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ABSTRACT 

Road traffic accident in Ghana is increasing at an alarming rate and has raised major 

concerns. In this thesis, time series with Box – Jenkins method was applied to 31 

years of annual road accident data from 1980 – 2010 to determine patterns of road 

traffic accident cases, injuries and deaths along the Accra – Tema motorway.  Models 

were subsequently developed for accident cases, injuries and deaths. ARIMA (1,1,1) 

was tentatively used to model the injury and death data whilst ARIMA(0,1,2) was 

used to model the accident cases data. 10 years forecasts were made using the models 

developed and it showed that, road traffic accident cases, injuries and death would 

continue to increase. 
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CHAPTER 1 

INTRODUCTION 

1.1.0 BACKGROUND OF THE STUDY 

A Road Traffic Accident (RTA) is when a road vehicle collides with another vehicle, 

pedestrian, animal or geographical or architectural obstacle. The Road Traffic 

Accidents can result in injury, property damage and death. Road Traffic Accident 

results in the deaths of about two million people worldwide and injuries about five 

times this number every year and it was estimated that approximately 3000 people die 

by road traffic accidents around the world on a given day (WHO, 2008). A projection 

of global leading causes of death from 2008 to 2030 by World Health Organization 

revealed that, if current trends continue, road traffic accidents will rise from the ninth 

to fifth of world leading cause of death 3.6% of global deaths, up from 2.2% in 

2004(WHO, 2008).While disability-adjusted life years (DALYs) will rise from ninth 

with 2.7% of total DALYs in 2004 to third and 4.9% of total DALYs in 2030 (WHO, 

2004b). 

In this study, a road traffic accident is defined as accident which took place on the 

road between two or more objects, one of which must be any kind of a moving vehicle  

(Jha et al, 2004). Road Traffic Accidents are increasing with a rapid pace and 

presently these are one of the leading causes of death in developing countries. 

The morbidity and mortality burden in developing countries is rising due to a 

combination of factors, including rapid motorization, poor road and traffic 

infrastructure as well as the behavior of road users (Nantulya and Reich, 2002). This 
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contrasts with technologically advanced countries where the indices are reducing 

(Osram eta al, 1994; Oneil and Mohan, 2002). 

According to AUSTROADS (1994), road accidents occur as a result of one, or more 

than one of the following factors; Human factors; Vehicular factors; Road and 

environmental factors. Driving faster or slower than the flow of traffic, which may or 

may not accord with the posted speed limit has robustly been demonstrated to increase 

the likelihood and severity of crashes, as shown by the Solomon Curve (OOIDA, 

2003).The factors of traffic accidents are driver, the highway and motor vehicles 

(Aaron and Strasser, 1990; Balogun and Abereoje, 1992; Mock et al, 1999).Most 

traffic accidents often involve the three elements. Most road traffic accidents involve 

motor vehicles but bicycles or pedestrians accidents can occur without vehicles (Stutts 

and Hunter, 1999). A high proportion of road traffic accidents can be apportioned to 

unsafe human acts. The drunken drivers of motor vehicles make the clearest example 

(Hijar et al. 2000). Reckless and dangerous driving, alcoholism, faulty pedestrian 

attitude, etc. constitute the major causes in Ghana (Mensah, 1986, Oduro, 1998). 

According to the Motor Traffic and Transport Unit (MTTU) of the Ghana Police, from 

January 1, 1992 to December 31, 2001(a period of ten years), a total of 104,420 

accidents cases were recorded giving an annual average of 10,442 cases. And about 

145,331 vehicles were involved and 10,106 people lost their lives with 80,022 people 

injured.  However, between January and March 2003 a period of three months the 

capital, Accra alone recorded 1,417 motor accidents with 200 deaths, 373 serious 

injuries and 966 minor cases.  And according to the National Road Safety 

Commission from January 1, 2006 to September in the same year, 2,185 people lost 

their lives through accidents representing an increase of about 6% over the figure for 

the whole of 2005 when 1,778 lives were claimed in road accidents. From 2007 to 
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2010, a total of 6,213 lives had been lost while 39,797 others had sustained various 

degrees of injury in motor accidents. 

According to records compiled by the unit 1,760 people died while 11,147 people 

injured in 12,981 motor accidents involving 18,589 vehicles in 2010. 

In Greater Accra, a slightly heavily motorized region in Ghana with some poor road 

conditions and transport systems has a high rate of RTAs and the tendency is on the 

increase. The recognition of road traffic accidents as a crisis in Ghana inspired the 

establishment of the National Road Safety Commission. The commission was charged 

with responsibilities for among others, policy making, organization and administration 

of road safety in Ghana. 

Despite increased road safety campaign by the commission, the rate at which 

accidents occur on our road is very alarming. It is truism that one of the major 

challenges this country is still battling with is motor accidents. Professor Agyeman 

Badu Akosor, the former Director General of Ghana Health Service rightly hammered 

home this fact when he stated that the most deadly disease in Ghana at the moment is 

motor accident. 

For developing measures aimed at reducing the rate of road traffic accidents and the 

consequent injuries and fatalities, there is the need for regular evaluation of the road 

traffic accidents in terms of developing statistical models for forecasting future 

number of accident cases, fatalities rates and injuries and this is the purpose of the 

thesis. 

The Accra-Tema motorway was opened to traffic in 1964 by the then government of 

Ghana as part of the country‟s programme of transforming Tema into an industrial 

hub of the newly independent nation. The 19km motorway is the oldest paved road in 
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Ghana. Being a concrete pavement, it is more expensive to construct than asphalt or 

other bituminous surface roads but it is more economical to operate over a longer 

time; it is longer lasting stronger and requires minimal maintenance. 

Among the features of the motorway was a dual carriageway with a median or a 

central reservation area that completely separated the two carriageways. Like all 

motorways, the Accra-Tema motorway was designed prohibiting pedestrian 

movement, parking areas or U-turn.  Moreover, until recently, no road joined the 

motorway at any other section except the entry and the exit points. 

The economic importance of the motorway cannot be over emphasized as it is the 

main route for transportation of goods to and from the Tema Harbour and also 

passengers and goods to the Volta and Northern regions from Accra, and countries 

east of Ghana. 

Considering the importance of the road and the increased level of road traffic 

accidents in recent years along the road, there is the need for this study aimed at 

characterizing the RTAs to provide an enabling base for the development of 

countermeasures by the government and the traffic control agents to reduce incidences 

of road traffic accident on the road. 
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1.2.0 STATEMENT OF THE PROBLEM 

Over the years, the education and research department of the national MTTU uses 

descriptive statistics techniques and charts such as bar graphs, histograms and 

frequency polygons to organize accidents data on the Accra – Tema motorway. This 

statistical approach of analyzing the data does not inform the department about the 

estimates of RTA cases, injuries and deaths in the future. Hence the national MTTU 

and RSC cannot make projections about RTA along the Accra – Tema motorway. 

In light of problems associated with this method of analyzing RTA data by the 

MTTU, it is necessary to use time series techniques which can better describe and 

model the accident data.   

 

1.3.0 OBJECTIVES OF THE STUDY 

The specific objectives of this thesis are as follows: 

 To identify patterns of road traffic accident cases, injuries and death along the 

Accra –Tema motorway over the period of 1980-2010. 

 Develop a suitable time series forecasting model for number of road traffic 

accident cases, injuries and deaths on the Accra-Tema motorway over the 

period 1980 - 2010 and use it to estimate 10 years forecast. 
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1.4.0 JUSTIFICATION FOR THE STUDY 

This research has become necessary to conduct following the increasing rate of road 

fatalities and injuries in Ghana especially along the Accra-Tema motorway. The 

results of this thesis would be useful for road safety planning on the Accra –Tema 

motorway. 

Another usefulness of the work of this thesis was to provide a better opportunity for 

the national MTTU to use better and more reliable statistical technique such as time 

series in analyzing their accident data as this would help them in making accident 

forecasts.  

Time series techniques are used in many fields and road safety is no exception. The 

results of the thesis would also add to the many research works carried out in road 

safety.  

 

1.5.0 METHODOLOGY 

Data for the study was secondary; a historical annual traffic crash data for the years 

1980 through 2010 was compiled from the Airport and Ashaiman divisional 

commands of the Motor Traffic and Transport Unit (MTTU) of the Ghana Police 

Service. These two stations are responsible for compiling accident data on the Accra – 

Tema motorway. The data was classified into number of accident cases, fatalities and 

injuries. R software was used for the analysis. 

Time series analysis was the main statistical tool used for the analysis with greater 

emphasize on Box – Jenkins method. 
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The methodology consists of three steps iterative cycle of:   

 Model identification 

 Model estimation 

 Diagnostics checks on model adequacy followed by forecasting. 

         

1.6.0 SCOPE AND LIMITATION 

The scope of the thesis was limited to the following: 

 Thirty one (31) years of annual number of accident cases, injuries and accident 

deaths along the Accra- Tema motorway for the period 1980-2010. 

 Using Box-Jenkins methodology to develop a time series model for both 

descriptive and forecasting purposes. In this case the explanatory capacity of 

the model was not addressed, as no additional independent variable was used 

for modeling the time series data. 

