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Abstract 
The study investigated the rainfall pattern estimation involving fifteen selected 

rainfall stations across Ghana for the period of sixteen years (2000-2015) with 

the main objective of estimating the missing values and determining the annual 

average rainfall values for the period under study. The observed data was fitted 

with three probability distributions which were; Gamma, Lognormal and Normal. 

Goodness-of-fit tests were conducted in order to select the best model fit. These 

included Kolgmorov-Smirnov, Cramer-von Mises and Anderson-Darling tests 

together with the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC). The normal probability distribution was selected as the best 

model since it provided the minimum goodness-of-fit test statistic values. The EM 

algorithm which has the capability to deal with missing values was used to 

complete the missing data and together with the normal distribution, estimated 

the average rainfall values of the various stations. The estimates of the EM 

algorithm were observed to be better estimates for the data because they were 

smaller than the regular estimates and also provided the least log-likelihood 

values. Therefore, we recommend that the Expectation-Maximization algorithm 

(Normal EM algorithm) should be used to estimate the missing values as well as 

the annual average rainfall of the daily rainfall data recorded in Ghana. 
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Chapter 1 

Introduction 
The Expectation-Maximization algorithm (EM) is a method of maximum 

likelihood or point estimation. It is an iterative method of estimation that can 

obtain the maximum likelihood (ML) estimates of data containing missing values 

or incomplete data. Maximum likelihood estimation is a statistical technique of 

determining the parameters of probability models. If it is used to estimate a set of 

data with a particular probability model, maximum likelihood estimation 

determines estimates for the distribution parameters. 

The EM algorithm can be applied in two main ways. One application is 

when the observations have missing values because of shortfalls or mistakes 

during the process of observation. The second application is when the function’s 

likelihood estimates can be calculated easily by taking into consideration that 

there exist extra or hidden parameters. 

The Expectation-Maximization algorithm process also involves two 

stages or steps. That is the Expectation stage or step (E-step) and Maximization 

stage or step (M-step). The Expectation stage or step obtains the predicted value 

for the missing observations via an initial parameter estimate. The E-step of the 

algorithm fills the gaps in the missing or unobserved values with its expected 

value given a current value of the parameter and the original data. The 

Maximization step on the other hand calculates the maximum-likelihood 

estimated values (MLE’s) of the parameter using the estimated data obtained 

from the E-step. 

The M-step mostly to some extent is clear and relies on the implicit 

function or distribution. However, the E-step is complicated depending on the 

distribution. In case of a linear function or distribution, the predicted conditional 

probability estimates can be obtained easily and precisely but for complex 
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probability distributions in which precise results do not exist, individuals could 

continue to perform some correct calculations such as that of Taylor’s 

approximation or arithmetical approximations which include numerical 

integration and/or simulated form of approximation. 

Several applications of the EM algorithm are on unobserved data or 

incomplete data. The unobserved or incomplete data could be lost information on 

the same random events which gives the original sample, for censored data; or 

the unobserved data could be from a different kind of variable that is connected 

in some way to the observed random event. 

It is always assumed that the suggested procedures used in estimating 

data with missing information can be categorized into two procedures. These are 

the distribution-based procedure and data-based procedure. 

The distribution-based procedure rewrites the statistical algorithm to 

enhance the estimation of the lost data and determines the estimates of the 

distribution all in one step. The data-based procedure in another breadth, deals 

with the lost data in a first stage and proceeds to complete the estimation of the 

distribution parameters in a second separate step. 

An example of the application of distribution-based procedure is in the 

recent model prediction of crop structure which used the full information 

maximum likelihood (FIML) method in estimating lost observations. The 

commonest data-based procedure application is in the normal model multiple 

imputations (MI). 

Meanwhile, with the Expectation-Maximization (EM) algorithm, this 

distinctive characteristic is not that clear. If the EM algorithm is modified to give 

parameter estimates in connection with a particular situation, then the EM is a 

distribution-based approach. Also, where the EM algorithm gives more standard 

outcomes like the variance and covariance matrix as well as vector of means 

which are then analyzed in a different step, then the algorithm becomes more or 

less a data-based approach. 
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1.1 Background 

Rainfall is a factor of climate change which affects almost everybody in the world. 

Obtaining good estimates of the rainfall pattern within a year or period is very 

important. 

Rainfall is a kind of climate change which takes place when water vapor 

within the atmosphere condenses into small droplets that can no longer be 

suspended in the air. The incidence of rain depends on so many factors. Events 

such as existing wind movement and direction, elevation of the ground, 

continental mass location, and positions with regards to the height of mountains 

all posed a major impact on the likelihood of rainfall. Condensation, and therefore 

precipitation, could take place at the time that water vapor in the presence of 

accumulated air is condensed. Rain is the simplest form or supply of freshwater 

for almost every area in the world, providing appropriate environment for 

different ecosystems and also supporting hydroelectric plants and crops 

irrigation. 

Also,the amount of rainfall is measured by using a rain gauge. It can be 

calibrated in 100 millimeters (4-inches) for the plastic gauge and 200 millimeters 

(8-inches) for the metal gauge. The interior or middle cylinder is full up to 25 

millimeters (0.98-inches) of rainfall, with the excess pouring into the exterior or 

external cylinder. Plastic gauges are calibrated on the interior cylinder down to 

0.25 millimeters (0.0098-inches) resolution. The metal gauges also contain a 

standard stick designed with the suitable 0.25 millimeters (0.0098-inches) 

calibrations. When the internal cylinder is full, the quantity inside is poured out 

together with the left over rainfall in the external cylinder till every liquid in the 

internal cylinder move out and the external cylinder is drained. Rain gauges come 

in several types. Some of these include the wedge gauge, the tipping bucket rain 

gauge and the weighting rain gauge. Any of these can be used to measure 

rainfall accurately. 
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1.1.1 Characteristics of Rainfall 

The amount of rainfall is determined by certain characteristics such as the 

intensity of rain, the duration and the frequency of the rain. 

XIntensity: The intensity of rainfall is the degree or the amount of rain 

that have precipitated within a given period of time. Generally the amount of 

rainfall is recorded in millimeters per hour or inches per hour. An extremely 

strong storm may produce rain at a rate of 5 inches up to 10 inches per hour whilst 

a calm drizzle may produce rain at a rate of 0.2 inches up to 0.4 inches per hour. 

The rainfall intensity is one of the most significant factors engineers consider 

when designing highways and structures for controlling floods. 

XDuration:The duration of rainfall is the number of minutes or hours that 

a rainfall period last. Usually, long period storms produces low average 

intensities. Higher intensities are normally related to shorter period storms. 

XFrequency:The frequency of rainfall is the likelihood or chance of 

rainfall occurring. It is also described as the number of times or how regular a 

particular area experiences rainfall. With a certain storm period, the likelihood 

that a rainfall occurrence could be the same or exceeds an annual term is termed 

the re-occurrence interval. The reciprocal of the recurrence interval is also 

termed the return period. 

In the southern part of Ghana, there exist two rainfall seasons: the first 

from the third month to the seventh month of the year and the second from the 

ninth month to the tenth month of the year. The southern part records the highest 

amount of rainfall, with most towns and villages’ averagely experiencing rainfall 

of about 2000 millimeters every year. However, in the northern part of the 

country, the rainfall season is one period of wet and damp weather, beginning in 

the third month and ending somewhere in the ninth month of the year with most 

areas typically receiving rainfall of about 800 millimeters annually. 
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1.2 Statement of Problem 

In most cases, we apply various tools in analyzing data without understanding the 

structure and pattern of the data. Sometimes, there exist a lot of missing values 

(latent) or incomplete information in the data subject to the analysis. Example; 

rainfall records always have some unrecorded or missing information or values 

due to continuous rain within two or more days, malfunctioning of rain gauge and 

officer absenteeism or office reshuffle. Records of survival data also encounter 

several missing values due to the demise of the individual involved. 

Because these records may contain some missing but relevant 

information, ignoring may result in some biased results. Therefore, methods such 

as the EM algorithm which is capable of dealing with missing values and 

incomplete data would be appropriate for estimating these incomplete data 

parameters. 

1.3 Objectives of the study 

The main objective of this study is to estimates the missing values of the rainfall 

data in Ghana using the EM algorithm. It specifically seeks; 

1.3.1 Specific objectives 

1. To apply the EM algorithm to a probability distribution model to 

estimatethe annual average rainfall of some parts of Ghana. 

2. To determine if a difference exist between the EM estimates and the true 

values of rainfall data containing missing values recorded by the Ghana 

Meteorological Agency. 
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1.4 Structure of Methodology 

This research was carried out in Ghana. The main data used for this research is a 

secondary data consisting of daily rainfall figures recorded in millimeters (mm) 

for ten (10) year period from 1st January, 2006 to 31st December, 2015 was 

collected from the Ghana Meteorological Agency (GMET), Accra. This data was 

also sampled from twenty (20) rainfall stations all over the country out of which 

fifteen was used in the analysis. 

A descriptive breakdown of the sampled data was carried out by 

calculating the means, medians, minimum and maximum values as well as the 

standard deviations. A goodness-of-fit test was conducted to select the best 

probability distribution fit for the data. The EM algorithm was applied on the 

normal distribution model to estimate the parameters. 

