Blends	41
4.3.1 Scores for Appearance and Colour.	41
4.3.2 Scores for Taste	41
4.3.3 Scores for Chewiness.	42
4.3.4 Scores for Mouth feel.	42
4.3.5 Scores for Aroma	43
4.3.6 Scores for Aftertaste	43
4.3.7 Overall Acceptability	44
4.4 Instrumental Colour Measurement	45
4.5 Instrumental Texture Measurement	46

4.6 Correlation between Sensory attributes, Instrumental Texture analysis and Chemical
analysis47
CHAPTER FIVE
5.0 CONCLUSION AND RECOMMENDATIONS
5.1 CONCLUSION
5.2 RECOMMENDATIONS
REFERENCES
APPENDIX
MIRDER NO BROME

LIST OF TABLES

TABLE PAGE
Table 2.1 Proximate composition of tigernut flour
Table 2.2 Mineral Component of tigernut flour
Table 2.3 Proximate Composition and mineral elements of wheat flour
Table 2.4 Proximate composition of biscuit prepared from wheat flour
Table 2.5 Quantity of biscuit ingredients 16
Table 2.6 Proximate composition of acceptable biscuit prepared from tigernut flour and corn
flour blend16
Table 3.1 Formulation of wheat-tigernut biscuit
Table 4.3 Colour measurement of wheat-tigernut biscuit and wheat biscuit
Table 4.4 Instrumental Texture profile analysis of biscuit samples 47
Table 4.5 Correlation between sensory attribute (Chewiness) to instrumental texture properties
(Hardness and Chewiness)
Table 4.6 Correlation between sensory attributes to chemical analysis
Table 4.1 The proximate composition of samples
Table 4.2 Some essential mineral elements of samples
Table 4.3 The sensory properties of biscuits prepared from wheat and tigernut blends

LIST OF PLATE

PLATE	PAGE
Plate 2.1 Local storage of tigernut after harvesting	6
Plate 2.2 Tigernut and derivative products	12
Plate 2.3 Tigernut flour with its derivative products	13
LIST OF FIGURES	
FIGURE	PAGE
Figure 3.1 Flow diagram for the preparation of tigernut flour	21
Figure 4.1The sensory properties of biscuits prepared from wheat and tigerr	nut flour blends43
Figure 4.2 Mean score for overall acceptability of biscuits	45
ATTRASTO W SANE NO BROMEN	

Sarkodie N. Amoako, (2009). Bookworm Food and Nutrition for Schools and Colleges. ISBN: 9988-0-1683-2

Shikhov V. N., Velichko V. V., Nesterenko T.V., Tikhomirov A. A., (2011). Ontogenetic approach to assessment of chufa response to culture conditions by the method of chlorophyll fluorescence induction. *Russ J. Plant Physl.*, **58**(2):359–63. standard for gari. 188–189.

Standard Organization of Nigeria (SON) (1988). Nigerian Industrial

Sudha M.L., Srivastava A.K., Vetrimani R., Leelavathi K., (2007). Fat replacement in soft dough biscuits: Its implications on dough rheology and biscuit quality. *J. Food Eng.*, **80**: 922–930.

Sudha M. L., Srivastava A. K., Vetrimani R. and Leelavathi K., (2007). Fat replacement in soft dough biscuits. Its implications on dough rheology and biscuit quality. *J. Food Eng.*, **80**: 922-930.

Szczesniak A. S., (1987). Correlating sensory with instrumental texture measurements – An overview of recent developments. *J. Texture Studies*, **18**: 1-15.

Tetteh J.P. and Ofori E., (1998). A baseline Survey of Tiger nut production in theKwahuSouthDistrictofGhana.http://www.ajol.info/index.php/gjas/article/view/1934.Ghana Jnl agric. Sci.Vol.31 (2)211-216. [Accessed 27/11/13]

The Columbia Encyclopedia Tigernuts, (2004). Available at http://www.encyclopedia.com/doc/1E1-tigernut.html. Accessed July, 2013).

