QUANTUM MECHANICAL STUDIES OF THE MECHANISMS OF SOME TRANSITION METAL ORGANOMETALLIC REACTIONS

A thesis submitted to the Department of Chemistry, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Chemistry

By:
Richard Tia, BSc. (Hons.)

December, 2009

DECLARATION

I hereby declare that this thesis is my own work towards the Ph.D. and that, to the best of my knowledge and belief, it contains no material that has been accepted for the award of any other degree in any educational institution nor material previously published or written by another person, except where due reference is made in the text of the thesis.

Richard Tia
(Candidate)
Signature
Date

Certified by:
Evans Adei, BSc, M.Phil., Ph.D. (Supervisor)

Signature
Date
and
J. A. M. Awudza, BSc, M.Phil., Ph.D.
(Head of Department)
Signature
Date

TABLE OF CONTENTS

Title Page
Declaration. ii
Table of Contents iii
List of Figures vi
List of Schemes xii
List of Tables xiii
List of Abbreviations xiv
Acknowledgement xv
Dedication xvii
Publications Arising From the Work Reported in the Thesis xix
Abstract xx
CHAPTER ONE
Introduction 1
References 11
CHAPTER TWO
Density Functional Theory Studies of the Mechanisms of Oxidation of Ethylene by Chromyl Chloride
2.1 Introduction 16
2.2 Details of Calculation 24
2.3 Results and Discussions 25
2.3.1 Formation of epoxide 25
2.3.2 Formation of Acetaldehyde and Vinyl Alcohol. 33
2.3.3 Formation of 1,2-Chlorohydrin and 1,2-Dichloroethane 34
2.4 Conclusion 39
References 41
CHAPTER THREE
Density Functional Theory Studies of the Mechanistic Aspects of Olefin Metathesis Reactions
3.1 Introduction 45
3.2 Details of Calculations 51
3.3 Results and Discussions 52
3.3.1 Reactions of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ with Ethylene 52
3.3.2 Reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{M}=\mathrm{CH}_{2}(\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ with Ethylene 74
3.4 Conclusion 88
References 90
CHAPTER FOUR
Density Functional Theory Studies of the Mechanistic Aspects of Transition-Metal- Assisted Formation of 1,2- Dinitrosoalkanes
4.1 Introduction 94
4.2 Details of Calculations 97
4.3 Results and Discussions 98
4.3.1 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with Ethylene 98
4.3.2 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2-Norbonene 108
4.3.3 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with Trans-1-phenylpropene 117
4.3.4 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with Cyclopentene 124
4.3.5 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with Cyclohexene 129
4.3.6 Reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2,3-Dimethyl-2-butene 135
4.4 Conclusion 140
References 143
CHAPTER FIVE
Concluding Remarks 146
References 151
APPENDIX
Optimized Geometries and Absolute Energies of Computed Structures 154

LIST OF FIGURES

Figure 2.1 Optimized geometries of the main stationary points involved in the [2+2] and [3+2] addition reactions between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene for the formation of the epoxide precursor.... 27

Figure 2.2 Optimized geometrical parameters (in \AA) of the stationary points on epoxide ringopening.. 28

Figure 2.3 Reaction profiles of the three suggested mechanisms for the formation of the epoxide precursor from the addition of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to ethylene on the singlet PES........................... 29

Figure 2.4 Optimized geometries of the main stationary points involved in the [2+2] and [3+2] addition reactions between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene for the formation of chlorohydrin and dichloride precursors .35

Figure 2.5 Energy profile of the three suggested mechanisms for the formation of the 1,2chlorohydrin precursor from the addition of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene on the singlet PES 36

Figure 2.6 Energy profiles of the two suggested mechanisms for the formation of the dichloride precursor from addition of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene38

Figure 3.1 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ with ethylene53
Figure 3.2 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ with ethylene 55

Figure 3.3 Optimized geometries of the main stationary points involved in the reaction of
\qquad
$\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ with ethylene58

Figure 3.4 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ with ethylene .59

Figure 3.5 Optimized geometries of the main stationary points involved in the reaction of
\qquad
$\mathrm{Cl}_{4} \mathrm{WCH}_{2}$ with ethylene .62

Figure 3.6 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{WCH}_{2}$ with ethylene.................................... 63

Figure 3.7 Optimized geometries of the main stationary points involved in the reactions of $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ with ethylene... 66

Figure 3.8 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ with ethylene................................ 67

Figure 3.9 Optimized geometries of the main stationary points involved in the reaction of
\qquad

Figure 3.10 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ with ethylene................................. 70

Figure 3.11 Summary of the Possible Reaction Paths for the Reaction of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}$,
\qquad
W, Ru, Re) with Ethylene .71

Figure 3.12 Optimized geometries of the main stationary points involved in the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{CrCH}_{2}$ with ethylene.. 75

Figure 3.13 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{CrCH}_{2}$ with ethylene............................ 76

Figure 3.14 Optimized geometries of the main stationary points involved in the reactions of
\qquad

Figure 3.15 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MoCH}_{2}$ with ethylene

Figure 3.16 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{WCH}_{2}$ with ethylene. .80

Figure 3.17 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{WCH}_{2}$ with ethylene............................. 81

Figure 3.18 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{RuCH}_{2}$ with ethylene83
Figure 3.19 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{RuCH}_{2}$ with ethylene 84

Figure 3.20 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ with ethylene85
Figure 3.21 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ with ethylene. 86
Figure 4.1a Optimized geometries of the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) reactant minima. 99
Figure 4.1b Optimized geometries of the π-complexes formed from the interaction of$\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with ethylene101

Figure 4.1c Optimized geometries of the transition states and products formed from [3+2] addition of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with ethylene.103

Figure 4.1d Energy profiles of the $[3+2]$ and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with ethylene105

Figure 4.1e Optimized geometries of the stationary points involved in the [2+2] addition of ethylene to $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ 106

Figure 4.2a Optimized geometries of the π-complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2-norbonene. .108

Figure 4.2b Optimized geometries of the stationary points involved in the [3+2] reaction of
$\qquad$$\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2-norbonene.110

Figure 4.2c Energy profiles of the $[3+2]$ and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with 2-norbonene. 112

Figure 4.2d Optimized geometries of the stationary points involved in the [2+2] addition reaction between $\mathrm{CpCo}(\mathrm{NO})_{2}$ and 2-norbonene... 114

Figure 4.2e Optimized geometries of the stationary points involved in the [2+2] addition reaction between $\mathrm{CpRh}(\mathrm{NO})_{2}$ and 2-norbonene 115

Figure 4.2f Optimized geometries of the stationary points involved in the [2+2] addition reaction between $\mathrm{CpIr}(\mathrm{NO})_{2}$ and 2-norbonene

Figure 4.3a Optimized geometries of the π-complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with trans-1-phenylpropene

Figure 4.3b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with trans-1-phenylpropene. .120

Figure 4.3c Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with trans-1-phenylpropene 122

Figure 4.3d Energy profile of the $[3+2]$ and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with trans-1-phenylpropene 123

Figure 4.4a Optimized geometries of the π-complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclopentene 124

Figure 4.4b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclopentene 126

Figure 4.4c Optimized geometries of the stationary points involved in the $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})_{2}$ with cyclopentene $\ldots \ldots \ldots$

Figure 4.4d Energy profiles of the $[3+2]$ and $[2+2]$ addition reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, $\mathrm{Rh}, \mathrm{Ir})$ with cyclopentene 128

Figure 4.5a Optimized geometries of the π-complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cycloxene

Figure 4.5b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclohexene

Figure 4.5c Optimized geometries of the stationary points involved in the $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclohexene

Figure 4.5d Energy profiles of the $[3+2]$ and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with cyclohexene

Figure 4.6a Optimized geometries of the π-complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2,3-dimethyl-2-butene 135

Fig. 4.6b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2,3-dimethyl-2-butene....................................... 137

Fig. 4.6c Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with 2,3-dimethyl-2-butene 138

Figure 4.6d Energy profile of the $[3+2]$ and $[2+2]$ addition reaction between $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$ $\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}$) and 2,3-dimethyl-2-butene. .139

LIST OF SCHEMES

Scheme 2.1 Possible Pathways for the Reaction of LnMO_{2} with Alkene 17
Scheme 2.2 Proposed Mechanism for Reaction of $\mathrm{Cl}_{2} \mathrm{CrO}_{2}$ with ethylene Involving Organometallic Intermediates 19
Scheme 2.3 Mechanism Involving Direct Attack on Heteroatom Ligands 20
Scheme 2.4 Mechanisms of the $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$-mediated formation of epoxide, acetaldehyde and vinyl
alcohol 22
Scheme 2.5 Mechanisms of the $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$-Mediated Formation of Chlorohydrins
and Dichlorides 23
Scheme 3.1: The Herrison-Chauvin Non-pairwise Mechanism of Olefin Metathesis 47
Scheme 4.1: Bergman's Proposed Mechanism for the Formation of 1,2-Dinitrosoalkanes 96
Scheme 4.2: Rappẻ's Proposed Mechanism of 1,2-Dinitrosoalkane Formation. 97

LIST OF TABLES

Table 1.1 Performance and Costs of Theoretical Models 8
Table 2.1. Imaginary Frequencies (in cm^{-1}) of All First-Order Saddle Points Involved in the Suggested Mechanisms for the Formation of Epoxide, Acetaldehyde, Dichloride and Chlorohydrin precursors28
Table 3.1. Calculated Relative Energies (in $\mathrm{kcalmol}^{-1}$) of the Main Stationary Points for the [2+2] and [3+2] Addition of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ Complexes to Ethylene \qquad
Table 3.2 Activation Barriers (in $\mathrm{kcalmol}^{-1}$) of the Various Pathways in the Reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ with Ethylene77
Table 4.1: Relative energies (in $\mathrm{kcalmol}^{-1}$) of the Transition States Formed from [3+2] and [2+2] Addition of Olefins to $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ 107

LIST OF ABBREVIATIONS

B3LYP - Becke three parameter Lee-Yang-Parr functional
B97 - Becke 97 functional
BP86 - Becke-Perdew 86 functional
CFT - Crystal Field Theory
CNDO - Complete Neglect of Differential Overlap
DFT - Density Functional Theory
DNA - Deoxyribonucleic acid
HCTH - Hamprecht- Cohen-Tozer- Handy functional
HF - Hartree-Fock
MCSCF- Multi-Configurational Self-Consistent Field
MNDO - Modified Neglect of Differential Overlap
PM3(tm) - Parameterized Model 3 for transition metals
PMO - Perturbational Molecular Orbital
PPP - Pariser-Parr-Pople
QM/MM - Quantum Mechanics/Molecular Mechanics (Combined methods)

ACKNOWLEDGEMENT

My journey through the doctoral program will not have been successful without the love, support and co-operation of all those who care for me. Now that I stand at the end of that long
but exciting journey, it is my greatest pleasure to acknowledge all those individuals who contributed to the final product: they who provided at one time or another, either the critical push that helped me to make the effort, or the critical support at a time when I needed it most.

I am extremely grateful to my supervisor, Dr. Evans Adei, who gave unstintingly of his time and experience, for initiating me into the 'cult' of theoretical chemists. In the course of the last three years Dr. Adei has taught me the inherent mysteries and cohesiveness of molecular quantum mechanics, leading me through the maze of equations to reveal the underlying beauty of nature. In the process, he taught me more than chemistry - he taught me life - and for this I am eternally grateful. My time as Dr. Adei's doctoral student may well prove to be the most important in my ultimate development as a scientist and human being.

My sincere thanks are due to Professor James H. Ephraim, formerly of the Department of Chemistry, for his pieces of advice and encouragement, especially at the beginning. The great man must have seen beyond the difficult beginnings and took it upon himself to spur us on through the very tough times, even when conventional wisdom dictated otherwise. Professor Anthony A. Adimado has always been a source of inspiration, and we revere him for that. I am also thankful to Dr. Johannes A. M. Awudza, Dr. Sylvester K. Twumasi, Dr. S. Osafo Acquaah and Mr. N. K. Asare-Donkor for their support and encouragement over the years.

Our group received a substantial financial support from the National Council for Tertiary Education (NCTE) through the Teaching and Learning Innovation Fund (TALIF) to set up a Molecular Modeling and Informatics facility where this work was done. This generous support is gratefully acknowledged. I am also grateful for a KNUST scholarship that made available some funds for my studies.

My parents have been a constant source of encouragement and wisdom over the years, and I am grateful for their prodigious efforts in ensuring, when times were sometimes very hard, that I received the best education Ghana had to offer. It is amazing that they were prepared to forgo so much so I could come this far.

I am very grateful to my wonderful siblings and cousins - Esther, Moses, Rob, David, Peter, Charles and Sophie - who in the course of the last three years must have felt they have lost their once attentive brother and cousin to the study desk and computer screen in a far-away university campus. I am particularly grateful for their love and prayers and the sacrifices they have had to make for my sake.

Finally, I express my greatest gratitude to the Lord God Almighty for giving me life and for blessing me in all I do to make this day come true. This is certainly the doing of the Lord and it is marvelous in our eyes.

To each of the persons mentioned above and many others, I have just one more thing to say: "ego gratias ago vos summopere quod ego sum valde memor".

DEDICATION

To my kid sister Sophie

"There can be no question that in the Schrödinger equation we very nearly have the mathematical foundation for the solution of the whole problem of atomic and molecular structure."
G. N. Lewis, 1933

Publications Arising From the Work Reported in the Thesis

1. Tia, R. and Adei, E. (2009) Density Functional Theory Studies of the Mechanisms of Oxidation of Ethylene by Chromyl Chloride, Inorg. Chem. 48, 11434.
2. Tia, R. and Adei, E. (2010) Density Functional Theory Studies of the Mechanistic Aspects of Olefin Metathesis Reactions. Dalton Trans., 39, 7575.
3. Tia, R. and Adei, E. Density Functional Theory Studies of the Mechanistic Aspects of Olefin Metathesis Reactions Involving Metal Oxo-alkylidene Complexes. Dalton Trans. (revised manuscript submitted).
4. Tia, R. and Adei, E.; Density Functional Theory Studies of the Mechanistic Aspects of Transition-Metal-Assisted Formation of 1,2-Dinitroso Complexes of Cobalt (in preparation).
5. Tia, R. and Adei, E.; Density Functional Theory Studies of the Mechanistic Aspects of Transition-Metal-Assisted Formation of 1,2-Dinitroso Complexes of Rhodium (in preparation).
6. Tia, R. and Adei, E.; Density Functional Theory Studies of the Mechanistic Aspects of Transition-Metal-Assisted Formation of 1,2-Dinitroso Complexes of Iridium (in preparation).

Abstract

The mechanistic pathways of three organometallic reactions, namely the oxidation of ethylene by chromyl chloride leading to the formation of epoxide, 1,2-dichloroethane, 1,2-chlorohydrin, acetaldehyde, and vinyl alcohol precursors; the olefin metathesis reaction involving ethylene and

metal methylidene $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}$, $\mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ and metal oxo-methylidene $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ complexes; and the transition-metal-assisted formation of 1,2-dinitroso complexes of cobalt and its congeners have been studied using hybrid density functional theory at the B3LYP/LACVP* level of theory. The formation of the epoxide precursor $\left(\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{Cr}-\mathrm{OC}_{2} \mathrm{H}_{4}\right)$ was found to take place via initial [2+2] addition of ethylene across the $\mathrm{Cr}=\mathrm{O}$ bond of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to form a chromaoxetane intermediate, as opposed to [3+2] addition across the two $\mathrm{Cr}=\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ as suggested in earlier studies. The hitherto unexplored pathway involving initial [3+2] addition of ethylene across the $\mathrm{Cr}=\mathrm{O}$ and $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ was found to be more favorable than the [3+2] addition across the two $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. The formation of the 1,2-dichloroethane precursor was found to take place via [3+2] addition of ethylene across the two $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. The 1,2-chlorohydrin precursor was also found to originate from [3+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ as opposed to $[2+2]$ addition of ethylene across the $\mathrm{Cr}-\mathrm{Cl}$ bond. Also the vinyl alcohol and acetaldehyde precursors were found to arise from a direct attack of one of the carbon atoms of ethylene on an oxygen atom of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ through a triplet intermediate. In the reactions of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ with ethylene it was found that the formation of the metallacyclobutane through formal $[2+2]$ cycloaddition, a key step in the olefin metathesis reaction according to the Herrison-Chauvin mechanism, is a low-barrier process in each of the complexes studied. It was also found that the active species for the formation of the metallacyclobutane is a carbene complex and not a carbenoid complex. One key factor was found to be responsible for the difference in metathesis activity in these complexes: the stability of the carbenoid complexes relative to the carbenes. In Cr and Ru , the carbenoid complexes are more stable than the carbenes and thus $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ are likely to exist in the lower-
energy carbenoid $\mathrm{Cl}_{3} \mathrm{MCH}_{2} \mathrm{Cl}$ form as opposed to the carbene $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ form. This is likely to deplete the reaction surface of the active species of the process, making $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ not suitable for olefin metathesis. This suggests that whereas $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ may catalyze olefin metathesis, $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ may not. The W and Re complexes have been found to have greater metathesis activity than the Mo complex. In the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}$, Re) complexes the metathesis reaction has favorable energetics and is found to be more feasible than the side-reactions studied while in the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ complexes, the olefin metathesis is found to be less favorable than the side reactions. In the transition-metal-assisted formation of 1,2-dinitrosoalkanes, it was found that the activation barriers for the one-step [3+2] addition pathway for the formation 1,2-dinitrosoalkanes are generally very low while the activation barriers for the [2+2] addition of the $\mathrm{C}=\mathrm{C}$ bond of the olefins across the $\mathrm{M}-\mathrm{N}$ bonds of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ to form an intermediate are generally very high. A transition state for the re-arrangement of the products of [2+2] addition to the products of [3+2] addition could not be located, indicating that the re-arrangement of the products of $[2+2]$ addition by reductive elimination involving the second metal-nitrogen π-bond to form the observed 1,2dintrosoalkanes as suggested in the work of Rappé and Upton may not be possible. Therefore it is concluded that the direct one-step [3+2] addition pathway proposed by Bergman and Becker for the formation of 1,2-dinitrosoalkanes is a more plausible pathway.

CHAPTER ONE

1.1 INTRODUCTION

Theoretical Chemistry is the subfield of chemistry where mathematical methods are combined with fundamental laws of physics to study processes of chemical relevance. The term computational chemistry is used when the mathematical method is sufficiently developed that it can be automated for implementation on a computer (Jensen, 2007; Helgaker, et. al., 2000; Cramer, 2004; Leach, 2001).

Computational chemistry (also called molecular modeling) is critical in basic and applied molecular science research in areas which are relevant to the chemical, pharmaceutical, polymer and petroleum industries, and in nanotechnology and the environment. Molecular modeling methods are now routinely used to investigate the structure, dynamics and thermodynamics of inorganic, biological, and polymeric systems, encompassing such areas as protein folding, enzyme catalysis, protein stability, conformational changes associated with biomolecular function, molecular recognition of proteins, DNA, membrane complexes, materials science and catalysis, and rational drug design. Not only are these areas important to the needs of developed countries but they should also be of interest to emerging economies such as Ghana.

The key to theoretical chemistry is molecular quantum mechanics. Soon after its formulation (Schrödinger, 1926), it became clear that solution of the time-independent Schrödinger equation

$$
\mathrm{H}(\mathbf{r} ; \mathbf{R}) \Psi(\mathbf{r} ; \mathbf{R})=\mathrm{E}(\mathbf{R}) \Psi(\mathbf{r} ; \mathbf{R})
$$

could, in principle, lead to direct quantitative prediction of most, if not all, chemical phenomena (Dirac, 1929; Lewis, 1933). In the above equation $\Psi(\mathbf{r} ; \mathbf{R})$ is the molecular wave function, which
depends explicitly on the $3 n$ coordinates of all n electrons, and implicitly on the nuclear coordinates. (The implicit rather than explicit nuclear coordinate dependence is because the Born-Oppenheimer separation (Born and Oppenheimer, 1927) of (slow) nuclear motion from (fast) electronic motion has been made.) $\mathrm{E}(\mathbf{R})$ is the molecular energy, which depends parametrically on the nuclear positions. Hence, $\mathrm{E}(\mathbf{R})$ defines the potential energy surface (PES) obtained from solution of the Schrödinger equation subject to the Born-Oppenheimer approximation. $\mathbf{H}(\mathbf{r} ; \mathbf{R})$ is the molecular electronic Hamiltonian operator, subject to frozen nuclei, consisting of kinetic energy, electron-nuclear attraction, electron-electron repulsion and nuclear-nuclear repulsion terms. In atomic units, H has the explicit form

$$
\begin{aligned}
& \boldsymbol{H}(\boldsymbol{r} ; \boldsymbol{R})=-\frac{1}{2} \sum_{i}^{n}\left(\frac{\partial^{2}}{\partial x i^{2}}+\frac{\partial^{2}}{\partial y i^{2}}+\frac{\partial^{2}}{\partial z i^{2}}\right)-\sum_{i}^{n} \sum_{\alpha}^{A} \frac{Z_{\alpha}}{|r i-R \alpha|}+\frac{1}{2} \sum_{i}^{n} \sum_{j}^{n} \frac{1}{|r i-r j|}+ \\
& \frac{1}{2} \sum_{\alpha}^{A} \sum_{\beta}^{A} \frac{Z_{\alpha} Z \beta}{|R \alpha-R \beta|}
\end{aligned}
$$

Quantum mechanics has had a remarkable success as a predictive tool in structure and reactivity studies of organic and organometallic systems. Quantum mechanical calculations can provide useful information concerning the shapes (geometries), the relative energies, and the frequencies of stationary points (usually minima and transition states) on the potential energy surface as well as the electron distribution in molecular species. The shape of a molecular species is one of its fundamental characteristics. It can, for example, provide clues to the existence of theoretical principles (why is it that benzene has six equal-length C-C bonds, but cyclobutadiene has two "short" and two "long" bonds (Carpenter, 1988)) or act as a guide to designing useful molecules (docking a candidate drug into the active site of an enzyme requires knowledge of the shapes of the drug and the active site (Vinter and Gardner, 1994)). The relative energies of molecular species is fundamental to a knowledge of their kinetic and thermodynamic behavior,
and this can be important in attempts to synthesize them. The vibrational frequencies of a molecule provide information about the electronic nature of its bonds, and prediction of the spectra represented by these frequencies may be useful to experimentalists. Calculation of the electron density distribution enables the prediction of the dipole moment, the charge distribution, the bond orders, and the shapes of various molecular orbitals. Thus, quantum mechanical calculations can furnish information about the mechanisms and product distributions of chemical reactions, either directly by examining the structures and relative energies of reaction transition states, or indirectly by modeling the steric and electronic demands of the reactants.

A theoretical approach is specifically well suited for studying trends, since calculations are not restricted by the normal limitations in the laboratory such as tedious preparations or faltering stabilities. Once the appropriate structures on the potential energy surface have been optimized, a reaction mechanism can always be mapped out by finding the lowest energy reaction path that connects the reactants to the products via suitable transition states and intermediates. Quantitative quantum chemical calculations leading directly to information about transition states and reaction mechanisms are now common, while qualitative (reactant-based) models will always be needed for systems which are too large to be subjected to the more rigorous treatments.

By their very nature, (transition-metal) organometallic reactions involve highly reactive species often not amenable to direct observation (Torrent et. al., 2000). The first use of Quantum Mechanics in studies of inorganic elementary reaction steps made use of several simplifying assumptions and only provided rather approximate solutions to the fundamental underlying equations. Best known is perhaps the use of crystal field theory (CFT) to rationalize observed trends in the rate of ligand substitution reactions involving transition metal complexes (Jordan,

1991; Atwood, 1997). Other approaches include the perturbational molecular orbital (PMO) theory (Dewar, 1965; Woodward and Hoffmann, 1970; Pearson, 1976; Albright et. al., 1985; Fukui, 1971) in which trends in rates are rationalized in terms of symmetry arguments (ibid.) and hardness and softness (Pearson, 1976) of the reactive centers on the reactants. Progress in both theory (software) and computer technology (hardware) has changed this state of affairs drastically in recent years. The last two decades have witnessed the establishment of quantum chemical methods as a standard tool for quantitative calculations of metal compounds, after numerous theoretical studies had proved that the calculated values are very accurate.

Two different quantum chemical methods have been proven to give geometries, bond energies, activation barriers, vibrational frequencies, and other chemically important properties of transition-metal organometallic compounds with an accuracy that is generally sufficient for synthetic chemistry. These are high-level ab initio methods and density functional theory (DFT) methods.

Most $a b$ initio methods use Hartree-Fock (HF) theory as the starting point of the theoretical procedure (Helgaker, 2000; Szabo and Ostlund, 1989). However, the HF approximation can only be used if the electronically excited states are clearly higher in energy than the ground state. This is not always the case for transition-metal compounds, because the energy levels of the occupied and empty valence s and d orbitals are much closer to each other than the s and p valence orbitals of the main group elements (Davidson, 1989, 1991; Salahub and Zerner, 1989). Compounds of first row transition metals which have a partly filled d-shell require a multi-configuration self-consistent field (MCSCF) wave function instead of a Hartree-Fock wave function. MCSCF calculations are, however, much more expensive than HF calculations.

The calculation of relativistic effects is necessary to achieve accurate results for compounds of the second and particularly the third row transition metals, where relativistic corrections may become more important than correlation energy (Pyykkö, 1988). Relativistic effects are less important for the first row metals, except for Cu where the neglect of relativity may lead to significant errors (Pyykkö, 1988; Antes and Frenking, 1995). The accurate calculation of relativistic effects is achieved through approximate solutions of the Dirac equation, which for one-electron systems has the general form

$$
\mathrm{H}_{\mathrm{D}} \Psi(\mathbf{r})=\mathrm{E} \boldsymbol{\Psi}(\mathbf{r})
$$

where $H_{D}=c \boldsymbol{\alpha} .\{\mathbf{p}+\mathrm{e} \mathbf{A}(\mathbf{r})\}-\mathrm{e} \emptyset(\mathbf{r})+\boldsymbol{\beta} \mathrm{mc}^{2}$
is the one-electron Dirac Hamiltonian. Here, $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are 4×4 matrices and the wave function Ψ is a four-component column matrix. The Dirac Hamiltonian to order v^{2} / c^{2} can be written (upon decoupling the particle and anti-particle solutions) as

$$
\mathrm{H}=\mathrm{H}_{\mathrm{s}}+\Delta \mathrm{H}_{\mathrm{rel}}+\Delta \mathrm{H}_{\mathrm{so}}+\Delta \mathrm{H}_{\mathrm{d}}
$$

where H_{s} is the original Schrödinger Hamiltonian, $\Delta \mathrm{H}_{\text {rel }}$ is the relativistic correction to the kinetic energy (the mass-velocity term), $\Delta \mathrm{H}_{\text {so }}$ is the spin-orbit term and $\Delta \mathrm{H}_{\mathrm{d}}$ is the Darwin term. The mass-velocity term leads to a contraction of the s and p and decontraction of the d and f functions. Full four-component calculations are, however, too time-consuming to become practical for transition metal compounds that are important for synthetic purposes. The easiest and most common way of treating relativistic effects is the use of quasi-relativistic effective core potentials (ECPs) that are parametrized with respect to relativistic all-electron calculations of the atoms.

The last decades have seen tremendous development of density functional theory (DFT) methods. These methods combine the simplicity and general applicability of the HartreeFock method with the accuracy of correlated models that include the effects of connected doubles and triples. DFT includes electron correlation in its theoretical basis, in contrast to wave function methods, which must take correlation into account by add- ons to ab initio HF theory, or by parameterization in semi- empirical methods. DFT methods have become particularly popular for the calculation of transition metal compounds because the gradient-corrected (nonlocal) exchange and correlation functionals give results which have a comparable and frequently even higher accuracy than $a b$ initio calculations, at a fraction of the computational expense (Torrent et. al., 2000). The most important parameter for a DFT calculation is the choice of the exchange and correlation functionals. The most common functionals which give good results for transition metals (Torrent et. al., 2000) are BP86 (Becke, 1988; Perdew, 1986), B3LYP (Becke, 1993; Lee, 1988; Stevens, 1994), B97 (Becke, 1997), B97-1, and HCTH (Hamprecht et. al, 1998). Relativistic effects can be considered in DFT calculations in the same way as in ab initio calculations by using relativistic ECPs. Approximate treatments of relativistic corrections have been developed (van Lanthe et. al, 1993, van Lanthe et. al, 1996). Among the DFT levels of theory considered appropriate for the treatment of relativistic effects in organometallic reactions is the B3LYP/LACVP* level of theory. The LACVP* basis set is a relativistic effective corepotential that describes the atoms $\mathrm{H}-\mathrm{Ar}$ with the $6-31 \mathrm{G}^{*}$ basis while heavier atoms are modeled with the LANL2DZ basis set which uses the all-electron valence double zeta basis set (D95V), developed by Dunning, for first row elements (Dunning and Hay, 1976) and the Los Alamos ECP plus double zeta basis set developed by Wadt and Hay for the atoms $\mathrm{Na}-\mathrm{La}, \mathrm{Hf}-\mathrm{Bi}$ (Hay and Wadt, 1985a; 1985b; Wadt and Hay, 1985). An inherent drawback of DFT methods is the
fact that they contain empirical elements and cannot be systematically refined towards the exact solution like $a b$ initio methods, making it difficult to establish, for a given chemical problem, the trustworthiness of the calculations or even to detect its failure.

Suitably parameterized semi-empirical molecular orbital schemes such as PM3(tm) (Wavefunction, 1993) have also been employed for the study of transition metal organometallic systems (Adei, 1996), but with the development of improved algorithms and far faster computers in recent times, the relative advantage of these over ab initio and DFT schemes has diminished considerably. Another important group of computational methods for calculating large transition metal complexes with bulky ligands consists of a combination of quantum chemical techniques with molecular mechanics methods (Woo et. al., 1998). Though these QM/MM methods appear promising, they cannot be considered as standard levels of theory yet.

Theoretical studies of organic reactions have, compared to organometallic systems, been much easier (Davidson, 1991). The application of quantum mechanics to organic chemistry dates back to Hückel's π - electron model of the 1930s (Hückel, 1931; 1932; 1937). Approximate quantum mechanical treatment for organic molecules continued throughout the 1950s and 1960s with, for example, Pariser-Parr-Pople (PPP) (Pople, 1953; Pariser and Parr, 1953), Complete Neglect of Differential Overlap (CNDO) (Pople et.al., 1965), Modified Neglect of Diatomic Overlap (MNDO) (Dewar and Thiel, 1977), and related models. Application of ab initio approaches, such as Hartree-Fock theory, began in the 1970s, flourished in the 1980s, with the development of computer codes that allowed for automated optimization of ground and transition states and incorporation of electron correlation using configuration interaction or perturbation techniques.

Table 1.1 gives a summary of the performance and cost of theoretical models employed in the treatment of organic and organometallic systems.

Table 1.1 Performance and Cost of Theoretical Models (Hehre, 2003)

	Molecular mechanics	Density Functional			Ab initio		
Task		Semi-empirical	1 EDF1	B3LYP	Hartree-Fock	LMP2	MP2
Geometry (organic)	Fair to good	Good	Good	Good	Good	N/A	Good
Geometry (transition metals)	Poor	Good	Good	Good	Poor	N/A	Fair
Transition-state geometry	N/A	Fair to good	Good	Good	Good	N/A	Good
Thermochemistry (non-isodesmic)	N/A	Poor	Good	Good	Fair to good	Good	Good
Thermochemistry (isodesmic)	N/A	Poor	Good	Good	Good	Good	Good
Cost	Very low	Low	Moderate	Moderate	Moderate	High	High

The remarkable evolution of organometallic chemistry, notably of the transition metals, over the last few decades, has enriched and transformed chemical science and technology to a degree and in ways that have been rarely matched throughout the history of chemistry. These include the discovery of radically new types of chemical compounds (Halpern, 1981), novel structures and binding modes, unprecedented reactivity patterns, unsuspected roles of organometallic chemistry in biology (Lenhart and Hodgin, 1961; Hodgin, 1965; Thauer, 1998, Ragsdale and Kumar, 1996), powerful new synthetic methodologies, new materials, and whole new classes of catalysts and catalytic processes of extraordinary versatility and selectivity.

Today, the field plays a pivotal role in the development of new technologies including the synthesis of pharmaceuticals, fuels, sensors, exhaust gas converters and industrial feedstock, the development of sustainable energy solutions and in the development of new materials ranging from novel polymers to nanomaterials. The olefin metathesis reaction for instance has opened new industrial routes to important petrochemicals, oleochemicals, polymers and specialty chemicals (Mol, 2004) and has gained widespread use in research and industry for making products ranging from medicines and polymers to enhanced fuels (Ivin and Mol, 1997).

Much of the conceptual framework of the field of organometallics has been laid in the course of the last few decades including the discovery of most of the basic metal-ligand combinations and elementary reaction steps that constitute the 'building blocks' of organometallic chemistry, recognition of the role of organometallics in biology, discovery of many important organometallic-based catalytic processes such as Ziegler-Natta catalysis, olefin metathesis, amination of alkenes through 1,2-dinitrosoalkane formation (Becker et. al., 1980, Le Gall et. al., 1998), oxidation of alkenes by $\mathrm{Cr}(\mathrm{VI})$ oxo complexes (Goldberg and Ault, 2006), Wacker oxidation of ethylene, and rhodium-catalyzed carbonylation of methanol (Collman, 1987).

Notwithstanding the basic understanding of the mechanistic framework of organometallic reactions such as catalysis, the elucidation of the mechanisms of organometallic reactions continues to be an active field of research with many challenges to be surmounted. Increasingly detailed knowledge and understanding of such reaction pathways continue to be achieved through enhanced appreciation of the basic underlying chemistry, as well as increasingly powerful tools for elucidating elusive mechanistic details. Among the tools that are providing such important insights are in situ spectroscopic methods, notably infrared and NMR, for
identifying and structurally characterizing species present in solution, fast reaction methods such as flash photolysis that permit the detection of short-lived transient species and determination of the rates of their reactions in real time (Boese, 1997), application of the chemically induced dynamic nuclear polarization (CIDNP) technique that permits identification of intermediates that do not accumulate in sufficiently high concentrations to be detected directly (Sweany and Halpern, 1977) and, as has been noted above, quantum mechanical calculations which provide information about the geometries, relative energies, electron distribution and vibrational frequencies of stable and transient molecular species involved in reactions. An understanding of the detailed mechanistic pathways of organometallic reactions will drastically increase the ability to design and "fine tune" catalytic activities and selectivities, find new ways to extend and exploit these groundbreaking discoveries and, thereby, sustain the importance, distinctiveness and vitality of the field.

Adei, E. (1996) Semi-empirical PM3(tm) Exploration of Some Elementary Transition Metal Organometallic Reactions; Ph.D. Dissertation, UC, Irvine, CA.

Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. (1985) Orbital Interactions in Chemistry; John Wiley and Sons, New York.

Antes, I.; Frenking, G. (1995) Theoretical studies of organometallic compounds. XIV. Structure and bonding of the transition metal methyl and phenyl compounds MCH_{3} and $\mathrm{MC}_{6} \mathrm{H}_{5}(\mathrm{M}=\mathrm{Cu}, \mathrm{Ag}, \mathrm{Au})$ and $\mathrm{M}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{M}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \quad(\mathrm{M}=\mathrm{Zn}, \quad \mathrm{Cd}, \quad \mathrm{Hg})$. Organometallics 14: 4263-4268.

Atwood, J. D. (1997) Inorganic and Organometallic Reaction Mechanisms; VCH, New York.

Becke, A. D. (1988) Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A. 38, 3098.

Becke, A. D. (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98: 5648.

Becke, A. D. (1997) Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals. J. Chem. Phys. 107: 8554.

Becker, P. N.; White, M. A.; Bergman, R. G. (1980) A new method for 1,2diamination of alkenes using cyclopentadienylnitrosylcobalt dimer/NO/LiAlH4. J. Am. Chem. Soc. 102: 5676-5677.

Boese, W.; Farlane, K. M.; Rabor, J.; Ford, P. C. (1997) Photochemistry as a tool for elucidating organometallic reaction mechanisms. Coord. Chem. Rev. 159: 135 151.

Born, M.; Oppenheimer, J. R. (1927) Zur Quantentheorie der Moleküle. Ann. Phys. 84: 457 - 484 .

Carpenter, B. K. (1988) In: Advances in Molecular Modeling; D. Liotte (Ed.) JAI Press Inc., Greenwich, Connecticut.

Collman, J. P.; Hegedus, L.S.; Finke, R.G. (1987) Principles and Applications of Organo-transition Metal Chemistry; University Science Books, Mill Valley, CA.

Cramer, C. J. (2004) Essentials of Computational Chemistry. Theories and Models, 2nd ed.; John Willey and Sons, Ltd., Chichester.

Davidson, E. R. (1989) The Challenge of d and f electrons; Salahub, D. R. and Zerner, M. C. (eds.) ACS Symposium, Washington, D.C., 157.

Davidson, E. R. (1991) Quantum Theory of Matter: Introduction. Chem. Rev. 91: 649.

Dewar, M. J. S. (1965) Molecular Orbital Theory for Organic Chemists. Adv. Chem. Phys. 8: 65.

Dewar, M. J. S.; Thiel, W. (1977) Ground states of molecules. 38. The MNDO method. Approximations and parameters. J. Am. Chem. Soc. 99: 4899 - 4904.

Dirac, P. A. M. (1929) Quantum Mechanics of Many-Electron Systems. Proc. Roy. Soc. (London) 123: 714-733.

Dunning, T. H., Jr.; Hay, P. J. (1976) In: Modern Theoretical Chemistry, H. F. Schaefer, III,; Plenum, New York, Vol. 3.

Fukui, K. (1971) Recognition of stereochemical paths by orbital interaction. Acc. Chem. Res. 4: 57-64.

Goldberg, N.; Ault, B. S. (2006) A matrix isolation study of the reactions of OVCl_{3} with a series of silanes. J. Mol. Struct. 787: 203-208.

Halpern, J. (1981) Mechanistic aspects of homogeneous catalytic hydrogenation and related processes. Inorg. Chim. Acta 50: 11 -19 .

Hamprecht, F. A.; Cohen, A. J.; Tozer, D. J.; Handy, N. C. (1998) Development and assessment of new exchange-correlation functionals. J. Chem. Phys. 109: 6264.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82: 299.

Hehre, W. J. (2003) A Guide to Molecular Mechanics and Quantum Chemical

Calculations; Wavefunction, Inc., Irvine, CA.

Helgaker, T.; Jørgensen, P.; Olsen, J. (2000) Molecular Electronic-Structure Theory; John Willey and Sons, Ltd; Chichester. Hodgkin, D. C. (1965) The Structure of the Corrin Nucleus from X-ray Analysis. Proc. Roy. Soc. (London) A288: 294 - 305.

Hückel, E. Z. (1931) Quantentheoretische beitrage zum benzolproblem. I. Die elektronen- konfiguration des benzols und verwandter beziehungen. Physik 70: 204 2864.

Hückel, E. Z. (1932) Quantentheoretische beiträge zum problem der aromatischen und ungesättigten erbindungen. III. Z. Phys. 76: 628-48.

Hückel, E. Z. (1937) The theory of unsaturated and aromatic compounds. Elektrochem. Angew. Physik Chem. 42: 752 and 827.

Ivin, K. J.; Mol, J. C. (1997) Olefin Metathesis and Metathesis Polymerization; Academic Press, San Diego, CA.

Jensen, F. (2007) Introduction to Computational Chemistry, 2nd ed.; John Willey and Sons, Ltd., Chichester.

Jordan, R. (1991) Reactions of Inorganic and Organometallic Systems; Oxford University Press, Oxford.

Le Gall, T.; Mioskowski, C.; Lucet, D. (1998) The Chemistry of Vicinal Diamines. Angew. Chem., Int. Ed. 37: 2580 - 2627.

Leach, A. R. (2001) Molecular Modelling. Principles and Applications, 2nd ed.; Prentice Hall, Harlow, England.

Lee, C.; Yang, W.; Parr, R. G. (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B. 37: 785.

Lenhart, P. G.; Hodgkin, D. C. (1961) Structure of the 5,6-Dimethylbenzimidazolyl cobamide Coenzyme. Nature 192: 937 938.

Lewis, G. N. (1933) The Chemical Bond. J. Chem. Phys.1: 17.

Mol, J. C. (2004) Industrial applications of olefin metathesis. J. Mol. Catal. A: Chemical 213: 39-45.

Pariser, R.; Parr, R. G. (1953) A semiempirical theory of the electronic spectra and electronic structure of complex unsaturated molecules. I. J. Chem. Phys. 21: 466.

Pearson, R. G. (1976) Symmetry Rules for Chemical Reactions; John Wiley and Sons, New York.

Perdew, J. P. (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B. 33: 8822 .

Pople, J. A. (1953) Electron interaction in unsaturated hydrocarbons. Trans. Faraday Soc. 49: 1375.

Pople, J. A.; Santry, D. P.; Segal, G. A. (1965) Approximate self-consistent molecular orbital theory. I. Invariant procedures. J. Chem. Phys. 43: S129.

Pyykkö, P. (1988) Relativistic effects in structural chemistry. Chem. Rev. 88: 563 594.

Ragsdale, S. W.; Kumar, M. (1996) Nickelcontaining carbon monoxide dehydrogenase/ acetyl-CoA synthase. Chem. Rev. 96: 2515 2540.

Salahub, D. R.; Zerner, M. C. (1989) The Challenge of d and f electrons; Salahub, D. R. and Zerner, M. C. (eds.) ACS Symposium, Washington, D.C.

Schrödinger, E. (1926) Quantisierung als Eigenwertproblem (Erste Mitteilung). Ann. Phys. 79: 361-376.

Spartan, Wavefunction, Inc.; 18401 Von Karman Ave., \# 370, Irvine, CA, 92715, USA.

Stevens, P. J.; Delvin, F. J.; Chablowski, C. F.; Frisch, M. J. (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields
J. Phys. Chem. 98: 11623-11627.

Sweany, R. L.; Halpern, J. (1977) Hydrogenation of α-methylstyrene by hydridopentacarbonylmanganese
Evidence for a free-radical mechanism. J. Am. Chem. Soc. 99: 8335-8337.

Szabo, A.; Ostlund, N. S. (1989) Modern Quantum Chemistry. Introduction to

Advanced Electronic Structure Theory; McGraw-Hill, New York.

Thauer, R. K. (1998) Biochemistry of methanogenesis: A tribute to Marjory
Stephenson: 1998
Marjory Stephenson Prize Lecture. Microbiology; 144, 2377 - 2406.

Torrent, M.; Solá, M.; Frenking, G. (2000) Theoretical Studies of Some Transition-Metal-Mediated Reactions of Industrial and Synthetic Importance. Chem. Rev. 100: 439 - 494 .

Van Lenthe, E.; Baerends, E. J.; Snijders, J. G. (1993) Relativistic regular twocomponent Hamiltonians. J. Chem. Phys. 99: 4597.

Van Lenthe, E.; Snijders, J. G.; Baerends, E. J. (1996) The zero-order regular approximation for relativistic effects: The effect of spin-orbit coupling in closed shell molecules. J. Chem. Phys. 105: 6505.

Vinter, J. L.; Gardner, M. (1994) Molecular Modelling and Drug Design; Macmillan, London.

Wadt, W. R.; Hay, P. J. Hay (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82: 284.

Woo, T.; Cavallo, L.; Ziegler, T. (1998) Implementation of the IMOMM Methodology for Performing Combined QM/MM Molecular Dynamics Simulations and Frequency Calculations. Theor. Chim. Acta 100: 307 - 313.

Woodward, R. B.; Hoffmann, R. (1970) The Conservation of Orbital Symmetry; Verlag Chemie, Berlin.
application of elemental oxygen (Goldberg and Ault, 2006).

A number of mechanistic questions surrounding the reaction of transition metal oxo complexes with alkenes remain unresolved, despite having been the subject of extensive experimental and theoretical studies (Sharpless et. al., 1977; Freeman, 1975; Samsel et. al., 1985; Rappé and Goddard, 1980a; 1980b; 1982a; 1982b; Upton and Rappé, 1985). Mechanistic proposals put forward in the past to explain the interaction of transition metal oxo units with C-C π bonds have often been untested by experiment and based on limited precedent. An understanding of the mechanism of oxidation of alkenes by $\mathrm{Cr}(\mathrm{VI})$ oxo species has been hindered by the fact that diverse solvents and ligands have been utilized in the various experimental studies reported, and these factors can have dramatic effects on the course of the reaction (Walba et. al., 1984).

A well-known example of the mechanistic dilemma of olefin oxidation is the bishydroxylation of alkenes by OsO_{4}, KMnO_{4} and related species. Criegee et. al. (1936; 1942) proposed a concerted [3+2] cycloaddition pathway (path A in Scheme 2.1). This proposal won wide acceptance among organic chemists (Corey et. al., 1989; 1993; Schröder, 1980), in part due to the ease with which analogy can be drawn with other dipolar cycloadditions. Theoretical work also suggested that such a hypothesis is consistent with calculations on species presumably lying on the reaction coordinate (Jorgensen and Hoffmann, 1986; $\mathrm{Wu}, 1992$). The formal product of the [3+2] addition, a five membered metallacycle (osma-2,5-dioxolane), was experimentally characterized, which upon hydrolysis gives diols (Schröder, 1980).