 

1.7.0 ORGANIZATION OF THE THESIS 

The remaining portion of the thesis was organized as follows:  

Chapter 2 presents literature review, followed by Chapter 3 on methodology. Chapter 

4 focused on data collection and analysis. Conclusions and recommendations were 

presented in Chapter 5. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter focused on review of earlier forecasting models in road traffic accidents 

and related statistical (including time series) models used in analyzing road traffic 

accident data. The following are some references reviewed which are related to the 

research topic that has been studied. 

  

2.1.0 EARLIER FORECASTING MODELS OF ROAD TRAFFIC ACCIDENTS 

Many researchers including Smeed (1949) have devoted their research to the area of 

road accidents and reported pioneering work on the analysis of road accidents. Smeed 

examined the relationship on a number of road fatalities with those of motor vehicles 

and the population of twenty countries in 1938 in the following form: 

 D/N=0.0003(N/P)
 0.67

                                                                              (1)                                                                                                  

where D, N, P are deaths, number of motor vehicles and population respectively. 

Using the same method as Smeed, Jacobs and Cutting (1986) carried out analysis of 

fatalities in developing countries for different years and established significant 

relationships between fatality rates and levels of vehicle ownership. The analysis was 

repeated for the years 1980 using data from 20 developing countries and a relationship 

was derived which is as follows 

 D/N=0.00036(N/P)
 0.65

                                                                                                (2)                                                                                                   

Smeed‟s analysis was heavily criticized by Andreessen (1985) for model accuracy.  
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He argued that the Smeed‟s formula cannot be applied universally to all countries. The 

fatality model similar to Smeed‟s equation produced by Andreessen in 1985 is of the 

form:             

Death=0.000112(Population)
 0.73259

(Number of Vehicles)
 0.33293

                                 (3)                                  

Mekky (1985) used the same time series data for the analysis and studied the effects 

of a rapid increase in motorization levels on fatality rates in some developing 

countries. Kim (1990) developed a similar model in Korea and suggested the 

following equation:                 

Death=0.25451(Population)
 0.699196

(Number of Vehicles)
 0.251414

                                 (4)  

In Malaysia two models had been proposed. Aminuddin (1990) proposed a simple 

linear model and projected 4950 deaths by 2000. Rehan (1995) however improved 

Aminuddin‟s model and suggested a similar model to Smeed‟s and derived the 

following equation:                

Death=0.08193(Population x Number of Vehicles)
 0.335

                                              (5)                                                    

Using employment and population data, Partyka (1984) developed simple models with 

a view to understand the various factors affecting the increase in accidents in 

developing countries. The study on the effects of speed limits on road accidents has 

been carried out by Fieldwick and Brown (1987). It was found that speed limits have 

considerable effects on safety in urban and rural areas. Minter (1987) discussed an 

application of the two models (Wright and Towell) for road safety problems and 

finally developed a model for estimating the road accidents in U.K.  

Pramada and Sarkar (1993) investigated the variations in the pattern of road accidents 

in various Union Territories of India. Emenalo et al (1987) established the trend 



10 
 

curves for the road accidents casualties, and other relevant quantities for Zambia. 

Pramada and Sarkar (1997) again developed a road accidents model by using the 

additional parameter of road length. Ameen and Naji (2001) presented a general 

modeling strategy to forecast road accident fatalities in Yemen. 

  

2.2.0 TIME SERIES AND OTHER STATISTICAL MODELS USED IN RTA 

 Numerous cross-sectional studies have been conducted in varying scales and scopes 

in order to understand the relationships between factors and traffic accidents by 

combining several years of data and performing statistical analysis and constructing 

statistical models. The multiple regression and Poisson regression are commonly used 

for modeling the mortality rates and number of deaths in a specific population. 

However Pocock et -al. (1981) pointed out that unweighted multiple regression is not 

appropriate for modeling mortality rates in different areas which vary in population 

size. In addition fully weighted regression is usually too extreme. Thus they 

introduced an intermediate solution via maximum likelihood for modeling death rates. 

Tsauo et al. (1996) examined the effect of age, period of death and birth cohort in 

motor vehicle mortality in Taiwan from 1974 – 1992, used data from vital statistic. 

Log-linear regression was used for fitting the model to perform the effects of 

variables. Kardara and Kondakis (1997) identified trends of road traffic accident 

deaths and injuries rates in Greece from 1981-1991 by using linear regression with 

logarithmic transformation. LaScala et al. (2000) examined correlations between 

demographic and environmental versus pedestrian injury rates by using a spatial 

autocorrelation corrected regression model with applying the logarithmic 

transformation for the injuries rates. Evans (2003) conducted statistical modeling for 
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estimating road traffics and railways accident fatal rates based on past accident data in 

Great Britain during 1967-2000. In addition Lix et al. (2004) used Poisson regression 

to investigate the relation of demographic, geographical, and temporal explanatory 

variables with mortality in difference regions of Manitoba, Canada between 1985and 

1999, used data from Vital Statistics records and the provincial health registry.  

Yang et al. (2005) used Poisson regression modeling to examine and compare age- 

and sex-specific mortality rates due to injuries in the Guangxi Province in South 

Western China in 2002, based on death certificates data. However this study focused 

only on small areas.  

In light of problems associated with ordinary (regression) methods because of the 

assumption that the observations overtime are independent, several researchers have 

turned to analyzing road traffic accidents data with time series techniques such as 

ARMA, ARIMA, DRAG and state space models or structural models as a means to 

better predict accident variables.  

Abdel (2005) studied road accidents in Kuwait. He used an ARIMA model and 

compared it with ANN to predict fatalities in Kuwait. He concluded ANN was better 

in case of long term series without seasonal fluctuations of accidents or 

autocorrelations‟ components. Wen et al (2005) established a procedure of Road 

Traffic Injury (RTI) in China by using RTI data from 1951 to 2003. A series of 

predictive equations on RTI were established based on ARIMA models. They 

concluded that time series models thus established proves to be of significant 

usefulness in RTI prediction. Cejun and Chiou-Lin (2004) used two time series 

techniques; ARMA and Holt-Winters (HW) algorithm to predict annual motor vehicle 

crash fatalities. They concluded that the values predicted by ARMA models are a little 

bit higher than the ones obtained by HW algorithm. Ayvalik (2003) also used 
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intervention analysis with univariate Box-Jenkins method to identify whether a change 

in a particular policy had made an impact on the trends in fatalities and fatality rates in 

Illinois. He developed ARIMA forecasting model for future trends in motorway 

fatalities in an effort to provide assistance to policy development in reducing fatality 

rates in Illinois. 
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CHAPTER 3 

METHODOLOGY 

In this chapter we have looked at some theoretical background of time series and the 

method of time series which we have used in modeling road traffic accident data along 

the Accra –Tema motorway during the period 1980-2010. 

 

3.1.0 TIME SERIES 

A time series is a sequence of observations (Yt) ordered in time. That is Y1,Y2 

,Y3,…,YN or {Yt}, t  N ,where 1,2,3,… denote time steps. Mostly these observations 

are collected at equally spaced, discrete time intervals. When there is only one 

variable upon which observations are made then we call them a single time series or 

more specifically a univariate time series. A basic assumption in any time series 

analysis/modeling is that some aspects of the past pattern will continue to remain in 

the future. Also under this set up, often the time series process is assumed to be based 

on past values of the main variable but not on explanatory variables which may affect 

the variable/system. 

Time series models have advantages in certain situations. They can be used easily for 

forecasting purposes because historical sequences of observations upon study 

variables are readily available from published secondary sources. These successive 

observations are statistically dependent and time series modeling is concerned with 

techniques for the analysis of such dependencies. Thus in time series modeling, the 

prediction of values for the future periods is based on the pattern of past values of the 
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variable under study, but not generally on explanatory variables which may affect the 

system. 

 

3.2.0 TIME SERIES COMPONENTS  

An important step in analyzing time series data is to consider the types of data 

patterns, so that the models most appropriate to those patterns can be utilized. Four 

types of time series components can be distinguished. They are:  

(i) Horizontal – when data values fluctuate around constant value 

(ii) Trend – when there is long term increase or decrease in the data 

(iii) Seasonal – when a series is influenced by seasonal factors and recurs on a  

            regular periodic basis. 

(iv) Cyclic – when the data exhibit rises and falls that are not of a fixed period. 

Many data series include combinations of the preceding patterns. After separating out 

the existing patterns in any time series data, the pattern that remains unidentifiable 

form the „random‟ or „error component. Time plot (data plotted over time) and 

seasonal plot (data plotted against individual seasons in which the data were observed) 

help in visualizing these patterns while exploring the data.  

 

3.3.0 STATIONARITY OF TIME SERIES 

A time series is stationary if: . In other words, if 

 values of the time series fluctuate around a constant mean with 
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constant variation, the time series is stationary. If the n values do not seem to fluctuate 

around a constant mean, then it is non- stationary. 

If the time series is not stationary, we can transform it to stationarity with one of the 

following techniques. 

 We can difference the data. That is , given the series  Zt , we create the new 

series 

                                                                           (6) 

               

           The differenced data will contain one less point than the original data.  

          Although you can difference the data more than once.  