The free encyclopedia (2013). Nutrition facts and analysis of wheat flour. Available at http://nutritiondata.self.com/facts/cereal-grains-and-pasta/5744/2

The free encyclopedia (2013). Tigernut and its varieties. (Accessed May 2013)

The spectators,(2010).Importance of tiger nuts. Available atwww.peacefmonline.com. Accessed June 2013.

Tigernut Traders, Tigernut and health, (2009). <u>www.tigernuts.com</u> <u>info@tigernuts.com</u>accessed May 20th, 2013

Tigernuts Traders S. L., *Tigernuts Oil*, (2012). Available at *http://www.tigernut.com*. Accessed April, 2014.

Tigrenut traders (2014). Health benefit of tigernut. Available at <u>http://www.tigernuts.com/tigernuts-health/</u>

Tiimub B. M., (2013). Proximate analyses of three brands of bread under different storage conditions available on the Ghanaian market. *Food Science and Quality Mgt.* Vol. **12**.

Toldra F., (2006). "Meat: Chemistry and Biochemistry". In: Hui, Y. H. *Handbook of Food Science, Technology and Engineering,* CRC Press Inc., New York, pp. 28-33.

Ukwuru M. U. and Ogdobo A. C., (2011). Effect of processing treatment on the quality of tiger nut milk. *Pak. J. Nutr.* **10** (1):95–100.

Wikipedia, the free encyclopedia. (2014). Reference Daily Intake by Food and Drug Administration (FDA). (Accessed august, 2014).

Wise, D., (2009). The Tigernut My Top Bait. Available online: <u>http://www.carp.uk.net/articles/tigernuts/</u>tigernuts.htm [Accessed: Sept 21, 2013].

Yeboah S. O., Mitei Y. C., Ngila J. C., Wessjohann L., Schmidt J., (2011). Compositional and structural studies of the oils from two edible seeds: Tigernut, *Cyperus esculentum*, and asiato, *Pachira insignis*, from Ghana. *Food Res Inter*. Doi:10.1016/j.foodres.2011.06.036.

Zandstra E. H., Weegels M. F., Van Spronsen A. A. & Klerk M., (2004). Scoring or boring? Predicting boredom through repeated in-home consumption. *Food Quality and Preference*, **15**: 549-557.

Zhang Y. Song, Cai X. Tang, Gu L. J. H. Wang, Ru S. Chai and Yao F. Niu, (2012). Response of root architecture development to low phosphorus availability. Annals of Botany pg. 1-18. <u>www.aob.oxfordjournals.org.</u>

APPENDICES

APPENDIX 1 – FORMULAE USED FOR CALCULATIONS

a) % moisture = W2- W3 \times 100 W2-W1 Where: W1 = Weight of crucibleW2 = W eight of crucible + sample W3 = Weight of crucible + dry sampleb) % Ash = W3-W1 \times W2-W1 % Total nitrogen (%N) = $X \text{ moles} \times (Vs - Vb) \text{ cm} 3 \times 14 \text{ g}$ $\times 100$ 1000cm3 c) % Fat = $W2-W1 \times 100$ W3 d) Energy (Kcal) = (Protein $\times 17$ + fat $\times 37$ + carbohydrates $\times 17$) 4.186 e) % Carbohydrate = 100 - (% moisture + % ash + % crude protein + % crude fat + % crude fibre) 7 BADY Browning index formula BI = $[100 \times (a^* + 1.79 L^*) - 0.31]$ $5.645 (L^*) + a^* - (3.012b^*)$ 0.17 Where $a^* = degree of redness$ $L^* = degree of lightness$

 $b^* = degree of yellowness$

APPENDIX 2A: QUESTIONNAIRE FOR SENSORY EVALUATION OF

WHEAT AND WHEAT-TIGERNUT BISCUITS

ACCEPTABILITY TEST

Age.....

Date.....

nor

INSTRUCTION: You have been provided with six different coded samples of biscuits. Please write the code of sample you test. Use the scale below to rate each attribute across the 6 samples indicating your level of acceptability of each product tested.

