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Abstract 

Most of the physical laws associated with quantum mechanics are formulated in a 

mathematical framework where observables are represented as self-adjoint operators in 

Hilbert space. These self-adjoint operators are unbounded and therefore very hard to work 

with. Stone’s theorem makes it a little bit easier by establishing a bijection between a 

strongly continuous one-parameter group and self-adjoint operators. 

We began with the needed terminology, and then proved the stones theorem. In addition, 

we have indicated some applications of Stone’s theorem , particularly those associated with 

quantum mechanics (dilation and rotation in the Cartesian coordinates).  
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Chapter 1 

Introduction 

 1.1 Overview 

This chapter consists of the following: the background of the study, problem statement, objectives 

of the research and its structure 

 1.1.1 Background of the study 

Most of the physical laws that governed QM can be formulated on the basis of the 

fundamental laws of mathematics where elements of a mathematical framework are 

mapped to physical objects. In the study of QM, the Observables (position, energy, 

momentum, etc.) of a physical system are characterized as self-adjoint operators in HS. 

However, these self-adjoint operators naturally existing in quantum theory are unbounded, 

and it is very necessary to provide new and efficient way of dealing with such operators: 

this is where Stone’s theory comes to the fore. Stone’s theorem on a strongly continuous 

one-parameter unitary group is one of the powerful tools that make life a little bit easier by 

establishing a bijection between self-adjoint operators and one parameter unitary group. 

In addition, it gives us a way to write down certain families of unitary operators in terms 
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of self-adjoint, possibly unbounded operators. Translated in physical terms, this gives rise 

to statements such as ”momentum generates translation” or ”angular momentum 

generates rotation.” 

 1.1.2 Problem statement 

Despite all the existing theories, the lack of boundedness property of the self-adjoint 

operator make life extremely difficult. Although some attention has been given to the 

unbounded operators, there exist a limited study to explain the unboundedness of the self-

adjoint op- 

erators. 

 1.1.3 Main objective 

The main objective was to review a paper by Sven Moller(Mo¨ller (2010)) on Stone’s 

theorem and it’application. However, in order to do this, we made valuable use of functional 

calculus of Marcello Porta ((Porta, 2019)) 

 1.1.4 Specific objectives 

Based on the problem statement given, these are the objectives 

1. To parametrize strongly continuous unitary operators in terms of self-adjoint opera- 

tors. 
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2. To formulate the mathematical description of quantum mechanics in a strong theo- 

retical setting. 

3. To prove Stone’s theory on strongly continuous unitary group using the direct approach. 

 1.2 Justification 

QM observables are described by operators acting on the Wave-functions belonging to the 

HS of the systems under consideration. However, in contrast to the mathematical literature, 

where operators are defined by their action (that is, what they do to the functions on) and 

by their domain (i.e, the set of functions on which they operate) in the physical literature 

domain are seldom mentioned and operators are defined only by their actions. Operators 

in IDHS are not defined for all the functions of the space, and this suggests that one should 

be aware of situations where domains of the operators are so important, even in physics, 

that we need the operators in quantum mechanics to be self-adjoint and operators are self-

adjoint only in well-defined and prescribed domains. Until quite recently, domains or self-

adjoint were not mentioned in physical. However, in every recent years, some articles in 

physics literature begun to point out examples where domains of operators are essential 

to the full solution of the problems posed. As far as our research is concerned, not enough 

have been published before those articles that mention domains and self-adjointness. 

Hence, among other reason, this research thesis seeks to build upon the possibility and 

importance of self-adjointness within the realm of quantum mechanics. 
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 1.3 Scope of work and outline of project 

The project is presented in five chapters. 

Chapter one is divided into two parts: the first part presents the background of study. The 

second part of this chapter present statement of the problem, objectives and justifica- 

tion. 

Chapter two: Spaces and Bounded Operators 

Chapter three: The methods used in carrying out the entire project. Theory of unbounded 

operators with emphasis to self-adjoint operators, spectral theory and functional calculus. 

Chapter four: Mathematical formulation of Quantum mechanics, prove of stones theory on 

strongly continuous unitary group and its applications. 

Chapter five : conclusions and recommendations.  
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Chapter 2 

Spaces and Bounded Operators 

 2.1 Overview 

To start with, we need to look at the general concept of spaces in purely mathematical 

settings, including the important concept of Hilbert space. The theory of Hilbert space 

generalizes the definition of Euclidean space and therefore extends the principle of 

capturing vector algebra of 2-3 dimensional spaces to either finite or infinite dimensional 

spaces. Nevertheless, it has an inner-product that allows the measurement of vector length, 

angle and perpendicularity to be determined. The theory of spaces can, of course, 

contribute to the study of linear operators and bounded operators. This linkage opens up 

our study to cover spaces that are specifically classified as domains and co-domains of 

defined operators. Next to follow closely is the analysis of One Parameter Unitary Group, a 

group of unitary operators defined on Hilbert spaces with some additional properties, such 

as continuity and homomorphism. Finally, we will be involved in the study of Fourier 

Analysis, an important theory that regulates the superposition of wave-function. 
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 2.1.1 Linear Vector Space(LVS) 

In practical and theoretical sense, we usually encounter physical situations involving a set 

Xν, whose nature of elements are vectors either in two or three dimensional space, or a 

sequence of numbers, or functions. The elements in the set Xν can be added and multiplied 

by constants and the resulting is also a member of the set Xν. The constant is considered as 

generalized field Ksc, and whose elements are mainly real and complex numbers. However, 

such a physical situations proposes the concept of vector space as defined below. 

Definition 1. Suppose Xν 6= ∅ and Ksc be a scalar field. Then a mapping 

 + : Xν × Xν −→ Xν and 

× : Ksc × Xν −→ Xν 

is called addition and scalar multiplication respectively. That is, 

 (∀xν,yν ∈ Xν xν + yν ∈ Xν and α ∈ Ksc such that αxν ∈ Xν) : 

Xν is an abelian 

1. ∀xν,yν,zν ∈ Xν and α,β ∈ Ksc 

(a) xν + yν = yν + xν commutativity property 

(b) (xν + yν) + zν = xν + (yν + zν) associativity property 

(c) if ∃ 0 ∈ Xν : xν + 0 = xν identity property 

(d) if ∃ (−xν) ∈ Xν : xν + (−xν) = 0 inverse property 



 

7 

2. (α + β)xν = αxν + βxν 

3. α(xnu + yν) = αxν + αynu 

4. α(βxν) = (αβ)xν 

5. xν × 1 = xν, where 1 ∈ Ksc 

Thus, we call Xν linear vector space when the coefficients are real numbers, and complex 

linear vector space when the coefficients are complex numbers. 

Definition 2 (Subspace). Suppose Yν is a subspace of linear vector space Xν if 

∀yν1,yν2 ∈ Yν and α,β ∈ Ksc then, 

 αyν1 + βyν2 ∈ Yν (2.1) 

In addition,Yν is a linear Vector space because of the algebraic structure it inherited from Xν 

Definition 3 (Linear combination). Given vectors  and the set of scalars 

. An expression of the form α1yν1 + α2yν2 + α3yν3+,...,+αnyνn is called 

linear combination 

Definition 4 (Linear independence and Linear dependence). We say  is 

linearly independence if there exist a linear combination of the vectors in Xν such that 

 α1yν1 + α2yν2 + α3yν3+,...,+αnyνn = 0 (2.2) 
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where  are scalars and are all zero. Geometrically, Any linear independence set of 

vectors in a space will always generate another vector under the addition and scalar 

multiplication, and a such, the resultant vector is coplanar to the plane. However, if there 

exist at least one non zero scalar say  such that the equation(1.2) holds. 

Then the set of vectors are linearly dependence. In fact,  is linearly dependent if 

 such that 

 yν1 = α2yν2 + α3yν3 + α4yν4 + ··· + αnyνn (2.3) 

or it can be written as linear combination of other vectors in the set (at least one vector is 

redundant), and a such all the vectors are collinear. 

Definition 5 (Span of a Linear Vector Space). Suppose Yν = {xν1,xν2,xν3,··· ,xνn} is a subspace 

to a linear vector space Xν, then the span of Yν is the set of linear combination of the vectors 

in Yν, 

Span(Yν) = {α1xν1 + α2xν2 + α3xν3,··· + αnxνn} such that . The span of Yν is 

denoted by Span(Yν). However, if Span(Yν) = Xν, then Xν is spanned by {xν1,xν2,xν3,··· ,xνn}. 

Moreover, Yν is a spanning set if all the vectors in Xν can be written as a linear combination 

of vectors in Yν. 

Definition 6 (Basis of a Linear Vector Space). Let  be a set of linearly independent vectors. 

The set  is called the basis for Xν if the set 
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  (2.4) 

In fact, since  is the basis vectors for Xν. Then ∀xν ∈ Xν there is a unique 

representation called linear combination of the basis vectors, such basis vectors are called 

CANONICAL BASIS/STANDARD BASIS for Rn. Now, if  are scalars and 

eν1 = (1,0,0,...,0) eν2 = 

(0,1,0,...,0) eν3 = 

(0,0,1,...,0) 

... 

eνn = (0,0,0,...,1) 

thus xν = α1eν1 +α2eν2 +α3eν3+,...,+αneνn. Consider a vector space Yν ⊂ Xν in which ∀yν ∈ Yνare 

linearly independent and yν = span(Xν) . Then Yν is called the Hamel basis and obeys 

equation 2.4 

 2.1.2 Dimension of Linear Vector Space 

The dimension of linear vector space Xν depends on the cardinality of the basis vectors that 

spans Xν. However, two types of dimensions are encountered in analysis. Namely, finite and 

infinite dimensional linear vector space. The infinite dimensional space is of interest and 

most relevant in analysis. 
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 2.1.3 Finite Dimensional Linear vector space (Xν) 

Xν is finite dimensional if n ∈ N, and  which are linearly independent 

vectors such that 

 X  (2.5) 

Furthermore, if we have a fixed amount of vectors that generates all the elements in a space, 

then the Xν is finite dimensional. 

Example 2.1.3.1. The Euclidean space (Rn): This space consists of the collection of all 

ordered n-tuples of real numbers. That is, ∀xν,yν ∈ Rn where n ∈ N, we have xν = 

(xν1,xν2,xν3,··· ,xνn) and yν = (yν1,yν2,yν3,··· ,yνn) and form a vector space under two algebraic operations. 

xν + yν = (xν1,xν2,xν3,··· ,xνn) + (yν1,yν2,yν3,··· ,xνn) 

 αxν = (αxν1,αxν2,αxν3,··· ,αxνn) where α ∈ Ksc 

The Unitary Space Cn: The space is consists of all ordered n-tuples of complex numbers and 

does form a vector space under the supervision of addition and scalar multiplication. 

That is; ∀z,w ∈ Cn, where z = (z1,z2,z3,··· ,zn) and w = (w1,w2,w3,··· ,wn) then 

z + w = (z1,z2,z3,··· ,zn) + (w1,w2,w3,··· ,wn) 

αz = (αz1,αz2,αz3,··· ,αzn) 
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The Polynomial Space: It is a vector space consisting of all polynomials of degree 2 or less and 

it is closed under linear combinations. It is closed because 

1. Adding any two such polynomials in the space will yield another polynomial in the space 

2. Scaling any such polynomial also produces another polynomial in the space. 

In fact, the polynomial space of such degree is finite dimensional since a basis for it consists 

of the three polynomials, 1,x . That is to say, every function in this space can be uniquely 

written as 1 + αxν + βx2ν where α,β ∈ Ksc 

Definition 7 (Convergence). A sequence < Xνn > of vectors in Xν is convergent if 0.∃xν ∈ Xν, 

and m ∈ N : 

 |Xνn − xν| < ε n ≥ m 

Then xν is the limit of < Xνn >. Also if a sequence < Xνn > is convergent and xν is the limit, then 

we say that the sequence < Xn > converges to xν, and in symbols, we write 

lim Xn = xν or Xn −→ xν as n −→ ∞ n−→∞ 

Theorem 1. If the limit of a sequence exist, then it’s unique. 

Proof. If we set < Xνn > to converge to two distinct limits say xν,yν : xν 6= yν so, |xν − 

yν| > 0 and  

Case 1 let Xνn converges to a xν, then ∀ε > 0 and m1 ∈ N we 

have 
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|Xνn − xν| < ε ∀n ≥ m1 

Case 2 let Xνn converges to a yν, then ∀ε > 0 and m2 ∈ N we have 

 

Let m = max(m1,m2) 

 

Thus, we arrive at a contradiction. The assumption xν 6= yν is False. 

 

Definition 8. A space Xν is bounded if it is both bounded below and bounded above. If ∃(K1,K2) ∈ R : 

 K1 ≤ xν ≤ K2 ∀xν ∈ Xν 

where K1 is the lower bound and K2 is the upper bound. 

Theorem 2. Every convergent sequence is bounded 

Proof. Let {Xνn}n≥1 be a convergent sequence. 

W.T.S {Xνn}n≥1 is bounded 

From definition of convergence, ∀ε > 0,∃xν ∈ Xν, and m ∈ N such that 



 

13 

 |Xνn − xν| < ε n ≥ m 

if we set ε = 1 =⇒ |Xνn − xν| < 1 

−1 ≤ Xνn − xν ≤ 1 =⇒ xν − 1 ≤ Xνn ≤ xν + 1 

set K1 = min{xν1,xν2,xν3,··· ,xνm − 1,xν − 1} and 

K2 = max{xν1,xν2,xν3,··· ,xνm − 1,xν + 1} 

∴ K1 ≤ Xνn ≤ K2 

 Hence the sequence {Xνn}n≥1 is bounded.  

 2.1.4 Normed Linear Space 

Here, we will look at norms as a mapping defined on linear vector space, the elements of 

which are assigned distance or size.This concept is necessary because it improves the 

understanding of geometry as a distance of wave function from its point of reference to a 

fixed point. In addition, the concept of completeness will also be introduced by assuming 

that there is a Cauchy sequence in the space whose elements will converge to a point in 

space. We will then end by giving some examples of normed linear spaces that are complete 

and for that matter they are Banach spaces. 

