
MODELING THE SPREAD OF TUBERCULOSIS IN 

CENTRAL REGION USING THE SUSCEPTIBLE-

EXPOSED-INFECTED-SUSCEPTIBLE (SEIS) 

MATHEMATICAL MODEL 

 

 
BY  

 

SARKODIE ERIC 

 

 

  

A THESIS SUBMITTED TO THE DEPARTMENT OF MATHEMATICS, KWAME     

NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY, 

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF 

MASTER OF SCIENCE IN INDUSTRIAL MATHEMATICS 

 

 

 

DEPARTMENT OF MATHEMATICS  

FACULTY OF DISTANCE LEARNING  

COLLEGE OF SCIENCE 

 

 

JUNE 2014 

   

  



ii 
 

DECLARATION 

I hereby declare that this submission is my own work towards the MSc. and that, to the best of 

my knowledge, it contains no material previously published by another person nor material 

which has been accepted for the award of any other degree of the University, except where due 

acknowledgement has been made in the text. 

 

 

Sarkodie Eric (PG6324611)  ……………………   ………………….. 

(Student Name and ID)   Signature    Date 

 

 

 

 

Certified by: 

E. Osei-Frimpong (Dr.)  ……………………   …………………….. 

(Supervisor)     Signature    Date 

 

 

 

Certified by: 

Prof. S. K. Amponsah   …………………….   …………………. 

(Head of Department)   Signature    Date 

  



iii 
 

ACKNOWLEDGEMENT 

I wish to express my profound gratitude to the Omnipotent God for granting me the opportunity, 

strength, knowledge and wisdom to write this thesis. 

I specially give thanks to my supervisor, Dr. E. Osei-Frimpong for always being there for me 

throughout the writing of this thesis. May God richly bless you for your advice, support and 

patience. 

I would like to thank the Department of Mathematics, Kwame Nkrumah University of Science 

and Technology for a memorable part played in my education.  

I highly appreciate the effort of Mr. Evans Nabare, Mr. James Baffoe, Mr. Richard Frimpong and 

Mr. Massadzi William for their friendly support and encouragement as well as suggestions 

offered me throughout the course. 

 I also owe a special debt of gratitude to Mr. Antwi-Adjei Cosmos, Mr. Albert A. Sey, Mrs. 

Mavis Agyeiwaa Yeboah, Ms. Lucy Emma Antwi-Boateng and Mr. Samuel Adoba for their 

inspiration and support in many ways. 

I am also grateful to Mr. A. N. Wireko, Municipal Director of Agric. KEEA and Mr. Stephen N. 

Asante, Metropalitan Director of Agric. KMA for their encouragement and patience throughout 

the course. 

Finally, I would like to thank my dearest brother, Mr. Anthony Baffoe, my mum, Ms. Naomi 

Badu and the entire family members for their effort in making me realize my dreams.  

I appreciate the effort of all friends who encouraged me in one way or the other to achieve this 

dream.  May God bless you all. 

 

  

  



iv 
 

ABSTRACT 

Tuberculosis (TB) is a growing problem worldwide, with an estimated one-third of the world‘s 

population currently infected. 

In this thesis we modify the non-constant population SEIS model developed by Castillo-Chavez 

to a constant population model to predict the spread of tuberculosis in the Central Region of 

Ghana using data from the Central regional Health Directorate, Cape Coast.   

We discuss the mathematics behind the model and various tools for judging effectiveness of 

policies and control methods.  

The model has two equilibrium states namely, the disease – free and the endemic equilibrium 

points.  The stability of each equilibrium point is discussed and the endemic equilibrium has 

been found to be stable while that of the disease-free was unstable. The basic reproduction 

number (    was estimated to be 2.  The disease was found to persist with    >1 whenever the 

transmission rate was increased or the recovery rate reduced but turned to die out with    <1, 

whenever the transmission rate was reduced or the recovery rate increased. 

The results of our sensitivity analysis showed that the most sensitive parameter that controls the 

spread of tuberculosis in Central Region is the initial infection rate of the susceptible, σ. 

Decreasing the value of σ at the same rate as the other parameter values completely decreases the 

proportions of both the infective and the exposed more effectively than any parameter value. 

From the analysis and discussions of the model, SEIS epidemiological model is a good model to 

study the spread of tuberculosis in Ghana. 