Dislike extremely
 Dislike very much

3. Dislike moderately

4. Dislike slightly

- 5. Neitherlike
- dislike
- 6. Like slightly
- 7. Like moderately
- 8. Like very much
 - 9. Like extremely

NB: Wash your mouth with water provided after each test.

	þ	SEN	ISORY A	ATTRIBUTE	S TEST	FOR BIS	CUITS	
SAMPLE CODE	Appearance	Colour	Taste	Chewiness	Mouth feel	Aroma	After taste	Overall acceptability
			La la		-)		
	1					·		
	Z			\leftarrow		Z		
	E)			\$		
	53				400			
		22	r	5	BA			
		ZW.	JSAI	NE NO	7			

Comment or suggestion

Sample	Арр	Col	Tas	Chew	Mtf	Arom	Aft	Overal
Code								
0%TF	6.84 ^a	6.94 ^a	6.78 ^a	6.40 ^a	6.24 ^a	6.14 ^a	6.76 ^a	6.78 ^a
	(1.30)	(1.22)	(0.93)	(1.07)	(1.26)	(1.18)	(1.13)	(0.91)
10%TF	7.16 ^{ab}	7.12 ^{ab}	6.76 ^a	6.40 ^a	6.34 ^a	7.16 ^b	6.28 ^b	6.72 ^a
	(1.33)	(1.26)	(0.96)	(1.03)	(1.24)	(1.06)	(0.93)	(1.23)
20%TF	7.38 ^{bc}	7.54 ^{bc}	6.36 ^b	6.20 ^a	5.90 ^a	7.52 ^b	6.06 ^b	6.50 ^a
	(1.24)	(1.27)	(1.01)	(1.18)	(1.25)	(0.89)	(1.28)	(1.28)
30%TF	7.86 ^c	7.88 ^c	7.76 ^c	5.60 ^b	7.46 ^b	7.98 ^c	7.64 ^c	8.02 ^b
	(1.05)	(1.02)	(0.82)	(0.81)	(0.89)	(0.78)	(1.01)	(0.92)
40%TF	6.94 ^b	7.04 ^a	5.46 ^d	5.12 ^c	4.90 ^c	7.78 ^c	5.14 ^d	5.54 ^c
	(1.32)	(1.09)	(1.01)	(1.17)	(1.31)	(0.91)	(1.14)	(1.47)
50%TF	6.32 ^d (1.67)	6.12 ^d (1.86)	3.96 ^e (1.21)	3.58 ^d (1.05)	3.40^{d} (1.43)	8.10 ^c (0.86)	3.78 ^e (1.22)	4.42^{d} (1.62)

APPENDIX 2B: TABLE FOR MEAN VALUES AND STANDARD DEVIATION OF SENSORY ATTRIBUTES

Numbers in columns followed by different letters are significantly different ($p \le 0.05$)

Numbers in parentheses represent the standard deviation of the mean.

App – Appearance, Col – C olour, Tas – Taste, Chew – Chewiness, Mtf – Mouthfeel, Aro – Aroma, Aft – Aftertaste, Overall – Overall acceptability.

Biscuit Treatment: 0%TF = Control (100% wheat)

10%TF = 10% tigernut flour substitution

20%TF = 20% tigernut flour substitution

30%TF = 30% tigernut flour substitution

40%TF = 40% tigernut flour substitution

50%TF = 50% tigernut flour substitution

APPENDIX 3A: MINERAL ANALYSIS

Composition of reagent 'A' and 'B'

"Reagent A" was prepared by dissolving an amount of 1.056 g of L-Ascorbic acid in 200 ml of "Reagent B" and made to mix well.