Definition 9 (Normed Linear Space (NLVS)). Suppose Xν is a linear vector space A norm 

defined on Xν is a real-valued mapping denoted as k · k where, k · k : Xν −→ [0 ∞[ : ∀ξν,εν ∈ 

Xν and ∃α,β ∈ Ksc.Then the following conditions 

must be satisfied  

(NLVS1) kξνk ≥ 0 and kξνk = 0 ⇐⇒ ξ = 0 (positive definite). 
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(NLVS2) ||αξν|| = |αkξνk (homogenous) 

(NLVS3) kξν + ενk ≤ kξνk + kενk (triangle inequality) 

Hence, the linear space Xν with norm define on it is called a normed linear space denoted as 

(Xν,k·k) 

Show that `∞ is a normed linear vector space 

Proof. NB: To show that a space is normed, then it is necessary to show that the space satisfy 

the above three conditions 9. Also,the equivalence relation in NLVS1 suggest that we 

assume one quantity to be true and prove the other and vice versa. Now, 

Since l∞ is a normed linear vector space then 

∀ξν,εν ∈ l∞ , ∃α ∈ Ksc that is ξν = (ξν1,ξν2,ξν3,···) and εν = (εν1,εν2,εν3,···) we define a 

mapping k·k∞ : l∞ −→ [0,∞[ such that kξνk∞ = sup|ξνi| 

i≥1 

from definition, 

(NLS1) kξk∞ ≥ 0 (trivial) 

 Next, suppose kξνk∞ = 0 W.T.S ξ = 0 

 since kξνk∞ = 0 =  

Also, the supremum of all the absolute value is zero, then it implies that each of elements are 

made up zero components 
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|ξνi| = 0 ∀i ≥ 0 ξν1 = 0 ,ξν2 = 0 ,ξν3 = 0,··· hence, ξν = (ξν1,ξν2,ξν3,···) = 0 =⇒ ξν = 0 Next, 

suppose ξν = 0 W.T.S kξνk∞ = 0 since ξν = 0 =⇒ ξ = (ξ1,ξν2,ξν3,···) = 0, : ∀i ≥ 1 |ξνi| = 0 

taking the supremum norm on both side sup|ξνi| = 0 =⇒ ||xν||∞ = 0 

i≥1 

(NLS2) W.T.S kαξνk∞ = αkξνk∞ 

kαξνk∞ = sup|α|ξνi| 

i≥1 since α is constant and does not depend on i, so, kαξνk∞ = 

sup|αξνi| = kαξνk∞ = |α|sup|ξνi| =⇒ kαξνk∞ = |α|kξνk∞ 

 i≥1 i≥1 

(NLS3) W.T.S kξνi + ενk∞ ≤ kξνk∞ + kενk∞ 

kξν + εk∞ = sup|ξνi + ενi|= kξν + εk∞ ≤ sup{|ξνi| + |εi|} 
 i≥1 i≥1 

kξν + εk∞ ≤ sup|ξν| + sup|εν| =⇒ kξν + ενk∞ ≤ kξνk∞ + kενk∞ 
 i≥1 i≥1 

 

Definition 10 (Cauchy Sequence). Suppose Xν is a normed linear vector space. An infinite 

 sequence  is Cauchy if  

Definition 11 (Convergence). An infinite sequence  is convergent if ∃ξν ∈ Xν 

: lim kξνn − ξνk = 0 where ξν is the limit of infinite sequence lim ξνn = ξ n−→∞ n−→∞ 

Theorem 3. If Xν is a normed linear vector space Then very convergent 
sequence is Cauchy. 

Proof 

suppose  then ∃ξ ∈ Xν : lim Xνn = ξν n−→∞ 
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 Also, From 11  Now lim  

 by triangle inequality kξνm − ξνn| = kξνm − ξν + ξν − Xνnk =⇒ kξνm − ξνnk ≤ 

 

Definition 12 (Continuous mapping). Suppose Xν and Yν are normed linear vector spaces We 

define a mapping k·k : Xν −→ Yν to be continuous at a point ξν ∈ Xν if 

lim ξn = ξν =⇒ lim kξnk = kξνk n−→∞

 n−→∞ 

OR 

Suppose Xv and Yv are two linear vector spaces. A map Ta is said to be continuous at a 

 point 0 and ∃δ > 0 : 

 kTaxν − Tax0k < ε whenever |xν − x0| < δ (2.6) 

 Theorem 4. The mapping ξν −→ kξνk is continuous in the sense that if lim ξνn = ξν 
n−→∞ 

then lim kξνnk = |ξνk n−→∞ 

 Proof. Let k·k : Xν −→ [0,∞[ W.T.S k·k is continuous. 

Assume, lim ξνn = ξν then from 11 n−→∞ 
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 We have  we can write it as  thus 

 |kXνn − xνk| < ε =⇒ lim kXνnk −→ kxνk ∴ k·k is continuous.  
n−→∞ 

Completeness 

A vector space Xν (either set of vectors or functions) is made into a normed linear space by 

treating it as metric space which allows the computation of vector length and distance 

between vectors, and it is related to the normed linear space. i.e ∀xν,yν ∈ (Xν,d) d(xν,yν) = kxν 

− yνk. Then we are to prove that the metric space satisfy the desired property of being 

complete notwithstanding the fact that a Cauchy sequence of vectors always converges to 

a well defined limit that is within the space. Hence, the general procedures to show 

completeness are: 

1. Construct an  which is used as limit of the Cauchy sequence. 

2. Prove that  is under space of consideration 

3. Prove convergence that is lim  (in the sense of the metric under consider- 
n−→∞ 

ation) 

 Remark Every complete norm linear space is regarded as Banach space 
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Example 2.1.4.1. Show that the space `∞ endowed with the supremum norm is complete Proof. `∞ = 

{Xν = (xν1,xν2,xν3,···) : xνi 
∈ R, |xν| ≤ M where M ∈ Ksc and kXνk∞ = sup|xνi|} Since l∞ 

is a vector space, set  to be a Cauchy sequence in `∞. Then 

i≥ x2ν=(x2ν1,x2ν2,x2ν3,···) 

x3ν = (x3ν1,x3ν2,x3ν3,···) 

... 

 Since  is Cauchy then  

d(Now 
1 

it implies that 

   ··· 

since each column is a sequence of real numbers R, and R is complete, then each column converges 

to a point in `∞ That is, lim  

we have, xν1 = (x1ν1,x1ν2,x1ν3,··· ,x1νn) 

 

x3ν = (x3ν1,x32,x33,···) 

... 

Hence  

Step(2) 

 

 W.T.S  
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From definition of  Also 

 then,  by (9) of NLVS 

 

Hence  is a bounded sequence of real numbers. 

Step(3) 

 

 W.T.S lim xmi = x∗i 
i−→∞ 

 from 11  Now, d( 
1 

  Hence, `∞ is complete.  

 2.1.5 Infinite Dimensional Space 

Recall, the dimension of vector space is determined by the cardinality of the basis vectors 

that covered the space. However, not all vector space can be spanned by a finite number of 

basis vectors. Such a vector space is called infinite dimensional vector space. 

Example 2.1.5.1. Consider the expression for the exponential function (  

  (2.7) 

In fact the exponential function is of infinite degree as the series progresses. Hence, it consists of 

infinite basis (1,x ) that spanned the series 
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 NB Most of the vector space that are of infinite dimensional are function space. 

 2.1.6 Function Space 

Here, we will systematically look at functions spaces that are most relevant in the 

formulation of quantum mechanics. However, we shall lay the foundation that will be 

necessary to categorize spaces and in the process review some basic facts regarding these 

spaces. Let fa : D(fa) −→ Ksc then the support of fa is define as a set 

 

fa has a compact support if the suppfa is bounded i.e if ∃ a, b ∈ R such that suppfa ⊆ [a,b] outside this 

interval the support vanishes. 

Definition 13 ( The space Cc(R)). Consist of all continuous function with compact 

support. 

 Definition 14 (The space C0(R)). Let fa|D(fa) −→ Ksc : fa is continuous and 

 

Example 2.1.6.1. Suppose I = (c,d) and  : 

 

1 

fa(xν) = 

0 

xν ∈ I 

xν 6∈ I 

Show that fa has a compact support. 
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solution 

 

fa has a compact support 

∴ fa is not continuous but piecewise continuous. so, it is not C0(R) and Cc(R) 

 2.1.7 The Space Lp where 1 ≤p<∞ 

Definition 15. Suppose S ⊆ R, be measurable space and allow p ∈ R where 1 ≤ p < ∞ 

then 

  measurable,  

However, we can also define L∞(R) as 

 ,where

 fa is measurable , and ∃M≥0 : |fa(xd)| ≤ M a.e 

We only defined a norm on L∞(S) by taking the essential 

supremum of fa. That is 

 

a.e in S 

 2.1.8 Inner product space 

Inner-product space enhances the notion of additional structure of geometry called 

innerproduct. It enables us to define distance, angle, and perpendicularity between two 
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vectors in space, thus matching each pair of vectors in a vector space to a unique quantity 

called scalars. Hence, we will then define inner-product space and give some basic result 

associated with the space. 

Definition 16 (Dot product). Suppose xν,yν ∈ Rn be a linear vector space. We define a 

mapping · : Rn −→ R as the dot product of xν and yν denoted by xν · yν i.e xν ·yν = xν1yν1 +xν2yν2 

+xν3yν3 +···+xνnyνn where xν = (xν1,xν2,xν3,··· ,xνn) and yν = (yν1,yν2,yν3,··· ,yνn) or 

 

Definition 17. Suppose a linear vector space Xν 

 A map h·,·i : Xν∗Xν −→ C is called an inner-product such that ∀α,β ∈ Xν and ∃α,β ∈ 

Ksc then the following conditions hold:  

(IPS1) hxν,xνi ≥ 0 and hxν,xνi = 0 ⇐⇒ xν = 0 (positive definite). 

 

(IPS2) hxν,yνi = hyν,xνi 

The bar denote conjugate 

(conjugate symmetry) 

(IPS3) hαxν + βyν,zνi = αhxν,yνi + βhyν,zνi (linearity in the first slot) 

Remark All the spaces enumerated in 2.1.3.1 are also inner product space except the `∞ 

which we shall see later in the following through 

Example 2.1.8.1. Show that the function space C[0,1] endowed with is 

an inner product space. 
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Proof. NB: We are to show that the function space satisfy the above conditions (17) 

let  

 Z 1  Z 1 

(IPS1) hfa,fai = fa(t)fa(t)dt =⇒ |fa(t)|2dt ≥ 0 ∴ hfa,fai ≥ 0 
 0 0 

 Next, suppose hfa,fai = 0 W.T.S fa = 0 

Since  

 fa(t) = 0 ∀t ∈ C[0,1] ∴ fa = 0 

 Next, suppose fa = 0 W.T.S hfa,fai = 0 

 Now, fa = 0 =⇒ fa(t) = 0 t ∈ C[0,1] 

 

(1) 

(2) 

comparing (1) and (2) 

hence, (1) = (2) 
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hαfa + βga,hai = αhfa,hai + βhga,hai 

Hence,  is an inner product space. 

 
 Definition 18 (properties of inner-product space). Given xνyν,zν ∈ Xν and ∃α,β ∈ C. 

If an inner-product in defined on Xν, then the following properties hold: 

1. hxν,yν + zνi = hxν,yνi + hxν,zνi 

2. hxν,αyνi = ¯αhxν,yνi 

3. hxν,αyν + βzνi = ¯αhxν,yνi + β¯hxν,zνi 

4. h0,xνi = 0 

5. hxν,0i = 0 

 Proof. 1. 1 W.T.S hxν,yν + zνi = hxν,yνi + hxν,zνi 

 

 hxν,yν +zνi = hyν + zν,xi from 17 hxν,yν +zνi = hyν,xνi + hzν,xνi = hyν,xνi+ 

 

2. W.T.S hxν,αyνi = ¯αhxν,yνi 

 

hxν,αyνi = hαyν,xνi = ¯αhyν,xνi = ¯αhxν,yνi 

3. W.T.S hxν,αyν + βzνi = ¯αhxν,yνi + β¯hxν,zνi 



 

25 

 

4. W.T.S h0,xνi = 0 h0,xνi =⇒ h0xν,xνi = 0hxν,xνi = 0 

5. W.T.S hxν,0i = 0 hxν,0i =⇒ hxν,0xνi = 0hxν,xνi = 0 

 

Theorem 5. (KREYSZIG (1978)) Every normed linear space Xτ is an inner product with 

kxτk = phxτ,xτi 

Proof. ∀xτ,yτ ∈ Xτ, and ∃λ ∈ Ksc. 

 We define a map k·k : Xτ −→ [0 ∞[ by 

kxτk = phxτ,xτi 

1. From definition kxτk2 = hxτ,xτi =⇒ kxτ|2 = hxτ,xτi ≥ 0 

(see17) 

 Next, suppose xτ = 0 W.T.S kxτk = 0 

 Since xτ = 0 =⇒ hxτ,xτi = 0 = phxτ,xτi 

∴ kxτk = 0 

 Assume kxτk = 0 W.T.S xτ = 0 
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2.  

 

3.  

 

 Given xτ,yτ,zτ ∈ X and ∃α,β ∈ C. If an inner-product in defined on X, then the 

following properties hold: 

1. hxτ,yτ + zτi = hxτ,yτi + hxτ,zτi 

2. hxτ,αyτi = ¯αhxτ,yτi 
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3. hxτ,αyτ + βzτi = ¯αhxτ,yτi + β¯hxτ,zτi 

4. h0,xτi = 0 

5. hxτ,0i = 0 

 Proof. 1. W.T.S hxτ,yτ + zτi = hxτ,yτi + hxτ,zτi 

 

 hxτ,yτ +zτi = hyτ + zτ,xτi from 17 hxτ,yτ +zτi = hyτ,xτi + hzτ,xτi = hyτ,xτi+ 

 

2. W.T.S hxτ,αyτi = ¯αhxτ,yτi 

 

hxτ,αyτi = hαyτ,xτi = ¯αhyτ,xτi = ¯αhxτ,yτi 

3. W.T.S hxτ,αyτ + βzτi = ¯αhxτ,yτi + β¯hxτ,zτi 

 

4. W.T.S h0,xτi = 0 

h0,xτi 
=⇒ h0x,xτi = 0h0,xτi = 0 

5. W.T.S hxτ,0i = 0 

hxτ,0i =⇒ hxτ,0xτi = 0hxτ,xτi = 0 

 

Theorem 6. Every normed linear space Xτ is an inner product space (Xω) with ku| = 

phxτ,xτi Proof. ∀uτ,vτ ∈ Xτ, and ∃λ ∈ Ksc. 
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 We define a map k·k : Xτ −→ [0 ∞[ by 

kuτk = phuτ,uτi 

1. From definition kuτk2 = huτ,uτi =⇒ kuτ|2 = huτ,uτi ≥ 0 

(see17) 

 Next, suppose uτ = 0 W.T.S kuτk = 0 

 Since uτ = 0 =⇒ huτ,uτi = 0 = phuτ,uτi = 0 

∴ kuτk = 0 

 Assume kuτk = 0 W.T.S uτ = 0 

 

2.  