 If the data contains a trend, we can fit some type of curve to the data and then 

model the residuals from that fit. Since the purpose of the fit is to simply 

remove long term trend, a simple fit, such as a straight line, is typically used. 

 For non-constant variance, taking the logarithm or square root of the series 

may stabilize the variance. For negative data, you can add a suitable constant 

to make the entire data positive before applying the transformation. This 

constant can then be subtracted from the model to obtain predicted (i.e., the 

fitted) values and forecasts for future points.  

The above techniques are intended to generate series with constant location and scale. 
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 3.4.0 AUTOCORELATION FUNCTION 

Autocorrelation refers to the correlation of a time series with its own past and future 

values. Autocorrelation is also sometimes called “lagged correlation” or “serial 

correlation”, which refers to the correlation between members of a series of numbers 

arranged in time. Positive autocorrelation might be considered a specific form of 

“persistence”, a tendency for a system to remain in the same state from one 

observation to the next. 

Three tools for assessing the autocorrelation of a time series are: 

 (1) The time series plot, 

 (2) The lagged scatter plot, and 

 (3) The autocorrelation function 

An important guide to the persistence in a time series is given by the series of 

quantities called the sample autocorrelation coefficients, which measure the 

correlation between observations at different times. The set of autocorrelation 

coefficients arranged as a function of separation in time is the sample autocorrelation 

function, or the acf. 

The first- order autocorrelation coefficient is the simple coefficient of the first N – 1 

observations,   t=1, 2,…, N -1 and the next N - 1 observations, xt, t=2,3,…, N . 

The correlation between xt and xt+1 is given by: 

                    

Where   is the mean of the first N – 1 observations and  is the mean of the last  

N -1 observation. As the correlation coefficient given above measure correlation 

between successive observations it is called the autocorrelation coefficient or serial 

correlation coefficient. 
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For N reasonably large, the difference between the sub-period means  can 

be  ignored and r1 can be approximated as by 

    (8)  

Equation (8) can be generalized to give the correlation between observations separated 

by k years: 

                                                                                                                                                  (9)      

The quantity  is called the autocorrelation coefficient at lag k. The plot of the                       

autocorrelation function as a function of lag is also called the correlogram. 

The autocorrelation function can be used for the following two purposes:  

1. To detect non-randomness in data.  

2. To identify an appropriate time series model if the data are not random.  

Autocorrelation plots are formed by:  

 Vertical axis: Autocorrelation coefficient  

 

 Horizontal axis: Time lag k = 1, 2, 3... 

 

 Confidence bands 

The confidence band uses the following formula if the autocorrelation plot is used to  

check for randomness in the data. 

                                                                                                                     (10)  

Where N is the sample size, z is the percent point function of the standard normal  

distribution and α is the significance level. 

If autocorrelation plots are also used in the model identification stage for fitting 

ARIMA models, the confidence band uses the following formula:  
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                                                                  (11)                                             

Where k is the lag, N is the sample size; z is the percent point function of the standard 

normal distribution and α is the significance level. 

 

3.5.0 PARTIAL AUTOCORELATION FUNCTION 

Partial autocorrelation function measures the degree of association between Yt and 

Yt+k when the effect of other time lags on Y are held constant. The partial 

autocorrelation function PACF denoted by    The set of partial 

autocorrelations at various lags k are defined by  

                                                                                                  (12)                                                                                                 

 

Specifically, partial autocorrelations are useful in identifying the order of an 

autoregressive model. The partial autocorrelation of an AR (p) process is zero at lag 

p+1 and greater. The approximate 95% confidence interval for the partial 

autocorrelations is at . 

 Partial autocorrelation plots are formed by:  

 Vertical axis:  Partial autocorrelation coefficient at lag  k 

 Horizontal axis:  Time lag k (k = 0, 1, 2, 3 ...).  

In addition, 95% confidence interval bands are typically included on the plot. 
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3.6.0 TIME SERIES MODELS 

There are a number of approaches to modeling time series data. These include: 

 Autoregressive (AR) Models 

 Moving Average (MA) Models 

 Autoregressive Moving Average(ARMA) Models 

 Autoregressive Integrated Moving Average (ARIMA) Models. 

 

  3.6.1 AUTOREGRESSIVE (AR) MODELS 

 A model in which future values are forecast purely on the basis of past values of the 

time series is called an Autoregressive (AR) process.  

An autoregressive model of order p, denoted by AR(p) with mean zero is generally 

given by the equation:  

                                  (13)                                  

 Or  

                                                      (14) 

                                                                                                                (15) 

                                                     (16) 

  Where: 

   is the lag operator 
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   are the autoregressive model parameters and 

is the random shock or white noise process, with mean zero and variance    

The mean of  is zero.  

If the mean , of  is not zero, replace  . That is  

                       (17)                                                                                                        

Or write 

                                                       (18)                                                                                                                                 

 Where ).                                                                   (19) 

In this general case, the ACF damps down and the PACF cuts off after p lags. 

 An AR (p) model is stationary if the roots of  all lie outside the unit circle. 

A necessary condition for stationary is that  

 

3.6.2 MOVING AVERAGE (MA) MODELS 

 A model in which future values are forecast based on linear combination of past 

forecast errors is called moving average model. 

A moving average model of order q, with mean zero, denoted by MA (q) is generally 

given by: 

                                        (20)                                                                                       



21 
 

Or 

                                                                (21)                                                                  

                                                                                                                 (22) 

                                                                (22) 

Where: 

L and as defined above. 

are the moving average model parameters, 

In this general case, the PACF damps down and the ACF cuts off after q lags. An MA 

(q) model is necessarily stationary if q is finite. 

An MA (q) is said to be invertible if  can be inverted, in other words if it can be 

expressed as an AR. An MA (q) is invertible if the roots of  all lie outside the 

unit circle. A finite AR is always invertible. 

 

3.6.3 AUTOREGRESSIVE MOVING AVERAGE (ARMA) MODELS 

 Autoregressive and Moving Average processes can be combined to obtain a very 

flexible class of univariate processes (proposed by Box and Jenkins), known as 

ARMA processes. 

The time series   is an ARMA (p, q) process, if it is stationary and 

                               (24) 

                                                                                            (25) 
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Or 

                                                                                                     (26)                                                               

Where   defined above with  and    . 

An ARMA process is stationary if the roots of  all lie outside the unit circle and 

invertible if the roots of   all lie outside the unit circle 

3.6.4 AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA)  

          MODELS  

The time series models above are only used when the time series data is stationary. 

However many real time series are not stationary hence those models cannot be used 

for the data. Differencing the data one or two times will reduce the non-stationary 

time series to stationary series. ARIMA also called Box-Jenkins models are the 

models based on this idea.  

In general, an ARIMA model is characterized by the notation ARIMA (p, d, q), where 

p, d and q denote orders of auto-regression, integration (differencing) and moving 

average respectively. 

This time series method was used to model the road traffic accident data collected 

along the Accra -Tema from 1989-2010.  

3.7.0 ARIMA MODEL BUILDING PROCESS 

The first stage in building the model is the identification of the appropriate ARIMA 

models through the study of the autocorrelation and partial autocorrelation functions. 
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The next stage is to estimate the parameters of the ARIMA model chosen.  

The third stage is the diagnostic checking of the model. The Q statistic is used for the 

model adequacy check. 

If the model is not adequate then the forecaster goes to stage one to identify an 

alternative model and this is tested for adequacy and if adequate then the forecaster 

goes to the fourth and final stage of the process. 

The fourth stage is where the analysis uses the model chosen to forecast and the 

process ends. The diagram in figure 3.1 below shows ARIMA or Box-Jenkins model 

building process.  

 

     Collect data for 

Forecasting 
 

 
 Identification             Identify ARIMA model 
 
 

   
Estimation       Update the              Estimate parameters in 

           ARIMA             tentative ARIMA model 
  
 
 

 Testing      Diagnostic checking (is the 

       model adequate)? 
 
 

              No 

 

        Yes 
 

Forecasting      Use model to 

       Forecast 
 

Figure 3.1: ARIMA model building process 
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3.7.1 Identification Stage - The first step in developing an ARIMA model is to 

determine if the series is stationary.  Stationarity can be accessed from a time series 

plot. The time series plot should show constant location and scale. It can also be 

detected from an autocorrelation plot. Specifically, non-stationarity is often indicated 

by an autocorrelation plot with very slow decay. 

If the model is found to be non-stationary, stationarity could be achieved mostly by 

differencing the series, or go for Dickey Fuller test. Stationarity could also be 

achieved by some modes of transformation say log transformation. 

Thus if  denotes the original series, the non-seasonal difference of first order is 

If                                                                                                      (27)                                                                                                                           

 

Once stationarity has been addressed, the next step is to identify the order (i.e., the p 

and q) of the autoregressive and moving average terms. 

The primary tools for doing this are the autocorrelation plot and the partial 

autocorrelation plot. The sample autocorrelation plot and the sample partial 

autocorrelation plot are compared to the theoretical behavior of these plots when the 

order is known.  Table 3.1 summarizes how we use the sample ACF/PACF for model 

identification. 
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Table 3.1: Theoretical behavior of the ACF and PACF for model identification. 