Scheme 2.1 Possible pathways for the Reaction of LnMO_{2} with Alkene (Gable and Phan, 1994).

Wallis and Kochi (1988a, 1988b) have also proposed a third mechanism (path

Unlike OsO_{4} and KMnO_{4} which react with olefins to form predominantly diols without significant epoxide formation, chromyl chloride reacts with alkenes to form predominantly epoxides, without diol formation (Schröder, 1980) as might be expected from path A of Scheme 2.1. The concerted $[3+2]$ pathway was thus challenged by Sharpless and co-workers (Sharpless et. al., 1977; Hentges and Sharpless, 1980; Nortey et. al. 1994; Nortey C in Scheme 2.1) to explain the oxidation of olefins by oxo transition metal complexes. It involves an initial electron transfer, and addition of the odd electron intermediate to give a metallaoxetane and/or metalladiolate.

In Scheme 2.2, the two reaction pathways (A and B), which were suggested to arise from the π - complex 2, lead to the formation of the $\mathrm{Cr}(\mathrm{IV})$ organometallic intermediates. In path A, there is alkene insertion into the $\mathrm{Cr}-\mathrm{Cl}$ bond (cis-
chlorometalation) to give the alkylchromium intermediate 3. The dichloride 5 and the chromium derivative of the dichlorohydrin 6 are subsequently generated from $\mathbf{3}$ by reductive elimination (path a) and by migration of the alkyl group from the chromium to the oxygen (path a^{\prime}), respectively. The four-membered ring intermediate 4, formed via [2+2] cycloaddition from the π-complex 2 in path B, leads to the formation of either the chlorohydrin precursor 6 (path b) or the epoxide precursor 7 (path b'). Sharpless et. al. (1977) reasoned that the formation of the organometallic intermediate in Scheme 2.2 could rationalize the primary products of epoxides, chlorohydrins and dichlorides formed from cis-addition of ethylene to chromyl chloride (Scheme 2.3).

Scheme 2.2 Proposed Mechanism for Reaction of $\mathrm{Cl}_{2} \mathrm{CrO}_{2}$ with Olefins Involving Organometallic Intermediates (Sharpless et. al., 1977).

Evidence for the stepwise mechanism was provided by nonlinear Eyring plots of enantioselectivity as a function of the reciprocal of temperature for asymmetric dihydroxylations (Göbel and Sharpless, 1993). Support for the [2+2] addition in the oxidation of olefins by chromyl chloride was provided by Rappé and Goddard (1980, 1982a, 1982b) in a theoretical work on olefin oxidations.
the $[2+2]$ and $[3+2]$ activation barriers for the reaction of OsO_{4} with ethylene and found that the activation energy of the [2+2]

Scheme 2.3 Mechanism Involving Direct Attack on the Heteroatom Ligands (Sharpless et. al., 1977). addition to form the four-membered cyclic metallaoxetane was very high (> 39 kcal mol^{-1}) whereas the activation energy for the [3+2] addition to form the five-membered
 that the addition reaction follows the concerted [3+2] mechanism. Del Monte et.
 measured kinetic isotope effects and corroborated the concerted reaction pathway \longrightarrow Cl: out DFT calculations on the [2+2] and [3+2] addition of ethylene to $\mathrm{Cr}=\mathrm{O}$ bonds in
 form the five-membered metallacycle to be more favorable than the $[2+2]$ addition to form the four-membered cyclic chromaoxetane. In another study, Torrent et.

Pidun et. al. (1996), Dapprich et. al. (1996) and Torrent et. al. (1997) computed
al. (1999) found that contrary to earlier assumptions (Sharpless et. al., 1977), the
formation of the epoxide precursor from the reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene does not involve a chromaoxetane intermediate derived from $[2+2]$ cycloaddition to the $\mathrm{Cr}=\mathrm{O}$ linkage but rather an ester intermediate derived from [3+2] addition of ethylene to the chromium-oxygen bonds in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. Torrent et. al. (1999) also concluded that the chlorohydrins should arise from a [3+2] cycloaddition. In matrix isolation experiments, Limberg et. al. (1998, 1999) have produced IR-spectroscopic proof for $\mathrm{O}=\mathrm{CrCl}_{2}$-epoxide and $\mathrm{O}=\mathrm{CrCl}$ acetaldehyde complexes as primary products in olefin oxidation with chromyl chloride $\left(\mathrm{CrO}_{2} \mathrm{Cl}_{2}\right)$.

In this work, the reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene leading ultimately to the formation of ethylene oxide (epoxide), 1,2-chlorohydrin, 1,2-dichloroethane, vinyl alcohol and acetaldehyde (Schemes 2.4 and 2.5) is studied theoretically using hybrid density functional theory. The geometries and relative energies of the reactants,
transition states, relevant intermediates and products are computed to help provide insight into the mechanistic channel of these reactions.

Scheme 2.4 Mechanisms of the $\mathrm{CrO}_{2} \mathrm{Cl}_{2}-$ mediated formation of epoxide, acetaldehyde and vinyl alcohol

All calculations were carried out

2.2 DETAILS OF CALCULATIONS

symmetry constraints. The optimized geometries were subjected to full frequency
calculations to verify the nature of the stationary points. Equilibrium geometries were characterized by the absence of imaginary frequencies. The transition state structures were located by a series of constrained geometry optimizations in which the forming- and breaking-bonds were fixed at various lengths while the remaining internal coordinates were optimized. The approximate stationary points located from such a procedure were then fully optimized using the standard transition state optimization procedure in SPARTAN. All first-order saddle-points were shown to have a Hessian matrix with a single negative eigenvalue, characterized by an imaginary vibrational frequency along the reaction coordinate. All the computations were performed on Dell Precision T3400 Workstation computers.

2.3 RESULTS AND DISCUSSION

The DFT geometry optimization of the $\mathrm{Cl}_{2} \mathrm{CrO}_{2}$ reactant on the singlet PES gave a structure A1 (Scheme 2.4 and Figure 2.1) with $\mathrm{C}_{2 \mathrm{v}}$ symmetry, in agreement with experiment (Marsden and Hedberg, 1982). The two $\mathrm{Cr}=\mathrm{O}$ double bonds are each 1.555 \AA long and 108.55° apart. These values are in good agreement with the experimentally estimated values of $1.581 \AA$ and 108.5° (Marsden and Hedberg, 1982) and the calculated values of $1.571 \AA$ and 108.7° respectively (Torrent, 1999). The two $\mathrm{Cr}-\mathrm{Cl}$ bonds are each $2.114 \AA$ long and 111.27° apart. These values are also in good agreement with the experimentally determined values of $2.126 \AA$ and 113.3° respectively (Marsden and Hedberg, 1982) and the calculated values of $2.104 \AA$ and 112.0° respectively (Torrent, 1999). A triplet A1 (A1/t) has been computed to be 38.03 kcal mol ${ }^{-1}$ less stable than the singlet A1.

The interaction of the $\mathrm{Cl}_{2} \mathrm{CrO}_{2}$ and ethylene apparently does not lead to a π bonded complex. An extensive search of the
singlet and triplet PES in an attempt to locate a π-bonded complex proved unsuccessful. This notwithstanding, its existence cannot be definitely ruled out, keeping in mind the well-known difficulties for DFT methods to describe weak interactions (Kristán and Pulay, 1994; Wright, 1996; Peréz-Jordả and Becke, 1995; Ruiz et. al., 1986; Garcia et. al., 1997; Mourik and Gdanitz, 2002; Mourik, 2008).

2.3.1 FORMATION OF EPOXIDE

In most mechanistic studies, the species A5 (Scheme 2.4 and Fig. 2.1) has been invoked as the direct precursor for epoxide. This species was postulated by Sharpless et. al. (Sharpless et. al., 1977) as the immediate precursor of epoxide and by Limberg et .al. (1998) as the oxirane adduct intermediate leading to acetaldehyde. Limberg and Köppe (1999) isolated the propylene analogue of A5 in the reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and propylene.

Species A5 could in principle arise from four separate pathways:
(1) a two-step process involving [2+2] addition of ethylene across the $\mathrm{Cr}=\mathrm{O}$ bond of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(2) a two-step process involving [3+2] addition of ethylene across the two oxygen atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(3) a two-step process involving [3+2] addition of ethylene across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ (all shown in Scheme 2.4), and
(4) a one-step direct addition of ethylene to one oxygen atom of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$.

No transition state was located linking the reactants and the epoxide precursor A5 through the direct addition pathway on the singlet and triplet PES, despite an exhaustive search of the surfaces. On the basis of this, the direct addition pathway is considered a very unlikely route for epoxide formation. A triplet intermediate $\mathbf{C 1} / \mathbf{t}$ which
is $0.12 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic was located and is thought to most likely arise from a direct attack of one of the olefinic carbons on an oxygen atom of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. This intermediate re-arranges through a triplet transition state TS[C1-A3], with an activation barrier of $2.11 \mathrm{kcal} \mathrm{mol}^{-1}$, to the ester complex intermediate A3/t. However, the transition state for the formation of $\mathbf{C 1} / \mathbf{t}$ has not been located.

Energies of the optimized molecular structures (Figures 2.1 and 2.2) obtained for the formation of epoxide and acetaldehyde precursors in Scheme 2.4 are summarized in the energy profile in Figure 2.3. Table 2.1 provides the imaginary frequencies (in cm^{-1}) of the first-order saddle points found in the suggested mechanism for the formation of the epoxide, acetaldehyde, dichloride and chlorohydrin precursors.

TS(A1-A2)

A3

TS(A1-A3)

A3/os

A3/t

TS(A1-A4)

TS[A4-A5]

TS[C1-A3]/t

TS(A3-A5)
TS(A3-A5)/os

TS(A5-X)

A6/t
A7 H

transition state ${ }^{\mathrm{a}}$	freq.

TS[A1-A2]	$437.36 i$
TS[A1-A3]	$432.39 i$

TS[A1-A4] $421.80 i$
TS[A2-A5] 430.71i
TS[A3-A5] $413.40 i$
TS[A4-A5] 402.50i
TS[A5-X] 294.23i
TS[B1-B2] $421.80 i$
TS[B1-B4] 207.99i
TS[B1-B3] 282.89i
TS[B4-B3] $332.10 i$
TS[B4-B2] 465.88i
TS[B5-B6] 462.07i
${ }^{\text {a }}$ computed on a singlet PES

Figure 2.2. Optimized geometrical parameters
(in \AA) of the stationary points on epoxide ringopening.

Table 2.1. Imaginary Frequencies (in cm^{-1}) of all First-order Saddle Points Involved in the Suggested Mechanisms for the Formation of Epoxide, Acetaldehyde, Dichloride and Chlorohydrin Precursors.

kcal mol^{-1}, which is comparable with the
$27.1 \mathrm{kca}+\frac{23.64}{+54_{1}}$ camputed by Torrent et.al. $\frac{+23.33}{T S[A 4-A 5]}$
(1999) Interansition state TS[A1-A2], the Cr-C formed whereas the $\mathrm{C}-\mathrm{O}$ bond is still far frown being formed. Thus the critical bond [3+2] actitivity in TS[A1-A2] is the formation of the C-O bond. In the widrk of Torrent et. al. (1999) the forming-bonds in this transition state are slightly shorter (byy $0.032 \AA$ for the C- O bond and $0.037 \AA$ for the $\mathrm{Cr}-\mathrm{C}$ bond).促
The resulting chromaoxetane ádduct A2 (singlet) is $10.28 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic
(Figure 2.3). The endothermicity is about $4.22 \mathrm{kcal} \mathrm{mol}^{-1}$ less than that reported by Torrent et. al (1999). No triplet A2 was located on the surface. The formation of the

Figure 2.3. Reaction profile of the three suggested mechanisms for the formation of the epoxide precursor from the addition of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to ethylene on the singlet PES. Energy in kcal mol^{-1}.

The activation barrier for the [2+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ leading to the chromaoxetane $\mathbf{A 2}$ through transition state TS[A1-A2] is 26.31
epoxide precursor A5 from the chromaoxetane intermediate A2 through transition state TS[A2-A5] has an activation barrier of $13.36 \mathrm{kcal} \mathrm{mol}^{-1}$ and an exothermicity of $20.91 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 2.3). Torrent et. al. (1999) found the most viable $[2+2]$ second step pathway through a triplet transition state to be a triplet A5, with
an estimated activation barrier of 16.90 kcal mol^{-1} and an exothermicity of just 5.7 kcal mol^{-1}. In this work the triplet $\mathbf{A 5}$ is found to be $19.54 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the corresponding singlet state. However, the triplet TS[A2-A5] was not found.

The transition state TS[A1-A4] for the [3+2] addition of ethylene across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ is 9.01 kcal mol $^{-1}$ above the reactants. Species $\mathbf{A 4}$ is exothermic by $17.95 \mathrm{kcal} \mathrm{mol}^{-1}$. The formation of A5 from A4 transition state TS[A4-A5] is $7.32 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, with an activation barrier of $41.28 \mathrm{kcal} \mathrm{mol}^{-}$
${ }^{1}$ (Figure 2.3). Thus overall, the formation of A5 by [3+2] addition of ethylene across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ cannot compete favorably, both kinetically and thermodynamically, with formation by [2+2] addition.

Along the second [3+2] addition pathway, the transition state TS[A1-A3] for the formation of the ester complex intermediate is $8.76 \mathrm{kcal} \mathrm{mol}^{-1}$ above the
reactants. The geometry of the transition state indicates that the addition is concerted and synchronous. Comparing the $\mathrm{C}-\mathrm{O}$ bond lengths in the transition state and the product indicates that this is an early transition state. The ester complex intermediate is 24.38 kcal mol^{-1} exothermic. The transition state TS[A3-A5] leading to the epoxide precursor from the ester intermediate is 22.61 kcal mol^{-1} above the reactants. Thus, the activation barrier for the formation of the epoxide precursor from the ester complex is $46.99 \mathrm{kcal} \mathrm{mol}^{-1}$. Torrent et. al. (1999) calculations found this two-step process involving the $[3+2]$ interaction with activation barrier of $21.9 \mathrm{kcal} \mathrm{mol}^{-1}$ more favorable than the two-step [2+2] pathway that required a first step activation energy of $27.1 \mathrm{kcal} \mathrm{mol}^{-1}$.

The present study indicates that even though in the first step of the two-step processes of epoxide precursor formation the [3+2] addition across two $\mathrm{Cr}=\mathrm{O}$ bonds is the most favorable pathway, the ester
complex intermediate A3 formed from [3+2] addition is too stable to allow an easy conversion to the reputed epoxide precursor A5. The epoxide precursor is, therefore, not likely to be accessible from the ester complex intermediate. The implication of this is that the epoxide is not likely to originate from an ester intermediate formed from [3+2] addition, contrary to the findings of Torrent et. al. (1999). On the basis of this, it is concluded that the $[2+2]$ addition pathway is the preferred route for the formation of epoxide through the epoxide precursor (Figure 2.3). This conclusion is based on the assumption that $\mathbf{A 3}$ dissipates its excess energy (exothermicity) from step 1 before it attempts to go over the second barrier. If it does not dissipate the excess energy quickly, then the $[3+2]$ route via A3 may still be the most favorable route overall.

As a result of Torrent et. al.'s (1999) treatment of A3, TS[A3-A5] and A5 as triplet ground state species, the triplet PES was explored in relation to these species in
this work. Triplet A3 and A5 were computed to be $49.87 \mathrm{kcal} \mathrm{mol}^{-1}$ and $30.17 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic respectively compared with the exothermicities of $24.3 \mathrm{kcal} \mathrm{mol}^{-1}$ and 10.63 kcal mol ${ }^{-1}$ found for the singlet A3 and A5 relative to the $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene reactants. These exothermicities suggest that even the singlet state A3 and A5 intermediates should be stable enough to be observed experimentally. However, only A5 has been observed experimentally by Limberg and Koppé (1999). Torrent et. al. (1999) have found the triplet $\mathbf{A 3}$ to be 13.0 kcal mol^{-1} exothermic and the triplet $\mathbf{A 5}$ to be $8.8 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. Torrent's proposed mechanism for this $[3+2]$ reaction leads from the singlet reactants via a singlet transition state to a triplet [3+2] cycloadduct A3, followed by rearrangement of A3 to a triplet A5 through a triplet transition state TS[A3-A5]. An exhaustive search for a triplet TS[A3-A5] in this work yielded no stationary point. Therefore this forbidden spin cross-over path could not be fully explored.

Limber and Koppé (1999) did not observe in their photolytic matrix isolation experiment the intermediates A3 and A2 which have been proposed in the formation of the epoxide precursor A5, and, asserting that $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ also possesses a low-lying triplet state (our calculations found the singlet more stable than the triplet), these workers concluded that if this low-lying triplet state, which was accessible in the photolytic matrix conditions, is responsible for product formation a forbidden spin crossover would not even have to be considered. Consequently the proposed path was a reaction of triplet $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ with olefin in close proximity producing either epoxide precursor A5 or the carbonyl compounds A6 by independent routes.

In the present work, the species A3, A5, and TS[A3-A5] have also been computed as open-shell singlets and these have been found to be comparable to the closed-shell singlets both in terms of geometry and
[A5-X] on SPARTAN's graphical user
energetics (relative energies of -24.44 , 10.68 and $+22.61 \mathrm{kcal} \mathrm{mol}^{-1}$ respectively).

2.3.2 FORMATION
 OF ACETALDEHYDE AND VINYL
 ALCOHOL

Limberg et. al. (1998) have postulated the species A5 as the oxirane adduct intermediate leading to acetaldehyde, upon opening of the epoxide ring. Attempts were, therefore, made to localize the products of epoxide ring-opening on the potential energy surface (Figure 2.2). The singlet and triplet transition state TS[A5-X] for epoxide ring-opening are found to be respectively 12.62 and $1.58 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants. Animating the motion of the atoms along the reaction coordinate in TS interface reveals that in addition to breaking of the $\mathrm{C}-\mathrm{O}$ bond in the three-membered ring, one of the hydrogen atoms on the carbon atom involved in the bond-breaking appears to be moving towards the oxygen atom in the three-membered ring. This leads to the
formation of a carbene-like species A7. Triplet and singlet A7 are 33.54 and 52.23 $\mathrm{kcal} \mathrm{mol}^{-1}$ endothermic respectively. A 1,2hydride shift from the secondary carbon to the terminal carbon of A7 results in species A8, which can undergo $\mathrm{Cr}-\mathrm{O}$ single bond cleavage to produce vinyl alcohol. Triplet A8 has been computed to be $38.01 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ exothermic while no singlet A8 could be located. The acetaldehyde precursor A6 has been obtained in an attempt to optimize A8 on the singlet PES. Species A6 has exothermicities of 40.96 and $58.20 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ for the singlet and triplet species respectively, making it the global minimum on both the singlet and triplet PES. Limberg et. al.(1998) have found A6 an intermediate in the thermal reaction of ethylene with $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and postulated it as a precursor to the formation of acetaldehyde, upon cleavage of the Cr-O single bond. However, the most plausible pathway to the formation of A6, A7 and A8 appears to be a direct attack of one of the carbon atoms of ethylene on an oxygen atom of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to
form triplet $\mathbf{C 1} / \mathbf{t}$, followed by rearrangement. The species $\mathbf{C 1} / \mathbf{t}$ and $\mathbf{A 8}$ exist only on the triplet PES. Optimization of A8 on the singlet PES converges on A6. Triplet A7 $\left(+33.52 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ is considerably more stable than the singlet $\mathbf{A 7}\left(+52.23 \mathrm{kcal} \mathrm{mol}^{-}\right.$ ${ }^{1}$) and its high endothermicity relative to the singlet $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene reactants suggests that it might be formed from a triplet $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ reactant.
2.3.3 FORMATION OF
CHLOROHYDRIN 1,2DICHLOROETHANE

Sharpless et. al. (1977) have suggested that the conversion of olefins into chlorohydrins result from highly selective cis-addition of the elements of HOCl across the olefinic linkage, whereas chlorohydrins resulting from trans-addition were concluded to be secondary products derived by opening of the epoxide. Scheme 2.5 proposes three mechanistic pathways for the formation of the 1,2-chlorohydrin - a onestep process involving [3+2] addition of
ethylene across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to form the chlorohydrin precursor B2, a two-step process involving $[2+2]$ addition of ethylene across the $\mathrm{Cr}-\mathrm{Cl}$ bond of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to form the alkylchromium intermediate B4 followed by re-arrangement through $\mathbf{T S}[\mathbf{B 4}-\mathbf{B 2}]$ to $\mathbf{B 2}$, and a third route involving the formation of B6, which could also be considered a chlorohydrin precursor, from B4. In their matrix isolation studies of the reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene, Limberg et. al.(1998) postulated the presence of $\mathrm{CrOCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ fragments in the Etard complex, which is consistent with the structure of B6.

The formation of the chlorohydrin precursor B2 (closed-shell singlet) has been found to be $17.95 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. An open-shell singlet $\mathbf{B 2}$ has been found to be $17.96 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic, with geometrical parameters the same as those of the closed-shell singlet minimum. The activation barrier for the formation of B2 through the $[3+2]$ addition is $9.01 \mathrm{kcal} \mathrm{mol}^{-1}$
(Figure 2.5). In addition to the singlet $\mathbf{B} 2$ which is $17.95 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic a triplet state B2 was computed and found to be $16.20 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the singlet state B2. Torrent et. al.(1999) did not report of a singlet state B2 but found a triplet state B2 (3.8 $\mathrm{kcal} \mathrm{mol}^{-1}$ endothermic) formed from a singlet reactant B1 via a [3+2] singlet transition state TS[B1-B2] with an activation barrier of $15.7 \mathrm{kcal} \mathrm{mol}^{-1}$ compared with a triplet activation barrier of $37.3 \mathrm{kcal} \mathrm{mol}^{-1}$. In the two-step formation of B2 the activation barrier for the formation of the alkylchromium intermediate B4 is 25.61 $\mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 2.6). The intermediate B4 has been found to be $1.82 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ endothermic.

B3/t
B3/os

TS[B4-B2]

TS(B5-B6)

Figure 2.4. Optimized geometrical parameters of the main stationary points involved in the $[2+2]$ and $[3+2]$ addition reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene for the formation of chlorohydrin and dichloride precursors ($\mathrm{t}=$ triplet state, os $=$ open-shell singlet state). Distances in \AA and angles in degrees.

The activation barrier for the formation of $\mathbf{B} 2$ from $\mathbf{B 4}$ is $23.12 \mathrm{kcal} \mathrm{mol}^{-1}$. Along the third proposed pathway for the formation of chlorohydrins (Scheme 2.5), species B4 undergoes rotation about the $\mathrm{C}_{1^{-}}{ }^{-}$ C_{2} bond to form species $\mathbf{B 5}$ which is 7.89 kcal mol ${ }^{-1}$ more stable than B4. Species B6, which generates the chlorohydrin, is formed from B5 by the breaking of the $\mathrm{Cr}-\mathrm{C}$ bond and formation of the C-O bond. The energy barrier for this transition through TS[B5-B6] is $31.94 \mathrm{kcal} \mathrm{mol}^{-1}$.

Figure 2.5. Energy profile of the three suggested mechanisms for the formation of the $1,2-$ chlorohydrin precursor from the addition of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene on a singlet PES. Energies in $\mathrm{kcal} \mathrm{mol}^{-1}$.

Since the [3+2] pathway leading to the chlorohydrin precursor $\mathbf{B} \mathbf{2}$ has the lowest overall activation barrier and the highest exothermicity, it is concluded that the $[3+2]$ route is the preferred one for the formation of 1,2 -chlorohydrin from the reaction of ethylene with $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. Thus, 1,2-
chlorohydrins will most likely arise from
 and chloríne atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ as opposed to a $\left.[2+2,]^{\prime}\right]$ addition páthway (Figure ${ }^{2} \cdot 5$). dichlórides in a number of cases (\$harpless $!\quad[2+2]^{\prime} \quad[2+2]$
et. al., 1977). In Scheme 2:5, two mechanistic pathways have been proposed to `account for the formation of 1,2dichloroethane - a $[3+2]$ addition of ethylene acros̀s the chlorine ato $\frac{\text { nd } 3.3 f}{\mathbf{B 6}}$ $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to form the dichlotide precursor $\mathbf{B 3}$ and the $[2+2]$ addition of etitene across one of the $\mathrm{Cr}-\mathrm{Cl}$ bonds to form the alkylchromium intermediate B4 followed by re-arrangements through TS[B4-B3] to the dichloride precursor B3.

In the one-step [3+2] addition for the formation of $\mathbf{B 3}$ through $\mathbf{T S}[\mathbf{B 1} 1-\mathrm{B} 3]$, the activation barrier for the formation of $\mathbf{B 3}$ through TS[B1-B3] by [3+2] addition is $20.75 \mathrm{kcal} \mathrm{mol}^{-1}$. The dichloride precursor B3 (closed- shell singlet) has been found to
be $17.22 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, the openshell singlet B3 has also been found to be $17.21 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic while the triplet $\mathbf{B 3}$ has been found to be 10.67 kcal mol^{-1} endothermic. Torrent et. al.(1999) reported only a triplet minimum which was $44.7 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic and proposed a mechanism involving singlet reactants through a singlet transition state and intermediate to a triplet dichloride precursor.

The following conclusions are drawn from the results presented:

1. In the first step of the reaction between $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene, the [3+2] addition of ethylene across the two oxygen atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ to form the ester complex intermediate has the lowest barrier ($8.76 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$) compared to the $[3+2]$ addition across the oxygen and chlorine atoms $\quad\left(9.01 \mathrm{kcal} \mathrm{mol}{ }^{-1}\right), \quad[3+2]$ addition across the two chlorine atoms $\left(20.75 \mathrm{kcal} \mathrm{mol}^{-1}\right), \quad[2+2]$ addition across the $\mathrm{Cr}-\mathrm{Cl}$ bond (25.61 $\mathrm{kcal} \mathrm{mol}^{-1}$) and $[2+2]$ addition across the $\mathrm{Cr}-\mathrm{O}$ bond to form the chromaoxetane ($26.31 \mathrm{kcal} \mathrm{mol}^{-1}$).
2. The most favorable pathway for the formation of the epoxide precursor is by initial [2+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. The highest barrier along this pathway is $26.31 \mathrm{kcal} \mathrm{mol}^{-1}$. The highest barrier along the [3+2]
addition route across the oxygen and chlorine atoms is $41.28 \mathrm{kcal} \mathrm{mol}^{-1}$ while that along the [3+2] addition route across the two oxygen atoms is $46.99 \mathrm{kcal} \mathrm{mol}^{-1}$. Thus the epoxide will most likely arise from a [2+2] addition pathway as opposed to a [3+2] pathway as reported by Torrent et.al.(1999).
3. There appears to be no direct addition pathway for the formation of the epoxide precursor.
4. The $[3+2]$ addition of ethylene across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$, which appears to have been ignored as a plausible pathway for epoxide precursor formation in earlier studies, has been found to be favored over the [3+2] addition of ethylene across the two oxygen atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$.
5. The formation of 1,2-dichlorohydrin will most likely arise from [3+2]
addition across the oxygen and chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and not by $[2+2]$ addition.
6. The formation of 1,2-dichoroethane will most likely proceed by [3+2] addition of ethylene across the two chlorine atoms of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ as opposed to a [2+2] addition.
7. The 1,2-dichoroethane is not precluded from being formed from $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ and ethylene as the work of Torrent et. al.(1999) may seem to indicate. The formation of dichloride is slightly favored over the formation of epoxide.
8. The acetaldehyde precursor $\mathrm{O}=\mathrm{CrCl}_{2}-\mathrm{OCHCH}_{3}$ formed from optimization of the vinyl alcohol precursor $\mathrm{O}=\mathrm{CrCl}_{2}-(\mathrm{OH}) \mathrm{CH}=\mathrm{CH}_{2}$ is the most stable species on the reaction surface $\left(40.96 \mathrm{kcal} \mathrm{mol}^{-1}\right.$ exothermic).
9. The vinyl alcohol precursor $\mathrm{O}=\mathrm{CrCl}_{2}-(\mathrm{OH}) \mathrm{CH}=\mathrm{CH}_{2}$ has been found to exist only on the triplet PES.
10. The inability to locate some key transition states on the triplet PES in this work does not allow a comparison of the viability of the reaction on the singlet PES and that involving the singlet-triplet ground state crossover.

REFERENCES

Clark, M.; Cramer, R. D.; Opdenbosch, N. V. (1989) Validation of the general purpose tripos 5.2 force field. J. Comp. Chem. 10: 982-1012.

Corey, E. J.; Jardine, P. D.; Virgils, S.; Yuen, P.-W.; Connell, R. D. (1989) Enantioselective vicinal hydroxylation of terminal and E-1,2-disubstituted olefins by a chiral complex of osmium tetroxide. An
effective controller system and a rational mechanistic model. J. Am. Chem. Soc. 111: 9243-9244.

Corey, E. J.; Noe, M. C.; Sarshar, S. (1993) The origin of high enantioselectivity in the dihydroxylation of olefins using osmium tetraoxide and cinchona alkaloid catalysts. J. Am. Chem. Soc. 115: 3828-3829.

Criegee, R. (1936) Osmiumsäure-ester als Zwischenprodukte bei Oxydationen. Justus Liebigs Ann. Chem. 522: 75 - 96.

Criegee, R.; Marchaand, B.; Wannowius, H. (1942) Zur Kenntnis der organischen Osmium-Verbindungen. II. Mitteilung. Justus Liebigs Ann. Chem. 550: 99-133.

Dapprich, S.; Ujaque, G.; Maseras, F.; Lledós, A.; Musaev, D. G.; Morokuma, K. (1996) Theory does not support an osmaoxetane intermediate in the osmiumcatalyzed dihydroxylation of olefins. J. Am. Chem. Soc. 118: 11660-11661.

Del Monte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.; Thomas, A. A. (1997) Experimental and theoretical kinetic isotope effects for asymmetric dihydroxylation. Evidence supporting a rate-limiting " $3+2$)" CycloadditioN. J. Am. Chem. Soc. 119: 9907 - 9908.

Dunning, T. H., Jr.; Hay, P. J. (1976) In: Modern Theoretical Chemistry, H. F. Schaefer, III, Vol. 3; Plenum, New York.

Freeman, F. (1975) possible criteria for distinguishing between cyclic and acyclic activated complexes and among cyclic activated complexes in addition reactions. Chem. Rev. 75: 439-490.

Gable, K. P.; Phan, T. N. (1994) Extrusion of Alkenes from Rhenium (V) Diolates: Energetics and Mechanism. J. Am. Chem. Soc. 116: 833-839.

Garcia, A.; Cruz, E. M.; Sarasola, C.; Ugalde, J. M. (1997) Density functional studies of the $b \pi$. aб charge-transfer complex formed between ethyne and chlorine monofluoride. J. Phys. Chem. A 101: 3021-3024.
Göbel, T.; Sharpless, K. B. (1993) Temperature Effects in Asymmetric Dihydroxylation: Evidence for a Stepwise Mechanism. Angew. Chem.; Int. Ed. Engl. 32: 1329-1331.

Goldberg, N.; Ault, B. S. (2006) A matrix isolation study of the reactions of OVCl_{3} with a series of silanes. J. Mol. Struct. 787, 203-208.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82: 299.

Hentges, S. G.; Sharpless, K. B. (1980) Asymmetric induction in the reaction of osmium tetroxide with olefins. J. Am. Chem. Soc. 102: 4263-4265.

Jorgensen, K. A.; Hoffmann, R. W. (1986) Binding of alkenes to the ligands in $\mathrm{OsO}_{2} \mathrm{X}_{2}$ ($\mathrm{X}=\mathrm{O}$ and NR) and $\mathrm{CpCo}(\mathrm{NO})_{2}$. A frontier orbital study of the formation of intermediates in the transition-metal-
catalyzed synthesis of diols, amino alcohols, and diamines. J. Am. Chem. Soc. 108: 1867 - 1876.

Kristán, S.; Pulay, P. (1994) Can (semi) local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 229, 175 - 180.

Limberg, C.; Köppe, R. (1999) Reactive intermediates in olefin oxidations with chromyl chloride. IR-spectroscopic proof for $\mathrm{O}=\mathrm{CrCl}_{2}$-epoxide complexes. Inorg. Chem. 38: 2106-2116.

Limberg, C.; Köppe, R.; Schnöckel, H. (1998) Matrix isolation and characterization of a reactive intermediate in the olefin oxidation with chromyl chloride. Angew. Chem. Int. Ed. 37: 496.

Marsden, C. J.; Hedberg, L.; Hedberg, K. (1982) Molecular structure and quadratic force field of chromyl chloride, $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. Inorg. Chem. 21: 1115.

Mourik, T. V. (2008) assessment of density functionals for intramolecular dispersionrich interactions. J. Chem. Theory Comput. 41610 - 1619.

Mourik, T. V.; Gdanitz, R. J. (2002) A critical note on density functional theory studies on rare-gas dimers. J. Chem. Phys. 116: 9620 - 9623.

Nortey, P. O. Becker, H.; Sharpless, K. B. (1996) Toward an understanding of the high enantioselectivity in the osmium-catalyzed asymmetric dihydroxylation. 3. New insights into isomeric forms of the putative osmaoxetane intermediate. J. Am. Chem. Soc. 118: 35-42.

Nortey, P. O.; Kolb, H. C.; Sharpless, K. B. (1994) Calculations on the reaction of ruthenium tetroxide with olefins using density functional theory (DFT). Implications for the possibility of intermediates in osmium-catalyzed asymmetric dihydroxylation
Organometallics 13: 344-347.
Peréz-Jordá, J. M.; Becke, A. D. (1995) A density-functional study of van der Waals forces: rare gas diatomics. Chem. Phys. Lett. 233: 134 - 137.

Pidun, U.; Boeheme, C..; Frenking, G. (1996) Theory Rules Out a [2 + 2] Addition of Osmium Tetroxide to Olefins as Initial Step of the Dihydroxylation Reaction Angew. Chem.; Int. Ed. Engl. 35: 2817 2820.

Rappé, A. K.; Goddard, W. A., III (1982) Hydrocarbon oxidation by high-valent Group VI oxides. J. Am. Chem. Soc. 104: 3287-3294.

Rappé, A. K.; Goddard, W. A., III. (1980) Bivalent spectator oxo bonds in metathesis and epoxidation alkenes. Nature (London) 285: 311-312.

Rappé, A. K.; Goddard, W. A., III. (1980) Mechanism of metathesis and epoxidation in chromium and molybdenum complexes containing methyl-oxo bonds. J. Am. Chem. Soc. 102: 5114-1515.

Rappé, A. K.; Goddard, W. A., III. (1982) Olefin metathesis - a mechanistic study of high-valent group VI catalysts. J. Am. Chem. Soc. 104: 448-456.

Ruiz, E.; Salahub, D. R.; Vela, A. (1996) Charge-Transfer Complexes: Stringent tests
for widely used density functionals. J. Phys. Chem. 100: 12265-12276.

Samsel, E. G.; Srinivasan, K.; Kochi, J. K. (1985) Mechanism of the chromiumcatalyzed epoxidation of olefins. Role of oxochromium(V) cations. J. Am. Chem. Soc. 107: 7606-7617.

Schröder, M. (1980) Osmium tetroxide cishydroxylation of unsaturated substrates. Chem. Rev. 80: 187-213.

Sharpless, K. B.; Teranishi, A. Y.; Bäckvall, J. E. (1977) Chromyl chloride oxidations of olefins. Possible role of organometallic intermediates in the oxidations of olefins by oxo transition metal species. J. Am. Chem. Soc. 99: 3120-3128.

Spartan, Wavefunction, Inc.; 18401 Von Karman Ave., \# 370, Irvine, CA, 92715, USA.

Torrent, M.; Deng, L.; Duran, M.; Solá, M.; Ziegler, T. (1997) Density functional study of the [2+2]- and [3+2]-cycloaddition mechanisms for the osmium-catalyzed dihydroxylation of olefins. Organometallics 16: 13 - 19.

Torrent, M.; Deng, L.; Duran, M.; Solá, M.; Ziegler, T. (1999) Mechanisms for the formation of epoxide and chlorinecontaining products in the oxidation of ethylene by chromyl chloride: a density functional study. Can. J. Chem. 77: 1476 1491.

Torrent, M.; Deng, L.; Ziegler, T. (1998) A Density functional study of [3+2] versus $[2+2]$ addition of ethylene to chromiumoxygen bonds in chromyl chloride. Inorg. Chem. 37: 1307-1314.

Upton, T. H.; Rappé, A. K. (1985) A theoretical basis for low barriers in transition-metal complex $2 \pi+2 \pi$ reactions: the isomerization of the dicyclopentadienyltitanium complex $\mathrm{Cp}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$ to $\mathrm{Cp}_{2} \mathrm{TiCH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. J. Am. Chem. Soc. 107: 1206.

Wadt, W. R.; Hay, P. J. (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82: 284.

Walba, D. M.; DePuy, C. H.; Grabowski, J. J.; Bierbaum, V. M. (1984) Oxidation of alkenes by d^{0} - transition metal oxo species: a mechanism for the oxidation of ethylene by a dioxochromium (VI) complex in the gas phase. Organometallics 3: 498-499.

Wallis, J. M.; Kochi, J. K. (1988) Direct osmylation of benzenoid hydrocarbons. Charge-transfer photochemistry of osmium tetraoxide. J. Org. Chem. 53: 1679-1686.

Wallis, J. M.; Kochi, J. K. (1988) Electrontransfer activation in the thermal and photochemical osmylations of aromatic electron donor-acceptor complexes with osmium (VIII) tetroxide. J. Am. Chem. Soc. 110: 8207 - 8223 .

Wright, T. C. (1996) Geometric structure of $\mathrm{Ar} \cdot \mathrm{NO}^{+}$: revisited. A failure of density functional theory. J. Chem. Phys. 105, 7579.

Wu, Y.-D.; Wang, Y.; Houk, K. N. (1992) A new model for the stereoselectivities of dihydroxylations of alkenes by chiral diamine complexes of osmium tetroxide. J. Org. Chem. 57: 1362 - 1369.

CHAPTER THREE

DENSITY FUNCTIONAL THEORY
 STUDIES OF THE MECHANISTIC ASPECTS OF OLEFIN METATHESIS REACTIONS

3.1 INTRODUCTION

The very foundation of organic synthesis consists of reactions that can reliably and efficiently form carbon-carbon bonds. In recent years, the olefin metathesis reaction has attracted widespread attention as a versatile carbon-carbon bond-forming method. Metathesis is the metal-catalyzed re-distribution of carbon-carbon double bonds. The reaction describes the apparent interchanges of carbon atoms between two pairs of bonds. Formally, metathesis involves a simultaneous cleavage of two olefin double bonds, followed by the formation of alternate bonds.

Olefin metathesis has become a widely used reaction in organic and polymer chemistry (Kingsbury et. al, 1999; Roy and Das, 2000; Maier, 2000) for a number of reasons. First, some olefins are easy to prepare and others require more effort to access. Olefin metathesis allows facile access from the easily prepared olefins to those that are cumbersome to prepare. Second, olefin metathesis reactions either do not generate a by-product or only produce one, such as ethylene, which can be removed by evaporation. Third, olefins are routinely used to interconvert molecules. Olefins are useful largely because they represent the better of two worlds: stability and reactivity. Olefins are stable - they are
typically stored indefinitely without decomposition, and yet they contain a π bond that is sufficiently reactive to be used in a wide range of transformations.

Olefin metathesis has a variety of applications, including ring-opening metathesis polymerization (ROMP), ringclosing metathesis (RCM), acyclic diene metathesis polymerization (ADMET), ringopening metathesis (ROM) and crossmetathesis (CM) (Trnka and Grubbs, 2001). Some of the most impressive achievements include the use of ROMP to make functionalized polymers, the syntheses of small to large heterocyclic systems by RCM, and the CM of olefins with pendant functional groups. Olefin metathesis opens up new industrial routes to important petrochemicals, oleochemicals, polymers and specialty chemicals (Mol, 2004).

Since the work of Herrison and Chauvin (Herrison and Chauvin, 1971), it has been generally accepted that metalalkylidene (carbene) complexes play a
pivotal role in transition-metal-catalyzed olefin metathesis. The carbene complex is recognized as the active chain-carrying catalyst that reacts with an olefin to form a metallacyclobutane intermediate that decomposes to form the product olefin. The alkenes add, one at a time, to the metalalkylidene complex in situ to form a metallacyclobutane intermediate, which subsequently leads to an alkylidene-alkene exchange in the propagation stage (Scheme 3.1).

Scheme 3.1: The Herrison-Chauvin Nonpairwise Mechanism of Olefin Metathesis (Herrison and Chauvin, 1971)

Initiation:

Catalytic Cycle:

complex $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{M}=\mathrm{CH}_{2}$ would favor electronic structure of high-valent,
formation of metallacycles because of conversion of the double-bond spectator oxo group in the reactant to a triple bond in the product. Rappé and Goddard (1980) have again used the results of $a b$ initio GVB and CI theoretical studies to examine the thermochemistry and mechanisms for metathesis of olefins by Cr and Mo complexes and concluded that in activating metal chlorides it is essential to have spectator metal-oxo bonds. Sodupe et. al. (1991) performed an ab initio Hartree-Fock study of the reaction between the $\mathrm{Cl}_{4} \mathrm{Mo}=\mathrm{CH}_{2}$ complex and ethylene and found the formation of the metallacyclobutane to be exothermic. A GVB study found no activation barrier for the interconversion of titanium alkylideneolefin complex $\mathrm{Cl}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$, where the metallacyclobutane was found to be 12 kcal mol^{-1} more stable than the olefin-alkylidene complex (Rappé and Upton, 1984; Upton and Rappé, 1985). Cundari and Gordon (1992) performed an ab initio analysis of the
transition-metal alkylidenes as models for olefin metathesis catalysts and observed that the $\mathrm{W}-\mathrm{C}$ bond is more polarized in a $\mathrm{M}^{+}=\mathrm{C}^{-}$ fashion for the W methylidene than is the Mo-C bond of the Mo methylidene analogue and concluded that the greater polarization correlates with greater metathesis activity exhibited by the W alkylidene metathesis catalysts when compared to Mo analogues. Cavallo (2002) has carried out density functional theory study of the rutheniumcatalyzed olefin metathesis reactions and found, inter alia, that the metallacyclobutane structures represented minimum energy situations along the reaction coordinate, and are of slightly higher energy with respect to the corresponding olefin-bound intermediates in the case of the phosphane-based systems, while they are slightly more stable than the olefin adducts in the case of the NHC-based systems. Bernardi et. al. (2003) have carried out a theoretical investigation at the DFT B3LYP level of theory on the mechanism of
the metathesis of ethylene catalyzed by Grubbs' complexes, $\mathrm{Cl}_{2}(\mathrm{PH})_{3}-\mathrm{Ru}=\mathrm{CH}_{2}$ and $\mathrm{Cl}_{2}\left(\mathrm{PPH}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CH}_{2}$, and found, among other things, that the primary active catalytic species is the metal-carbene $(\mathrm{PH})_{3} \mathrm{Cl}_{2}{ }^{-}$ $\mathrm{Ru}=\mathrm{CH}_{2}$ and not the carbenoid complex $(\mathrm{PH})_{3} \mathrm{Cl}-\mathrm{Ru}-\mathrm{CH}_{2} \mathrm{Cl}$ which was found to be significantly higher in energy (by 18.45 and $19.26 \mathrm{kcal} \mathrm{mol}^{-1}$ for the two model systems), and that cyclopropanation is disfavored compared to metathesis since the former requires the overcoming of larger activation barriers than those found for the latter. Poater et. al.(2007) carried out gas phase DFT B3PW91 calculations on the reactivity of ethylene with model systems $\mathrm{M}(\equiv \mathrm{NR})\left(=\mathrm{CHCH}_{3}\right)(\mathrm{X})(\mathrm{Y})[\mathrm{M}=\mathrm{Mo}, \mathrm{W} ; \mathrm{R}$ $=$ methyl, phenyl; $\mathrm{X}=\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{OCH}_{3}$, OSiH_{3}; and $\left.\mathrm{Y}=\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{OCH}_{3}, \mathrm{OSiH}_{3}\right]$ and found that the factors controlling the detailed shape of the energy profiles are the energy of distortion of the tetrahedral catalyst and the stability of the metallacycle intermediate, which is controlled by the MC bond strength. They also found that
unsymmetrical catalysts ($\mathrm{X} \neq \mathrm{Y}$) were systematically more efficient for all systems (Mo, W, Re) and that overall, the Re complexes were less efficient than the Mo and W catalysts, except when Re is unsymmetrically substituted. Yüksel et. al. (2008) investigated a catalytic system consisting of tungsten carbene generated from WCl_{6} and atomic carbon for the metathesis of 1-octene at B3LYP/extended LAN2DZ level of theory and found that the formation of the catalytically active heptylidene is energetically favored in comparison to the formation of methylidene, while the degenerative and productive metathesis steps are competitive. They also found that solvent effects on the metathesis reactions were minor and solvation does not cause any change in the directions of the overall metathesis reactions. To date, no olefin metathesis involving hexavalent chromium complexes has been reported, but the reason for this has not been elucidated.

