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Abstract 

Pricing financial options is amongst the most important problems in the financial industry. 

In this study we investigated the use of the ensemble Kalman filter for pricing financial 

options in the Black-Scholes model. The performance and accuracy of the Ensemble Kalman 

Filter (EnKF) method based on a Monte Carlo simulation approach for propagation of 
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errors is evaluated on two estimation problems. The first is a synthetic estimation problem 

using the Van der Pol equation and then a real-world estimation problem concerned with 

pricing financial instruments. The scenarios considered were to compare effect of different 

process noise, effect of different measurement noise, and the effect of different ensemble 

sizes on the performance and accuracy of the EnKF. It was found that as the ensemble size 

grows the performances of the ensemble Kalman filter improves judging from the values 

of the root mean square errors. With regard to the process noise, the measurement noise 

and the initial error covariance, decrease in the value of these parameters actually 

improves the performance of the EnKF. It was also found that the ensemble Kalman filter 

approaches same or better accuracy than the extended Kalman filter. 
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Chapter 1 

Introduction 

The pricing of options is a very important problem encountered in financial domain. 

Options are financial instruments that give the right to buy or sell an underlying asset at a 

set price on or up to a given maturity date. They are widely traded in the financial market 

and so the need for methods to determine accurately the price of these financial 

instruments. Different formula have been developed for determining the value of an option. 

Adopted in this study is the Black-Scholes formula developed in 1973 popularly used for 

pricing call and put options in the market. 

Different methods have been developed for estimation problems over the years. The 

Ensemble Kalman filter (EnKF) is one of such methods introduced by Evensen (1994). 

Clearly this method have been widely used and some comparisons on the Extended Kalman 

filter (EKF) and Ensemble Kalman filter have also been carried out. On the basis of the 

comparisons and findings, the EnKF is being proposed as an alternative to the EKF for the 

pricing of financial instruments. 
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1.1 Background Studies 

Data assimilation is a powerful methodology which involves the combination of 

observational data with the underlying dynamical principles governing the system under 

observation. It therefore requires the estimation of the states of a dynamical system as a 

sequence of noisy observations becomes available. Data assimilation schemes are 

developed to use measured observations in combination with a dynamical system model in 

order to derive accurate estimates of the current and future states of the system, together 

with estimates of the uncertainty in the estimated states. The two approaches to data 

assimilation are the sequential and variational assimilation. 

Sequential data assimilation methods have been proven to be very useful in many 

applications in finance, example is the pricing of financial options. For dynamical systems 

that are linear, the Kalman filter is an optimal sequential technique, it computes estimates 

with available observations together with underlying models by minimizing the variance. 

But most real-world estimation problems are nonlinear and the Kalman filter fails to 

accurately predict the estimates when the state-space equations are nonlinear. 

The extended Kalman filter is a sequential assimilation scheme in which an approximate 

linearized equation is used for predicting the error statistics and its considered to be one 

of the most effective methods for both nonlinear state estimation and parameter 

estimation. In recent times, a number of effective methods have being develop as 
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alternatives to the extended Kalman filter for handling estimation problems, some of which 

are the Unscented Kalman filter, and the Ensemble Kalman filter. 

The basic idea of data assimilation is to quantify errors in both the model predictions and 

observations. The errors in the model predictions and observations are due to several 

reasons. Model errors may be due to violations in the assumptions of the model, use of 

uncertain or parameter values that are not optimal. Due to unavailability of exact solutions 

to underlying models, continuous dynamical systems are solved using numerical solution 

thereby transforming the model into a discrete dynamical systems. These computations 

also introduce errors in model predictions. Observations on the other hand may contain 

human errors (error from taking readings or collecting the data). Errors in observations 

could also be due to inaccuracy in the instruments used. 

In solving the underlying models employed in this work, we used finite difference schemes 

for finding numerical solutions to the underlying models governing the systems. In pricing 

of financial instruments, the introduction of model and observation errors could cause the 

value of the underlying asset to be under-priced or over-priced. Data assimilation therefore 

tries to minimize these error and thereby giving more accurate predictions of the states 

and parameters. Schemes developed for data assimilation therefore address the issues of 

overpricing or underpricing financial instruments. It also helps in estimating the unknown 

parameters. This research therefore employs the ensemble Kalman filter for the pricing of 

financial options in the financial market. We therefore examine the performance of the 
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ensemble Kalman filter on two estimation problems comparing its performance to that of 

the extended Kalman filter and the ensemble open loop (where there is no update of the 

model predictions). 

1.2 Problem Statement 

The Ensemble Kalman Filter is a Monte Carlo approximation of the Kalman filter, 

representing the distribution of the system state by using random samples (ensembles) and 

computes the covariance from the ensemble. 

In this study, we investigate the performance of the ensemble Kalman filter which was 

introduced by Evensen (1994) when the process noise is varied keeping the other 

parameter constant, varying the measurement noise, varying the initial error covariance 

matrix and last but not the least the effect of different ensemble size. The performance of 

the EnKF is evaluated on two estimation problems. The first estimation problem being a 

synthetic estimation problem using the Van der Pol equation and the second is a real world 

estimation problem concerned with the pricing of financial instruments. 

The Ensemble Kalman filter method is proposed as an alternative to the Extended Kalman 

filter method for the pricing of financial options in the Black-Scholes model on the British 

FTSE-100 index. 
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1.3 Objectives 

The objective of the study is to examine the performance of the Ensemble Kalman filter and 

to propose the EnKF as an alternative to the EKF for pricing of financial instruments in the 

Black-Scholes model. The performance of the EnKF is verified for the following 

scenarios: 

• compare the effect of different process noise (Q) on the filter 

• compare the effect of different measurement noise (R) on the filter 

• compare the effect of different initial error covariance (P0) on the filter 

• compare the effect of different ensemble size on EnKF 

1.4 Methodology 

The impact of the process noise, measurement noise, initial error covariance and the 

ensemble size on the performance and accuracy of the Ensemble Kalman filter is examined 

using two estimation problems. The EnKF is implemented on state-space representation of 

the estimation problem. The studies therefore employs the finite difference scheme for the 

discretization of the underlying differential equation defining the dynamics of the systems 

being considered, thus the Van der Pol model and the Black-Scholes model. 
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The algorithms employed in the study were implemented in MatLab and used in performing 

the various experiments. In the pricing of financial options in the Black-Scholes model, we 

adopted the British FTSE-100 index which was used by de Freitas et al. (2000), and Wan 

and van der Merwe (2001). 

1.5 Justification 

Undoubtedly, much studies have been carried out on the performance of the ensemble 

Kalman filter as a sequential data assimilation scheme. Data assimilation schemes and 

Monte Carlo approaches have been applied in the pricing of financial options. The extended 

Kalman filter is one of the widely used data assimilation schemes for estimating the state 

of nonlinear dynamical systems. Wan and van der Merwe (2001) proposed the unscented 

Kalman filter as an alternative to the Kalman filter for pricing financial options. So far what 

has not been done is implementing the ensemble Kalman filter (a Monte Carlo approach) 

for the pricing of financial options. The research was investigate how accurately the 

ensemble Kalman filter can predict the value of derivatives in the financial market. 

1.6 Outline of The Thesis 

This thesis is presented in five chapters. Chapter 1 introduces the research work by giving 

the background of the study, problem statement, objectives of the study, methodology 

employed in the research and the justification of the study. 
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Review of literature and the framework of the study is presented in Chapter 2 where related 

studies are discussed. Chapter 3 talks about the methodology employed in the study. This 

chapter also contains results from the synthetic estimation problem. 

Chapter 4 presents and discusses the results and finding from the real-world estimation 

problem concerned with pricing of financial instruments. Finally the summary of our 

findings, conclusion and recommendation are presented in the last chapter.  



 

8 

Chapter 2 

Literature Review 

2.1 Introduction 

Derivatives are financial instruments whose value depends on some basic underlying cash 

products, such as interest rate, equity indices, commodities, foreign exchange, or bonds, 

(Hull, 2006). An option is an example of a derivative. Black and Scholes (1973) derived the 

standard equations for pricing European call and put options and there on there have been 

many models developed for pricing financial options. Many have also work extensively to 

obtain solution to the Black-Scholes model. The chapter present literature overview of 

related work in the field and the overview of the thesis is provided. 