PROCESS ACF PACF 

AR(p) Tails off Cut off after the order p of 

the process 

MA(q) Cut off after the order q of the 

process 

Tails off 

ARMA(p,q) Tails off Tails off 

 

3.7.1.1 Other tools for model identification 

Akaike’s Information Criteria (AIC) – The AIC which was proposed by Akaike 

uses the maximum likelihood method. In the implementation of the approach, a range 

of potential ARMA models is estimated by maximum likelihood methods, and for 

each, the AIC is calculated, given by: 

                                                                     (28)                       

                                                                        (29) 

Where;  

 N is the sample size or the number of observations in the historical time series data, 

 

  r=p+q+1, denotes the number of parameters estimated in the model. 
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Given two or more competing models the one with the smaller AIC value will be 

selected. 

The AICC  

The AIC is biased estimator and the bias can be appreciable for large parameter per 

data ratios. Hurvich and Tsai (1989) showed that the bias can be approximately 

eliminated by adding another non – static penalty term to the AIC, resulting in the 

corrected AIC, denoted by AICC and defined by the formula: 

                                                                                           (30) 

All parameters remained defined as above. 

Schwarz’s Bayesian Criterion (BIC) 

Schwarz‟s BIC like AIC uses the maximum likelihood method. It is given by  

                                                                                      

(31) 

Where all parameters remained defined as above. 

The BIC imposes a greater penalty for the number of estimated model parameters than 

does than AIC. The use of minimum BIC for model selection results in a chosen 

model whose number of parameters is less than that chosen under AIC. 

One disadvantage of the information criteria approach is the enormous work involved 

in computing maximum likelihood estimates of several models which is time 

consuming and expensive. However this problem has been overcome by the 
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introduction of computers since there are softwares like R which can compute several 

of these information criteria. 

3.7.2 Estimation Stage – Once a model is identified the next stage of the ARIMA 

model building process is to estimate the parameters. Estimating the parameters for 

the ARIMA (Box- Jenkins) models is a quite complicated non-linear estimation 

problem. For this reason, the parameter estimation should be left to a high quality 

software program that fits Box-Jenkins models. 

 Two approaches are used in the estimation, these include non-linear least squares and 

maximum likelihood estimation. In this study the estimation of the parameters was 

done using a statistical package called the R.  

3.7.3 Model Diagnostic Stage – Different models can be obtained for various 

combinations of AR and MA individually and collectively. The best model is obtained 

with the following diagnostics: 

3.7.3.1 Test of Significance of the Coefficients - In R, p-values are not given.  

For each coefficient,                                                (32) 

 If |t| ≥ 2, the estimated coefficient is significantly different from 0, then the model 

coefficient is statistically significant. If not, the model should probably be simplified, 

say, by reducing the model order. For example, an AR (2) model for which the 

second-order coefficient is not significantly different from zero might be discarded in 

favor of an AR (1) model.  
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3.7.3.2 Diagnostics of Residuals 

After selection of the best model the following diagnostics of the residuals are made: 

Time Plot of the Residuals – Time plot of the standardized residuals should not show 

any structure. It must indicate no trend in the residuals, no outliers and in general case 

no changing variance across time.   

Plot of Residual ACF – Once the appropriate ARIMA model has been fitted, one can 

examine the goodness of fit by means of plotting the ACF of residuals of the fitted 

model. If most of the sample autocorrelation coefficients of the residuals are within 

the limits  where N is the number of observations upon which the model is 

based then the residuals are white noise indicating that the model is a good fit. 

The Normal Q-Q Plot - Another diagnostic check on the residuals is to determine 

whether it follows the normal distribution. This is done by using the normal Q – Q 

plot. Q-Q plot is a normal probability plot. It is a plot of the quantiles of two 

distributions against each other, or a plot based on estimates of the quantiles. The 

normal Q-Q plots is used to compare the distribution of a sample to a theoretical 

distribution. The normal Q – Q plots provide a quick way to visually inspect to what 

extent the pattern of data follows a normal distribution. 

 Testing the Model for Adequacy – After identifying an appropriate model for a time 

series data it is very important to check that the model is adequate. The error terms  

are examined and for the model to be adequate the errors should be random. If the 

error terms are statistically different from zero, the model is not considered adequate. 
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The test statistic used is the Ljung-Box statistic, also called the modified Box-Pierce 

statistic, is a function of the accumulated sample autocorrelations, rj, up to any 

specified time lag m.  As a   function of m, it is determined as: 

                                                                                         (33)                                                                            

Which is approximately distributed as a ,where  are 

orders of AR and MA respectively and n = number of usable data points after any 

differencing operations. This statistic can be used to examine residuals from a time 

series model in order to see if all underlying population autocorrelations for the errors 

may be 0 (up to a specified point). If the calculated value of Q is greater than  for  

 , then the model is considered inadequate and adequate if Q is less 

than  for  

A p-value is calculated as the probability past Q (m) in the relevant distribution.  A 

small p-value (for instance, p-value < .05) indicates the possibility of non-zero 

autocorrelation within the first m lags which makes the model inadequate and then an 

alternative model needs to be selected. 

 

3.7.4 FORECASTING 

Once we have decided on an appropriate time-series model, estimated its unknown 

parameters and established that the model fits well, we can turn to the problem of 

forecasting future values of the series. 

The autoregressive representation 

                                                                                (34)                                                                       

suggests predicting the next observation beyond   using  

                                                                       (35) 
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Where the are obtained by substituting the estimated parameters in place of the 

theoretical ones. Once a forecast is obtained for  we can use it to obtain a forecast 

for  and then use these two forecasts to generate a forecast for  The process 

can be continued to obtain forecasts out to any point in the future. In this study 10 

years forecasts were made into the future. 

 

3.7.5 METHODOLOGY 

A secondary data which involved thirty one years of annual RTA cases, injuries and 

deaths from the period 1980-2010 were collected from the national MTTU. R 

statistical software was used in the analysis. In order to tentatively identify Box- 

Jenkins model, we must first determine whether the time series we wish to analyze is 

stationary. 

Time plots of each of the data analyzed in R were found to have an increasing trend 

and this was verified by the slow decay of the ACF plots. Thus the RTA data is 

 non – stationary. Descriptive analysis of the RTA data was done using the time plots 

The data was made stationary by removing the trend and this was done by 

differencing it once. Time plots were subsequently produced to verify that the data 

was now stationary. 

Once the RTA data was made stationary, we used the sample ACF and PACF plots 

produced from the R output in order to identify various Box- Jenkins models for each 

of the three accident data.  
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 Estimates of the models‟ parameters were produced and their statistical significance 

tested. Residuals from the models were also checked in order to identify if the 

residuals are white noise. 

Suitable models were each selected and fitted for each differenced data based on their 

AIC, AICC, and BIC values and finally 

The models selected were used in making forecasts for the values of the RTA cases, 

injuries and deaths.   

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

CHAPTER 4 

RESULTS AND ANALYSIS 

This chapter presents the analysis of accident data collected along the Accra – Tema 

motorway from the years 1980-2010 which involves number of accident cases, 

persons‟ injured and persons‟ killed. The R statistical software was used for the 

analysis and various tentative time series ARIMA models developed were fitted to 

each data and the suitable models were selected based on diagnostics of the residuals 

of each model and other criteria.  

Ten years‟ forecasts were estimated using the best models for each data.  

 

4.1.0 DATA PRESENTATION 

Accident data on the Accra – Tema Motorway spanning the period 1980-2010 were 

compiled from the National MTTU, Accra which involves number of accident cases, 

number of injured and number of persons‟ killed. See appendix for the data 

presentation. 
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4.2.0 ANALYSIS OF THE MOTORWAY ACCIDENT CASES 

 4.2.1 DESCRIPTIVE ANALYSIS OF THE ACCIDENT CASES DATA 

 

Figure 4.1: Time plot of Motorway accident data cases from 1980-2010 

Figure 4.1 shows the time plot of the Accra – Tema accident data cases from 1980 – 

2010. There is a systematic change in the time plot in Figure 4.1 which is known as 

the trend. Accident cases increased from 1980 to 1984 followed by a decrease from 

1985 to 1987. An irregular pattern was observed from 1988 to 1990 followed by an 

increase to 1993 followed again by a decrease to 1995.   

A severe increase was observed in 1996 and this continued to 2001 followed by a 

decrease in 2002. The accident cases increased sharply from 2003 to 2010.  

In general, the trend in accident cases along the Accra – Tema Motorway is increasing 

but not always the case. 
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The annual motorway accident cases in Figure 4.1 do not exhibit seasonal variation 

and it is not stationary due to the trend component.  

 

 

 

 

 

 

 

 

Figure 4.2: Autocorrelation function of Accra-Tema motorway accident cases. 

The autocorrelation function of motorway accident cases is shown in Figure 4.2 which 

describes the correlation between values of the motorway accident cases at different 

points in time, as a function of the two times or the time difference.  

The first several autocorrelations are persistently large and trailed off to zero rather 

slowly. A trend exists and this time series is non-stationary (it does not vary about a 

fixed level). 
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4.2.2 TREND DIFFERENCING OF THE ACCIDENT DATA CASES 

 

Figure 4.3: First difference of the motorway accident cases. 