The descriptive analysis and the EM estimates were performed using the 

R console and SPSS statistical software packages. 

1.5 Significance of the Study 

The results and findings of this research would be very useful to the Ghana 

Meteorological Service Agency and the general public. It would serve as a guide 

to the choice of the method to use in the analysis of data with missing values such 

as the rainfall pattern. 

The results and findings would also explain the ideas of the EM algorithm, 

its application to the some probability models and how effective it is in the 

analysis of incomplete data. It would further contribute to the existing knowledge 

and literature in the field of academia and research. 

Finally, the results and findings of this research would provide a 

foundation for further research work in similar areas or fields of study. 
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1.6 Organization of the Study 

This research consists of five chapters. Chapter one considers a general overview 

of how the study was carried out and reported. It includes the background of the 

study, statement of the problem, objectives of the study, data collection 

procedure, and significance of the study. Chapter two reviews related literature 

based on the objective of the study and the methods used in achieving these 

objectives. Chapter three focuses on the various ideas with regards to the 

formulation of the statistical tool and model used in the analysis of the data. The 

fourth chapter considers the data sampling procedure, and analysis of the results. 

The five chapter then concludes the whole study by providing some 

recommendations to stakeholders based on the findings obtained from the study.  
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Chapter 2 

Literature Review 

2.1 Introduction 

In this chapter, we discussed the various available literature related to the 

applications of the EM algorithm as a method of estimation. Under this section, 

we consider the following. 

XThe history behind the formulation of EM algorithm. 

XSome related applications of EM algorithm. 

XThe concept of missing values in a data. 

XThe rainfall pattern estimation. 

The EM algorithm is an idea developed under point estimation to 

determine the estimates of data with missing values or incomplete data. It is 

applied to probability functions/mixtures to determine the estimates of these 

functions. 

It is proven to be more efficient than the main maximum likelihood estimator 

(MLE). 

The trend of rainfall pattern is the gradual change in the amount of 

rainfall recorded within a period of time. Rainfall is a very important factor with 

regards to climate change. The goodness of fit test is the degree of compatibility 

of a random sample with the hypothetical distribution models. 

These three aspects in this chapter would summarize the most relevant 

literature with regards to this study. 

2.1.1 The EM algorithm and applications 

The expectation-maximization (EM) algorithm according to Dempster et al. 
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(1977) is a strong mechanism of maximum likelihood estimation of data with 

missing values or incomplete data. It is aimed at finding the values of a parameter 

which maximized a particular function given the real sample observations. The 

algorithm procedure is made up of two stages or steps. The Expectation stage (E-

step) and Maximization stage (M-step). The Expectation stage estimates sufficient 

statistics in terms of complete data with regards to the observed data. The 

Maximization stage now continues with the estimated whole dataset to estimates 

the parameters using the method of maximum likelihood as if the re-estimated 

complete data were the original observed data. 

The EM algorithm, just as other procedures of estimating missing values 

that neglects the pattern that causes the gaps within the data set, relies on the 

notion that the unobserved data in the data set are randomly missing or missing 

at random, such that the probability of a missing value is not dependent on the 

unobserved data (Rubin, 1976). 

Just like the other methods of maximum likelihood estimation,Mclachlan 

and Krishnan (2008) stated that the EM algorithm is a statistical procedure for 

determining the zeros of the functions. It is a general algorithm that devised a step 

by step method of estimation of MLE’s of data that contain missing values or 

where there exist missing values in a data or incomplete data. The expectation 

procedure is responsible for estimating data for the complete data problem taken 

into consideration the observed dataset of the incomplete data and the existing 

values of the parameters. The maximization step computes the estimates of the 

complete data from the E-step. This is the log-likelihood of the complete data 

problem that is ”manufactured” in the E-step. Suitable initial values of the 

parameters are chosen at the beginning and the E-step is perform alongside the 

M-step until the process converges. The sample data set is assumed to be 

incomplete and is taken to be the observable function of the so-called complete 

dataset. The idea of incomplete data considers the conventional sense of missing 
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data and it is also applied to problems in which the complete data represents the 

data that would be available from some theoretical experiments. 

According to Karlis (2005), the EM algorithm is a simple procedure for 

determining the maximum-likelihood (ML) estimation that uses the inherent 

latent structure of mixture models. He explained that the applications are 

appropriate for density models appearing as mixtures due to the missing 

operation, could be regarded as producing data with incomplete information. He 

also pointed out that the most relevant aspect of the EM algorithm is that it is not 

just a numerical procedure but also gives relevant statistical ideas. He however 

concluded that the E-step is not straightforward since at this step the expected 

likelihood of the incomplete observation distribution is determined where the 

expected values are taken in respect to the conditional models and that the M-

step could be somewhat obvious because it maximizes the parameters of the log-

likelihood obtain in the E-step in order to obtain updated estimates. 

Redner and Walker (1984), and Jordan and Jacob (1994) described the 

EM algorithm as a procedure for determining the maximum-likelihood estimates 

(MLE’s) or the parameter estimates of a particular distribution for a given dataset 

when the dataset is not complete or contains unobserved information. Bilmes 

(1998) also highlighted this description and further stated that there exists two 

ways of applying the EM algorithm. The first application is in a situation where 

the dataset actually contains missing values due to some difficulties or 

shortcomings with the observation procedures. The other application is the 

situation where maximizing the likelihood function is methodically difficult and 

when the likelihood can be broken down by taking into consideration the 

presence of and parameters for extra but unobserved (hidden) values. Wu 

(1983), Ghahramani and Hinton (1995) including several other authors stated 

that the parameter applications are most common in computing pattern 

recognition and it was used in their speech recognition experiment. 
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In applying the EM algorithm, the missing values are determined at the 

beginning by the parameter estimates of the distribution. Nelwamondo et al. 

(2007) performed a comparative research by applying artificial neural networks 

and the EM algorithm in completing missing values. Schneider (2001) applied the 

EM algorithm to complete and analyzed the unobserved figures in temperature 

change dataset. Firat (2011) in estimating missing data, applied the algorithm in 

the analysis of temperature changes. Kim and Ahn (2009) also used the algorithm 

to predict the unobserved values in daily rainfall observations. All of them gave 

the recommendation that the EM algorithm could be used effectively in analyzing 

data that contains missing values. 

2.1.2 The Concept of Missing Values 

Missing data occurs in different proportions and in different structures (Cohen 

and Cohen, 1983). The impact of missing data on the quality of research outcomes 

is dependent on the causes that led to the missing data, the mechanism of missing 

and the percentage of data that is missing (Tabachnick and Fidell, 2001). 

It has been proven that the structure and pattern of missing data have 

serious effect on research outcomes than that of the quantity of unobserved 

values contain in a data (Tabachnick and Fidell, 2001). The two are important 

issues a researcher must solve before selecting a suitable method in dealing with 

missing data. As stated by Little and Rubin (1987), the mechanisms that cause the 

missing data can be categorized as missing completely at random, missing at 

random, and non-ignorable missing values. 

Little and Rubin (1987), explained that, if the probability that a response 

is dependent on neither the observed nor the missing value that could have been 

recorded, the missing data are missing completely at random (MCAR). If the 

probability that a response is not dependent on the missing value itself but 
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dependents on the original values or other completely observed variables, then 

the missing data is said to be missing at random (MAR). 

From the perspective of Allison (2001), the missing data is taken to be 

ignorable if (a) the data are missing at random. (b) the parameters that 

determines the missing data process are not related to the parameters to be 

calculated. Ignoring simply means that there is no need taking into consideration 

the missing data as part of the estimation process. 

However, if the missing data are non-ignorable, the proportion of missing 

data is dependent on the missing values themselves. In contrast to the ignorable 

situation, the missing data mechanism must be defined by the researcher and 

included in the data analysis in order to obtained unbiased parameter estimates. 

Concerning the problem of how huge the percentage of missing data can 

be permitted by missing data procedures, there exist no firm procedure 

established by statisticians currently. In case of a few missing values in a random 

pattern from a larger dataset (the missing completely at random condition holds), 

the missing data problem is less dangerous and mostly every method for dealing 

with missing data produce almost the same results. Nevertheless, if a significant 

level of data is missing from a smaller to moderate size dataset, the problem can 

be very dangerous (Cohen and Cohen, 1983); (Cool, 2000) and (Tabachnick and 

Fidell, 2001). 

2.1.3 Rainfall Pattern Estimation 

Rainfall is considered among the most essential natural phenomena of climate 

change and its occurrence and distribution is unpredictable and temporal as well 

as spatially variant in nature. One of the serious problems of rain has to do with 

the interpretation of previous data on rainfall in relation to predicting rainfall 

patterns. Analysis of rainfall and estimation of annual maximum daily rainfall 

would improve the maintenance of water resources applications and also enable 
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the proper usage of water resources (Subudhi, 2007). Probability and frequency 

analysis of rainfall data assist people to predict the expected rainfall at various 

intervals (Bhakar et al., 2006). Such information can be used to prevent floods 

and droughts and for planning and designing as well as construction of water 

resources such as reservoir design, flood control work and soil and water 

conservation planning (Agarwal et al., 1988) and (Debral et al., 2009). 