In this work, the mechanisms of the reactions of the complexes $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=$ $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ and $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=$ $\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re}$) with ethylene are studied theoretically at the DFT B3LYP/LACVP* level of theory with the aim of elucidating the metathesis activity of these complexes and delineating the factors responsible for any difference in metathesis activity. This has been done by exploring the most favorable reaction routes of these complexes with ethylene vis-à-vis the [3+2] and $[2+2]$ addition pathways in an attempt to provide insight into this class of reactions, particularly the reasons for the absence of olefin metathesis in hexavalent chromium complexes and the trends in the reactivity of the metal complexes.
\%

3.2 DETAILS OF CALCULATIONS

All calculations were carried out with the SPARTAN '06 V112 Molecular

Modeling program (Wavefunction, 2006) at the DFT B3LYP/LACVP* level of theory. The LACVP* basis set is a relativistic effective core-potential that describes the atoms $\mathrm{H}-\mathrm{Ar}$ with the $6-31 \mathrm{G}^{*}$ basis while heavier atoms are modeled with the LANL2DZ basis set which uses the allelectron valence double zeta basis set (D95V), developed by Dunning (Dunning and Hay, 1976), for first row elements and the Los Alamos ECP plus double zeta basis set developed by Wadt and Hay for the atoms $\mathrm{Na}-\mathrm{La}, \mathrm{Hf}-\mathrm{Bi}$ (Hay and Wadt, 1985a; 1985b; Wadt and Hay, 1985).

The starting geometries of the molecular systems were constructed using SPARTAN's graphical model builder and minimized interactively using the sybyl force field (Clark et. al, 1989). All geometries were fully optimized without any symmetry constraints. The optimized geometries were subjected to full frequency calculations to verify the nature of the stationary points. Equilibrium geometries
were characterized by the absence of imaginary frequencies. The transition state structures were located by a series of constrained geometry optimizations in which the forming- and breaking-bonds were fixed at various lengths while the remaining internal coordinates were optimized. The approximate stationary points located from such a procedure were then fully optimized using the standard transition state optimization procedure in SPARTAN. All first-order saddle-points were shown to have a Hessian matrix with a single negative eigenvalue, characterized by an imaginary vibrational frequency along the reaction coordinate. All the computations were performed on Dell Precision T3400 Workstation computers.

3.3 RESULTS AND DISCUSSIONS

3.3.1 REACTIONS OF

$\mathrm{Cl}_{4} \mathbf{M C H}_{2}(\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re}) \mathrm{WITH}$

ETHYLENE

The optimized geometries and relative energies of the main stationary points involved in the reaction between $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and ethylene are shown in Figures 3.1 and 3.2 respectively. The DFT geometry optimization of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ on the singlet potential energy surface (PES) with RB3LYP yielded three minima: a trigonal bipyramid carbene structure $\mathrm{Cl}_{4} \mathrm{Cr}=\mathrm{CH}_{2}$ (R1) of $\mathrm{C}_{2 \mathrm{v}}$ symmetry in which the methylene ligand occupies an equatorial position on the metal center with the hydrogen atoms in the trigonal planes, a carbenoid complex $\mathrm{Cl}_{3} \mathrm{CrCH}_{2}-\mathrm{Cl}$ (R2), which was obtained in an attempt at optimizing the axial methylidene intermediate, and a bridged compound R3. The axial $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathbf{R 1}$ were found to be $0.194 \AA$ longer than the equatorial bonds. No alkylidene minimum with the methylene ligand occupying the axial position was found on the reaction surface.

The carbenoid $\mathbf{R 2}$ minimum is 42.39
kcal mol^{-1} and $26.66 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable
than the carbene complex $\mathbf{R 1}$ and the bridged complex $\mathbf{R} \mathbf{3}$ respectively. It is found that $\mathbf{R 2}$ can be transformed to $\mathbf{R} \mathbf{3}$ through transition state TS3, but this conversion, which has an activation barrier of 44.66 kcalmol $^{-1}$, is not competitive with the formation of pdt2 from R2, a reaction which requires an activation energy of 31.53 kcal mol ${ }^{-1}$ (vide infra).

Figure 3.1 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

Attempts at locating the reactant $\mathbf{R 1}$ on the triplet and quartet PESs yielded no minima while an open-shell singlet carbene complex located turned out to be an exact replica of the closed-shell R1 in terms of geometry and energy. A triplet carbenoid (R2/t) was found to be $31.80 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the singlet carbenoid $\mathbf{R 2}$.

A search of the reaction surface for a Cr carbene-ethylene π-bonded complex
yielded no stationary point. A singlet π bonded complex p1 optimized from the interaction of the carbenoid and ethylene is $2.13 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the separated carbenoid (R2) and ethylene reactants, but $32.51 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the separated carbene and ethylene reactants. A triplet counterpart of p1 was found to be $32.15 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the singlet p1.

The formation of the metallacyclobutane pdt1 through the transition state TS1 by [2+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{C}$ bond of the carbene complex is 11.52 kcal mol^{-1} exothermic and has an activation barrier of 5.68 kcalmol $^{-1}$. The metallacyclobutane pdt1 formed is symmetric with respect to the $\mathrm{Cr}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds, and has a $\mathrm{Cr}-\mathrm{C}-\mathrm{C}-$ C dihedral angle of 6.88°. This places the two $\mathrm{Cr}-\mathrm{C}$ bonds in almost the same plane. The $\mathrm{Cr}=\mathrm{C}$ bond increases from $1.756 \AA$ in the reactant $(\mathbf{R 1})$ to $1.820 \AA$ in the transition state (TS1) while the ethylene $\mathrm{C}=\mathrm{C}$ bond
increases from $1.331 \AA$ in the reactant olefin to $1.380 \AA$ in the transition state. In transition state TS1, the Cr-C-C-C dihedral angle is 9.22°, giving the four reacting atoms an almost planar four-center geometry which is typical for olefin insertion into MC σ bonds (Lohrenz et. al., 1995; Deng et. al., 1997; Yoshida et. al., 1995). Triplet state structures for transition state TS1 and product pdt1 were found not to exist on the reaction surface while an open-shell singlet pdt1 which was found turned out to be the same as the closed-shell singlet pdt1 with regard to its energy and geometry.

Figure 3. 2. Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ with ethylene ($\mathrm{t}=$ triplet state). Relative energies in $\mathrm{kcalmol}^{-1}$. resulting triplet product ($\mathbf{p d t 2} \mathbf{2} \mathbf{t}$) is very stable ($-102.63 \mathrm{kcalmol}^{-1}$), making it the global minimum on the portions of the

The [3+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{C}$ and $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ does not seem to proceed from the carbene reactant since no transition state was located for this reaction step. The

Attempts at locating a transition state linking the carbenoid $\mathbf{R 2}$ or the carbenoidethylene π-complex p1 to the metallacyclobutane product pdt1 was not
successful, suggesting that the formation of the metallacyclobutane, which is the first step of the olefin metathesis reaction according to the Herrison-Chauvin mechanism, may not proceed from the carbenoid complex. Thus the most likely active species for any olefin metathesis in the Cr complex is the carbene complex $\mathrm{Cl}_{4} \mathrm{Cr}=\mathrm{CH}_{2}$. Even though Figure 3.2 shows that the $[2+2]$ addition of ethylene across the $\mathrm{Cr}-\mathrm{C}$ bond of $\mathrm{Cl}_{4} \mathrm{Cr}=\mathrm{CH}_{2}$ to form the metallacyclobutane intermediate pdt1 has a lower activation barrier than the [3+2] addition pathway, olefin metathesis is not likely to occur with the $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ complex because the existence of a lower-energy carbenoid $\mathrm{Cl}_{3} \mathrm{CrCH}_{2} \mathrm{Cl}$ complex ($\mathbf{R 2}$ and $\mathbf{R} 2 / \mathbf{t}$) will most likely deplete the reaction surface of the active carbene species $\mathbf{R 1}$ for the process (vide supra). This is consistent with the fact that no olefin metathesis reaction has been reported with Cr complexes of this nature to date.

Table 3.1 gives the relative energies
of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}$, Re) complexes with ethylene.

Table 3.1. Calculated Relative Energies (in kcalmol ${ }^{-1}$) of the Main Stationary Points for the

Cl_{4}		-		-	-	-
CrC	0.00	42.39	+5.	3.1	11.	64.
H_{2}			68	1^{b}	52	83
					-	-
Cl_{4}					-	
Mo^{2}	0.00	+7.68	+5.	+6.	12.	26.
CH_{2}			33	91	26	77
Cl_{4}					-	-
WC	0.00	+31.2	+2.	+1	13.	5.3
H_{2}		3	93	3.6	31	2
				5		

Cl_{4}		-		-	-	-
RuC^{2}	0.00	33.40	+0.	4.0	16.	65.
H_{2}			48	2^{b}	76	54

Cl_{4}			-	-		
ReC	0.00	+5.15	+2	+6	13	27
$\mathrm{H}_{2}{ }^{\mathrm{c}}$		58	64	74	77	

[^0]The optimized geometries and relative energies of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ with ethylene are shown in Figures 3.3 and 3.4 respectively. A geometry optimization of the Mo complex $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ on the closed-shell singlet PES yielded two trigonal bipyramid carbene conformers: one in which the CH_{2} ligand is in the axial position $\left(\mathbf{R} \mathbf{4}_{\mathrm{ax}}\right)$ and the other in which the methylene ligand occupies the equatorial position ($\mathbf{R 4}_{\text {eq }}$). A third minimum has been located on the reaction surface corresponding to a carbenoid $\mathrm{Cl}_{3} \mathrm{MoCH}_{2}-\mathrm{Cl}$ species ($\mathbf{R 5 \text {). The }}$ equatorial carbene $\mathbf{R} \mathbf{4}_{\text {eq }}$ is $12.89 \mathrm{kcal} \mathrm{mol}^{-1}$ and $7.68 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the axial carbene conformer $\mathbf{R} \mathbf{4}_{\mathrm{ax}}$ and carbenoid complex $\mathbf{R 5}$ respectively. The axial $\mathrm{Mo}-\mathrm{Cl}$ bonds are $0.12-0.15 \AA$ longer than the corresponding equatorial bonds. The triplet structure of $\mathbf{R} \mathbf{4}_{\text {eq }}$ has been found to be 11.60 kcal mol^{-1} less stable than the singlet reactant whiles the open-shell singlet
structure located is the exact replica of the closed-shell singlet structure. The triplet carbenoid is $28.00 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the triplet carbene.

A carbene-ethylene π-bonded complex (pi-comp1) optimized from the interaction of the equatorial conformer of the carbene complex with ethylene is found to be $5.66 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the separated reactants. The singlet π-complex p2 obtained from the interaction of the carbenoid (R5) and ethylene is 22.67 kcal mol^{-1} more stable than the separated carbenoid and ethylene reactants and 14.99 kcal mol^{-1} more stable than the carbene and ethylene reactants. The triplet $\mathbf{p 2}$ is 0.20 kcal mol^{-1} less stable than the separated triplet carbenoid and ethylene reactants. The Mo-C bond is $0.164 \AA$ longer in the triplet carbene than the singlet carbene.

Figure 3.3 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

The formation of metallacyclobutane pdt3 through transition state TS4 by [2+2] addition of ethylene across the Mo-C bond of $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ has an activation barrier of
$5.33 \mathrm{kcal} \mathrm{mol}^{-1}$ and exothermicity of 12.26
$k_{c a l m o l}{ }^{-1}$. The geometries of the Mo metallacyclobutane intermediate and transition state are very similar to the geometries of the corresponding structures in the Cr complex. The metallacyclobutane is symmetric with respect to the $\mathrm{Mo}-\mathrm{C}$ and C-C bonds. In transition state TS4 the Mo-C-C-C dihedral angle is 4.39°, giving the four reacting atoms an almost planar fourcenter geometry. However, in the metallacyclobutane pdt3 the four-membered ring is distorted out of plane by 12.54° compared to the Cr metallacyclobutane pdt1. The exothermicity of the Mo and Cr products is also comparable; the Mo metallacyclobutane complex is just 0.74 kcal mol^{-1} more stable than the Cr complex.

Figure 3.4 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

On the triplet PES, the pdt3 is 30.23 kcal mol^{-1} exothermic; $17.97 \mathrm{kcal} \mathrm{mol}^{-1}$ more exothermic than the singlet pdt3. The triplet transition state for the formation of pdt3 is $12.43 \mathrm{kcal} \mathrm{mol}^{-1}$ above the singlet reactants and $0.83 \mathrm{kcal} \mathrm{mol}^{-1}$ above the triplet reactants. The two Mo-C bonds of the triplet metallacyclobutane are $0.297 \AA$ longer than those of the singlet species while
the Mo-C-C-C dihedral angle in the triplet product is 9.6° compared to the angle of 16.93° in the singlet species. Thus the metallacyclobutane ring is more planar in the triplet species than in the singlet species.

A [3+2] addition of ethylene across the $\mathrm{Mo}-\mathrm{C}$ and $\mathrm{Mo}-\mathrm{Cl}$ bonds of the singlet carbene complex leading to the singlet product pdt4, which is $26.77 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic, has an activation barrier of 6.91 $\mathrm{kcal} \mathrm{mol}{ }^{-1}$ through the singlet transition state TS5. The triplet pdt4 has been found to be $21.95 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the singlet pdt4. The triplet transition state TS5 is not found on the reaction surface.

The olefin metathesis reaction in Mo is not likely to proceed from the carbenoid complex $\mathbf{R 5}$ or the carbenoid π-complex $\mathbf{p} 2$ since attempts at locating a transition state linking the carbenoid complex and metallacyclobutane product yielded no stationary point. Thus the most likely active species for the olefin metathesis is the carbene complex $\mathrm{Cl}_{4} \mathrm{Mo}=\mathrm{CH}_{2}$. As Fig.3.4
and Table 3.1 show the $[2+2]$ addition pathway is favored kinetically over the [3+2] route, indicating that olefin metathesis will most likely occur in the Mo system. However, the kinetic preference of the $[2+2]$ pathway is only marginal and, given the much higher exothermicity of the $[3+2]$ route, the $[3+2]$ addition pathway is likely to be competitive with the $[2+2]$ addition route. If the kinetics of $\mathbf{p} \mathbf{2}$ formation, which could not be determined in this work, turns out to be favorable and $\mathbf{p} \mathbf{2}$ becomes accessible in the reaction mixture, then the population of the active species will decrease as a result since $\mathbf{p 2}$ is more stable than the separated carbene and ethylene. This might decrease the activity of the Mo catalyst in the olefin metathesis reaction.

On the singlet tungsten (W) reaction surface, two carbene complex minima are located: an equatorial $\mathbf{R 6}_{\text {eq }}$ and axial $\mathbf{R 6}_{\mathbf{a x}}$ conformer (Figure 3.5). The equatorial conformer is $13.36 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the axial conformer. The $\mathrm{W}=\mathrm{C}$
bond is marginally shorter (by $0.072 \AA$) in the equatorial carbene conformer than in the axial conformer. The triplet state $\mathbf{R 6}_{\mathbf{e q}}$ is $19.52 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the singlet species and the W-C bond is $0.109 \AA$ longer in the triplet carbene than in the singlet carbene. A carbenoid minimum (R7) is also located on the surface but is $31.23 \mathrm{kcal} \mathrm{mol}^{-1}$ and $17.89 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the equatorial and axial carbene complexes respectively. The $\mathrm{C}-\mathrm{Cl}$ bond in the tungsten carbenoid R7 is 0.034 and $0.064 \AA$ longer than that in the Mo carbenoid (R5) and Cr carbenoid (R2) respectively. The bond lengths for the W axial and equatorial carbene complexes ($\mathbf{R 6}_{\mathbf{e q}}$ and $\mathbf{R 6}_{\mathbf{a x}}$) are systematically shorter by between 0.094 and $0.253 \AA$ compared to those reported by

Sodupe et. al. (1989) in an ab initio Hartree-
Fock study of this system.

Figure 3.5 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{WCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.
kcal mol^{-1} more stable than the carbene and ethylene reactants. It appears that the π complex p3 might be in equilibrium with the carbene and ethylene reactants. The triplet state π-complex p3 is $9.94 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the singlet species. The most likely active species for the olefin metathesis appears to be only the carbene complex $\mathrm{Cl}_{4} \mathrm{~W}=\mathrm{CH}_{2}$ and not the carbenoid since no transition state was located linking the carbenoid complex R7 or the carbenoid π complex p3 and the metallacyclobutane intermediate.

The π-complex (pi-comp2) that has been optimized from the interaction between the equatorial carbene and ethylene is 9.44 $\mathrm{kcal} / \mathrm{mol}$ less stable than the separated reactants. The olefinic C-C bond is $0.014 \AA$ longer in the $\mathrm{W} \pi$-complex than in the Mo π complex. The π-complex $\mathbf{p 3}$ formed from the interaction of the carbenoid and ethylene is $34.79 \mathrm{kcamol}^{-1}$ more stable than the carbenoid and ethylene reactants, and 3.56

Figure 3.6 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{WCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

The activation barrier for the [2+2] addition of ethylene across the W-C bond of the carbene complex through transition state TS6 is $2.93 \mathrm{kcalmol}^{-1}$. The resultant metallacyclobutane pdt5 is $13.31 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. This activation barrier is lower than that computed for the corresponding reactions in the Cr and Mo systems, while the formation of the W metallacyclobutane
is slightly more exothermic than the formation of the Cr and Mo metallacyclobutanes. The metallacyclobutane is also symmetric with respect to the W-C and $\mathrm{C}-\mathrm{C}$ bonds as is the case for the Cr and Mo species. The W-C-CC dihedral angle of 3.08° in the transition state becomes distorted by 15.74° in the metallacyclobutane pdt5.

The triplet state transition state TS6 is $17.89 \mathrm{kcal} \mathrm{mol}^{-1}$ higher in energy than the singlet species. The newly-forming W-C bond is $0.291 \AA$ longer in the triplet transition state than in the singlet transition state while the newly-forming C-C bond is marginally shorter (by $0.031 \AA$) in the triplet species than in the singlet species. The resulting triplet metallacycle is 17.73 kcal mol^{-1} less stable than the singlet pdt5. With a W-C-C-C dihedral angle of 0.88°, the triplet metallacycle ring is much more planar than the singlet metallacycle. An open-shell singlet pdt5 turns out to be exactly like the
closed-shell singlet species in terms of energy and geometry.

Along the [3+2] addition pathway, ethylene adds across the $\mathrm{W}-\mathrm{C}$ and $\mathrm{W}-\mathrm{Cl}$ bonds of the carbene complex through transition state TS7, with a barrier of 13.65 kcal mol^{-1}, to form species pdt6 which is $5.32 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic on the singlet PES and $22.98 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic on the triplet PES, the $\mathrm{W}-\mathrm{Cl}$ forming bond being $0.174 \AA$ A longer in the triplet structure than in the singlet structure. Thus the $[2+2]$ addition reaction pathway to form the metallacyclobutanes is more favorable, kinetically and thermodynamically, than the [3+2] addition reaction pathway and therefore the W complex should be able to catalyze metathesis. The energetic preference of the $[2+2]$ over the $[3+2]$ pathway is unambiguous in the W system, unlike in the Mo system where the [3+2] pathway is likely to be competitive with the [2+2] pathway. Also there is no low-energy carbenoid reaction path that might compete
with the metathesis process. These results are consistent with earlier suggestions that the W alkylidene catalyst has a greater metathesis activity than the Mo species (Cundari and Gordon, 1992). A Mulliken population analysis of the carbene complexes reveals that the order of polarization of the $\mathrm{M}-\mathrm{C}$ bond in a $\mathrm{M}^{+}=\mathrm{C}^{-}$ fashion is in the order: $\mathrm{W}>\mathrm{Mo}>\mathrm{Cr}$. This observation supports the finding by Cundari and Gordon (1992) that the W-C bond is more polarized than the Mo-C bond in the methylidene complexes. The extent of polarization has been found to be comparable in the Mo and W carbenoid complexes.

On the singlet Ru reaction surface an equatorial carbene conformer $\mathrm{Cl}_{4} \mathrm{Ru}=\mathrm{CH}_{2}$ $\mathbf{R 8} \mathbf{8}_{\text {eq }}$ and a carbenoid $\mathrm{Cl}_{3} \mathrm{Ru}-\mathrm{CH}_{2}-\mathrm{Cl} \mathbf{R 9}$ structure (Figures 3.7 and 3.8) are located. The carbenoid complex is $33.46 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the carbene complex. In contrast, DFT B3LYP studies by Bernardi et. al. (2003) on olefin metathesis catalyzed
by Grubbs' ruthenium complexes found the equatorial carbenic complex $\mathrm{Cl}_{2}\left(\mathrm{PH}_{3}\right)_{2} \mathrm{Ru}=\mathrm{CH}_{2}$ to be $18.45 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ more stable than the carbenoid $\mathrm{Cl}_{2}\left(\mathrm{PH}_{3}\right) \mathrm{Ru}$ $\mathrm{CH}_{2}\left(\mathrm{PH}_{3}\right)$ species. The triplet carbene complex has been found to be 12.77 kcal mol^{-1} more stable than the singlet carbene whiles the triplet carbenoid is $0.86 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ less stable than the singlet carbenoid.

Attempts at locating the axial carbene conformer and a carbene-ethylene π-bonded complex on the reaction surface were not successful. An ethylene π-bonded carbenoid complex p4 optimized from the interaction of the carbenoid and ethylene has been found to be $6.74 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the singlet carbenoid and ethylene reactants, and $40.16 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the carbene and ethylene reactants. The triplet carbenoid-ethylene π-complex is 2.68 kcal mol^{-1} more stable than the singlet π complex. The distance between the Ru center and the olefinic C-C centroid is 0.330

\AA longer in the triplet π-complex than in the singlet π-complex.

Figure 3.7 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

TS9

(-20)
norbonene and 1-butene respectively found by Cavallo (2002) in the study of the mechanism of metathesis reactions of 1butene and norbonene catalyzed by model Grubbs Ru catalysts. The resultant metallacyclobutane (pdt7), which is 16.76 kcal mol ${ }^{-1}$ exothermic, is symmetric with respect to the $\mathrm{Ru}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds. The Ru-C-C-C dihedral angle is 5.50° in transition state TS8 and 5.54° in the metallacyclobutane pdt7. Thus there is no considerable distortion of the planar geometry of the forming ring during the formation of the metallacyclobutane from the transition state. The activation barrier for the $[2+2]$ addition of ethylene across the RuC bond of triplet carbene through a triplet transition state TS8/t is $3.58 \mathrm{kcalmol}^{-1}$. The newly-forming $\mathrm{Ru}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ bonds are $0.317 \AA$ and $0.639 \AA$ respectively longer in

The activation barrier through transition state TS8 for the [2+2] addition of ethylene across the Ru-C bond of the carbene is $0.48 \mathrm{kcalmol}^{-1}$, which is smaller than the barriers of 9.7 and $9.6 \mathrm{kcal} \mathrm{mol}^{-1}$ for
the triplet transition state than in the singlet transition state.

product pdt8.

It is being concluded that a metallacyclobutane may not originate from the carbenoid complex, since no transition state was located linking the carbenoid and the metallacycle. Thus the active species for any olefin metathesis in the Ru complex should be the carbene complex. Even though the $[2+2]$ addition pathway has a very low transition barrier, the reaction surface is likely to be populated by the carbenoid complex reactant and not the carbene complex as Table 3.1 shows. Thus the formation of pdt7, which will ultimately lead to olefin metathesis, may not occur since the reaction surface may be depleted of the active species for metathesis.

The optimized geometries and relative energies of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ with ethylene are shown in Figure 3.9 and Figure 3.10 respectively. No stationary points could be located on the singlet and
triplet PESs. The reactant minima $\mathbf{R 1 0} \mathbf{e q} / \mathbf{d}$ and $\mathbf{R 1 0} \mathbf{e q}_{\mathbf{q}} / \mathbf{q}$ were located on the doublet and quartet PESs; the doublet structure being $12.40 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the quartet structure. The Re-C double bond is $0.112 \AA$ longer in the quartet species than in the doublet species. A carbenoid species R11/d located on the doublet surface is 5.15 kcal mol^{-1} less stable than the doublet carbene whiles a quartet carbenoid is $2.93 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the doublet carbene. π complexation of the doublet and quartet carbenoids with ethylene stabilizes the system by 21.55 and 8.49 kcal mol ${ }^{-1}$ respectively relative to the separated reactants. This contrasts with π complexation of the doublet carbene with ethylene which destabilizes the system by only $1.11 \mathrm{kcal} \mathrm{mol}^{-1}$ relative to the separated reactants.

Figure 3.9 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

The doublet transition state TS10/d that connects the carbene reactant $\mathbf{R 1 0 e q} / \mathbf{d}$ to the doublet product pdt9/d in the $[2+2]$ addition of ethylene across the $\mathrm{Re}-\mathrm{C}$ bond of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ is $2.58 \mathrm{kcal} \mathrm{mol}^{-1}$ above the doublet carbene and ethylene reactants on the potential energy profile. The product resulting from this addition is 13.74 kcal mol^{-1} exothermic. The $\mathrm{Re}-\mathrm{C}-\mathrm{C}_{1}-\mathrm{C}_{2}$ dihedral angle (where C_{1} and C_{2} are the olefinic carbons) of 4.52° in transition state TS10 increases to 14.15° in the product pdt9.

The activation barrier for the $[3+2]$ addition of ethylene across the $\mathrm{Re}-\mathrm{C}$ and $\mathrm{Re}-$ Cl bonds of doublet $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ through the doublet transition state TS11 is 6.64 $\mathrm{kcalmol}^{-1}$. The product formed, which is also a doublet species, is $27.77 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. No quartet state TS10 and TS11 were located on the PESs.

Figure 3.10 Energetics of the reactions of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

Since the activation barrier of the formation of the metallacyclobutane is lower than the barrier for the formation of product of [3+2] addition, the Re complex is likely to be able to catalyze metathesis.

Figure 3.11 is a summary of the possible paths for the reactions of the complexes $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}$,

Re) with ethylene. The Mo, W, and Re complexes can follow two reaction paths: $\mathbf{1}$ $\rightarrow \mathbf{4} \rightarrow \mathbf{5}$ and $\mathbf{1} \rightarrow \mathbf{6} \rightarrow \mathbf{8}$, but the former route is preferred over the latter. The preference for the $\mathbf{1} \rightarrow \mathbf{4} \rightarrow \mathbf{5}$ route over $\mathbf{1}$ $\rightarrow \mathbf{6} \rightarrow \mathbf{8}$ is clearly unambiguous in W , whereas in Mo the latter route is likely to be competitive with the former. The Cr and Ru complexes can also follow paths: $\mathbf{1} \rightarrow \mathbf{4} \rightarrow$ 5 and $\mathbf{2} \rightarrow \mathbf{7} \rightarrow \mathbf{8}$, but the latter path is preferred over the former.

\qquad

reaction	metal
route	complex
$\mathbf{1 \rightarrow \mathbf { 4 }}$	Cr, Mo,
$\boldsymbol{\rightarrow} \mathbf{5}^{\mathrm{a}}$	W, Ru,
	Re
$\mathbf{1 \rightarrow \mathbf { 6 }}$	Mo, W,
$\boldsymbol{\rightarrow}$	Re
$\mathbf{2} \rightarrow \mathbf{C r}, \mathrm{Ru}$	
$\mathbf{7 \rightarrow \mathbf { 8 } ^ { \mathrm { b } }}$	
$\mathbf{1 \rightarrow \mathbf { 3 }}$	Mo, W,
	Ru, Re
	Cr, Mo,
	W, Ru,
	Re

${ }^{\mathrm{a}} \mathbf{1} \rightarrow \mathbf{4} \rightarrow \mathbf{5}$ is preferred
route in $\mathrm{Mo}, \mathrm{W}, \mathrm{Re}$
route in Cr, Ru

Figure 3.11 Summary of the possible reaction paths for the reaction of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}$ ($\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re}$) with ethylene.

The energy profiles (Figures 3.2, 3.4, 3.6, 3.8 and 3.10) indicate that the reaction of carbene complexes $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ with ethylene to form a metallacyclobutane is a low-barrier process for each of the metal complexes studied, the highest barrier being $5.68 \mathrm{kcal} \mathrm{mol}^{-1}$ for the Cr complex and the lowest being $0.48 \mathrm{kcal} \mathrm{mol}^{-1}$ for the Ru complex. The activation barriers of the complexes studied were found to decrease in the order: $\mathrm{Cr}>\mathrm{Mo}>\mathrm{W} \approx \mathrm{Re}>\mathrm{Ru}$ while the exothermicities decrease in the order: Ru (16.76 $\mathrm{kcalmol}^{-1}$) > $\mathrm{Re} \approx \mathrm{W}>\mathrm{Mo}>\mathrm{Cr}$ (11.52 kcalmol ${ }^{-1}$).

Attempts at locating a transition state linking the metallacyclobutane product and the carbenoids in each of the systems studied yielded no stationary point, indicating that the formation of the metallacyclobutane is not likely to proceed from the carbenoid complexes. Therefore the active species for the metathesis reaction
in each of these complexes are carbene complexes as opposed to carbenoids.

One key factor has been found to be responsible for the difference in metathesis activity in the complexes studied: the stability of the carbenoid complexes relative to the carbenes. In Cr and Ru , the carbenoid complexes are more stable than the carbenes and thus $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ are likely to exist in the lower-energy carbenoid $\mathrm{Cl}_{3} \mathrm{MCH}_{2} \mathrm{Cl}$ form as opposed to the carbene $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ form. This is likely to deplete the reaction surface of the active species of the process, making $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ not suitable for olefin metathesis. This suggests that whereas $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}$, W, Re) may catalyze olefin metathesis, $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ may not. The kinetic and thermodynamic preference of the $[2+2]$ pathway over the [3+2] pathway is unambiguous in $\mathrm{Cl}_{4} \mathrm{~W}=\mathrm{CH}_{2}$ whereas in $\mathrm{Cl}_{4} \mathrm{MoCH}_{2}$ the [3+2] pathway and the formation of carbenoid complexes may be competitive with the [2+2] pathway. The
kinetics of metallacyclobutane formation also indicates that the W and Re complexes may have a greater metathesis activity than the Mo complex.

The Cr and Ru carbene complexes

 do not seem to form π-complexes while the carbene-ethylene π-complexes located for the Mo, W and Re complexes are all higherenergy species relative to the reactants. This must be considered in relation to the wellknown difficulties for DFT methods to describe weak interactions (Kristán and Pulay, 1994; Wright, 1996; Peréz-Jordá and Becke, 1995; Ruiz et. al., 1996; Garcia et. al., 1997). The B3LYP functional in particular does not describe dispersion, and therefore underestimate the interaction energies of π-bonded systems. This maywell result in a repulsive interaction (Mourik
and Gbanitz, 2002; Mourik, 2008). Given these difficulties, it is difficult to assess the role of the π-complex in the mechanism of the reactions.

Some of the minima and transition states located in this work display multiple spin ground states. For the Cr and Ru complexes, inclusion of the triplet state structures actually increases the stability of the carbenoid relative to the carbenes and this worsens the inability of the $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ complex to catalyze metathesis. For the Re complex, the doublet ground state is more favored over the quartet ground state. The Re complex appears not to have a singlet or triplet ground state. Finally the reaction patterns of the Cr and Ru complexes are similar whiles those of the Mo and W are also similar.

3.3.2 REACTIONS OF $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{Cr}$, Mo, W, Ru, Re) WITH ETHYLENE

Rappé and Goddard (1982) have used the results of an $a b$ initio theoretical mechanistic study to suggest that the oxo-
alkylidene complex $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{M}=\mathrm{CH}_{2}$ would favor formation of metallacycles because of conversion of the double-bond spectator ox group in the reactant to a triple bond in the product. These intermediates have therefore been studied in this work as potential active chain-carrying catalysts that could react with an olefin to form metallacyclobutanes in olefin metathesis. Various possible modes of reaction of ethylene with metal oxalkylidenes are considered in the study.

The optimized geometries of the main stationary points involved in the reaction between $\mathrm{Cl}_{2} \mathrm{OCrCH}_{2}$ and ethylene are shown in Figure 3.12. The Cr oxmethylidene complex R12 as optimized at the DFT B3LYP/LACVP* level has a Cs symmetry. The $\mathrm{Cr}=\mathrm{O}$ and $\mathrm{Cr}=\mathrm{C}$ bond lengths are $1.536 \AA$ and $1.761 \AA$ respectively while the two $\mathrm{Cr}-\mathrm{Cl}$ bond lengths are equal ($2.150 \AA$). A carbenoid minimum R13 is also located on the reaction surface and is found to be $3.60 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the carbene minimum.

TS13

pdt14

the formation of pdt11 is exothermic by 20 kcalmol ${ }^{-1}$.
 by $[2+2]$ addition of ethylene across the $\mathrm{Cr}-$ C bond of R12 through transition state TS12 has an activation barrier of $12.10 \mathrm{kcamol}^{-1}$ and exothermicity of $14.30 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ (Figure 3.13). The metallacycle is symmetric with respect to the $\mathrm{C}-\mathrm{C}$ and $\mathrm{Cr}-\mathrm{C}$ bonds. Rappé and Goddard (ibid.) had found, by ab initio GVB calculations, that

Figure 3.13. Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{CrCH}_{2}$ with ethylene. Relative energies in $\mathrm{kcalmol}^{-1}$.

The formation of product pdt12 by [2+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ bond of R12 through transition state TS13 has a barrier of $27.42 \mathrm{kcal} \mathrm{mol}^{-1}$ and
endothermicity of $24.01 \mathrm{kcalmol}^{-1}$. Thus the [2+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{C}$ bond is more favorable, both kinetically and thermodynamically, over addition across the Cr-O bond. The early transition state TS13 is a highly asynchronous one. In the work of Rappé and Goddard (1982) this reaction is reported to be $12 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic.

The [3+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{C}$ bonds of $\mathbf{R 1 2}$ involves transition state TS14, with a barrier of $9.75 \mathrm{kcalmol}^{-1}$, to form pdt13 which is $30.54 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic (Figure 3.13). The [3+2] addition across the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-$ Cl bonds has a much higher activation barrier of $27.45 \mathrm{kcal} \mathrm{mol}^{-1}$ and the resulting product pdt14 is $9.99 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic.

The most favorable pathway, kinetically and thermodynamically, is the [3+2] addition of ethylene across the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{C}$ bonds of R12. Since the [3+2] addition is more favorable than the $[2+2]$ addition across the $\mathrm{Cr}-\mathrm{C}$ bond of $\mathbf{R 1 2}$
(Figure 3.13), the first step of the olefin metathesis reaction, olefin metathesis reaction may not occur in the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{CrCH}_{2}$ complex. However, since the activation barrier of the metallacyclobutane formation is only $2.35 \mathrm{kcal} \mathrm{mol}^{-1}$ higher than the barrier of the [3+2] pathway, the metathesis reaction is not too disfavored and may occur to some extent.

Table 3.2 Activation Barriers (in kcalmol ${ }^{-1}$) of the Various Pathways in the Reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Mo}, \mathrm{W}, \mathrm{Ru}, \mathrm{Re})$ with Ethylene

complex	$[2+2]($	$[2+2]($	$[3+2]$	$[3+2]$
	$\mathrm{M}-\mathrm{C})$	$\mathrm{M}-\mathrm{O})$	$(\mathrm{O}-$	$(\mathrm{O}-$
			$\mathrm{M}-\mathrm{C})$	$\mathrm{M}-\mathrm{Cl})$

$\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{Cr}$
$\begin{array}{lllll}\mathrm{CH}_{2} & 12.10 & 27.42 & 9.75 & 27.45\end{array}$

$$
\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{M}
$$

oCH_{2}	5.38	30.67	26.68	44.43

$\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{W}$
$\begin{array}{llll}\mathrm{CH}_{2} & 0.38 & 26.25 & 39.48\end{array}$
$\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{Ru}$

CH_{2}	13.78	17.00	10.17

On the Mo reaction surface, the reactant oxo-alkylidene (R14 in Figure 3.14) has a $\mathrm{Mo}=\mathrm{O}$ bond length of $1.681 \AA, \mathrm{Mo}=\mathrm{C}$ bond length of $1.883 \AA$ and the two $\mathrm{Mo}-\mathrm{Cl}$ bond lengths at $2.303 \AA$ each. No carbenoid minimum could be located on the surface.

The transition barrier for [2+2]
addition of ethylene across the Mo-C bond
of $\mathbf{R 1 4}$ through transition state TS16 is 5.38
$\mathrm{kcalmol}^{-1}$, leading to the metallacycle pdt15
which is $11.38 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. Rappé and Goddard (1982) found this reaction to be $24 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. Compared with the corresponding Cr -system this reaction is more favorable kinetically, but slightly less so thermodynamically. The $[2+2]$ addition of ethylene across the Mo-O bond of R14 has a barrier of $30.67 \mathrm{kcal} \mathrm{mol}^{-1}$ which is about six times higher than the barrier for addition across the Mo-C bond. The resulting metallacycle pdt16 is 18.86 kcal mol^{-1} endothermic. Thus addition across the Mo-C bond is more favorable, both kinetically and thermodynamically, than addition across the Mo-O bond.

Figure 3.15 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MoCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

The [3+2] addition across the Mo-C and Mo-O bonds through transition state TS19 has a barrier of $26.68 \mathrm{kcalmol}^{-1}$, leading to a five-membered product pdt18 which is $0.44 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic while the [3+2] addition across the Mo-O and Mo-

Cl bonds of R14 through transition state
TS18 has a much higher barrier of 44.43
kcalmol $^{-1}$, leading to product pdt17 which is very endothermic $\left(+41.69 \mathrm{kcalmol}^{-1}\right)$. Thus in the Mo complex the $[2+2]$ addition of ethylene across the Mo-C bond of R14, which is the first step of the olefin metathesis reaction, is the most favorable reaction pathway. The preference of the metallacyclobutane formation pathway over the side-reactions is clearly unambiguous. The side reactions are therefore not likely to be competitive with the olefin metathesis reaction (Figure 3.15). Olefin metathesis will therefore be favored to occur in the Mo complex.

The W oxo-alkylidene reactant ($\mathbf{R 1 5}$
in Figure 3.16) has a $\mathrm{W}=\mathrm{O}$ bond length of $1.688 \AA$, a W=C bond length of $1.886 \AA$ and the two W-Cl bond lengths at $2.299 \AA$ each.

Figure 3.16 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{WCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

The activation barrier for the formation of metallacyclobutane pdt19, which is $16.49 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic, by [2+2] addition of ethylene across the W-C bond of $\mathbf{R 1 5}$ through transition state TS20 is $0.38 \mathrm{kcalmol}^{-1}$. The resulting metallacycle pdt19 is $16.49 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. In the work of Rappé and Goddard (1982) this reaction is found to be $18 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ exothermic. The activation energy for [2+2] addition across the $\mathrm{W}-\mathrm{O}$ bond of $\mathbf{R 1 5}$
through transition state TS21 is 26.25
$\mathrm{kcalmol}^{-1}$, resulting in a metallacycle pdt20 which is $19.83 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. Thus addition across the W-C is far more favored, both kinetically and thermodynamically, than addition across the W-O bond.

Figure 3.17 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{WCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

Along the $[3+2]$ pathway, addition across the W-O and W-C bonds of R15
through TS22 has a barrier of 39.48 $\mathrm{kcalmol}^{-1}$, leading to a five-membered ring product pdt21 which is $15.47 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. No product or transition state could be located for the [3+2] addition across the W-O and $\mathrm{W}-\mathrm{Cl}$ bonds.

Of the three possible addition pathways, the $[2+2]$ addition of ethylene across the W-C bond, which is the first step of the olefin metathesis reaction, is the most favorable one. The possible side reactions are therefore not competitive with the olefin metathesis reaction, just as has been observed for the Mo system.

DFT optimization of the Ru oxoalkylidene intermediate gave structure R16, which has a Ru-C bond length of $1.844 \AA$, Ru-O bond length of $1.685 \AA$ and the two $\mathrm{Ru}-\mathrm{Cl}$ bond lengths at $2.292 \AA$ each. A carbenoid minimum R17 and is 4.07 kcal mol^{-1} less stable than the carbene. The activation barrier for the formation of metallacyclobutane pdt22 by [2+2] addition of ethylene across the Ru-C bond of R16
through transition state TS23 has an activation barrier of $13.78 \mathrm{kcal} \mathrm{mol}^{-1}$ and an exothermicity of $31.45 \mathrm{kcalmol}^{-1}$. The barrier for $[2+2]$ addition across the $\mathrm{Ru}-\mathrm{O}$ bond of R16 through TS24 is $17.00 \mathrm{kcalmol}^{-}$ ${ }^{1}$, leading to a metallacyclobutane pdt23 which is $2.70 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. Thus, of the $[2+2]$ addition pathways, addition across the $\mathrm{Ru}-\mathrm{C}$ bond is more favorable, both kinetically and thermodynamically, than addition across the Ru-O bond.

TS24

Figure 3.18 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{RuCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.
kinetically than the [2+2] addition across the Ru-C bond of R16. Thus this reaction might interfere with the olefin metathesis reaction. Attempts at locating the transition state or product corresponding to the [3+2] addition across the $\mathrm{Ru}-\mathrm{O}$ and $\mathrm{Ru}-\mathrm{C}$ bonds on the surface was not successful.

Figure 3.19 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{RuCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$.

The optimized geometries and relative energies of the main stationary points involved in the reaction of the Re oxo-methylidene complex $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ with ethylene are shown in Figures 3.20 and 3.21 respectively. The Re complex display a doublet electronic ground state electronic structure rather than a singlet structure. It also displays a quartet structure but this is of higher energy than the doublet structure. The doublet oxo-methylidene reactant R18 has the two $\mathrm{Re-Cl}$ bond lengths of $2.298 \AA$, the Re-O bond at $1.690 \AA$ and the Re-C bond at $1.865 \AA$. The quartet reactant which displays slightly longer bonds than the doublet structure is $77.33 \mathrm{kcal} \mathrm{mol}^{-1}$ less
stable than the doublet structure. An oxo-
carbenoid R19 that has been optimized is found to be $29.33 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the carbene reactant.

R18

pdt27

Figure 3.20 Optimized geometries of the main stationary points involved in the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ with ethylene. Distances in \AA and angles in degrees.

The formation of the product pdt25 by [2+2] addition of ethylene across the ReC bond of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ through transition state TS26 has an activation barrier of 7.80 kcal mol^{-1} and an exothermicity of 25.70 kcalmol ${ }^{-1}$. This barrier is lower than the

Figure 3.21 Energetics of the reactions of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ with ethylene. Relative energies in kcalmol ${ }^{-1}$. \qquad

The formation of product pdt26 by [2+2] addition of ethylene across the Re-O bond of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{Re}=\mathrm{CH}_{2}$ through transition state TS27 is $7.80 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic and has an activation barrier of 26.66
kcamol^{-1}. This barrier is comparable with the barriers of $27.42,30.67$, and 26.25 kcal mol^{-1} found for the corresponding reactions in the Cr, Mo, and W complexes respectively but higher than the barrier of $17.00 \mathrm{kcal} \mathrm{mol}^{-1}$ found for the Ru complex. The product is also more stable than the corresponding products in the Cr, Mo, and W complexes but $10.50 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the Ru product.

The activation barrier for [3+2] addition of ethylene across the Re-C and ReO bonds of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ through transition state TS28 is $11.34 \mathrm{kcalmol}^{-1}$. In transition state TS28 the newly-forming C-C bond is almost formed and thus the critical activity is the forming of the $\mathrm{C}-\mathrm{O}$ bond. The resulting product pdt27 is $9.28 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. The $[3+2]$ addition across the $\mathrm{Re}-\mathrm{O}$ and $\mathrm{Re}-\mathrm{Cl}$ bonds has a much higher of $38.71 \mathrm{kcal} \mathrm{mol}^{-1}$ through transition state TS29 and the resulting product pdt28 is $33.44 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic.

Since the formation of the metallacyclobutane pdt25 has a lower barrier than all the potential side-reactions, olefin metathesis may be favorable in the Re complex. However, the barrier for the formation of the metallacyclobutane in this case is about thrice the corresponding barrier in the reaction of $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ with ethylene. Thus the $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ complex may be a better metathesis catalyst than the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ complex

For the reaction of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ complexes with ethylene, the pathway leading to the formation of the metallacyclobutane is the most favorable course of reaction whereas in $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ this pathway is less favorable compared to the side reactions. Thus the metathesis reaction will occur preferentially in the Mo, W, and Re complexes where as in the Cr and Ru complexes, the metathesis reaction pathway is not the most preferred pathway. Using the barrier of formation of the
metallacyclobutane and the preference of the metallacyclobutane formation over the sidereactions as the criteria for determining metathesis activity, it is seen that the W complex is the best complex for olefin metathesis reactions as it has the lowest barrier among the Mo, W, and Re complexes, and the preference of the metathesis pathway over the side reactions is clearly unambiguous.

The results indicate that replacing $\mathrm{Cl}_{4} \mathrm{MCH}_{2}$ with $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}$ as models of the carbene complex raises the activation barriers for the metallacyclobutane formation reaction in the Cr, Ru and Re complexes, but lowers it in the W complexes. There is no significant change in activation barriers in the Mo complex. Thus this replacement does not necessarily increase metathesis activity. The M-O bond lengths in the reactants and the products of [2+2] addition of ethylene to the $\mathrm{M}-\mathrm{C}$ bonds of $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}$ are not significantly different. This is contrary to the conclusions
of Rappé and Goddard that the spectator oxo-group double-bond in the reactant is converted to a triple bond in the product (Rappé and Goddard, 1982), since such a conversion will lead to a decrease in the Cr O bond length.