A transformation of the motorway accident cases data using the first differencing 

method is performed to remove the trend component in the original accident data 

cases which is shown in Figure 4.3. The observations move irregularly but revert to its 

mean value and the variability is also approximately constant. The motorway data 

now looks to be approximately stable. 
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Figure 4.4: ACF and PACF plots of the first differencing of the accident data cases. 

The top part of Figure 4.4 shows the autocorrelation function of the first differencing 

of the motorway accident data at various lags and the bottom part is the partial 

autocorrelation function of the first differencing of the motorway accident data also at 

different lags.  

Comparing the autocorrelations with their error limits, the only significant 

autocorrelation is at lag 2, indicating an MA (2) behavior. Similarly, only the lags 2 

and 4 partial autocorrelations are significant, indicating an AR (2) or AR (4) but 

applying the principle of parsimony we use AR (2). The following models are 

suggested; 
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To select the best model for forecasting into the future, each model is assessed based 

on its parameter estimates, the corresponding diagnostics of the residuals and the AIC, 

BIC and AICC. 

 

4.2.3 MODEL SELECTION FOR THE ACCIDENT CASES DATA 

4.2.3.1 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (2, 1, 0)        

            MODEL 

Coefficients: 

                                ar1          ar2           constant 

                             -0.7060     -0.6288      -0.6263 

                      s.e.   0.1372    0.1304       3.2325 

               t – value   5.1458   4.8221       0.1936    

Sigma^2 estimated as 1556:  log likelihood = -148.33, aic = 304.66 

$AIC 

[1] 8.549788 

$AICc 

[1] 8.669788 

$BIC 

[1] 7.689908 
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The parameters based on the t – value estimates are statistically significant since the t 

– values are each greater than 2 in absolute except the constant term. 

 

Figure 4.5: Diagnostics of ARIMA (2, 1, 0) 

Diagnostics of the residuals from ARIMA (2, 1, 0) is shown in Figure 4.5 above.  

a)  The top part is the time plot of the standardized residuals of ARIMA (2, 1, 0). The  

     standardized residuals plot shows no obvious pattern and looks like an i.i.d. of   

     mean zero with few outliers.    

b)  The middle part of the diagnostics is the plot of the ACF of the residuals. There is    

      no evidence of significant correlation in the residuals at any positive lag.  

c)   At the right side of the middle of the diagnostics is the normal Q – Q plot of the  

      standardized residuals. Most of the residuals are located on the straight line except  
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      some few residuals deviating from the normality. Therefore the normality  

      assumption looks to be satisfied and so the residuals appear to be normally   

      distributed. 

d)  The bottom part of the diagnostics is the time plot of the Ljung – Box statistics. It  

     is observed that one of the p – values of the Ljung – Box statistics plot is  

     significant. This does not provide evidence for a significant at any positive lag. 

In general the model fits well and it is adequate. 

 

4.2.3.2 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (2, 1, 2)  

            MODEL 

Coefficients:   

                      ar1           ar2             ma1            ma2         constant 

                   -0.7159     -0.5242     -0.4936      -0.5064       0.0543 

s.e.              0.2563    0.1481      0.3270        0.3164         0.4562 

t – value    2.7932       3.5395      1.5095       1.6005         0.1190 

sigma^2 estimated as 937.7:  log likelihood = -142.8,  aic = 297.59 

$AIC 

[1] 8.176784 

$AICc 
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[1] 8.36519 

$BIC 

[1] 7.410317 

 The parameters based on the t – value estimates of the MA coefficients are 

statistically not significant since the t – values are each less than 2 in absolute value. 

 

Figure 4.6: Diagnostics of ARIMA (2, 1, 2) 

Diagnostics of the residuals from ARIMA (2, 1, 2) is shown in Figure 4.6 above.   

a)  The standardized residuals plot shows no obvious pattern and looks like an i.i.d. of   

     mean zero with few outliers.   

b)  The middle part of the diagnostics is the plot of the ACF of the residuals. There is  

     no evidence of significant correlation in the residuals at any positive lag. 
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c)  The Q-Q plot is a normal probability plot.  It doesn‟t look too bad, so the  

     assumption of normally distributed residuals looks okay. 

d)  It is also observed that the p – values for the Ljung-Box statistics plot is not  

     significant at any positive lag. That is all p – values are greater than 0.05. 

  

4.2.3.3 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (0, 1, 2)  

            MODEL                  

Coefficients: 

                                      ma1     ma2      constant 

                                  -1.9940   0.9973    0.2576 

                   s.e           0.4204    0.4205    0.1410 

                t – value    4.7431     2.3717    1.8270 

Sigma^2 estimated as 833.3:  log likelihood = -144.05, aic = 296.1 

$AIC 

[1] 7.925451 

$AICc 

[1] 8.045451 

$BIC 

[1] 7.065571 
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The parameters based on the t – value estimates are statistically significant since the t 

– values are each greater than 2 in absolute value except the constant term. 

 

 

Figure 4.7: Diagnostics of ARIMA (0, 1, 2) 

Diagnostics of the residuals from ARIMA (0, 1, 2) is shown in Figure 4.7 above.  

a)  The standardized residuals plot shows no obvious pattern and looks like an i.i.d. of  

     mean zero with few  outliers.   

b)  The ACF of residuals plot shows no significant residual autocorrelation for the  

      ARIMA (0, 1, 2) model.  

c)  The normal Q-Q plot of the residuals doesn‟t look too bad, so the assumption of  

      normally distributed residuals look okay. 
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d)  The p – values for the Ljung-Box statistics plot is not significant at any positive  

     lag. That is all p – values are greater than 0.05. 

In general the model fits well and it is adequate. 

  

Table 4.1: Parameter estimates and diagnostics for models selection for RTA cases 

 

Model Test on Parameter estimates 

Parameter Estimate S.E t- value Sig. if t≥  

ARIMA(2,1,0) ar 1 -0.7060 0.1372 5.1458 Sig 

 ar 2 0.6288 0.1304 4.8221 Sig 

Constant -0.6263 3.2325 0.1938 Non-sig 

ARIMA(2,1,2) ar 1 -0.7159 0.2563 2.7932 Sig 

ar 2 -0.5242 0.1481 3.5395 Sig 

ma 1 -0.4936 0.3270 1.5095 Non- sig 

ma 2 -0.5064 0.3164 1.6005 Non-sig 

 Constant 0.0543 0.4562 0.1190 Non-sig 

ARIMA(0,1,2) ma 1 -1.9940 0.4204 4.7431 Sig 

 ma 2 0.9973 0.4205 2.3717 Sig 

Constant 0.2576 0.1410 1.8270 Non Sig 

                                           

DIAGNOSTICS 

  

ARIMA(2,1,0) 

 

ARIMA(2,1,2) 

 

ARIMA(0,1,2) 

 

AIC 

 

8.549788 

 

8.176784 

 

 

7.925451 

 

AICC 

 

 

8.669788 

 

8.36519 

 

8.045451 

 

BIC 

 

7.689908 

 

7.410317 

 

 

7.065571 
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4.2.4 SELECTION OF BEST MODEL FOR FORECASTING RTA CASES  

The standardized residuals plots of all the models are independently and identically 

distributed with mean zero and some few outliers. There is no evidence of significance 

in the autocorrelation functions of the residuals of all the models and the residuals 

appear to be normally distributed in all the models. The Ljung – Box statistics are not 

significant at any positive lag for all the models except ARIMA (2, 1, 0) which has 

one of the p – values of the Ljung – Box statistics less than 0.05. 

From table 4.1 above all the parameters in the  MA coefficients of ARIMA(2,1,2) 

model are not significant at 5% level of significance while the parameters in the 

ARIMA(2,1,0) and ARIMA(0,1,2) models are significant except the constant terms. 

The AIC, AICC and BIC are good for all the models but they favor ARIMA (0, 1, 2) 

model. 

From the discussion above it is clear that ARIMA (0, 1, 2) model is the best model for 

forecasting the motorway accident cases. 

 

4.2.5 FITTING THE ACCIDENT CASES MODEL 

ARIMA (0, 1, 2) model is the best model for forecasting the motorway accident cases. 

This is a non – seasonal integrated moving average with one level of differencing 

without AR terms. The model in terms of the differenced series  is given as: 

                                                                             (36)                                                                        

In terms of the observed series the model becomes, 

                                                                (37) 
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Explicit representation of the above series in terms of the white noise process,  is 

more difficult than in the stationary case (Cryer and Chan,2008).                                                                                                                                                         

and we write; 

                     (38)                                                                                                                                                                                                                                         

The point estimate of each parameter of ARIMA (0, 1, 2) from table 4.1 are as 

follows: 

 

All the estimates are significant except the constant hence it is dropped.  

The fitted ARIMA (0, 1, 2) model for the motorway accident cases from 1980 – 2010 

is given by; 

211 9973.09940.1 ttttt yy


                                                                            (39)                                                                                                    

where  has an estimated variance of 833.3. 
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4.2.6 FORECASTING MOTORWAY ACCIDENT CASES 

 

Figure 4.8: Graph of the accident cases, its forecasts and confidence intervals 

Figure 4.8 gives the visual representation of the original motorway accident cases data 

(black line), its forecasts (red line) and confidence interval (blue short dashes lines). 