Even though rainfall is unpredictable and changes with time and space, it 

is generally possible to forecast return periods using different types of probability 

distributions (Upadhaya and Singh, 1998). Therefore, probability analysis of 

rainfall is very relevant in solving various water management problems and to 

access the crop failure due to excess rainfall. Scientific forecast of rainfall and 

crops planning properly done could prove to be a vital instrument in the side of 

farmers for better economic gains (Bhakar et al., 2006). Frequency analysis of 

rainfall data has been attempted for various return periods by (Nemichandrappa 

et al., 2010); (Manikandan et al., 2011) and (Vivekanandan, 2012). Probability 

analysis of rainfall enables us to predict rainfall at various times. The probability 

distribution functions most commonly used to estimate the rainfall pattern 

include; normal, log-normal, log-Pearson, gamma and gumbel distributions. 

Kumar (2000)and Singh (2001) in their conclusions stated that the log-normal 

distribution is the best probability distribution model for forecasting annual 

maximum daily rainfall in a research conducted in Ranichavsi(Tehrin-Garhwal) 

and Tandong (Sikkim) respectively. Kumar et al. (2007), analyzed annual 

maximum rainfall and indicated that the log-Pearson type-III probability 

distribution model could be applied in designing hydraulic and soil and water 

conservation structures for Almora and similar places in Uttarakhand. Subudhi 

(2007) came out that the normal probability distribution model is the best fit for 

forecasting the average annual maximum daily rain of Chakapada block of 

Kandhamal district in Orissa. 
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In another hand, estimating meteorological time series with missing 

values is an important issue to many climatic analyses such as the study of rainfall 

patterns. Nearly all the influential precipitation data contain a fraction of 

incomplete entries. Deficient data may come as a result of misplaced record books 

due to conflicts and flames accidents and intermittent break down of permanent 

stations, faulty equipments and link failures. Solution to this problem is to 

eliminate periods with misplaced information from the analysis or neglect this 

difficulty when the quantity is not huge. Simolo et al. (2009) stated that some of 

these procedures, may neglect relevant information that can cause bias for 

several climatic studies. 

In order to overcome these problems, several interpolation procedures 

are proposed several years ago which are intended to estimate incomplete data 

of rainfall data mostly on monthly or seasonal bases. Procedures for dealing with 

missing values in daily rainfall data, are not available and produce clear errors 

though those procedures execute better at minimum rainfall; for example 

(DeGaetano et al., 1995) and (Xia et al., 2001). The circumstance mostly turns to 

be complex when handling rainfall due to the huge length and occasional 

inconsistency. Furthermore, in this situation, the issue comes in two categories, 

once the location of time and the amount of rainfall for every day have to be re-

estimated. That is determining precise parameters of incomplete data in daily 

rainfall data is still a problem particularly when long duration and foul-mouthed 

rain gauge networks are taking into consideration. 

Between stations procedures for determining observations in climatic 

series are the easiest methods. These may be independent, because they use only 

the data obtain from the observation been estimated by imputing the unobserved 

data, e.g. with the expected value of earlier periods or by the data predicted 

outcome (Kemp et al., 1983). Despite being simple, these procedures are 

appropriate for data with autocorrelation to be high and for estimating future 
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rainfall means and are therefore basically ineffective so far as average daily 

rainfall are considered. 

Established procedures of completing incomplete rainfall data, on daily 

and monthly bases are often base on interpolations; these are replaced with 

values in an intended station determined by means of related values of closer 

stations. The reciprocal distance weighing procedure used by Cressman (1959) 

and Shepard (1968), is among the most widely applied distance-based schemes. 

Mostly, it is the same as calculating a weighted average by using inverse squared 

distance within intended and relatively near stations as weighting factors, with 

the aim that the present of positive association involving observations from close 

experiment stations. Also, since only the distance cant not be used to describe the 

connection condition of rainfall data and the choice of relatively close stations is 

very relevant to the adequacy of outcomes, several variants and adds-on to this 

technique are been developed. An example, inverse squared distance can be 

substituted by high power or by negative exponential expressions of distance or 

by pictorial associations that indicate correlative properties (Delay et al., 1994) 

and (Lloyd, 2005). Current concepts aim at improving the inverse distance 

weighing procedure and backward normal fractional procedure can be 

determine, in the case of (Teegavarapu and Chandramouli, 2005) and (Suhaila et 

al., 2008). Moreover, simplify methods together with the assume ”nearest station 

procedure” and ”single-best-estimator” example Wallis et al. (1991); Eischeid et 

al. (2000) and Xia et al. (2001) where frequently applied in calculating 

unobserved data of rainfall as well as other climatic data. Several complicated 

interpolation techniques to fill in gaps in climatic and rainfall data, obtain the 

functional correlation among intended and relatively near stations. These for 

instance, fitting spline-surface, e.g. Hutchinson and Gessler (1994), statistical 

techniques like simple interpolations and kriging (Creutin and Obled, 1982), 

regression-based techniques together with straight least squares or least 

absolute deviation condition, (Tabios and Sala, 1985); (Beauchamp, 1989) and 
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(Schneider, 2001). The efficiency of these procedures for prediction of rainfall 

data has been studied by so many comparatives procedures on daily base and on 

monthly base; example; Ashraf et al. (1997); Teegavarapu and Chandramouli 

(2005) and usually determine to be higher than that of weighting procedure. 

Particularly in Eischeid et al. (2000), determine that multiple-linear regression 

(MLR) performed better among several of the mostly used procedures involving 

missing data estimation in daily rainfall and other climatic data. Meanwhile, 

regression-based techniques, similar to the weighting procedures, experience the 

over-estimation of the total number of rainy days within a period. More so, the 

probability distribution of rainfall is not constant, since high levels of rainfall 

incidence are always analytically estimated bellow standards. 

Several statistical characteristics of rainfall observations are applied in 

procedures developed by Karl and Knight (1995), Brunnetti et al. (2004) which is 

on the basis of the fit of two parameter Gamma distribution to individual stations 

daily observations. Consequently, to estimate the probability that rainfall 

occurred on any unobserved period, a random variable estimator is used together 

with probability distribution model assuming the experimental probability of 

rain for the day. Then, Gamma distribution is used alongside a random number 

generator to approximate the amount of precipitation of days classified to be wet-

days. Despite the fact that the average statistical characteristics of rainfall (i.e. 

total number of days of rain and the quantity of rain on yearly and monthly bases) 

are not constant; this procedure is of less application on a daily time scale since it 

haphazardly identifies rainfall occurrences. 

Lastly, together with the aforementioned methods described for 

estimating the amount of missing values in rainfall and other climatic 

observations, databased techniques based on neural network algorithms must be 

taking into consideration (Elshorbagy et al., 2000); (Khalil et al., 2001). That is, 

upon noticing that there is a correlation among data from intended and nearby 
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stations. Current improvement within the section may be seen, for instance 

(Teegavarapu and 

Chandramouli, 2005) and (Coulibaly and Evora, 2007). In Coulibaly and Evora 

(2007), particularly, various types of architectures on artificial neural networks 

have been determined and the efficiency of their estimation of unobserved daily 

rainfall observations appraised. The investigators concluded pretty precise 

outcomes for best performing models despite the fact that the experimental data 

information is not steadily constant. 

Since the rainfall data recorded in Ghana also contain some amount of 

missing values which are not always considered in the analysis of the rainfall 

pattern but have a significant effect on the outcome, the aim is to apply the 

Expectation-Maximization (EM) algorithm to estimate the missing values and 

average annual one day precipitation pattern for sixteen selected stations using 

the best fit probability distribution model among the three considered for the 

study.(i.e. Gamma, Log-normal and Normal).  
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Chapter 3 

Methodology 

3.1 Introduction 

In this chapter, we present the methodology of the study. It is categorized into 

three sections. The first Section looks at the basic principles behind fitting the 

theoretical distributions of the data. Section two focuses on the goodness-of-fit 

test for selecting the best theoretical probability distribution and the last section 

deals with the formulation and usage of the EM algorithm with regards to missing 

values analysis. 

The sample data for this research is a secondary data obtained from the 

Ghana Meteorological Agency (GMET), Accra. It consists of daily rainfall figures 

recoded in millimeters (mm) for fifteen (15) selected rainfall stations all over 

Ghana. It covers a ten (10) year period starting from 1st January, 2000 to 

31st December, 2015. The data analysis was performed using R x 64.3.1.0 and 

SPSS statistical software packages. 

3.2 Fitting the Probability Distributions 

Fitting distributions to data is a common task in statistics and it is based on 

choosing a probability distribution to model a random variable as well as 

determining parameter estimates for that distribution. There are so many 

theoretical probability distributions that are used to fit or estimate parameters of 

a given data. The distribution models commonly applied in estimating rainfall 

data are gamma, lognormal and the normal distribution among others. These are 

used to estimate the parameters of rainfall of various magnitudes within a given 

period. 
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The best probability distribution model is chosen by using the goodness-of-test 

such as the chi-square Kolmogorov-Smirnov, Cramer-von Mises etc. 