2.2 Options 

An option is a contract that gives the right but not the obligation, to buy or to sell a set 

quantity of a particular asset at a set price on or up to a given maturity date. A call option 

gives the holder the right to buy the underlying asset by a certain date (expiration or 

maturity date) for a certain price (exercise or strike price). A put option gives the holder 
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the right to sell the underlying asset by a certain date for a certain price. If the option can 

be exercised at any time up to its expiration, it is called American option; if it can be 

exercised only at its expiration, it is a European option, (Hull, 2006). 

According to Hull (2006), there are six major factors affecting stocks option: the current 

stock price (So), the strike price (K), the time of expiration (T), the volatility of the stock 

price (σ), the risk free interest rate (r), and the dividends expected during the life of the 

option. Table 2.1 describle how the value of these factors affect the value of options. 

Table 2.1: Determinants of option value 

Factors Call Value Put Value 

Increase in stock price Increases Decreases 

Increase in strike price Decreases Increases 

Increase in time of expiration Increases Increases 

Increase in volatility Increases Increases 

Increase in interest rate Increases Decreases 

Increase in dividends Decreases Increases 

An option is a financial instrument which is an example of a derivative. Derivative financial 

secrurities such as options are securities whose value is based upon the value of more basic 

underlying securities, (Bolia and Huneja, 2005). The strike price is specified when the 

holder and seller enter into the option. If the holder chooses to exercise the option, the 

writer is obligated to sell or buy the asset at the strike price or the option is allowed to 

expire. 
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2.3 Pricing Financial Options 

The pricing of options is a very important problem encountered in financial domain. 

Options are widely traded on financial markets, and so some method of determining the 

value (or price) of a given option is required. The determination of the price of an option 

requires the construction of a model for the way in which the asset price changed over time. 

One of the most popular models is the Black-Scholes model (Black and Scholes, 1973) for 

pricing a European put and call option. 

Black and Scholes (1973) derived a theoretical valuation formula for option pricing. The 

formula was based on the principle: if options are correctly priced in the market, it should 

not be possible to make sure profits by creating portfolios of long and short positions in 

options and their underlying stocks. The model is applicable to corporate liabilities such as 

common stock, corporate bonds, and warrants since almost all corporate liabilities can be 

viewed as combination of options. In particular, the Black-Scholes formula can be used to 

derive the discount that should be applied to a corporate bond because of the possibility of 

default. 

Rubinstein (1983) in his work developed an option pricing formula that pushes the 

underlying source of risk back to the risk of individual assets of the firm. Relative to the 

Black-Scholes formula, the displaced diffusion formula has several desirable features. The 

formula encompasses differential riskiness of the assets of the firm, their relative weights 
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in price determination of the firm, the effects of firm debt and the effects of a dividend policy 

with constant and random components. 

Heston (1993) used a new technique, based on the Black-Scholes formula, to derive a 

closed-form solution for the price of a European call option on an asset with stochastic 

volatility. The model allows arbitrary correlation between volatility and spot asset returns. 

He introduced stochastic interest rate and showed how the model is applicable to bond 

options and foreign currency options. The result from his work showed that correlation 

between volatility and the spot asset price is important for explaining return skewness and 

strike price biases in the Black-Scholes model (Black and Scholes, 1973). 

Kumar et al. (2012) obtained an analytic solution of the fractional Black-Scholes European 

option pricing equation. The Laplace homotopy perturbation method, a combined form of 

the Laplace transform and the homotopy perturbation method, was used with boundary 

condition for a European option pricing problem to obtain a quick and accurate solution to 

the fractional Black-Scholes equation. The analytic solution of the fractional Black-Scholes 

equation was calculated in the form of a convergent power series with easily computable 

components. 

Gallant et al. (1992), in their work investigated the joint dynamics of price changes and 

volume on the stock market making use of daily data on the S&P composite index and total 

NYSE trading volume from 1928 to 1987. Nonparametric methods were used to achieve the 
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set objectives. Gallant et al. (1992) found out that the daily trading volume is positively and 

nonlinearly related to the magnitude of the daily price change and that price changes lead 

to volume movements. 

Pastorello et al. (2000) delt with the estimation of continuous-time stochastic volatility 

models of option pricing. They achieved this in a Monte Carlo experiment which compared 

two very simple strategies based on different information sets. An Ornstein-Uhlenbeck 

process for log of the volatility, a zero-volatility risk premium, and no leverage effect was 

assumed. Sticking to the framework with no overidentifying restrictions, it was shown that, 

given the option pricing model, estimation based on option prices is much more precise in 

samples of typical size. 

2.4 Review of Data Assimilation 

Systems can be described by mathematical models of the system dynamics which can be 

used to predict the future behaviour of the system. Both the models and the available data 

defining all the state of the system contain inaccuracies and random noise that can lead to 

significant differences between the predicted states and the actual states of the system. In 

view of this, observations of the system over time can be incorporated into the model 

equations to derive improved estimates of the states and also to provide information about 

the uncertainty in the estimates. 
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The concept of combining observation with model predictions to obtain improved 

estimates is referred to as data assimilation. Data assimilation schemes are therefore 

developed to use measured observations in combination to a dynanical system model in 

order to derive accurate estimates of the current and future states of the system, together 

with estimates of the uncertainty in the estimated states, (e.g., Kalman (1960); Evensen 

(1994); Ott et al. (2004)). 

By Bouttier and Courtier (1999), data assimilation is an analysis technique in which 

observed information is accumulated into the model state by taking advantage of 

consistency constraints with laws of time evolution and physical properties. 

Model error also arise from inaccurate parameters in the model equations. Data 

assimilation can be used in this case to estimate the parameters (e.g., Evensen et al. (1998); 

Annan et al. (2003); Etienne and Dombrowsky (2002); Annan and Hargreaves (2004)), and 

it may also be a dual estimation problem where both the states and parameters are 

estimated simultaneously, (e.g., Evensen (2009)). 

There are two approaches to the problem of data assimilation; sequential and variational 

assimilation. Sequential assimilation considers observation made in the past until the time 

of analysis, which is the case of real-time assimilation systems, and variational assimilation 

where observation from the future can be used, for instance in a reanalysis exercise. 

Variational assimilation observations can be processed in small batches, (Bouttier and 

Courtier, 1999). 
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This research considers the sequential data assimilation. The Kalman filter was developed 

by Rudolf Kalman as a recursive solution to the discrete-data linear filtering problem, 

(Kalman, 1960). One major limitation of this method being that it is only applicable to linear 

systems. The extended Kalman filter was then developed to take care of this limitation. 

Thus for nonlinear dynamics, the extended Kalman filter may be used in estimating the 

state. The extended Kalman filter used a linearized equation for the error covariance 

evolution, and this linearization can result in unbounded linear instabilities for the error 

evolution. 

The ensemble Kalman filter (a sequential data assimilation method) introduced by Evensen 

(1994) is a Monte Carlo approximation to the Kalman filter. The EnKF used an an 

ensemble of forecasts to estimate background-error covariances. 

2.5 Application of Data Assimilation in Pricing Financial 

Options 

Several study have been conducted on how data assimilation can be used to price financial 

options in the stock market. Indragoby and Pironneau (2004) in their study presented a 

way to calibrate the volatility surface of Black-Scholes and Dupitre’s financial model from 

market observed values of a set of European call options. They used a standard data 

assimilation technique for this inverse problem representing the volatility surface with 
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splines. 

Gupta and Reisinger (2012) considered a general calibration problem for derivative pricing 

models, which they reformulated into a Bayesian framework to attain posterior 

distributions for model parameters. Thus introducing the Bayesian framework for 

calibrating the parameters of financial models to market prices. It was then shown that the 

posterior distribution can be used to estimate prices for exotic options. They also 

highlighted the robustness of the pricing method to inaccuracies in the model and prior and 

mispricings in observed market data. Gupta and Reisinger (2012) then applied the 

procedure to a discrete local volatility model and worked in great detail through numerical 

examples to clarify the construction of Bayesian estimators and their robustness to the 

model specification, number of calibration products, noisy data and misspecification of the 

prior. 

The application of data assimilation to a term structure of commodity prices was carried 

out by Javaheri et al. (2002). Different assimillation schemes were considered: the Kalman 

filter, the extended Kalman filter, the particle filter, as well as the unscented Kalman filter. 

They tackled the subject of Non-Gaussian filters and described the Particle filtering 

algoeithm. They found out that the approximation introduced in the Extended filter 

influences the model performance and the estimation results are sensitive to the system 

containing the errors of the measurement eqaution. The application of the filters to 
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stochastic volatility models show that the Particle filter performs better than the Gaussian 

ones, however they are also more computationally expensive. 