3.4 CONCLUSION

From the foregoing, the following conclusions are drawn:

1. The formation of the metallacyclobutane through formal [2+2] addition, the first step in the olefin metathesis reaction, is a lowbarrier process for each of the methylidene and oxo-methylidene complexes studied.
2. The active species for the formation of the metallacyclobutanes in the $\mathrm{Cl}_{4} \mathrm{MCH}_{2}$ complexes is a carbene $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ and not a carbenoid $\mathrm{Cl}_{3} \mathrm{MCH}_{2}-\mathrm{Cl}$.
3. In the $\mathrm{Cl}_{4} \mathrm{MCH}_{2}$ complexes one key factor has been found to be
responsible for the difference in metathesis activity: the stability of the carbenoid complexes relative to the carbenes. In Cr and Ru , the carbenoid complexes are more stable than the carbenes and thus $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ are likely to exist in the lower-energy carbenoid $\mathrm{Cl}_{3} \mathrm{MCH}_{2} \mathrm{Cl}$ form as opposed to the carbene $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ form. This is likely to deplete the reaction surface of the active species of the process, making $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}$, Ru$)$ not suitable for olefin metathesis. This suggests that whereas $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}$ $=\mathrm{Mo}, \mathrm{W}, \mathrm{Re}$) may catalyze olefin metathesis, $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ may not.
4. In $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$, the potential chain-terminating side reactions are more favorable than the olefin metathesis reaction whereas in $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ olefin
metathesis is the most favorable reaction.
5. Replacing $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2} \quad$ with $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{M}=\mathrm{CH}_{2}$ as models of the carbene complex raises the activation barrier of the first step of metathesis in Cr, Ru and Re complexes but lowers it in W complexes. There is no significant change in Mo.
6. The W carbene complexes were found to be the best complexes for olefin metathesis reactions as these complexes have the lowest barriers among the Mo, W, and Re complexes and the most unambiguous preference for the metathesis pathway over the side reactions.

REFERENCES

Anslyn, E. V.; Goddard, W. A., III (1989) Structures and reactivity of neutral and cationic molybdenum methylidene complexes. Organometallics 8: 1550 1558.

Bernandi, F.; Bottoni, A.; Miscione, G. P. (2003) DFT study of the olefin metathesis catalyzed by ruthenium complexes. Organometallics 22: 940-947.

Casey, C. P.; Anderson, R. L. (1975) Thermolysis of (2oxacyclopentylidene)pentacarbonyl chromium (0): evidence against free carbenes in thermal decomposition of metal-carbene complexes. J. Chem. Soc., Chem. Comm. 895 - 896.

Cavallo, L. (2002) Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. J. Am. Chem. Soc.124: 8965 - 8973.

Clark, M.; Cramer, R. D.; Opdenbosch, N. V. (1989) Validation of the general purpose tripos 5.2 force field. J. Comp. Chem. 10: 982-1012.

Cundari, T. R.; Gordon, M. S. (1992) Theoretical investigations of olefin metathesis catalysts. Organometallics 11: 55 - 63 .

Dediu, A.; Einsenstein, O. (1982) Metallacyclobutanes: Are they distorted? A theoretical ab initio study. Nouv. J. Chim. 6: 337-339.

Deng, L.; Woo, T. K.; Cavallo, L.; Margl, P. M.; Ziegler, T. (1997) The Role of Bulky substituents in Brookhart-type Ni(ii) diimine catalyzed olefin polymerization: A combined density functional theory and molecular mechanics study. J. Am. Chem. Soc. 119: 6177-6186.

Dunning, T. H., Jr.; Hay, P. J. (1976) In: Modern Theoretical Chemistry, H. F. Schaefer, III, Vol. 3; Plenum, New York.

Eisenstein, O.; Hoffman, R.; Rossi, A. R. (1981) Some geometrical and electronic features of the intermediate stages of olefin metathesis. J. Am. Chem. Soc. 103: 5582 5584.

Ephritikhine, M.; Francis, B. R.; Green, M. L. H.; MacKenzie, R. E.; Smith, M. J. (1977) $\operatorname{Bis}(\eta$-cyclopentadienyl)molybdenum and -tungsten chemistry: σ and η-allylic and metallacyclobutane derivatives. J. Chem. Soc., Dalton Trans. 1131-1135.

Ephritikhine, M.; Green, M. L. H.; MacKenzie, R. E. (1976) Some η^{1} and η^{3} allylic and metallocyclobutane derivatives of molybdenum and tungsten. J. Chem. Soc., Chem. Comm. 619.

Foley, P.; Whitesides, G. M. (1979) Thermal generation of bis(triethylphosphine)-3,3dimethylplatinacyclobutane from dineopentylbis(triethylphosphine)
platinum(II). J. Am. Chem. Soc. 101: 2732 2733.

Garcia, A.; Cruz, E. M.; Sarasola, C.; Ugalde, J. M. (1997) Density functional studies of the $b \pi$. a σ charge-transfer complex formed between ethyne and
chlorine monofluoride. J. Phys. Chem. A 101: 3021-3024.

Grubbs, R. H.; Burke, P. L.; Carr, D. D. (1975) Mechanism of the olefin metathesis reaction. J. Am. Chem. Soc. 97: 3265-3267.

Grubbs, R. H.; Carr, D. D.; Hoppin, C.; Burke, P. L. (1976) Consideration of the mechanism of the metal catalyzed olefin metathesis reaction. J. Am. Chem. Soc. 98: 3478 - 3483.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82: 299.

Hérisson, J.-L.; Chauvin, Y. (1971). Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques. Makromol. Chem. 141: 161.

Katz, T. J.; McGinnis, J. (1975) Mechanism of the olefin metathesis reaction. J. Am. Chem. Soc. 97: 1592 - 1594.

Katz, T. J.; McGinnis, J.; Altus, C. (1976) Metathesis of a cyclic trisubstituted alkene. Preparation of polyisoprene from 1methylcyclobutene. J. Am. Chem. Soc. 98: 605-606.

Kingsbury, C. L.; Mehrman, S. J.; Takacs, J. M. (1999) Comprehensive review of the applications of transition metal-catalyzed
reactions to solid phase synthesis. Curr. Org. Chem. 3, 497-555.

Kristyán, S.; Pulay, P. (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 229: 175 - 180.

Lohrenz, J. W.; Woo, T. K.; Ziegler, T. (1995) A density functional study on the origin of the propagation barrier in the homogeneous ethylene polymerization with Kaminsky-type catalysts. J. Am. Chem. Soc. 117: 12793 - 12800.

Maier, M. E. (2000) Synthesis of mediumsized rings by the ring-closing metathesis reaction. Angew. Chem., Int. Ed. 39: 2073 2077.

Mol, J. C. 2004) Industrial applications of olefin metathesis. J. Mol. Catal. A: Chemical 213: 39-45.

Mourik, T. V. (2008) Assessment of Density Functionals for Intramolecular DispersionRich Interactions. J. Chem. Theory Comput. 41610-1619.

Mourik, T. V.; Gdanitz, R. J. (2002) A critical note on density functional theory studies on rare-gas dimers. J. Chem. Phys. 116: 9620-9623.

Peréz-Jordá, J. M.; Becke, A. D. (1995) A density functional study of van der Waals forces: rare gas diatomics. Chem. Phys. Lett. 233: 134.

Poater, A.; Solans-Monfort, X.; Clot, E.; Coperet, C.; Eisenstein (2007) Understanding d^{0}-Olefin Metathesis Catalysts: Which Metal, Which Ligands? J. Am. Chem. Soc. 129: 8207-8216.

Puddephat, R. J.; Quyser, M. A.; Tippar, C. F. H. (1976) Easy isomerisation of a metallocyclobutane complex, and its relevance to the mechanism of olefin metathesis. J. Chem. Soc., Chem. Comm. 626-627.

Rajaram, R.; Ibers, J. A., Rajaram (1978) Metallocenes. Preparation and structural characterization of the products of insertion of (ethylene)bis (triphenylphosphine) platinum into 1,1,2,2,-tetracyano-3phenylcyclopropane and 1-carboethoxy-1,2, 2-tricyano-trans-3-phenylcyclopropane. J. Am. Chem. Soc. 100: 829-838.

Rappé, A. K.; Goddard, W. A., III (1980) Mechanism of metathesis and epoxidation in chromium and molybdenum complexes containing methyl-oxo bonds. J. Am. Chem. Chem. Soc. 102: 5114-5115.

Rappé, A. K.; Goddard, W. A., III (1982) Olefin metathesis - a mechanistic study of high-valent Group VI catalysts. J. Am. Chem. Soc. 104: 448-456.

Rappé, A. K.; Upton, T. H. (1984) Reaction energetics of a dissociative olefin metathesis mechanism for dichlorotitanacyclobutane. Organometallics 3: 1440-1442.

Roy, R.; Das, S. K. (2000) Recent applications of olefin metathesis and related reactions in carbohydrate chemistry. Chem. Commun. 519-529.

Ruiz, E.; Salahub, D. R.; Vela, A. (1996) Charge-Transfer Complexes: Stringent Tests for Widely Used Density Functionals. J. Phys. Chem. 100: 12265 - 12276.

Schrock, R. R. (1974) Alkylcarbene complex of tantalum by intramolecular α -
hydrogen abstraction. J. Am. Chem. Soc. 96: 6796-6797.

Schrock, R. R. (1976) Multiple metal-carbon bonds. 5. The reaction of niobium and tantalum neopentylidene complexes with the carbonyl function. J. Am. Chem. Soc. 98, 5399 - 5400.

Schrock, R. R.; Sharp, P. R. (1978) Multiple metal-carbon bonds. 7. Preparation and characterization of $\mathrm{Ta} \quad\left(\eta^{5}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\left(\mathrm{CH}_{2}\right)\left(\mathrm{CH}_{3}\right)$, a study of its decomposition, and some simple reactions. J. Am. Chem. Soc. 100: 2389 - 2399.

Sodupe, M.; Lluch, J. M.; Olivia, A.; Bertrán, J. (1989) Theoretical study of the conformational preferences in the Cl4W:CH2 complex. Organometallics 8: 1837-1841.

Sodupe, M.; Lluch, J. M.; Olivia, A.; Bertrán, J. (1991) Ab initio study of the reaction between methylenemolybdenum tetrachloride $\left(\mathrm{Cl}_{4} \mathrm{Mo}: \mathrm{CH}_{2}\right)$ and ethylene, New Journal of Chemistry. New J. Chem. 15: 321.

Spartan, Wavefunction, Inc.; 18401 Von Karman Ave., \# 370, Irvine, CA, 92715, USA.

Trnka, T. M.; Grubbs, R. H. (2001) The
Development of $\mathrm{L}_{2} \mathrm{X}_{2} \mathrm{Ru}=\mathrm{CHR}$ Olefin Metathesis Catalysts: An Organometallic Success Story. Acc. Chem. Res. 34: 18-29.

Upton, T. H.; Rappé, A. K. (1985) A theoretical basis for low barriers in transition-metal complex $2 \pi+2 \pi$ reactions: the isomerization of the dicyclopentadienyl titanium complex $\mathrm{Cp}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$ to $\mathrm{Cp}_{2} \mathrm{TiCH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. J. Am. Chem. Soc. 107: 1206-1218.

Wadt, W. R.; Hay, P. J. Hay (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82: 284.

Wright, T. C. (1996) Geometric structure of $\mathrm{Ar} \cdot \mathrm{NO}^{+}$: revisited. A failure of density functional theory. J. Chem. Phys. 105: 7579.

Yoshida, T.; Koga, N.; Morokuma, K. (1995) Ab Initio theoretical study on ethylene polymerization with homogeneous silylene-bridged group 4 metallocene catalysts. Ethylene insertion and β elimination. Organometallics 14: 746-758.

Yüksel, D.; Düz, B.; Sevin, F. (2008) DFT study of the 1 -octene metathesis reaction mechanism with $\mathrm{WCl}_{6} / \mathrm{C}$ catalytic system. J. Phys. Chem. A 112: 4636-4643.

CHAPTER FOUR

DENSITY FUNCTIONAL THEORY STUDIES OF THE MECHANISTIC ASPECTS OF TRANSITION-METAL-

ASSISTED FORMATION OF 1, 2DINITROSOALKANES

4.1 INTRODUCTION

Brunner and Loskot (Brunner, 1968; Brunner and Loskot, 1971; 1973) have reported that the cobalt nitrosyl dimmer $[\mathrm{CpCoNO}]_{2}$, prepared by nitrosating $\mathrm{CpCo}(\mathrm{CO})_{2}$, reacted, in the presence of additional NO, with moderately strained bicyclic alkenes such as norbonene to give cis- exo complexes (1,2-dinitrosoalkanes). Reactions of this type have a number of practical advantages, the most important being attenuation of steric problems associated with direct approach to the metal center, more efficient complexation of electron-rich alkenes, and high retention of stereochemistry at the alkene.

Bergman and co-workers (Becker et. al., 1980) investigated the scope and mechanism of the reaction and found it to proceed well with a wide range of alkenes, including even those which were substituted with several electron-donating alkyl groups.

They also found that the dinitrosoalkanes formed in these reactions were in some cases isolable and in all cases could be reduced with LiAlH_{4}, thus providing a general method for converting alkenes into vicinal, primary diamines (Becker et. al., 1980). Indeed, this procedure has been shown to work satisfactorily for terminal, E and Z , di-, tri-, and at least some tetrasubstituted alkenes and leads to various aliphatic 1,2- diamines (Le Gall et. al., 1998). Compounds incorporating the 1,2diamino functionality have important biological properties (Michalson and Szuskovicz, 1989). In recent years several synthetic 1,2-diamines such as 1,2diaminoplatinum complexes have been employed as medicinal agents, in particular in chemotherapy (Le Gall et. al., 1998). Vicinal diamine derivatives also find increasing utilization in synthesis, either as chiral auxiliaries or as metallic ligands, especially in the field of catalytic asymmetric synthesis (ibid.). Schomaker et. al. (2008) have reported the use of the
dinitrosyl complexes for the $\mathrm{C}-\mathrm{H}$ functionalization of alkenes. Schomaker et. al. (2009) have also demonstrated the utility of the cobalt dinitrosyl complexes for the [3+2] annulation of alkenes with unsaturated enones and ketimines. Reactions of a series of cobalt dinitrosyl/alkene adducts with conjugate acceptors in the presence of $\mathrm{Sc}(\mathrm{OTf})_{3} / \mathrm{LHMDS}$ formed two new C-C bonds at the carbons α to the nitrosyl groups of the substrate, leading to unusual tri- and tetra-cycles, retrocycloaddition of which in the presence of norbomadiene yielded functionalized tetrasubstituted bicyclic olefins.

The requirement for NO in the adduct-forming step led Bergman et. al. (Becker et. al., 1980) to suggest that $\mathrm{CpCo}(\mathrm{NO})_{2}$ may be the initially formed intermediate; they subsequently provided kinetic and spectroscopic evidence for $\mathrm{CpCo}(\mathrm{NO})_{2}$ as a reactive intermediate (Becker and Bergman, 1983).

Some mechanistic questions surrounding the reaction of the cobalt dinitrosyl complex $\quad\left(\mathrm{CpCo}(\mathrm{NO})_{2}\right)$ intermediate with alkenes to form dinitrosoalkanes have not been clearly resolved. Bergman et. al. (Becker and Bergman, 1983) measured the absolute and relative bimolecular rate constants for the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with various olefins in cyclohexane at $20^{\circ} \mathrm{C}$ and observed that 2,3-dimethyl-2-butene reacted fastest of all the isomeric hexenes studied. In contrast, it has been noted that transition-metal reactions involving olefin coordination usually follow the rate sequence $\mathrm{RCH}=\mathrm{CH}_{2}$ >> $(\mathrm{Z})-\mathrm{RCH}=\mathrm{CHR}>(\mathrm{E})-\mathrm{RCH}=\mathrm{CHR}$, while tri- and tetra- substituted olefins often show little tendency to react at all (Biellman et. al, 1970). Therefore, that 2,3-dimethyl-2butene (a tetrasubstituted olefin) reacted at all, and that, except for 1-hexene, the trend in olefin reactivity is completely opposite to the noted trend for $\mathrm{CpCo}(\mathrm{NO})_{2}$, has been considered by Becker and Bergman (1983) as strong evidence that this cyclization
reaction does not take place via initial olefin coordination to the cobalt atom. These workers, therefore, suggested that the reaction takes place directly - probably in a concerted fashion - between the nitrogen atoms of the nitrosyl group and the π - bond of the olefin (Scheme 4.1), in analogy to the classical mechanism for osmium tetraoxide olefin oxidation (Schröder, 1980; Schröder and Constable, 1982; Casey, 1983).

Scheme 4.1: Bergman's Proposed Mechanism for the Formation of 1,2-Dinitrosoalkanes.

However, using ECP Hartree-Fock and GVB calculations and Pauli Principle
(Upton and Rappé, 1984) arguments, Upton and Rappẻ (1985) have suggested that in general (given thermodynamic accessibility) a $2+24 \pi$-electron reaction where one of the component electrons is in a d-orbital will occur with very small barriers. These workers showed that the participation of a 3d-orbital allows satisfaction of the Pauli Principle constraints in a unique way that avoids the unfavorable transition-state bonding interactions that are usually the source of a high barrier. These workers therefore proposed a reaction sequence involving the concerted addition of a single metalnitrogen π-bond across the olefin π-bond, followed by a rapid reductive elimination involving the second metal-nitrogen π - bond to form the observed 1,2-dinitrosoalkane (Scheme 4.2), since the addition of an olefin across a metal-ligand π-bond will occur with a small barrier (on the order of 2
$\mathrm{kcal} / \mathrm{mol}$) and reductive elimination channels of the formation of 1,2-
reactions are documented to occur with small barriers (Norton, 1979).

Scheme 4.2: Rappè's Proposed Mechanism of 1,2-Dinitrosoalkane Formation
 This work aims at exploring theoretically the potential energy surface of the reactions of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with some olefins (ethylene, 2-norbonene, trans-1-phenylpropene, cyclopentene, cyclohexene and 2,3-dimethyl-2-butene) at the DFT B3LYP/LACVP* level of theory. The geometries and relative energies of the relevant structures (reactants, transition states, intermediates and products) along the two proposed reaction pathways (Schemes 4.1 and 4.2) are computed to provide some understanding of the plausible mechanistic
atoms $\mathrm{H}-\mathrm{Ar}$ with the $6-31 \mathrm{G}^{*}$ basis while heavier atoms are modeled with the dinitrosoalkanes.

4.2 DETAILS OF CALCULATIONS

All calculations were carried out with the SPARTAN '06 V112 Molecular LANL2DZ basis set which uses the allelectron valence double zeta basis set (D95V), developed by Dunning, for first row elements (Dunning and Hay, 1976) and the Los Alamos ECP plus double zeta basis set developed by Wadt and Hay for the atoms $\mathrm{Na}-\mathrm{La}, \mathrm{Hf}-\mathrm{Bi}$ (Hay and Wadt, 19785a; 1985b; Wadt and Hay, 1985).

The starting geometries of the molecular systems were constructed using SPARTAN's graphical model builder and minimized interactively using the sybyl
force field (Clark et. al, 1989). All geometries were fully optimized without any symmetry constraints. The optimized geometries were subjected to full frequency calculations to verify the nature of the stationary points. Equilibrium geometries were characterized by the absence of imaginary frequencies. The transition state structures were located by a series of constrained geometry optimizations in which the forming- and breaking-bonds were fixed at various lengths while the remaining internal coordinates were optimized. The approximate stationary points located from such a procedure were then fully optimized using the standard transition state optimization procedure in SPARTAN. All first-order saddle-points were shown to have a Hessian matrix with a single negative eigenvalue, characterized by an imaginary vibrational frequency along the reaction coordinate. All the computations were performed on Dell Precision T3400 Workstation computers.

4.3 RESULTS AND DISCUSSION

4.3.1 REACTIONS OF $\operatorname{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$ Co, Rh, Ir) WITH ETHYLENE

The density functional theory (DFT) optimized geometries of the $\mathrm{CpM}(\mathrm{NO})_{2}$ reactant structures are shown in Figure 4.1a. Optimization of the $\mathrm{CpCo}(\mathrm{NO})_{2}$ reactant yielded four minima, labeled R1, R2, R3 and $\mathbf{R 4}$ in Figure 4.1a. Structure R1 is the most stable structure. It has the two $\mathrm{Co}-\mathrm{N}-\mathrm{O}$ angles at 136.85°, the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angle at 100.69° and the oxo groups pointing outward. This structure has the shortest Cp Co bond length (1.743 \AA) and the longest Co-N bond length (1.719 A) of all the optimized Co reactant structures. Structure R2 which has the two $\mathrm{C}-\mathrm{N}-\mathrm{O}$ angles at 171.48° and 124.97° and the oxo groups pointing inwards, is $0.96 \mathrm{kcalmol}^{-1}$ less stable than R1.

R1

R3

R4

R6

R7

R9

R12
Figure 4.1a Optimized geometries of the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ reactant minima. Bond lengths in \AA.
Unlike in R1, the two Co-N bond lengths in $\mathbf{R 2}$ are unequal. The Cp -Co bond in structure $\mathbf{R} \mathbf{2}$ is $0.06 \AA$ longer than it is in structure R1. Structure R3 has the two Co-$\mathrm{N}-\mathrm{O}$ angles at 150.28° and the oxo groups pointing inwards. It has the shortest $\mathrm{Co}-\mathrm{N}$ bond $(1.646 \AA$) and the longest Cp-Co bond
$(1.940 \AA)$ of all the Co reactant structures and is $6.88 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{R 1}$. Structure R4 has the two $\mathrm{N}-\mathrm{O}$ bonds sticking out of the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ plane by 99.18° and is the least stable of all the reactant minima. It has the smallest $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ angle of 96.56° which is 4.13° smaller than the corresponding angle in $\mathbf{R 1}$ and is 13.05 kcal mol^{-1} less stable than $\mathbf{R 1}$. In R1, R2, and $\mathbf{R 3}$, the two $\mathrm{N}-\mathrm{O}$ and $\mathrm{Co}-\mathrm{N}$ bonds all lie in the same plane while in $\mathbf{R 4}$, the two $\mathrm{N}-\mathrm{O}$ bonds are almost perpendicular $\left(99.18^{\circ}\right)$ to the $\mathrm{N}-\mathrm{Co}-\mathrm{N}$ plane.

Four reactant minima, labeled R5, R6, R7 and R8 in Figure 4.1a, have also been located for the Rh system. Structure R5 which is the most stable minimum has the two Rh-N bond lengths at $1.876 \AA$, Rh-N-O angles at 133.30°, an $\mathrm{N}-\mathrm{Rh}-\mathrm{N}$ angle of 97.85° and the Rh-Cp distance of $2.067 \AA$. This structure is geometrically very similar to structure $\mathbf{R 1}$ which is the most stable structure among the Co reactant structures but the the $\mathrm{N}-\mathrm{Rh}-\mathrm{N}$ angle is 2.84° smaller in
$\mathbf{R 5}$ than in R1. Structure R6 is the second most stable structure and is $2.86 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{R 5}$, the most stable structure. Structure R6 closely resembles $\mathbf{R 2}$, the second most stable structure among the Co reactant minima. Structure $\mathbf{R 6}$ is 2.86 kcal mol^{-1} less stable than $\mathbf{R 5}$ while structures R7 and R8 are $5.08 \mathrm{kcal} \mathrm{mol}^{-1}$ and $12.59 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{R 5}$ respectively. In general, the optimized $\mathrm{CpRh}(\mathrm{NO})_{2}$ reactant geometries are similar to the corresponding optimized $\mathrm{CpCo}(\mathrm{NO})_{2}$ reactant geometries except that the $\mathrm{Cp}-\mathrm{Rh}$ bonds are longer than the Cp -Co bonds and the $\mathrm{N}-\mathrm{Rh}-\mathrm{N}$ angles are smaller than the N -Co-N angles.

Optimization of the $\mathrm{CpIr}(\mathrm{NO})_{2}$ reactant structures gave $\mathbf{R 9}, \mathbf{R 1 0}, \mathbf{R 1 1}$ and R12, whose geometrical parameters are similar to those of Co and Rh complexes. The relative energies of the conformers are however different. Whereas $\mathbf{R 2}$ and R6 are the second most stable reactant minima for the Co and Rh complexes respectively,
structure R9 which has the closest geometrical resemblance to $\mathbf{R 2}$ and $\mathbf{R 6}$ is the most stable among the Ir reactant minima; also R11 which has the closest geometrical resemblance to $\mathbf{R 1}$ and $\mathbf{R 5}$ is the third most stable species among the Ir reactant minima.

The π-complexes optimized from the interaction of the $\mathrm{CpM}(\mathrm{NO})_{2}$ with ethylene are shown in Figure 4.1b. The π-complex (pi-comp1) formed from the interaction between $\mathrm{CpCo}(\mathrm{NO})_{2}$ and ethylene is 7.02 kcal mol^{-1} above the reactants on the energy profile while the $\operatorname{CpRh}(\mathrm{NO})_{2}$-ethylene π complex (pi-comp2) is $0.65 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants. The geometric features of pi-comp1 and pi-comp2 are very similar. However, the two Rh-N bond lengths are practically the same (differ only by $0.003 \AA$) in the Rh complex while the two $\mathrm{Co}-\mathrm{N}$ bonds lengths differ by $0.101 \AA$. Thus the $\mathrm{Rh} \pi$-complex is more symmetric than the Co π-complex. The Ir π-complex (picomp3) formed from the interaction of $\mathbf{R 9}$
with ethylene is $3.78 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactant. Thus the order of stability of the π complexes formed from the interaction of ethylene with the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ complexes is $\mathrm{Rh}>\mathrm{Ir}>\mathrm{Co}$.

Figure 4.1b Optimized geometries of the π complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with ethylene. Bond lengths in \AA.

The energetics of the π-complexes reported here must be considered in relation to the well-known difficulties for DFT methods to describe weak interactions (Kristán and Pulay, 1994; Wright, 1996; Peréz-Jordá and Becke, 1995; Ruiz et. al.,

1996; Garcia et. al., 1997). The B3LYP functional in particular does not describe dispersion, and therefore underestimates the interaction energies of π-bonded systems. This may well result in a repulsive interaction (Mourik and Gdanitz, 2002; Mourik, 2008). However, Goddard et. al. (2002) used the same functional to study copolymerization of polar monomers catalyzed by model Brookhart Pd and Ni catalysts and found all the π-complexes to be lower in energy than the reactants.

The optimized geometries of the transition states and products involved in the [3+2] addition of ethylene across the M-N bonds of $\mathrm{CpM}(\mathrm{NO})_{2}$ are shown in Figure 4.1c. The $[3+2]$ addition of ethylene across the two $\mathbf{C o}-\mathrm{N}$ bonds of $\mathbf{R 1}$ through transition state TS1 leads to product pdt1 (Figure 4.1c). Transition state TS1 has been found to be $0.33 \mathrm{kcal} \mathrm{mol}^{-1}$ below the reactants on the energy profile (Figure 4.1d). Attempts at locating an intermediate connecting the reactants and this transition
state were unsuccessful. The resulting product pdt1 is $34.88 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. The Cp-Co bond length decreases by only $0.011 \AA$ in going from the reactant to the transition state and a further $0.023 \AA$ to the final product. The geometry of transition state TS1 suggests that the formation of pdt1 proceeds by a concerted and synchronous pathway.

The [3+2] addition of ethylene across the two Rh-N bonds of $\mathbf{R 5}$ through transition state TS4 leads to product pdt2, with a barrier of $0.59 \mathrm{kcal} \mathrm{mol}^{-1}$ and exothermicity of $29.67 \mathrm{kcalmol}^{-1}$. This transition state also suggests a synchronous pathway but transition state TS4 occurs slightly later than TS1. The differences between the $\mathrm{N}-\mathrm{C}$ forming bonds in the transition states and the products are $0.79 \AA$ and $0.90 \AA$ for Rh and Co complexes respectively. The transition state TS7 for the [3+2] addition of ethylene across the two IrN bonds of $\mathbf{R 9}$ is $5.0 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants on the energy profile. Transition
state TS7 is an early transition state compared with the corresponding transition states in Co (TS1) and Rh (TS4) complexes. The differences between the $\mathrm{N}-\mathrm{C}$ formingbond lengths in the transition state and the product is $1.39 \AA$ in Ir (TS7), $0.90 \AA$ in Co (TS1) and $0.79 \AA$ in Rh (TS4). The geometry of transition state TS7 is also indicative of a synchronous reaction

 pathway. The resulting product pdt3 is 31.52 kcal mol^{-1} exothermic. The formation of this product is thus slightly more exothermic than the formation of the corresponding product in the Rh complex ($29.67 \mathrm{kcalmol}^{-1}$) but slightly less exothermic than the formation of the corresponding product in the Co complex (-34.52 kcalmol ${ }^{1}$). Thus the observed trend in the (2.984 exothermicity of the $[3+2]$ reaction step with respect to metal complex is Co >Ir > Rh, which turns out to be the reverse of the order of the stability of the π-complexes.

Figure 4.1c Optimized geometries of the transition states and products formed from [3+2] addition of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with ethylene. Bond lengths in A.

The [2+2] addition of ethylene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathbf{R 1}$ proceed through transition states TS2 and TS3 (Figure 4.1d), with barriers of 30.15 and $33.11 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 4.1d), to form intermediates $\mathbf{I 1}$ and $\mathbf{I} 2$ which are 0.58 and $2.97 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic respectively. In TS2 the oxygen atom of the spectator NO group points towards the hydrogens in the four-membered ring, an orientation which is indicative of hydrogen bonding, while in

TS3 the oxygen points away. TS2 is about 3 kcal mol^{-1} more stable than TS3, which is due to stabilization of TS2 by hydrogen bonding relative to TS3. In TS3, the Co-C forming bonds are almost completely formed (2.184 \AA in the transition state compared to $2.000 \AA$ in the product) whereas the $\mathrm{N}-\mathrm{C}$ bond is still far from being formed ($2.16 \AA$ in the transition state compared to $1.48 \AA$ in the product). The CoC bond length of $2.227 \AA$ in transition state TS2 decreases to $1.981 \AA$ in the product while the $\mathrm{N}-\mathrm{C}$ bond length of $2.174 \AA$ decreases to $1.479 \AA$ in the product. The orientation of the oxygen atoms in the transition states are maintained in their respective products. The hydrogen bonding interaction is thus maintained in $\mathbf{I 1}$, making it $2.38 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than $\mathbf{I} \mathbf{2}$. The Cp-Co bond length increases from $1.743 \AA$ in the reactant to $1.818 \AA$ in TS2 and then decreases to $1.787 \AA$ in $\mathbf{I 1}$.

The [2+2] addition of ethylene across the $\mathrm{Rh}-\mathrm{N}$ bonds of $\mathrm{CpRh}(\mathrm{NO})_{2}(\mathbf{R 5})$
leads to two products I3 and I4 through transition states TS5 and TS6 respectively (Figure 4.1e). The lower-energy transition state, TS5, which is $29.96 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants (Figure 4.1d), has the oxygen atom pointing towards the four-membered ring and is $2.12 \mathrm{kcal} \mathrm{mol}^{-1}$ below TS6 in which the nitroso oxygen points away. These barriers are comparable with those found for the $[2+2]$ reaction involving the Co complex. The oxygen-in conformer (I3), which is $0.54 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic, is $1.99 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the oxygenout conformer (I4). This contrasts with the case involving the Co complex in which both conformations are slightly exothermic.

Figure 4.1d Energy profiles of the [3+2] and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}$ ($\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}$) with ethylene. Relative energies in kcalmol ${ }^{-1}$.

Two transition states TS8 and TS9 have also been located for the $[2+2]$ addition of ethylene across the Ir-N bond of $\mathbf{R 9}$ to form intermediates I5 and I6 (Figure 4.1d). The geometrical features of these transition states are very similar to those located for the corresponding reactions involving the

Co and Rh complexes. Transition state TS9 which is $32.50 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants (Figure 4.1d) is $1.86 \mathrm{kcal} \mathrm{mol}^{-1}$ lower than transition state TS8.

I1

I4

I6

Figure 4.1e Optimized geometries of the stationary points involved in the $[2+2]$ addition of ethylene to $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, Rh, Ir). Bond lengths in Å.

Table 4.1: Relative Energies (in kcalmol ${ }^{-1}$) of the Transition States Formed From [3+2]
and [2+2] Addition of Olefins to $\mathrm{CpM}(\mathrm{NO})_{2}$ $(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})^{\mathrm{a}}$

	Co		Rh	
olefin	$\mathrm{TS}[3+2]$	$\mathrm{TS}[2+2]$		$\mathrm{TS}[3+2]$
ethylene	-0.33	+30.15		+0.59
2-norbonene	-1.02	+30.63		-0.65
trans-1-phenyl- propene	-0.39	+32.46	+1.70	
cyclopentene	-0.78	+30.22	-0.44	
cyclohexene	+1.29	+38.00	+2.99	
2,3-dimethyl-	-1.56	+32.21		
2-butene				

[^1]For each of the complexes the activation barrier for the [3+2] addition is far lower than the barrier for [2+2] addition (Figure 4.1d and Table 4.1). An attempt to locate a transition state for the rearrangement of the products of $[2+2]$ addition to the products corresponding to [3+2] addition was unsuccessful, indicating that the re-arrangement of the product of [2+2] addition by reductive elimination involving the second metal-nitrogen π-bond to form the observed 1,2-dinitrosoalkane
may not be possible. Therefore, for the ethylene olefin the one-step [3+2] pathway for the formation of 1,2-dinitrosoalkanes proposed by Becker and Bergman (1983) has been found to be more plausible than the stepwise path proposed by Upton and Rappé (1985).

4.3.2 REACTIONS OF $\operatorname{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$

 Co, Rh, Ir) WITH 2-NORBONENEA π-complex (pi-comp4) (Figure 4.2a) that has been optimized from the interaction of $\mathbf{R 1}$ with 2-norbonene is 11.54 kcal mol^{-1} endothermic. This $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ norbonene π-bonded complex is 4.52 kcal mol^{-1} less stable than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ ethylene π-bonded complex. A π-bonded complex (pi-comp5) has also been optimized from the interaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with 2-norbonene and is found to be $3.94 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. This π complex is therefore $7.60 \mathrm{kcal} \mathrm{mol}^{-1}$ less
stable than pi-comp4. The olefinic C-C bond of 2-norbonene is $0.049 \AA$ longer in the π-complex than in the reactant. The π complex (pi-comp6) optimized from the interaction of $\mathrm{CpIr}(\mathrm{NO})_{2}$ with 2-norbone is $9.11 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. This π complex is more endothermic than the $\mathrm{CpRh}(\mathrm{NO})_{2}$-norbonene π-complex but less endothermic than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ norbonene π-complex. Thus the order of stability of the π-complexes formed from the reaction of 2-norbonene with the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ complexes is Rh $>\mathrm{Ir}>\mathrm{Co}$.

The optimized geometries of the stationary points involved in the [3+2] addition of 2-norbonene across the M-N bonds of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) are shown in Figure 4.2b. The [3+2] addition of the olefinic $\mathrm{C}-\mathrm{C}$ bond of 2-norbonene across the two $\mathrm{Co}-\mathrm{N}$ bonds of $\mathrm{CpCo}(\mathrm{NO})_{2}$ leads to two products, pdt4 (the exo isomer) and pdt5 (the endo isomer), which are 42.09 and 39.01 kcal mol^{-1} exothermic respectively. Species pdt4, the isomer isolated in the work of Brunner and Loskot (vide supra), is found to be $3.08 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the endo isomer. The products pdt4 and pdt5 are 7.21 and 4.13 $\mathrm{kcal} \mathrm{mol}^{-1}$ respectively more exothermic than pdt1 which is formed from the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with ethylene. The transition state TS10 for the formation of the exo product pdt4 is found to be $1.02 \mathrm{kcal} \mathrm{mol}^{-1}$

Figure 4.2a Optimized geometries of the π complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2} \quad(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with 2norbonene. Bond lengths in \AA.
below the reactants. The formation of pdt4 from the reactants apparently occurs in only one step as attempts at locating an intermediate were unsuccessful. The transition state TS10 is an early transition
state compared to the corresponding ethylene addition in TS1.

The [3+2] addition of norbonene across the two $\mathrm{Rh}-\mathrm{N}$ bonds of $\mathrm{CpRh}(\mathrm{NO})_{2}$ leads to two products, pdt9 (the exo isomer) and pdt10 (the endo isomer) (Figure 4.2b), which are 36.38 and $33.84 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ exothermic respectively. Products pdt9 and pdt10 are respectively $5.71 \mathrm{kcal} \mathrm{mol}^{-1}$ and $5.17 \mathrm{kcal} \mathrm{mol}^{-1}$ less exothermic than pdt4 which is formed from the reaction of 2norbonene with $\mathrm{CpCo}(\mathrm{NO})_{2}$. The transition state TS13 for the formation of pdt9 is 0.65 $\mathrm{kcal} \mathrm{mol}^{-1}$ below the reactants (Figure 4.2c).

The products of [3+2] addition of norbonene across the two Ir-N bonds of $\mathrm{CpIr}(\mathrm{NO})_{2}$ are 38.39 and $34.88 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic respectively for the exo (pdt15) and endo(pdt16) isomers (Figure 4.2b). These exothermicities are higher than those found for the reaction of norbonene with the Rh complex but lower than those found for the reaction of norbonene with the Co complex. The activation barrier for the
formation of pdt15 through transition state TS16 is 4.77 kcalmol $^{-1}$. This barrier is higher than that found for the formation of the corresponding product in the Co and Rh complexes. The geometrical features of pdt15 are similar to those of pdt3 obtained from the addition of ethylene to $\mathrm{CpIr}(\mathrm{NO})_{2}$) with respect to the $\mathrm{N}-\mathrm{C}$ forming-bond lengths, which are $1.51 \AA$ in both cases, even though pdt15 is $6.87 \mathrm{kcal} \mathrm{mol}^{-1}$ more exothermic than pdt3. Thus changing the olefin from ethylene to norbonene increases the exothermicity of the reaction. The change however has not had any marked effect on the $\mathrm{N}-\mathrm{C}$ forming-bonds and the activation barrier of the reaction, which only decreases slightly from 5.05 to $4.77 \mathrm{kcalmol}^{-}$ ${ }^{1}$. The N-C forming-bond lengths are also comparable in the transition states involving ethylene and norbonene.

Figure 4.2b Optimized geometries of the stationary points involved in the $[3+2]$ reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with 2-norbonene. Bond lengths in \AA.

pdt15

Figure 4.2b (Continued) Optimized geometries of the stationary points involved in the $[3+2]$ reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, $\mathrm{Rh}, \mathrm{Ir})$ with 2-norbonene.

Figure 4.2c Energy profiles of the [3+2] and [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$ $\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2-norbonene. Relative energies in kcalmol ${ }^{-1}$.

Four different minima are optimized from the $[2+2]$ addition of the olefinic $\mathrm{C}-\mathrm{C}$ bond of norbonene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathrm{CpCo}(\mathrm{NO})_{2}$ - two isomers (exo and endo) and two conformers depending on whether
the nitroso oxygen points towards the norbonene moiety (cis) or away from it (trans) (Figure 4.2 Cp$)_{\text {cprr(NO) }}^{2}$. The order of stability of these minima is ${ }^{\frac{+322.28}{148}}:\left(-0.92 \mathrm{kcalmol}^{-1}\right)>$ pdt6 $\left(-0.58 \quad \mathrm{kcalmol}^{-1}\right)>$ pdt7 $\quad(+1.13$ kcalmol $\left.^{-1}\right)>$ pdit $^{\left(5^{+2}\right.}\left(+1.22\right.$ kcalmol $\left.^{-1}\right)$. The activation barrier for the formation of the
 the formation of the endo proditists through transition state TS12 is $35.51 \mathrm{kcal} \mathrm{mol}^{-1}$.

Four minima have also been optimized from the $[2+2]$ addition of the olefinic bond of norbonene across the Rh-N bond of $\mathrm{CpRh}(\mathrm{NO})_{2}$ (Figdite 4.2 e). The order of stability of these structures is: pdt13 ($\left.0.47 \mathrm{kcalmol}^{-1}\right)>$ pdt12 $\left(+0.60 \mathrm{kcal} \mathrm{mol}^{-1}\right)>$ pdt11 $\left(+1.51 \mathrm{kcal} \mathrm{mol}^{-1}\right)>$ pdt14 $(+2.04$ kcal mol^{-1}). The activation barrier for the formation of the exo intermediate through transition state TS14 is $30.81 \mathrm{kcal} \mathrm{mol}^{-1}$ while that for the formation of the endo intermediate through transition state TS15 is $35.32 \mathrm{kcalmol}^{-1}$. These barriers are
comparable with the barriers found for the corresponding reactions involving the Co complex (30.63 and $35.51 \mathrm{kcal} \mathrm{mol}^{-1}$ for the exo and endo isomers respectively). The RhC forming-bond is $0.149 \AA$ longer in transition state TS14 than in product pdt12 while the $\mathrm{N}-\mathrm{C}$ forming-bond is $0.637 \AA$ longer in transition state TS14 than in product pdt12. The corresponding differences in the Co complex are $0.138 \AA$ and $0.691 \AA$ respectively. For the endo intermediate, the $\mathrm{Rh}-\mathrm{C}$ forming-bond is $0.136 \AA$ longer in the transition state TS15 than in the intermediate pdt14 while the N C forming bond is $0.759 \AA$ longer in the transition state TS15 than in the intermediate pdt14. The corresponding differences in the Co complex are $0.133 \AA$ and $0.857 \AA$ respectively.

Four minima have been optimized from the $[2+2]$ addition of the olefinic C-C bonds of norbonene to the Ir-N bonds of $\mathrm{CpIr}(\mathrm{NO})_{2}(\mathbf{R 9})$ (Figure 4.2f). The order of stability of these minima is pdt20 (-4.78
kcalmol $\left.^{-1}\right)$ > pdt18 (-2.98 kcalmol $\left.^{-1}\right)$ > pdt17 $\left(-2.59\right.$ kcalmol $\left.^{-1}\right)>$ pdt19 $(-1.92$ kcalmol ${ }^{-1}$.

Figure 4.2f Optimized geometries of the stationary points involved in the [2+2] addition reaction between $\mathrm{CpIr}(\mathrm{NO})_{2}$ and 2norbonene. Bond lengths in \AA.

The geometrical parameters of these minima are similar with respect to the forming and breaking bonds. The activation barrier for the formation of the exo and endo intermediates through transition states TS17 and TS18 are respectively 32.28 and 36.61 $\mathrm{kcalmol}^{-1}$. These barriers are comparable with the barriers found for the corresponding
reactions involving the Co and Rh complexes (see Figure 4.2c). They are also comparable with the barriers for the formation of the corresponding products in the reaction of $\operatorname{CpIr}(\mathrm{NO})_{2}$ with ethylene(compare Figures 4.1d and 4.2c).

It is seen that the activation barriers for the $[3+2]$ addition are very low compared to the barriers for the [2+2] addition (Figure 4.2c). A transition state for the re-arrangement of the products of [2+2] addition to the products corresponding to [3+2] addition could not be located, indicating that the re-arrangement of the product of $[2+2]$ addition by reductive elimination involving the second metalnitrogen π-bond to form the observed 1,2dinitrosoalkane may not be possible. Therefore, for the 2-norbonene olefin the one-step [3+2] pathway for the formation of 1,2-dinitrosoalkanes proposed by Becker and Bergman (1983) has been found to be more plausible than the stepwise path proposed by Upton and Rappé (1985).
4.3.3 REACTIONS OF $\operatorname{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$ Co, Rh, Ir) COMPLEXES WITH
TRANS-1-PHENYLPROPENE

A π-complex (pi-comp7) (Figure 4.3a) has been optimized from the addition of $\mathrm{CpCo}(\mathrm{NO})_{2} \quad(\mathbf{R 1})$ with trans-1phenylpropene and is found to be 15.63 kcal mol^{-1} endothermic. This π-complex is 8.61 kcal mol^{-1} and $4.09 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than pi-comp1 (where ethylene is the olefin) and pi-comp4 (when norbonene is the olefin) respectively. The distance between the Co and the olefin C-C centroid in picomp7 is computed to be $2.053 \AA$, which is close to the distance of $2.037 \AA$ found in picomp1. A π-complex (pi-comp8) has also been optimized from the interaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ (R5) with trans-1phenylpropene and is $5.69 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ endothermic. This endothermicity contrasts with the $\mathrm{CpRh}(\mathrm{NO})_{2}$-ethylene π-complex endothermicity of $0.65 \mathrm{kcal} \mathrm{mol}^{-1}$ and the $\mathrm{CpRh}(\mathrm{NO})_{2}$-norbonene π-complex endothermicity of $3.94 \mathrm{kcalmol}^{-1}$. The
distance between the metal center and the olefinic C-C centroid in pi-comp8 is 0.139 A longer than the corresponding distance in pi-comp7. A π-complex (pi-comp9) optimized from the interaction of $\mathrm{CpIr}(\mathrm{NO})_{2}$ ($\mathbf{R 9)}$ with trans-1-phenylpropene is 11.19 kcal mol^{-1} endothermic. This π-complex is $7.4 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ less stable than the $\operatorname{CpIr}(\mathrm{NO})_{2}$-ethylene π-complex. The order of stability of the π-complexes formed from the interaction of trans-1-phenylpropene with the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ complexes is Rh > Ir > Co.