3.2.1 The Gamma Distribution 

The gamma probability distribution is one of the common distributions used 

statistically when unimodal and positive observations are accessible. In this case 

we outline shortly the sketch of fundamental characteristics of the gamma 

distribution and deliberate on the part relatively close in associated with length 

and rainfall pattern distributions. 

The probability density function of a simple random variable that follows 

the gamma distribution is defined as: 

  (3.1) 

Where α,β > 0 , with α and β representing the shape and scale param- 

eters respectively. 

The function of the gamma distribution is defined such that the total area 

under the density function is a unit as: 

  (3.2) 

The equations for the likelihood function for a random sample of size n 

are; 
 n n 

 Xlogxi − nlog(βˆ) − nϕ(αˆ) = 0,Xxi − n(αˆ)(βˆ) = 0 (3.3) 
 i=1 i=1 

These are estimated step by step, and iterative techniques for estimating 

the parameters of the gamma distribution are currently inbuilt in several 

statistical software packages. 
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3.2.2 The Log-normal Distribution 

If a random variable x follows the log-normal distribution, then the logarithm or 

natural logarithm of the variable is distributed normally. The probability 

distribution function of the variable is given by: 

  (3.4) 

Where σy is the standard deviation and µy is the mean of y = lnx 

The maximum likelihood estimates of m and s2 for the parameter µ and 

parameter σ are 

  (3.5) 

These are estimated step by step, and certainly several techniques for estimating 

the log-normal parameters are currently available in several statistical software 

packages. 

3.2.3 The Normal Distribution 

The normal distribution which has two parameters is widely used as a relevant 

distribution for continuous variables which are evenly distributed. The 

probability density function is defined below as: 

  (3.6) 

In which µ is the mean and σ is the standard deviation of random variable 

x. Where N(µ,σ) ∼ (0,1). 

The maximum-likelihood estimates of the parameters µ and σ2 are; 

  (3.7) 



 

21 

These can be solved by the maximum likelihood estimation, and several 

techniques of determining these parameters of the normal probability model are 

also accessible in several statistical software packages. 

3.3 Testing the Goodness-of-Fit of the Proba- 

bility Distributions 

The goodness of fit test is the measure of how compatible a random sample is with 

regards to an existing probability distribution model. The goodness of fit test 

hypothesis is stated as follows. 

H0: the average annual rainfall data follows the selected distribution. 

H1: the average annual rainfall data does not follow the selected 

distribution 

The following goodness of fit tests are commonly used in the case of 

continuous data with regards to the selection of the best probability distribution 

fit alongside a criteria called the goodness-of-fit criteria. The kolmogorovSmirnov 

test, Cramer-von Mises test and Anderson-Darling tests always go with the 

Akaike’s information criterion and the Bayesian’s information criterion. 

3.3.1 Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test statics (D) is a statistical measure of how small or 

large the vertical variation exist between the theoretical and empirical 

cumulative distribution functions. This is designed as: 

 )] (3.8) 

In which xi = random sample, i = 1,2,...,n 
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The test statistic (D) is estimated for all the distributions in the group of 

the competing distributions and the distribution with the smallest statistic (D) 

value is selected as the best distribution. 

3.3.2 Cramer-von Mises Test 

The Cramer-von Mises test statistic is a method used to compare the fits of 

theoretical distributions (Cumulative distribution functions) with the empirical 

probability distribution models. It is also used for comparing the fit of two 

empirical distributions. The test statistic is defined as: 

  (3.9) 

Where xi = random sample, i = 1,2,...,n 

The test statistic W2 is estimated for each and every distribution in the 

group of competing distribution and the best distribution fit is the one with the 

least W2 value. 

3.3.3 Anderson-Darling Test 

The Anderson-Darling statistic A2 is used for comparing the fit of the observed 

sample cumulative distribution function to the empirical distribution function. It 

is given by: 

 ))] (3.10) 

Where xi = the observed sample, i = 1,2,...,n 

The test statistic A2 is determined for all the competing distribution in the 

group of the fitting distribution and the one with the smallest test statistic 

A2 is selected to be the best distribution fit. 
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3.3.4 Akaike Information Criterion 

The Akaike Information Criterion is the number one distribution selection 

criterion to be globally accepted as a standard for statistical distribution fitting 

criteria. The Akaike Information Criterion is used to measure the comparative 

quality of a statistical distribution for an observed data. The AIC again, gives 

procedures for distribution selection because it is formulated on information 

theory. Furthermore, the AIC is an addition to the maximum idea and the 

maximum-likelihood idea applied to the estimation of model parameters once the 

category of the distribution has been classified. Mostly, the Akaike Information 

Criterion handles the trade-off between the goodness-of-fit of the distribution 

and the complications of the distribution. The test statistic of the AIC is given as: 

 AIC = 2k − 2ln(L) (3.11) 

In which k represents the number of parameters estimated in the 

distribution and L represents the optimal maximum value of the likelihood 

function for the distribution. 

Assuming a group of competing distribution of different patterns, the 

maximum-likelihood estimation is applied in fitting the distribution and the AIC 

is determined in respect to all the distributions fit. The criterion for selecting the 

best distribution is done by taking the distribution which provides the smallest 

AIC test statistic. The first component of the AIC is to measure the goodness of fit 

of the distribution and the second component is termed the consequence function 

of the criterion because it penalizes the number of parameters used in competing 

model (Akaike, 1973). 

The AIC is significance for; in sample and out of sample prediction 

efficiency of a particular distribution. In sample prediction indicates how the 

selected distribution fit the sample data for a particular observation whilst out of 
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sample prediction is concentrated on showing how the fitted distribution best 

predict future values. 

3.3.5 Bayesian Information Criterion 

The Bayesian Information criterion (BIC) is another procedure very important for 

determining the more suitable distribution among the group of competing 

distributions. The BIC is determined by substituting the positive value 2k in the 

AIC expression by −2Lm. therefore, the BIC is expressed below as; 

 BIC = −2Lm + mln(n) (3.12) 

Where m is the number of parameters to be estimated in the model, n 

represents the size of the data and Lm represents the optimal maximum value of 

the model likelihood function. 

The maximum-likelihood estimation is used in fitting the probability 

distribution (Schwarz., 1978). The BIC is determined for all of the distributions 

among the group of distributions competing and the one with the least BIC 

statistic is selected as the best distribution fit. 

3.4 Maximum-Likelihood Estimation 

This is a procedure for estimating the statistical model parameters. When applied 

to a data set and a given statistical model, maximum likelihood estimation obtains 

parameters estimates for the model. 

Based on the hypothesis, the maximum-likelihood estimates of the model 

parameters are the estimate of µ and σ2 which maximize the likelihood function 

of the distributions. 



 

25 

In using the method of maximum-likelihood, one have to first specify the 

joint density function for all observed data. With an identically independent 

distributed sample, the joint density function is provided as: 

 L = Πi=1f(xi|θ) (3.13) 

The maximum-likelihood estimate (MLE) of θ is the parameter of θ that 

maximizes the equation (3.13) above. It is the parameter that makes the observed 

data ”most likely”. Instead of maximizing this product which can be quite difficult, 

one often have to use the fact that the algorithm is an increasing function so it will 

be equivalent to maximizing the log-likelihood. While the number of observations 

increased to infinity, sequences of maximum-likelihood estimators have the 

following characteristics. 

XConsistency 

XAsymptotic normality 

XEfficiency 

The lower bound of the Cramer-Rao is achieved when the observed 

sample size tends to infinity. With regards to this study, the maximum-likelihood 

estimation is used to determine the values of the parameters of the best fit prob- 

ability distribution. 

3.5 The Expectation-Maximization (EM) Algorithm 

The EM algorithm is a statistical method devised by Dempster et al. (1977) to deal 

with difficulties encounter in the maximum-likelihood procedures with regards 

to the estimation of missing value problems. It is an iterative procedure use in 

estimating unknown parameters of incomplete data. Determining the parameter 

is simple if it is known that there are missing values. Similarly, with known given 
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parameters, we are able to determine the estimates for the missing values. It has 

been formulated on the basis of the inverse dependence between the parameters 

of the model and the missing values. When the sample size is correctly selected, 

the EM algorithm can determine the missing values efficiently. 

The EM algorithm develops an iterative principle for determining 

parameter estimates in which part of the data are missing. This iterative process 

can be outlined as follows; 

XSubstitute missing values with estimated values 

XEstimates parameters 

XRepeat processes until they converge 

These ideas have been consistently applied for a long period of time until 

Orchard and Woodbury (1972) in their information principle developed the 

hypothetical basis of the fundamental principle. 

The EM algorithm, similar to other procedures for estimating incomplete 

data that neglects the process which causes the missing values in the data set, 

relies on the presumption that the unobserved data in the whole data set are 

missing at random, implying that the probability of the missing observation is 

independent of the missing value itself (Rubin, 1976). 