To creat an adptive model, Nguyen and Nabney (2010) used the extended Kalman filter and 

the particle filter to update the parameters continuouly on the test set. Some forecasting 

techniques for energy demand and price prediction, one day ahead was presented by 

Nguyen and Nabney (2010) which combines wavelet transforms with fixed and adaptive 

machine learning/time series models. The techniques are applied to large sets of real data 

from UK energy market. 

Nikolaev and Smirnov (2009) developed an unscented grid-based filter and a smoother for 

accurate nonlinear modelling and analysis of time series. They conducted an empirical 

investigation which show that the Unscented Grid Filter with a Smoother compares 

favourably ti similar filters on modeling nonstationary series and option pricing modelling. 

They considered modelling prices by treating the implied volatility and interest rate as 

unobservables assuming the volatility, interest rate and prices are to be Gaussian with their 

noises unknown. The filters were applied with two inputs: the stock price divided the strike 

price and the time to maturity. The ouputs being the call and put prices normalised with 

respect to the strike price. 

Many problems such as time-series analysis, are characterized by data that arrive 

sequentially. Performing model estimations, model validation, and inference sequentilly 

are necessary on arrival of each item of data. de Freitas et al. (2000) presents sequential 
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Monte Carlo algoeithms and proposed a new hybrid gradient descent/sampling importance 

resampling algorithm (HySIR). They discussed two experiments, the first using a real 

synthetic data and secondly a real life application involving the pricing of financial options 

on the FTSE-100 index. The latter experiment used the HySIR algorithm in estimating 

timevarying latent variables and illustrated the effect of the process noise covariance on 

the simulations. de Freitas et al. (2000) in their experiment with financial data found that 

the sequential sampling approach in addition to the one-step-ahead square errors of the 

best available pricing methods, allowed getting complete estimates of the probability 

density functions of the one-step-ahead predictions. 

Wan and van der Merwe (2001) pointed out the underlying assumptions and flaws in the 

Extended Kalman filter and proposed the unscented Kalman filter as an alternative with 

superior performance to that of that of the EKF. The algorithm was applied to several area 

including the pricing of financial options. The Black-Scoles model for pricing European call 

and put options (Black and Scholes, 1973) was used in the experiment. The prediction were 

made making use of five pairs of call and put option contracts on the British FTSE-100 

index. Their results show that the UKF consistently achieves an equal or better level of 

performance at a comparable level of complexity. 

We attempt to propose as an alternative to the extended Kalman filter developed to for state 

as well as parameter estimation with equations being nonlinear. The proposed method is 

the ensemble Kalman filter which was introduced by Evensen (1994). Two experiments 
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were setup, the first uses synthetic data to predict the dynamics in the Van der Pol model 

and the second is a real-world application involving the pricing of financial options on the 

British FTSE-100 index making use of the Black-Scholes model, (Black and Scholes, 1973). 

The experimental results are compared to the results from the extended Kalman filter. The 

effect of the process noise, measurement noise and initial error covariance on these filters 

is investigated. The effect of the number of ensembles on the ensemble Kalman filter is also 

investigated.  
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Chapter 3 

Methodology 

3.1 Introduction 

The chapter discusses the methods used in accomplishing the objectives of the research 

work. In this chapter, the numerical solution to partial differential equations is discussed. 

Secondly, we looked at Data assimilation and its types. The chapter considered the Kalman 

filter, extended Kalman filter and ensemble Kalman filter methods, as sequential data 

assimilation schemes. Last but not the least, we investigate the performance of the 

extended Kalman filter and ensemble Kalman filter in state estimation of the Van der Pol 

model. 

3.2 The Black-Scholes Model for Pricing Financial Op- 

tions 

The famous Black-Scholes model has been used as the foundation for option pricing. The 

concept of dynamic helding was introduced by Black and Scholes (Black and Scholes, 1973) 
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and Merton (Merton, 1973), so that the option payoff will be replicated by a trading strategy 

in the underlying asset. 

Before Black and Scholes set their famous Black-Scholes model in 1973, most of the 

previous work on the valuation of options has been presented in terms of warrants. The 

Black-Scholes model is used for valuing European or American call and put options on a 

non-dividend paying stock. Despite subsequent development of option theory, the original 

Black-Scholes formula for European option remains the most successful and widely used 

application. This formula is particularly useful because it relates the distribution of spot 

returns to the cross-sectional properties of option prices. 

Black and Scholes (1973) derived the famous theoretical valuation formula for options. The 

main conceptual idea of Black and Scholes lie in the construction of a riskless portfolio 

taking positions in bonds (cash), option and the underlying stock. 

In formulating the Black-Scholes model the following assumptions were made in the 

market for the stock and the option: It is assumed in the Black-Scholes model that 

1. the stock price follows a random walk in continuous time with a variance rate 

proportional to the square of the stock price. Thus the distribution of possible stock 

prices at the end of any finite interval is lognormal. 

2. there are no transaction costs in buying or selling the options or stock. 

3. the short-term interest rate is known and is constant through time. 
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4. the stock pays no dividends or other distributions. 

5. it is possible to borrow any fraction of the price of security to buy it or to hold it, at 

the short-term interest rate 

6. there are no restriction on short sale and there are no taxes. 

The value of the option will depend only on the price of the stock, time and on variables that 

are taken to be known constants (Black and Scholes, 1973). The Black-Scholes model for 

the value of an option is described by the partial differential equation 

  (3.1) 

where V (S,t) is a European call or put option at asset price S and at time t, r(t) is the risk 

free interest rate, and σ representing the volatility of underlying asset. 

Given the Black-Scholes model of a financial market, the Black-Scholes formula for 

European call options (Ct), and put options (Pt) on a non-dividend paying stock are 

Ct = StN(d1) − XerT N(d2) (3.2) 

Pt = −StN(−d1) − XerT N(−d2) (3.3) 

where X the desired strike price, T is the time until expiration. N(.) is the cumulative normal 

distribution function and d1 and d2 are given by 
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3.3 Numerical Solution to Parabolic Partial Differential 

Equations 

The section considers finite difference method for solving partial differential equations 

(PDE). The finite difference is a powerful method for solving PDEs. The objective of a finite 

difference method for solving PDE is is to transform a calculus problem into an algebraic 

problem by 

1. Discretizing the continuous physical domain into a discrete difference grid 

2. Approximating the individual exact partial derivatives in the partial differential 

equation by algebraic finite difference approximations 

3. Substituting the finite difference approximation into the PDE to obtain an algebraic 

finite difference equation. 

4. Solving the resulting algebraic finite difference equations 

There are several choices to be made when developing a finite difference solution to a 

partial differential equation: the choice of the discrete finite difference grid to discretized 

the continuous physical domain and the choice finite difference approximations used to 

represent the the individual exact partial derivatives in the PDE. 

Depending on the approximation used, the most popular methods are the explicit method, 

implicit method and the Crank-Nicolson method which is a special case of the θ method. 
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The finite difference approximations to the derivatives are mostly derived from the Taylor 

series expansion. 

To demonstrate the finite difference method, we use the weighted finite difference 

approximation or the theta-scheme in this section. Consider the one-dimensional parabolic 

equation given by 

  (3.4) 

subject to the Dirichlet boundary conditions given as 

  VN
k = γ2(tk) t0 ≤ t ≤ tf x0 ≤ x ≤ xf 

The finite difference approximations to the derivatives are given as 

    (3.5) 

Substituting the approximations in equation (3.5) into equation (3.4) we obtain the 

resulting equation the expression on the right hand side as 

  (3.6) 

Weighting the expression in the above equation, we obtain an expression for finite 

difference approximation to the PDE in equation (3.4). 
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(3.7) 

Simplifying, we obtain a obtain the theta scheme for the discritization of the partial 

differential equation. 

 

The following variables are introduced 

   (3.9) 

Substituting these into equation 3.8, we get 

  (3.10) 
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Making use of the conditions imposed on the problem, we now have N − 1 equations with 

N − 1 unknowns. The boundary condition plays an important role in the finite difference 

discretization. 

At this instance we note that if θ = 0 we get the explicit finite 

difference scheme, θ = 0.5 we get the Crank-Nicolson finite 

difference scheme, θ = 1 we get the implicit finite 

difference scheme 

The explicit method has disadvantage of certain stability conditions. Thus the method is 

conditionally stable. The implicit methods on the other hand are absolutely stable. 