From the prediction values and the graph above, it can be observed that, the Accra – 

Tema motorway accident cases will continue to increase in the next 10 years.     

10 steps prediction into the future; 

$pred  
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Frequency = 1  

[1] 521.0033 537.0175 550.8698 564.7220 578.5743 592.4265 606.2788 620.1311 

[9] 633.9833 647.8356 

$se 

Time Series: 

Start = 2011  

End = 2020  

Frequency = 1  

[1] 28.06339 33.27209 33.27209 33.27209 33.27209 33.27209 33.27209 33.27209 

[9] 33.27209 33.27209 
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4.3.0 ANALYSIS OF THE MORTORWAY ACCIDENT INJURY DATA 

4.3.1 DESCRIPTIVE ANALYSIS OF THE ACCIDENT INJURY DATA

 

Figure 4.9: Time plot of Accra – Tema accident injury data from 1980-2010 

Figure 4.9 shows the time plot of the motorway accident injury data from 1980 – 

2010. There is a systematic change in the time plot in Figure 4.9, which is not periodic 

known as the trend. Accident injuries increased from 1980 to 1981 followed by a 

decrease to 1983. An irregular pattern was observed from 1984 to 2000. The accident 

injuries were observed to have increased from 2001 to 2010. 

In general, the trend in the motorway accident injuries is increasing but not always the 

case.  
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The annual motorway accident injuries time plot in Figure 4.9 does not exhibit 

seasonal variation and it is not stationary due to the trend component. 

 

Figure 4.10: Autocorrelation function of the motorway accident injuries 

The autocorrelation function of the motorway accident injuries is shown in Figure 

4.10 which shows that the autocorrelation function is increasing gradually and that 

there is a trend in the motorway accident injury data. 
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4.3.2 TREND DIFFERENCING OF THE ACCIDENT INJURY DATA  

 

Figure 4.11: First difference of the motorway accident injury data. 

A transformation of the motorway accident injury data using the first differencing 

method is performed to remove the trend component in the original motorway 

accident injury data which is shown in Figure 4.11. The observations move irregularly 

but revert to its mean value and the variability is also approximately stable. 
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Figure 4.12 ACF and PACF of the first differencing of motorway accident injury data 

The Figure 4.12 above shows the ACF and the PACF of the first differencing of 

motorway accident data. It can be observed that both the ACF and the PACF cut off 

after lag one, indicating MA (1) and AR (1) respectively. The following models are 

suggested; 

 ARIMA (1,1,0) 

 ARIMA (0,1,1) 

 ARIMA (1,1,1) 

To select the best model for forecasting into the future, each model is assessed based 

on its parameter estimates, the corresponding diagnostics of the residuals and the AIC, 

AICC and BIC values  
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4.3.3 MODEL SELECTION FOR MOTORWAY ACCIDENT INJURY DATA 

4.3.3.1 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (1, 1, 0)  

            MODEL 

Coefficients: 

                        ar1            constant  

                      -0.7237      0.3391 

s.e.                  0.1290     4.0035 

t – value       5.6101       0.0847 

Sigma^2 estimated as 1340:  log likelihood = -145.93, aic = 297.85 

$AIC 

[1] 8.33369 

$AICc 

[1] 8.431126 

$BIC 

[1] 7.427104 

The parameter based on the t – value test of the model above is statistically significant 

since it is greater than 2 in absolute value except the constant. 
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Figure 4.13: Diagnostics of ARIMA (1,1,0) 

Diagnostics of the residuals from ARIMA (1, 1, 0) is shown in Figure 4.13 above. The 

time plot of the standardized residuals shows no obvious pattern and look like an i.i.d. 

sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.13 shows no evidence of 

significant correlation at any positive lag. 

The normal Q – Q plot of the standardized residuals of the above figure indicates that 

most of the residuals are located on the straight line except some few residuals 

deviating from normality. Therefore the normality assumption looks to be satisfied 

and so the residuals appear to be normally distributed.  

All the p – values of the Ljung – Box statistic are not significant at any positive lag. 

That is no p – value is less than 0.05. 
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4.3.3.2 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (0, 1, 1)  

            MODEL 

Coefficients: 

                                 ma1       constant 

                                -0.9999    0.6293 

s.e.                           0.0873    0.6502 

t – value                 11.4536    0.9679 

Sigma^2 estimated as 950.2:  log likelihood = -142.27,  aic = 290.54 

$AIC 

[1] 7.989966 

$AICc 

[1] 8.087402 

$BIC 

[1] 7.083379 

The parameter based on the t – value is statistically significant since it is greater than 2 

in absolute value except the constant. 
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Figure 4.14: Diagnostics of ARIMA (0,1,1) 

Diagnostics of the residuals from ARIMA (0, 1, 1) is shown in Figure 4.14 above. The 

time plot of the standardized residuals shows no obvious pattern and look like an i.i.d. 

sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.14 shows an evidence of 

significant correlation in the residuals at lag one which we do not want. All the 

autocorrelations of the residuals must be non- significant. 

The normal Q – Q plot of the standardized residuals indicates that most of the 

residuals are located on the straight line except some few residuals deviating from 

normality. Therefore the normality assumption looks to be satisfied and so the 

residuals appear to be normally distributed.  
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The diagnostics of the time plot of the Ljung – Box statistics indicate some amount of 

significance at positive lags, we want non – significance p - values. 

 

4.3.3.3 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (1, 1, 1)   

            MODEL 

Coefficients:  

                           ar1         ma1         constant 

                        -0.4663     -1.0000     0.7237 

                s.e.    0.1646     0.0942       0.4013 

t – value          2.8329       10.6157     1.8034 

sigma^2 estimated as 727:  log likelihood = -138.88,  aic = 285.77 

$AIC 

[1] 7.78893 

$AICc 

[1] 7.90893 

$BIC 

[1] 6.92905  

The parameters based of the AR coefficients are statistically significant since they are 

each greater than 2 in absolute value except the constant. 



57 
 

 

Figure 4.15: Diagnostics of ARIMA (1, 1, 1) model. 

Diagnostics of the residuals from ARIMA (1, 1, 1) is shown in Figure 4.15 above. The 

time plot of the standardized residuals shows no obvious pattern and look like an i.i.d. 

sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.15 shows no evidence of 

significant correlation at any positive lag. 

The normal Q – Q plot of the standardized residuals of the above figure indicates that 

most of the residuals are located on the straight line except some few residuals 

deviating from normality. Therefore the normality assumption looks to be satisfied 

and so the residuals appear to be normally distributed.  

All the p – values of the Ljung – Box statistic are not significant at any positive lag. 

That is no p – value is less than 0.05. 
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Table 4.2: Parameter estimates and diagnostics of models selected for RTA injury data 

Model Test on Parameters 

Parameter Estimate S.E t- value Sig. if t≥  

ARIMA(1,1,0) ar 1 -0.7237 0.1290 5.6101 Sig 

Constant 0.3391 0.40035 0.0847 Non –sig 

ARIMA(1,1,1) ar 1 -0.4663 0.1646 2.8329 Sig 

ma 1 -1.0000 0.0942 10.6157 Sig 

Constant 0.7237 0.4013 1.8034 Non sig 

ARIMA(0,1,1) ma 1 -0.9999 0.0873 11.4536 Sig 

constant 0.6293 0.6502 0.9679 Non-sig 

                                         DIAGNOSTICS 

 ARIMA(1,1,0) ARIMA(1,1,1) ARIMA(0,1,1) 

AIC 8.33369 7.78893 7.989966 

AICC 8.431126 7.90893 8.087402 

BIC 7.427104 6.92905 7.083379 

 

 

4.3.4 SELECTION OF BEST MODEL FOR FORECASTING THE ACCIDENT  

        INJURY 

The standardized residuals plots of all the models are independently and identically 

distributed with mean zero and some few outliers. There is no evidence of significance 

in the autocorrelation functions of the residuals of all the models except ARIMA 

(0,1,1) which has some evidence of significance in the ACF of the residuals. The 

residuals appear to be normally distributed in all the models. The Ljung – Box 
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statistics are not significant at any positive lag for all the models except ARIMA (0, 1, 

1) which has some of the p – values of the Ljung – Box statistics less than 0.05. 

From table 4.2 above all the parameters in the  coefficients of ARIMA(1,1,0), ARIMA 

(0,1,1) and ARIMA (1,1,1) models are statistically significant at 5% level of 

significance except their constants. 

The AIC, AICC and BIC are good for all the models but they favor ARIMA (1, 1, 1) 

model. 

From the discussion above it is clear that ARIMA (1, 1, 1) model is the best model for 

forecasting the motorway accident injury. 

 

4.3.5 FITTING THE ACCIDENT INJURY MODEL 

ARIMA (1, 1, 1) model is the best model for forecasting the motorway accident 

injury, this is a non- seasonal model with one AR term and one MA term. The model 

in terms of the differenced series  is given by: 

                                                                            (40)                                                                                       

In terms of the observed series the model becomes 

                                               (41) 

and we may write as; 

                                               (42) 
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This is called the difference equation form of the model and appears to be ARMA 

(2,1) process, (Cryer and Chan, 2008).                 