 

3. kuτ + Vτk = phuτ + uτ,uτ + vτi 
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kuτ + vτk2 = huτ + vτ,uτ + vτi kuτ + vτk2 = huτ,uτi + hvτ,uτi + huτ,vτi + hvτ,vτi 

kuτ + vτk2 = kuτk2 + 2Re|huτ,vτi| + kvτk2 ≤ kuτk2 + 2kuτkkvτk + kvτk2 kuτ + 

vτk2 ≤ kuτk2 + 2kuτkkvτk + kvτk2 kuτ + vτk2 ≤ (kuτk + kvτk)2 kuτ + vτk ≤ (kuτk 

+ kvτk) 

Theorem 7. 

Let Xν be a linear space 

 ∀uτ,vτ ∈ X and λ ∈ Ksc then the following hold: 

1.  Polarization 

identity 

2. kuτ + vτk2 + kuτ − vτk2 = 2(kuτk2 + kvτk2) parallelogram 

law 

3. kλuτk = |λ|kuτk Homogenous 

Proof. NB. we will implore result from theorem 6. 

1. W.T.S kuτ + 

vτk2 = huτ + vτ,uτ + vτi 

 kuτ + vτk2 = huτ,uτi + huτ,vτi + hvτ,uτi + hvτ,vτi (a) 

Also 
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kuτ − vτk2 = huτ − vτ,uτ − vτi 

kuτ − vτk2 = huτ,uτi − huτ,vτi − hvτ,uτi + hvτ,vτi substracting 

(a) from (b) and call it (c) kuτ + vτk − kuτ − vτk = huτ,vτi + 

hu,vi + hv,ui + hvτ,uτi 

(b)  

kuτ + vτk − kuτ − vτk = 2huτ,vτi + 2hvτ,uτi Now, kuτ + ivτk2 

= huτ + ivτ,uτ + ivτi kuτ + ivτk2 = huτ,uτi + huτ,ivτi + hivτ,uτi 

+ hivτ,ivτi ku + ivτk2 = hu,uτi +¯ihuτ,vτi + ihvτ,uτi + 

i¯ihvτ,vτi 

(c)  

ikuτ + ivτk2 = ihuτ,uτi + i¯ihuτ,vτi + iihvτ,uτi + ii¯ihvτ,vτi Hence, 

kuτ − ivτk2 = huτ − ivτ,uτ − ivτi kuτ − ivτk2 = huτ,uτi − huτ,ivτi − 

hivτ,uτi + hivτ,ivτi kuτ − ivτk2 = huτ,uτi −¯ihuτ,vτi − ihvτ,uτi + 

i¯ihvτ,vτi 

(d)  

ikuτ − vτk2 = ihuτ,uτi − i¯ihuτ,vτi − iihvτ,uτi + ii¯ihvτ,vτi substracting (d) 

from (e) and call it (f) 

(e)  

ikuτ+ivτk2−ikuτ−ivτk2 = −hvτ,uτi−hvτ,uτi+2huτ.vτi = −2hvτ,uτi+2huτ,vτi (f) 

Adding (c) + (f) kuτ + vτk − kuτ − vτk = huτ,vτi + huτ,vτi + hvτ,uτi + hvτ,uτi kuτ +vτk−kuτ 

−vτk+ikuτ +ivτk2 −ikuτ −ivτk2 = 2huτ,vτi+2hvτ,uτi−2hvτ,uτi+ 
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2. W.T.S kuτ + vτk2 + kuτ − vτk2 = 2kuτk2 + 2kvτk2 

kuτ + vτk2 = huτ + vτ,uτ + vτi 

kuτ + vτk2 = huτ,uτi + huτ,vτi + hvτ,uτi + hvτ,vτi kuτ − vτk2 

= huτ − vτ,uτ − vτi 

(1) 

kuτ − vτk2 = huτ,uτi − huτ,vτi − hvτ,uτi + hvτ,vτi (2) 

adding (1) and (2) kuτ +vτk2 +kuτ −vτk2 = 

huτ,uτi+huτ,vτi+hvτ,uτi+hvτ,vτi+huτ,uτi−huτ,vτi− hvτ,uτi + hvτ,vτi kuτ + vτk2 + kuτ − vτk2 = 

2huτ,uτi + 2hvτ,vτi kuτ + vτk2 + kuτ − vτk2 = kuτk2 + kvτk2 

3. W.T.S kλuτk = |λ|kuτk Now, kλuτk2 = hλuτ,λuτi kλuτk2 = λλ¯huτ,uτi kλuτk2 = 

|λ|2huτ,uτi kλuτk2 = |λ|2kuτk2 multiplying the exponent by  

∴ kλuτk = |λ|kuτk 

 

Orthonormal set 

Orthonormal sets are very important for dealing with infinite dimensional space since they 

have helpful characteristics. However, when dealing with infinite-dimensional linear 

vector spaces which do not posses an algebraic structure but an inner product, the 

understanding of the Hamel basis is inadequate. In fact, the Hamel base only captures the 

algebraic structure without taking into account the angle between the vectors. For inner 

product spaces, orthonormal sets act similarly as Hamel bases and also capture the angle 

between the vectors. 
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Definition 19. Let Xω be an inner product space. Two vectors in Xω are 

said to be or- 

 

 thogonal i.e 

 In general, A set  is an orthogonal set if hem,eni = 0 ∀m 6= n. Then, 

hei,eji = δij, where δmn is called kronecker delta and is defined as: 

 

1, 

δij = 

0, 

if 

if 

m = n 

m 6= 

n 

hence, we now look at some special result of the above theorem ( Broida and Williamson (1989)) 

Theorem 8. kuω + vωk2 = kuωk2 + kvωk2 is achieved if uω ⊥ vω. 

Prove that the Pythagoras identity 

Proof. ∀uω,vω ∈ Xω and making use of 7 kuω + vωk2 = 

huω + vω,uω + vωi kuω + vωk = huω,uωi + huω,vωi + 

hvω,uωi + hvω,vωi 

 From hypothesis, uω ⊥ vω or vω ⊥ uω =⇒ huω,vωi = hvω,uωi = 0 

∴ kuω + vωk2 = kuωk2 + kvωk2 Example 2.1.8.2. 

Show that the two vectors cosxω,sinxω ∈ C[0,2π] are orthogonal with the inner-product 
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Proof. since sinxω,cosxω ∈ C[0,2π] then’ 

 

but from trigonometry 

 

Definition 20. A subset S of an inner-product Xω is a said to be orthonormal if huω,vωi = 

 0 ∀uω,vω ∈ Xωuω 6= 0 and kuωk = 1 

Example 2.1.8.3. 

Let L2[0,2π], the set  is an orthonormal set 

 Proof. Let  and  

Now 

  (*) 

if m = n 
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Also if 

m 6= 0 

from (*) 

 

But from DeMoivre’s theorem 

 
hfa,gai = 0 

Hence 

 

1 

hfa,gai = 

if 
m = 

n 

 

 0 if m 6= n 

 

Definition 21. Orthogonal Complement S⊥, (Direct Sum) 
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1. Suppose Sω ⊂ Xω be an inner-product space. Then ∀xω ∈ Xω are orthogonal to Sω i.e 

 

Meaning, if Sω is any line R3 that passes through the origin, then  is the plane that passes 

through the origin and its perpendicular to Sω. 

2. Given two subspaces Uω , Vω ∈ Hω, the sum Uω + Vω is defined by 

U  for some uω ∈ Uω,vω ∈ Vω}. This space is 

called the direct sum of Uω and Vω denoted by Uω 
LVω ∀wω. ∴ wω = Uω + Vω is uniquely 

expressed as wω = uω + vω 

Characteristics of Complete Orthonormal system 

Given any orthonormal system  the following results can be established. 

1.  is an orthonormal basis 

2. 

3. 

4.  

5. Span  

6.  and huω,eνii = 0 ∀i ∈ N then uω = 0 
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Theorem 9. Suppose Sω ⊂ Xω is orthonormal set. Then Sω is linearly independent. 

 Proof. let  since Sω is linearly independent then 
n 

 α1u1 +α2u2 +α3u3 +···+αnun = 0 =⇒ Xαiui = 0 from properties of inner product 
i=1 

space 

 

  but hui,uji = δij 

 ∴ S is linearly independent.  

Theorem 10 (Cauchy-Schwartz inequality). (Pinchuck (2011)) Suppose Xω be an inner product 

space. 

An inner-product h·,·i : Xω × Xω −→ C is defined 

 |hxω,yωi| ≤ kxωkkyωk such that ∀xω,yω ∈ Xω and the equality holds ⇐⇒ xω and yω 

are linearly dependent 

Proof. Let xω,yω ∈ Xω : xω 6= 0 other than the above theory holds trivially. However, let 

assume ∃α ∈ R we compute kxω − αhxω,yωiyωk2 = hxω − αhxω,yωiyω,hxω − αhxω,yωiyωi 

Expanding the right hand quantity using IPS3 from definition 17. 
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1 
since α ∈ R then we set α = kyωk2 

 

multiplying through by kyk2 kxωk2kyωk2 − 

2|hxω,yωi|2 + |hxω,yωi|2 ≥ 0 

|hxω,yωi|2 ≤ kxωk2kyωk2 theorem 6 =⇒ 

|hxω,yωi| ≤ kxωkkyωk 

Proving the if and only if statement in the theorem 

Case 1 

Assuming xω and yω are linearly independent W.T.S |hxω,yωi| = kxωkkyωk From 

hypothesis, xω and yω are linearly independent then xω = λyω where λ ∈ Ksc 

 Now, |hλyω,yωi| = kλyωkkyωk 

 |hλyω,yωi| = |λ|kyωk2 (a) 

kλyωkkyωk = |λ|kyωkkyωk 

|hλyω.yωi| = λ|hyω,yωi| 
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 |hλyω,yωi| = |λ|kyωk1 (b) 

comparing (a ) and (b) 

Hence, (a) and (b ) are equal 

Case 2 

Suppose |hxω,yωi| = kxωkkyωk W.T.S xω and yω are linearly dependent Now kxω 

− αhxω,yωiyωk2 = 0 and applying NLS1 from 9. =⇒ xω − αhxω,yωiyω = 0 set λ = 

αhxω,yωi we have 

 xω − αhxω,yωiyω = 0 =⇒ xω − λyω = 0 xω = λyω 

∴ xω and yω are linearly dependent  

                                                        

1 2.1.9 Hilbert Space 

The generalization of finite-dimensional space to infinite dimension was the work of an 

excellent German mathematician David Hilbert.This concept generalizes the understanding 

of Euclidean space and therefore expands the principle of capturing vector algebra of 2-3-

dimensional Euclidean spaces to spaces with either finite or infinite dimension. However, 

Hilbert space is an abstract space that has an inner-product framework that enables the 

length, angle, and perpendicularity of vectors to be measured. In the mathematical 
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formulation of quantum mechanics, the possible states (more precisely, pure states) of the 

quantum mechanic system are represented by unit vectors (called state vectors) that 

reside in the complex separable Hilbert space known as state space, well-characterized up 

to the complex number of norm 1 (phase factor). Moreover, in quantum mechanics, Hilbert 

space (a complete inner-product space) plays a key role in the interpretation of wave 

functions: the absolute value of each wave function is interpreted as a probability 

distribution function. 

Example 2.1.9.1. The space L2 of square integrable function has an important result when 

it comes to mathematical formulation of quantum mechanics. Thus, it turns out to be a 

Hilbert space. That is ∀fa,ga ∈ L2, we define the inner-product as hfa,gai = 

Z  

|fa(xω)||ga(xω)|dxω it can be seen that the dot product hf,gai is well 

defined ∀fa,ga ∈ L2 

 

 It is easy to see that it satisfies conditions 17 

 Definition 22 (Basic properties of Hilbert space). 1. It’s a linear vector space 

2. It has an inner-product operations that satisfies 17 

3. Are separable, so they contains a countable dense subset. 

Lemma 1 (paul Garrett (2016)). let Wa be a closed convex subspace of a Hilbert space Hb. 
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 Then, ∀xb ∈ Hb ∃!yb ∈ W : kxb − ybk is minimize. 

Proof. Since Hb is Hilbert, then we are at liberty to use the parallelogram law.Now, W is closed 

then  

Also, 

W is convex, then ∀xb,yb ∈ W and α ∈ [0,1] we have, αxb + (1 − α)yb ∈ W Let ∇ = 

inf{kxbk : xb ∈ W } but W is closed, then lim kxbik = ∇ 

i−→∞ 

By the parallelogram law 

 

since  is convex then  

Hence,  is a Cauchy sequence. Also Wa is closed then the Cauchy sequence converges to a 

point xb∗ ∈ Wa kxb∗k = k lim xbik = lim kxbik = ∇ 

 i−→∞ i−→∞ 

 Let yb ∈ W yb 6= xb∗ and set kκk = ∇ 

  from parallelogram =  (1) 

 by convexity is false ∴ xb∗ 6= yb  

Definition 23 (Isometric spaces). Two spaces  and  are isometric if ∃La, linear 

operator :  
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 2.2 Linear Operator 

The concept of linear operators, combined with normed linear space plays a vital role in 

almost all aspects of mathematics as well as its application to modern physics. However, 

we will consider more specific spaces such as Banach space and a Hilbert space with 

particular interest to operators (mappings) that preserve the algebraic structure of vector 

space. 

Definition 24 (Linear operator). Suppose Xν and Yν are any two linear vector spaces over a 

scalar field Ksc. An operator Top : Xν −→ Yν is linear if ∀xν,yν ∈ Xν ∃α,β ∈ Ksc such that 

 Ta(αxν + βyν) = αTaxν + βTayν (2.8) 

OR 

 Ta(αxν) = αTaxν (2.9) 

 Ta(xν + yν) = Taxν + Tayν (2.10) 

If the co-domain Yν is replaced by a scalar field Ksc, then the linear operator Ta under this 

case, is called linear functional on Xν, 

Example 2.2.0.1. Consider the function space X = C[a,b] on a closed and bounded interval [a,b] 

and let Ta : X −→ R be defined by 
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 and t ∈ [a,b] 

Then Ta is a linear functional on X 

Verification 

Since C[a,b] is a function space then it contains that is ∀fa,ga ∈ X and t ∈ [a,b] 

 ∃α,β ∈ Ksc such that Ta : X −→ R 

 

 

 

 

 

 

(Ta(αfa + βga))(t) = α(Tafa)(t) + β(Taga)(t) 

(Ta(αfa + βga))(t) = (α(Tafa) + β(Taga)(t) 

(Ta(αfa + βga))(t) − (α(Tafa) + β(Taga)(t) = 0 

((Ta(αfa + βga)) − (α(Tafa) + β(Taga))(t) = 0 

But t 6= 0 since t ∈ [a,b] 

((Ta(αfa + βga)) − (α(Tafa) + β(Taga)) = 0 

Ta(αfa + βga) = αTafa + βTaga ∴ Ta is 

a linear operator. 