The resulting algebraic system of equations can be solved by way of the iterative schemes: 

Gauss Jacobi method, Gauss-Seidel method or Relaxation method. One can also make use of 

the direct methods of finding numerical solution solution to these problems. 

3.4 Data Assimilation 

The basic idea of data assimilation is to quantify errors in both the model predictions and 

observations, and update model estimates in a way that optimally combines model 

simulations with observations. 

Data assimilation involves the combination of observational data with the underlying 

dynamical principles governing the system under observation. Data assimilation scheme 

are tools used to estimate the quantities of interest of a dynamical system for a sequence of 
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available noisy observations. This helps in obtaining more accurate estimates of these 

quantities both at current and future times of the dynamical system together with estimates 

of the uncertainties in the estimated quantities. 

Data assimilation is a powerful methodology, which makes possible efficient, accurate and 

realistic estimations which may improve forecasting or modeling and increase the physical 

understanding of the system under consideration. Data assimilation is an analysis 

technique in which the observed information is accumulated into the model state by taking 

advantage of consistency constraints with laws of time evolution and physical properties. 

A data assimilation system is composed of a set of observations, a dynamical model and a 

data assimilation scheme. The process may improve the forecasting and increase the 

physical understanding of the system under consideration, thus providing better estimates 

than can be obtained by only the data or the model. 

A variety of models is used to describe the dynamical systems that arise in various fields. 

These range from simple linear, deterministic differential equations to sophisticated 

nonlinear stochastic partial differential continuous or discrete models. In this case the 

equations modeling the dynamical system uniquely determines the state of the system at 

all times for any given initial state and inputs, and this is referred to as the perfect model 

assumption. 

There are two basic approaches to data assimilation: sequential assimilation, that only 

considers observation made in the past until the time of analysis, which is the case of 
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realtime assimilation systems, and variational assimilation, where observation from the 

future can be used, for instance in a reanalysis exercise. 

In variational data assimilation, the past observations until the present time, are used 

simultaneously to obtain the best estimates of the state. 

3.5 Sequential Data Assimilation 

Sequential data assimilation is the type of data assimilation in which observations are used 

soon as they become available to correct the present state of the model. Sequential methods 

leads to discontinuities in the time series of the corrected state. 

There are several schemes for sequential data assimilation, some of which are Kalman filter, 

Extended Kalman filter and Ensemble Kalman filter. For linear dynamics the optimal 

sequential technique is the Kalman filter. The Extended Kalman filter, in which an 

approximate linearized equation is used for the prediction of error statistics, as well as the 

Ensemble Kalman filter are employed when the dynamical system in nonlinear. 

3.6 The Kalman Filter Method 

The Kalman filter method is a sequential data assimilation scheme which provides a 

recursive solution for state estimation of linear dynamical systems from a series of noisy 

measurements. It is a variance-minimizing algorithm that updates the state estimate 
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whenever measurements become available. The update equation in the Kalman Filter are 

normally derived by minimizing the trace of the error covariance matrix. 

The Kalman filter method is an efficient data assimilation method that explicitly accounts 

for the dynamical propagation of errors in the model. For linear models with known 

statistics of the system and measurement errors, the Kalman filter provides an optimal 

estimate of the state of the system, in terms of minimum estimation error covariance. 

The method is named after Rudolph E. Kalman who published his famous paper that 

describes a recursive solution to the linear filtering problem (Kalman, 1960). The scheme 

can be applicable for state estimation if the state-space equations are linear. That is, if 

 xk = Fkxk−1 + ωk (3.11) 

where Fk is a linear model operator (transition matrix) relating the state at previous time 

step xk−1 to the state at current time step xk and ωk being the process noise. The observation 

equation is given as 

 yk = Hkxk + νk (3.12) 

where Hk is the measurement operator relating the state xk to the observation yk, νk being 

the measurement noise. 



 

29 

The Kalman filter method addresses the problem of trying to estimate the state x ∈ Rn of a 

dynamical process that is governed by linear state-space dynamics. 

3.6.1 Assumptions of the filter 

The following assumption were made in the Kalman filter 

1. The state dynamics and the observation process are linear. 

2. The state noise ωk and observation noise νk are sequences of white, zero mean, 

Gaussian noises. 

3. x0, ωk and νk are uncorrelated. 

4.  

3.6.2 Derivation of Kalman Filter Equations 

The Kalman equations are classified into two namely the forecast (time update) equations 

and measurement update equations. The forecast equations are used to integrated forward 

thereby providing estimates of the state and error covariance (a priori estimates), until 

observation becomes available and the measurement update equations used to update the 

state and error covariance estimates from the forecast step, (Welch and Bishop, 2001). 
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We denote xf
k ∈ Rn to be the a priori state estimate at step k given knowledge of the process 

prior to step k, and xa
k to be the a posteriori state estimate at step k given measurement yk. 

The state error vectors for both the a priori and a posteriori estimates are given as 

 efk = xk − xfk eak = xk − xak (3.13) 

The a priori estimate error covariance and the a posteriori estimate error covariance is then 

 Pk
f = E[ef

k(ef
k)T ]  (3.14) 

In deriving the Kalman filter equations, we find an equation that computes the a posteriori 

estimate, xa
k as a linear combination of an a priori estimate xf

k and a weighted difference 

between an actual measurement and a predicted measurement and this is demonstrated 

by equation (3.15) 

 xa
k = xf

k + Kk(yk − yk
f) (3.15) 

where Kk is referred to as the Kalman gain. The difference ( ) is referred to as the 

measurement innovation, or the residual which reflects the discrepancy between the 

predicted measurement yk
f and the actual measurement yk. The a priori state estimate 

equation can be obtained as 
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 xfk = E[xk|zk−1] = E[(Fkxk−1 + ωk)|zk−1] 

 = FkE[xk−1|zk−1] 

 (3.16) The error, , associated with the forecast is then estimated and is 

given by 

 efk = xk − xfk 

 

 

 

where  is the error associated with a posteriori estimate at the previous time step. 

The degree of uncertainty of the a priori estimate is verified by computing the error 

covariance matrix, Pk
f, of the a priori estimate. This is given as 

 Pkf = E[efk(efk)T ] 

 

  (3.17) 

Thus given a linear dynamical model, the Kalman filter prediction for the state and its 

corresponding error covariance matrix for the model errors are obtained respectively from 

equations (3.16) and (3.17). 
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Whenever measurements are made available at the kth time step, the a priori estimate is 

then updated and this is known as the a posteriori estimate. The expected value of the 

observation, given available observations to the (k − 1)th time step can be obtained as 

E[yk|zk−1] = E[Hkxk + νk|zk−1] 

 
= HkE[xk|zk−1] 

 
= Hkxfk 

Thus, given zk−1 to be all available observations upto the (k − 1)th step, 

 E[yk|zk−1] = Hkxf
k (3.18) 

We then use equations to estimate the innovation which is given by yk − yk
f. The equation 

for the innovation is given as 

 yk − ykf = Hkefk + νk (3.19) 

and the corresponding covariance matrix computed as 

 (3.20) The corresponding error in the a posteriori estimate is 

computed as 

 

 = (I − KkHk)(xk − xf
k) − Kkνk 
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giving rise to an uncertainty in the a posteriori estimate 

 E[ea
k(ea

k)T ] = E[{(I − KkHk)(xk − xk
f) − Kkνk}{(I − KkHk)(xk − xf

k) − Kkνk}T ] 

 = (I − KkHk)Pkf(I − KkHk)T + KkRkKkT 

Therefore 

  (3.21) 

The Kalman is a variance minimizing algorithm which is used to update the state whenever 

measurements become available. Therefore the criterion is to minimize the sum of the 

variances which is just the same as minimizing the trace of the covariance matrix, 

(Sorenson, 

1970). 

This can be achieved by using the method of least squares, which helps in minimizing the 

trace of the covariance matrix  by taking the derivative of the trace with respect to Kk and 

setting the result to zero. 

 

= −PkfHkT + KkHkPkfHkT + KkRk = 0 
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The resulting equation is solved to obtain an estimate for the Kalman Gain Kk. The process 

gives the expression for the Kalman gain to be 

  (3.22) 

Welch and Bishop (2001), looking at equation (3.22), noticed that as the measurement 

error covariance Rk approaches zero, the gain Kk weights the residual more heavily. On the 

other hand, as the a priori estimate error covariance Pk
f approaches zeros, the gian weights 

the residual less heavily. These are illustrated in the following equations: 

lim Kk = H−1 
Rk→0 

and 
 

k 

Simplifying further, equation (3.21), with results from the method of least squares, gives 

rise to the a posteriori covariance matrix given as follows 

 

 

 

The Kalman filter algorithm determines the analyzed estimate by a linear combination of 

the measurement vector, yk and the forecast model state vector, xf
k. The linear combination 

is chosen to minimize the variance in the analyzed estimate, xa
k. 