The EM algorithm process have two part: the Expectation part (E-step) 

and the Maximization part (M-step). The E-step determines the predicted 

expectations of the missing data taking into consideration the observed data and 

estimates of the parameters of the distribution. The Maximization-step calculates 

the parameter estimates of the model to maximize the complete data 

loglikelihood function from the expectation-step. These two steps are performed 

step by step until the iteration converges (Schneider, 2001). The EM algorithm 

performs the expectation step and the maximization step alternatively to update 

the estimator θn, of the hidden parameter θ for n number of iterations. 
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The uncertain predictions of the unobserved values in the incomplete observed 

data and the parameter estimates of the model in the E-step are estimated using 

equation (3.14); 

 Q(θ0|θn) = Ez|x,θn[logL(θ;x,z)] (3.14) 

In which, L(θ;x,z) represent the function of the likelihood, θ is the vector 

parameters, θn is the estimated parameter of the distribution, x represent the 

observed sample data and z represents the unobserved observations. 

In the Maximizatin-step, the parameter estimates of the model can be 

estimated using equation (3.15) to maximize the complete-data log-likelihood 

function of the Expectation-step 

 θ(n+1) = argθmaxQ(θ|θn) (3.15) 

For this research, we assume that there is a random vector y which joint 

density f(y;θ) is represented by a q-dimensional parameter. If the observed 

sample vector y are observed, it is of great concern to calculate the 

maximumlikelihood estimates of θ based on the probability function of y. 

The function of log-likelihood of y 

 logL(θ;y) = `(θ;y) = logf(y;θ) (3.16) 

Which is expected to be maximized. 

For a data containing unobserved values, only an expression for the 

complete observation vector y, is observed. This is represented by denoting y as 

(yobs,ymis), in which yobs gives the original (partial observation) and ymis gives the 

hidden or misplaced information. In trying to make the description simple, we 

presume that the unobserved data are lost at random Rubin (1976). Such 
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that; 

 f(y;θ) = f(yobs,ymis;θ) = f1(yobs,θ).f2(ymis|yobs;θ) (3.17) 

In which f1 and f2 gives the joint distribution functions of yobs and ymis 

of the observed data process. This implies, 

 `obs(θ,yobs) = `(θ;y) − logf2(ymis|yobs) (3.18) 

In which, `obs(θ,yobs) represents the log-likelihood of the observed data 

and `(θ,y) represents the complete data log-likelihood. 

The EM algorithm becomes important in the maximization of `obs since it 

proves to be a bit complicated but maximizing the complete data log-likelihood ` 

is simple. On the other hand, because y is not observed, ` cannot be determined 

but maximized. 

The EM algorithm attempts to maximize `(θ,y) step by step by 

substituting it with the conditional expectation given the observed data yobs. This 

expectation is estimated with regards to the model of the complete data estimated 

at the currently estimated θ. In particular, if θ0 is an initial value for θ, then on the 

first iteration it is supposed to calculate; 

 Q(θ,θ0) = Eθ0[`(θ,y)|(yobs)] (3.19) 

Q(θ;θ0) is now maximized with respect to θ, that is, θ1 is determine so that; 

 Q(θ1,θ) ≥ Q(θ;θ0),forallθ ∈ Θ (3.20) 

Therefore, the two estimation procedures of the EM algorithm, thus the 

Expectation step (E-step) and Maximization step (M-step) can be expressed as 

below; The Expectation step (E-step) would estimate Q(θ;θn), as in equation 

(3.14) where; 
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Q(θ;θn) = Eθn[`(θ;y)|yobs] 

The Maximization step (M-step) then find θn+1 as in equation (3.15) where; 

θn+1 = argθmaxQ(θ|θn) 

such that 

Q(θn+1,θn) ≥ Q(θ,θn) 

The expectation and maximization steps are executed alternatively till 

L(θ) − L(θn) is very negligible. 

3.6 Th Normal EM algorithm 

Let the complete-data y = (yi,yn) be a random sample from N(µ,σ2) as presented in 

equation (3.6) 

Then; 

 )] (3.21) 

Which implies that (Pyi,Pyi
2) represent the sufficient statistics for θ = (µ,σ2). The 

complete data log-likelihood function is given as; 

  (3.22) 

which gives 

  (3.23) 

Suppose yi,i = 1,...,m are observed and yi,i = m + 1,...,n are unobserved (at random) 

in which yi are assumed to be i.i.d N(µ,σ2). 
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Then the E-step computes, 

 ) (3.24) 

From the complete data log-likelihood function above, the kth iteration of 

the E-step 

  (3.25) 

 ] (3.26) 

The M-step can be determined by solving the expectations expressed in 

the E-step. 

  (3.27) 

  (3.28) 

As the commonest algorithm available for complicated maximum 

likelihood estimations, the EM algorithm has so many interesting characteristics 

as compare to other iterative algorithms such as Newton-Raphson. First, it is 

usually simple to implement since it rest on complete dataset computations. The 

iteration of each E-step only requires taking expectations over complete-data 

conditional distributions. The iteration of each M-step of only involves complete 

dataset maximum likelihood estimation for which closed simple form formulas 

are already available. Secondly, it is numerically stable. Thus, each iteration 

required to increase the log-likelihood `(θ;yobs) in each iteration and if `(θ;yobs) is 

bounded, the sequence `(θn;yobs) converges to a fixed point. If the sequence θn 
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converges, it does so to a local maximum or saddle point of `(θ;yobs) and to a 

unique MLE if `(θ;yobs) is unimodal. 

A major shortfall of EM is that its rate of convergence can be very time 

consuming if the data contains a lot of missing values. Dempster et al. (1977), 

proved that convergence is linear with the rate proportional to the percentage of 

information about θ in `(θ;y) that is observed. 
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Chapter 4 

Data Analysis and Results 

4.1 Introduction 

This chapter displays, discusses and interprets the results from the study. It is 

generally organized into various sections such as preliminary analysis, the 

goodness-of-fit analysis and then the discussion of the accuracy of the EM 

estimates and results. The analysis of the data, plotting of graphs as well as the 

model fitting was carried out using the R x 64.3.1.1 and SPSS statistical software 

packages. 

4.2 Data Description 

The study has been considering rainfall figures for the period of sixteen years 

from January, 2000 to December, 2015 for fifteen (15) selected rainfall stations 

across the ten (10) regions of Ghana. Each station and its daily rainfall figures for 

the surrounding communities are analyzed separately in order to obtain accurate 

result. 

Table 4.1 illustrates the descriptive statistics of the daily amount of 

rainfall of the selected stations for the period under discussion. These estimated 

statistics are the minimum amount of rain, the mean and the maximum amount 

of rain for each station. Also included in the table are the number of days of rain 

and the standard deviation 

The results in Table 4.1 indicate that the daily minimum amount of 

rainfall recorded for the period is 0.1mm for all the stations except Akrokerri 

which recorded a daily minimum rainfall of 0.4mm. It is observed that, only three 

stations recorded maximum rainfall above 200mm with the highest rainfall of 
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219.9mm followed by 214.7mm and 205.7mm recorded for Koforidua, Saltpond 

and Ada respectively. 

From the table, it is also observed that, among all the stations, the highest 

daily average rainfall of 16.09466 mm was recorded in Akrokerri in the Ashanti 

region of Ghana with standard deviation 15.89553 while the lowest average 

rainfall of 9.812865 mm was recorded in Koforidua in the Eastern region of Ghana 

with a standard deviation 15.06017. 

Table 4.1: Descriptive statistics of daily rainfall data for the selected rainfall 
stations in Ghana (2000-2015) 

 

Station N MINIMUM MEAN MAXIMUM STD. DEV 

Abetifi 1893 0.1 10.80481 145.6 14.68451 

Ada 1157 0.1 11.00752 205.7 16.72671 

Akrokerri 1310 0.4 16.09466 166.4 15.89553 

Axim 2365 0.1 12.20351 173.5 20.40719 

Bolgatanga 1098 0.1 13.81202 97.5 15.05656 

Cape Coast 1356 0.1 10.93481 224 17.96238 

Ejura 1448 0.1 14.3232 133.3 16.8232 

Ho 1736 0.1 11.70132 154.2 15.73613 

Koforidua 2052 0.1 9.812865 219.9 15.06017 

Krachi 1564 0.1 13.43939 152.2 18.93294 

Salpond 1458 0.1 10.72737 214.7 17.68883 

Sefwi 2196 0.1 10.29877 118.4 14.1098 

Tamale 1303 0.1 12.62832 120.3 15.48566 

Wa 1393 0.1 11.81443 142.2 14.84487 

Wenchi 1696 0.1 11.49322 118.4 14.65478 

 
Source: Researcher’s Computation Based on the Observed Data 

It is clear in Table 4.1 that the observed daily rainfall figures of Axim 

produced the highest standard deviation of 20.40719 while the rainfall figures of 

Sefwi produced the least standard deviation of 14.1098. 
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We also observed that, only three stations recorded more than 2000 days 

of rain within the period under study with the highest number of rainy days of 

2365 followed by 2196 and 2052 recorded for Axim, Sefwi and Koforidua 

respectively. Meanwhile, the least number of days of rain is 1098 recorded in 

Bolgatanga in the Upper East region followed by 1157 days recorded in Ada in the 

Greater Accra region. 

The results in the Table 4.1 above are compared with the estimated 

parameters using the EM algorithm on the fitted model using the goodness of fit 

statistics. 