Proposition 2.2.0.2. Let Xν and Yν be any two linear spaces over a scalar field Ksc and let an 

operator Top : X −→ Y be linear operator. Then 
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1.  

2. Ra(Ta) = {yν ∈ Yν : Taxν = yν ∃xν ∈ Xν} ⊆ Yν 

3. Ta is injective ⇐⇒ Taxν = 0 =⇒ xν = 0 

4. Ta is injective, then  exists in R(Ta) and  

Proof. 1. From hypothesis, Xν is a linear space, then, ∀xν ∈ Xν and α ∈ Ksc by the linearity of Ta, we have, 

Ta(αxν) = αTaxν set α = 0 Ta(0xν) = 0 Taxν = 0 =⇒ 

 

2. suppose xν1,xν2 ∈ R(T)a and ∃α,β ∈ Ksc . W.T.S αyν1 + βyν2 ∈ R(T)a Since xν1,xν2 ∈ R(Ta) =⇒ 

∃xν1,xν2 ∈ Xν : Taxν1 = yν1 Taxν2 = yν2 =⇒ αxν1 + βxν2 
∈ Xν also, Ta is linear, then Ta(αxν1 + 

βxν2 = αTaxν1 + βTaxν2 = 

αyν1 + βyν2 

 ∴,αxν1 + βxν2 ∈ Xν =⇒ αyν1 + βyν2 ∈ Ra(Ta) Ra(Ta) is a subspace of Yν 

3. Case 1 suppose Top is injective and Taxν = 0 W.T.S xν = 0 

 Now, Topxν = 0 from (1), (0) since Ta is injective =⇒ xν = ~0 

Case 2 

 Next, suppose Taxνi = 0 and xν = 0 W.T.S Ta is injective in the sense that 

∀xν1,xν2 ∈ Xν : Taxν = Tayν =⇒ xν = yν xν − yν = 0 

xν = yν ∴ Tν is injective 

Taxν − Tνyν = 0 =⇒ T(x − y) = 0 

4. suppose Tν : Xν −→ Yν be injective, and X exists W.T.S  is 
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a linear operator 

∀yν1,yν2 ∈ R(Ta) and α,β ∈ Ksc then R(Ta) is a subspace of Yν. Now, αyν1 +βyν2 ∈ 

R(Ta) =⇒ ∃xν1,xν2 
∈ Xν : Taxν1 = yν1 and Taxν2 = yν2 since Top is injective, then 

 and , by the linearity Ta. We have, Ta(αxν1 + βx2) = 

αTxν1 + βTaxν2 = αxν1 + βyν2 

2 Hence  is a linear operator. 

 

Examples of Linear operator 

 

1. Identity operator : An operator Ix : Xν −→ Xν is an identity operator if ∀x ∈ X, 

 Ixxν = xν (2.11) 

2. An operator ρ : C[a,b] −→ Y is called differential operator if ∀xν ∈ C[a,b] and t ∈ C[a,b] then 

 ρ(xν(t)) = xν(t) (2.12) 

3. Integral operator: suppose Ta : C[a,b] −→ Yν is called integral operator if yν ∈ C[a,b] and t ∈ 

[a,b] then 

  (2.13) 

4. Matrix operator: let Ta : Mn(C) −→ Mn(C) be a matrix operator if A ∈ Mn(C) and 
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xν = (xν1,xν2,xν3,··· ,xνn)T , yν = (yν1,yν2,yν3,··· ,yνn)| :  

(2.14) can be written out as 

 yν = Axν (2.14) 

   

yν1 a1,1 a1,2 ··· 

   

   

   

yν2  a2,1 a2,2 ··· 

  =  

  

 ...   ... ... ... 

 

   

   

   

yνn an,1 an,2 ··· 

a1,n 

a2,n 

... 

an,n 

 

xν1 

 

 

 

xν2 

 

 

 ... 

 

 

 

 

xνn 

 

 

 

 

 

 

 

 

 

 

 

 

 

A ∈ Mn(C) is a linear operator since matrix multiplication is linear. 

 2.2.1 Bounded operator 

Definition 25. suppose Xν and Yν are linear vector spaces. An operator Ta : Xν −→ Yν is bounded 

if ∃M≥0 ∈ R : ∀xν ∈ Xν and ∃α,β ∈ Ksc, : 
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 kTaxνk ≤ Mkxνk (2.15) 

 =⇒ kTak = inf{M > 0 : kTaxνk ≤ kxνk} 

From (2.15) , we noticed that the smallest value of M which will make the expression 

in (2.15) holds, is the supremum and it is expressed as  if we set kxνk = 1 then we 
have kTak = supkTaxνk 

xν6=0 

NB. we denote B(X,Y) as the collection of all bounded linear operators from X to Y, and forms a 

normed linear space under supervision of the supremum norm. That is, ∀Ta ∈ 

B(X,Y) 

Extension of Bounded linear operator 

Let Uν be a closed subspace of a normed linear space Xν and suppose Ta be a bounded linear 

operator on Uν onto a Banach space Yν. Then the operator Ta(defined on Uν) is said to be 

extended if there exists unique bounded operator  such that 

 thus the operator  satisfies  

 2.2.2 Bounded linear operators on Hilbert space 

Definition 26 (Adjoint Operator ( . Let  and  be Hilbert spaces. A map Ta : 

  is such that it’s adjoint operator (  , 
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Sesquilinear form Let Xν and Yν be linear spaces over a set of scalar fields Ksc, then the 

sequilinear form Ta : Xν × Ya −→ Ka ∀xν1,xν2Xa and yν1,yν2 ∈ Yν ∃α,βKsc : 

1. Ta(xν1 + yν2,yν) = Ma(x1,y) + La(x2,y) 

2. La(x,y1 + y2) = La(xν,yν1) + L(xν,yν2) 

3. La(αxν,yν) = αLa(xν,yν) 

4. La(xν,βyν) = βL¯ 
a(xν,yν) 

Then La is called bilinear operator. However, the boundedness of La is given by 

 

We now establish the fact that given any bounded linear operator its adjoint always 

exist. 

Theorem 11. (KREYSZIG (1978)) Let and be Hilbert spaces. An adjoint operator 

Hb∗ of La exists in  and it is bounded with norm  

Proof. from eqn(2.15), 

  (1) 
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 Also,  (2) 

Comparing (1) and (2) 

   similarly 

 kTak = kLak then, we have   

Proposition 2.2.2.1. Suppose and are Hilbert spaces. An operator  

and  are two distinct bounded operators:  and ∃α,β ∈ Ksc. . 

Then the following results are established. 

1.  

2.  

3.  

4. 5. 

 

Proof. 1. Using condition (IPS2) OF inner product space (see 17) 

 

 3.W.T.S (  
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4. h(L∗a)∗xν,yνi = hxν,L∗ayνi = hLaxν,yνi =⇒ L∗∗a = La 

5. h(KaLa)∗xν,yνi = hxν,L∗ayνi = hKa∗xν,L∗ayνi = h(Ka∗L∗a)xν,yνi =⇒ (KaL∗a) = Ka∗L∗a 

 

NB. All the operators mentioned in (see 2.2) are bounded operators except the differential 

operator. However, to show that the differential operator is not bounded, we set ρn ∈ C[0,1] : t ∈ 

[0,1] and define ρn(t) = tn then kρnk = sup |tn| = 1 Also, 

t∈C[a,b] 

 Laρn(t) = ρn0 (t) = ntn−1 ∀n ∈ N =⇒ kLaρn(t)k = sup |ntn−1| = n where n ∈ N 
t∈C[a,b] 

Hence, La called the differential unbounded operator, because there is no fixed value that 

will make the expression in (1.24) to hold.This will lead to the notion of unbounded linear 

operators in the next section 

Definition 27 (Self-adjoint, unitary and normal operators). Given Hb to be Hilbert space and Ta 

: Hb −→ Hb to be a bounded adjoint operator. Then 

1. The operator Ta is self adjoint or Hermitian if  

2. The operator Ta is unitary if Ta is bijective and  
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3. The operator Ta is normal if  

NB. We are to note that, given a bounded operator Ta if is self adjoint then hTa,xν,yνi = 

 and if is unitary hTaxν,Tai = hxν,yνi From definition, the opera- 

tor existing between any two isometric spaces is the unitary operator. 

Theorem 12. (KREYSZIG (1978)) Let Hb be a Hilbert space. A bounded operator on 

Hilbert space is self adjoint if the conditions hold: 

1. If Ta is self-adjoint then hTaxν,xνi is real ∀xν ∈ Hb 

2. If Hb is complex Hilbert space, then hTaxν,xνi is real ∀xν ∈ H the operator Ta is 

self adjoint 

 

 Proof. 1. From the hypothesis, Ta is self adjoint. Now,hLaxν,xνi = hxν,Laxνi = 

hLaxν,xνi 

An operator which is equal to its complex conjugate is self adjoint. 

2. let hTaxν,xνi be real, ∀xν, then  

 

 

 



 

51 

 2.2.3 Matrix operator 

Matrix operators are of practical importance in the application of quantum theory, where 

observables are treated as matrices with a special interest in symmetry and rotation of 

eigenvectors in an orthonormal system. However, we will examine some classes of matrix 

operators with emphasis on geometric symmetry. 

Definition 28 ( General Linear Group GL(N)). The set of all square invertible matrix 

 i.e ∀A ∈ GL(N) : detA 6= 0 

Definition 29 (Special Unitary Group SU(N)). The set of all square matrices 

 i.e {∀A ∈ SU(N) : detA = +1} 

Definition 30 (matrix lie group). Let G be a closed subspace of GL(N) with the property that 

given there exist a converging sequence for which lim An = A for some 

n−→∞ 

A ∈ GL(N) then, A ∈ GL(N) or A is not invertible 

Definition 31 (Lie algebra). Let Xν be vector space over a scalar field Ksc. A bilinear operator [·,·] : Xν 

×Xν −→ Xν is called Lie algebra together with the following conditions: 

1. [xν,xν] = 0 ∀xν ∈ Xν 

 h i h i h i 

2. xν,[yν,zν] + yν,[zν,xν] + zν,[xν,yν] = 0 (Jacobian Identity) 

[xν,yν] are called commutator of xν and yν 
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Definition 32 (Exponential Operator). Given A ∈ GL(N) define eA ∈ GL(N) as 

  (2.17) 

 Definition 33 (Properties exponential operator). 1. e0 = I 

2. eA is invertible 

3. if A,B commute, then eA+B = eA(eB) 

4. if S ∈ GL(N) then eSAS−1 = SeAS−1 

5.  

 2.2.4 One Parameter Unitary Group 

Definition 34. (Baker (2000)) Set Ua(t) ∈ B(Hb) to be a family of unitary operators then 

Ua(t) is strongly continuous one-parameter if 

(i) Ua(t) : R −→ B(Hb) where t 7→ Ua(t) is strongly continuous. 

(ii) Ua(t + s) = Ua(t)Ua(s) ∀t,s ∈ R 

Definition 35. (Infinite Generator of Unitary Group) A well-defined densely linear operator 

Ta with domain D(Ta) ⊂ Hb is said to be a generator of Ua(t) if the following conditions are 

met: 
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n b : t 7→ Ua(t)xν is differentiableo 1. D(Ta) = 
xν ∈ H 

2.  

Lemma 2 (Properties of Infinite Generator). If Ta is an infinite generator of Ua(t) then it has 

the following properties: 

(a) D(Ta) is invariant. i.e ∀t ∈ R Ua(t)D(Ta) = D(Ta) 

b It commutes with Ua(t) i.e 

 [Ta,Ua(t)]xν = TaUa(t)xν − Ua(t)Taxν = 0 xν ∈ D(Ta) 

(c) Ta is symmetric, i.e 

(2.18) 

 hTaxν,yνi = hxν,Tayνi ∀xν,yν ∈ D(Ta) (2.19) 

 (d) Ua(t) is uniquely determined by Ta 

 Proof. (a) W.T.S D(Ta) is invariant 

Now, if we set 

s 7→ Ua(s)Ua(t)xν = Ua(s + t)xν 

is differentiable if and only if 

(2.20) 

 s 7→ Ua(s)xν = Ua(−t)Ua(s + t)xν is differentiable. (2.21) 

 consider (2.20) At s = 0, we have (−i)Ua(t)Taxν 
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Also, consider (2.21) at s = 0 we have (−i)Ua(−t)Ua(t)Taxν. Hence xν ∈ D(Ta) ⇐⇒ xν ∈ 

Ua(t)D(Ta) 

(b) If we set xν ∈ D(Ta) and allow  

 evaluated at s = 0 

∴ Ua(s + t) = Ua(s)Ua(t) =⇒ Ua(t)xν ∈ D(Ta) 

(c) To show symmetry, By 27 hxν,yνi = hTaxν,Tayνi it preserve in inner-product. Now, 

 

−ikUa(t)k2hTaxν,yνi + ikUa(t)k2hxν,Tayνi but kUa(t)k2 = 1 =⇒ −ihTaxν,yνi + ihxν,Tayν
i ∴ hTaxν,yνi = 

hxν,Tayνi 

(d) set Ta to be a generator of Ua
ˆ(t). Then by symmetry of Ta we have 

 

kUa
ˆ(t)k2) − 2<hUa(t)xν,Ua

ˆ(t)ii but kUa(t)k2 = kUa
ˆ(t)k2 = 1 

 

 

Hence, ∀xν ∈ D(Ta) and Ua(0) = Ua
ˆ(0) =⇒ Ua(t) = Ua

ˆ(t)∀t ∈ R ∴ D(Ta) = Hb, 
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and Ua(t) = Ua
ˆ(t) 

 

Proposition 2.2.4.1. The necessary and sufficient condition for Ua(t) ∈ B(Hb) to be unitary is

 

Proof. necessary condition suppose Ua(t) is unitary then by 

definition we have ∀xν,yν ∈ Hb, 

= 0 but  by the 

surjectivity of Ua(t) we define  

 

Hence  

sufficient condition 

suppose ) by the surjectivity of Ua(t) we have 

) is 

 unitary.  

We now consider the classes of matrix operators with emphasis on complex matrices. 