With "Reagent B", 12.0 g of Ammonium molybdate was weighed and dissolved in about 250 ml distilled water. An amount of 0.2908 g of Antimony potassium tartrate was also weighed and dissolved in about 100 ml distilled water. Both of the dissolved reagents were added to a litre of 5 N H_2SO_4 (135.98 ml conc. H_2SO_4 /litre). The reagents were mixed thoroughly and made to 2

L. The prepared reagent was then stored in Pyrex glass bottle in dark, cool compartment.

Formulae for calculating amount of minerals;

Mineral element = conc. of element $(mg/L) \times Total volume used (L)$

Weight of sample (kg)

Where; total volume used = 250 ml = 0.25 L

Weight of sample = 1.0 g = 0.001 kg

The values in mg/kg were converted to percentage by dividing the mg/kg value by 10,000. The values in mg/kg were again converted to mg/g by multiplying the mg/kg value by 1000.

Phosphorus (mg/g) = (Absorbance (nm)/Graph factor) x Dilution factor <u>X Total volume used (ml)</u> Weight of sample (g) Where; Absorbance = readings on the spectrophotometer measured in (nm) Graph factor = Sum of Absorbance readings of P standards

Sum of concentrations of P standards

Dilution factor = volumetric flask used for aliquot (25 ml)

Volume of aliquot used (1 ml)

Catstalla

Total volume used after digestion = 250 ml

Weight of sample = 2.0 g

APPENDIX 3B: TEXTURE ANALYSER MODEL SETTINGS

Mode: measures force in compression Option: return to start Pre-test speed: 1.5 mm/s Test speed: 2.0 m/s Post-test speed: 10.0 mm/s Distance: 5 mm Trigger force: auto- 25 g Tare mode: auto Data acquisition rate: 400 pps

WJ SANE N

KNUST

APPENDIX 4: CORRELATION BETWEEN SENSORY ATTRIBUTE AND INSTRUMENTAL TEXTURE ANALYSIS

	-	appearance	colour	taste	chewiness	mouthfeel	aroma	aftertaste	OA	Hardness	fracturability
appearance	Pearson Correlation	1	.983**	.867 [*]	.894 [*]	.882 [*]	.140	.783	.893 [*]	.328	.353
	Sig. (2-tailed)		.000	.025	.016	.020	.791	.065	.016	.525	.493
	Ν	6	6				6	6	6	6	6
Colour	Pearson Correlation	.983**	1	.874*	.900*	.882*	.044	.815 [*]	.885 [*]	.408	.431
	Sig. (2-tailed)	.000		.023	.014	.020	.934	.048	.019	.421	.393
	Ν	6	6	6	6	6	6	6	6	6	6
Taste	Pearson Correlation	.867*	.874 [*]	1	.998**	.999**	331	.983**	.992**	.695	.701
	Sig. (2-tailed)	.025	.023	El	.000	.000	.522	.000	.000	.126	.121
	Ν	6	6	6	6	6	6	6	6	6	6
chewiness	Pearson Correlation	.894 [*]	.900*	.998**		.998*	287	.976**	.995**	.666	.674
	Sig. (2-tailed)	.016		.000	SY.	.000	581	.001	.000	.149	.142
	Ν	6	54036	W J SA	NE NO	BADING 6	6	6	6	6	6
mouthfeel	Pearson Correlation	.882 [*]	.882 [*]	.999**	.998**	1	295	.975**	.995**	.669	.676
	Sig. (2-tailed)	.020	.020	.000	.000		.571	.001	.000	.146	.140
	Ν	6	6	6	6	6	6	6	6	6	6

Correlations

Aroma	Pearson Correlation	.140	.044	331	287	295	1	485	251	872 [*]	850 [*]
	Sig. (2-tailed)	.791	.934	.522	.581	.571		.330	.631	.023	.032
	Ν	6	6	6	6	6	6	6	6	6	6
aftertaste	Pearson Correlation	.783	.815 [*]	.983**	.976**	.975**	485	1	.963**	.795	.796
	Sig. (2-tailed)	.065	.048	.000	.001	.001	.330		.002	.059	.058
	N	6	6	6	6		6	6	6	6	6
OA	Pearson Correlation	.893 [*]	.885*	.992**	.995**	.995**	251	.963**	1	.621	.627
	Sig. (2-tailed)	.016	.019	.000	.000	.000	.631	.002		.188	.183
	Ν	6	6	6	6	6	6	6	6	6	6
Hardness	Pearson Correlation	.328	.408	.695	.666	.669	872 [*]	.795	.621	1	.998**
	Sig. (2-tailed)	.525	.421	.126	.149	.146	.023	.059	.188		.000
	Ν	6	6	6	6	6	6	6	6	6	6
fracturability	Pearson Correlation	.353	.431	.701	.674	.676	850*	.796	.627	.998**	1
	Sig. (2-tailed)	.493	.393	.121	.142	BADH140	.032	.058	.183	.000	
	Ν	6	6	WJSA	NE NO6		6	6	6	6	6