The point estimate of each parameter of ARIMA (1,1, 1) from table 4.2 are as follows: 

 

All the estimates are significant except the constant hence it is dropped.  

Hence the fitted ARIMA (1, 1, 1) model for the motorway accident injury data from 

1980 – 2010 is given by; 

121 4663.0)4663.01( tttt yyy


                                                                                                        

and we write     

121 4663.05337.0 tttt yyy


                                                                            (43)          

Where has an estimated variance of 727.                                                                                           
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4.3.6 FORECASTING MOTORWAY ACCIDENT INJURY 

 

Figure 4.16: Graph of the accident injury data, its forecasts and confidence interval. 

Figure 4.16 gives the visual representation of the original motorway accident injury 

data (black line), its forecasts (red line) and confidence interval (blue short dashes 

lines). 

From the prediction values and the graph above, it can be observed that, the Accra – 

Tema motorway accident injury will continue to increase in the next 10 years.    

10 steps prediction into the future with the model is shown below; 
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End = 2020  

Frequency = 1  

 [1] 404.3524 414.8146 423.3716 432.8117 441.8425 451.0631 460.1956 469.3690 

 [9] 478.5234 487.6866 

$se  

Time Series: 

Start = 2011  

End = 2020  

Frequency = 1  

 [1] 27.93275 32.51603 39.19084 43.75270 48.34963 52.34400 56.14136 59.65967 

[9] 62.99841 66.16153 
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4.4.0 ANALYSIS OF THE MOTORWAY ACCIDENT MORTALITY DATA 

4.4.1 DESCRIPTIVE ANALYSIS OF THE ACCIDENT MORTALITY DATA 

 

Figure 4.17: Time plot of the accident mortality data from 1980 – 2010 

Figure 4.17 shows the time plot of the motorway accident mortality data from 1989 – 

2010. There is a systematic change in the time plot in the figure above which is known 

as trend. Mortality increased by small amount from 1980 to 1981 followed by an 

increasing and decreasing movement of the mortality data. There was a sharp increase 

from 2004 and this increase continued to 2010. 

In general, the trend in the motorway accident mortality is increasing but not always 

the case. The annual motorway accident mortality time plot in the Figure 4.17 is not 

stationary due to the trend component. 

Time(year)

P
e

rs
o

n
s
' K

il
le

d

1980 1985 1990 1995 2000 2005 2010

2
0

4
0

6
0

8
0

1
0

0
1

2
0



64 
 

 

Figure 4.18: Autocorrelation function of the motorway accident mortality data. 

The autocorrelation function of the motorway accident mortality is shown in Figure 

4.18.The autocorrelation function is decreasing gradually and that shows that there is a 

trend in the motorway accident mortality data. 
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4.4.2 TREND DIFFERENCING OF THE ACCIDENT MORTALITY DATA 

 

Figure 4.19: First difference of the motorway accident mortality data 

First differencing method is performed to transform the motorway accident data by 

removing the trend component as shown in Figure 4.19 above. The observations move 

irregularly but revert to its mean value. The motorway accident mortality data now 

looks to be approximately stable. 
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Figure 4.20: ACF and PACF of the first differencing of the accident mortality data 

Comparing the autocorrelations with their error limits of the Figure 4.20 above, the 

only significant autocorrelation is at lag 1, indicating an MA (1) behavior. Similarly, 

only the lag 1 partial autocorrelations are significant. The following models are 

suggested; 

 ARIMA(1,1,0) 

 ARIMA(0,1,1) 

 ARIMA(1,1,1) 

To select the best model for forecasting into the future, each model is assessed based 

on its parameter estimates, the corresponding diagnostics of the residuals and the AIC, 

BIC and AICC values. 
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4.4.3 MODEL SELECTION FOR THE ACCIDENT MORTALITY DATA 

4.4.3.1 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (1,1,1)  

             MODEL 

Coefficients: 

                    ar1            constant 

                   -0.7251    0.1103 

s.e.               0.1178    1.7035 

t – value     6.1553    0.0647 

sigma^2 estimated as 243.2:  log likelihood = -121.18,  aic = 248.36 

$AIC 

[1] 6.627091 

$AICc 

[1] 6.724527 

$BIC 

[1] 5.720504 

The parameter based on the t – value test is statistically significant except the 

constant. 
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Figure 4.21: Diagnostics of ARIMA (1,1,0) model 

Diagnostics of the residuals from ARIMA (1,1,0) is shown in Figure 4.21 above. The 

time plot of the standardized residuals shows no obvious pattern and look like an i.i.d. 

sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.21 shows no evidence of 

significant correlation at any positive lag. 

The normal Q – Q plot of the standardized residuals of the above figure indicates that 

most of the residuals are located on the straight line except some few residuals 

deviating from normality. Therefore the normality assumption looks to be satisfied 

and so the residuals appear to be normally distributed.  

All the p – values of the Ljung – Box statistic are not significant at any positive lag. 

That is no p – value is less than 0.05. 
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4.4.3.2 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (0, 1, 1)  

            MODEL 

Coefficients: 

                 ma1          constant 

               -1.0000       0.0529 

        s.e.   0.0861      0.2841 

t – value   11.6144   0.1862 

sigma^2 estimated as 181.4:  log likelihood = -118.26,  aic = 242.53 

$AIC 

[1] 6.334247 

$AICc 

[1] 6.431683 

$BIC 

[1] 5.42766 

The parameter based on the t – value test is statistically significant. That is it is greater 

than 2 in absolute value. The constant term is however not significant. 
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Figure 4.22: Diagnostics of ARIMA (0, 1, 1) model 

Diagnostics of the residuals from ARIMA (0,1,1) is shown in Figure 4.22 above. The 

time plot of the standardized residuals shows no obvious pattern and looks like an 

i.i.d. sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.22 shows an evidence of 

significant correlation at lag one. We want non – significant autocorrelations. 

The normal Q – Q plot of the standardized residuals of the above figure indicates that 

most of the residuals are located on the straight line except some few residuals 

deviating from normality. Therefore the normality assumption looks to be satisfied 

and so the residuals appear to be normally distributed.  

Some p – values of the Ljung – Box statistic are significant at positive lags. That is 

some of the p – values are less than 0.05. We want non – significance p – values. 
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4.4.3.3 PARAMETER ESTIMATES AND DIAGNOSTICS OF ARIMA (1, 1, 1)  

            MODEL 

Coefficients: 

                    ar1            ma1         constant 

                  -0.4863   -1.0000     0.0542 

          s.e.   0.1560    0.0921    0.1691 

 t – value   3.1173    10.8578   0.3205  

sigma^2 estimated as 132.8:  log likelihood = -114.26,  aic = 236.52 

$AIC 

[1] 6.088925 

$AICc 

[1] 6.208925 

$BIC 

[1] 5.229045 

The parameter based on the t – value of each coefficient is statistically significant 

since they are each greater than 2 in absolute value except the constant. 
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Figure 4.23: Diagnostics of ARIMA (1,1 1) model 

Diagnostics of the residuals from ARIMA (1,1,1) is shown in Figure 4.23 above. The 

time plot of the standardized residuals shows no obvious pattern and look like an i.i.d. 

sequence of mean zero with some few outliers. 

The plot of the ACF of the residuals of the Figure 4.23 shows no evidence of 

significant correlation at any positive lag. 

The normal Q – Q plot of the standardized residuals of the above figure indicates that 

most of the residuals are located on the straight line except some few residuals 

deviating from normality. Therefore the normality assumption looks to be satisfied 

and so the residuals appear to be normally distributed.  

 The p – values of the Ljung – Box statistic are not significant at any positive lag. That 

is no p – value is less than 0.05. 
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Table 4.3: Parameter estimates and diagnostics of models selected for RTA deaths  

Model Test on Parameters 

Parameter Estimate S.E t- value Sig. if t≥  

ARIMA(1,1,0) ar 1 -0.7251 0.1178 6.1553 Sig 

Constant 0.1103 1.7035 0.0647 Non –sig 

ARIMA(1,1,1) ar 1 -0.4863 0.1560 3.1173 Sig 

ma 1 -1.0000 0.0921 10.8578 Sig 

Constant 0.0542 0.1691 0.3205 Non sig 

ARIMA(0,1,1) ma 1 -1.0000 0.0861 11.6144 Sig 

Constant 0.0529 0.2841 0.1862 Non-sig 

                                         DIAGNOSTICS 

 ARIMA(1,1,0) ARIMA(1,1,1) ARIMA(0,1,1) 

AIC 6.627091 6.088925 6.334247 

AICC 6.724527 6.208925 6.431683 

BIC 5.720504 5.229045 5.42766 

 

 

4.4.4 SELECTION OF BEST MODEL FOR FORECASTING THE ACCIDENT  

        DEATH 

The standardized residuals plots of all the models are independently and identically 

distributed with mean zero and some few outliers. There is no evidence of significance 

in the autocorrelation functions of the residuals of all the models except ARIMA 

(0,1,1) which has some evidence of significance in the ACF of the residuals. The 

residuals appear to be normally distributed in all the models. The Ljung – Box 
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statistics are not significant at any positive lag for all the models except ARIMA (0, 1, 

1) which has some of the p – values of the Ljung – Box statistics less than 0.05. 