Definition 36. Let Mn(C) be a square matrix and let A ∈ Mn(C) with entries aij where 

 
i = rows and j = columns Now, A = ¯aij = aji conjugate of A 

A|
ij = aji called the transpose conjugate of A and is a square matrix , denoted by A∗ : 

 A∗ = (A|) = (A)| if A is real then A∗ = A| 

1. A matrix A ∈ Mn(C) is Hermitian if A∗ = A 
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2. If A ∈ Mn(R) then A is symmetric, that is A| = A 

3. A ∈ Mn(C) is normal, if AA∗ = A∗A 

4. A matrix Ua ∈ Mn(C) is unitary if  

5. A matrix Q ∈ Mn(R) is orthogonal if QQ| = Q|Q = I 

6. A = aij ∈ Mn(C) then tra(A) = a11 + a22 + a33 + ··· + ann, sum of its diagonal element and it is a 

linear map.That is 

(a) tra(αA) = αtra(A) 

(b) tra(A + B) = tra(A) + tra(B) 

 2.2.5 Spectral Thoery 

Given any square matrix A ∈ Mn(C) and λ ∈ C called an eigenvalue of A if ∃xν = 06 ∈ C called the 

eigenvector of xν such that Axν = λx , however, if we set λ ∈ C to be the eigenvalue of the square 

complex A with the corresponding set of eigenvalues. Hence, if 

λi ∈ C ∀i is a set of an eigenvalues of a complex square matrix A, then  is 

a also a set of eigenvectors corresponding to each λ0is are called the eigenvectors of A with 

respect to λ. However, in the presence of zero vector, the eigenvectors forms a subspace 

called eigenspace. Also, if we set λ ∈ C to be eigenvalue of A. Then the following holds if 
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1. Axν = λxν : xν 6= 0, xν ∈ Cn 

2. (λI − A)xν = 0 

3. (λI − A) defines a linear operator which has a non zero kernel. 

4. (λI − A) is not invertible when det(λI − A = 0 

det(λI − A) is a polynomial of degree n of the form 

 λn = tra(A)λn−1 + ··· + detA (2.22) 

Thus , λ0s of A are the zeros of (2.22). Equation (2.22) is called the characteristic polynomial of 

A 

Definition 37 (Spectrum). The set of n-roots of the characteristic equation in (2.22) are called 

the spectrum 

Let ρ(A) = max|λi| is called the spectral radius 
1≤i≤n 

Definition 38 ( Properties of square complex matrix). 1. A ∈ Mn(C) is a complex square 

matrix, if the eigenvalues of A are real and forms orthogonal matrix as 

A = Q|dig(λ1,λ2,λ3,···λn)Q 

2. A ∈ Mn(C) is Hermitian if the eigenvalues are real and form an orthogonal matrix as A = 

U
a

|dig(λ1,λ2,λ3,···λn)Ua 
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Definition 39 (Diagonalizable matrix operator ). 

 A Square matrix A is diagonalizable if it is similar to a diagonal matrix. That is, 

∃P : P−1AP = D 

Definition 40 (Diagonalization). It is the process of finding a corresponding diagonal matrix or 

linear operator 

Proposition 2.2.5.1. If A ∈ Mn(C) is Hermitian and Ua(t) = eitA.Then the following are 

established 

1. Ua(t) is unitary 

2. Ua(t)Ua(s) = Ua(t + s) 

3. For any arbitrary collection of Ua(t)t∈R is abelian under the supervision of multiplication. 

4.  

Proof. 1. To show Ua(t) is unitary then W.T.S (Ua(t))∗Ua(t) = I 

 

Depicting the above equation, we have 

 

 ∞ ∗ n ∞ ∗ n 
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Now, (   is 
Hermitian =⇒ A∗ = A n=0 n=0 

 ) (2.23) 

From a singular value decomposition, since A is Hermitian, we can find a unitary operators 

V and V∗ : A = VDV∗ where V are the entries of eigenvectors of A and D is diagonal 

matrix. So, 

 

since matrix multiplication is point-wise then 

 Ua(t) = V∗diag(eitd1,eitd2,eitd3,··· ,eitdn)V but Ua(t)(Ua(t))∗ = Ua(t)Ua(−t) 

Ua(t)(Ua(t))∗ = [V∗diag(eitd1,eitd2,eitd3,··· ,eitdn)V][V∗diag(e−itd1,e−itd2,e−itd3,··· ,e−itdn)V] 

Ua(t)(Ua(t))∗ = V∗V = I 
 ∞ n 

similarly 

 

 (3) W.T.S the set {Ua(t) : t ∈ R} is abelian. 

(i) commutativity property 

∀s,t ∈ R we have 
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(ii) Identity property 

∃(Ua(t)∗ such that but (Ua(t))∗ = Ua(−t) =⇒ = eitAe−itA = e0 = I 

(iii) Inverse property if ∃ Ua(0) such that Ua(0) = I 

 So, Ua(t)Ua(0) = (eitA)(ei0A) = Ua(t) 

 

 ! 

Using the L’Hopitals rule lim (iAeitA) By the linearity of 

limit function we have t−→0 

 

 

 2.3 Fourier Analysis 

To comprehend the phenomenon governing superposition of wave-function, it will be of utmost 

benefit to begin with the review of Fourier analysis 

Fourier series 

Consider a periodic function fa(xν) of infinite dimension space with periodicity of 2π such 

that fa(xν + 2π) = fa(xν). However, in the mathematical treatment of Quantum mechanics, the 

wave-function is considered as complex wave-function. So it will be of particular interest 

to treat the Fourier expansion in exponential function. 

Now 
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  (2.24) 

where αn is the coefficient of expansion which will be determined shortly. 

By the orthogonality of the wave-function, we have 

 

 (2.25) 
−π 

which is expressed in-terms of Kronecker delta 

Since we have introduced the orthogonality relation, we can then proceed to find the coefficient 

of expansion by multiplying fa(xν) by the conjugate of its function and then integrate the 

resultant function along the interval −π to π 

  (2.26) 

put eqn(1.25) into eqn(1.23) we obtain the Fourier expansion for f(x) as 

  (2.27) 

To introduce the orthonormal condition for the function f(x). let’s consider we 

can write eqn(2.26) as: 

∞ f(x) = X γnfn(x) 
i=−∞ 
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 Z π ∗ 0 0 0 

fn(x )fm(x )dx = δnm 
−π 

 Z π ∗ 0 0 0 

 set γn = f
n(x )fm(x )dx = δnm 

−π 

Hence  

We now consider the periodic interval of 2l, where l is the length of the wave :fa(xν +2l) = fa(xν). 

However, we can introduce the orthonormal function as; 

 

 

 

Now, to introduce the wave number kn 

  with  

Hence the orthonormal function is  This relationship enables the transi- 

tion from the Fourier series to the Fourier integral to a finite-dimensional space wave packet. 
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Fourier Integral 

If we consider a periodic function fa(xν) with periodic interval 2l which repeat its functional 

value from −∞ to ∞. Setting l −→ ∞ and keeping the wave packet fixed. Then taking l −→ ∞ 

under the condition that fa(xν) = 0 sufficiently rapidly as xν −→ ±∞. In fact, we can make a 

transition from an infinite wave to a wave packet of finite dimensional. As l −→ ∞, then the 

spectrum of possible values of kn goes from discrete spectrum to continuous one. 

Now the Fourier expansion for f(x) becomes 

 
we then obtain the Fourier amplitude as: 

 

The Fourier amplitude is called the Fourier transform of fa(xν) and is given by 

 

0 
Hence the orthonormal integral diverges where k = k 

 

The Kronecker delta now becomes the Dirac delta function. 
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 2.4 Dirac Delta Function 

Consider the Fourier series to be a limit sum over a fixed number of terms, then : 

 Z ∞
 0

 N
 0

 0 

  (2.29) 

set 
N 

 0 
X ∗ 

 k(xν,xν) = fn(xν)fn(xν) OR 
n=−N 

If N or ko becomes very large then the function is strongly peaked at  However, if 

 then the oscillation is of a very small amplitude.Notwithstanding the fact that the 

limit point of this wave are the equations (2.28) and (2.29). Now change the infinite sum 

or the k-integral with  integral through the definition of Dirac delta function. 

  (2.30) 

  (2.31) 

NB The Dirac delta function is not a function but a distribution. 

 fa(xν) = lim 
N−→∞ 

The corresponding Fourier integral 

f(x ) X fn(xν)fn∗(xν)dxν 
−∞ n=−N 

(2.28) 
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Definition 41 (Properties of Dirac delta function). 1. δ(xν − xν0) = 0 for if 

, the Dirac delta function becomes infinite. That is 

Z r0 δ(xν − xν0)dxν0 provided xν = xν0 is in the space (r,r0) 
r 

Also 

 

The limiting process from eqn(1.28) 

 

Graph 

2. Dirac delta function is an even function 

 

Also 

 

3. if a ∈ R, then 
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Chapter 3 

UNBOUNDED OPERATORS 

 3.1 Overview 

This chapter will provide the necessary background to be able to work with unbounded 

and self-adjoint operators, which includes the important concept of graph an operator. 

Next will develop a functional calculus to give meaning to the expression f(Ta), where f is a 

function on the real line and Ta is an operator. For this we will need the spectral theorem 

for unbounded, self-adjoint operators. Finally, we state some criteria necessary for an 

operator to be self-adjoint and essentially self-adjoint. 

 3.1.1 Introduction 

As it turns out, most of the operators occurring in the mathematical formulation of 

quantum mechanics under certain conditions are linear, self-adjoint and unbounded. In 

particular, many quantum operators expressed in terms of ordinary and partial 

differentiation are generally unbounded. More often than not, these operators admit 

another type of property which in a way, makes up for the fact that they are unbounded. 

Consequently, these operators are closed. We will now look at the sufficient condition for 
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an operator to be bound by defining everywhere-operator on a Hilbert space (Hb) NB we 

will state the theorem without proof. 

Theorem 13 (Helinger-Toeplitz). Suppose A be everywhere defined linear operator on a Hilbert 

space(Hb) : hxν,Ayνi = hAxν,yνi 

We define an operator everywhere in Hilbert when it is symmetrical and bounded. 

However, in the case of unbound operators, we can not define the symmetric operator for 

the whole space, but rather for the subspace of the space. This is referred to as the domain 

of an unbound operator D(Ta). 

Definition 42 (Graph). suppose  and  are Hilbert spaces and  an 

operator. Then graph of Ta(Gr(Ta) 

  (3.1) 

we observe that  and (ψb,φb) ∈ Gr(Ta) ⇐⇒ φb = Taψb 

Definition 43 (Closed Graph). Given  and  as Hilbert spaces and as linear 

operator. Then Ta is closed if  

In general, not all operators are closed but it is possible to include their extensions. 

 Proposition 3.1.1.1. Suppose , where  are Hilbert spaces Then 

Ta is closed ) with ψn −→ ψ and  we have 
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 (i) ψ ∈ D(Ta) (ii) Taψb = φb 

Proof. Suppose Ta is closed subset of . Let ) be such that 

and  W.T.S (i) ψb ∈ D(Ta) (ii) Taψb = φb 

Now, lim ψnb = ψb and lim Taψnb = φb =⇒ (ψnb,Taψnb) −→ (ψb,φb) as n −→ ∞ n−→∞ n−→∞ 

moreover, ( and since Ta is closed, we have (ψb,φb) 

 

Next, suppose  and  

 (i) ψb ∈ D(Ta) and (ii) Taψb = φb W.T.S Gr(Ta) is closed subset  

Suppose  be any arbitrary sequence in ) as 

n −→ ∞. To conclude that Gr(Ta) is closed it suffices to show that (ψb,φb) ∈ Gr(Ta) 

 But (  and lim 

From hypothesis, ψb ∈ D(Ta) and ) and 

so Gr(Ta) is closed. 

 

We now give an example of an operator that is linear and unbounded. This is to appreciate the 

importance of the closed Graph Theorem. 

Example 3.1.1.2. Consider the supnorm defined on the function space C[0,1] is given by 

 and Ta : D(Ta) −→ C[0,1] is also defined by is a 

differential operator. Then 

(i) Ta is linear 
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(ii) Ta is closed 

(i) To show linearity of T, we assume that ∃fa,ga ∈ C[0,1] and α,β ∈ Ksc such that 

is linear. 

(ii) W.T.S Ta is closed 

Suppose  and  as −→ ∞ But 

lim Tafn = φb =⇒ convergence in the norm 
n−→∞ 

So, kTafn − φbk = sup |Ta(fn)(t) − φb(t)| = sup |fn0(t) − φb(t)| −→ 0 as n −→ ∞ 
 t∈[0,1] t∈[0,1] 

The convergence is uniform (t ∈ [0,1]) and φb(t) = lim fn0(t), 
n−→∞ 

By the uniform convergence, we have 

(0)(fundamental theorem of calcu- 

lus) 

  Applying the Leibniz rule 

 1] but fa ∈ D and  ∀t ∈ [0,1] ∴ (fa,Tafa) ∈ 

Gr(Ta) =⇒ Ta is closed. (iii) W.T.S Ta is bounded 

 We set fn(t) = tn then kfnk := |tn| = 1 =⇒ fn0(t) = ntn−1 so that 
t∈[0,1] 

 kTafn| = |ntn−1| = n ∀n ∈ N∴ Ta is not bounded. 
t∈[0,1] 
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We will now look at the scenario where a map is continuous by carefully examine its bounded and 

linearity property. In other words, a map is said to be continuous if we can show its boundedness 

and linearity property. 

Theorem 14. Suppose Xν,Yν are Banach spaces, and Ta : Xν −→ Yν is linear. Let Gr(Ta) be closed. 

Then Ta is continuous 

Proof. Consider the space X × Y with norm 

 k(ψb,φb)kXν×Yν = kψb,ψbkx + kφbkp (3.2) 

Since Xν and Yν are Banach space, it follows that X×Y in Banach endowed with the norm (3.2) 

Gr(Ta), closed in Xν × Yν =⇒ Gr(Ta) is Banach. 

Consider the projection map Q1 : Gr(Ta) −→ X is defined by Q1 (ψb,Taψb) = ψb then Q1 is a bijective 

map, continuous as well. Then ) is con- 

 tinuous. Hence,  assume 

 M > 1. Then  by 3.2 

k(ψb,Taψb) = kψbkbψ + kTaψbkbφ so kψbkbψ + kTψbkbφ ≤ Mkψkbψ so, kTaψbkbφ ≤ (M − 1)kψb|bψ, 

∀ψbX =⇒ Ta is continuous (i.e linear and bounded) 
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 Definition 44 (Unbounded operators). 1. Ta is an unbound operator if Ta : D(Ta) ⊂ 

 
Hb −→ Hb : D(Ta) = Hb. Then Ta is densely defined 

2. (Sa,D(Sa)) is an extension of (Ta,D(Ta)) if D(Sa) ⊃ D(Ta) : Ta ⊂ Sa 

3. (Ta,D(Ta)) is symmetric if ∀ψb,φb ∈ D(Ta) then hψb,Taφbi = hTaψb,φbi. 

Definition 45 (The adjoint of an unbounded operator). If Ta is densely defined on Hb. 