 
Algorithm 1 Kalman Filter 
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1. Set initial estimates for  and  

2. For k = 1 to maximum number of iterations 

3. For i = 1 to n Time Update 

 
Project the state forward 

 
Project the error covariance forward 

 
4. End of loop for i Measurement Update 

 
Compute the Kalman gain 

 
Update state estimate with measurement yk 

 
Update the error covariance 

 
5. End of loop for k 

 
3.6.3 Some Drawbacks of the Kalman Filter 

The Kalman filter works only for linear dynamical systems and is the best optimal filter. But 

most dynamical systems are nonlinear and in such cases the Kalman filter is impracticable 

in obtaining estimates of the state and the propagation of the error covariance matrix. Also, 

the Kalman filter is impracticable in high-dimensional systems due to the huge 

computational load and storage requirements associated with the propagation of error 

covariance matrix. 
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In the case of non-linear model dynamical systems, an approximate Kalman filter algorithm, 

extended Kalman filter, in which the error propagation is based on linearization of the 

model equation can be adopted 

3.7 Extended Kalman Filter 

The Kalman filter method addresses the general problem of trying to estimate the state of 

processes governed by linear equations. But what happens if the process to be estimated 

and (or) the measurement relationship to the process is nonlinear? To address this 

problem a Kalman filter that linearizes about the current mean and covariance was 

developed. This method is referred to as the extended Kalman filter method. 

The idea behind extending the Kalman filter to nonlinear is to perform a Taylor series 

expansion of the model and measurement functions at each time step and propagate the 

error covariance matrix along the truncated series. 

The Extended Kalman filter is applied for nonlinear dynamical system in which case an 

approximate linearized equation is used for the prediction of the error statistics. It is a set 

of mathematical equations which uses underlying process models to make estimate of the 

current state and then corrects the estimate using any available measurement. 

The estimation can be linearized around the current estimate by the use Taylor series. Thus, 

using the partial derivative of the process and measurement functions to compute 
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estimates. The process is assumed to have a state vector x ∈ Rn, governed by a nonlinear 

equation represented by 

 xk = f(xk−1) + ωk (3.23) 

and the measurement equation given as 

 yk = h(xk) + νk (3.24) 

The degree of nonlinearity does not only depend on the physics of the system, but also on 

the data sampling frequency. 

3.7.1 Derivation of Extended Kalman Filter 

Just as was mentioned in the Kalman filter, the extended Kalman filter also comprises of the 

forest and measurement update equations. In this section, we outline the extended Kalman 

filter equations. 

The extended Kalman filter is derived from the basic Kalman filter to nonlinear dynamics 

by linearization at each time step. In linearizing the governing dynamics, we employ Taylor 

series expansion truncated at the second order. Expanding f(xk−1) in the process equation 

by the Taylor series about the estimate ¯xk 
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Likewise, expanding h(xk) in measurement about the estimate ˆxk 

 

 = Hkxk + ζk 

The linearized equations for both the process and the measurement equation are given as 

   (3.25) 

An important feature of the extended Kalman filter is that the Jacobian, Hk, serves to 

correctly propagate the relevant component of the measurement information. 

During estimation the a priori estimate can be obtained as follows 

 xfk = E[Fkxk−1 + f(xak−1) − Fkxak−1 + ωk|zk−1] 
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Now we derive an expression for the prediction error, and that is given by 

 

 

The a priori error covariance matrix is propagated as 

 
The measurement estimates are obtained as 

 

 

 

 

Accompanying the estimate of the measurement is its predicted error and is given by 

 

The error covariance matrix is propagated as 
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 Ωk = E[eyk(eyk)T ] = E[(Hk(xk − xfk) + νk)(Hk(xk − xkf) + νk)T ] 

 = E[(Hkekf + νk)(Hkef
k + νk)T ] 

 

 = HkPkfHk + Rk 

The Kalman gain, Kk is determined from 

  (3.26) 

The state is estimated by recursively updating the estimate with new measurements and 

then propagating the state estimate between the update times. The measurements are 

combined with the previous estimate using the standard form: 

(3.27) 

(3.28) 

 
Algorithm 2 Extended Kalman Filter 

 
1. Set initial estimates for  and  

2. For k = 1 to maximum number of iterations 

3. For i = 1 to n Time Update 

 
Project the state forward 

 
Linearize the process equation by computing the jacobian 
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Project the error covariance forward 

 
4. End of loop for i Measurement Update 

 
Linearizing the measurement equation 

 
Compute the Kalman gain 

 
Update state estimate with measurement yk 

 
Update the error covariance 

 
5. End of loop for k 

 
3.7.2 Some Limitations of EKF 

A major drawback of the EKF for data assimilation is, it requires a linearization when 

deriving the error covariance equation. For most systems the derivation of the jacobian 

matrix, the linear approximation to the nonlinear functions, can be complex causing 

implementation difficulties. Moreover, the linearization leads to a poor covariance 

evolution and for some models unstable error covariance growth. 

The extended Kalman filter may provide poor results in the case of strongly nonlinear 

dynamics. Evensen (1992) found that the extended Kalman filter for a nonlinear 

quasigeostrophic ocean model resulted in an unbounded error covariance growth. In 

practice, for large systems the extended Kalman filter approach is again not feasible. 
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3.8 The Ensemble Kalman Filter (EnKF) Method 

To resolve the nonlinearities in the error propagation, and also address the limitations in 

the extended Kalman filter, Evensen (1994) introduced an ensemble Kalman filter 

approach based on Monte Carlo simulations. In this methods, the error covariance matrix 

is represented by an ensemble of possible states that are propagated according to the full 

nonlinear dynamics of the system. 

The ensemble Kalman Filter is also a sequential data assimilation algorithm which was first 

introduced by Evensen (1994) as a method of applying the ideas of KF to nonlinear systems. 

The EnKF originated as a version of the Kalman filter for large problems and method was 

formulated with nonlinear dynamics in mind, and the emphasis was focused on deriving a 

method, which properly could handle the error covariance evolution in nonlinear models 

(maintains the nonlinear features of the error statistics). Thus, instead of updating a state 

estimate and error covariance matrix as in KF, the EnKF uses an ensemble, or 

statistical sample of state estimates. 

In the ensemble Kalman filter, model error estimates are produced by assuming that the 

ensemble mean is truth and computing the variance of the differences between each 

ensemble member and the ensemble mean. Each individual observation is then updated 

based on the relative error in both the model and observations. The EnKF integrates an 

ensemble of model states forward in time using the model equations. This algorithm uses 

the Monte Carlo approximation for solving the Fokker Planker equation. 
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3.8.1 Overview of Ensemble Kalman Filter 

According to Evensen (1994), the statistical properties of the state vector are represented 

by an ensemble of possible state vectors. Each of which is propagated according to the 

dynamic system subjected to model error, and the resulting ensemble then provides 

estimates of the forecast state and vector and the error covariance matrix. 

The analysis scheme in the EnKF uses traditional update equations of the KF, except that 

the Kalman gain is computed using the error covariances provided by the ensemble of 

model states. The nonlinearities introduced by the equation are captured well by EnKF 

because of the sample based computation of covariance matrices. Thus, it gives a systematic 

way to calculate the time evolution of the forecast error statistics according to the dynamics 

of the forecast model. 

Each member of the ensemble state vectors is propagated forward in time according to the 

dynamics of the system and specified model error. We denote the ensemble by Xk
f ∈ Rn×q 

where 

  (3.29) 

and the superscript fi refers to the i−th forecast ensemble member. The ensemble mean x¯f
k 

∈ Rn is defined by 
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  (3.30) 

We defined an ensemble error matrix Ek
f ∈ Rn×q around the ensemble mean by 

 Ekf = hxfk1 − x¯fk,xfk2 − x¯kf,...,xfkq − x¯fki (3.31) 

and an ensemble set with observation error defined by 

  (3.32) 

In the computation of the Kalman gain filter, the covariance matrices Pk
f, Pxy

f 
k, and Pyy

f 
k 

should be introduced. In the Ensemble Kalman filter, those values can be estimated as 

 

Thus, we interpret the forecast ensemble mean as the best forecast estimate of the state, 

and the spread of the ensemble members around the mean as the error between the best 

estimate and the actual state. 