From table 4.3 above all the parameters in the  coefficients of ARIMA(1,1,0), ARIMA 

(0,1,1) and ARIMA (1,1,1) models are statistically significant at 5% level of 

significance except their constants. 

The AIC, AICC and BIC are good for all the models but they favor ARIMA (1, 1, 1) 

model. 

From the discussion above it is clear that ARIMA (1,1,1) model is the best model for 

forecasting the motorway accident mortality. 

 

4.4.5 FITTING THE ACCIDENT DEATH/MORTALITY MODEL 

ARIMA (1,1,1) model is the best model for forecasting the motorway accident death, 

this is a non- seasonal model with one AR term and one MA term. The model in terms 

of the differenced series xt is given by: 

                                                                            (44)                                                                                         

In terms of the observed series the model becomes 

                                               (45) 

and we may write as; 

                                               (46) 
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This is called the difference equation form of the model and appears to be ARMA 

(2,1) process, (Cryer and Chan, 2008).                 

The point estimate of each parameter of ARIMA (1,1,1) from table 4.3 are as follows: 

 

All the estimates are significant except the constant hence it is dropped.  

Hence the fitted ARIMA (1, 1, 1) model for the motorway accident death data from 

1980 – 2010 is given by; 

121 4863.0)4863.01( tttt yyy


                                                                           (47)                           

and we write    

121 4863.05137.0 tttt yyy


                                                                            (48) 

Where has an estimated variance of 132.8.                                                          
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4.4.6 FORECASTING MOTORWAY ACCIDENT MORTALITY/DEATH 

 

Figure 4.24: Graph of the accident mortality data, its forecasts and confidence interval 

Figure 4.24 gives the visual representation of the original motorway accident mortality 

data (black line), its forecasts (red line) and confidence interval (blue short dashes 

lines). 

From the prediction values and the graph above, it can be observed that, the Accra –

Tema motorway accident mortality will continue to increase in the next 10 years.    

10 steps prediction into the future with the model is shown below 
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Frequency = 1  

 [1] 132.6851 136.7417 140.8861 145.0361 149.1865 153.3370 157.4874 161.6378 

 [9] 165.7882 169.9386 

$se 

Time Series: 

Start = 2011  

End = 2020  

Frequency = 1  

[1] 9.707042 9.746221 9.747616  9.747700  9.747706  9.747706  9.747706  9.747706 

[9] 9.747706   9.747706 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1.0 CONCLUSIONS  

Road traffic accident in Ghana is increasing at an alarming rate and has raised major 

concerns. The NRSC recognizes the contributions road safety researches makes to 

development of accident reduction initiatives. It is against this background that this 

thesis was carried out in order to identify the patterns of RTA cases, injuries and 

deaths and to develop a time series ARIMA models to predict 10 years RTA cases, 

injuries and deaths along the Accra - Tema motorway. 

Time series analysis of the data from the years 1980 – 2010 showed that patterns of 

RTA cases, injuries and deaths are increasing along the Accra – Tema motorway. 

ARIMA models were subsequently developed for the accident data cases, injuries and 

deaths over the period 1980 – 2010, after identifying various tentative models. 

ARIMA (0,1, 2) was identified to be suitable model for forecasting in to the future of 

the  accident cases whist ARIMA(1,1,1) was found to be suitable model for the 

accident injury and deaths cases along the Accra - Tema motorway. 

The study also revealed that road traffic accident cases, injuries and deaths along the 

motorway would continue to increase over the next 10 years. 

Despite its limitation, my knowledge of the study area makes me confident that this 

study has generated reliable information that could be useful for RTA prevention on 

the Accra – Tema motorway. This information is important for raising the level of 
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awareness among stakeholders in road safety since the problem of RTA is becoming a 

growing epidemic in Ghana. 

It is also useful in setting priorities when planning RTA interventions. 

In general, road users, MTTU, NRSC, researchers and other stakeholders are expected 

to benefit. 

 

5.2.0 RECOMMENDATIONS 

The ARIMA(0,1,2) model is recommended for forecasting RTA cases whilst 

ARIMA(1,1,1) was recommended for RTA injuries and deaths along the Accra – 

Tema motorway but the following precautionary measures should be taken into 

consideration in order to prevent the increasing(large) forecast values of these models: 

 The models should not be used to forecast long time ahead (preferably a 

maximum of 10 years). This is because long time periods could lead to 

arbitrary large forecasts values. 

 Law on over speeding should be strictly enforced. The posted speed limit on 

the Accra – Tema motorway is 80kph but most drivers tend to exceed this limit  

           which results in RTA. 

 The use of seat belt. Research has proven the effectiveness of seat belt in  

           reducing RTA. The compulsory seat belt law for all drivers and front seat  

           passengers should be highly enforced. 

 Enforcement of traffic safety campaign. Poor enforcement of traffic safety 

           regulations can be due to lack of well trained staff, inadequate physical      

           resources, administrative problems and corruption. Enforcement must be     



80 
 

           meaningful and be maintained over a long period of time to increase fear of    

           punishment amongst drivers, with punishment being dealt with quickly and  

           efficiently.    

 Maintenance of the motorway. It is very important that the motorway be  

           properly maintained in terms of the use of appropriate materials for patching 

           pot holes, provision of street lights to aid visibility in the night, installation of 

           traffic lights at new intersections created along the road. 

 Education on over taking. It is very important that, drivers must be given   

           proper education on when to overtake and on which lanes to overtake as       

           wrongful overtaking has been found to be one of the major causes of accident  

           on the road. 

Finally, it is also recommended that further research should be conducted to look for 

more appropriate models that can take care of drastic government interventions. 
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GLOSSARY 

Road Traffic Accident:  When a vehicle collides with another vehicle, pedestrian, 

animal or geographical or architectural obstacle. 

Injury:  All types of damage to the body such as cuts, wounds, fractures caused by 

road traffic accident. 

Accident death/mortality: Loss of human life immediately or after road traffic 

accident 

Accident Cases: Number of road traffic accidents within a given period. 

Autocorrelation: refers to the correlation of a time series with its own past and future 

values. 

Autocorrelation Function: Is a set of autocorrelation coefficients arranged as a 

function of separation in time. 

Time Series:  is a sequence of observations ordered in time. 

Stationary time series: A time series whose value fluctuate around a constant mean 

with a constant variance. 

Differenced Data: if a time series is not stationary it is differenced i.e. the differenced 

data contains one or less point than the original data. 

Autoregressive (AR) model: A model in which future values are forecast purely on 

the basis of past values of the time series. 

Moving Average (MA) model: A model in which future values are forecast based on 

linear combination of past forecast errors. 

 DALYs:  Health gap that combines in one measure the time lived with disability and 

time lost due to premature death. 

Confidence interval: The degree of certainty of obtaining the same results if the 

study were to be repeated e.g. 95% certainty that the true value of a variable such as a 
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mean, proportion, or rate is contained within a specified range; the confidence 

interval. 
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ABBREVIATIONS / ACRONYMS 

ACF 

AIC 

AICC  

AR(p)  

ARIMA 

ARIMA(p,d,,q)  

ARMA     

BIC 

DALY             

MA(q)   

MTTU               

NRSC 

PACF 

Q – Q Plot 

RTA 

RTI 

 s.e. 

WHO  

Autocorrelation Function 

 Akaike Information Criterion 

Corrected Akaike Information Criterion 

Autoregressive model of order p 

Auto Regressive Integrated Moving Average 

A model with AR of order p, integrated(differenced) d and MA(q) 

Autoregressive and Moving Average 

Schwarz‟s Bayesian Criterion 

Disability Adjusted Life Years. 

Moving Average model of order q 

Motor Traffic and Transport Unit 

National Road Safety Commission 

Partial Autocorrelation Function    

 Quantile -  Quantile plot 

Road Traffic Accident 

Road Traffic Injury 

Standard error 

World Health Organisation 
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APPENDICE 

ACCRA – TEMA MOTORWAY ACCIDENT DATA FROM 1980 – 2010 

YEAR ACCIDENT 

CASES 

PERSONS‟ 

INJURED 

MORTALITY/PERSONS‟ 

KILLED 

1980 100 112 10 

1981 137 151 12 

1982 145 104 9 

1983 167 97 11 

1984 170 145 25 

1985 157 126 36 

1986 123 155 29 

1987 218 145 30 

1988 228 108 21 

1989 140 137 46 

1990 234 114 55 

1991 260 134 45 

1992 265 186 51 

1993 289 197 56 

1994 232 201 50 

1995 216 153 61 

1996 302 196 65 

1997 323 167 76 

1998 345 232 93 

1999 370 187 96 

2000 401 205 95 

2001 389 215 75 

2002 405 257 100 

2003 420 275 67 

2004 430 278 107 

2005 450 332 110 

2006 470 356 118 

2007 483 371 121 

2008 490 375 124 

2009 493 382 127 

2010 503 398 130 

         Source: National MTTU, Ghana.  