4.3 Results and Discussions 

The parameters of average annual rainfall estimates were computed. The 

maximum average values of the observation data (annual average rainfall) were 

fitted with three main probability distributions. The goodness of fit test was 

computed using Anderson-Darling, Cramer-von Mises and Kolmogorov-Smirnov 

tests. These were selected due to the nature of the observed data as well as the 

kind of probability distribution that is used for the analysis (continuous). The 

criteria used were the Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC). 

The data presented in table 4.2 found that the Cramer-von Mises gave the 

smallest test values followed by the Kolmogorov-Smirnov and the 

AndersonDarling test statistics. 

The BIC statistics gave the highest test values followed by the AIC test 

statistics vales. It is also observed that the computed test of goodness-of-fit values 

for the three probability distributions; that is gamma, log-normal and normal, 

shows that the normal distribution provided the best fitted values followed by the 

log-normal distribution while the gamma distribution provided the worst fitted 

values among the three distributions. 
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This is because the goodness-of-fit statistics provided by the normal 

distribution are smaller than the others while the statistics provided by the 

gamma distribution are also the highest among the three probability 

distributions. 

Table 4.2: Goodness of fit statistics. 

Distribution Kolmogorov Cramer-

von 

Anderson 

Darling 

AIC BIC 

Gama 2.14206 0.90270 5.80231 926.81055 949.98822 

Lognormal 2.16107 0.87967 5.62686 924.52743 947.60508 

Normal 2.13382 0.87580 5.61598 924.1781 947.36344 

 
Source: Researcher’s Computation Based on the Observed Data 

These values were actually obtained from the sum of the goodness-of-fit statistics 

for the individual stations for the probability distributions. This indicated that the 

normal probability model is the most efficient distribution for modeling the data. 

Therefore, the EM algorithm was applied on the normal probability 

distribution to estimate the missing values of the rainfall data as well as the 

parameters of the rainfall pattern for the selected rainfall stations. The results of 

the missing values of the stations estimated using the EM algorithm are presented 

in the appendix (B-P). 

The NA’s in the observed data presented in the appendix represent no 

rain or unrecorded rainfall (missing value) for that particular. These were 

successfully estimated and replaced by the normal EM algorithm. The results of 

the estimated missing values are closer to the true values of the observed data. 

Table 4.3 below illustrates the estimated parameters of the daily amount 

of rainfall of the selected stations for the period under discussion. These 

estimated parameters include the mean, the standard deviation and the log-

likelihood. These were estimated using the regular normal distribution (i.e. 

without EM 

algoritm). 
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The results in Table 4.3 indicate that among all the stations, the highest 

average rainfall amount predicted is 16.09466 mm for Akrokerri in the Ashanti 

region of Ghana with standard 15.88946 and log-likelihood of -655.0 while the 

lowest average rainfall amount of 9.812865 mm was predicted in Koforidua in the 

Eastern region of Ghana with a standard deviation 15.0565 and log-likelihood of 

-1026.0. 

Table 4.3: Average Rainfall for the Stations Estimated using the regular Normal 

Distribution 

Station Mean (Average Rainfall) Standard Deviations Log likelihood 

Abetifi 10.80481 14.68063 -946.5 

Ada 11.00752 16.71948 -578.5 

Akrokerri 16.09466 15.88946 -655.0 

Axim 12.20351 20.40287 -1182.5 

Bolgatanga 13.81202 15.04971 -549.0 

Cape Coast 10.93481 17.95576 -678.0 

Ejura 14.3232 16.81739 -724.0 

Ho 11.70132 15.73159 -868.0 

Koforidua 9.812865 15.0565 -1026.0 

Krachi 13.43939 18.92688 -782.0 

Salpond 10.72737 17.68276 -729.0 

Sefwi 10.29877 14.10659 -1098.0 

Tamale 12.62832 15.47972 -651.5 

Wa 11.81443 14.83954 -696.5 

Wenchi 11.49322 14.65046 -848.0 

 
Source: Researcher’s Computation Based on the Observed Data 

Meanwhile, we observed that the predicted daily rainfall figures of Axim 

still produced the highest standard deviation of 20.40287 while the predicted 

rainfall figures of Sefwi also produced the least standard deviation of 14.10659. 

Table 4.4: Average Rainfall for the Stations Estimated using the Normal EM 

Algorithm 

Station Mean Standard 

Deviations 

No. of Iterations Log 

likelihood 

Abetifi 10.80266 14.68016 22 -946.5001 

Ada 11.00089 16.71725 34 -578.5001 

Akrokerri 16.08958 15.88983 32 -655.0001 
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Axim 12.20155 20.402 17 -1182.5001 

Bolgatanga 13.80658 15.04962 38 -549.0001 

Cape Coast 10.92916 17.95339 29 -678.0001 

Ejura 14.31923 16.81701 29 -724.0001 

Ho 11.69863 15.73101 24 -868.0001 

Koforidua 9.810973 15.05586 20 -1026.0001 

Krachi 13.43499 18.92568 26 -782.0001 

Salpond 10.72231 17.68063 27 -729.0001 

Sefwi 10.29643 14.10606 18 -1098.0001 

Tamale 12.62407 15.47917 32 -651.5001 

Wa 11.8108 14.839 30 -696.5001 

Wenchi 11.48988 14.64992 24 -848.0001 

 
Source: Researcher’s Computation Based on the Observed Data 

Table 4.4 above illustrates the estimated parameters of the daily amount 

of rainfall of the selected stations for the period under discussion. These 

estimated parameters include the mean, the standard deviation and the log-

likelihood together with the number of iterations at which these estimates are 

obtained. 

The results in Table 4.4 indicate that among all the stations, the highest 

average rainfall amount predicted is 16.08958 mm for Akrokerri in the Ashanti 

region of Ghana with standard 15.88983 and log-likelihood of -655.0001 while 

the lowest average rainfall amount of 9.810973 mm was predicted in Koforidua 

in the Eastern region of Ghana with a standard deviation 15.05586 and log-

likelihood of -1026.0001. These estimates were obtained with 32 and 20 

iterations for the two stations respectively. 

Meanwhile, we observed that the predicted daily rainfall figures of Axim 

still produced the highest standard deviation of 20.402 while the predicted 

rainfall figures of Sefwi also produced the least standard deviation of 14.10606. 

These results in Table 4.3 and Table 4.4 are compared using bar charts 

which give a clear difference between the estimates. 
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The Figure 4.1 above is a graphical comparison of the means of the 

observed data and means of the EM estimate for all the stations. From Figure 4.1, 

the blue bars indicating the graph of the means of the observed data are a bit high 

as compared to the green bars indicating the graph of the EM means. This plot 

therefore indicates a clear difference between the means of the observed data and 

the means of the EM estimates. 

Figure 4.2 above also presents a graphical comparison of the standard 

deviations of the observed data and standard deviations of the EM estimates. 

It is observed that the bar chart of the standard deviations of the 

observed data (blue bars) are slightly high as compared to the bars of the EM 

standard deviations (green bars). This also provided a different plot for the 

standard deviations of the observed data and the EM standard deviations. 

The results in Table 4.4 shows that the estimated parameters using the 

normal EM algorithm are almost similar to the parameters estimated from the 
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Figure 4.1: Bar Chart comparing the annual average rainfall and the EM estimates 
of all stations (2000-2015) 

observed data presented in Table 4.3. The discrepancies are found to vary from 

0.02 to 0.07 percent for the means and 0.01 to 0.08 percent for the standard 

deviations. The estimates are the same when corrected to two (2) decimal places 

but becomes different beyond two (2) decimal places. It is also observed that the 

log-likelihood estimates of the EM algorithm parameters gave the least values as 

compared to that of the observed data. This clearly indicated that the EM 

estimates are better for modeling the rainfall patterns of the selected stations. 

The figures below show the density plot, cumulative distribution function 

plot (CDF), quantiles plot (Q-Q) and probability plots (P-P) of the annual average 

rainfall for the selected stations for the study. The density plot represents the 

probability function of the distribution fit along with the histogram of the 

empirical distribution. The cumulative distribution function plot represents the 

plot of both the empirical and fitted distributions. 

The quantiles plots indicate the plot of the empirical quantiles (y-axis) 
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Figure 4.2: Bar Chart comparing the standard deviations of the observed values 
and the EM estimates of all stations (2000-2015) 

and the theoretical quantiles (x-axis). It emphasizes the lack of fit at the 

distribution tails. The probability (P-P) plots also indicate the plot empirical 

distribution functions evaluated at each data point (y-axis) against the fitted 

distribution function (x-axis). It emphasizes the lack of fit at the center of the 

distribution. 
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Figure 4.3: Distribution plots of the annual average rainfall of Abetifi (2000-2015) 

 

Figure 4.4: Distribution plots of the annual average rainfall of Ada (2000-2015) 

 

Figure 4.5: Distribution plots of the annual average rainfall of Akrokerri (2000- 

2015) 
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Figure 4.6: Distribution plots of the annual average rainfall of Axim (2000-2015) 
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Figure 4.7: Distribution plots of the annual average rainfall of Bolgatanga 
(2000Figure 4.8: Distribution plots of the annual average rainfall of Cape Coast 
(20002015) 
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Figure 4.9: Distribution plots of the annual average rainfall of Ejura (2000-2015) 

Figure 4.10: Distribution plots of the annual average rainfall of Ho (2000-2015) 
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Figure 4.11: Distribution plots of the annual average rainfall of Koforidua (2000- 



 

2015) 
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Figure 4.12: Distribution plots of the annual average rainfall of Krachi 
(20002015) 
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Figure 4.13: Distribution plots of the annual average rainfall of Salpon 

(2000Figure 4.14: Distribution plots of the annual average rainfall of Sefwi 

(2000-2015) 



 

2015) 
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Figure 4.15: Distribution plots of the annual average rainfall of Temale 

(2000Figure 4.16: Distribution plots of the annual average rainfall of Wa (2000-

2015) 



 

2015) 
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Figure 4.17: Distribution plots of the annual average rainfall of Wenchi (2000- 
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Chapter 5 

Summary, Conclusion and Recommendations 

5.1 Introduction 

This chapter presents the summary of the outcome from the study together with 

the conclusions and the recommendations of some aspect of this work for further 

research. That is, the key results and findings of the efficiency of the normal EM 

algorithm in estimating the missing data, the goodness-of-fit statistics in selecting 

the appropriate distribution model and the accuracy of the estimated parameters. 