The second step is the analysis step: Each ensemble member is updated according to the 

updating scheme, equation (3.34), and based on the updated ensemble, the updated state 

vector and error covariance matrix are estimated. To obtain an analysis estimate of the 

state, the EnKF performs an ensemble of parallel data assimilation cycles, where for i = 1,...,q 
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 (3.34) The perturbed observations is given by 

yki = yk + νki (3.35) 

where νk
i is a zero-mean random variable with a normal distribution and covariance Rk. The 

sample error covariance matrix is computed from νk
i, which converges to Rk as q −→ ∞. 

We approximate the analysis error covariance Pk
a by Pˆ

k
a, where 

  (3.36) 

and Ek
a is defined by equation (3.31) with xf

ki replaced by  and ¯xf
k also replaced by the 

mean of the analysis estimate ensemble members, ¯xa
k. We use the classical Kalman filter 

gain expression and the approximations of the error covariances to determine the filter 

gain Kˆk by 

  (3.37) 

The evaluation of the filter gain Kˆk in the EnKF does not involve an approximation of the 

nonlinearity of the state-space equations. 

The last step is the prediction of the error statistics in the forecast step which is given by 

  (3.38) 
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where the values ωk
i are sampled from a normal distribution with average zero and 

covariance Qk. The sample error covariance matrix computation from the converges to Qk 

as 

q −→ ∞. 

There are many different EnKF methods, and these differ in the analysis step. Burgers et al. 

(1998) , described the perturbed observation EnKF generates an ensemble of observa- 

 
Algorithm 3 Ensemble Kalman Filter 

 
1. Set initial estimates for  and  

2. Generate the set of ensemble members,  

3. For k = 1 to maximum number of iterations 

4. In the Time Update each ensemble member is allowed to act independently 

5. For i = 1 to n Time Update 

 
Project the state forward and obtain estimates of the observation 

 
6. End of loop for i 

Estimates of the mean and observations as computed as the mean 

 
Measurement Update 

 

Ekf = hxfk1 − x¯fk,xfk2 − x¯fk,...,xfkq − x¯fki Eyfk = hykf1 − y¯kf,ykf2 − y¯kf,...,ykfq − y¯kfi 

Compute the sample covariance matrices 

 
Compute the Kalman gain 

 
Update state estimate with measurement yk 
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Update the error covariance 

 
7. End of loop for k 

 
tions consistent with the error statistics of the observation and assimilates these into each 

ensemble member. 

3.9 Implementing the Data Assimilation Methods in State 

Estimation of the Van der Pol Equation 

In this section, we implement the data assimilation schemes discussed in this chapter on 

the van der pol oscillator problem. This problem is nonlinear, therefore the extended 

Kalman filter and ensemble Kalman filter are implemented, since the Kalman filter method 

fails for nonlinear systems. The ensemble open loop is also considered, in which the 

estimates are not updated (combined with available observation). 

There are different experimental set ups, where we seek to estimate the states and most 

importantly compare the performance of the extended Kalman filter, ensemble Kalman 

filter and the ensemble open loop. The effect of the process noise, measurement noise and 

the initial error covariance on the performance of the filters is also investigated. Lastly we 

investigate the performance of the ensemble size on performance of the EnKF. 

The van der pol equation is described by a second order differential equation as 
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 y00 − α(1 − y2)y0 + y = 0 (3.39) 

which is equivalent to the system of first-order differential equations give as 

 

  (3.40) 

The ensemble Kalman filter is implemented on state-space representation of the dynamical 

system. A numerical scheme (Euler’s method) is used in the descritization of the governing 

differential equation to obtain the state (process) equation as follows 

 x1,k+1 = x1,k − hx2,k + ω1,k 

(3.41) 

 

where xk = [x1,k x2,k] which represents the state of the dynamical system. ωk = [ω1,k ω1,k] is a 

Gaussian random variable modeling the process noise, α is scalar parameters and h is the 

step size. All states were observed with an observation noise nk drawn from a Gaussian 

distribution. The process equation of the above model can then be seen as 

xk+1 = f(xk) + ωk 

whereas the measurement equation is given as 

yk = Hxk + νk 
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where H is just an identity matrix. 

Figure 3.1 contains plot of observation and truth of the time series generated by the process 

model. The figure demonstrates the sinusoidal pattern displayed by the van der pol 

equation. 

 

Figure 3.1: Plot of observation and truth generated in the van der pol problem for the 
first experiment 

We carry out some experiments to ascertain the performance of the filters being 

considered. The filters were used to estimate the state sequence of the van der pol model. 

The first experiment was set to run with some default values to verify the performance of 

the filters. From there, we begin to vary parameters like the process noise, measurement 
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noise, initial error covariance matrix and the ensemble size in various experiments to see 

how far these parameters affect the performance of the filters. 

 

Figure 3.2: Plot of observation and truth generated in the van der pol problem for the 
first experiment 

The experiments use the different filters for the estimation of the state. The first experiment 

was carried out to estimate the state, xk = [x1 x2] with k = 1,2,...,100 and the data set plotted 

in figure 3.2. Figure 3.3 compares estimates generated from the various filters to the the 

true state. It is observed that the ensemble Kalman filter is estimating the true state best, 

followed by the extended Kalman filter and the the ensemble open loop. 

Table 3.1: Mean and Variance of RMSE for state estimate from the various filters 

Algorithm 

RMSE 

Mean Variance 
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Ensemble Open Loop (EnOL) 0.0281 1.207e-

04 

Extended Kalman Filter (EKF) 0.0076 6.972e-

06 

Ensemble Kalman Filter (EnKF) 0.0049 2.679e-

06 

 

Figure 3.3: Plot of estimates generated by the different filters in the van der pol problem 
for the first experiment 

Table 3.1 contains the summary of the performance of the different filters. The table shows 

the mean and variance of the root mean square error (RMSE) of the state estimates from 

the various filters. The RMSE of the EnKF has the least values followed by the EKF and then 

EnOL. The experiment shows the EnKF is the best performing of the filters considered. The 

ultimate performance of the ensemble Kalman filter is also proved by the plot of the 
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propagation of the RMSE by the different filters in estimating the state in the van der pol 

model. 

The second experiment tends to vary the process noise while the other parameters are kept 

fixed. The result summarized in Table 3.2 shows that the performance of the filters in 

estimating the state improves with decrease in the process noise. Thus the smaller the 

 

Figure 3.4: Plot of the root mean square error propagation by the different filters in 
the van der pol problem for the first experiment 

process noise, the better the state estimate. The experiment showed that for high values of 

the process noise, the filters break down as in the case of Q = I2. The ensemble Kalman filter 

is the best performing followed by the extended and then the the ensemble open loop 

except for Q = 10−11I2 where the ensemble open loop performed better than the extended 

Kalman filter. In the next experiment, we vary the measurement noise keeping all the other 
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parameters fixed. The summary of the perform of the filters is contained in Table 3.3. It can 

be noted from this table that the EnKF is the best performing followed closely by the EKF 

and then the EnOL. The peformance of the EKF and EnKF improves with decrease in 

observation noise. It is observed that the mean and variance of the RMSE for 

EKF and EnKF at R = 10−4I2 are very close indicating that at this observation noise, the Table 

3.2: Compare effect of different process noise Q on the performance of the various filters 

holding other parameters fixed 

 Q = I2 Q = 10−4I2 Q = 10−6I2 Q = 10−11I2 

Filters Mean Var Mean Var Mean Var Mean Var 

EnOL NaN NaN 0.03087 1.312e-

04 

0.00278 1.103e-

06 

0.00096 4.572e-

08 

EKF NaN NaN 0.00123 9.432e-

08 

0.00126 1.186e-

07 

0.00122 9.943e-

08 

EnKF NaN NaN 0.00120 8.836e-

08 

0.00078 4.520e-

08 

0.00017 4.869e-

08 

Table 3.3: Compare effect of different observation noise R on the performance of the 

various filters holding other parameters fixed 

 R = I2 R = 10−1I2 R = 10−2I2 R = 10−4I2 

Filters Mean Var Mean Var Mean Var Mean Var 

EnOL 0.0307 9.152e-

05 

0.0342 14.951e-

05 

0.0224 3.717e-

05 

0.0411 19.422e-

05 

EKF 0.0252 5.250e-

05 

0.0214 5.067e-

05 

0.0109 8.288e-

06 

0.0012 8.091e-

08 

EnKF 0.0229 4.615e-

05 

0.0141 1.081e-

05 

0.0078 3.935e-

06 

0.0012 8.791e-

08 

performance from the both the EKF and EnKF are almost the same. 