Figure 4.3a Optimized geometries of the π complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with trans-1phenylpropene. Bond lengths in \AA.

The product of [3+2] addition of the olefinic bond of trans-1-phenylpropene across the $\mathrm{Co}-\mathrm{N}$ bonds of $\mathrm{CpCo}(\mathrm{NO})_{2}$
(pdt21) (shown in Figure 4.3b) is found to be $27.93 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. Thus the exothermicity of the reaction decreases by $6.95 \mathrm{kcal} \mathrm{mol}^{-1}$ when trans-1-phenylpropene is used as olefin instead of ethylene. The transition state TS19 connecting the reactants and pdt21 is found to be 0.39 kcal mol^{-1} below the reactants. This is consistent with what has been observed in the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with ethylene and with 2norbonene. The [3+2] addition of the olefinic C-C bond of trans-1-phenylpropene across the two $\mathrm{Rh}-\mathrm{N}$ bonds of $\mathrm{CpRh}(\mathrm{NO})_{2}$ (R5) leads to the product pdt27 (Figure 4.3 b) which is $22.05 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic; $5.88 \mathrm{kcal} \mathrm{mol}^{-1}$ less exothermic than pdt21 formed from the corresponding reaction involving the Co complex. The transition state TS24 for the formation of pdt27 is $1.70 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants. This transition state contrasts with the transition state of the corresponding reaction involving the Co complex which is $0.39 \mathrm{kcal} \mathrm{mol}^{-1}$ below the reactants.

The product pdt29 (Figure 4.3b)
formed from [3+2] addition of the olefinic bond of trans-1-phenylpropene to the Ir-N bonds of $\mathbf{R 9}$ is found to be $23.90 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. The exothermicity of this reaction is comparable with the exothermicity of the reaction between $\mathrm{CpRh}(\mathrm{NO})_{2}$ with trans-1-phenylpropene to form pdt27 (22.05kcalmol ${ }^{-1}$) but 4.03 kcal mol^{-1} less than the exothermicity of the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with trans-1phenylpropenene to form pdt21. The activation barrier for the formation of pdt29 through transition state TS27 is 5.63

pdt21
 complex (formation of pdt27).

Figure 4.3b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, Rh, Ir) with trans-1-phenylpropene. Bond lengths in \AA.

The formation of product pdt23 (Figure 4.3 c) from [2+2] addition of the olefinic C-C bond of trans-1-phenylpropene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathrm{CpCo}(\mathrm{NO})_{2}$ proceed through a stepwise pathway. The first step involves the formation of pdt22 which has an endothermicity of 16.50 $\mathrm{kcalmol}^{-1}$, through transition state TS20 with an activation barrier of $16.73 \mathrm{kcalmol}^{-1}$, and the second step involves the formation of pdt23, which has an endothermicity of 5.14
kcalmol $^{-1}$, from pdt22, through either transition state TS21 or TS22 (depending on the stereochemical orientation of the substituents on the olefin at the critical point), with an activation barrier of 15.96 $\mathrm{kcal} \mathrm{mol}^{-1}$ or $17.69 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 4.3d). The species pdt24, which is $10.77 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ exothermic, is a higher-energy conformer of pdt23. The species pdt25 and pdt26 are formed through transition state TS23 with a barrier of $41.28 \mathrm{kcalmol}^{-1}$.

The transition state TS25 (Figure $4.3 \mathrm{c})$ for the $[2+2]$ addition of the olefinic C-C bond of trans-1-phenylpropene across the $\mathrm{Rh}-\mathrm{N}$ bond of $\operatorname{CpRh}(\mathrm{NO})_{2}$ is 36.61 $\mathrm{kcalmol}^{-1}$, leading to product pdt28 which is $12.04 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic (Figure 4.3d). The activation barrier for the $[2+2]$ addition of the olefinic $\mathrm{C}-\mathrm{C}$ bond of trans-1phenylpropene across the Ir-N bond of $\mathrm{CpIr}(\mathrm{NO})_{2}$ through transition state TS28 is $37.12 \mathrm{kcalmol}^{-1}$, leading to a product pdt30 which is $7.69 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic.

Figure 4.3c Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, Rh, Ir) with trans-1-phenylpropene. Bond lengths in \AA.

Figure 4.3d Energy profiles of the [3+2] and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}$ $=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with trans-1-phenylpropene. Relative energies in $\mathrm{kcalmol}^{-1}$.

Figure 4.3 d shows that the activation barrier for the $[2+2]$ addition pathways are higher than those for the [3+2] addition pathway. A transition state for the rearrangement of the products of [2+2] addition to the products corresponding to
[3+2] addition could not be located, indicating that the re-arrangement of the product of [2+2] addition by reductive elimination involving the second metalnitrogen π-bond to form the observed 1,2dinitrosoalkane may not be possible. Therefore, for the trans-1-phenylpropene olefin the one-step [3+2] pathway for the formation of 1,2-dinitrosoalkanes proposed by Becker and Bergman (1983) has been found to be more plausible than the stepwise path proposed by Upton and Rappé (1985).
\square \square

4.3.4 REACTIONS OF $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$,

 Rh, Ir) WITH CYCLOPENTENEA π-complex (pi-comp10) (Figure
4.4a) optimized from the interaction of cyclopentene and $\mathrm{CpCo}(\mathrm{NO})_{2}(\mathbf{R 1})$ is 13.30 kcal mol^{-1} endothermic. This π-complex is $6.28 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than pi-comp1 which is formed from the interaction of R1 with ethylene. The π-complex (pi-comp11) optimized from the interaction of
$\mathrm{CpRh}(\mathrm{NO})_{2}$ with cyclopentene is 4.80 kcal mol^{-1} endothermic. It is thus $8.50 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the $\mathrm{CpCo}(\mathrm{NO})_{2}$ cyclopentene π-complex but $4.15 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the $\mathrm{CpRh}(\mathrm{NO})_{2}$-ethylene π complex. The π-complex pi-comp12 formed from the interaction of $\mathrm{CpIr}(\mathrm{NO})_{2}(\mathbf{R 9})$ with cyclopentene is $10.53 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic. This π-complex is 2.87 kcal mol^{-1} more stable than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ cyclopentene π-complex but $5.73 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the $\mathrm{CpRh}(\mathrm{NO})_{2^{-}}$ cyclopentene π-complex.

of pdt31. The activation barrier for the formation of pdt35 by [3+2] addition of the olefinic bond of cyclopentene across the two Ir-N bonds of $\mathrm{CpIr}(\mathrm{NO})_{2}$ through transition state TS33 is $4.42 \mathrm{kcalmol}^{-1}$. This barrier is higher than the barrier of the corresponding reactions in the Co complex ($-0.78 \mathrm{kcalmol}^{-}$ ${ }^{1}$) and Rh complex ($-0.44 \mathrm{kcalmol}^{-1}$). The resulting product pdt35 is $31.91 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. Thus product pdt35 is 3.41 kcal mol^{-1} less stable than pdt31 formed from the reaction of cyclopentene with $\mathrm{CpCo}(\mathrm{NO})_{2}$, but $2.23 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than pdt33 formed from the reaction of cyclopentene with $\mathrm{CpRh}(\mathrm{NO})_{2}$.

Figure 4.4b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2} \mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with cyclopentene. Bond lengths in \AA.

The formation of product pdt32 (Figure 4.4 c) by $[2+2]$ addition of the olefinic C-C bond of cyclopentene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathrm{CpCo}(\mathrm{NO})_{2}$ through transition sate TS30 is $2.81 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic and has an activation barrier of $30.22 \mathrm{kcal} \mathrm{mol}^{-1}$ while the formation of product pdt34 by [2+2] addition through transition state $\mathbf{T S 3 2}$ is $4.78 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic and has an activation barrier of $29.86 \mathrm{kcalmol}^{-1}$. The activation barrier for the formation of product pdt36 by [2+2]

Figure 4.4c Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2} \mathrm{M}=\mathrm{Co}$, Rh , Ir) with cyclopentene. Bond lengths in \AA.

Figure 4.4d Energy profiles of the [3+2] and [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2} \mathrm{M}=\mathrm{Co}$, $\mathrm{Rh}, \mathrm{Ir})$ with cyclopentene. Relative energies in kcalmol ${ }^{-1}$.

As seen in Figure 4.4d, the activation barrier for the $[3+2]$ addition is far lower than the barrier for the $[2+2]$ addition. An attempt to locate a transition state for the rearrangement of the products of [2+2] addition to the products corresponding to [3+2] addition was unsuccessful, indicating
that the re-arrangement of the product of [2+2] addition by reductive elimination involving the second metal-nitrogen π-bond to form the observed 1,2-dinitrosoalkane may not be possible. Therefore, for the cyclopentene the one-step [3+2] pathway for the formation of 1,2-dinitrosoalkanes proposed by Becker and Bergman (1983) may be more plausible than the stepwise path proposed by Upton and Rappé (1985).

4.3.5 REACTIONS OF $\operatorname{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$

Co, Rh, Ir) WITH

CYCLOHEXENE

The π-complex pi-comp13 (Figure
4.5a) formed from the interaction between
$\mathrm{CpCo}(\mathrm{NO})_{2}(\mathbf{R 1})$ and cyclohexene is 15.88
$\mathrm{kcal} \mathrm{mol}{ }^{-1}$ endothermic, which is 8.86 kcal mol^{-1} less stable than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ ethylene π-complex. The π-complex picomp14 formed from the interaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with cyclohexene is 3.95 kcal mol^{-1} endothermic, which is $11.93 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ more stable than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ cyclohexene π-complex and $3.30 \mathrm{kcal} \mathrm{mol}^{-1}$
less stable than the $\mathrm{CpRh}(\mathrm{NO})_{2}$-ethylene π complex while the π-complex pi-comp 15 formed from the interaction of $\mathrm{CpIr}(\mathrm{NO})_{2}$ with cyclohexene is $6.44 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ endothermic, which is $8.64 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than the $\mathrm{CpCo}(\mathrm{NO})_{2}$-cyclohexene π complex but $2.49 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than the $\operatorname{CpIr}(\mathrm{NO})_{2}$-cyclohexene π-complex. Thus the order of stability of the π complexes resulting from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2} \quad(\mathrm{M}=\mathrm{Co}, \quad \mathrm{Rh}, \quad \mathrm{Ir}) \quad$ with cyclohexene is $\mathrm{Rh}>\mathrm{Ir}>\mathrm{Co}$.
$\mathrm{CpCo}(\mathrm{NO})_{2}$ with ethylene. The exo product pdt37 is more symmetric than the endo product pdt38 with respect to the formingbonds. The activation barriers for the formation of the exo product pdt37 and the endo product pdt38 through transition states TS35 and TS36 are $6.99 \mathrm{kcal} \mathrm{mol}^{-1}$ and 1.29 kcal mol^{-1} respectively. The transition state TS35 is more symmetric than TS36.

The [3+2] addition of the olefinic CC bond of cyclohexene across the two Rh-N bonds of $\mathrm{CpRh}(\mathrm{NO})_{2}$ forms products pdt40 (exo) and pdt41(endo) which are 24.08 and $23.99 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic respectively. The products pdt40 and pdt41 are also respectively 5.59 and $5.68 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than pdt9 which is formed from the reaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with ethylene. The activation barriers for the formation of pdt40 and pdt41 through transition states TS38 and TS39 are $7.71 \mathrm{kcal} \mathrm{mol}^{-1}$ and 2.99 $\mathrm{kcal} \mathrm{mol}^{-1}$ respectively.

The product endo pdt43 formed from [3+2] addition of the olefinic C-C bond
of cyclohexene across the $\operatorname{Ir}-\mathrm{N}$ bond of $\mathrm{CpIr}(\mathrm{NO})_{2}$ is $26.10 \mathrm{kcal} \mathrm{mol}^{-1}$ exothermic. No exo product could be located on the potential energy surface for the Ir complex. Product pdt43 is $3.84 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than pdt38 formed from the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with cyclohexene but 2.11 kcal mol^{-1} more stable than pdt41 formed from the reaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with cyclohexene. The activation barrier for the formation of pdt43 through transition state

TS41 is $6.45 \mathrm{kcal} \mathrm{mol}^{-1}$.

Figure 4.5b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclohexene. Bond lengths in \AA.

Figure 4.5b (continued) Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with cyclohexene. Bond lengths in Å.

Figure 4.5c Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with cyclohexene. Bond lengths in \AA.

Figure 4.5c (Continued) Optimized geometries of the stationary points involved in the [2+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with cyclohexene. Bond lengths in Å.

The [2+2] addition of cyclohexene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathrm{CpCo}(\mathrm{NO})_{2}$ leads to product pdt39 (Figure 4.5 c) which is 6.74 $\mathrm{kcal} \mathrm{mol}^{-1}$ endothermic (Figure 4.5d). The activation barrier for this reaction through transition state TS37 is $38.00 \mathrm{kcalmol}^{-1}$. The formation of product pdt42 by [2+2] addition of cyclohexene across the Rh-N
bond of $\mathrm{CpRh}(\mathrm{NO})_{2}$ through transition state
TS40 is $8.62 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic and has activation barrier of $37.59 \mathrm{kcal} \mathrm{mol}^{-1}$ while the formation of product pdt44 by [2+2] addition across the $\mathrm{Ir}-\mathrm{N}$ bonds of $\mathrm{CpIr}(\mathrm{NO})_{2}$ through transition state $\mathbf{T S 4 2}$ is 4.58 kcal mol^{-1} endothermic and has an activation barrier of $35.27 \mathrm{kcal} \mathrm{mol}^{-1}(4.5 \mathrm{~d})$.

Figure 4.5d Energy profiles of the [3+2] and $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=$

Co, Rh, Ir) with cyclohexene. Relative energies in kcal mol ${ }^{-1}$.

The activation barriers for the $[2+2]$ addition pathway are higher than the barriers for the [3+2] addition pathway (Figure 4.5d). A transition state for the rearrangement of the products of [2+2] addition to the products corresponding to [3+2] addition could not be located, indicating that the prreoarrangement of the
 dinitrosoalkanée may not be possible.

 dinitrosoalkanes proposed by Becker and Bergman (1983) has peen found to be more plausible than the stepwise path proposed by $\frac{-2 \text { Eppton }}{\text { pdt41 }}$ and Rappé (1985i). $-\frac{26.10}{\mathrm{pdt} 43}$

4.3.6 REACTIONS OF CpM(NO) $)_{2}(\mathrm{M}=$

Co, Rh, Ir) WITH 2,3-
DIMETHYL-2-BUTENE

The π-complex pi-comp16 (Figure
4.6a) optimized from the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with 2,3-dimethyl-2-butene is $14.83 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, which is 7.81 kcal mol^{-1} less stable than the $\mathrm{CpCo}(\mathrm{NO})_{2^{-}}$ ethylene π-complex while the π-complex picomp17 optimized from the interaction of $\operatorname{CpRh}(\mathrm{NO})_{2}$ with 2,3-dimethyl-2-butene is $4.01 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, which is 3.36 kcal mol^{-1} less stable than the $\mathrm{CpRh}(\mathrm{NO})_{2^{-}}$ ethylene π-complex. The π-complex picomp18 optimized from the interaction of 2,3-dimethyl-2-butene with $\mathrm{CpIr}(\mathrm{NO})_{2}$ is $10.49 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, which is 6.70 kcal mol $^{-1}$ less stable than the $\mathrm{CpIr}(\mathrm{NO})_{2^{-}}$ ethylene π-complex. The pi-comp18 is also $4.34 \mathrm{kcal} \mathrm{mol}^{-1}$ more stable than pi-comp16 but $6.48 \mathrm{kcal} \mathrm{mol}^{-1}$ less stable than $\mathbf{~ p i - ~}$ comp17. Thus the order of stability of the π complexes formed from the reactions of the $\mathrm{CpM}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ complexes with 2,3-dimethyl-2-butene is $\mathrm{Rh}>\mathrm{Ir}>\mathrm{Co}$, an order that is observed in all the olefins studied.

Figure 4.6a Optimized geometries of the π complexes formed from the interaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2,3-dimethyl-2-butene. Bond lengths in \AA.

The transition state TS44 (Figure $4.6 b)$ for the $[3+2]$ addition of the olefinic C-C bond of 2,3-dimethyl-2-butene across the two $\mathrm{Co}-\mathrm{N}$ bonds of $\mathrm{CpCo}(\mathrm{NO})_{2}(\mathbf{R 1})$ is $1.56 \mathrm{kcal} \mathrm{mol}^{-1}$ below the reactants (Figure 4.6d). The resulting product pdt47 is 33.24 kcal mol^{-1} exothermic. This is comparable
with the exothermicity of pdt1 (-34.88 $\mathrm{kcalmol}^{-1}$) formed from the $[3+2]$ addition of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with ethylene. The transition state TS46 for the [3+2] addition of the olefinic C-C bond of 2,3-dimethyl-2-butene across the $\mathrm{Rh}-\mathrm{N}$ bonds of $\mathrm{CpRh}(\mathrm{NO})_{2}$ is $0.81 \mathrm{kcal} \mathrm{mol}^{-1}$ above the reactants, leading to pdt49 which is $26.05 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ exothermic. This barrier is comparable with the barrier of $0.59 \mathrm{kcal} \mathrm{mol}^{-1}$ found for the formation of pdt2 from the reaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with ethylene. The activation barrier for the formation of pdt51 from the [3+2] addition of 2,3-dimethyl-2-butene to the $\operatorname{Ir}-\mathrm{N}$ bonds of $\mathrm{CpIr}(\mathrm{NO})_{2}(\mathbf{R 9)}$ through transition state TS48 is $4.61 \mathrm{kcalmol}^{-1}$, a barrier which is higher than the corresponding barrier in the reaction of 2,3-dimethyl-2-butene with $\mathrm{CpCO}(\mathrm{NO})_{2}$ and $\mathrm{CpRh}(\mathrm{NO})_{2}$ but comparable with the corresponding barrier in the reaction of $\mathrm{CpIr}(\mathrm{NO})_{2}$ with ethylene $\left(5.05 \mathrm{kcalmol}^{-1}\right)$. The resulting product pdt51 is 27.77 kcal mol^{-1} exothermic, which is comparable with the exothermicities of products pdt47 (33.24
kcalmol $^{-1}$) and pdt49 (26.05 $\left.\mathrm{kcalmol}^{-1}\right)$ which are formed from the reaction of 2,3-dimethyl-2-butene with $\mathrm{CpCo}(\mathrm{NO})_{2}$ and $\mathrm{CpRh}(\mathrm{NO})_{2}$ respectively.

TS48

Fig. 4.6b Optimized geometries of the stationary points involved in the [3+2] addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ with 2,3-dimethyl-2-butene. Bond lengths in \AA.

The product pdt48 (Figure 4.6c) formed from the $[2+2]$ addition of the olefinic C-C bond of 2,3-dimethyl-2-butene across the $\mathrm{Co}-\mathrm{N}$ bond of $\mathrm{CpCo}(\mathrm{NO})_{2}$ is 5.99 $\mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, making it 8.96 kcal mol^{-1} less stable than the product of $[2+2]$ addition of ethylene to $\mathrm{CpCo}(\mathrm{NO})_{2}$. The
formation of pdt48 through transition state
TS45 has an activation barrier of 32.21 $\mathrm{kcalmol}^{-1}$. The product pdt50 formed from the $[2+2]$ addition of the olefinic $\mathrm{C}-\mathrm{C}$ bond of 2,3-dimethyl-2-butene to the Rh-N bond of $\operatorname{CpRh}(\mathrm{NO})_{2}$ is $7.08 \mathrm{kcal} \mathrm{mol}^{-1}$ endothermic, which makes it $7.62 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ less stable than the product of [2+2] addition of ethylene to $\operatorname{CpRh}(\mathrm{NO})_{2}$. The activation barrier for the formation of pdt50 through transition state TS47 is 32.98 kcal mol^{-1}, which is comparable to the barrier of $32.08 \mathrm{kcal} \mathrm{mol}^{-1}$ found for the formation of the ethylene derivative of pdt48.

The activation barrier for the formation of pdt52 (Figure 4.6c) by [2+2] addition of 2,3-dimthyl-2-butene to the $\operatorname{Ir}-\mathrm{N}$ bond of $\mathrm{CpIr}(\mathrm{NO})_{2}(\mathbf{R 9})$ through transition state TS49 is $34.20 \mathrm{kcal} \mathrm{mol}^{-1}$ (Figure 4.6d). This barrier is comparable with the barriers of $32.21 \mathrm{kcal} \mathrm{mol}{ }^{-1}$ found for the corresponding reaction of 2,3-dimethyl-2butene with $\mathrm{CpCo}(\mathrm{NO})_{2}$ and $35.50 \mathrm{kcal} \mathrm{mol}^{-}$ ${ }^{1}$ found for the reaction of 2,3-dimethyl-2-
butene with $\operatorname{CpRh}(\mathrm{NO})_{2}$. It is also comparable with the corresponding barrier in the reaction of $\mathrm{CpIr}(\mathrm{NO})_{2}$ with ethylene (34.36 $\mathrm{kcalmol}^{-1}$). The product pdt52 is 2.10 $\mathrm{kcal} \mathrm{mol}^{-1}$ endothermic.

Fig. 4.6c Optimized geometries of the stationary points involved in the $[2+2]$ addition reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, Rh, Ir) with 2,3-dimethyl-2-butene. Bond lengths in \AA.

Figure 4.6d Energy profiles of the [3+2] and $[2+2]$ addition reaction between $\mathrm{CpM}(\mathrm{NO})_{2}$ ($\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir}$) and 2,3-dimethyl-2-butene. Relative energies in $\mathrm{kcalmol}^{-1}$.

The activation barriers for the $[2+2]$ addition pathway are higher than the barrier for the [3+2] pathway (Figure 4.6d). An attempt to locate a transition state for the rearrangement of the products of [2+2] addition to the products corresponding to [3+2] addition was unsuccessful, indicating that the re-arrangement of the product of
 involying the second metal-nitrogen π-bond to form the observed 1,2-dinitrosoalkane may not be póssible. Therefore, for the 2,3-dimethyl-2-butene the one-step [3+2]
 dinitrosoad 1 zannes proposed by Becker and Bergman (1983) may be more favorable than the stepwise path proposed by Upton and Rappé (1985).

4.4 CONCL $\frac{-2-7.77}{\operatorname{RUST}^{7}} \mathrm{IONS}$

From the results presented and the foregoing discussion, the following conclusions are drawn:

1. The π-complexes optimized from the reaction of the $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}$, Rh, Ir) complexes with each of the olefins are endothermic. The order of stability of the π-complexes with respect to changing metal is $\mathrm{Rh}>\mathrm{Ir}$ $>$ Co. These energetics must be viewed in relation to the well-known difficulties for density functional
theory methods to describe weak interactions. The B3LYP functional in particular does not describe dispersion, and therefore underestimates the interaction energies of π-bonded systems. This may well result in a repulsive interaction.
2. The activation barriers for the onestep [3+2] addition pathway for the formation of 1,2-dinitrosoalkanes are generally very low. The highest barriers of this step occur in the reaction of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}$, Ir) with cyclohexene, which is 1.29 kcal mol^{-1} for the Co complex, 2.99 kcal mol^{-1} for the Rh complex and $6.45 \mathrm{kcal} \mathrm{mol}^{-1}$ for the Ir complex. The order in the activation barrier for [3+2] addition with respect to changing metal is $\mathrm{Ir}>\mathrm{Rh}>\mathrm{Co}$ for each of the olefins studied.
3. The dinitrosoalkanes formed have also been found to be very stable
thermodynamically. The highest exothermicity is $42.09 \mathrm{kcal} \mathrm{mol}^{-1}$ obtained for the reaction of $\mathrm{CpCo}(\mathrm{NO})_{2}$ with 2-norbonene and the lowest is $22.05 \mathrm{kcal} \mathrm{mol}^{-1}$ obtained for the reaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with trans-1phenylpropene. The order in thermodynamic stability of the dinitrosoalkane complexes of Co, Rh and Ir with respect to changing olefins has been found to be: norbonene $>$ ethylene \approx cyclopentene > 2,3-dimethyl-2-butene > cyclohexene > trans-1phenylpropene while the order in thermodynamic stability with respect to changing metal is $\mathrm{Co}>\mathrm{Ir}>\mathrm{Rh}$ for each of the olefins studied.
4. The activation barriers for the $[2+2]$ addition of the olefinic bonds across the $\mathrm{M}-\mathrm{N}$ bonds to form an intermediate are generally very high; the lowest barrier is $29.86 \mathrm{kcal} \mathrm{mol}^{-1}$
found for the reaction of $\mathrm{CpRh}(\mathrm{NO})_{2}$ with cyclopentene. The order of the activation barriers for this step with respect to changing olefins for the Co complex has been found to be: cyclohexene $>$ trans-1phenylpropene > 2,3-dimethyl-2butene $>$ ethylene \approx cyclopentene \approx norbonene. The corresponding order for the Rh and Ir complexes have been found to be: cyclohexene > trans-1-phenylpropene > 2,3-dimethyl-2-butene > norbonene > ethylene \approx cyclopentene, and trans-1-phenylpropene > cyclohexene > cyclopentene $\quad \approx$ 2,3-dimethyl-2butene > norbonene > ethylene respectively. The intermediates formed are generally either slightly exothermic (highest exothermicity being $2.98 \mathrm{kcalmol}^{-1}$) or endothermic (highest endothermicity being 12.04 kcalmol ${ }^{-1}$).
5. An attempt to locate a transition state for the re-arrangement of the products of $[2+2]$ addition to the products corresponding to [3+2] addition was unsuccessful in each of the complexes with each of the olefins, indicating that the rearrangement of the product of [2+2] addition by reductive elimination involving the second metal-nitrogen π-bond to form the observed 1,2dinitrosoalkane may not be possible.
6. Since the activation barriers for the one-step [3+2] pathway are generally very low, and those for the $[2+2]$ addition pathway leading to the intermediates are generally very high, coupled with the fact that no transition state has been located for the re-arrangement of the products of the latter pathway to those of the former pathway, it is very unlikely that 1,2-dinitrosoalkanes can be formed by the stepwise pathway
proposed by Upton and Rappé (1985). Therefore the direct one-step [3+2] pathway proposed by Becker and Bergman (1983) is the most plausible pathway for the formation of 1,2-dinitrosoalkanes.

REFERENCES

Becker, P. N.; White, M.A.; Bergman, R. G. (1980) A new method for 1,2-diamination of alkenes using cyclopentadienylnitrosylcobalt dimer/NO/LiAlH4. J. Am. Chem. Soc. 102: 5676 - 5677.

Becker, P.N.; Bergman, R. G.(1983) Reversible exchange of $\left(\eta^{5}\right.$ cyclopentadienyl) (dinitrosoalkane)cobalt complexes with alkenes. Kinetic and spectroscopic evidence for cyclopentadienyldinitrosylcobalt as a reactive intermediate. J. Am. Chem. Soc. 105, 2985-2995.

Biellman, J.; Hemmer, H.; Lavisalles, J. (1970) The Chemistry of alkenes. Zabicky, J. (Ed.) Interscience; New York; Pp. 215 265.

Brunner, H. (1968) Über nitrosyl-metallkomplexe III. Cyclopentadienylnitrosylkobalt. J. Organomet. Chem. 12: 517-522.

Brunner, H.; Loskot, S. (1971) Incorporation of Olefin and Nitric Oxide into Organocobalt compounds. Angew. Chem., Int. Ed. Engl. 10: 515-516.

Brunner, H.; Loskot, S. (1973) Über nitrosyl-metall-komplexe: XV. Die reaktion von organokobalt-verbindungen mit no und olefinen - eine neue
dreikomponentensynthese. J. Organomet. Chem. 61: 401-414.

Casey, C. P. (1983) The structure of intermediates formed in the reaction of osmium tetroxide with 1,1diphenylethylene. J. Chem. Soc., Chem. Commun. 126.

Clark, M.; Cramer, R. D.; Opdenbosch, N. V. (1989) Validation of the general purpose tripos 5.2 force field. J. Comp. Chem. 10: 982-1012.

Dunning, T. H., Jnr.; Hay, P. J. (1976) In: Modern Theoretical Chemistry, H. F. Schaefer, III,; Plenum, New York, Vol. 3.

Garcia, A.; Cruz, E. M.; Sarasola, C.; Ugalde, J. M. (1997) Density functional studies of the $b \pi$. aб charge-transfer complex formed between ethyne and chlorine monofluoride. J. Phys. Chem. A 101: 3021-3024.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J. Chem. Phys. 82: 270.

Hay, P. J.; Wadt, W, R. (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 82: 299.

Kristyán, S.; Pulay, P. (1994) Can (semi)local density functional theory account for the London dispersion forces? Chem. Phys. Lett. 229: 175 - 180.

Le Gall, T.; Mioskowski, C.; Lucet, D. (1998) The Chemistry of vicinal diamines. Angew. Chem., Int. Ed. 37: 2580 - 2627.

Michalson, E. T.; Szuszkovicz, J. (1989) Prog. Drug. Res. 33, 135.

Mourik, T. V. (2008) assessment of density functionals for intramolecular dispersionrich interactions. J. Chem. Theory Comput. 41610 - 1619 .

Mourik, T. V.; Gdanitz, R. J. (2002) A critical note on density functional theory studies on rare-gas dimers. J. Chem. Phys. 116, 9620 - 9623.

Norton, J. R. (1979) Organometallic elimination mechanisms: studies on osmium alkyls and hydrides. Acc. Chem. Res. 12, 139-145.

Peréz-Jordá, J. M.; Becke, A. D. (1995) A density functional study of van der Waals forces: rare gas diatomics. Chem. Phys. Lett. 233, 134.

Philipp, D. M.; Muller, R. P.; Goddard, W. A., III; Storer, J.; McAdon, Mullins, M. (2002) Computational Insights on the Challenges for Polymerizing Polar Monomers. J. Am. Chem. Soc. 124: 10198 10210.

Ruiz, E.; Salahub, D. R.; Vela, A. (1996) Charge-transfer complexes: Stringent tests for widely used density functionals. J. Phys. Chem. 100: 12265-12276.

Schomaker, J. M.; Boyd, W.C.; Stewart, I. C.; Toste, F. D.; Bergman, R. G. (2008) Cobalt Dinitrosoalkane Complexes in the

C-H Functionalization of Olefins. J. Am. Chem. Soc. 130: 3777-3779.

Schomaker, J. M.; Toste, F.D.; Bergman, R. G. (2009) Cobalt-mediated $[3+2]-$ annulation reaction of alkenes with α, β unsaturated ketones and imines. Org. Lett. 11: 3698-3700.

Schroder, M. (1980) Osmium tetroxide cis hydroxylation of unsaturated substrates. Chem. Rev. 80: 187-213.

Schröder, M.; Constable, E. C. J. (1982) Direct spectroscopic evidence for the formation of an asymmetric intermediate in the oxidation of alkenes by osmium tetraoxide. J. Chem. Soc., Chem. Commun. 734-736.

Spartan, Wavefunction, Inc.; 18401 Von Karman Ave., \# 370, Irvine, CA, 92715, USA.

Upton, T. H.; Rappẻ, A. K. (1984) Activation of single-bond cleavage processes on metal surfaces: a comparison of dissociative hydrogen adsorption with simple gas-phase exchange reactions. J. Am. Chem. Soc. 106: 1561-1571.

Upton, T. H.; Rappé, A. K. (1985) A theoretical basis for low barriers in transition-metal complex $2 \pi+2 \pi$ reactions: the isomerization of the dicyclopentadienyltitanium complex $\mathrm{Cp}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$ to $\mathrm{Cp}_{2} \mathrm{TiCH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. J. Am. Chem. Soc. 107: 1206-1218.

Wadt, W. R.; Hay, P. J. Hay (1985) Ab initio effective core potentials for molecular
calculations. Potentials for main group elements Na to Bi. J. Chem. Phys. 82, 284.

Wright, T. C. (1996) Geometric structure of Ar•NO+: revisited. A failure of density functional theory. J. Chem. Phys. 105: 7579.
method was chosen for use throughout the work based on the dual criteria of efficiency and accuracy. Although DFT calculations may underestimate weak interactions such as van der Waals interactions, they generally give better and more reliable descriptions of the geometries and relative energies for transition metal systems than either HartreeFock or MP2 methods (Ziegler, 1991; Parr and Yang, 1989; Koch and Holthuasen, 2001; Dedieu, 1991; Torrent et. al., 2001; Niu and Hall, 2000; Frenking and Frölich, 2000). Hybrid and gradient-corrected DFT methods often outperform MP2 while using less computer time. There are also no difficulties for DFT with the calculation of compounds of the first transition metal row.

The studies presented here illustrate the general approach usually taken in a theoretical investigation. Using the experimental findings, possible reaction pathways are proposed and a reasonable computational method chosen for the studies. By determining the structures and
energies of reactants, intermediates, transition states, and products, the reaction path is elucidated. By changing the transition metal, the ligands, and their substituents and by examining the electronic structures of the reaction system, the factors that contribute to the chemical reactivity and selectivity are explored. Through this process, an 'understanding' of the underlying chemistry can be reached, and the rules on which the rational design of new catalysts should be based are created. The work has demonstrated that not only do quantum chemical studies unveil detailed structural information on postulated intermediates, but they also provide insight otherwise unavailable into reaction mechanisms. Using the computed reaction energy and activation energy of each elementary step, different proposed mechanisms for some organometallic reactions have been verified while some new reaction pathways have been proposed.

In the study of the oxidation of ethylene by chromyl chloride, the mechanism of epoxide precursor formation which has been the subject of prolonged controversy (Criegee, 1936; Criegee et. al., 1942; Corey et. al., 1989; Corey et. al., 1993; Schröder, 1980; Jorgensen and Hoffmann, 1986; Wu et. al., 1992; Gable and Phan, 1994; Hentges and Sharpless, 1980; Nortey et. al., 1994; Nortey et. al., 1996; Wallis and Kochi, 1988a; 1988b; Göbel and Sharpless, 1993; Pidun et. al., 1996; Dapprich et. al., 1996; Torrent et. al., 1998; Del Monte et. al., 1997; Torrent et. al., 1999; 1999; Limberg et. al., 1998; Limberg and Köppe, 1999), has been rationalized in favor of the $[2+2]$ mechanism through a chromaoxetane intermediate. In addition, a new pathway involving initial [3+2] ethylene addition across the $\mathrm{Cr}=\mathrm{O}$ and $\mathrm{Cr}-\mathrm{Cl}$ bonds has been explored and found to be more feasible than the pathway involving initial [3+2] ethylene addition across the two $\mathrm{Cr}=\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ which had earlier been put up as the most plausible reaction
pathway. The formation of the 1,2dichloroethane precursor was found to take place via initial [3+2] addition of ethylene across the two $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ while the 1,2-chlorohydrin precursor was found to originate from initial [3+2] ethylene addition across the $\mathrm{Cr}-\mathrm{O}$ and $\mathrm{Cr}-\mathrm{Cl}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$. Also the formation of vinyl alcohol and acetaldehyde precursors from chromyl chloride and ethylene, which had not been explored in earlier studies, were found to proceed by a direct attack of one of the carbon atoms of ethylene on an oxygen atom of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ through a triplet intermediate.

Future determination of the activation barriers for the formation of the acetaldehyde and vinyl alcohol precursors would fill in the gap in the knowledge of the kinetics of formation of these species in the present study of the oxidation of ethylene by chromyl chloride. Also since the fivemembered ring ester complex intermediate formed from [3+2] addition of ethylene
across the two $\mathrm{Cr}=\mathrm{O}$ bonds of $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$ (A3) and the epoxide precursor (A5) both appear to be very stable according to the present study and those of others (Torrent et. al, 1999), they might well be isolated experimentally if sought for.

In the reactions of $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}$, Mo, W, Ru, Re) with ethylene it was found that the formation of the metallacyclobutane through formal $[2+2]$ cycloaddition, a key step in the olefin metathesis reaction according to the Herrison-Chauvin mechanism, is a low-barrier process in each of the complexes studied. It was also found that the active species for the formation of the metallacyclobutane is a carbene complex and not a carbenoid complex. One key factor was found to be responsible for the difference in metathesis activity in these complexes: the stability of the carbenoid complexes relative to the carbenes. In Cr and Ru , the carbenoid complexes are more stable than the carbenes and thus $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ are likely to exist in the
lower-energy carbenoid $\mathrm{Cl}_{3} \mathrm{MCH}_{2} \mathrm{Cl}$ form as opposed to the carbene $\mathrm{Cl}_{4} \mathrm{M}=\mathrm{CH}_{2}$ form. This is likely to deplete the reaction surface of the active species of the process, making $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ not suitable for olefin metathesis. This suggests that whereas $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ may catalyze olefin metathesis, $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ may not. The W and Re complexes have been found to have greater metathesis activity than the Mo complex.

In the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ complexes the metathesis reaction has favorable energetics and is found to be more feasible than the side reactions studied, namely the $[2+2]$ ethylene addition across the $\mathrm{M}-\mathrm{O}$ bond, [3+2] ethylene addition across the $\mathrm{M}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$ bonds and the [3+2] ethylene addition across the M-O and $\mathrm{M}-\mathrm{Cl}$ bonds, while in the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ complexes the olefin metathesis is found to be less favorable than the side reactions. Thus the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Mo}, \mathrm{W}, \mathrm{Re})$ complexes are
expected to undergo olefin metathesis while the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{MCH}_{2}(\mathrm{M}=\mathrm{Cr}, \mathrm{Ru})$ complexes may not. However, in the $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{CrCH}_{2}$ complex the metathesis reaction could be competitive with the side reactions and thus metathesis may occur to some extent. The W carbene complexes have been found to be the best complexes for olefin metathesis reactions as these complexes have the lowest barriers among the Mo, W, and Re complexes and the most unambiguous preference for the metathesis pathway over the side reactions.

Even though the $\mathrm{Cl}_{4} \mathrm{MCH}_{2}(\mathrm{Cr}, \mathrm{Mo}$, W, Ru, Re) complexes were found to display triplet ground state electronic structures in addition to the singlet structures, the reaction mechanisms can be satisfactorily rationalized solely on the singlet potential energy surface. The $\mathrm{Cl}_{4} \mathrm{ReCH}_{2}$ and $\mathrm{Cl}_{2}(\mathrm{O}) \mathrm{ReCH}_{2}$ complexes were found to display predominantly doublet ground state electronic structures.

It is recommended that future theoretical work in this area should investigate solvent effects by incorporating a relevant solvent field model in the calculations, since the presence of elongation of the $\mathrm{M}-\mathrm{Cl}$ bonds seem to indicate the importance of solvent effects on the course of the reaction. Also work with substituted alkenes could be initiated to explore the influence of steric hindrances on the energetics of the reactions of the various metals.

In the transition-metal-assisted formation of 1,2-dinitrosoalkanes, it was found that the activation barriers for the onestep [3+2] addition pathway for the formation 1,2-dinitrosoalkanes are generally very low while the activation barriers for the $[2+2]$ addition of the $\mathrm{C}=\mathrm{C}$ bond of the olefins across the M-N bonds of $\mathrm{CpM}(\mathrm{NO})_{2}(\mathrm{M}=\mathrm{Co}, \mathrm{Rh}, \mathrm{Ir})$ to form an intermediate are generally very high. A transition state for the re-arrangement of the products of $[2+2]$ addition to the products of
[3+2] addition could not be located, indicating that the re-arrangement of the products of $[2+2]$ addition by reductive elimination involving the second metalnitrogen π-bond to form the observed 1,2dintrosoalkanes as suggested in the work of Rappé and Upton (Upton and Rappé, 1984; 1985) may not be possible. Therefore it is concluded that the direct one-step [3+2] addition pathway proposed by Becker and Bergman (1983) for the formation of 1,2dinitrosoalkanes is a more plausible pathway.

It is recommended that future work in this area could focus on a systematic study of the effect of the nature of the olefin (electron-withdrawing and electrondonating) on the energetics of the reaction to help explore how it might influence the overall mechanisms of the reactions involving the various metals.

REFERENCES

Becker, P. N.; White, M.A.; Bergman, R. G. (1980) A new method for 1,2-diamination of alkenes using cyclopentadienylnitrosylcobalt dimer/NO/LiAlH4. J. Am. Chem. Soc. 102: 5676-5677.

Becker, P.N.; Bergman, R. G.(1983) Reversible exchange of $\left(\eta^{5}\right.$ cyclopentadienyl) (dinitrosoalkane)cobalt complexes with alkenes. Kinetic and spectroscopic evidence for cyclopentadienyldinitrosylcobalt as a reactive intermediate. J. Am. Chem. Soc. 105: 2985-2995.

Corey, E. J.; Jardine, P. D.; Virgils, S.; Yuen, P.-W.; Connell, R. D. (1989) Enantioselective vicinal hydroxylation of terminal and E-1,2-disubstituted olefins by a chiral complex of osmium tetraoxide. An effective controller system and a rational mechanistic model. J. Am. Chem. Soc. 111: 9243 - 9244.

Corey, E. J.; Noe, M. C.; Sarshar, S. (1993) The origin of high enantioselectivity in the dihydroxylation of olefins using osmium
tetraoxide and cinchona alkaloid catalysts. J. Am. Chem. Soc. 115, 3828-3829.

Criegee, R. (1936) Osmiumsäure-ester als Zwischenprodukte bei Oxydationen. Justus Liebigs Ann. Chem. 522: 75 - 96.

Criegee, R.; Marchaand, B.; Wannowius, H. (1942) 1942) Zur Kenntnis der organischen Osmium-Verbindungen. II. Mitteilung. Justus Liebigs Ann. Chem. 550: 99-133.

Dapprich, S.; Ujaque, G.; Maseras, F.; Lledós, A.; Musaev, D. G.; Morokuma, K. (1996) Theory does not support an osmaoxetane intermediate in the osmiumcatalyzed dihydroxylation of olefins. J. Am. Chem. Soc.118: 11660-11661.

Dedieu, A. (2000) Theoretical studies in palladium and platinum molecular chemistry. Chem. Rev. 100, 543-600

Del Monte, A. J.; Haller, J.; Houk, K. N.; Sharpless, K. B.; Singleton, D. A.; Strassner, T.;

Thomas, A. A. (1997) Experimental and theoretical kinetic isotope effects for asymmetric dihydroxylation. Evidence supporting a rate-limiting " $(3+2)$ " cycloaddition. J. Am. Chem. Soc. 119: 9907 - 9908.

Frenking, G.; Frölich, N. (2000) The nature of the bonding in transition-metal compounds. Chem. Rev. 100: 717-774.

Gable, K. P.; Phan, T. N. (1994) Extrusion of alkenes from rhenium (v) diolates: Energetics and mechanism. J. Am. Chem. Soc. 116: 833-839.

Göbel, T.; Sharpless, K. B. (1993) Temperature effects in asymmetric dihydroxylation: evidence for a stepwise
mechanism. Angew. Chem.; Int. Ed. Engl. 32: 1329-1331.

Hentges, S. G.; Sharpless, K. B. (1980) Asymmetric induction in the reaction of osmium tetroxide with olefins. J. Am. Chem. Soc. 102, 4263-4265.

Jorgensen, K. A.; Hoffmann, R. W. (1986) Binding of alkenes to the ligands in $\mathrm{OsO}_{2} \mathrm{X}_{2}$ ($\mathrm{X}=\mathrm{O}$ and NR) and $\mathrm{CpCo}(\mathrm{NO})_{2}$. A frontier orbital study of the formation of intermediates in the transition-metalcatalyzed synthesis of diols, amino alcohols, and diamines. J. Am. Chem. Soc. 108, 18671876.

Koch, W.; Holthuasen, M. C. (2001) A Chemist's Guide to Density Functional Theory, 2nd Ed., Wiley-VCH, Weinheim.

Limberg, C.; Köppe, R. (1999) Reactive intermediates in olefin oxidations with chromyl chloride. IR-Spectroscopic proof for $\mathrm{O}=\mathrm{CrCl}_{2}$-epoxide complexes. Inorg. Chem. 38: 2106-2116.

Limberg, C.; Köppe, R.; Schnöckel, H. (1998) Matrix isolation and characterization of a reactive intermediate in the olefin oxidation with chromyl chloride. Angew. Chem. Int. Ed. 37: 496.

Niu, S.; Hall, M. B. (2000) Theoretical studies of transition-metal complexes. Chem. Rev. 100: 353-405

Nortey, P. O. Becker, H.; Sharpless, K. B. (1996) Toward an understanding of the high enantioselectivity in the osmium-catalyzed asymmetric dihydroxylation. 3. New insights into isomeric forms of the putative osmaoxetane intermediate. J. Am. Chem. Soc. 118: 35-42.

Nortey, P. O.; Kolb, H. C.; Sharpless, K. B. (1994) Calculations on the reaction of ruthenium tetroxide with olefins using density functional theory (DFT). Implications for the possibility of intermediates in osmium-catalyzed asymmetric dihydroxylation. Organometallics 13: 344-347.

Par, R. G.; Yang, W. (1989) Density Functional Theory of Atoms and Molecules; Oxford University Press, Oxford.