5.2 Summary 

Most empirical researches conducted to estimates the parameters of rainfall data 

have to assume certain probability distributions and patterns for estimating the 

parameters of the data. Some of which assume the absence of missing values in 

the data which goes a long way to affect the results. Others also used traditional 

methods of dealing with missing values, such as Listwise Deletion (LD), Pairwise 

Deletion (PD) and Mean Substitution (MS) which have proven not to provide good 

estimates for large amount of missing values in a data. 

This research was carried out to determine the best estimates of rainfall 

data with special attention on the missing values in the data. It also sought to 

determine a best probability distribution model for modeling the rainfall pattern. 

The Expectation-Maximization (EM) algorithm was applied on the normal 

distribution to estimate the parameters of the data. In this research, we used a 

data for the period of sixteen years for fifteen selected rainfall stations across the 

country. The data for each station was analyzed separately in order to come out 

with accurate results. 
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From the results, it was observed that the highest number of rainy days 

experienced within the period was 40.47 percent recorded in Axim which 

predicted a daily average rainfall of 12.20155mm which was followed by 37.58 

percent recorded in Sefwi with predicted daily average rainfall of 10.29643mm 

and 35.11 percent recorded in Koforidua with predicted daily average rainfall of 

9.810973mm. This means that none of the stations experienced rainfall for up to 

50 percent or more of the 5844 number of days under consideration for the study. 

The least number of rainy days experienced over the period was 18.79 percent 

recorded in Bolgatanga which predicted an average daily rainfall of 13.81202mm 

followed by 19.80 percent recorded in Ada with predicted average rainfall of 11. 

00752mm. 

The highest average daily rainfall predicted was 16.08958mm for 

Akrokerri with a standard deviation of 15.88983 and a log-likelihood of - 

655.0001 which are less than the observed average daily rainfall of 16.09466 

with a standard deviation of 15.89553 and log-likelihood of -655.0000. The 

lowest average daily rainfall predicted was 9.810973mm recorded in Koforidua 

with a standard deviation of 15.05586 and a log-likelihood of -1026.0001 which 

are also smaller than the observed daily average rainfall of 9.812865mm with a 

standard deviation of 15.06017 and a log-likelihood of -1026.0000. 

Also, the highest standard deviation observed in the study was 20.402 

for the EM estimates and 20.40719 for the observed data both produced by the 

estimates of Axim. The lowest standard deviation observed was 14.10606 for the 

EM estimates and 14.1098 for the observed data produced by the estimates of 

Sefwi. 

As observed from the results, the estimates exhibited a discrepancy of 

0.02 percent and 0.06 percent for the lowest and highest values of the predicted 

average rainfall and the observed mean of the data. The standard deviations also 

show a discrepancy of 0.02 percent and 0.06 percent between the observed and 
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predicted. This indicated that there exist a small level of difference between the 

normal EM estimates and the estimates of the observed which indicate the EM 

algorithm provided the best estimates of the data. 

The values of the standard deviations indicated that there were some 

among of variability between the daily rainfalls figures recorded for the selected 

rainfall stations in Ghana over the period under study. 

Therefore, the difference between the predicted estimates of the EM 

algorithm and the estimates of the observed data is very minimal when taken to 

a decimal place but the difference becomes significant when corrected to two (2) 

decimal places and beyond. It was also observed that the log-likelihood estimates 

of the EM algorithm parameters provided are smaller as compared to that of the 

observed estimates. 

The compoleted data using the EM algorithm for all the stations for the 

year 2000 are presented in the Appendix 

5.3 Conclusion 

In order to achieve the set objectives, a theoretical basis was presented in chapter 

three (3) which outlined three probability distribution models which are gamma, 

log-normal and normal distribution. In arriving at the best model fit for the data, 

three goodness of fit tests; Anderson-Darling Cramer-von Mises, and 

KolmogorovSmirnov test were conducted together with two goodness-of-fit 

criteria; Akaike information criterion (AIC) and Bayesian information criterion 

(BIC) on the three distributions. The normal probability distribution model 

provided the lowest statistics among the three distributions and was therefore 

selected as the best fit model for the study. 

The Expectation-Maximization (EM) algorithm was then applied on the 

normal probability model to estimate the average rainfall of the data. The results 

reveal that the EM algorithm successfully estimated the data since the predicted 
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annual average rainfall values are closer to the true values of the means and 

standard deviations. As observed from the results, the EM estimates are relatively 

small which suggest that the EM algorithm estimated the missing values of the 

data correctly and provided better estimates. 

Finally, considering the values of the log-likelihood, the normal EM 

estimates provided the lowest as compared to the log-likelihood values provided 

by the observed estimates. This clearly tells us that the normal EM estimates are 

the best for the data and we therefore conclude that the normal EM algorithm is 

better for estimating the rainfall patterns for the selected rainfall stations in 

Ghana. The EM complete data for all the stations for the year 2000 are presented 

in the Appendix (B-P). 

5.4 Recommendations 

From the basis of the summary and the conclusions obtained from the research, 

the following are recommended. 

That the expectation-maximization (EM) algorithm together with the 

normal probability distribution should be used to estimate the missing values as 

well as the annual average rainfall of daily rainfall data recorded in Ghana. 

That any other person including researchers interested in rainfall 

pattern modeling in general should consider the system of missing values in order 

to achieve accurate results since they have a significant effect on the outcome or 

the results. It is better to know the pattern of the data before applying a any 

statistical model to estimate the parameters. 

 

 

 



 

54 

REFERENCES 
Agarwal, M. C., Katiyar, V. J., and Babu, R. (1988). Probability analysis of annual 

maximum daily rainfall of v .p aimalaya. Indian Journal of soil conser- 

vation. 

Akaike, H. (1973). Information theory and an extension of the maximum 

likelihood principle. International Symposium on Information Theory. 

Allison, P. D. (2001). Missing data: Sage university paper series on quantitative 

application in the social sciences. Thousand Oaks, CA: Sage. 

Ashraf, M., Loftis, J. C., and Hubbard, K. G. (1997). Application of geostatistics to 

evaluate partial weather station network. Agricultural Forest Meteorology. 

Beauchamp, J. J. (1989). Comparison of regression and time series methods for 

synthesizing missing streamflow records. Water Resource Bulletin. 

Bhakar, S. R., Bansal, A. N., Chajed, N., and Purohit, R. C. (2006). Frequency analysis 

of consecutive days maximum rainfall at banswara, rajasthan. Indian ARPM 

Journal of Engineering and Applied Sciences. 

Bilmes, J. A. (1998). A gentile tutorial of the em algorithm and its application to 

parameter estimation for gaussian mixtures and hidden markov mdels. 

Technical report, University of Berkeley. 

Brunnetti, M., Muageri, M., Monti, F., and Nanni, T. (2004). Charged in daily 

precipitation frequency and distribution in italy over the last 120 years. Journal 

of Geophysical Research-Amosphere. 

Cohen, J. and Cohen, P. (1983). Applied multiple regression /correlation analysis 

for bahavioural sciences, 2nd ed. Hillsotale N J Lawrence Erlbaum Associates. 



 

55 

Cool, A. L. (2000). A review of methods for dealing with missing data: Paper 

presented at the annual meeting of the southwest educational research 

association. Dallas. 

Coulibaly, P. and Evora, N. D. (2007). Comparison of neural network methods for 

infilling missing daily weather records. Journal of Hydrology. 

Cressman, G. P. (1959). An operational objective analysis system. Monthly 

Weather Review. 

Creutin, J. D. and Obled, C. (1982). Objective analysis and mapping techniques for 

rainfall fields; an objective comparison. Water Resource Research. 

Debral, P. P., Mautushi, and Singh, R. P. (2009). Probability analysis for one day to 

seven consecutive days annual maximum rainfall for doimukh (itenagar), 

arunachal pradesh. Journal of Indian Water Resources. 

DeGaetano, A. T., Eggleston, K. L., and Knapp, W. W. (1995). A method to estimate 

missing maximum and minimum temperature observations. Journal of Aplied 

Meteorology. 