Whether or not the EKF could perform better than EnKF was unknown from Table 3.3. 

Further results in Table 3.4 still confirms the improvement in performance of filters with 

decrease in measurement noise. However the performance of the extended Kalman filter 
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improves beyond the ensemble Kalman filter. In all these cases the ensemble open loop 

remains as the filter with least performance. Figure 3.5 is a plot of the state estimate from 

the different filters for R = I2. It can be noted that the estimate from the filters are quite far 

from the true state. This indicates the bad performance of the filters in estimating the state 

when the measurement noise is high. 

Table 3.4: Further comparison of the effect of different observation noise R on the 

performance 

 R = 10−5I2 R = 10−7I2 R = 10−11I2 

Filters Mean Var Mean Var Mean Var 

EnOL 0.0346 6.924e-

05 

0.0296 7.145e-

05 

0.0222 4.918e-

05 

EKF 3.846e-

04 

1.002e-

08 

3.947e-

05 

8.936e-

11 

3.904e-

07 

9.634e-

15 

EnKF 3.891e-

04 

1.033e-

08 

3.984e-

05 

8.626e-

11 

3.946e-

07 

9.695e-

15 
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Figure 3.5: Plot of the state estimate from the different filters compared to the true state 

at R = I2 

We have so far seen the effect of both the process noise and the measurement noise on the 

performance of the filters. The next experimental setup is to investigate the effect of the 

initial error covariance on the performance of these methods. 

The initial error covariance seems to be deteriorating the performance of the filters until 

Table 3.5: Compare effect of different initial error covariance Po on the performance of the 

various filters holding other parameters fixed 

 Po = I2 Po = 10−2I2 Po = 10−5I2 Po = 10−7I2 

Filters Mean Var Mean Var Mean Var Mean Var 

EnOL NaN NaN 0.02795 1.116e-

04 

0.03448 9.222e-

05 

0.02546 8.228e-

05 

EKF 0.00123 8.833e-

08 

0.00126 1.288e-

07 

0.00129 1.004e-

07 

0.00120 1.014e-

07 

EnKF 0.00123 9.497e-

08 

0.00122 1.225e-

07 

0.00127 9.295e-

08 

0.00117 8.734e-

08 

Po = 10−7 where the performance improved drastically. The ensemble open loop breaks 

down at high values of Po. Table 3.5 gives an overview of the effect of initial covariance on 

the performance of the filters. In all these odds, the performance of the EnKF remains the 

best performing filter, followed by EKF and then EnOL. 

The last but not the least of the experiments seeks to investigate the effect of the ensemble 

size on the performance of the filters. The extended Kalman filter is not considered in this 

experiment since it does not make use of the ensemble size. 



 

56 

 

Figure 3.6: Plot of root mean square errors showing the effect of different ensemble size 
on the performance of ensemble Kalman filter 

The experimental results in Figure 3.6 shows a decrease in the RMSE bar as the ensemble 

sizes increase. That is to say, as the ensemble size grows the performance of the ensemble 

Kalman filter improves. This confirms the findings in existing literature. 

Chapter 4 



 

57 

Results and Discussions 

4.1 Introduction 

The chapter contains the results of the predictions of financial options in the Black-Scholes 

model using the ensemble Kalman filter and the extended Kalman filter, comparing the 

results from both estimates for different strike prices. The estimates were obtained for an 

ensemble size of 200 and the experiments repeated 100 times reporting the mean value, 

with corresponding variance identically zero. Typically, options on a particular equity and 

with the same exercise date are traded with several strike prices. Five strike prices were 

considered in this research and they are 2925, 3025, 3125, 3225, and 3325 in the 

evaluation of the pricing algorithm. The strike prices are related to the collected data used 

in this 

research. 

The famous Black-Scholes model has been used as the foundation for option pricing. The 

Black-Scholes model for the value of an option is described by the partial differential 

equation 

  (4.1) 

where V (S,t) is a European call or put option at asset price S and at time t, r(t) is the risk 

free interest rate, and σ representing the volatility of underlying asset. 
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Given the Black-Scholes model of a financial market, the Black-Scholes formula for 

European call options (Ct), and put options (Pt) on a non-dividend paying stock are 

Ct = StN(d1) − XerT N(d2) (4.2) 

Pt = −StN(−d1) − XerT N(−d2) (4.3) 

where X the desired strike price, T is the time until expiration. N(.) is the cumulative normal 

distribution function and d1 and d2 are given by 

 

The risk free interest rate and the volatility are in this case treated as hidden states, 

whereas the call and put options are being considered as the output observations. The 

current value of the underlying cash product and the time to maturity are treated as input 

observations. The model setup represents a parameter estimation problem with the 

observation equation given by equations 4.2 and 4.3 allowing the computation of daily 

probability distributions for the risk free interest rate and the volatility which helps in 

deciding whether the current value of an option in the market is over-priced or under-

priced. 

4.2 Results and Discussion 

The results of the prediction for the individual strike prices from the various filters are 

presented as well as the mean of the normalized root mean square errors. Figure 4.1 shows 
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the plot of call option, put option and stock prices normalized with respect to the strike 

price. The data indicates that the normalized call prices falls between 0 and 0.25, the 

 

Figure 4.1: Plot of the normalized call prices, put prices and stock prices verse time 
to maturity. 

normalized put is between 0 and 0.15, and that of the stock prices between 0.5 and 1.2. As 

observed from Figure 4.1, as the call option prices are decreasing with increase in time to 

maturity, the put option prices increasing with increase in time to maturity and vice versa. 

Increasing the stock price cause the call option to worth more and the put option to worth 

less. 
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4.3 Ensemble Kalman Filter Estimation of Contract 

In this section we look at the ensemble Kalman filter prediction of the call and put options 

as well as the estimation of the interest rate and volatility for a contract for the different 

strike prices. The trivial prediction is obtained under the assumption that the price on the 

following day corresponds to the current price. 

4.3.1 Estimates for Contract with Strike Price of 2925 

The estimates interest rate and volatility for contract with a strike price of 2925 is 

presented in Figure 4.2. The interest rate and volatility rises to a sharp peak of about 0.045 

and 0.218 respectively and then decreases sharply and begins to rise and drop gradually 

with changing time to maturity. Table 4.1 contains the mean of the root mean squared 

errors showing the performance of the EnKF against the Trivial. Figure 4.3 shows the 

estimated call and put option prices from the ensemble Kalman filter. 

Table 4.1: Mean of the normalized RMSE with strike price of 2925 

Option type Algorithm Mean NSE 

Call Trivial 0.0783 

 Ensemble Kalman filter (EnKF) 0.0418 

Put Trivial 0.0354 

 Ensemble Kalman filter (EnKF) 0.0269 
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Figure 4.2: EnKF Estimate of interest rate and volatility for a contract with strike price 
2925  
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Figure 4.3: Plot of estimated call and put option prices from the ensemble Kalman filter 

The estimates of the call and put options closely predict the observed especially in the case 

of the call option. Due to the sharp rise in volatility, there is a sharp rise in the estimation 

of the call option indicating that a rise in the volatility increases the value of the call option 

and this is shown in Figure 4.3. The put on the other hand is worth less with increasing 

volatility. The options worth less as they approach the time to maturity. The call option 

attained it maximum value on day 52 while the put option attained on day 100 its maximum 

value. 

4.3.2 Estimates for Contract with Strike Price of 3025 

The section presents results base on strike price of 3025 with Figure 4.4 indicating the 

ensemble Kalman filter estimate of the interest rate and the volatility at this strike price. 
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Indicated in Figure 4.4 is a sharp rise and fall of interest rate and volatility for the first 3 

days in the case of interest rate and 6 days in the case of volatility. Figure 4.5 shows the 

estimates of the call and put option prices. 