Then the domain ) of the adjoint  is given by 

 

D(Ta) is dense and γ is uniquely defined ). Now 

 

Definition 46 (Self-adjoint operator). Suppose Ta : D(Ta) ⊂ Hb −→ Hb. 

) and  Then (Ta,D(Ta)) is called self-adjoint operator. 

Proposition 3.1.1.3. An unbound operator Ta is symmetric  

Proof. Let Ta to be symmetric = if 

we set  

 Next, suppose  W.T.S Ta is symmetric 

Now, ) and  

 

Theorem 15. Suppose Ta is a densely defined linear on D(Ta). Then Ta is a generator of a 

unitary Group Ua(t) = e−iTat ⇐⇒ Ta is self-adjoint 
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 Remark A symmetric operator is called closable whenever  and  is closed. 

Self-adjoint operators are of course, the most relevant operators in quantum mechanics 

due to their capacity to produce time evolution. However, we will lay down the necessary 

requirements that will allow us to verify whether or not an operator is self-adjoint 

Criteria for an operator to be self-adoint 

Lemma 3. Let Ta : D(Ta) ⊂ Hb −→ Hb where Hb is Hilbert. Then 

hψb,Taψbi ∈ R ∀ψb ∈ D(Ta) ⇐⇒ Ta 

is symmetric 

Proof. Suppose Ta is symmetric Then W.T.S hφb,Taψbi ∈ R ∀ψb ∈ D(Ta) 

 

Since Ta is symmetric =⇒ hφb,Taψbi and hφb,Taψbi = hTaφb,ψbi 

 Next, suppose hφb,Taψbi, ∀ψb ∈ D(Ta) W.T.S Ta is symmetric 

 Now, hφb,Taψbi ∀ψb ∈ D(Ta) =⇒ hφb,Taψbi = hTaφb,ψbi ∀ψb ∈ D(Ta) 

From polarization identity 
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 Also,

 

 

Interchanging ψb with φb we have 

 

Definition 47 (Essentially Self-adjoint operator). A symmetric operator is essentially selfadjoint 

whenever its closure is self-adjoint 

We shall state a lemma without proof that will allow us to state the requirements necessary for 

an operator to be essentially self-adjoint. 

Lemma 4. Suppose (Ta,D(Ta)) be densely defined, then 

1. ∀z ∈ C =⇒ ker(  

 ker(  (3.3) 

2. If Ta is closed and symmetric, then Ran(Ta ± i) is closed. 
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Theorem 16 ((Mo¨ller (2010))). Suppose a well-defined symmetric operator Ta together with 

the D(Ta). Then the following conditions are equivalent. 

1. Ta is self-adjoint 

2. Ta is closed and ker  

3. Ran  

Proof. (1) =⇒ (2) Suppose Ta is self-adjoint and Ta is closed we set ψ±b ∈ ker( ). Then 

Taψ± = Fiψ±b . But the eigenvalues of a symmetric operators are always real =⇒ ψ±b = 0 

(2) =⇒ (3) From (3.3) Ta is closed and symmetric and by (4) =⇒ RanTa is closed. 

(3) =⇒ (1) since Ta is symmetric, =  and suppose ψb ∈ Dom(T ∗) then by assumption, 

Ran(Ta ± i) = Ta ∃ψb ∈ D(Ta) : 

  (3.4) 

 By  i.e ψ − φ ∈ ker(  

 ). Also,   

 3.1.2 Spectral Theorem for unbounded operator 

To be able to formulate and prove stone theorem, it is necessary to understand the 

expression of the form Ua(t) = e−itA for an unbounded operator A. We can achieve this by 
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developing a functional calculus with the help of spectral theorem for unbounded 

selfadjoint operators. 

Definition 48 (Resolvent setρ(Ta)). (Porta (2019)) 

Let Ta : D(Ta) ⊂ Hb −→ Hb . resolvent of Ta is: 

ρ(Ta) := nz ∈ C|(Ta − z) : D(Ta) −→ Hb is a bijection with continuous inverse.o (3.5) Definition 49 

(Resolvent). Considering z ∈ ρ(Ta), we define the resolvent of Ta at z as: 

 Rz(T) := (T − z)−1 ∈ Hb (3.6) 

Definition 50 (Spectrum). The spectrum of Ta is given by 

 σ(Ta) := C \ ρ(Ta) (3.7) 

Remark The consequence of a graph of an operator is that an operator is closed only if 

the linear operator is continuous, so the continuously property of the resolvent set can be 

dropped.(see 3.5) 

Proposition 3.1.2.1. ρ(Ta) 6= 0 only if Ta is not closed 
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Proof. if we set (Ta − z) : D(Ta) −→ Hb to be bijective and (Ta − z) invertible. Then Γ(Ta) = Γ(Ta − z) 

= Γ(Ta − z)−1. Thus, if Γ(Ta) is not closed =⇒ Γ(Ta − z)−1 is not 

closed . Then  but (Ta − z)−1 is not continuous (i.e) 

  Hence ρ(Ta) = ∅  

Definition 51. Suppose Ta : D(Ta) ⊂ Hb −→ Hb is closed. Then its spectrum σ(Ta) can 

be categorized as follows: 

) 

 1.is not injective is called the 

point spectrum, and it 

coincides with the set of eigenvalues of the operator. 

) 

 2.is injective not surjective with dense range is called the 

continuous spectrum 

) 

 3.is injective but not surjective with no dense range is 

called the residual spectrum. 

Example 3.1.2.2 (Porta (2019)). (a) Given a position operator ˆxν with domain 

 (3.8) We defined 

xˆ : ψ −→ x(ψ) =⇒ (xˆν − z)−1  

is the product of the function (xν −z)−1 < ∞, ∀z ∈ C\R has a 

dense range ∀λ ∈ R. Also, ∀ψb ∈ L2, we define 

∴ σ(xˆν) = R Then (xν −λ) 
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 xˆ : ψ −→ xψ =⇒ (xˆν − z)−1 is product of the function (xν − z)−1 which is bounded 

∀z ∈ \R ∴ σ(xˆν) = R 

The map ( ˆxν − λ) has a dense range ∀λ ∈ R. Now ∀ψb ∈ L2, we defined 

  (3.9) 

Then (xν −λ)ψn −→ ψb ∈ L2 and hence the range of x−λ is dense ∴ σ(xˆ) = σc(xˆ) = R 

 (b) Let Ua ∈ B(Hb) be unitary. Then σ(Ta) = σ(UaTaUa−1) =⇒ Ta − z is injective 

⇐⇒ Ua(Ta −z)U−1 = UaTaUa−1 −z is injective ∴ the momentum operator ˆ  on R2 has real 

continuous spectrum, σ(pˆ) = σc(pˆ) = R, since ˆp = FxˆF−1 =⇒ F is unitary. 

Definition 52 (Neumann series). If we set X to be Banach and Ta ∈ B(x) with kTak < 1. Then (1 − 

T) is continuously invertible. i.e 

  (3.10) 

and 

 kk(1 − t)−1k ≤ (1 − (kTak)−1) (3.11) 

Theorem 17. If Ta : D(Ta) ⊂ Hb −→ D(Ta). Then 

1. ρ(Ta) is not open.i.e the σ(Ta) is closed 
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2. The resolvent map 

 ρ(Ta) −→ B(Hb) : z 7→ Rz(Ta) := (Ta − z)−1 (3.12) 

3. if we set Ta ⊂ B(Hb) : |z| ≤ kTak ∀σ(Ta) =⇒ the spectrum is compact 

4. ∀z,w ∈ ρ(Ta) the first resolvent identity holds: 

Rw(Ta)Rz(Ta) = Rz(Ta)Rz(Ta) 

 Proof. (1) if we set z0 ∈ ρ(Ta) and allow |z − z0| < kRz0k−1 we have 

 Ta − z = (Ta − z0) − (z − z0) = (Ta − z0)(1 − (z − z0)Rz0)(Ta) (3.13) 

|(z − z0)Rz0(Ta)| ≤ 1 =⇒ (1 − (z − z0)Rz0) is continuously invertible. =⇒ (Ta − z) is continuously 

invertible z ∈ ρ(T) (2) From 52 

 Rz0 = (1 − (z − z0)Rz−01)Rz0 = X(z − z0)nRzn0+1 (3.14) 
n=0 

where the coefficients  

(3) set |z| > kTak then 1  is invertible and Ta − z as well ∴ z ∈ ρ(Ta) 
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(4) Rz(T)−Rw(Ta) = Rz(Ta)(Ta −w)Rw(Ta)−Rz(Ta)(Ta −z)Rw = (z−w)Rz(Ta)Rw(Ta) 

 

We shall now look at the projection-valued measure which is a necessary condition in deriving 

the spectrum of an unbounded self-adjoint operator. 

A bounded operator ˆp defined on a Hilbert space Hb is called projection-valued measured if it 

satisfies Φˆ2 = Φ. All the eigenvalues ofˆ Φ are either 0 or 1. The compliment of aˆ projector Φ is also 

a projector NBˆ We denote σ -algebra by B 

Definition 53. Considering the map Φb : B −→ B(Hb) is a projection measure, if ∀ϕ ∈ 

B,Φ(ϕb) is a projection. Then 

1. Φ(R) = 1 

2. if we set  with  then 

 

Lemma 5. Suppose Φ is a projection-valued measured. Then the following properties can be 

established: 

1. Φ(ϕc) = 1 − Φ(ϕ) 2. Φ(ϕn ∩ 

ϕm) = Φ(ϕn)(ϕm) 
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3.  

 Proof. (1) Φ(∅)µ = XΦ(∅)µ =⇒ Φ(∅) = 0 Also, R = ϕc ∪ ϕ ∪ ∅ ∪ ∅∪,··· 
n=1 

Φ(R)µ = (Φ(ϕb) + Φ(ϕc)µ ⇐⇒ Φ(ϕc)µ = (1 − Φ(ϕ))µ, ∀µ ∈ Hb 

(2) set  to be Borel sets and if .Then Φ( 

other hand, we write  

) = 0. on the Also, Φ(

 

(3) suppose , then ) partitioned  

kΦ(ϕbm)µk2 = hΦ(ϕbm)µ,µi = hΦ(ϕnb )µ,µi + hΦ(ϕbm − ϕbn)µ,µi 

= kΦ(ϕbn)k2 + kΦ(ϕbm − ϕbn)µk2 ≥ kΦ(ϕbn)µk2 

 

Corollary 1. Suppose densely well-defined operator (Ta,D(Ta)) on Hb. Then, ∅ 6= σ(Ta). If z 

∈ Φ(Ta), we have 

  (3.15) 

Furthermore, RT (¯z) = RT (z)∗ 

see(Troung (2015)) for the proof. 

Definition 54 (Nevanlinnna-Herglotz functions). Analytic function Fa(z) is said to be 
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Herglotz if it maps the upper half-plane H+nz ∈ C : =(z) > 0o into itself 

Theorem 18. For all Herglotz functions have the integral representation as: 

 

∀z ∈ H+ for some Borel measure µ satisfying  where α and β are 

constants to be determined. α = <[(Fa(i))] and . Also, suppose Fa(z) is 

Herglotz satisfying . Then the integral form is 

  (3.16) 

for some Borel measure µ satisfying µ(R) ≤ M 

Theorem 19 (Stieltjes inversion formula). Suppose F(z) be Borel transform of a Borel 

measure µ. Then the Borel measure of an interval(λ1,λ2) with r.p.t µ is 

  (3.17) 

Definition 55 (Spectral Theory for unbounded self-adjoint operator). If a well-defined self-

adjoint operator (Ta,D(Ta)) is define on a Hilbert space H. 

Then ∃!ΦTa : 

Z 

 Ta = λdΦTa 
R 
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Proof. see proof from(Troung (2015))  

Theorem 20 (Functional Calculus). Suppose on a Hilbert spaceHb we can define a 

selfadjoint A such that ∃!Ψb from the Borel function on R into a B(Hb). Then the following 

results are established. 

1. ΨA is algebraic- homomorphism 

 ΨA(faga) = ΨA(fa)ΨA(g), where fa,ga ∈ σ(R) and α ∈ Ksc 

ΨA(αfa) = αΨA(fa) 

2. ΨA is continuous. kΨA(fa)kB(A) ≤ Nkfak∞ where N is constant. 

3. suppose the function fa(xν) = xν then ΨA(fa) = A 

4. suppose Aψb = λbψb 

 

5. suppose f ≥ 0 then ΨA 

Proof. see (M¨oller (2010)) for the proof  

Having develop the means of executing any bounded Borel function of a self-adjoint 

operator such that their algebraic structure is possible on the real line. This is what we 

called functional calculus.  
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Chapter 4 

MATHEMATICAL FORMULATION 

OF QUANTUM MECHANICS 

4.1 Overview 

First of all, we will look at the description of Quantum Mechanics in a strongly mathematical 

setting. We will also prove the existence and uniqueness of Schroedinger’s timedependent 

particle wave equation, which is the pivot in the formulation and proof of Stone’s theorem. 

Lastly, we will state and prove Stone’s theorem using a direct approach and then some 

applications related to the Dilation and Rotation of unitary Operators. 

4.1.1 Introduction 

The wave function has been the core and the most relevant to the study of microscopic 

particles in quantum mechanics. The concept was first established in 1926 by a German 

Scientist Erwin Schroedinger, in which he proposed that the wave function that describes 

the particles and are spread out in space with the most particles concentrated at where the 

wave-function is large. However, Born argued that the description propounded by 
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Schroedinger was actually a probabilistic amplitude and the square of its absolute value 

represents the probability density function for finding or locating a particle in space (Gao 

(2011)). This idea became the most conventional and commonly accepted notion of wave 

function in the contemporary research of QM. Moreover, the wave function defining the 

particle was actually a complex-wave function as determined through double-slit 

experiment that the intensity of the incoming wave (ψb(x,t) = Acos(kx − wt)) of amplitude 

(A) and wavelength must be a constant- that is I = |A2|. However, squaring the wave function 

to achieve the square of the amplitude as resulted in varying the cosine square: 

 

ipx 

. To resolve the problem, complex wave function was adopted ψb(x,t) = Ae h where, 

|ψb(x,t)|2 = ψ∗ψ = (Ae−ipxh )(Aeipx h ) = |A|2 = I which is constant at all points and agrees with 

the experiment, and therefore the incoming wave was actually a complex-wave with a 

complex amplitude containing a phase variable. (Energy (E), Momentum (P), Position (X)) 

the general particle wave equation is ψb(x,t) = Aehi (px−Et) The configuration of any quantum 

system is completely described by the phase variable, and the program of quantum 

mechanics is to look for the particle wave function, in which the notion of finding the 

particle wave function is captured in the Schro¨dinger equation: 
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and thereby determines the position of particle by completely solving the differential 

equation with some initial condition which determines the particle wave function (ψb(x,t)) 

at all future time, just as, how Newton classical mechanics determines (x(t)) at all future 

time(Griffiths and Schroeter (2018)). However, In the mathematical formulation of 

quantum mechanics, the complex wave function(ψb) are state vectors in Hilbert space with 

some geometric properties associated with it. Hilbert space plays a vital role in the 

formulation of QM, where vectors in space represent the quantum state of the particles and 

for the matter, any geometric property associated with it can be use to describe the 

quantum state of the particle in any given system. 