Pidun, U.; Boeheme, C..; Frenking, G. (1996) Theory rules out a $[2+2]$ addition of osmium tetroxide to olefins as initial step of the dihydroxylation reaction. Angew. Chem.; Int. Ed. Engl. 35: 2817 - 2820.

Schröder, M. (1980) Osmium tetraoxide cishydroxylation of unsaturated substrates. Chem. Rev. 80: 187-213.

Torrent, M.; Deng, L.; Duran, M.; Solá, M.; Ziegler, T. (1997) Density functional study of the $[2+2]$ - and [2+3]-cycloaddition mechanisms for the osmium-catalyzed dihydroxylation of olefins. Organometallics 16: $13-19$.

Torrent, M.; Deng, L.; Duran, M.; Solá, M.; Ziegler, T. (1999) Mechanisms for the formation of epoxide and chlorinecontaining products in the oxidation of ethylene by chromyl chloride: A density functional study. Can. J. Chem. 77: 1476 1491.

Torrent, M.; Deng, L.; Ziegler, T. (1998) A Density functional study of [2+3] versus $[2+2]$ addition of ethylene to chromiumoxygen bonds in chromyl chloride. Inorg. Chem. 37: 1307-1314.

Torrent, M.; Solá, M.; Frenking, G. (2000) Theoretical studies of some transition-metalmediated reactions of industrial and synthetic importance. Chem. Rev. 100: 439 494.

Upton, T. H.; Rappẻ, A. K. (1984) Activation of single-bond cleavage processes on metal surfaces: A comparison of dissociative hydrogen adsorption with simple gas-phase exchange reactions. J. Am. Chem. Soc. 106: 1561-1571.

Upton, T. H.; Rappẻ, A. K. (1985) A theoretical basis for low barriers in transition-metal complex $2 \pi+2 \pi$ reactions: the isomerization of the dicyclopentadienyltitanium complex $\mathrm{Cp}_{2} \mathrm{TiC}_{3} \mathrm{H}_{6}$ to $\mathrm{Cp}_{2} \mathrm{TiCH}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$. J. Am. Chem. Soc. 107: 1206-1218.

Wallis, J. M.; Kochi, J. K. (1988) Direct osmylation of benzenoid hydrocarbons. Charge-transfer photochemistry of osmium tetraoxide. J. Org. Chem. 53: 1679-1686.

Wallis, J. M.; Kochi, J. K. (1988) Electrontransfer activation in the thermal and photochemical osmylations of aromatic electron donor-acceptor complexes with osmium (VIII) tetroxide. J. Am. Chem. Soc. 110: 8207 - 8223.

Wu, Y.-D.; Wang, Y.; Houk, K. N. (1982) A new model for the stereoselectivities of dihydroxylations of alkenes by chiral diamine complexes of osmium tetroxide. J. Org. Chem. 57: 1362-1369.

Ziegler, T. (1991) Approximate density functional theory as practical tool in molecular energetics and dynamics. Chem. Rev. 91, 651 - 667.

	Coordinates (Angstroms)			
ATOM	X	Y	Z	
1 Cr	0.049360	0.103618	-0.299545	
2 O	-0.041653	-0.079819	-1.831678	
3 Cl	0.930600	-1.832930	0.304647	
4 Cl	1.608534	1.398700	0.455691	
5 O	-1.311416	1.216655	0.028853	
6 C	-1.644055	-0.865348	0.533703	
7 H	-1.912097	-1.664766	-0.152709	
8 H	-1.338221	-1.217467	1.515181	
9 C	-2.404013	0.435287	0.485408	
10 H	-3.220618	0.465692	-0.246667	
11 H	-2.766032	0.797298	1.455467	

APPENDIX

The optimized geometries in Cartesian and internal coordinates(in \AA), absolute energies (in hartrees) and symmetry point groups of some of the structures reported in the thesis. The structure labels correspond to those in the respective chapters.

Chapter Two

A1

	Coordinates (Angstroms)				
ATOM	X	Y	Z		
1 Cr	0.000000	0.000000	0.351958		
2 Cl	-1.745057	0.000000	-0.841337		
3 Cl	1.745057	0.000000	-0.841337		
4	O	0.000000	1.262265	1.259904	
5 O	0.000000	-1.262265	1.259904		
Distance Matrix (Angstroms)					
	$\mathrm{Cr}(1)$	$\mathrm{Cl}(2)$	$\mathrm{Cl}(3)$	$\mathrm{O}(4)$	

Cl(2) 2.114042
Cl(3) 2.1140423 .490114
O(4) 1.5548893 .0089453 .008945
O (5) $1.5548893 .0089453 .008945 \quad 2.524529$
Point Group: $\mathrm{C}_{2 \mathrm{v}}$ Number of degrees of freedom: 4
Energy $=-1157.200739279$
$\underline{\text { A1/t }}$ Coordinates (Angstroms)

Coordinates (Angstroms)			
ATOM	X	Y	Z
1 H	1.240641	-0.922990	0.000000
2 C	0.665417	0.000000	0.000000
3 C	-0.665417	0.000000	0.000000
4 H	1.240641	0.922990	0.000000
5 H	-1.240641	-0.922990	0.000000
6 H	-1.240641	0.922990	0.000000
Distance Matrix (Angstroms)			
	H (1) C	(2) C (3) $\mathrm{H}(4)$

C (2) 1.087562
C (3) 2.1177741 .330835
H (4) $1.845980 \quad 1.087562 \quad 2.117774$
H (5) 2.4812812 .1177741 .0875623 .092636
H(6) 3.092636 2.1177741 .087562 2.481281 1.845980
Point Group: $\mathrm{D}_{2 \mathrm{~h}} \quad$ Number of degrees of freedom: 3
Energy $=-78.587447729$

Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{O}(5) \quad \mathrm{C}(6)$
O (2) 1.545756
Cl(3) 2.2117532 .929600
$\mathrm{Cl}(4) 2.1630173 .1845243 .305426$
O (5) 1.7884092 .5989833 .7950842 .956593
C (6) $2.1215212 .963068 \quad 2.7599873 .9637532 .168008$
H (7) $2.645006 \quad 2.971456 \quad 2.884160 \quad 4.706359 \quad 2.9489611 .087234$
H (8) $2.6389163 .765208 \quad 2.6441894 .080467 \quad 2.8521641 .086656$
C (9) 2.5971513 .3488754 .0369704 .1266921 .4187131 .507156
H (10) $3.2903873 .5938364 .7770514 .96835212 .070002 \quad 2.205945$
H (11) 3.3893504 .3585434 .6805534 .5274792 .0801432 .207458 $\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H (8) 1.819689
C (9) 2.2493112 .219896
H (10) $2.5019813 .079050 \quad 1.097133$
H (11) 3.0622202 .4701191 .0968691 .792726
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.771797141$
A3

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1	Cr	0.000000	0.000000	0.300818
2	Cl	0.096773	1.852576	1.347977
3	Cl	-0.096773	-1.852576	1.347977
4	O	1.220014	-0.095249	-0.946703
5	O	-1.220014	0.095249	-0.946703
6	C	0.687372	-0.337170	-2.255409
7	H	0.593404	-1.419489	-2.412168
8	H	1.383047	0.076235	-2.993126
9	C	-0.687372	0.337170	-2.255409
10	H	-0.593404	1.419489	-2.412168
11	H	-1.383047	-0.076235	-2.993126
		Distance Matrix	(Angstroms)	

Cl(2) 2.130245
Cl(3) 2.1302453 .710203
O (4) 1.7475183 .2126703 .176111
O (5) $1.747518 \quad 3.176111 \quad 3.212670 \quad 2.447453$
C(6) $2.6684204 .2577213 .9869451 .433508 \quad 2.353257$
H (7) 3.1188745 .0091653 .8474142 .0721572 .7803791 .097642
H (8) 3.5733324 .8636474 .9754742 .0600563 .3112131 .095031
C (9) 2.6684203 .9869454 .2577212 .3532571 .4335081 .531226
H (10) 3.1188743 .8474145 .0091652 .7803792 .0721572 .179636
H (11) 3.5733324 .9754744 .8636473 .3112132 .0600562 .213356 $H(7) \quad H(8) \quad C(9) \quad H(10)$
H (8) 1.788362
C (9) 2.1796362 .213356
H (10) $3.0770632 .459310 \quad 1.097642$
H (11) $2.459310 \quad 2.7702931 .0950311 .788362$
Point Group: C_{2} Number of degrees of freedom: 14
Energy $=-1235.827133229$

A3/0S	Coordinates (Angstroms)			
ATOM	X	Y	Z	
1 Cr	0.000000	0.000000	0.300506	
2 Cl	0.097168	1.852555	1.347665	
3 Cl	-0.097168	-1.852555	1.347665	
4 O	1.219994	-0.095510	-0.947016	
5 O	-1.219994	0.095510	-0.947016	
6 C	0.687300	-0.337317	-2.255722	
7 H	0.593102	-1.419616	-2.412480	
8 H	1.383063	0.075940	-2.993438	
9 C	-0.687300	0.337317	-2.255722	
10 H	-0.593102	1.419616	-2.412480	
11 H	-1.383063	-0.075940	-2.993438	
Distance Matrix (Angstroms)				
	$\mathrm{Cr}(1) \mathrm{Cl}$	2) $\mathrm{Cl}($	3) $\mathrm{O}(4)$	C (6)

$\mathrm{Cl}(2) 2.130245$
$\mathrm{Cl}(3) 2.1302453 .710203$
O (4) $1.747518 \quad 3.212670 \quad 3.176111$
O (5) $1.7475183 .1761113 .212670 \quad 2.447453$
C (6) $2.6684204 .2577213 .986945 \quad 1.433508 \quad 2.353257$
H (7) 3.1188745 .0091653 .8474142 .0721572 .7803791 .097642
H (8) 3.5733324 .8636474 .9754752 .0600563 .3112131 .095031
C (9) 2.6684203 .9869454 .2577212 .3532571 .4335081 .531226
H(10) 3.1188743 .8474145 .0091652 .7803792 .0721572 .179636
H (11) 3.5733324 .9754754 .8636473 .3112132 .0600562 .213356 $\begin{array}{llll}H(7) & H(8) & C(9) & H(10)\end{array}$
H(8) 1.788362
C (9) 2.1796362 .213356
H (10) $3.0770632 .459310 \quad 1.097642$
H(11) 2.4593102 .7702931 .0950311 .78836
Point Group: C_{2} Number of degrees of freedom: 14
Energy $=-1235.827132954$
A3/t

Coordinates (Angstroms)					
ATOM	X	Y	Z		
1 Cr	0.000000	0.000000	0.268890		
2 Cl	0.054141	1.819414	1.397822		
3 Cl	-0.054141	-1.819414	1.397822		
4 O	1.240984	0.015238	-0.975191		
5 O	-1.240984	-0.015238	-0.975191		
6 C	0.716532	-0.263171	-2.285278		
7 H	0.747984	-1.347317	-2.453343		
8 H	1.358712	0.230603	-3.023115		
9 C	-0.716532	0.263171	-2.285278		
10 H	-0.747984	1.347317	-2.453343		
11 H	-1.358712	-0.230603	-3.023115		
Distance Matrix (Angstroms)					
	r(1) C	(2) $\mathrm{Cl}($	3) $\mathrm{O}(4)$	O (5)	C (6)

Cl(2) 2.141889
$\mathrm{Cl}(3) 2.1418893 .640440$
O (4) 1.7572743 .2085573 .267184
O (5) 1.7572743 .2671843 .2085572 .482154
C (6) 2.6657934 .2826564 .0719841 .4383632 .368473
H (7) $3.1281455 .0339923 .962038 \quad 2.0699122 .8134241 .097546$
H (8) 3.5688334 .8755415 .0737962 .0625793 .3185611 .095724
C (9) 2.6657934 .0719844 .2826562 .3684731 .4383631 .526665
H (10) 3.1281453 .9620385 .0339922 .8134242 .0699122 .183282
H (11) 3.5688335 .0737964 .8755413 .3185612 .0625792 .202748 $\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H(8) 1.785346
C (9) 2.1832822 .202748
H (10) $3.0820392 .451501 \quad 1.097546$
H (11) 2.4515012 .7562841 .0957241 .785346
Point Group: $\mathrm{C}_{2} \quad$ Number of degrees of freedom: 14
Energy $=-1235.867667657$

A4

	Coordinates (Angstroms)		
ATOM	X	Y	Z

$\begin{array}{lccc}\text { ATOM } & \text { X } & \text { Y } & \text { Z } \\ 1 \mathrm{Cr} & 0.593993 & -0.235656 & 0.440817\end{array}$
$2 \mathrm{Cl} \quad-1.084087 \quad 1.387972 \quad-0.082101$
3 O $\quad-0.575415 \quad-1.458106 \quad-0.155153$
$4 \mathrm{C} \quad-2.423842 \quad 0.101561-0.152279$
$\begin{array}{lllll}5 \mathrm{H} & -3.233741 & 0.542912 & -0.734309\end{array}$
$6 \mathrm{H} \quad-2.716065 \quad-0.049250 \quad 0.887299$
$7 \mathrm{C} \quad-1.797823-1.133881 \quad-0.778339$
$8 \mathrm{H} \quad-2.501455-1.969759-0.649588$
$9 \mathrm{H} \quad-1.650735-0.975080-1.856324$
$\begin{array}{lllll}10 \mathrm{O} & 0.758699 & -0.130227 & 1.975131\end{array}$
$11 \mathrm{Cl} \quad 2.247236 \quad 0.196678$-0.933263
Point Group: C_{1} Number of degrees of freedom: 27
Energy is -1235.816816313
Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{Cl}(2) \quad \mathrm{O}(3) \mathrm{C}(4) \quad \mathrm{H}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.392815$
O(3) 1.7936222 .892101
C (4) $3.0939941 .858688 \quad 2.418522$
H (5) 4.0790482 .4001073 .3773061 .090636
H (6) 3.3452322 .3809022 .7665811 .0903491 .802291
C (7) $2.8308892 .7118091 .4098811 .5199242 .208038 \quad 2.189508$
H (8) 3.7118583 .6885402 .0532622 .1315972 .6185752 .469096
H (9) 3.2958163 .0088152 .0696892 .1588472 .4635593 .085378
O (10) $1.5467273 .151665 \quad 2.8427523 .8351224 .871731 \quad 3.641967$
$\mathrm{Cl}(11) 2.1927653 .6388703 .3632024 .736871 \begin{array}{llllll}5.495505 & 5.292380\end{array}$ $\mathrm{C}(7)$$\quad \mathrm{H}(8) \quad \mathrm{H}(9) \quad \mathrm{O}(10)$
H (8) 1.100167
H (9) $1.099502 \quad 1.780259$
O (10) 3.8890534 .5718314 .604259
$\mathrm{Cl}(11) 4.2610915 .2272354 .1736363 .283499$
A5

		Coordinates (Angstroms)			
	ATOM	X	Y	Z	
1	Cr	-0.621879	-0.399052	0.000000	
2	O	1.361138	-0.575528	0.000000	
3	C		2.383683	0.155060	-0.736565
4	H		2.006016	1.019447	-1.273031
5	H		3.052681	-0.504350	-1.281890
6	C		2.383683	0.155060	0.736565
7	H	3.052681	-0.504350	1.281890	
8	H		2.006016	1.019447	1.273031
9	O	-1.021843	-1.882858	0.000000	
10	Cl	-0.777839	0.775109	1.855263	
11	Cl	-0.777839	0.775109	-1.855263	

Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{C}(3) \quad \mathrm{H}(4) \quad \mathrm{H}(5) \quad \mathrm{C}(6)$
O (2) 1.990854
C(3) 3.1437191 .456669
H (4) $3.246318 \quad 2.140192 \quad 1.085169$
H (5) $3.8931642 .123588 \quad 1.0861681 .848660$
C (6) 3.1437191 .4566691 .4731302 .2199712 .226329
H (7) $3.8931642 .123588 \quad 2.2263293 .153583 \quad 2.5637801 .086168$
H (8) 3.2463182 .1401922 .2199712 .5460633 .1535831 .085169
O (9) 1.5367672 .7180354 .0364894 .3831404 .4883494 .036489
$\mathrm{Cl}(10) 2.2011313 .1371084 .1348824 .1947325 .1138673 .410449$
$\begin{array}{lllllllllll}\mathrm{Cl}(11) & 2.201131 & 3.137108 & 3.410449 & 2.854566 & 4.079051 & 4.134882\end{array}$ $\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{O}(9) \quad \mathrm{Cl}(10)$
H (8) 1.848660
O (9) 4.4883494 .383140
Cl (10) 4.0790512 .8545663 .250589
$\mathrm{Cl}(11) 5.1138674 .1947323 .2505893 .710527$
Point Group: Cs Number of degrees of freedom: 15
Energy $=-1235.805203098$

A5/t

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1 Cr	-0.584477	-0.420107	0.000000	
2 O	1.428248	-0.652212	0.000000	
3 C	2.448678	0.098098	-0.734202	
4 H	2.052192	0.951940	-1.274531	
5 H	3.127049	-0.553446	-1.277227	
6	C	2.448678	0.098098	0.734202
7 H	3.127049	-0.553446	1.277227	
8 H	2.052192	0.951940	1.274531	
9 O	-1.372712	-1.757748	0.000000	
10 Cl	-0.769396	0.805532	1.824023	
11 Cl	-0.769396	0.805532	-1.824023	
		Distance Matrix (Angstroms)		

$\mathrm{Cr}(1)$
$\mathrm{O}(2) 2.026064$ $\mathrm{O}(2) \quad \mathrm{C}(3) \quad \mathrm{H}(4) \quad \mathrm{H}(5) \quad \mathrm{C}(6)$
C (3) 3.1634821 .464000
H (4) $3.2340322 .141737 \quad 1.085451$
$\begin{array}{llllll}H & \text { (5) } & 3.927405 & 2.127672 & 1.086082 & 1.849733\end{array}$
C (6) 3.1634821 .4640001 .4684032 .2183902 .220482
H(7) 3.9274052 .1276722 .2204823 .1516622 .5544531 .086082
H (8) $3.2340322 .141737 \quad 2.218390 \quad 2.5490623 .151662 \quad 1.085451$
O (9) 1.5526103 .0112434 .3111764 .5493744 .8300624 .311176
$\mathrm{Cl}(10) 2.2053223 .2065114 .1714484 .1933085 .1620593 .470471$
$\mathrm{Cl}(11) 2.2053223 .2065113 .470471 \quad 2.8783214 .1627024 .171448$
$\begin{array}{rlll}\mathrm{H}(7) & \mathrm{H}(8) & \mathrm{O}(9) \quad \mathrm{Cl}(10)\end{array}$
H (8) 1.849733
O (9) 4.8300624 .549374
$\mathrm{Cl}(10) 4.1627022 .8783213 .203350$
$\mathrm{Cl}(11) 5.1620594 .193308 \quad 3.2033503 .648046$
Point Group: C_{s} Number of degrees of freedom: 15
Energy $=-1235.836287730$
C1/t

C1/t	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Cr	-0.207678	0.005000	-0.175577
2 O	0.113120	0.009478	-1.691669
3 Cl	-1.477549	1.697624	0.229647
4 Cl	-1.475245	-1.691808	0.219680
50	1.083603	0.002606	0.949924
6 C	3.054433	0.003768	-0.545666
7 H	3.174166	-0.927171	-1.089864
8 H	3.200774	0.935886	-1.081123
9 C	2.542181	0.003741	0.843223
10 H	2.853614	-0.886608	1.400547
11 H	2.853245	0.893808	1.400888
Distance Matrix (Angstroms)			

O(2) 1.549666
Cl(3) 2.1544723 .011896
$\mathrm{Cl}(4) 2.1545563 .0117323 .389447$
O (5) $1.712941 \quad 2.8142313 .154581 \quad 3.154678$
C (6) $3.2830383 .1566874 .8999094 .896806 \quad 2.474058$
H (7) $3.6251533 .257220 \quad 5.5017364 .890460 \quad 3.0652361 .084959$
H (8) 3.6474803 .2809464 .9178315 .5192403 .0787301 .084884
C (9) 2.9325213 .5108474 .4049904 .4049291 .4624761 .480343
H (10) $3.5567754 .2278935 .1776664 .558707 \quad 2.031428 \quad 2.149615$
H (11) 3.5559074 .2254274 .5578185 .1784642 .0320542 .149818 H(7) H(8) C(9) H(10)
H (8) 1.863267
C (9) $2.236701 \quad 2.237353$
H (10) 2.5112853 .0984981 .095593
H (11) 3.1020642 .5065761 .0954311 .780416
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.788056527$
A6

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1 Cr	-0.761296	0.048579	-0.395014	
2 O	-1.213122	0.080732	-1.863478	
3 Cl	-0.807429	1.869161	0.820324	
4 Cl	-0.900786	-1.808576	0.763234	
5 O	1.164862	-0.008598	-0.611722	
6 C	2.030787	-0.104057	0.264919	
7 H	1.727073	-0.181495	1.316971	
8 C	3.479484	-0.115369	-0.068218	
9 H	3.973329	0.721286	0.444342	
10 H	3.935004	-1.034554	0.323246	
11 H	3.636287	-0.042764	-1.145899	
		Distance	Matrix (Angstroms)	

$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{O}(5) \quad \mathrm{C}(6)$
O(2) 1.536739
$\mathrm{Cl}(3) 2.1894513 .250516$
Cl(4) 2.1931753 .2506393 .679364
O (5) $1.939153 \quad 2.6888063 .076794 \quad 3.065506$
C (6) 2.8730713 .8842203 .5010763 .4275101 .235896
H (7) $3.0291594 .3392133 .2978103 .140010 \quad 2.016391 \quad 1.097749$
C (8) $4.2565115 .0281184 .8068174 .769175 \quad 2.3799741 .486550$
H (9) $4.8552785 .7127594 .9309865 .500808 \quad 3.0879592 .118219$
H (10) $4.8728135 .7034055 .5829494 .9170693 .098458 \quad 2.120205$
$\begin{array}{llllllll}\mathrm{H} & \text { (} 11) & 4.462164 & 4.903768 & 5.221887 & 5.229523 & 2.528726 & 2.138175\end{array}$ $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10)$
C(8) 2.234740
H (9) $2.573356 \quad 1.098450$
$\begin{array}{llll}\mathrm{H} & (10) & 2.567130 & 1.098018 \\ 1.760428\end{array}$
$\begin{array}{llllll}\text { H (11) } & 3.119306 & 1.091446 & 1.796172 & 1.797573\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.853460980$
A6/t

	Coordinates (Angstroms)			
ATOM	X	Y	Z	

$\begin{array}{lccc}1 \mathrm{Cr} & -0.704729 & -0.040606 & -0.413964\end{array}$
$2 \mathrm{O} \quad-1.457193-0.251626-1.756813$
$3 \mathrm{Cl} \quad-1.251987 \quad 1.763350 \quad 0.709184$
$4 \mathrm{Cl} \quad-0.580572-1.812810 \quad 0.900234$
$\begin{array}{lllll}5 \mathrm{O} & 1.275725 & 0.312660 & -0.578780\end{array}$
6 C $\quad 2.188145-0.012240 \quad 0.186810$
$\begin{array}{lllll}7 \mathrm{H} & 1.948061 & -0.620040 & 1.071320\end{array}$
$\begin{array}{llll}8 \mathrm{C} & 3.598526 & 0.387535 & -0.046604\end{array}$
$\begin{array}{lllll}9 \mathrm{H} & 3.950217 & 0.961264 & 0.822043\end{array}$
$10 \mathrm{H} \quad 4.224618 \quad-0.513713-0.093154$
$11 \mathrm{H} \quad 3.702681 \quad 0.976652-0.959130$
Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{O}(5) \quad \mathrm{C}(6)$
O (2) 1.553697
Cl(3) $2.194358 \quad 3.191141$
$\mathrm{Cl}(4) 2.2098053 .2040063 .643654$
O (5) 2.0184553 .0290303 .1863273 .186054
C (6) $2.9547344 .138051 \quad 3.906418 \quad 3.378878 \quad 1.234584$
H (7) 3.0950134 .4418264 .0064942 .8010632 .0111671 .099736
C (8) 4.3400775 .3752805 .0981924 .8169372 .3841611 .484411
H (9) $4.919348 \quad 6.1124215 .2648845 .313158 \quad 3.088025 \quad 2.110955$
H (10) $4.9623805 .926165 \quad 5.985145 \quad 5.075857 \quad 3.100758 \quad 2.115911$
H (11) $4.5560165 .3636995 .2868615 .439171 \quad 2.5447332 .141239$ $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10)$
C (8) 2.233606
H (9) 2.5634531 .098817
H (10) 2.5593011 .0983651 .757396
$\begin{array}{llllll}\mathrm{H} & \text { (11) } & 3.122634 & 1.091152 & 1.798357 & 1.800978\end{array}$
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.880934475$
A7

	Coordinates (Angstroms)				
ATOM	X	Y	Z		

1	Cr	0.674852	-0.192245	0.359643
2	Cl	1.646813	1.433824	-0.764464
3	Cl	-0.043348	-1.935051	-0.789546
4	O	1.021442	-0.359585	1.847541
5	O	-1.022386	0.782071	0.408717
6	C	-2.364875	0.229092	0.227010
7	H	-2.661655	-0.214339	1.189076
8	H	-2.282010	-0.618058	-0.491921
9	C	-3.260020	1.163154	-0.379681
10	H	-4.257205	0.688595	-0.409236
11	H	-0.996855	1.668823	-0.008998

Distance Matrix (Angstroms)						
	$\mathrm{Cr}(1)$	$\mathrm{Cl}(2)$	$\mathrm{Cl}(3)$	$\mathrm{O}(4)$	$\mathrm{O}(5)$	$\mathrm{C}(6)$
$\mathrm{Cl}(2)$	2.202822					
$\mathrm{Cl}(3)$	2.207673	3.769163				
O (4)	1.536869	3.229547	3.251168			
O (5)	1.957631	2.987601	3.126836	2.747877		
C (6)	3.071654	4.304421	3.332626	3.799975	1.463243	
H (7)	3.438129	5.009557	3.705581	3.744313	2.070989	1.100128
H (8)	3.106366	4.440737	2.614318	4.056191	2.087621	1.114178
C (9)	4.226929	4.929334	4.484846	5.060649	2.402873	1.428926
H (10)	5.068752	5.961458	4.978428	5.835739	3.337940	2.048625
H (11)	2.528651	2.759516	3.808719	3.410968	0.980545	2.000002
	$\mathrm{H}(7)$	$\mathrm{H}(8)$	$\mathrm{C}(9)$	$\mathrm{H}(10)$		

H (8) 1.769992
C (9) 2.1717572 .035146
H (10) $2.432216 \quad 2.369721 \quad 1.104744$
$\begin{array}{llllll}\mathrm{H} & \text { (11) } & 2.784465 & 2.667332 & 2.348409 & 3.427962\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.704931286$
A7/t

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Cr	0.658489	-0.143285	0.386930
2 Cl	1.556635	1.473647	-0.809490
3 Cl	0.058392	-1.910313	-0.794746
4 O	1.364345	-0.467231	1.732268
5 O	-1.137425	0.768599	0.492708
6 C	-2.458684	0.144800	0.336383
7 H	-2.820173	-0.088804	1.350832
8 H	-2.303888	-0.817925	-0.185968
9 C	-3.363428	0.988323	-0.402869
10 H	-4.361079	0.531079	-0.475918
11 H	-1.146673	1.613435	-0.002806

$\begin{array}{cccccc}\mathrm{Cr}(1) & \mathrm{Cl}(2) & \mathrm{Cl}(3) & \mathrm{O}(4) & \mathrm{O}(5) & \mathrm{C}(6)\end{array}$ $\mathrm{Cl}(2) 2.202851$
Cl (3) $2.208815 \quad 3.700829$
O (4) $1.553418 \quad 3.203828 \quad 3.189639$
O (5) $2.0169363 .074211 \quad 3.203761 \quad 3.053300$
$\begin{array}{lllllll}\text { C (6) } & 3.130865 & 4.381968 & 3.440728 & 4.115656 & 1.469451\end{array}$
H (7) 3.6101485 .1249094 .0258584 .2188732 .0744051 .101976
H (8) 3.0917684 .5325182 .6728804 .1543412 .0828571 .106188
C (9) $4.2520744 .9606354 .501612 \quad 5.387883 \quad 2.4094451 .441037$
$\begin{array}{llllllll}\mathrm{H}(10) & 5.137640 & 6.001587 & 5.059029 & 6.217169 & 3.374403 & 2.104318\end{array}$
$\begin{array}{lllllllllll}\mathrm{H}(11) & 2.548836 & 2.824562 & 3.807381 & 3.693895 & 0.979473 & 1.998327\end{array}$
$\begin{array}{lllll} & \mathrm{H}(7) & \mathrm{H}(8) & \mathrm{C}(9) & \mathrm{H}(10)\end{array}$
(8) 1.777617
(9) 2.1285662 .105280

H (10) $2.468940 \quad 2.477079 \quad 1.099871$
H (11) $2.7441862 .698927 \quad 2.337695 \quad 3.424579$
Point Group: $C_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.734759857$

A8/t	Coordinates (Angstroms)				
ATOM	X	Y	Z		
1 Cr	-0.705401	0.116634	-0.362755		
2 O	-1.468764	0.376214	-1.689262		
3 Cl	-0.305609	1.913994	0.826649		
4 Cl	-1.352047	-1.666294	0.764480		
5 O	1.212212	-0.615993	-0.517843		
6 H	1.245280	-1.538686	-0.199819		
7 C	2.428615	0.047260	-0.293176		
8 H	2.340096	1.091347	-0.560696		
9 C	3.509264	-0.555586	0.178753		
10 H	4.419902	0.015016	0.316248		
11 H	3.529635	-1.609605	0.444566		
Distance Matrix (Angstroms)					
	$\mathrm{Cr}(1) \quad \mathrm{O}$	O (2) Cl	(3) $\mathrm{Cl}(4)$	O (5)	H (6)
O (2)	552329				
$\mathrm{Cl}(3) 2$	1920363.16	69780			

$\mathrm{Cl}(4) 2.2062723 .1947323 .730598$
O (5) 2.0586493 .0893893 .2422643 .053343
H (6) $2.563549 \quad 3.6402353 .921720 \quad 2.773493 \quad 0.976522$
C (7) 3.1355564 .1529303 .4949524 .2834921 .4035731 .980965
H(8) 3.2037954 .0363953 .0985854 .7950592 .0466972 .871572
C (9) $4.3021525 .398008 \quad 4.5904095 .020865 \quad 2.4011132 .497084$
H (10) 5.1710846 .2312855 .1183096 .0285253 .3738933 .571910
H(11) 4.6440495 .7862495 .2221484 .8924812 .6988782 .374561 $\mathrm{C}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H (8) 1.081444
C (9) 1.3243652 .150844
H(10) 2.0827052 .5006231 .083399
H (11) 2.1217233 .1178031 .0872101 .856996
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.848766515$
TS[A1-A2]

ATOM	Coordinates (Angstroms)		
	X	Y	Z
1 Cr	0.035069	0.290967	0.100615
2 O	0.310616	0.879100	1.514208
3 Cl	-0.631052	-1.901189	-0.106069
4 Cl	-2.086915	0.734227	-0.186208
5 O	0.850976	1.136289	-1.045218
6 C	2.004866	-0.781930	0.259044
7 H	2.090357	-0.850163	1.336803
8 H	1.965227	-1.711791	-0.291616
9 C	2.409683	0.401186	-0.420022
10 H	2.749596	1.257269	0.154602
11 H	2.801822	0.309478	-1.428133
Distance Matrix (Angstroms)			

$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{O}(5) \quad \mathrm{C}(6)$
O (2) 1.555658
$\mathrm{Cl}(3) 2.3004323 .352916$
$\mathrm{Cl}(4) 2.186679 \quad 2.942883 \quad 3.011873$
O(5) 1.6411002 .6284593 .5078043 .087193
C (6) 2.2486242 .6842022 .8868874 .3863032 .590777
H (7) 2.6560402 .4878313 .2546284 .7201123 .3400721 .083295
H (8) 2.8089853 .5653122 .6097834 .7343403 .1497671 .081406
C (9) 2.4335162 .8940853 .8269534 .5149731 .8332521 .422944
H(10) 2.8818942 .8178294 .6338534 .8766352 .2492142 .173445
H (11) $3.1610663 .8971714 .2917985 .061871 \quad 2.153146 \quad 2.161685$
$\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H (8) 1.846566
C (9) 2.1804312 .163030
$\begin{array}{llll}\mathrm{H} & \text { (10) } & 2.504689 & 3.103170 \\ 1.085639\end{array}$
H (11) 3.0815292 .4651761 .0855741 .845558
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.746257451$

$\mathrm{Cl}(2) 2.132757$
$\mathrm{Cl}(3) 2.1327573 .635204$
O (4) 1.6044663 .0729213 .072856
O(5) 1.6044663 .0728563 .0729212 .444408
C (6) $3.0250904 .5021654 .5019071 .974798 \quad 2.704153$
H(7) 3.4934335 .2044134 .5169772 .2865893 .3616931 .084553
H(8) 3.4937754 .5178665 .2042922 .2865373 .3621611 .084478
C (9) 3.0250904 .5019074 .5021652 .7041531 .9747981 .396093
H (10) 3.4934334 .5169775 .2044133 .3616932 .2865892 .155352
H (11) 3.493775 5.204292 4.5178663 .3621612 .2865372 .155272 $\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H(8) 1.837088
C(9) 2.1553522 .155272
H (10) 3.0904082 .4849321 .084553
H (11) 2.4849323 .0901351 .0844781 .837088
Point Group: C_{2} Number of degrees of freedom: 14
Energy = -1235.774229724
TS[A1-A4]

	Coordinates (Angstroms)		
ATOM	X	Y	
Z			

1	Cr	0.554733	-0.067276	0.371407
2	Cl	-0.765580	1.524567	-0.177482
3	O	-0.517420	-1.294419	0.147457
4	C	-2.790767	0.002672	-0.482395
5	H	-2.881838	0.405997	-1.484200
6	H	-3.282972	0.551840	0.312034
7	C	-2.304990	-1.291007	-0.267956
8	H	-2.580719	-1.792489	0.653675
9	H	-2.177702	-1.938377	-1.129538
10	O	0.874999	0.045451	1.884342
11	Cl	2.251406	-0.218607	-0.936586

Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{Cl}(2) \quad \mathrm{O}(3) \quad \mathrm{C}(4) \quad \mathrm{H}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.139736$
O (3) 1.6448552 .848483
C (4) $3.453439 \quad 2.551572 \quad 2.692075$
H (5) 3.9341182 .7271343 .3382911 .083779
H (6) 3.8877772 .7428243 .3292691 .0839591 .846248
C (7) $3.1755823 .2102071 .8352071 .398417 \quad 2.166062 \quad 2.165392$
H (8) $3.5898613 .871487 \quad 2.182094 \quad 2.1348023 .081318 \quad 2.470983$ H (9) 3.6359403 .8590782 .1913322 .1359582 .4733953 .082358 O (10) 1.5505653 .0216562 .5982414 .3636135 .0587444 .474070 $\mathrm{Cl}(11) 2.1476603 .5661043 .1621075 .0674225 .2000205 .725555$ $\mathrm{C}(7) \quad \mathrm{H}(8) \quad \mathrm{H}(9) \quad \mathrm{O}(10)$
H (8) 1.084856
H (9) $1.085180 \quad 1.834000$
O (10) 4.0658134 .1029944 .726313
$\mathrm{Cl}(11) 4.7284095 .3249854 .7551913 .149898$
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.773732356$
TS[A4-A5]

	Coordinates (Angstroms)		
ATOM	X	Y	
C			

$\begin{array}{lllll}1 \mathrm{Cr} & 0.199076 & 0.160608 & -0.375209\end{array}$
$2 \mathrm{Cl} \quad 0.377444-1.8852850 .529871$
3 O $\quad-1.165771 \quad 1.241494 \quad 0.298643$
$4 \mathrm{C} \quad-2.202428 \quad-0.333850-0.161664$
$5 \mathrm{H} \quad-1.906762-1.336083 \quad 0.131203$
$6 \mathrm{H} \quad-2.510912 \quad-0.146105-1.183490$
$\begin{array}{llll}7 \mathrm{C} & -2.383469 & 0.742162 & 0.831572\end{array}$
$\begin{array}{lllll}8 & \mathrm{H} & -3.208437 & 1.440201 & 0.670807 \\ 9 & \mathrm{H} & -2.293026 & 0.44692 & 1.879715\end{array}$
$\begin{array}{rlrrr}10 \mathrm{O} & & 0.081105 & -0.061475 & -1.897776\end{array}$
$11 \mathrm{Cl} \quad 2.040606 \quad 0.963411 \quad 0.466149$ Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{Cl}(2) \quad \mathrm{O}(3) \quad \mathrm{C}(4) \quad \mathrm{H}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.244252$
O (3) $1.866868 \quad 3.494528$
C (4) 2.4611613 .0888371 .941198
H (5) 2.6326972 .3828892 .6871931 .085201
H (6) $2.8445443 .781925 \quad 2.4354791 .0837611 .873356$
C (7) 2.9093073 .8232371 .4199071 .4754992 .24429712 .205842
H(8) 3.7871694 .8925722 .0857792 .2027973 .1134032 .537976
H (9) $3.3730203 .793805 \quad 2.0980332 .1874952 .52701633 .127691$
O (10) $1.5431953 .0508312 .8419512 .8814583 .113358 \quad 2.689967$
$\mathrm{Cl}(11) 2.1779823 .2992783 .2227694 .4811134 .5805654 .966755$ $\begin{array}{cccc}\mathrm{C}(7) & \mathrm{H}(8) & \mathrm{H}(9) & \mathrm{O}(10)\end{array}$
H (8) 1.092554
H (9) 1.0926641 .812710
O (10) 3.7642134 .4355084 .490486
$\mathrm{Cl}(11) 4.444651 \quad 5.2746244 .587508 \quad 3.237001$
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.750976286$

Cl(2) 2.172091
Cl(3) 2.1779113 .603679

O (4) 1.5429673 .2133803 .090981
O(5) $1.9617473 .6328622 .732542 \quad 2.772796$
C (6) $2.9837694 .3342284 .155770 \quad 3.4389241 .429006$
H (7) 3.484066 5.0651384 .6507813 .4665142 .1081071 .093685
H (8) 3.8451644 .9815764 .7304944 .4892772 .0910931 .092135
C (9) 2.4105373 .1698504 .1662272 .9952921 .9018911 .456618
H (10) 2.5454403 .1979834 .5917892 .6243412 .6414792 .224558
H (11) 2.7899052 .8507134 .4008413 .7295812 .4451572 .200206 $H(7) \quad H(8) \quad C(9) \quad H(10)$
H (8) 1.815224
C (9) 2.1796192 .189737
H (10) 2.5161823 .1036641 .085689
$\begin{array}{lllllllllllll}\mathrm{H}(11) & 3.121452 & 2.526151 & 1.082993 & 1.858741\end{array}$
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.750517711$
TS[A3-A5]

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Cr	-0.274331	-0.115072	-0.3732
Cl	0.382725	-2.002976	0.5099
Cl	-2.126891	0.651810	0.4715
4 O	-0.165193	0.069248	-1.904369
O	558640	1.342816	0.55
C	2.074349	0.577956	-0.457306
7 H	2.309057	-0.476546	-0.553100
8 H	2.072643	1.188790	-1.351742
9 C	1.951585	1.244926	0.840382
10 H	2.157064	0.622334	1.71569
11 H	2.405414	2.235507	0.930729
Distance Matrix (Angstroms)			

$\mathrm{Cl}(2)$
$\mathrm{Cl}(3) 2.175710 \quad 3.653427$
O (4) 1.5460703 .2285143 .135705
O(5) 1.9174943 .3506872 .7741972 .860701
C (6) $2.4502363 .2339464 .303330 \quad 2.714466 \quad 1.975527$
H (7) 2.6147502 .6778434 .6904952 .871538 2.756277 1.084546
H(8) 2.8575984 .0631424 .6096462 .5625532 .4378731 .083114
C (9) 2.8769963 .6220674 .1378483 .6601401 .4256851 .464211
H (10) $3.2892203 .3903284 .4610564 .336316 \quad 2.1038932 .175026$
H (11) 3.7955914 .7151944 .8229374 .3975542 .0857372 .187171
$\mathrm{H}(7) \quad \mathrm{H}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10)$
H (8) 1.862005
C (9) 2.2434452 .196181
H (10) $2.525483 \quad 3.1204421 .093624$
H (11) $3.092938 \quad 2.5329871 .0933311 .811125$
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.752161627$

TS[A3-A5]/os

$\underline{\mathrm{TS}[\mathrm{C} 1-\mathrm{A} 3] / \mathrm{t}}$

	Coordinates (Angstroms)			
ATOM	X	Y	Z	
1	Cr	-0.248106	-0.027971	-0.149716
2	O	0.405627	0.119003	-1.558569
3	Cl	-1.266490	1.828416	0.261868
4	Cl	-1.636811	-1.656172	0.062157
5	O	1.025043	-0.117209	1.028762
6	C	2.920813	0.101976	-0.514923
7	H	3.409936	-0.566316	-1.214417
8	H	2.808536	1.145067	-0.789557
9	C	2.432359	-0.372135	0.798493
10	H	2.590457	-1.448200	0.932630
11	H	2.945160	0.154669	1.616728
		Distance Matrix (Angstroms)		

Cl(3) 2.1570083 .005338
Cl(4) 2.1504493 .1542913 .509897
O (5) 1.7371472 .6709093 .1023713 .223073
C (6) 3.1925392 .7231684 .5953784 .9189472 .454577
H (7) 3.8476843 .1006415 .45739153185603 .3047341 .084042
H (8) 3.3359382 .7236304 .2636025 .3229192 .8426181 .084467 C (9) 2.8639913 .1471584 .3372664 .3300221 .4486381 .479334
H (10) 3.3535003 .6654715 .1051134 .3209692 .0570132 .146530 H (11) 3.6538524 .0660814 .7302305 .1662662 .0264432 .132441 $\begin{array}{llll}H(7) & H(8) & C(9) & H(10)\end{array}$
H (8) 1.863067
C (9) 2.2461462 .228299
H (10) $2.4615193 .120661 \quad 1.095858$
H (11) 2.9582462 .6057181 .0999981 .778481
Point Group: $C_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.784601946$

TS[A5-X]

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1 Cr	0.500799	0.111772	-0.351605	
2	O	-0.827249	1.071217	0.389504
3	C	-2.227370	1.254800	0.053338
4	H	-2.382696	1.240433	-1.028672
5	H	-2.552892	2.206407	0.482517
6	C	-2.648667	0.057694	0.760657
7	H	-2.933012	-0.853526	0.254101
8	H	-2.613850	0.051449	1.84249
9	O	0.463093	0.409504	-1.863602
10	Cl	-0.519382	-1.790666	0.024942
11 Cl	2.32068	0.315116	0.788136	
		Distance Matrix (Angstroms)		

$\begin{array}{llllll}\mathrm{Cr}(1) & \mathrm{O}(2) & \mathrm{C}(3) & \mathrm{H}(4) & \mathrm{H}(5) & \mathrm{C}(6)\end{array}$ O (2) 1.798191
C (3) 2.9855311 .451568
H (4) 3.1696752 .1117001 .093197
H (5) 3.7958252 .0676441 .0934881 .801601
C (6) $3.340537 \quad 2.1172031 .452877 \quad 2.161321 \quad 2.168756$
H (7) 3.6179742 .8560822 .2323242 .5165483 .0919011 .080635
H (8) 3.8113582 .5195542 .1919813 .1178182 .5498771 .084169
O (9) 1.5414932 .6794283 .4099523 .0799454 .2224764 .085775
$\mathrm{Cl}(10) 2.191307 \quad 2.9013903 .4918323 .7107424 .5078972 .914030$
$\mathrm{Cl}(11) 2.1580963 .2632494 .7032245 .1275545 .2379024 .977472$
$\begin{array}{cccc}\mathrm{H}(7) & \mathrm{H}(8) & \mathrm{O}(9) \quad \mathrm{Cl}(10)\end{array}$
H (8) 1.857259
O (9) 4.1968364 .831556
$\mathrm{Cl}(10) 2.5992993 .3301743 .061471$
Cl(11) 5.4098785 .0545213 .2398173 .618096
Point Group: C_{1} Number of degrees of freedom: 27
Energy $=-1235.768146124$
B1

	Coordinates (Angstroms)			
ATOM	X	Y	Z	
1 Cr	0.000000	0.000000	0.351958	
2 Cl	-1.745057	0.000000	-0.841337	
3	Cl	1.745057	0.000000	-0.841337
4	O	0.000000	1.262265	1.259904
5	O	0.000000	-1.262265	1.259904

Point Group: $\mathrm{C}_{2 \mathrm{v}}$ Number of degrees of freedom: 4
Energy is -1157.200739279
Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4)$
$\mathrm{Cl}(2) 2.114042$
Cl(3) 2.1140423 .490114
O (4) 1.5548893 .0089453 .008945
O (5) $1.5548893 .008945 \quad 3.008945 \quad 2.524529$
B2