 

Figure 4.4: EnKF Estimate of interest rate and volatility for a contract with strike price 
3025 

Table 4.2: Mean of the normalized RMSE with strike price of 3025 

Option type Algorithm Mean MSE 

Call Trivial 0.061132 

 Ensemble Kalman filter (EnKF) 0.036137 

Put Trivial 0.039403 

 Ensemble Kalman filter (EnKF) 0.027626 
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Figure 4.5: Plot of estimated call and put option prices from the ensemble Kalman filter 

4.3.3 Estimates for Contract with Strike Price of 3125 

Results for contract with strike price of 3125, shows that the estimate of the volatility has 

the highest values approaching the time to maturity but interestingly, Figure 4.7 still 

indicated that the value of the options still worth less as they approach the time to maturity. 

Table 4.3: Mean of the normalized RMSE with strike price of 3125 

Option type Algorithm Mean NSE 

Call Trivial 0.052427 

 Ensemble Kalman filter (EnKF) 0.036825 

Put Trivial 0.049033 

 Ensemble Kalman filter (EnKF) 0.031532 



 

65 

 

Figure 4.6: EnKF Estimate of interest rate and volatility for a contract with strike price 
3125 

 

Figure 4.7: Plot of estimated call and put option prices from the ensemble Kalman filter 
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4.3.4 Estimates for Option Contract with Strike Price of 3225 

The prediction obtianed for the varying strike prices were very close to the measured data 

as evident in the results. That of the strike price of 3225 is shown in Figure 4.9. Figure 

4.8 shows the estimated volatility and interest rate for contract with a strike price of 3225. 

The one-step-ahead normalized square errors obtained for the EnKF on a pair of options 

with strike price 3225 csn be seen in Table 4.4 

 

Figure 4.8: EnKF Estimate of interest rate and volatility for a contract with strike price 
3225 

Table 4.4: Mean of the normalized RMSE with strike price of 3225 

Option type Algorithm Mean NSE 

Call Trivial 0.033906 

 Ensemble Kalman filter (EnKF) 0.024048 

Put Trivial 0.068802 
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 Ensemble Kalman filter (EnKF) 0.040229 

 

Figure 4.9: Plot of estimated call and put option prices from the ensemble Kalman filter 

4.3.5 Estimates for Option Contract with Strike Price of 3325 

It is observed that for the different strike prices considered the estimation of the interest 

rate has been consistent with slight variations in the peak values. Figure 4.11 holds 

estimates of interest rate and volatility and compared to estimates from the rest of the stock 

prices, the volatility on the other hand has the dynamics changing consistently. 
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Figure 4.10: EnKF Estimate of interest rate and volatility for a contract with strike price 
3325 

The worth of the call option seems not to vary much as it approaches the maturity time 

from day 90 to 204 while there are significant variations in the worth of the put option as 

in Figure 4.11. Consistently as the call option worths more, the put option worth less with 

time to maturity. 



 

69 

 

Figure 4.11: Plot of estimated call and put option prices from the ensemble Kalman filter 

Table 4.5: Mean of the normalized RMSE with strike price of 3325 

Option type Algorithm Mean NSE 

Call Trivial 0.020488 

 Ensemble Kalman filter (EnKF) 0.013225 

Put Trivial 0.071863 

 Ensemble Kalman filter (EnKF) 0.034004 

4.4 Comparing the Performance of the EnKF and EKF 

Comparing the results from both filters, Figures 4.12 and 4.14 show the estimated volatility 

and interest rate from both the ensemble Kalman filter and the extended Kalman filter for 

strike prices 2925 and 3125 respectively. The red plot is the estimate from the EKF whilst 

the blue is EnKF prediction. 

The predictions from the two filter of the interest rate and volatility are so close to each 
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Figure 4.12: Estimate of interest rate and volatility for a contract with strike price 2925 

 

Figure 4.13: Estimate of call and put options for strike price of 2925 
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Figure 4.14: Estimate of interest rate and volatility for a contract with strike price 3125 

 

Figure 4.15: Estimate of call and put options with strike price 3125 
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other. The ensemble Kalman filter estimates for the interest rate flatuate sharply for the 

first couple of days which is not the case for the extended Kalman filter. The EKF predicts 

relatively low values for the interest rate at these instances. 

Table 4.6, contains the mean of the root mean square errors. These error rates are 

computed over the last 100 days. The root mean square error in the filters are so close 

indicating that the two methods approach the same accuracy in using the Black-Scholes 

model for predicting the options. Notable is the constant decrease in the root mean square 

values for the value of the call options in all the filters while the reverse occurs in the case 

of the put option when the strike price increases. 

Table 4.6: Mean of the normalized root mean squared errors for the specified strike prices 

Option type Algorithm X=2925 X=3125 X=3325 

Call Trivial 0.0783 0.0524 0.0205 

 Extended Kalman filter (EKF) 0.0417 0.0368 0.0132 

 Ensemble Kalman filter (EnKF) 0.0418 0.0368 0.0132 

Put Trivial 0.0354 0.0490 0.0719 

 Extended Kalman filter (EKF) 0.0269 0.0315 0.0339 

 Ensemble Kalman filter (EnKF) 0.0269 0.0315 0.0340 

Chapter 5 
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Conclusion and Recommendation 

5.1 Introduction 

In this study, we investigated the performance of the Ensemble Kalman filter considering 

the effect of different process noises, different measurement noises, different initial error 

covariances and the ensemble size through a Monte Carlo simulation. The ensemble 

Kalman filter was implemented on two estimation problems, the first being a synthetic 

experiment using the Van der Pol equation and the second is a real world problem using 

the Black- 

Scholes model in the pricing of financial options considering on the British FTSE-100 index. 

Estimation for the pricing of options were obtained for five different strike prices 2925, 

3025, 

3125, 3225 and 3325. The performance of the ensemble Kalman filter was compared to the 

Extended Kalman filter and the ensemble open loop, judging from the estimate of the mean 

and variance of the root mean squared errors. In this chapter, we present the conclusion 

and make some recommendations. 

5.2 Conclusion 

The extended Kalman filter is widely used data assimilation schemes for estimating the 

state of nonlinear dynamical systems. In this study we presented the Ensemble Kalman 
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filter as an alternative to the EKF. The EnKF addresses many of the estimation issues in 

using the EKF and EnKF attains the same or better level of performance. The EnKF 

algorithm have been demonstrated on a number estimation problems since it introduction 

by Evensen (1994). In this study we implemented the ensemble Kalman filter on two 

estimation problems. 

In summary, the scenarios considered are 

1. The effect of different process noise on the performance of the EnKF 

2. The effect of different measurement noise on the performance of the EnKF 

3. The effect of different initial error covariance on the performance of the EnKF 

4. The effect of different ensemble size on the performance of the EnKF 

Comparing the performance of the EnKF to that of the EKF and the EnOL. On the basis of 

the comparison and the advantages of the EnKF over the EKF, the EnKF is proposed as an 

alternative to EKF in the pricing of financial instruments. 

For the optimally determined parameters for the estimation problems considered, the 

EnKF was found to be the best performing filter among the three filters considered. In the 

pricing of financial options the EnKF closely predicted the observed especially in the case 

of the call option and the estimate of the interest rate and volatility are also obtained 

appropriately. 
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It was found that for the different process noises, the performance of the filters improved 

with decrease in the process noise. Same results were obtained for the different 

measurement noises and initial error covariances. In all the case the EnKF happened to be 

the best performing of the filters except in some few case where the EKF was performing 

better that the EnKF. The experiment showed that for high values of the noises, the filters 

break down as in the case of Q = I2. 

There was a decline in the mean and variance of the RMSE for the EnKF as the ensemble 

size grows or increases. That is to say that the performance of the EnKF improves with 

increases in the ensemble size. 

The EnKF is a Monte Carlo approximation of the Kalman filter, representing the distribution 

of the system state by using random samples (ensembles) and computes the covariance 

from the ensemble. A major advantage of the EnKF is, it can be easily implemented and no 

analytical derivative need to be computed as in the case of the EKF. The EnKF relies on 

functional evaluations through the use of sample means and sample variances. The EnKF 

also has some limitations despite its clear advantage over the EKF. 

5.3 Recommendation 

Based on our findings, the following recommendations are made to further examine the 

performance of the EnKF. We recommend that the EnKF should be used as an alternative 

to the EKF and in using these filter the process noise, measurement noise and initial error 

covariance should be minimal. Large ensemble sizes are recommended for the use of EnKF. 
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It is also recommended for further research; the performance of the EnKF be verified for 

other factors that may affect the performance of the filter which were not considered in this 

research. Some of these may be to investigate the impact of varying observation frequency 

or sparse data on the performance of the filter, and so on.  
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