Delay, C., Neilson, R., and Philip, D. (1994). A statistical topograhic model for 

mapping climatological precipitation over mountainous terrain. Journal of 

Aplied Meteorology. 

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from 

incomplete data via the em algorithm. Journal of the Royal Statistical 

Society. 

Eischeid, J. K., Pasteris, P. A., Diaz, H. F., Plantico, M. S., and Lott, N. J. (2000). 

Creating a serially complete, national daily time series of temperature and 

precipitation for western united states. Journal of Applied Meteorology. 



 

56 

Elshorbagy, A. A., Panu, N. S., and Simonovic, S. P. (2000). Group-based estimation 

of missing hydrological data: Approach and general methodology i. Journal of 

Hydrological Sciences. 

Firat, M. (2011). Analysis of temperature series: estimation of missing data and 

homogeneity test. Meteorological Applicatios. 

Ghahramani, Z. and Hinton, G. E. (1995). Parameter estimation for linear 

dynamical systems. Technical report, Department of Computer Science 

University of Toronto Canada. 

Hutchinson, M. F. and Gessler, P. E. (1994). Splines more than just a smooth 

interpolator. Geoderma. 

Jordan and Jacob, R. A. (1994). Hierrarchical mixtures of experts and the em 

algorithm. Neural Computations. 

Karl, T. R. and Knight, R. W. (1995). Trends in high frequency climate variability 

in the tewentieth century. Nature. 

Karlis, D. (2005). Am em algorithm for mixed poison and other discrete 

distributions. ASTIN Bulletin. 

Kemp, W. P. D., Burnell, D. G., Do, E., and Thomas, A. J. (1983). Estimating 

missing daily maximum and minimum temperatures. Journal of Climate and 

Applied Meteorology. 

Khalil, M., Panu, V. S., and Lenox, W. C. (2001). Groups and neural networks based 

streamflow data infilling procedures. Journal of Hydrology. 

Kim, T. W. and Ahn, H. (2009). Spatial rainfall model using a pattern classification 

for estimating missing daily rainfall data. Stochastic Evironmental 

Research and Risk Assesment. 



 

57 

Kumar, A. (2000). Predicting annual maximum daily rainfall of ranichavsi (tehrin-

garhwal) based on probability analysis. Indian Journal of Soil Con- 

servation. 

Kumar, A., Kaushal, K. K., and Singh, R. D. (2007). Prediction of annual maximum 

daily rainfall of almora based on probability analysis. Indian Journal of soil 

conservation. 

Little, R. J. and Rubin, D. B. (1987). Statistical analysis with missing data. New York, 

Wiley. 

Lloyd, C. D. (2005). Assessing the effect of integrating evaluation data into the 

estimation of monthly precipitation in great britain. Journal of Hydrology. 

Manikandan, M., Thiyagarajan, G., and Vijayakumar, G. (2011). Probability 

analysis for estimating annual one day maximum rainfall in tamil nadu 

agricultural united university. Madras Agricultural Journal. 

Mclachlan, G. J. and Krishnan, T. (2008). The EM algorithm and Extensions. John 

Wiley and Son, 2nd ed. 

Nelwamondo, F. V., Mohamed, S., and Marwala, T. (2007). Missing data: a 

comparison of neural network and expectation maximization techniques. 

Current Science. 

Nemichandrappa, M. P., Ballakrishnan, and Senthilvel, S. (2010). Probability and 

confidence limit analysis of rainfall in raichur region. Karnataka Journal of 

Agricultrual Sciences. 

Orchard, T. and Woodbury, M. A. (1972). A missing information principle: theory 

and applications; Proceedings of the sixth Berkeley symposium on mathematical 

statistics and probability. Theory of statistics. 



 

58 

Redner, R. A. and Walker, H. F. (1984). Mixture densities, maximum likelihood and 

the em algorithm. SIAM Review. 

Rubin, D. B. (1976). Inference with missing data. Biometrika. 

Schneider, T. (2001). Analysis of incomplete climate data; estimating mean values 

and covariance matrices and imputation of missing values. Journal of climate. 

Schwarz., G. (1978). Estimating dimension of a model. Annals of Statistics. 

Shepard, D. (1968). A two dimensional interpolation function for irrugularly 

spaced data. Proceeding of the Twenty-third National conference of the 

Association for computing machinery: Washington D.C. 

Simolo, C., Brunetti, M., Maugeri, M., and Nanni, T. (2009). Improving estimation 

of missing values in daily precipitation series by a probability density function-

preserving approach. International Journal of Climatology. 

Singh, R. K. (2001). Probability analysis for prediction of annual maximum rainfall 

of eastern himalaya (sikkim mid hills). Indian Journal of soil conservation. 

Subudhi, R. (2007). Probability analysis of prediction of annual maximum daily 

rainfall of chakpada block of kandharmal district in orissa. Indian Journal of soil 

conservation. 

Suhaila, J., Sayang, M. D., and Jemain, A. A. (2008). Revised spatial weighting 

methods for estimation of missing rainfall data. Asia Pacific Journal of 

Amospheric Sciences. 

Tabachnick, B. G. and Fidell, L. S. (2001). Using Multivariate statistics. Needham 

Heights, 4th ed. Allyn and Bacon. 

Tabios, G. Q. and Sala, J. D. (1985). A comparative analysis of techniques for spatial 

interpolation of precipitation. Water Resource Bulletin. 



 

59 

Teegavarapu, R. S. V. and Chandramouli, V. (2005). Improved weighting methods, 

deterministic and stochastic data driven models for estimation of missing 

precipitation records. Journal of Hydrology. 

Upadhaya, A. and Singh, S. R. (1998). Estimation of consecutive days maximum 

rainfall by various methods and their comparison. Indian Journal of soil 

conservation. 

Vivekanandan, N. (2012). Intercomparison of extreme value distributions for 

estimation of apmr. International Journal of Applied Engineering and 

Technology. 

Wallis, J. R., Letten-Mayer, D. P., and Word, E. F. (1991). A daily 

hydroclimatological data set for the continental united state. Water Resources 

Research. 

Wu, C. F. J. (1983). On the convergence properties of the em algorithm. The 

Annals of statistics. 

Xia, Y., Fabian, P., Winterhalter, M., and Zhao, M. (2001). Forest climatology 

estimation and use of daily climatological data for bavaria, germany. 

Agricultural and Forest Meteorology.  



 

60 

Appendix A 

Figure 5.1: Annual Total Rainfall(mm)for all the Stations (2000-2015) 
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Appendix B 

Figure 5.2: Sample Observed Data for Abetifi (200) 

 

Appendix B1 

Figure 5.3: Sample Complete Data for Abetifi (2000) 
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Appendix C 

Figure 5.4: Sample Observed Data for Ada (2000) 
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Appendix C1 

Figure 5.5: Sample Complete Data for Ada (2000) 
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Appendix D 

Figure 5.6: Sample Observed Data for Akrokerri (2000) 
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Appendix D1 

Figure 5.7: Sample Complete Data for Akrokerri (2000) 
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Appendix E 

Figure 5.8: Sample Observed Data for Axim (2000) 
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Appendix E1 

Figure 5.9: Sample Complete Data for Axim (2000) 
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Appendix F 

Figure 5.10: Sample Observed Data for Bolgatanga (2000) 
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Appendix F1 

Figure 5.11: Sample Complete Data for Bolgatanga (2000) 
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Appendix G 

Figure 5.12: Sample Observed Data for Cape Coast (2000) 
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Appendix G1 

Figure 5.13: Sample Complete Data for Cape Coast (2000) 
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Appendix H 

Figure 5.14: Sample Complete Data for Ejura (2000) 
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Appendix H1 

Figure 5.15: Sample Complete Data for Ejura (2000) 
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Appendix I 

Figure 5.16: Sample Complete Data for Ho (2000) 
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Appendix I1 

Figure 5.17: Sample Complete Data for Ho (2000) 
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Appendix J 

Figure 5.18: Sample Observed Data for Koforidua (2000) 
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Appendix J1 

Figure 5.19: Sample Complete Data Koforidua (2000) 
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Appendix K 

Figure 5.20: Sample Observed Data for Kete Krachi (2000) 
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Appendix K1 

Figure 5.21: Sample Complete Data for Kete Krachi (2000) 
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Appendix L 

Figure 5.22: Sample Observed Data for Saltpond (2000) 
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Appendix L1 

Figure 5.23: Sample Complete Data for Saltpond (2000) 
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Appendix M 

Figure 5.24: Sample Observed Data for Sefwi-Bekwai (2000) 
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Appendix M1 

Figure 5.25: Sample Complete Data for Sefwi-Bekwai (2000) 
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Appendix N 

Figure 5.26: Sample Observed Data for Tamale (2000) 
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Appendix N1 

Figure 5.27: Sample Complete Data for Tamale (2000) 
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Appendix O 

Figure 5.28: Sample Observed Data for Wa (2000) 
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Appendix O1 

Figure 5.29: Sample Complete Data for Wa (2000) 
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Appendix P 

Figure 5.30: Sample Observed Data for Wenchi (2000) 
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Appendix P1 

Figure 5.31: Sample Complete Data for Wenchi (2000) 
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