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1	Cr	0.593993	-0.235656	0.440817
2	Cl	-1.084087	1.387972	-0.082101
3	O	-0.575415	-1.458106	-0.155153
4	C	-2.423842	0.101561	-0.152279
5	H	-3.233741	0.542912	-0.734309
6	H	-2.716065	-0.049250	0.887299
7	C	-1.797823	-1.133881	-0.778339
8	H	-2.501455	-1.969759	-0.649588
9	H	-1.650735	-0.975080	-1.856324
10	O	0.758699	-0.130227	1.975131
11	Cl	2.247236	0.196678	-0.933263

1	Cr	0.000000	0.000000	-1.345770
2	O	1.465832	0.030603	-2.000203
3	O	-1.465832	-0.030603	-2.000203
4	Cl	0.024376	1.710816	0.807125
5	Cl	-0.024376	-1.710816	0.807125
6	C	-0.403041	0.640293	2.216454
7	H	-1.476118	0.455286	2.156472
8	H	-0.173195	1.221631	3.112394
9	C	0.403041	-0.640293	2.216454
10	H	0.173195	-1.221631	3.112394
11	H	1.476118	-0.455286	2.156472

$\mathrm{Cl}(4) 2.1246023 .1314873 .130977$
$\mathrm{Cl}(5) 4.5901934 .9227234 .9346456 .073442$
$\begin{array}{llllll}\mathrm{C}(\mathrm{6}) & 1.988284 & 2.767509 & 2.772644 & 3.363003 & 2.730506\end{array}$
H (7) $2.4656162 .9223103 .6379213 .390467 \quad 2.9865241 .095370$ H (8) 2.4693753 .6365592 .9383143 .3889172 .9933011 .095302 C (9) 2.9407523 .2358393 .2370214 .7326961 .8262161 .508623
$\begin{array}{lllllllllll}\mathrm{H}(10) & 3.167230 & 3.615635 & 2.908339 & 5.064251 & 2.378295 & 2.167920\end{array}$
H (11) 3.1579912 .8972113 .5984195 .0613942 .3782742 .167999 $H(7) \quad H(8) \quad C(9) \quad H(10)$
H (8) 1.807204
C(9) 2.1839982 .184362
H (10) 3.0953792 .5195691 .090290
H (11) $2.5229923 .0956101 .090472 \quad 1.784683$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy = -1235.797739904

36	Coordinates (Angstroms)		
ATOM	X	Y	Z

$\begin{array}{lllll}1 \mathrm{Cr} & 1.370013 & 0.361657 & 0.064939\end{array}$
$2 \mathrm{O} \quad 2.222292 \quad 1.619568 \quad 0.359127$
$\begin{array}{lllll}3 \mathrm{Cl} & 2.392339 & -1.484750 & -0.256337\end{array}$
$4 \mathrm{O} \quad-0.341720 \quad 0.497756 \quad 0.006306$
$5 \mathrm{C} \quad-1.519214 \quad 1.264584 \quad 0.137284$
$6 \mathrm{H} \quad-1.365277 \quad 2.248202 \quad-0.327445$
$\begin{array}{lllll}7 \mathrm{H} & -1.720058 & 1.408927 & 1.204942\end{array}$
$8 \mathrm{C} \quad-2.695177 \quad 0.582662-0.543291$
$\begin{array}{lllll}9 \mathrm{H} & -3.564076 & 1.245322 & -0.526564\end{array}$
$10 \mathrm{H} \quad-2.450662 \quad 0.328034-1.576271$
$11 \mathrm{Cl} \quad-3.171049-0.949961 \quad 0.287496$
Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
O (2) 1.547665
$\mathrm{Cl}(3) 2.1348513 .169306$
O (4) $1.718136 \quad 2.820833 \quad 3.387387$
C (5) $3.0278943 .764850 \quad 4.797293 \quad 1.411266$
H (6) $3.3458673 .7063745 .297137 \quad 2.055022 \quad 1.098715$
H (7) $3.4561424 .037560 \quad 5.236460 \quad 2.0412681 .0959311 .782823$
C (8) $4.1163765 .1059805 .499032 \quad 2.4182691 .5202272 .142253$
H (9) $5.047372 \quad 5.865710 \quad 6.5578343 .350579 \quad 2.150006 \quad 2.424898$
H (10) 4.1583965 .2201845 .3369532 .642156
$\mathrm{Cl}(11) 4.7319245 .974590 \quad 5.615428 \quad 3.1906192 .7668263 .723870$ $\begin{array}{llll}H(7) & C(8) & H(9) & H(10)\end{array}$
C(8) 2.165615
H (9) 2.5348141 .092878
$\begin{array}{llll}\mathrm{H} & \text { (10) } & 3.072012 & 1.091637 \\ 1.784094\end{array}$
$\begin{array}{llllll}\mathrm{Cl}(11) & 2.917436 & 1.807095 & 2.374117 & 2.371888\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.809293020$

TS[B1-B2]

ATOM	X	Y	Z
1 Cr	0.554733	-0.067276	0.371407
2 Cl	-0.765580	1.524567	-0.177482
3 O	-0.517420	-1.294419	0.147457
4 C	-2.790767	0.002672	-0.482395
5 H	-2.881838	0.405997	-1.484200
6 H	-3.282972	0.551840	0.312034
7 C	-2.304990	-1.291007	-0.267956
8 H	-2.580719	-1.792489	0.653675
9 H	-2.177702	-1.938377	-1.129538
10 O	0.874999	0.045451	1.884342
11 Cl	2.251406	-0.218607	-0.936586
Distance Matrix (Angstroms)			

$\mathrm{Cl}(2) 2.139736$
O (3) $1.644855 \quad 2.848483$
C (4) $3.453439 \quad 2.551572 \quad 2.692075$
H (5) $3.934118 \quad 2.7271343 .3382911 .083779$
H (6) $3.887777 \quad 2.7428243 .3292691 .0839591 .846248$
C (7) $3.1755823 .2102071 .8352071 .398417 \quad 2.166062 \quad 2.165392$
H (8) 3.5898613 .8714872 .1820942 .1348023 .0813182 .470983
H (9) $3.635940 \quad 3.859078 \quad 2.191332 \quad 2.135958 \quad 2.473395 \quad 3.082358$
O (10) $1.5505653 .021656 \quad 2.598241 \quad 4.363613 \quad 5.0587444 .474070$
$\mathrm{Cl}(11) 2.1476603 .5661043 .1621075 .0674225 .2000205 .725555$ $\begin{array}{llll}\mathrm{C}(7) & \mathrm{H}(8) & \mathrm{H}(9) & \mathrm{O}(10)\end{array}$
H (8) 1.084856
H (9) $1.085180 \quad 1.834000$
O (10) 4.0658134 .1029944 .726313
$\mathrm{Cl}(11) 4.7284095 .3249854 .755191 \quad 3.149898$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 27
Energy $=-1235.773732356$
TS[B1-B3]

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Cr	-1.082242	-0.000205	-0.000182

2	O	-1.893251	-0.122370	-1.346800
3	O	-1.892842	0.122402	1.346556
4	Cl	0.497090	1.575737	-0.107358
5	Cl	0.497667	-1.576075	0.107874
6	C	2.379785	0.710910	0.149365
7	H	2.568695	0.987462	1.182686
8	H	2.887338	1.340328	-0.576080
9	C	2.380138	-0.710428	-0.148906
10	H	2.888494	-1.339897	0.576084
11	H	2.568754	-0.986313	-1.182464

O (4) 1.5572943 .1807982 .678740
$\mathrm{Cl}(5) 3.3987883 .8778044 .0935214 .239095$
C (6) $2.2998394 .0176031 .9625413 .110821 \quad 2.766161$
H (7) 2.5258954 .4173652 .6149892 .7691552 .9133511 .090808
H (8) 3.0251904 .7850032 .0643673 .7755233 .7290241 .086929
C (9) 3.0602714 .0799672 .9756294 .1514151 .8057491 .502798
H (10) 4.0789085 .1724863 .8075835 .0384532 .3669202 .124602
H(11) 3.2296483 .8179072 .9523634 .5878702 .3806392 .163301 $\begin{array}{llll}H(7) & H(8) & C(9) & H(10)\end{array}$
H (8) 1.791047
C (9) 2.2136922 .157901
H(10) 2.6618772 .4187671 .096673
H (11) $3.098775 \quad 2.5864891 .0923191 .773684$
Point Group: C_{1} Number of degrees of freedom: 27
Energy = 1235.748377535
TS[B4-B3]

ATOM	Coordinates (Angstroms)		
	X	Y	Z
1 Cr	0.452229	0.727296	-0.081998
2 O	0.724045	1.580620	1.223122
3 O	0.757419	1.278948	-1.535562
4 Cl	1.636802	-1.312092	0.355428
5 Cl	-1.994751	0.399938	0.220198
6 C	-0.390754	-1.538699	-0.706915
7 H	-0.078152	-2.572547	-0.805444
8 H	-0.370119	-1.016800	-1.661952
9 C	-1.638104	-1.394016	0.099500
10 H	-1.529933	-1.747973	1.125613
11 H	-2.499593	-1.881844	-0.374537
Distance Matrix (Angstroms)			

$\mathrm{Cr}(1) \quad \mathrm{Distance}$ Matrix (Angstroms)
O (2) 1.582840
O(3) 1.5843962 .775330
Cl(4) $2.398678 \quad 3.154965 \quad 3.326056$
$\mathrm{Cl}(5) 2.4872073 .1291723 .3807974 .017152$
C (6) 2.4971743 .8337933 .1534262 .3001972 .681540
H (7) 3.4195974 .6912044 .0081502 .4243433 .6825211 .084560
H (8) $2.4928674 .033291 \quad 2.560816 \quad 2.860900 \quad 2.8616541 .088531$
C (9) 2.9836893 .9611533 .9441983 .2859131 .8330401 .492354
H (10) $3.3932654 .0211264 .6342293 .288068 \quad 2.376837 \quad 2.167875$

$\begin{array}{llll}\mathrm{H}(7) & \mathrm{H}(8) & \mathrm{C}(9) & \mathrm{H}(10)\end{array}$
H (8) 1.799777
C (9) 2.1543702 .202905
H (10) 2.5527583 .1064931 .090823
H (11) 2.5546292 .6344631 .0976571 .791260
Point Group: C ${ }_{1}$ Number of degrees of freedom: 27
Energy $=-1235.706456674$
TS[B5-B6]

	Coordinates (Angstroms)		
ATOM	X	Y	
1			

$\begin{array}{lllll}1 \mathrm{Cr} & 1.126986 & 0.362131 & -0.106811\end{array}$
$2 \mathrm{O} \quad 2.003359 \quad 1.633008 \quad 0.114771$
$\begin{array}{lllll}3 \mathrm{Cl} & 1.997794 & -1.567154 & 0.159678\end{array}$
4 O $\quad-0.176525 \quad 0.594193-1.042552$
$\begin{array}{lllll}5 \mathrm{C} & -0.938290 & 0.884417 & 0.771339\end{array}$
$6 \mathrm{H} \quad-0.637632 \quad 1.8949231 .045395$
$\begin{array}{llll}7 \mathrm{H} & -0.770091 & 0.150283 & 1.560070\end{array}$
$8 \mathrm{C} \quad-2.330194 \quad 0.821623 \quad 0.209251$
$9 \mathrm{H} \quad-3.009243 \quad 1.250104 \quad 0.955554$
$\begin{array}{llll}10 \mathrm{H} & -2.425978 & 1.375278 & -0.724107\end{array}$
$11 \mathrm{Cl} \quad-2.890666-0.867284-0.084887$
Distance Matrix (Angstroms)
$\mathrm{Cr}(1) \quad \mathrm{O}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
O (2) 1.559570
Cl(3) 2.1334163 .200482
O (4) 1.6212972 .6777653 .293090
C (5) 2.3041913 .1056033 .8736181 .988647
H (6) 2.6059362 .8123824 .4402632 .5028071 .089323
H (7) 2.5342203 .4611253 .5456832 .7061081 .0905691 .823789
C (8) 3.5018744 .4098704 .9437022 .5014051 .5024252 .171606
H (9) $4.3618245 .0970305 .800067 \quad 3.528022 \quad 2.1110442 .459350$
H (10) 3.7458074 .5154375 .3859762 .4024032 .1657612 .568920
$\mathrm{Cl}(11) 4.2016035 .4993464 .9443573 .2279412 .7592303 .739450$ $\begin{array}{llll}H(7) & C(8) & H(9) & H(10)\end{array}$
C(8) 2.170100
H (9) 2.5668761 .096208
H (10) 3.0757181 .0894341 .782450
$\mathrm{Cl}(11) 2.8702211 .803623 \quad 2.362183 \quad 2.377735$
Point Group: C ${ }_{1}$ Number of degrees of freedom: 27
Energy $=-1235.746900011$

Chapter Three

H (13)
 H (14) 1.790485
 Point Group: C_{s} Number of degrees of freedom: 21

Energy $=-2044.984558072$

C (12) $2.2305432 .231491 \quad 1.510790 \quad 2.230543 \quad 2.231491$
H (13) 3.0034372 .4104302 .1579023 .0034372 .4104301 .096101
H(14) 2.4048143 .0111012 .1562342 .4048143 .0111011 .095640

Cl(5) 2.3908604 .7606073 .2400883 .240088
C (6) 1.8563123 .1615393 .4200573 .4200573 .161539
$\begin{array}{lllllll}\mathrm{H}(7) & 2.594583 & 3.678863 & 3.458642 & 4.458787 & 3.678863 & 1.093389\end{array}$
H (8) 2.5945833 .6788634 .4587873 .4586423 .6788631 .093389 H (7)
H (8) 1.874515
Point Group: $\mathrm{C}_{2 \mathrm{v}}$ Number of degrees of freedom: 7
Energy = -1947.702885268

H (14) 1.856952

Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom:36
Energy $=-2026.281920802$

H(14) 2.7267284 .5681064 .9715885 .4143324 .3686303 .334681
$\mathrm{Cl}(7) \quad \mathrm{Cl}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10) \quad \mathrm{H}(11) \quad \mathrm{C}(12)$
Cl (8) 4.710020
C (9) 3.9350742 .954241
H (10) 4.5888143 .0043571 .086615
H (11) $4.6178253 .0713111 .090078 \quad 1.818567$
C (12) $2.954268 \quad 3.9351511 .434705 \quad 2.20136412 .193174$
H (13) 3.0041204 .5889892 .2013352 .5546753 .1235001 .086617
H (14) $3.0716894 .617767 \quad 2.193177 \quad 3.123497 \quad 2.5243891 .090072$ H (13)
H (14) 1.818601
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy $=-2026.621537896$

H (10) 2.8057483 .1919035 .0254814 .1305482 .7720143 .209056 H (11) 2.7186094 .1850094 .7890192 .9792183 .1291312 .830049 C (12) 2.8646853 .4601424 .2980204 .0571634 .2980201 .518282 H (13) $3.8020714 .555458 \quad 5.1333724 .5475875 .133372 \quad 2.213349$ H (14) 3.3771803 .2030474 .6874484 .9671734 .6874482 .166974 $H(7) \quad H(8) \quad C(9) \quad H(10) \quad H(11) \quad C(12)$ H (8) 1.781008
C (9) 3.2090562 .830049
H (10) 3.9961653 .8880471 .091295
H (11) 3.8880472 .9890951 .0941361 .781008
C (12) 2.2495062 .2037661 .5182822 .2495062 .203766
H (13) 2.9124332 .4745872 .2133492 .9124332 .4745871 .097883 H (14) 2.4561093 .0671492 .1669742 .4561093 .0671491 .095031 H (13)
H (14) 1.775252
Point Group: $\mathrm{C}_{\mathrm{s}} \quad$ Number of degrees of freedom: 21
Energy $=-2026.636744262$
TS6

ATOM	Coordinates (Angstroms)		
	X	Y Z	
1 W	0.047743	-0.018181	0.099651
2 Cl	2.191519	-0.757147	-0.456354
3 Cl	0.985120	1.905695	1.009482
4 Cl	-2.257535	0.070857	0.676609
5 Cl	-0.660022	1.422927	-1.716980
6 C	0.015859	-1.247470	1.652497
7 H	0.964771	-1.680871	1.983029
8 H	-0.826563	-1.535570	2.276064
9 C	-0.534479	-1.656536	-1.376314
10 H	0.242890	-1.731953	-2.127937
11 H	-1.520345	-1.394696	-1.745
12 C	-0.440767	-2.440542	-0.1983
13 H	-1.353464	-2.747797	0.3012
14 H	0.441330	-3.049962	-0.0324
	Distance	atrix (An	roms)

$\mathrm{Cl}(2) 2.33473$
Cl(3) $2.325461 \quad 3.270291$
$\mathrm{Cl}(4) 2.3780494 .6651133 .740621$
$\mathrm{Cl}(5) 2.4244323 .8043643 .2207383 .179530$
C (6) $1.9807833 .0693923 .360861 \quad 2.8033314 .352151$
H(7) 2.6744332 .8824933 .7164053 .8933975 .0954481 .094314
H(8) 2.7935024 .1449814 .0900772 .6807724 .9724081 .086974
C (9) 2.2807153 .0143484 .5487023 .1886203 .1007913 .105463
H (10) 2.8173112 .7461964 .8607394 .1674603 .3071743 .818108
H(11) $2.7851453 .9806324 .9757422 .925110 \quad 2.946176$
C (12) 2.4890283 .1351764 .7309313 .2207564 .1570192 .248875
H (13) $3.0748744 .1356535 .2559972 .9837934 .685000 \quad 2.439628$
H (14) 3.0600752 .9154495 .0931234 .1864274 .9048242 .503819 $H(7) \quad H(8) \quad C(9) \quad H(10) \quad H(11) \quad C(12)$
H (8) 1.820951
C (9) $3.678795 \quad 3.666034$
H (10) 4.1741784 .5362451 .083941
H (11) $4.4896674 .0830671 .084685 \quad 1.835553$
C (12) $2.703868 \quad 2.6627751 .418142 \quad 2.166315 \quad 2.156854$
H (13) $3.0562702 .376308 \quad 2.1623943 .0791942 .4590051 .084911$
H (14) 2.4921133 .0381332 .1678942 .4834493 .0856771 .084893 H (13)
H (14) 1.850402
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy $=-2026.611182571$
pdt5
Coordinates (Angstroms)
\square Ent6

ATOM	X	Y	Z
1 W	0.113559	0.068559	0.000000
2 Cl	0.980042	-2.054939	0.000000
3 Cl	0.901967	0.348811	2.198532
4 Cl	-0.509913	2.282504	0.000000

$\begin{array}{lrrr}4 \mathrm{Cl} & -0.509913 & 2.282504 & 0.000000 \\ 5 \mathrm{Cl} & 0.901967 & 0.348811 & -2.198532 \\ 6 \mathrm{C} & -1.664427 & -0.624302 & 1.139482\end{array}$ $\begin{array}{lll}1.668183 & -1.229257 & 1.998082\end{array}$ $\begin{array}{rrr}-1.368183 & -1.229257 & 1.998082 \\ -2.146407 & 0.291536 & 1.494548\end{array}$ $\begin{array}{rrr}-2.146407 & 0.291536 & 1.494548 \\ -1.664427 & -0.624302 & -1.139482\end{array}$
$-1.368183-1.229257-1.998082$
$-2.146407 \quad 0.291536-1.494548$
$-2.398574-1.3082520 .000000$
-3.485867 -1.156136 0.000000
$-2.205831-2.386187 \quad 0.000000$
Distance Matrix (Angstroms)
$\mathrm{W}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{Cl}(5) \quad \mathrm{C}(6)$
$\mathrm{Cl}(2) 2.293477$
Cl(3) $2.352376 \quad 3.258474$
Cl(4) $2.3000584 .586216 \quad 3.250557$
$\mathrm{Cl}(5) 2.3523763 .2584744 .3970653 .250557$
C(6) 2.2225463 .2153322 .9419243 .3287904 .321535
H (7) 2.8057483 .1919032 .7720144 .1305485 .0254811 .091295 H (8) 2.7186094 .1850093 .1291312 .9792184 .7890191 .094136
$\begin{array}{llllllll}\mathrm{C} & \text { (9) } & 2.222546 & 3.215332 & 4.321535 & 3.328790 & 2.941924 & 2.278964\end{array}$

TS7
Coordinates (Angstroms)

ATOM				X	
1	Y	Z			
1	Cl	-1.672662	1.348864	0.000000	
2	C	-3.469879	-0.539792	0.000000	
3	H	-3.822436	-0.089869	-0.921212	
4	H	-3.822436	-0.089869	0.921212	
5	C	-2.773949	-1.740434	0.000000	
6	H	-2.815639	-2.328079	0.913645	
7	H	-2.815639	-2.328079	-0.913645	
8	C	-0.760703	-1.598413	0.000000	
9	H	-0.595976	-2.193006	0.903669	
10	H	-0.595976	-2.193006	-0.903669	
11	W	0.289096	0.049200	0.000000	
12	Cl	0.664159	0.688969	2.158283	
13	Cl	0.664159	0.688969	-2.158283	
14	Cl	2.409176	-1.029570	0.000000	
		Distance Matrix (Angstroms)			

C (2) 2.607109
H (3) 2.7459271 .084139
H (4) 2.7459271 .0841391 .842424
C (5) $3.279725 \quad 1.387753 \quad 2.161555 \quad 2.161555$
$\begin{array}{llllll}\mathrm{H}(\mathrm{6}) & 3.957405 & 2.112048 & 3.064298 & 2.454237 & 1.087112\end{array}$
H (7) 3.9574052 .1120482 .4542373 .0642981 .0871121 .827290
C (8) $3.0851442 .9086623 .535328 \quad 3.535328 \quad 2.018250 \quad 2.364301$
$\begin{array}{lllllll}\mathrm{H}(9) & 3.810606 & 3.436430 & 4.261856 & 3.851432 & 2.401043 & 2.223791\end{array}$
H (10) $3.810606 \quad 3.436430 \quad 3.8514324 .261856 \quad 2.401043 \quad 2.871894$
W (11) 2.3532153 .8048404 .2157644 .2157643 .5475404 .015667
$\mathrm{Cl}(12) 3.2487504 .8226875 .4972194 .7187364 .7308324 .770817$
$\mathrm{Cl}(13) 3.2487504 .8226874 .7187365 .4972194 .730832 \quad 5.536092$
$\mathrm{Cl}(14) 4.7242305 .899421 \quad 6.369038 \quad 6.369038 \quad 5.2316465 .460729$ $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{W}(11) \quad \mathrm{Cl}(12)$
C (8) 2.364301
H (9) 2.8718941 .094209
H (10) 2.2237911 .0942091 .807339
W (11) $4.0156671 .9536392 .574385 \quad 2.574385$
$\mathrm{Cl}(12) 5.5360923 .4526123 .3864104 .389678 \quad 2.282140$
$\mathrm{Cl}(13) 4.7708173 .4526124 .3896783 .386410 \quad 2.2821404 .316565$
$\mathrm{Cl}(14) 5.4607293 .2205143 .3468113 .3468112 .3787563 .264451$ $\mathrm{Cl}(13)$
Cl(14) 3.264451
Point Group: $\mathrm{C}_{\mathrm{s}} \quad$ Number of degrees of freedom: 21
Energy $=-2026.593764066$
pdt6 Coordinates (Angstroms)
ATOM X Y Z
$\begin{array}{llll}1 \mathrm{Cl} & -2.073109 & 0.244772 & 0.970731 \\ 2 \mathrm{C} & -2.991642 & 0.211673 & -0.65526\end{array}$
$\begin{array}{lllll}2 \mathrm{C} & -2.991642 & 0.211673 & -0.655264 \\ 3 \mathrm{H} & -3.030324 & 1.256366 & -0.969984\end{array}$
$\begin{array}{llrrr}3 \mathrm{H} & -3.030324 & 1.256366 & -0.969984 \\ 4 \mathrm{H} & -3.988653 & -0.151549 & -0.405634\end{array}$
$5 \mathrm{C} \quad-2.220879-0.676586-1.608476$
$6 \mathrm{H} \quad \begin{array}{llll}6 & -2.338778 & -1.724799 & -1.307913 \\ 7 \mathrm{H} & -2.689956 & -0.574755 & -2.598623\end{array}$
$\begin{array}{lllll}7 \mathrm{H} & -2.689956 & -0.574755 & -2.598623 \\ 8 \mathrm{C} & -0.721832 & -0.324105 & -1.686536\end{array}$
$8 \mathrm{C} \quad-0.721832-0.324105-1.686536$
9 H $\quad-0.197051-1.014615-2.359448$
$10 \mathrm{H} \quad-0.582987 \quad 0.688297-2.121460$
$11 \mathrm{~W} \quad 0.353740 \quad 0.020365 \quad 0.073910$
$12 \mathrm{Cl} \quad 0.376663-2.043964 \quad 1.037444$
$13 \mathrm{Cl} \quad \begin{array}{llll}12.3769064 & -0.181409 & -0.832574\end{array}$
$13 \mathrm{Cl} \quad 2.489064 \quad-0.181409-0.832574$
Distance Matrix (Angstroms)
$\begin{array}{llllll}\mathrm{Cl}(1) & \mathrm{C}(2) & \mathrm{H}(3) & \mathrm{H}(4) & \mathrm{C}(5) & \mathrm{H}(6)\end{array}$
C (2) 1.867795
H (3) 2.3887141 .091755
H (4) 2.3918111 .0900801 .794188
C (5) $2.742817 \quad 1.513834 \quad 2.190702 \quad 2.201708$
H (6) 3.0235762 .1452523 .0789242 .4517971 .096808
H (7) $3.7138132 .1180472 .4741292 .5835861 .100360 \quad 1.764046$
$\begin{array}{llllllllllllllllll}\text { C (8) } & 3.034903 & 2.550023 & 2.887987 & 3.513204 & 1.541907 & 2.172512\end{array}$

H (9) 4.0243933 .4953923 .8878534 .3518412 .1849722 .489394 H (10) 3.4610432 .8598112 .76370313 .90486312 .192886 W (11) 2.5969683 .4292683 .7509074 .3721723 .1535433 .493520 Cl(12) 3.3532304 .3930225 .1506804 .9718903 .9519423 .602247 $\mathrm{Cl}(13) 4.9241205 .4976445 .705236 \quad 6.4918404 .799041 \quad 5.090781$ $\mathrm{Cl}(14) 3.338247 \quad 4.2325173 .9729315 .2023414 .535386 \quad 5.229904$ $\begin{array}{llllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{W}(11) & \mathrm{Cl}(12)\end{array}$
C (8) 2.183630
H (9) $2.542687 \quad 1.097729$
H (10) 2.5024591 .1105831 .762240
W (11) 4.0939822 .0915752 .7010712 .478556
$\mathrm{Cl}(12) 4.9783243 .4036263 .5954954 .285423 \quad 2.278240$
$\mathrm{Cl}(13) 5.4859733 .3255783 .2001233 .443126 \quad 2.3285263 .380579$ $\mathrm{Cl}(14) 5.279486 \quad 3.5971784 .3942173 .231898 \quad 2.2907634 .354425$ $\mathrm{Cl}(13)$
$\mathrm{Cl}(14) 3.395206$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy = -2026.624358131

R8eq	Coordinates (Angstroms)			
		X	Y	Z
ATOM	0.000000	0.000000	-0.001091	
1 Ru	0.00000	-2.270669	0.461498	
2 Cl	0.0000			
3 Cl	2.339333	0.000000	0.003936	
4 Cl	-2.339333	0.000000	0.003936	
5 Cl	0.000000	2.270669	0.461498	
6 C	0.000000	0.000000	-1.834501	
7 H	0.942864	0.000000	-2.384882	
8 H	-0.942864	0.000000	-2.384882	

(1) $\quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{Cl}(4) \quad \mathrm{Cl}(5) \quad \mathrm{C}(6)$
$\mathrm{Cl}(2) 2.317310$
$\mathrm{Cl}(3) 2.339338 \quad 3.292078$
$\mathrm{Cl}(4) 2.3393383 .2920784 .678666$
$\mathrm{Cl}(5) 2.3173104 .541337 \quad 3.292078 \quad 3.292078$
C (6) $1.8334103 .229172 \quad 2.975287 \quad 2.975287 \quad 3.229172$
H(7) 2.5634843 .7612252 .7670524 .0594673 .7612251 .091747
H (8) 2.5634843 .7612254 .0594672 .7670523 .7612251 .091747 H (7)
H (8) 1.885728
Point Group: $\mathrm{C}_{2 \mathrm{v}}$ Number of degrees of freedom: 7
Energy $=-1973.972019323$
R9
Coordinates (Angstroms)

Coordinates (Angstroms)			
ATOM	X	Y Z	
1 Ru	-0.338012	0.0328410 .000000	
2 Cl	2.840218	-0.492841 0.000000	
3 Cl	-1.432883	-0.539656-1.855176	
4 Cl	0.324570	2.1612060 .000000	
5 Cl	-1.432883	-0.539656 1.855176	
6 C	1.248672	-1.281915 0.000000	
7 H	1.148558	-1.883713 0.905983	
8 H	1.148558	-1.883713 -0.905983	
Distance Matrix (Angstroms)			
	$\mathrm{Ru}(1) \quad \mathrm{Cl}$	(2) $\mathrm{Cl}(3) \quad \mathrm{Cl}(4)$	$\mathrm{Cl}(5)$

$\mathrm{Cl}(2) 3.221411$
$\mathrm{Cl}(3) 2.2289404 .658676$
Cl(4) $2.229115 \quad 3.656836 \quad 3.718196$
$\mathrm{Cl}(5) 2.2289404 .6586763 .710351 \quad 3.718196$
C(6) $2.0606181 .7764173 .3441533 .564975 \quad 3.344153$
H (7) 2.5891842 .3700304 .0117734 .2262433 .0612571 .092240
H (8) 2.5891842 .3700303 .0612574 .2262434 .0117731 .092240 H (7)
H (8) 1.811966
Point Group: $\mathrm{C}_{\mathrm{s}} \quad$ Number of degrees of freedom: 11
Energy $=-1974.025450210$
p4

		Coordinates (Angstroms)			
ATOM	X	Y	Z		
1	Ru	-0.168064	-0.000317	-0.027422	
2	C	1.399323	0.003809	-1.378341	
3	H	1.439139	0.937200	-1.933442	
4	H	1.444251	-0.929306	-1.933525	
5	Cl	2.519059	0.006790	-0.017350	
6	Cl	-2.360384	-0.006674	-0.474303	
7	Cl	-0.157431	2.399657	-0.336425	
8	Cl	-0.143319	-2.400338	-0.336521	
9	C	-0.089005	-0.706550	2.033127	
10	H	0.826431	-1.269604	2.180119	
11	H	-1.007409	-1.263794	2.191039	
12	C	-0.093094	0.705666	2.033351	
13	H	0.819067	1.273974	2.180445	
14	H	-1.014742	1.257512	2.191309	

H (14) 1.864099
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy $=-2052.558692808$

H (10) 3.9619863 .2474933 .4863334 .1111512 .4333853 .034904 Ru(11) 2.3309343 .6198933 .9451613 .9357913 .5317973 .934218 $\mathrm{Cl}(12) 3.4583515 .0215815 .6271524 .9159014 .9051694 .845274$ $\mathrm{Cl}(13) 3.4176584 .9890464 .8354515 .5047305 .0546405 .746477$ $\mathrm{Cl}(14) 4.8309715 .3904585 .7929145 .9052144 .6846954 .851689$ $\begin{array}{llllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{Ru}(11) & \mathrm{Cl}(12)\end{array}$ C(8) 2.372388
H (9) 2.6866891 .085564
H (10) 2.2005041 .0872881 .856354
$\mathrm{Ru}(11) 4.0390071 .9505372 .6303252 .590425$
$\mathrm{Cl}(12) 5.6506513 .5196593 .5388804 .4348882 .236374$
$\mathrm{Cl}(13) 5.2079733 .5024084 .4027043 .4437962 .2407293 .966978$
$\mathrm{Cl}(14) 4.8086752 .5911552 .6728992 .7818132 .5091263 .234714$ $\mathrm{Cl}(13)$
$\mathrm{Cl}(14) 3.227253$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy = -2052.565871521
pdt8 Coordinates (Angstroms)
ATOM X Y
$\begin{array}{llll}-2.125068 & 0.110859 & 0.947689\end{array}$
$2 \mathrm{C} \quad-2.872866 \quad 0.164224-0.719993$
$\begin{array}{lllll}3 & H & -2.853667 & 1.212551 & -1.024957\end{array}$
$4 \mathrm{H} \quad-3.904084-0.170139-0.599413$
$5 \mathrm{C} \quad-2.060879-0.735052-1.632793$
$6 \mathrm{H} \quad-2.140892-1.772257-1.289323$
$7 \mathrm{H} \quad-2.513801-0.695842-2.636838$
$8 \mathrm{C} \quad-0.597425-0.332011 \quad-1.742230$
$9 \mathrm{H} \quad 0.002644-1.077082-2.276974$
$10 \mathrm{H} \quad-0.449850 \quad 0.645427-2.229517$
$\begin{array}{llrr}11 \mathrm{Ru} & 0.443780 & 0.002817 & -0.009497 \\ 12 \mathrm{Cl} & 0.641522 & -1.735495 & 1.410065\end{array}$
$12 \mathrm{Cl} \quad 0.641522-1.735495 \quad 1.410065$
$13 \mathrm{Cl} \quad 2.509666-0.111368 \quad-0.959930$
$14 \mathrm{Cl} \quad 0.481374 \quad 2.158650 \quad 0.662150$ Distance Matrix (Angstroms)
$\mathrm{Cl}(1) \quad \mathrm{C}(2) \quad \mathrm{H}(3) \quad \mathrm{H}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
C (2) 1.828445
H (3) $2.374008 \quad 1.091953$
H(4) $2.374316 \quad 1.090756 \quad 1.787819$
C (5) $2.7163531 .516978 \quad 2.188866 \quad 2.187328$
H (6) $2.924140 \quad 2.147063 \quad 3.080100 \quad 2.480242 \quad 1.095522$
H (7) $3.6946872 .131416 \quad 2.5210392 .5219741 .1021721 .764519$
C (8) $3.1249782 .543393 \quad 2.8267963 .5023171 .5218792 .159103$
H (9) $4.041883 \quad 3.497655 \quad 3.8689124 .347330 \quad 2.188626 \quad 2.460381$
$\begin{array}{lllllll}\mathrm{H} & \text { (10) } & 3.631357 & 2.895034 & 2.747896 & 3.905652 & 2.203909\end{array} 3.096576$
Ru(11) 2.7435123 .3957323 .6561964 .3911083 .0745503 .386646
$\mathrm{Cl}(12) 3.3581004 .5273615 .1804115 .2106504 .190805 \quad 3.876838$
$\begin{array}{llllllll}\mathrm{Cl}(13) & 5.016888 & 5.394921 & 5.524702 & 6.424143 & 4.661718 & 4.949217\end{array}$
$\mathrm{Cl}(14) 3.3269394 .1399253 .8553775 .1231874 .4836735 .112392$ $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{Ru}(11) \quad \mathrm{Cl}(12)$
C (8) 2.145972
H (9) 2.5704751 .095977
H (10) 2.4949571 .1020941 .781583
Ru(11) 4.0172552 .0490442 .5499492 .477904
$\mathrm{Cl}(12) 5.235873 \quad 3.666295 \quad 3.7994654 .4840202 .252995$
$\mathrm{Cl}(13) 5.3281203 .2116502 .9920513 .3080692 .2768943 .427044$
$\mathrm{Cl}(14) 5.291741 \quad 3.6260504 .397453 \quad 3.393930 \quad 2.258348 \quad 3.968550$ $\mathrm{Cl}(13)$
Cl(14) 3.449361
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy $=-2052.663958050$
R10eq/d Coordinates (Angstroms)
ATOM X Y Z
$1 \operatorname{Re} \quad 0.000000 \quad 0.000000-0.061182$
$\begin{array}{llllr}1 & \mathrm{Re} & 0.000000 & 0.00000 & -0.061182 \\ 2 & \mathrm{Cl} & 0.000000 & -2.258026 & 0.496843\end{array}$
$\begin{array}{llll}3 \mathrm{Cl} & 2.310442 & 0.000000 & 0.051352\end{array}$
$\begin{array}{llll}4 \mathrm{Cl} & -2.310442 & 0.000000 & 0.051352\end{array}$
$5 \mathrm{Cl} \quad 0.000000 \quad 2.258026 \quad 0.496843$
$6 \mathrm{C} \quad 0.000000 \quad 0.000000-1.923290$
$\begin{array}{lllll}7 \mathrm{H} & 0.930316 & 0.000000 & -2.493857 \\ 8 & \mathrm{H} & -0.930316 & 0.00000 & -2.493857\end{array}$
$8 \mathrm{H} \quad-0.930316 \quad 0.000000-2.493857$ Distance Matrix (Angstroms)
$\mathrm{Re}(1) \mathrm{Cl}(2) \mathrm{Cl}(3) \mathrm{Cl}(4) \mathrm{Cl}(5) \mathrm{C}(6)$
$\mathrm{Cl}(2) 2.325956$
Cl (3) $2.313181 \quad 3.261179$
$\mathrm{Cl}(4) 2.313181 \quad 3.2611794 .620884$
$\mathrm{Cl}(5) 2.3259564 .5160523 .2611793 .261179$
C (6) 1.8621083 .3099433 .0393013 .0393013 .309943
H (7) $2.6044953 .861146 \quad 2.8953134 .1207523 .8611461 .091345$
H (8) $2.604495 \quad 3.8611464 .1207522 .89531313 .8611461 .091345$ H(7)
H (8) 1.860631
Point Group: $\mathrm{C}_{2 \mathrm{v}}$ Number of degrees of freedom: 7

Energy $=-1959.257911679$
R11/d

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Re	-0.161368	0.000789	0.0572

| 1 Re | -0.161368 | 0.000789 | 0.057225 |
| :--- | :--- | :--- | :--- | :--- |

$2 \mathrm{C} \quad 1.369564-0.013087-1.385089$
$3 \mathrm{H} \quad 1.470605 \quad 0.905288-1.957842$
$4 \mathrm{H} \quad 1.455759-0.934737-1.955192$
$5 \mathrm{Cl} \quad 2.563667-0.020691-0.035368$
$6 \mathrm{Cl} \quad-2.383825 \quad 0.025874-0.283750$
$7 \mathrm{Cl} \quad-0.099269 \quad 2.380902-0.344958$
$\begin{array}{lllll}8 \mathrm{Cl} & -0.149898 & -2.379518 & -0.347025 \\ 9 \mathrm{C} & 0.074938 & -0.717765 & 2.071777\end{array}$
$10 \mathrm{H} \quad 0.989026-1.289374 \quad 2.200472$
$\begin{array}{lllll}11 \mathrm{H} & -0.827410 & -1.256680 & 2.355075\end{array}$
$12 \mathrm{C} \quad 0.089432 \quad 0.712460 \quad 2.071253$
$13 \mathrm{H} \quad 1.014931 \quad 1.265315 \quad 2.199557$
$14 \mathrm{H} \quad-0.801749 \quad 1.269878 \quad 2.352982$
Distance Matrix (Angstroms)
C (2) 2.103382
H (3) $2.746260 \quad 1.087045$
H (4) 2.7459301 .0871461 .840087
Cl(5) $2.7266921 .8021342 .397525 \quad 2.397637$
Cl(6) 2.2486023 .9118284 .2933184 .2963834 .953943
Cl(7) $2.4146522 .9950832 .6913444 .0005543 .599267 \quad 3.281631$
$\mathrm{Cl}(8) 2.4144172 .9977224 .0013382 .6929033 .608965 \quad 3.283344$
C (9) $2.1518783 .7579994 .5628954 .262655 \quad 3.3346293 .485257$
H (10) 2.7534413 .8249144 .7265244 .19680313 .0146364 .390599
H (11) 2.7027694 .5124335 .3438034 .8882434 .3291223 .321260
C (12) 2.1507413 .7565224 .2636174 .5598653 .3312473 .483452
H (13) $2.7517803 .8222724 .1977644 .721917 \quad 3.0078704 .388003$
H (14) $2.7002184 .5092994 .886688 \quad 5.3401354 .3238663 .317057$ $\mathrm{Cl}(7) \quad \mathrm{Cl}(8) \quad \mathrm{C}(9) \quad \mathrm{H}(10) \quad \mathrm{H}(11) \quad \mathrm{C}(12)$
Cl(8) 4.760689
C (9) 3.9335342 .943225
H (10) $4.5972292 .995881 \quad 1.085752$
$\begin{array}{llllll}\mathrm{H}(11) & 4.588286 & 3.003520 & 1.088540 & 1.823297\end{array}$
C (12) $2.942343 \quad 3.9326421 .430298 \quad 2.198478 \quad 2.190585$
$\begin{array}{llllllllllll}\mathrm{H}(13) & 2.993414 & 4.596380 & 2.198300 & 2.554820 & 3.127118 & 1.085661\end{array}$
H (14) 3.0011224 .5861792 .1905213 .1272842 .5266891 .088251 H (13)
H (14) 1.823153
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 36
Energy $=-2037.871496373$

TS10/d

		Coordinates (Angstroms)		
ATOM		X	Y	Z
1	Re	-0.053195	-0.021147	0.063425
2	Cl	1.318299	0.460896	-1.845238
3	Cl	2.078903	-0.861159	0.900286
4	Cl	0.272924	2.230510	0.583297
5	Cl	-2.271865	0.449873	-0.439153
6	C	-0.556697	-0.834743	1.750379
7	H	0.068392	-1.385067	2.445562

8	H	-1.581389	-0.658862	2.089330
9	C	-0.346429	-1.922083	-1.120859
10	H	0.638401	-2.216385	-1.466218
11	H	-1.080870	-1.694533	-1.886607
12	C	-0.782828	-2.372789	0.141545
13	H	-1.846472	-2.435503	0.350065
14	H	-0.111665	-2.984692	0.735757

C (8) 2.4034303 .2103464 .5883602 .9524691 .3933432 .151215 H (9) 2.9999124 .2276835 .1300913 .1170682 .1454423 .083698 $\begin{array}{llllllll}\mathrm{H}(10) & 2.921763 & 3.004238 & 4.915899 & 3.838222 & 2.140915 & 2.463125\end{array}$ C (11) 1.7934693 .2547873 .2130292 .5799933 .0614033 .728804 H(12) 2.5803614 .3205383 .8823072 .7846793 .6050754 .454589 H (13) 2.4883753 .1533863 .5773293 .5884223 .6476764 .108844 H(7) C(8) H(9) H(10) C(11) H(12)
C (8) 2.151894
H (9) 2.4698731 .086460
H (10) 3.0890051 .0850911 .857204
C (11) 3.6317322 .2389382 .4200462 .506717
H(12) 3.9458362 .6866572 .3938843 .1196521 .087517
H (13) 4.4131762 .6841953 .0090242 .4836061 .0910301 .858854
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1199.820933520$

Energy $=-1199.862983334$

TS13

$$
\begin{array}{llllll}
\mathrm{Cr}(1) & \mathrm{Cl}(2) & \mathrm{Cl}(3) & \mathrm{C}(4) & \mathrm{H}(5) & \mathrm{H}(6)
\end{array}
$$

Cl(2) 2.182279
Cl(3) 2.1721363 .667969
C (4) $1.7521173 .185045 \quad 3.269077$
H(5) 2.4212383 .6177083 .3651761 .096102
H (6) 2.5671663 .8478994 .2306271 .0883751 .869843
C(7) $3.371216 \quad 2.383342 \quad 5.0794554 .424475 \quad 5.2637804 .632681$

H(8) 3.8998362 .6926275 .8093614 .5841785 .3894364 .635357
H (9) 3.8967252 .6047885 .2666055 .1735775 .9151825 .530720
$\begin{array}{llllllll}\mathrm{C} & \text { (10) } & 3.052579 & 3.074872 & 4.701371 & 4.118776 & 5.107591 & 4.210977\end{array}$
H (11) 3.5016893 .7009724 .7145364 .8044035 .7657234 .990782
H (12) 3.6133053 .8369995 .4091914 .2861815 .3479754 .096646 O (13) 1.6491512 .8379563 .3348232 .6916193 .6868572 .930067 $\begin{array}{lllll}\mathrm{C}(7) & \mathrm{H}(8) & \mathrm{H}(9) & \mathrm{C}(10) & \mathrm{H}(11)\end{array} \mathrm{H}(12)$
H(8) 1.084109
H (9) 1.0829161 .839615
C (10) 1.4233992 .1781622 .179441
H (11) 2.1376863 .0688112 .4491951 .087170
H (12) $2.1369842 .4547023 .046478 \quad 1.0868621 .818434$
O (13) $2.6292953 .2630073 .3528051 .711721 \quad 2.159065 \quad 2.115789$
Point Group: C ${ }_{1}$ Number of degrees of freedom: 33
Energy $=-1199.796449245$
pdt12

		Coordinates (Angstroms)			
	ATOM	X	Y	Z	
1	Cr	0.398356	0.011761	-0.292667	
2	Cl	0.346737	2.146357	0.078984	
3	Cl	2.184801	-1.119786	0.278649	
4	O	-0.457078	-0.574350	-1.456561	
5	C	-2.881116	-0.806935	-0.379612	
6	H	-3.121696	-1.866993	-0.345733	
7	H	-3.027490	-0.303146	-1.329021	
8	C	-2.364585	-0.143705	0.767978	
9	H	-2.366033	0.944376	0.694536	
10	H	-2.873429	-0.487926	1.680249	
11	C	-0.822435	-0.631048	1.074189	
12	H	-0.532387	-0.203178	2.040974	
13	H	-0.828442	-1.720474	1.134779	

$$
\mathrm{Cr}(1) \mathrm{Cl}(2) \mathrm{Cl}(3) \mathrm{O}(4) \mathrm{C}(5) \mathrm{H}(6)
$$