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

APPENDIX 5: PROXIMATE COMPOSITION AND MINERAL ELEMENTS OF SAMPLES

	PARAMETER								
SAMPLE	MOISTURE (g/100g)	ASH (g/100g)	CRUDE FAT (g/100g)	CRUDE PROTEIN (g/100g)	CRUDE FIBRE (g/100g)	CARBOHYDRATE (g/100g)	ENERGY (Kcal/100g)		
TF	6.90 ± 0.11^{a}	1.50 ± 0.01^{a}	15.10 ± 0.14^{a}	5.83 ± 0.01^{a}	5.92 ± 0.03^{a}	64.75 ± 0.07^{a}	420.11 ± 0.94^{b}		
WF	10.01 ± 0.01^{b}	1.14 ± 0.01^{b}	1.62 ± 0.03^{b}	10.15 ± 0.07^{b}	$0.87 \pm \ 0.00^b$	76.21 ± 0.07^{b}	365.04 ± 0.25^{a}		
WB	$6.30 \pm 0.01^{\circ}$	1.04 ± 0.02^{c}	$10.40 \pm 0.02^{\circ}$	$12.21 \pm 0.01^{\circ}$	$1.50 \pm 0.01^{\circ}$	$68.55 \pm 0.06^{\circ}$	419.90 ± 0.01^{b}		
W-TB(30%TF)	6.11 ± 0.04^{d}		24.60 ± 0.28^{d}	9.14 ± 0.03^{d}	6.20 ± 0.01^{d}	51.81 ± 0.20^{d}	$464.97 \pm 1.55^{\circ}$		

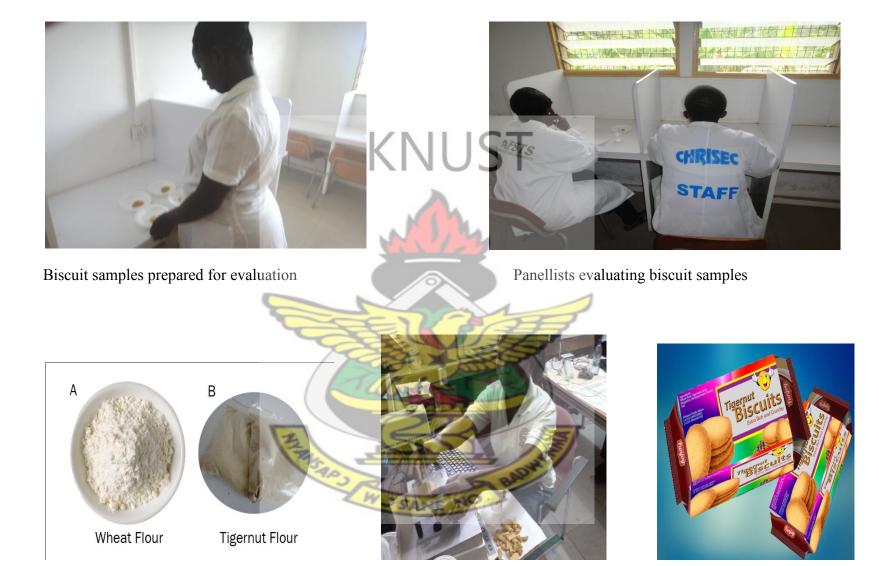
Table 4.1: The Proximate Composition of Tigernut flour, Wheat flour, Control biscuit and cceptable biscuit

*Values are means and standard deviations of two determinations. Values in same column with different letters are significantly different at p<0.05. TF = Tigernut flour, WF = Wheat flour, WB = Wheat biscuit and W-TB = Wheat-tigernut biscuit

Sec.