The mathematical formulation of Quantum mechanics as to do with the mathematics of 

linear vector space. Any quantum system is associated with a complex wave function. This 

wave-function (state vectors) completely described the state or condition of any physical 

system. Moreover, this state vectors covers all the possibilities of a system, and a such forms 

a complex linear vector space. 

4.1.2 Dirac Notation 

The mathematical objects of quantum mechanics are mainly state vectors and linear 

operators(matrices) which are written in Dirac notation as ket and bra-vectors. Dirac 

denote the ket-vectors |ψbi as column vectors and the bra-vectors hψb| as row vectors. 
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aab1b2  

|ψbi = ,  

a...bn  

4.1.3 Scalar Product 

Usually, in Quantum theory, we often compute wave amplitude of any physical system in a 

state |ψbi as 

 (4.1) However, 

generalization of the concept conforms with the mathematics of inner-product 

 

The complex inner-product returns a complex number and a such its value depends on the 

order of the state vectors 

 hψb|φbi = hφb|ψbi† (4.2) 

Hence, (4.2) is designed in a such a way that its value will always be real Although 

the inner-product is positive definite 
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|ψi ≥ o 

It allows us to define length or norm on a complex linear vector space. 

 

 kψbk = phψb|ψbi (4.3) 

Also, (4.1) made it possible to also look at the limit and convergence of an infinite sequence. 

Two state vectors are orthogonal if 

hψb|φbi = 0 

However, this can be made into an orthonormal system by first showing that the two 

vectors are orthogonal and each state vector has a norm of 1. That is 

hψb|φbi = 0 

 |φbi = 1 |φbi = 1 

In generalization, 

 

0 if

 m 6= n b b  

hψm|ψni = δmn = 

 1 if m = n 



 

88 

where δmn is called the Kronecker delta 

Also, since |ψni represents basis vectors in a state |ψi, then |ψni spanned |ψi that is , if 

∃α1,α2,α3,··· ,αn ∀n ∈ N we have, 

  (4.4) 

From (4.4), 

 

If m = n then 

  but = 1 (4.5) 

Meaning there is the possibility of locating the particle somewhere with certainty. However, 

if m 6= n then 

hψb|ψbi = 0 

In fact (4.5) is complete, provided that  and the expansion from (4.4) 

converges to a vector in a vector space. A complete complex linear is called a HS. The HS is 

a mathematical structure that serves as probability space in QM where all the information 

of a PS can be based. 
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QM is based on two fundamental concepts: state vectors and operators. The state vectors 

describe the state of any quantum system, and the observables are represented as 

operators. These state vectors satisfy the conditions for abstract vectors and the operators 

act as a linear transformation on them. Thus, the mathematical formulation of QM is 

centered around HS, where state vectors reside, and is often reserved for an infinite-

dimensional inner product space having the property that is complete or closed. 

 

4.1.4 The Probability Interpretation of Wave-function 

In any given quantum system, we are only interested in physical quantities that can be 

measured such as position, momentum, and energy called observables. These observables 

are random variables, and their values as a result of measurement are completely described 

by the quantum state of the particle. However, the observables do not commute – meaning 

the order in which the values are obtained will not influence the outcome of the 

measurement, which is a clear deviation from classical probability theory. Hence, there’s 

the need to appeal to the non-commutativity probability theory in other to give meaning to 

the values of the observables (Go (2016)). The Hilbert space serves as the probabilistic 

space that contains state vectors, and at a particular time, contains all the statistical 

information that anybody needs about the particle. But the wave function(ψb(x,t)) itself has 

no physical interpretation . It is not measurable. However, the square of the absolute value 

of the wave function has a physical interpretation. We interpret |ψb(x,t)|2 as a probability 
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density, a probability per unit length of finding the particle at a time t at position x which is 

actually Born statistical interpretation of the wave function. 

mathematically 

  (4.6) 

which is the probability of finding a particle within the interval a and b. The probability 

density function immediately established predict with certainty the position of any particle 

in a given domain of interpretation. The probability is just an area under the graph |ψb|2, 

and this can be computed by dividing the finite interval into segment and adding together 

the contributed each segment. 

Note: The wavefunction represents a bunch of identical prepared system called Ensemble. It is 

this system that contains all the information one needs about a particle.. 

4.1.5 Normalization of wave function 

Recall that the wave function is a state vector residing in a complex linear space and it 

allows us to carry out some useful mathematical operations including the inner product. 

Space is either finite or infinite dimensional based on the physical state of the system. 

Therefore, it is required in quantum mechanics, that the state vector should be square 

integrable in other to have a physical meaning to the quantum system. However, this state 

vector ψb is a solution of the Schro¨dinger WE, and so any constant multiplying the state 

vector is also a solution. We will later treat the Schro¨dinger equation into details in other 

to give meaning to the wave vector We can, therefore, define normalization as multiplying 
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a constant to a state vector to ensure that the sum of the possibility of finding the particle 

is one. mathematically, 

Z ∞ 

 |ψb(x)|2dx = 1 (4.7) 
−∞ 

This is the probability of finding a particle if we look everywhere. We notice that the wave 

function that we have been mostly dealing with, the wave function of a free particle of given 

energy and momentum ψb = Asin(kx − ωt), Acos(kx−ωt), Aei(kx−ωt) does not satisfy the 

normalization condition Eq (1.2) – the integral of |ψb(x,t)|2 is infinite. Hence, it appears that 

there is an irregularity in the way we handle the wave equation. However, there is a place 

for such wave functions in the greater scheme of things, though this is an issue that cannot 

be considered here. It is sufficient to interpret this wave function as saying that because it 

has the same amplitude everywhere in space, the particle is equally likely to be found 

anywhere. 

4.1.6 Continuous Space 

So far we have discussed state vectors as discrete particle. However, we will now 

considered the state vectors as continuous particle in an infinite dimensional Hilbert space. 

It is a space where all physical observables take infinite number of values called 
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eigenvalues. Such spaces are continuous real valued functions on a closed and bounded 

interval [0,2π]. The function have to be square integrable. That is 

  (4.8) 

Addition and multiplication of vectors be done in a natural way. 

 

Note An Observable is any physical property of a system or particle that can be 

measured. eg momentum, energy, position, angular momentum etc. 

4.1.7 Quantum Measurements and Observables 

1. Suppose through a series of measurements the observables Q of a physical system is 

found to have values q1,q2,q3,··· ,qn we then introduce the basis states or eigen-states 

ψ1,ψ2,ψ3,··· ,ψn for the respective measured values. 

2. The measured valued corresponding to the observables Q are called the eigenvalues 

of Q. 

3. The basis states form an orthonormal basis function set since qj is associated with ψj 

4. The total number of eigenvalues or basis states is called the state space. 

5. A state  can be prepared for which the value of the observable Q is qn with certainty 
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6. If a system is prepared in the basis state  and measurement of Q is made on the 

system only the value qn will be produced and never any real value qm for m 6= n. 

Hence, qm 6= qn we then conclude that  are orthonormal 

7. The basis states  cover all possibilities of the system and form a 

complete orthonormal basis set. 

For any state ψb we have 

 |ψbi = XCnψn (Scramble state) 

 and  

8. If the system is in state ψ then the probability of obtaining the eigenvalue qn is 

 provided ψb†ψb = 1 

9. The Observables Q is represented by a Hermitian operator Qˆ whose eigenvalues are 

the possible values q1,q2,q3,··· ,qn of the measurement of Q associated with the basis 

states  which are vectors in Hilbert space. That is 

Qψˆ b = qψb 
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10. If a measuring Q for a system ψb the result qn is obtained then the system immediately 

after the measurement goes into the basis state . This called collapse of wave 

vector. 

4.1.8 Quantum Operators 

An operator in QM is any function that acts on a state vector in a vector space and transform 

the state vector into another state vector. 

Linear operators 

From section(4.1), a linear operator L can be define on  as 

 L|ψnbi = X|ψmb Lmn (4.9) 
m 

where 

Lmn = hψm|L|ψni 

is the matrix entry of |ψni. 

In generalization 

L|ψi = XLαn|ψnbi = XαnL|ψnbi 

 n n 
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 X b b X b 

 αn|ψniLmn = |ψiαnLmn 
 n n 

where αnLmn is a matrix entry of L|ψni 

Identity operator 

An operator is said to be an identity operator if 

 I|ψbi = |ψbi (4.10) 

Now, 

Given any orthonormal system |ψni, the identity operator I acting on  is 

 

where  (outer product) 

Inverse operator 

An operator L−1 is called an inverse operator if 

L−1L = LL−1 
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If L−1 has o solution then L is singular. However, this always true in finite dimensional space 

when the detL = 0. Furthermore, in infinite dimensional, the concept of determinant is not 

always defined. 

Definition 56 (Expectation value). If we allow Qˆ to be a linear operator define on the state 

|ψbi. Then we can find a real number called the expectation value of |ψbi if 

 hQˆi = hψb|Qˆ|ψbi = h|(Qˆ|ψbi Componentwise hQˆi = Xa†iai,jaj (4.11) 
i,j 

In addition, if Qˆ is Hermitian then the expectation value is the average value of 

measurement of quantum system in the state |psibi 

Definition 57 (Normal Operators). we say an operator Qˆ is normal if Qˆ†Qˆ = QˆQˆ†. 

However, diagonalisation exists whenever the operator is normal. i.e , for any normal 

operator, we can find an orthonormal basis |ψbi such that 

  (4.12) 
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where λi are the eigenvalues of the operator Qˆ and |ψibi are the corresponding 

eigenvectors.In an experiment where the eigenvalues are degenerate then there is always 

a unique eigenvectors that correspond to each eigenvalues. 

Definition 58. An operator Hˆ
m is said to be Hermitian if 

  (4.13) 

Definition 59 (Commutator). Allowing Qˆ and Rˆ to be operators then the matrix 

multiplication existing between them is non commutative if QˆRˆ 6= RˆQˆ 

We denote the commutator of Qˆ and Rˆ by [Q,ˆ Rˆ] = QˆRˆ − QˆRˆ 0r [Q,ˆ Rˆ] = 0 It is the direct 

consequence of the Heisenberg’s uncertainty principle which state non-commuting 

observables cannot be measured at the same time. 

Theorem 21 ( Heisenberg’s uncertainty principle). Suppose Qˆ and Rˆ are any two 

observables of a quantum system in the state |ψbi. Then 

 

Proof. we compute  

Now,  By boundedness property 

 from(10)  

and by (6)  
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Definition 60 (Orthogonal Projectors). Every orthogonal projectors is Hermitian if Pˆ
r2 = 

Pˆ
r. In addition, all the eigenvalues are either 1 or 0. 

Eigenfunction and Eigenvalue of an Operator 

Consider a wave-function ψb(x,t) with an operator Aˆ acting upon. Then Aψˆ b(x,t) produces 

a new function say φb(x,t) .If ψb(x,t) is such that ψb(x,t) is directly proportional to φb(x,t). 

We have 

Aψˆ b(x,t) = αψb(x,t) 

Here, α is the constant of proportionality called the eigenvalue and ψb(x,t) is called the 

eigenfunction of the operator Aˆ 

Example 4.1.8.1. Given a wave-function ψb(x,t) = ei(kx−ωt) of a free particle traveling along 

the x- trajectory with momentum Pˆm = ~k and energy  

Momentum Operator(Pˆ
m) The 

wave-function 

ψb(x,t) = ei(kx−ωt) 
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multiplying the wave-function by a constant  and then differentiate the resultant function 

with respect to x. We obtain 

 

 ) but ~k = Pˆ 

 

The momentum is a constant called the eigenvalue and with as the momentum operator. 

Hence ψb(x,t) is an eigenstate of Pˆ
m moving with definite momentum 

  (4.14) 

Energy operator Eˆ
m 

For non-relativistic system , the  

Now 

 

 ) but Pψb(x,t) = Pψˆ (x,t) 
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Hence  is the energy operator with ψ(x,t) as the eigenstate of definite energy 

  (4.15) 

Parity or Space-Inversion operator(Π) The parity operator changes x-component to −x 

component and y to −y and z to −z in the function in which it acts. In fact, it only acts on 

wave-function which are described by spatial coordinates. 

 Πψ(x,y,z) = ψb(−x,−y,−z) (4.16) 

Position operator(x˙) 

This type of operator corresponds the position of an observable. However, the position for 

a single particle is simply given by a scalar say x such that the operator ˙x acting on a wave-

function ψb(~x) multiplies the wave-function by ~x.That is 

 x˙|ψb(~x)i = x|ψb(~x)i (4.17) 
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NB All quantum operators are Hermitian 

4.1.9 Superposition of plane waves 

Consider the plane waves propagating along the positive x-direction 

ψb(x,t) = sin(kx − ωt) 

 and  

 

The second term represent a plane wave whereas the first term is the amplitude of the 2nd 

term which varies with position and time. It is called the modulating amplitude envelope 

function 

The velocity of the propagating wave sin(  and is called the phase 

velocity.However, the velocity of the envelope is  called the group velocity. 

Moreover, if we represent a particle by a delta function then the wave-function should be 

infinite dimensional and continuous in variable P and x 

We now write the wave-function as: 

 
countably infinite dimensional 

k − ∆k ≤ kn ≤ k + ∆k width allowed k’s is 2∆k 
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  (4.18) 

where 

A(k) is a delta distribution function that helps to obtain the envelope 

ei(kx−ωt) is a traveling wave component. 

At t = 0 

 

Z ∞ ψb(x,t) = 

ψb(x,0) = A(k)eikxdk (4.19) 
−∞ 

comparing eqn(4.18) and (4.19) we require that A(k) be a delta function and that 

 

∞ 

Z ∞ δ(x) = 

A(k)dk = 

 ∞ 0 

if 

if 

x = 0 

x 6= 

0 

which is the integral form of a delta function. Hence, In 

general, 

 This leads to the study of Fourier transform. 

By the property of the delta function 

Z ∞ 

ψb(x) = ψb(x0)δ(x − x0)dx0 using the delta function 
−∞ 
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 is the Laplace transform of ψb(k) which is also the enve- 

lope in k momentum space. 