$\mathrm{Cl}(2) 2.167322$
Cl(3) 2.1904773 .753137
O (4) 1.5588273 .2258743 .207488
C (5) $3.3812364 .399008 \quad 5.118076 \quad 2.662682$
H (6) 3.9904015 .3214095 .3950983 .1630771 .087543
H (7) 3.592996 4.4009045 .515386
C (8) $2.9636093 .6152964 .678578 \quad 2.9618591 .422547 \quad 2.187074$
H (9) $3.0799653 .030311 \quad 5.0143613 .2523612 .1180633 .091437$

H(10) 3.8531364 .4579105 .2867213 .9605292 .0844312 .463345 C (11) $1.9421203 .1735423 .1488442 .557615 \quad 2.5263892 .971589$ H (12) $2.5215793 .1847413 .3658693 .5179813 .426410 \quad 3.894762$ H (13) 2.5579824 .1770953 .1895792 .8577182 .7095032 .733569 $\mathrm{H}(7) \mathrm{C}(8) \mathrm{H}(9) \mathrm{H}(10) \mathrm{C}(11) \mathrm{H}(12)$
C (8) 2.205056
H (9) 2.4675131 .090558
H (10) 3.0188711 .0998401 .811234
C (11) $3.277988 \quad 1.646054 \quad 2.238033 \quad 2.143447$
H (12) $4.194329 \quad 2.231816 \quad 2.547946 \quad 2.3857241 .096300$
H (13) 3.5937372 .2316983 .1079612 .4492211 .0911261 .791933
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1199.824595089$
pdt13

C(8) 3.3710675 .0772562 .6291252 .3839591 .4234102 .136932 H (9) 3.8952395 .2622713 .3522452 .6047962 .1793933 .046477 $\begin{array}{llllllllllllll}\text { H (10) } & 3.900743 & 5.808459 & 3.263027 & 2.693275 & 2.178204 & 2.454711\end{array}$ C (11) 1.7521473 .2689762 .6917653 .1847144 .1201544 .289057 H (12) 2.5669054 .2308762 .9297883 .8468044 .2125074 .099842 H (13) 2.4216583 .3653463 .6871723 .6177505 .1089635 .350852 $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C (8) 2.137588
H (9) 2.4490061 .082899
H (10) 3.0687031 .0840841 .839669
C (11) 4.8046984 .4262595 .1739204 .587560
H(12) 4.9915374 .6344025 .5312914 .6385361 .088413
H (13) $5.7658425 .2657445 .9155545 .3932341 .096081 \quad 1.869832$
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1199.796480000$
pdt14

Coordinates (Angstroms)			
ATOM	X	Y	Z
1 Cr	0.296813	-0.000268	0.264035
2 Cl	1.266717	1.892655	-0.037005
3 Cl	1.662849	-1.642678	-0.127664
4 O	-1.147081	-0.174104	1.149173
5 C	-2.349008	0.243764	-0.801295
6 H	-3.172348	-0.088595	-1.449596
7 H	-2.380601	1.337961	-0.752861
8 C	-2.473870	-0.331182	0.610465
9 H	-3.174331	0.196115	1.265918
10 H	-2.713216	-1.401368	0.610195
11 C	-0.983206	-0.234421	-1.277341
12 H	-0.958062	-1.303068	-1.516995
13 H	-0.537168	0.348748	-2.090770
Distance Matrix (Angstroms)			

$\mathrm{Cr}(1) \mathrm{Cl}(2) \mathrm{Cl}(3) \mathrm{O}$ (4)
$\mathrm{Cl}(2) 2.148138$
$\mathrm{Cl}(3) 2.1718643 .558613$
O (4) 1.7025033 .3918923 .418001
C (5) 2.8626644 .0467824 .4841322 .328855
H (6) 3.8703245 .0622205 .2480293 .2958491 .099385
H (7) $3.1612473 .7580675 .062072 \quad 2.7250041 .0957241 .774082$
C (8) 2.8117974 .3996204 .4019661 .4405731 .5294512 .188738
H (9) $3.6181734 .929377 \quad 5.359248 \quad 2.064082 \quad 2.226386 \quad 2.730399$
H (10) $3.3381405 .2066614 .4443912 .0614212 .198047 \quad 2.485340$
C (11) $2.0172053 .3354223 .2103822 .4327901 .523383 \quad 2.200745$
H (12) $2.5385164 .1656522 .985758 \quad 2.901507 \quad 2.199920 \quad 2.526371$
H (13) $2.522388 \quad 3.139363 \quad 3.5580383 .338053 \quad 2.226327 \quad 2.747098$
$\mathrm{H}(7) \mathrm{C}(8) \mathrm{H}(9) \mathrm{H}(10) \mathrm{C}(11) \mathrm{H}(12)$
C(8) 2.157173
H (9) $2.451385 \quad 1.094672$
H (10) 3.0777391 .0966241 .787331
C (11) 2.1679892 .4073333 .3844582 .813804
H(12) $3.0955702 .7871713 .860570 \quad 2.759558 \quad 1.095479$
$\begin{array}{llllllll}\mathrm{H} & (13) & 2.483302 & 3.392608 & 4.271449 & 3.885010 & 1.095765 & 1.798573\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1199.888848343$

Coordinates (Angstroms)

	ATOM	X	Y	Z
1	Cr	0.594466	-0.414219	-0.118116
2	Cl	2.237453	1.050942	-0.061178
3	O	-0.595192	-0.281880	-1.433276
4	Cl	-1.184527	0.357487	1.355818
5	C	-1.797913	0.451500	-1.294933
6	H	-2.486636	0.151054	-2.097816
7	H	-1.606244	1.528836	-1.400621
8	C	-2.472495	0.166914	0.037597
9	H	-3.269287	0.867323	0.291084
10	H	-2.814765	-0.865238	0.122524
11	C	0.973162	-2.063665	0.348168
12	H	0.525054	-2.988939	-0.017462
13	H	1.766860	-2.157992	1.099839
			Distance Matrix (Angstroms)	

$\mathrm{Cr}(1) \quad \mathrm{Cl}(2) \quad \mathrm{O}(3) \quad \mathrm{Cl}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.202123$
O (3) 1.7783273 .418032
$\mathrm{Cl}(4) 2.4357403 .768116 \quad 2.921498$
C (5) 2.8031854 .2621191 .4154582 .722419
H (6) 3.7056645 .2225202 .0510023 .6967141 .099649
$\begin{array}{lllllll}\text { H (7) } & 3.203656 & 4.098353 & 2.074123 & 3.024543 & 1.099345 & 1.777485\end{array}$
C (8) 3.1254144 .79321112 .4267571 .8528051 .5204242 .135519
H (9) 4.091257 5.5210503 .3830272 .3957922 .2030212 .613891
H (10) $3.447345 \quad 5.406515$ 2.772602 2.3819642 .1856292 .463824
C (11) 1.7554213 .3862622 .9678333 .3960214 .0871374 .781007
H (12) 2.5776214 .3880363 .2538664 .0008924 .3433544 .822625
H (13) 2.4287163 .4448043 .9390043 .8863675 .0251355 .800769
$\begin{array}{lllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{C}(11) \\ \mathrm{H}(12)\end{array}$
C(8) 2.161873
H (9) $2.462758 \quad 1.090737$
H (10) 3.0841671 .0907341 .799103
C (11) 4.7558034 .1163695 .1567753 .979389
H(12) 5.1832284 .3529005 .4187623 .9603151 .091154
H (13) 5.5877404 .9503215 .9303794 .8597991 .0972071 .865721
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1199.824272517$
R14

	Coordinates (Angstroms)			
ATOM	X	Y	Z	

1 Mo $\quad-0.092085 \quad-0.269820 \quad 0.000000$
$2 \mathrm{Cl} \quad 0.0359040 .998994-1.918272$
$\begin{array}{lllll}3 \mathrm{Cl} & 0.035904 & 0.998994 & 1.918272\end{array}$
$\begin{array}{lll}-1.275713 & -1.462881 & 0.000000\end{array}$
$\begin{array}{lll}1.482007 & -1.303615 & 0.000000\end{array}$
$2.432087-0.7592730 .000000$
$\begin{array}{llll}1.539536 & -2.390775 & 0.000000\end{array}$
Distance Matrix (Angstroms)
$\mathrm{Mo}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.303484$
Cl(3) 2.3034843 .836545
O (4) 1.6805863 .3854013 .385401
C(5) 1.8832153 .3276113 .3276112 .762315
H (6) 2.5711883 .5373673 .5373673 .7739691 .094970
H (7) $2.6759374 .1750714 .175071 \quad 2.964222 \quad 1.088681 \quad 1.859690$
Point Group: C_{s} Number of degrees of freedom: 10
Energy $=-1102.546991928$

Cl(2) 2.171889
O(3) 1.6491503 .334909
$\mathrm{Cl}(4) 2.1822963 .6672372 .838249$
C (5) 3.0522204 .6993791 .7114973 .075434
TS16
H (6) $3.6139335 .4085392 .1158193 .837588 \quad 1.086836$
H(7) 3.5004714 .7110782 .1589553 .7015281 .0871681 .818386

ATOM	X	Y	Z
1 Mo	-0.058273	-0.310611	-0.039918
2 Cl	-0.007899	2.135914	-0.031418
3 Cl	-2.384910	-0.170797	0.003249
4 O	0.086111	-1.887241	-0.666840
5 C	1.947002	0.059928	-1.085494
6 H	1.922575	1.062835	-1.493157
7 H	2.073700	-0.757968	-1.787619
8 C	2.390482	-0.121512	0.252569
9 H	2.878703	-1.054830	0.514746
10 H	2.676868	0.755927	0.823611
11 C	0.812339	-0.596520	1.670710
12 H	1.141408	-1.562970	2.045999
13 H	0.861828	0.233495	2.376383

3	Cl	2.110596	0.960966	-0.452563
4	C	-0.146713	0.465569	1.966028
5	H	0.451512	-0.179856	2.614820
6	H	-0.711803	1.260378	2.454745
7	C	-2.016394	-0.948002	-0.167912
8	H	-1.879388	-1.710360	-0.929631
9	H	-2.346743	-1.326855	0.793870
10	C	-2.541365	0.320639	-0.608100
11	H	-3.173162	0.898042	0.061992
12	H	-2.773561	0.454594	-1.661018
13	O	-1.159206	1.412664	-0.586061

Distance Matrix (Angstroms)
$\begin{array}{lllll}\mathrm{Mo}(1) & \mathrm{Cl}(2) & \mathrm{Cl}(3) & \mathrm{O}(4) & \mathrm{C}(5)\end{array} \mathrm{H}(6)$
Cl(2) 2.447058
$\mathrm{Cl}(3) 2.3312343 .312446$
O (4) 1.7028334 .0741103 .082392
C (5) $2.2916493 .0401384 .472590 \quad 2.725739$
H (6) $2.814608 \quad 2.6485684 .7239303 .5718831 .082871$
H (7) 2.7928293 .9738964 .8405772 .5459601 .0853501 .850641
$\begin{array}{llllllllll}\text { C (8) } & 2.473400 & 3.305882 & 4.782150 & 3.045199 & 1.421270 & 2.160827\end{array}$
H (9) 3.0801524 .3372355 .3617873 .1444592 .1613703 .070890
H (10) $3.0600943 .1374225 .2108933 .9899622 .159121 \quad 2.455721$
C (11) 1.9406073 .3220813 .6309872 .7672203 .0520563 .741142
H (12) 2.7126904 .3952604 .3064942 .9288733 .6178774 .475568
H (13) 2.6421863 .1895354 .0418473 .7895203 .6321244 .097113
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C (8) 2.160507
H (9) 2.4570391 .085439
H (10) 3.0780201 .0853591 .847965
C (11) $3.6847172 .1742342 .411672 \quad 2.454212$
H (12) 4.0266392 .6180872 .3708933 .0379521 .087729
H (13) 4.448657 2.6407203 .0320382 .4450781 .0905721 .847865
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1181.125831491$
pdt15

Coordinates (Angstroms)				
ATOM	X	Y	Z	
1 Mo	0.168928	0.002623	-0.328981	
2 Cl	1.237527	-1.834719	0.572365	
3 Cl	1.182036	1.872552	0.568812	
4 O	0.062026	-0.002969	-2.007317	
5	C	-1.694221	-1.152764	0.159669
6	H	-2.074597	-1.433618	-0.825752
7	H	-1.453258	-2.037716	0.747723
8	C	-2.472291	-0.036081	0.824544
9 H	-2.302998	-0.027887	1.906924	
10	H	-3.558957	-0.055783	0.659006
11	C	-1.732566	1.099618	0.147651
12	H	-2.122590	1.356168	-0.840610
13	H	-1.522688	1.99860	0.726087
Point Group: C_{1}	Number of degrees of freedom: 33			

Energy is -1181.152855073 degrees of freedom: 33
Distance Matrix (Angstroms)
$\mathrm{Mo}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4)$
$\mathrm{Cl}(2) 2.308713$
$\mathrm{Cl}(3) 2.3084743 .707688$
O (4) $1.681746 \quad 3.375185 \quad 3.377638$
C (5) $2.2461133 .038178 \quad 4.194375 \quad 3.016995$
H (6) 2.7097933 .6174274 .8457432 .8298431 .092987
H (7) 2.8202422 .7041234 .7187893 .7452001 .0895001 .796336
C (8) $2.8823874 .1305494 .1306633 .8004331 .514738 \quad 2.198805$
H (9) 3.3332604 .1929714 .1889944 .5733182 .1653773 .081520
H (10) $3.8570275 .1164815 .1189474 .4970632 .220348 \quad 2.511226$
C(11) 2.2463874 .1966853 .0446193 .0133272 .2527402 .735284
H (12) $2.7101484 .8444453 .629556 \quad 2.825067 \quad 2.7347392 .790238$
H(13) 2.8212934 .7263882 .7122353 .7403393 .2067103 .807193
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C (8) 2.247414
H (9) 2.4708741 .095571
H (10) 2.8930781 .0993791 .770738
C (11) $3.2063941 .514988 \quad 2.166034 \quad 2.220842$
H (12) 3.8064752 .1984963 .0817372 .5110961 .092976
H(13) 4.0372312 .2477602 .4720372 .8935191 .0896221 .796518
$\underline{\text { TS17 }}$

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Mo	-0.050241	0.190373	0.111483
2 Cl	0.832848	2.002900	-0.166809

3	O	-0.799031	0.210367	-1.371270
4	Cl	-1.157131	-0.066391	1.473149
5	C	-2.249476	0.738730	-1.145309
6	H	-2.754097	0.273674	-1.994086
7	H	-2.167509	1.816811	-1.294163
8	C	-2.855323	0.380902	0.137296
9	H	-3.257158	1.172826	0.759208
10	H	-3.386809	-0.563643	0.203947
11	C	0.826552	-2.074060	-0.365207
12	H	0.275236	-2.791350	-0.972803
13	H	1.684527	-2.465042	0.198391

2 Cl	1.151715	2.126703	0.168115	
3 Cl	1.607473	-1.862614	0.332792	
4	O	-0.758640	-0.274218	-1.505361
5	C	-3.109439	-0.518473	-0.282044
6	H	-3.241216	-1.567061	-0.027980
7	H	-3.458631	-0.197916	-1.256103
8 C	-2.512920	0.387849	0.673217	
9 H	-2.414475	1.403840	0.279674	
10	H	-3.142613	0.443221	1.580322
11	C	-1.129449	-0.170075	1.222177
12 H	-0.778464	0.411073	2.087412	
13	H	-1.291313	-1.203653	1.542025

Distance Matrix (Angstroms)						
	Mo(1)	$\mathrm{Cl}(2)$	O (3)	$\mathrm{Cl}(4)$	C (5)	H(6)
$\mathrm{Cl}(2) 2.319182$						
O (3) 1.8548003 .645710						
$\mathrm{Cl}(4) 2.3090473 .9407742 .880200$						
C (5)	3.091366	4.834227	1.560133	2.949196		
H (6)	3.786359	5.638385	2.052849	3.832448	1.091486	
H (7)	3.566561	4.846847	2.111715	3.496474	1.091391	1.793111
C (8)	3.421878	5.288561	2.556010	2.206452	1.462931	2.136476
H (9)	4.110779	5.676745	3.392292	2.540764	2.197964	2.939756
H (10)	3.912454	6.000690	3.126818	2.613349	2.193216	2.435728
C (11)	1.874072	3.547700	2.978807	3.368276	4.240554	4.581064
H (12)	2.693153	4.545200	3.212963	3.931889	4.343431	4.428798
H (13)	2.538328	3.599214	3.973627	3.931101	5.248435	5.657641
	H (7)	C (8)	H (9)	H (10)	C (1)) $\mathrm{H}(12)$
C (8) 2.141028						
H (9) 2.4121321 .084154						
H (10)	3.065549	1.085857	1.827690			
C (11)	4.996623	4.453712	5.336971	4.511951		
H (12)	5.225459	4.593027	5.585012	4.444996	1.089783	
H (13)	5.949804	5.358485	6.161887	5.416068	1.098467	1.861256
Point Group: C_{1}		Number of	degrees o	f freedom:		
Energy $=-1181.063602710$						
pdt17						

$\mathrm{Cl}(2) 2.324273$

O (3) 1.9320703 .636984
Cl(4) $2.439163 \quad 4.108318 \quad 2.904212$
C (5) $2.9678634 .576816 \quad 1.435834 \quad 2.728696$
H (6) $3.861826 \quad 5.484975 \quad 2.048583 \quad 3.7129771 .097869$
H (7) $3.3420154 .429326 \quad 2.0863683 .0397331 .0990511 .777697$
C (8) $3.2794875 .1666942 .4462081 .8996301 .510572 \quad 2.137132$
H (9) $4.2078695 .8824013 .400921 \quad 2.420555 \quad 2.203538 \quad 2.658044$
H (10) 3.6233835 .7673042 .8127752 .4196032 .1884522 .471061
C (11) $1.8722373 .575625 \quad 3.130295 \quad 3.4594934 .2577394 .927896$
H (12) 2.7049574 .5690753 .4010564 .0091064 .4786684 .943455
H(13) 2.5247853 .6278524 .1087234 .0278225 .2207375 .965049
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C (8) 2.153376
H (9) 2.4478871 .089674
H (10) 3.0835291 .0906081 .805675
C (11) 4.9316894 .2760335 .2958094 .140059
H (12) 5.322504 4.4564225 .5089464 .0676661 .091060
H (13) 5.7948885 .1592906 .1186235 .0665031 .0998471 .861297
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy is -1181.067782602
TS19

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Mo	0.339277	0.007294	-0.244236

Distance Matrix (Angstroms)
$\mathrm{Mo}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.306942$
$\mathrm{Cl}(3) 2.3319184 .018641$
O (4) $1.695613 \quad 3.494910 \quad 3.391208$
C (5) $3.488767 \quad 5.035576 \quad 4.943076 \quad 2.661281$
H (6) 3.9173075 .7428384 .8710673 .1650091 .086946
H (7) $3.935745 \quad 5.356075 \quad 5.564281 \quad 2.712546 \quad 1.0832741 .852057$
C (8) $3.0201934 .0875774 .707240 \quad 2.874375 \quad 1.445606 \quad 2.200856$
H (9) 3.1317683 .6404245 .1815642 .9570292 .1198563 .099097
H (10) 3.9550734 .8238675 .4255443 .9647812 .0962742 .576353
C (11) $2.0830233 .4044013 .338628 \quad 2.754598 \quad 2.510861 \quad 2.823831$
$\begin{array}{llllllll}\mathrm{H}(12) & 2.617053 & 3.217558 & 3.733771 & 3.657600 & 3.451351 & 3.801717\end{array}$
H(13) 2.7048014 .3528483 .2092743 .2301942 .6650112 .529645
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C(8) 2.227053
H (9) 2.4524471 .093985
H (10) $2.9251041 .105631 \quad 1.773318$
C (11) $3.401137 \quad 1.589537 \quad 2.239823 \quad 2.134767$
H (12) $4.3281942 .2380412 .632495 \quad 2.4181341 .099798$
H (13) $3.6794432 .186328 \quad 3.107095 \quad 2.4780991 .0939771 .779832$
Point Group: $C_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1181.091799069$
pdt18

		Coordinates (Angstroms)		
ATOM	X	Y	Z	
1	Mo	0.244802	-0.055681	-0.285639
2	Cl	1.535825	-1.853246	0.326300
3	Cl	1.492255	1.877569	0.049006
4	O	-1.381818	-0.132410	-1.144454
5	C	-2.459624	-0.225397	0.946691
6	H	-3.286908	0.165473	1.556367
7	H	-2.446941	-1.315395	1.064895
8	C	-2.670850	0.113842	-0.531583
9	H	-3.409107	-0.511856	-1.042139
10	H	-2.920661	1.169888	-0.687056
11	C	-1.101835	0.375289	1.318730
12	H	-1.155713	1.466893	1.433824
13	H	-0.663988	-0.053467	2.229741
		Distance Matrix (Angstroms)		

$\begin{array}{llllll}\mathrm{Mo}(1) & \mathrm{Cl}(2) & \mathrm{Cl}(3) & \mathrm{O}(4) & \mathrm{C}(5) & \mathrm{H}(6)\end{array}$
(2) 2.296181
$\mathrm{Cl}(3) 2.324991 \quad 3.741359$
O (4) $1.8410173 .692835 \quad 3.704681$
C (5) 2.9768044 .3587144 .5657042 .354400
H (6) $3.989345 \quad 5.370945 \quad 5.295641 \quad 3.318515 \quad 1.099492$
$\begin{array}{llllllll}\mathrm{H} & \text { (7) } & 3.264399 & 4.086225 & 5.171491 & 2.723080 & 1.096462 & 1.772022\end{array}$
C(8) 2.9309134 .7224474 .5584271 .4483971 .5313372 .177551
H (9) $3.7591805 .3032355 .5608722 .065030 \quad 2.222390 \quad 2.688111$
$\begin{array}{llllllll}\mathrm{H} & (10) & 3.418085 & 5.479643 & 4.529506 & 2.067179 & 2.197385 & 2.485142\end{array}$
$\begin{array}{lllllll}\text { C (11) } & 2.138496 & 3.592845 & 3.255510 & 2.530499 & 1.530630 & 2.207950\end{array}$
H(12) 2.6900244 .4152363 .0163083 .0424352 .1911932 .500140
H (13) 2.6745173 .4207413 .6240713 .4506092 .2136142 .716814
$\begin{array}{lllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{C}(11) \\ \mathrm{H}(12)\end{array}$
C (8) 2.154437
H (9) $2.451740 \quad 1.094161$
H (10) $3.0773971 .096271 \quad 1.786876$
C (11) 2.1753522 .4400453 .4182212 .821824
H (12) 3.0894182 .8265193 .8889102 .7751361 .098977
$\begin{array}{lllllllll}H & (13) & 2.475530 & 3.417659 & 4.295462 & 3.885469 & 1.097944 & 1.785153\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy = -1181.135196731
$\underline{R 15}$

	Coordinates (Angstroms)			
ATOM	X	Y	Z	
1	W	0.000007	-0.199011	0.059185
2	Cl	-1.914426	1.066577	-0.060503
3	Cl	1.914298	1.066523	-0.060967
4	O	-0.000371	-1.334055	1.309765

5	C	0.000111	-1.296589	-1.473614
6	H	0.000670	-0.775509	-2.438600
7	H	-0.001161	-2.383303	-1.525973
			Distance Matrix (Angstroms)	

W (1) $\mathrm{Cl}(2) \mathrm{Cl}($ 3) O (C$)$
$\mathrm{Cl}(2) 2.298063$
$\mathrm{Cl}(3) 2.297940 \quad 3.828724$
O (4) $1.6888673 .362183 \quad 3.362683$
C (5) $1.8852463 .3536383 .353206 \quad 2.783632$
H (6) 2.5634513 .5659803 .5648553 .7897511 .096686
H (7) 2.6988624 .2083084 .2091003 .0236291 .0879751 .848754
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 15
Energy $=-1102.870985829$

C (11) $2.1882254 .1740693 .0277962 .956226 \quad 2.2488363 .225346$ H (12) 2.7746394 .9865523 .1361473 .10750313 .2253704 .092871
H (13) 2.7190064 .3566222 .9795593 .8662822 .7194193 .803293

$$
\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)
$$

C (8) 2.192503
H (9) 2.5005461 .098473
H (10) $3.077789 \quad 1.094571 \quad 1.775907$
C (11) $2.7195881 .524719 \quad 2.232291 \quad 2.171376$
$\begin{array}{llllll}\mathrm{H}(12) & 3.803447 & 2.269335 & 2.903032 & 2.503629 & 1.094864\end{array}$
$\begin{array}{lllllll}H & (13) & 2.754579 & 2.192592 & 2.500844 & 3.077699 & 1.095962\end{array} 1.786520$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1181.484882060$

$\begin{array}{llllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{C}(11) & \mathrm{H}(12)\end{array}$
C (8) 2.222417
H (9) $2.500291 \quad 1.097141$
H (10) 3.0875241 .0936951 .781751
C (11) $2.8024021 .52046412 .211790 \quad 2.175237$
$\begin{array}{lllllll}H & (12) & 3.849851 & 2.269873 & 2.966510 & 2.480819 & 1.093027\end{array}$
$\begin{array}{lllllll}H & \text { (13) } & 2.957924 & 2.221936 & 2.498708 & 3.087389 & 1.089808\end{array} 1.802260$

```
Point Group: \(\mathrm{C}_{1} \quad\) Number of degrees of freedom: 33
Energy \(=-1207.424069617\)
```

Energy $=-1128.780003421$

$\underline{\text { TS24 }}$ Coordinates (Angstroms)

	ATOM	X	Y	Z
1 Ru	0.059139	0.215390	0.066989	
2	Cl	-0.785642	-2.039520	0.121850
3	Cl	-2.160292	0.835290	0.162071
4	C	0.089579	0.745049	-1.699176
5	H	-0.705425	1.372095	-2.103797
6	H	0.885837	0.442791	-2.383607
7	C	1.994716	-0.921929	-0.304596
8	H	1.932156	-1.806645	0.318613
9	H	1.987225	-1.096893	-1.374378
10	C	2.589026	0.250708	0.213449
11	H	2.936280	1.027185	-0.460736
12	H	3.039595	0.226392	1.200307
13	O	1.170395	1.298356	0.971421
		Distance Matrix (Angstroms)		

$\mathrm{Ru}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{C}(4) \quad \mathrm{H}(5) \quad \mathrm{H}(6)$
Cl(2) 2.408586
Cl (3) $2.306337 \quad 3.186819$
C (4) $1.844126 \quad 3.440345 \quad 2.921353$
H (5) 2.5758174 .0741942 .7457151 .090383
H (6) 2.5962583 .9029513 .9891641 .0926261 .863871
C (7) $2.2755283 .0267574 .5353812 .8901923 .973717 \quad 2.722931$
H (8) 2.7676952 .7348444 .8736493 .7386774 .7884543 .668342
H (9) $2.7417403 .2887744 .8265822 .664451 \quad 3.7253612 .145279$
C (10) 2.5343694 .0794514 .7854363 .1858664 .1809743 .111663
H (11) $3.0356954 .8576535 .1380703 .1172174 .010066 \quad 2.871109$
H(12) 3.1886754 .5749175 .3373704 .1687655 .1239554 .186877
O (13) 1.7960243 .9609683 .4587502 .9336663 .6029293 .474072 $\begin{array}{lllll}\mathrm{C}(7) & \mathrm{H}(8) & \mathrm{H}(9) & \mathrm{C}(10) & \mathrm{H}(11) \\ \mathrm{H}(12)\end{array}$
H (8) 1.083987
H (9) 1.0840211 .836573
C (10) $1.4130292 .162230 \quad 2.167807$
H (11) $2.170246 \quad 3.105840 \quad 2.499431 \quad 1.085370$
H (12) 2.1622092 .4773063 .0801901 .0851231 .846892
O (13) $2.6902393 .2630463 .450681 \quad 1.919532 \quad 2.289751 \quad 2.166889$
Point Group: $C_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1207.346864253$

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Ru	-0.079056	0.163812	-0.104464
2 Cl	-1.329576	-1.558866	0.733930
3 Cl	-1.346769	2.110080	0.349947
4 O	1.501509	1.036022	0.501893
5 C	1.609962	-1.190205	0.203980
6 H	1.414037	-1.736572	1.1256
7 H	1.809197	-1.865516	-0.624645
8 C	2.503197	0.030518	0.368295
9 H	3.117757	0.232747	-0.520425
10 H	3.148665	0.026611	1.256017
11 C	-0.021225	-0.119912	-1.905672
12 H	-0.909859	-0.480273	-2.435711
13 H	0.846328	0.163767	-2.508144

Distance Matrix (Angstroms)
$\mathrm{Ru}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.287865$
Cl(3) $2.366758 \quad 3.689024$
O (4) 1.9043653 .8473803 .047848
C (5) $2.1866143 .0095924 .433446 \quad 2.248689$
H (6) $2.7118112 .7771264 .797965 \quad 2.8432341 .089194$
H (7) $2.8203303 .433898 \quad 5.1686863 .1277281 .0873631 .798956$
C (8) 2.6285544 .1653314 .3757451 .4255751 .5215232 .209623 H (9) 3.2244984 .9560124 .9207642 .0742812 .1961343 .080646 H (10) $3.5054124 .779221 \quad 5.036936 \quad 2.073821 \quad 2.2259892 .476842$ C (11) $1.8243333 .2786993 .4376953 .074292 \quad 2.8734873 .723219$ H (12) 2.5573023 .3743363 .8289304 .0918663 .7177244 .434178

H(13) 2.5756584 .2676774 .0946903 .2016273 .1260204 .139795 $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C(8) 2.250002
H (9) 2.4750551 .099275
H (10) 2.9851641 .0975861 .788629
C (11) 2.8352443 .4009203 .4491284 .479502
H (12) 3.5485384 .4466064 .5164605 .5097551 .095660
H (13) 2.9313273 .3221793 .0191354 .4145751 .0936611 .871958
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1207.381903199$

C(11) 1.8206103 .0900732 .9791313 .2088933 .9886974 .786383
H (12) 2.5773254 .1510303 .2980493 .0464884 .0676164 .785327
H (13) 2.5687492 .9963063 .7982284 .2661094 .9525225 .697694 $\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C(8) 2.147366
H (9) 2.4676441 .090877
H (10) 3.0772991 .0902781 .800394
C (11) 4.5886213 .9595224 .9911703 .826359
H (12) 4.8138333 .6826284 .6702823 .3029011 .096482
$\begin{array}{lllllll}\text { H (13) } & 5.525009 & 5.038968 & 6.080816 & 4.867144 & 1.096294 & 1.862729\end{array}$
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1207.399966177$

TS25

ATOM	Coordinates (Angstroms)		
	X	Y	Z
1 Ru	-0.445306	0.185669	0.145234
2 Cl	-2.561909	0.068365	-0.805372
3 O	0.861625	1.381402	-0.074643
4 Cl	0.884441	-1.604639	-0.169631
5 C	2.727296	1.158404	-0.283363
6 H	2.950685	1.656467	0.653728
7 H	2.720413	1.789758	-1.164883
8 C	3.082860	-0.176514	-0.426933
9 H	3.176015	-0.630501	-1.406841
10 H	3.445365	-0.754108	0.415416
11 C	-0.728574	-0.118337	1.927651
12 H	-1.011987	0.731085	2.559419
13 H	$\begin{array}{lll}-0.552564 & -1.078020 & 2.420931 \\ \text { Distance Matrix (Angstroms) }\end{array}$		
	$\mathrm{Ru}(1)$	Cl(2) O	(3) $\mathrm{Cl}(4)$

R18

Coordinates (Angstroms)				
ATOM	X	Y	Z	
1	Re	-0.049948	-0.258199	0.000000
2	Cl	0.032794	1.180724	-1.790205
3	Cl	0.032794	1.180724	1.790205
4	O	-1.358120	-1.327785	0.000000
5	C	1.558483	-1.202936	0.000000
6	H	2.531134	-0.700098	0.000000
7	H	1.593541	-2.294170	0.000000

$\begin{array}{lllll}7 \mathrm{H} & 1.593541 & -2.294170 & 0.000000\end{array}$
Distance Matrix (Angstroms)
$\mathrm{Re}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.298299$
$\mathrm{Cl}(3) 2.2982993 .580410$
O (4) 1.6897713 .3811383 .381138
C (5) $1.8653623 .3487903 .348790 \quad 2.919273$
H (6) 2.6186363 .6033363 .6033363 .9395791 .094941
H (7) 2.6165304 .2089974 .2089973 .1058331 .0917971 .849363
Point Group: C_{s} Number of degrees of freedom: 10
Energy $=-1114.089300173$
Cl(2) 2.323234
O (3) 1.7849913 .738799
$\mathrm{Cl}(4) 2.2522373 .8833542 .987638$
C (5) $3.345940 \quad 5.4255291 .8905083 .323169$
H (6) 3.7355825 .9194362 .2294293 .9474161 .084486
H (7) $3.7830265 .567348 \quad 2.1932783 .9853791 .0843121 .837971$
C (8) $3.5925635 .6627382 .7358912 .6341591 .388900 \quad 2.131929$
H (9) 4.0235605 .8115363 .3434872 .7804572 .1595683 .086575
H (10) $4.0116706 .1849913 .3876642 .761161 \quad 2.1590772 .472321$
C (11) 1.8302113 .2962692 .9643103 .0347164 .2967074 .278990
H (12) 2.5390743 .7634123 .2972134 .0619894 .7165934 .493413
H (13) 2.6052283 .9699743 .7784363 .0088744 .8033624 .782592
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C(8) 2.131236
H (9) 2.4746261 .083975
H (10) 3.0812581 .0837781 .846198
C (11) 5.0100014 .4804565 .1601334 .484732
H (12) $5.377920 \quad 5.1487685 .926592 \quad 5.164352 \quad 1.095888$
H(13) 5.638670 4.7052485 .3623154 .4844681 .0932961 .871660
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1207.357724376$
pdt24

		Coordinates (Angstroms)		
	ATOM	X	Y	Z
1	Ru	0.492228	-0.207743	0.144261
2	Cl	2.692003	0.456054	0.240461
3	O	-0.407454	1.356987	-0.601550
4	Cl	-1.968560	-0.978175	0.503563
5	C	-1.678555	1.653544	-0.080573
6	H	-2.051130	2.541433	-0.615098
7	H	-1.650047	1.904745	0.993157
8	C	-2.675526	0.528453	-0.297345
9	H	-3.642093	0.696842	0.179527
10	H	-2.793590	0.270211	-1.349998
11	C	0.679338	-1.334151	-1.273770
12	H	-0.179468	-1.683283	-1.859288
13	H	1.667844	-1.656157	-1.621665

Distance Matrix (Angstroms)
$\mathrm{Ru}(1) \quad \mathrm{Cl}(2) \quad \mathrm{O}(3) \quad \mathrm{Cl}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.299758$
O(3) 1.9529573 .335760
Cl(4) 2.6034874 .8833473 .018495
C (5) $2.8683164 .5429971 .405368 \quad 2.711322$
H (6) 3.8214225 .2514852 .0260233 .6940311 .101306
H (7) 3.1261124 .6388202 .0945572 .9414931 .1030921 .775591
C (8) 3.2820225 .3948902 .4337541 .8469381 .5188062 .131414
H (9) $4.2322726 .338963 \quad 3.392457 \quad 2.389852 \quad 2.199639 \quad 2.562247$
H (10) $3.641134 \quad 5.714528 \quad 2.7267022 .3821912 .183656 \quad 2.499955$

R19

	Coordinates (Angstroms)		
ATOM	X	Y	Z
1 Re	-0.359643	-0.339445	-0.134692
2 Cl	-2.050622	1.117043	0.208817
3 C	1.309665	0.361585	-1.090275
4 O	-0.343988	-2.006928	-0.100021
5 Cl	2.368421	0.998197	0.291118
6 H	1.872168	-0.412810	-1.614728
7 H			-1.756270
	Distance Matrix (Angstroms)		

$\operatorname{Re}(1) \quad \mathrm{Cl}(2) \quad \mathrm{C}(3) \quad \mathrm{O}(4) \quad \mathrm{Cl}(5) \quad \mathrm{H}(6)$
C(2) 2.258045
C (3) 2.0472353 .681018
O (4) 1.6679173 .5731193 .053691
$\mathrm{Cl}(5) 3.0680514 .4214071 .8532364 .067054$
H (6) 2.6789684 .5884691 .0913973 .1220022 .422696
H (7) $2.6905973 .7380531 .0928483 .905175 \quad 2.4031251 .789831$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 15
Energy $=-1114.042564502$
TS26

		Coordinates (Angstroms)			
ATOM	X	Y	Z		
1 Re	-0.086184	-0.232517	-0.013859		
2 Cl	0.299438	2.179299	-0.109531		
3 Cl	-2.362812	0.093003	-0.197907		
4	O	0.052669	-1.882470	-0.506603	
5	C		2.102424	-0.151542	-1.068288
6	H		2.092144	0.813791	-1.560929
7	H		2.077381	-1.039621	-1.691197
8	C		2.466364	-0.250528	0.258615
9 H	2.701046	-1.214884	0.697492		
10	H	2.705574	0.637682	0.833152	
11	C		0.346784	-0.298693	1.823906
12 H	0.479909	-1.262288	2.322765		
13	H	0.447529	0.583034	2.462843	

Distance Matrix (Angstroms)
$\mathrm{Re}(1) \quad \mathrm{Cl}(2) \quad \mathrm{Cl}(3) \quad \mathrm{O}(4) \quad \mathrm{C}(5) \quad \mathrm{H}(6)$
$\mathrm{Cl}(2) 2.444323$
Cl(3) 2.3071363 .383493
O (4) 1.7275484 .0885863 .135655
C (5) 2.4307163 .0988374 .5558422 .741003
H (6) $2.869372 \quad 2.6804784 .7142343 .541312 \quad 1.083821$
H (7) 2.8541014 .0030244 .8195502 .4926121 .0850481 .858044
C (8) 2.5671133 .2764554 .8628563 .0124281 .3794642 .140924
H (9) $3.0396904 .2355035 .306126 \quad 2.984865 \quad 2.1463983 .096247$
H (10) $3.0444343 .00910653 .2007973 .896667 \quad 2.145260 \quad 2.477687$
C (11) 1.8892383 .1433853 .4033912 .8330423 .3865493 .967494

H (12) 2.6154734 .2181944 .0338162 .9278803 .9198924 .689615 H (13) 2.6615833 .0310243 .9009923 .8797213 .9682704 .353016
$\begin{array}{lllll}\mathrm{H}(7) & \mathrm{C}(8) & \mathrm{H}(9) & \mathrm{H}(10) & \mathrm{C}(11) \\ \mathrm{H}(12)\end{array}$
C (8) 2.139099
H (9) 2.4749771 .085205
H (10) $3.095208 \quad 1.0845431 .857532$
C (11) $3.9874672 .635352 \quad 2.766002 \quad 2.724386$
H (12) 4.3258973 .0381542 .7526733 .2836591 .093205
H (13) $4.7482083 .1030873 .380431 \quad 2.7852551 .0935411 .850914$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1192.664314803$

O (13) 1.7785933 .7944453 .1042882 .9541223 .9573143 .171377 $\mathrm{C}(7) \quad \mathrm{H}(8) \quad \mathrm{H}(9) \quad \mathrm{C}(10) \quad \mathrm{H}(11) \quad \mathrm{H}(12)$ H (8) 1.085931
H (9) 1.0856931 .837831
C (10) $1.4061692 .141080 \quad 2.146350$
H (11) $2.178341 \quad 3.092552 \quad 2.492615 \quad 1.085375$
H (12) $2.173630 \quad 2.4736623 .0836351 .0852261 .835242$
$\begin{array}{llllllll}\text { O (13) } & 2.678937 & 3.323422 & 3.394021 & 2.000210 & 2.310593 & 2.274810\end{array}$
Point Group: $\mathrm{C}_{1} \quad$ Number of degrees of freedom: 33
Energy $=-1192.634257432$

TS27

Coordinates (Angstroms)						TS28	Coordinates (Angstroms)		
ATOM	X	Y	Z			$\underline{ }$			
1 Re	0.073697	-0.076889	-0.143353			ATOM	X		
2 Cl	-1.089343	1.818078	0.595364					Y	Z
3 Cl	2.068830	0.958161	0.674331			1 Re	0.287921	0.073748	-0.191992
4 C	0.470659	-0.151827	-1.956407			2 Cl	1.195028	1.935463	0.809269
5 H	0.330973	0.761801	-2.544472			3 Cl	1.424119	-1.902513	0.018485
6 H	0.898686	-1.004208	-2.483885			4 O	-0.974998	0.243877	-1.322356
7 C	-2.047710	-1.050221	-0.281258			5 C	-2.966541	-0.051616	-0.411721
8 H	-2.682008	-0.471974	0.383981			6 H	-3.192747	1.002130	-0.272885
9 H	-2.313223	-1.012808	-1.333318			7 H	-3.369231	-0.523682	-1.300227
10 C	-1.471791	-2.230669	0.220910			8 C	-2.428859	-0.842057	0.719084
11 H	-1.149480	-3.028323	-0.440833			9 H	-3.177348	-0.880783	1.529591
12 H	-1.586211	-2.507631	1.263942			10 H	-2.243969	-1.875969	0.407478
13 O	0.413304	-1.666116	0.579432			11 C	-1.138064	-0.208857	1.306847
	Distance	Matrix (Angs	stroms)			12 H	-1.365606	0.750680	1.788909
	$\operatorname{Re}(1) \quad \mathrm{C}$	(2) $\mathrm{Cl}($	(3) $\mathrm{C}(4)$	H (5)	H (6)	13 H	-0.704593	-0.880888	2.057565

Cl(2) 2.342918
Cl(3) $2.391755 \quad 3.274104$
C (4) 1.8575143 .5812953 .272156
H(5) 2.5563583 .6043853 .6632501 .095468
H (6) 2.6492684 .6259423 .8980081 .0899511 .856006
C (7) 2.3381113 .1486624 .6789593 .1552213 .7501593 .678985
H (8) 2.8333882 .7974284 .9699153 .9394444 .3790524 .618366
H(9) 2.8265443 .6375295 .2074732 .9798543 .4070373 .411780
C (10) 2.6758164 .0839734 .7864643 .5826534 .4555783 .799906
H (11) 3.2086794 .9563025 .2433933 .6326364 .5806203 .530735
H (12) 3.2625584 .4051835 .0713604 .4890065 .3729694 .741435
$\mathrm{Cl}(2) 2.300293$
Cl(3) 2.2892913 .925287
O (4) 1.7034173 .4805603 .487206
C (5) 3.2642794 .7705304 .7842232 .209710
H (6) $3.6032604 .6146225 .462353 \quad 2.5680241 .086657$
H (7) 3.8677995 .5973065 .1591072 .5143571 .0837201 .847885 C (8) 3.0082634 .5667614 .0571972 .7313801 .4807492 .229025 H (9) 3.9853565 .2505024 .9498363 .7747592 .1214732 .606629 H (10) $3.251343 \quad 5.1492873 .6887523 .016018 \quad 2.1263733 .105886$

C (11) 2.0880173 .2076493 .3306352 .6728762 .5142652 .860728
H (12) 2.6676502 .9866794 .2375003 .1763812 .8371542 .766345
H (13) 2.6375983 .6192043 .1197723 .5724053 .4498513 .894569
$\mathrm{H}(7) \quad \mathrm{C}(8) \quad \mathrm{H}(9) \quad \mathrm{H}(10) \quad \mathrm{C}(11) \quad \mathrm{H}(12)$
C (8) 2.250173
H (9) $2.858708 \quad 1.103928$
H (10) 2.4517651 .0955621 .766559
C (11) $3.445875 \quad 1.553241 \quad 2.158652 \quad 2.193434$
H (12) $3.8963162 .1935922 .4518013 .095022 \quad 1.097667$
H (13) $4.3014722 .183148 \quad 2.5284922 .4663031 .0968591 .780767$
Point Group: C_{1} Number of degrees of freedom: 33
Energy $=-1192.658668609$
pdt27

	$\mathrm{Re}(1)$	$\mathrm{Cl}(2)$	$\mathrm{O}(3)$	$\mathrm{Cl}(4)$	$\mathrm{C}(5)$
$\mathrm{Cl}(2)$	$\mathrm{H}(6)$				

O (3) 1.8423263 .528399

[^0]: ${ }^{a}$ Energies calculated relative to the respective separated carbene and ethylene reactants. ${ }^{\mathrm{b}}$ In $\mathrm{Cl}_{4} \mathrm{CrCH}_{2}$ and $\mathrm{Cl}_{4} \mathrm{RuCH}_{2}$ the [3+2] addition pathway involves the carbenoid complex and not the carbene complex. Thus the activation barrier for [3+2] addition in these complexes are 31.53 and 29.38 kcal mol^{-1} respectively. ${ }^{\text {c }}$ The Re complex has a doublet ground state electronic structure.

[^1]: ${ }^{\text {a }}$ Energies calculated relative to the respective reactants