Sampla	Mineral Elements of Samples Mineral Element							
Sample	Calcium	Iron	Phosphorus	Potassium	Magnesium			
TF	49.79 ± 0.16 ^b	$4.74 \pm 0.01^{\circ}$	172.45 ± 0.03^{b}	190.50 ± 2.12^{a}	54.03 ± 0.01^{a}			
WF	30.09 ± 0.18^{a}	2.13 ± 0.01^{a}	154.01 ± 1.93^{a}	85.34 ± 1.82^{b}	60.09 ± 0.18^{b}			
WB	30.01 ± 0.04^{a}	2.33 ± 0.04^a	187.87 ± 0.18^{a}	$91.50 \pm 2.12^{\circ}$	$90.01 \pm 0.00^{\circ}$			
W-TB	$80.52 \pm 0.01^{\circ}$	2.60 ± 0.14^{b}	198.11 ± 0.04^{c}	105.50 ± 2.12^{d}	$90.01 \pm 0.01^{\circ}$			

*Values are means and standard deviations of duplicate determinations (n=2). Values in same column with different letters are


significantly different at p<0.05. TF = Tigernut flour, WF = Wheat flour, WB = Wheat biscuit and W-TB = Wheat-tigernut biscuit

APPENDIX 6:	SENSORY SCORES	OF BISCUIT PRODUCTS	BY PANALISTS

Sample code	Appearan ce	Colour	Taste	Chewiness	Mouth feel	Aroma	Aftertaste
0% TF	6.84 ± 1.30^{a}	6.94 ± 1.22^{a}	6.78 ± 0.93^{a}	6.40 ± 1.07^{a}	6.24 ± 1.26^{a}	6.14 ± 1.18^{a}	6.76 ± 1.13^{a}
10% TF	7.16 ± 1.33^{ab}	7.12 ± 1.26^{ab}	6.76 ± 0.96^a	6.40 ± 1.03^{a}	6.34 ± 1.24^{a}	7.16 ± 1.06^{b}	6.28 ± 0.93^{b}
20% TF	7.38 ± 1.24^{bc}	7.54 ± 1.27^{bc}	6.36 ± 1.01^{b}	6.20 ± 1.18^{a}	5.90 ± 1.25^{a}	7.52 ± 0.89^{b}	6.06 ± 1.28^{b}
30% TF	$7.86 \pm 1.05^{\circ}$	$7.88 \pm 1.02^{\circ}$	7.76 ± 0.82^{c}	5.60 ± 0.81^{b}	7.46 ± 0.89^{b}	$8.14\pm0.78^{\text{c}}$	$6.99 \pm 1.01^{\circ}$
40% TF	6.94 ± 1.32^{b}	7.04 ± 1.09^{a}	5.46 ± 1.01^{d}	5.12 ± 1.17^{c}	$4.90 \pm 1.31^{\circ}$	$7.98\pm0.91^{\text{c}}$	5.14 ± 1.14^d
50% TF	6.32 ± 1.67^d	6.12 ± 1.86^{d}	3.96 ± 1.21^{e}	3.58 ± 1.05^{d}	3.40 ± 1.43^{d}	$8.10\pm0.86^{\rm c}$	3.78 ± 1.22^{e}

*Values are presented as mean \pm standard deviation. Values in same column with different letters are significantly different at p<0.05. Key: 1 = Dislike extremely, 2 = Dislike very much, 3 = Dislike moderately, 4 = Dislike slightly, 5 = Neither like nor dislike, 6 = Like slightly, 7 = Like moderately, 8 = Like very much and 9 = Like extremely

Texture analysis of biscuit samples

Tigernut biscuit