The inverse transform 

 

4.1.10 Quantum Dynamics 

When setting up an experiment to evaluate the numerical value of any quantum system. 

The values are expressed as the EV of SAO which is the immediate result of the spectral 

theorem. Here, we will apply the spectral theorem to study Schroedinger time-dependent 

equation of the form: 

 ) (4.20) 
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where Hˆ
m is SAO, interpreted as the total energy of the system (Hamiltonian) defined 

on a domain D(Hˆ
m) ∈ Hb 

Remark. We can see that the Schroedinger equation is typical of PDE, and whose 

existence and uniqueness of solutions is of particular interest. 

Existence and Uniqueness of the solution 

Now,From ). The solution of the equation is of the form: 

ψb(t) = Ua(t)ψb(0) 

where Ua(t) = e−iHˆmt defined through functional calculus as: 

Z 

 −iHˆ
mt −iλt b 

 e = λe dΦ (4.21) 

Also, Φb is the projection-valued measured of the operator Hˆ
m defines on the D(Hˆ

m) 

Theorem 22. If (Hˆ
m,D(Hˆ

m)) is a densely well-defined linear operator with Ua(t) = e−iHˆmt 

Then 
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1. Ua(t) is a strongly continuous one parameter group. 

2. The lim

  

 

3. ) and on  

Proof. (a) Ua(t) is continuous at t0 ∈ R such that 0 then 

 

Unitary operator preserves inner-product. i.e hUa(t),Ua(t0)i = ht,t0i 

 

lim kUa(t)ψb − Ua(t0)ψbk2 = kψk2{0} = 

0 showing that Ua(t) is strongly 

continuous t−→t0 

Z 

(b) Ua(t) = e−iHˆmt = e−iλtdΦb but 

 we set λsλt = λ Then 

Ua(t)ψb − Ua(0)ψb 
(2) suppose lim  < ∞ Then 

W.T.S lim t−→o t 
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Now, if we set ψb ∈ D(Hˆ
m) and allowing lim

  = 0 

 

we can bound |e−iλ − 1| ≤ |tλ| by dominated convergence theorem, ψb ∈ D(Hˆ
m) such that 

Z 

λ2dΦb(λ) < ∞ 

Conversely, suppose Hˆ
m : D(Hˆ

m) −→ Hb such that 

  (4.22) 

and 

  (4.23) 

Also, ∀ψb ∈ D(H´
m) =⇒ H´

a is a generator Ua(t).∀ψbφb ∈ D(Hˆ
m) 

 

Hence is symmetric, since (3)

 suppose ψb ∈ D(Hˆ
m). we have 
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hence we used Ua(t)Ua(s) = Ua(s + t) to get third equality, and also Ua(t)ψb ∈ D(Hˆ
m) Hence, 

Ua(t) = e−iHˆmt is solution to the Schroedinger wave equation with initial valued condition

 

 

 

Lemma 6 (Uniqueness). Consider a particle wave equation 

 

and suppose ψb(t) is a solution to the differential with initial value condition then 

 

Proof. From (4.1.10), since φb ∈ D(Hˆ
m) =⇒ φb is differentiable. Set φb = Ua(−t)ψb 

Now,  

 

The limit of a function is a linear operator 
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Hence ∀t ∈ R we conclude that ) = 0 and φb(t) = Ua(t)ψb(t) when we set t = 0 we 

then have thus   

Theorem 23 (Stone’s Theorem). Suppose  be a strongly continuous one 

parameter group and a generator A of Ua(t) is defined by 

A : D(A) −→ Hb 

such that 

 

Then the following results are established 

1. ∀ψb ∈ D(A), U(t)ψ is differentiable i.e  

2. A is essential self-adjoint if 

Aψb = i(Ua(0))0ψb 

3. suppose Ta(t) = e−itA¯ then Ta(t) = Ua(t) = e−itA¯ 
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Proof. From hypothesis, let  be strongly continuous, and by definition (12) we 

set t0 ∈ R such that 

 

 

= kψbk2hUa(t),Ua(t)i − kψbk2hUa(t),Ua(t0)i − kψbk2hUa(t0),Ua(t)i + kψbk2hUa(t0),Ua(t0)i 

 

Unitary operator preserves inner-product. i.e hUa(t),Ua(t0)i = ht,t0i 

 

 

lim kUa(t)ψb − Ua(t0)ψbk2 = kψk2{0} = 0 showing that Ua(t) is strongly continuous 
t−→t0 

Next, W.T.S D(A) is dense in Hb 
0 

From (6), we have ψb (t) = Ua(t)ψb which implies 
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  (4.24) 

If we set t > 0 and allow g ∈ C0(R),∀ψ ∈ Hb , then (4.24) becomes 

  (4.25) 

Also, by the continuity property of Ua(t) at a point t0 ∈ R and by definition, 

whenever |t−t0| < δ From (4.25) it implies that 

 , i.e, 

 

0 Hence, we claim  

verification 

set t0 > 0 we have 

, From Leibniz rule 

 

0 thus  

(1) W.T.S differentiability of Ua(t) 
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Since Ua(t) is continuous and From (4.25),  ∀t ≥ 0 

we have 

 (4.26) The L.H.S of (4.26) becomes 

 (0) (4.27) 

The R.H.S of (4.26) becomes 

 (0) = 1 at t = 0 (4.28) 

invertible for some t0 > 0 

 

) is differentiable, 

 

 ∀t > 0 

(2) To show the operator A is essentially self-adjoint. Then it suffices to prove it is 

(a) Self-adjoint 
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(b) ker(A∗ + iI) = {0} 2(a) suppose ψb,φb ∈ D(A) and

 

 

so,  

 

∴ A is Hermitian. 

Suppose A is Hermitian and ψb ∈ D(A†) such that iA†ψb = ψb 

 

 

  (4.29) 

(4.29) represent differential equation with initial datum Ua(0) = 1 

We then allow the equation to depict 

  (4.30) 

Recall, Ua(t) is unitary with kUa(t)k = 1 and by the boundedness property, we have 
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which is only possible when hψb,φbi = 

0, thus φb = 0 since D(A) is dense 

We then show that ker(A∗ ± iI) = {0}.. it has been proven in (16). Similarly, ker(A∗ + iI) = 

0. =⇒ A is essentially self-adjoint. 

(3) Finally, we are to show that Ua(t)ψb = Ta(t)ψb that is, coincide at 0 ∀ψb ∈ D(A) 

=⇒ Ua(t)ψb − Ta(t)ψb = 0 Let g(t) = Ua(t)ψb − Ta(t)ψb 

Hence Ta(t)ψb ∈ D((A¯) g0(t) = U0(t)ψb − T 0(t)ψb = iAUa(t)ψb − i{A}¯ T(t)φb = iA¯g(t) 

 

and thus g(t) = 0 ∀t ∈ R  

4.2 Applications 

After the proof , we will look at more interesting results especially physics related issues 

and whenever possible we will attempt to interpret it in terms of the physical quantities 

mentioned in the last few chapters. 

4.2.1 Dilation 

Dilation is one more to the point operation to look at. This of course would be unitary in its 

nature for each γ 6= 0 the operator I is defined by 
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 ) (4.31) 

(4.31) satisfies the isometry property of unitary operator. i.e L2(R) 

Definition 61. The unitary operator I by definition would be expressed as: 

 ) (4.32) 

Since I(γ)I(µ) = I(γ + µ) pose SCUG property then we are to show that the dilation operator 

γ → Iγ is strongly continuous. 

Proposition 4.2.1.1. (M¨oller (2010)) Every dilation operator is strongly continuous Proof. 

  (4.33) 

Obviously, the starting term turns to zero as γ → 1. Studying the second term. From rotation 

the term approaches zero as γ → 0 ∀φb ∈ C0 For those functions we get (since they are 

uniformly continuous) that goes to zero and thus  

 goes to zero as φ has compact support. So indeed, the Iγ form a unitary 

oneparameter strongly continuous group. Again we can apply Stone’s theorem and 

determine the infinitesimal generator A of I(γ). We know iAφ is given by 
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  (4.34) 

if it exists. Now let us try to determine what limit is. For this, let us first assume that φ ∈ C∞ 

i.e. φ is continuously differentiable. Then the pointwise limit is for any x given by 

 

  (4.35) 

0 where we used l’Hopital’s rule and 

continuity of φ and φ . The next question is under which premises this convergence is also 

in L2. For this we have to assume in addition that φ has compact support, so . Then: 

  (4.36) 

If we assume that we have a sequence γn converging to , then there is a compact support K, 

such that the left hand side of the equation is supported inside of it for all γn. On the other 

hand, the right hand side is monotonic in γ. So if we set Λ = supn(γn), then with 

  if x ∈ K 



 

116 

  (4.37) 

 0 otherwise 

we have found an L2-function which dominates the left hand side and thus the left hand side 

also converges in L2 p its pointwise limit by the dominated convergence theorem. As we did 

in other examples, we could also look at the scalar product of any function φ for which the 

(ref) exits with -function η. Then 

  (4.38) 

where the limit in the last step exists by the above calculations and since were 

sufficient differentiable, integration by parts would give us 

  (4.39) 
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which means that the limis a weak version of 
γ→0 

  (4.40) 

 
4.2.2 Rotation in Cartesian Coordinate 

Now that we have looked at Dilation in Rn, we will focus on linear maps which can be 

parameterised so that they form a unitary group. Rotations around a fixed axis come 

immediately into one’s mind. Let us for convenience first look at rotation in in R2 since 

rotations (around a fix axis) in higher dimensions can be reduced to that case by choosing 

an appropriate coordinate system. 

Definition 62. We define the rotation matrix 

 

cos(α) 

Rα =  

 

sin(α) 

 

−sin(α) 

 

 

 

cos(α) 

which rotates a vector in R2 counterclockwise around the origin by the angle α With this we 

define the rotation operator on L2(R2) 

Definition 63. The rotation operator Iα on L2(R2) is defined by 

 (Iαφ)(x) = φ(Rαx) (4.41) 
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It rotates the function φclockwise around the origin by an angle of α 

Proposition 4.2.2.1. (M¨oller (2010)) The rotation forms a strongly continuous 

oneparameter unitary group 

Proof. We note that the rotation operator is unitary for all theta since it is an isometry, 

namely 

Z 

 ||Iαφ||2 = |Iαφ)(x)|2d2x 
R2 

Z 

 = |φ(Rαx)|2d2(x) 

 R2 (4.42) 

Z 

|φ(→−y 

)|2|det(Rα−1)|d2y R Z 

|φ(→−y 

)|2d2y R 

and a bijection, namely 

 ) (4.43) 

Furthermore 

 ) (4.44) 

where we use the well known property that  
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RξRα = Rξ+α (4.45) 

which can be easily shown using trigonometric addition theorems. So, if we can show that 

α → Iα is strongly continuous, we have shown that the Iα form a strongly continuous one-

parameter unitary group. 

We need to show that Iαφ → φ in L2(R2) as α → 0 for all φ ∈ L2(R2).We can show this again 

using Lemma 1 and noting that rotations are all bounded with unit norm. Thus, it is enough 

if we can show that Iαφ → φ as α → 0 for all φ ∈ C0(R2) i.e. for all continuous functions with 

compact support. 

Let φ ∈ C0(R2). Then φ is uniformly continuous. Hence there is a δ > 0 such that 

 for all →−x ,→−y ∈ R2 with ||→−x = →−y || < δ. Also note that since φ 

has 

compact support, there is an r > 0 such that supp(φ) ⊆ Br(0). Thus, . So 

making α smaller than  we get  and choosing  

we get . Hence the rotation group is strongly 

continuous, which completes the proof  

We can then once again apply stone’s theorem and determine the infinitesimal 

generator A. Again D(A) is given by all the φ ∈ L2(R2) for which 

  (4.46) 

exists. It is not directly apparent what the above limit means (it is exists). 
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4.2.3 Proposition 

If the limit  exists, it is given by ϕ = x1 · D2φ − x2 · φ, where Diφ is the weak 

partial derivative of φ in the direction of the i-th unit vector. Proof. To investigate this, let us 

assume the limit exists and call it ϕ. Now let ). Then 

  (4.47)  
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On the other hand since ) we get pointwise 

  (4.48)  
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Since ), the pointwise limit is also the L2-limit and we have 

hϕ,ηi = −hφ,x1∂2η − x2∂1η 

Hence, in the sense of weak derivatives, 

(4.49) 

  (4.50) 

if it exists. We have therefore identified the generator A to be i(Tx1D1 − Tx2D1) with its domain 

being all functions for which the limit in (ref) exists and lies again in L2(R2). As final result 

we can write 

 e(x1D2−x2D1)α = Iα (4.51) 

We again find as intriguing physical interpretation of the above result. Formally, the 

generator A = i(Tx1D1 − Tx2D1) of the rotation corresponds to the observable L3 = xpy − 

ypx(making use of the corresponding rules for the momentum and position operator), 

which is the third component of the angular momentum →−L = →−x × →−p . Since the 

infinitesimal generator is per see self-adjoint, we can indeed view it as the operator 

corresponding to L3. 

Hence, one says that ”angular momentum generates rotation”. 

Chapter 5 
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Conclusions 

In this research, the theory of unbounded operators on Hilbert spaces was established by 

targeting important classes of operators like closed, symmetric, or self-adjoint ones. This 

also considered the relationship and utilization of the properties for the focus areas 

mentioned above. An in-depth examination of self-adjoint operators and their spectral 

properties was imperative to meet the intermediate goal of a functional calculus. This in 

effect, allowed for a clearer understanding to the exponential of an operator. Focus was also 

placed on strongly continuous groups of unitary operators. Employing functional calculus, 

parameterization of the unitary operators in terms of self-adjoint operators became 

possible and making them much more convenient and easier to handle with respect to its 

manipulations and computation. The resultant was Stone’s theorem, the ultimate goal of 

this research. It came to light as part of the observations that, these unitary groups exerts 

an essential influence in quantum mechanics if their generator could be related to a 

physical observable. As a result, many other remarkable features was deduced. The 

principal conclusion here is that not only is it possible but also easy to put the mathematical 

description of quantum mechanics on a firm theoretical environment. However, the use of 

more sophisticated concepts and results such as the spectral theorem for unbounded self-

adjoint operators was employed to arrive at this point. It should be however noted that, 

when dealing with these unitary groups, the level of complexity can increase tremendously. 
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RECOMMENDATIONS 

Additionally, this thesis could be extended to take an insightful look into the examination 

and proof of the classic Bochner’s theorem on positive-definite functions. Also, Stone’s 

theorem could for instance be applied, when considering the time evolution of a particle in 

a more complicated potential to further extend the research around it. 

Furthermore, try to use Fourier transform to recast Stone’s where the real line is locally 

compact abelian group.  
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