 

 

 

 

 

  



v 
 

TABLE OF CONTENTS 

DECLARATION…………………………………………………………………………. ii 

ACKNOWLEDGEMENT………………………………………………………………... iii 

ABSTRACT………………………………………………………………………………. iv 

TABLE OF CONTENT………………………………………………………….............. v 

LIST OF TABLES………………………………………………………………………... x 

LIST OF FIGURES……………………………………………………………..………… xi 

 

CHAPTER 1…………………………...………………………..…................................. 1 

INTRODUCTION……………………………………………………………………….. 1 

1.1 Background of the study…………...…………………..……………………………. 1 

1.2 Tuberculosis…...….…………………………………………………………...……. 3 

1.2.1 Causes and Symptoms of Tuberculosis…………………………………… 4 

1.2.2 Testing for TB Infection...………………………………………………… 6 

  1.2.2.1 Tuberculin Skin Test …………………………………………….. 6 

1.2.2.2 TB Blood Tests …………………………………………............ 6 

1.2.3 How to Cure Tuberculosis………………………………………………... 7 

1.2.3.1 Bacille Calmette-Geurin(BCG)  Vaccine………………………….. 8 

1.3 Problem Statement…….....………………………………………………………….. 9 

1.4 Objectives of the Study……………………………………………………………… 9 



vi 
 

1.5 Methodology………………..……….………………………………………………. 9 

1.6 Justification……....……………...…………………………………………………… 10 

1.7 Organization of the Thesis…….……………………………...……….…………....... 10 

 

CHAPTER 2…………………………………………………….. 11 

REVIEW OF FUNDAMENTALS..….………...………………………………………… 11 

2.1 The SEIS Model for Tuberculosis using …………..……......…………………..……. 11 

2.2 The effect of HIV on Tuberculosis infection….………………......………………….. 13 

2.3 Some studies on Tuberculosis using Deterministic models either than  

the SEIS model……………………………………………………………………… 15 

2.4 Differential Equation……..………..………………………………………………… 18 

2.4.1 Types of differential equation…..………………………………………….. 19 

2.4.1.1 Ordinary differential equation……..……………………………... 19 

2.4.1.2 Partial differential equation……..………………………………... 20 

 2.4.2 Linear and non-linear differential equations…..…………………………… 20 

 2.5.2 Description of some Deterministic Models……………..………………….. 21 

2.5.2.1 SI(S) Models ……………………………………………………… 22 

2.5.2.2 SIR(S) Models ……………………………………………………. 23 

2.5.2.3 SEIR(S) Models ………………………………………………….. 25 

2.5.2.4 The SEIS Model…………………………………………………. 27 



vii 
 

2.6 Linear and Nonlinear Models………………………….……………………………… 28 

2.7 Equilibrium States…………………………………………………………………….. 28 

2.8 Routh-Hurwitz Stability Criterion…………………………..…………………….….. 29 

2.9 Uncertainty and Sensitivity analysis in modeling…………………………………….. 32 

2.9.1 Limitations of Sensitivity Analysis………………………………………… 34  

 

CHAPTER 3……………..……………………………………… 35 

THE MODEL…………………………………………………….………………………. 35 

3.1 Introduction……..……………………………………………………………………. 35 

3.2 Preliminaries………….……………………………………………………………… 35 

3.3 Model formulation……….………………………………………………………….. 36 

 3.3.1 Model Assumptions……………………………………………………….. 36 

3.4 Description of SEIS Model…………………………………………………………… 37 

 3.4.1 Model equations………………………………………................................ 38 

3.5 Equilibrium Points………………………..………………………………………….. 40 

 3.5.1Disease-Free Equilibrium Point…………………………………………… 41 

 3.5.2 Endemic Equilibrium……………………………………………………… 41 

3.6 Stability Analysis of the Equilibrium Points……………………………………….. 44 

 3.6.1 Stability Analysis of the Disease-free Equilibrium……………………….. 45 

3.6.2 Stability Analysis of the Endemic Equilibrium …………………………… 48 

3.7 An application of Routh-Hurwitz stability criterion………………………………….. 52 



viii 
 

3.8 The Basic Reproduction Number (  )…………..…………………………………… 52 

 

CHAPTER 4 …………………………………..………………… 53 

Model Application……………………………………………………………………….. 53 

4.1 Introduction…..………………….…………………………………………………… 53 

4.2 Parameter Estimate………………………….…………………………..……………. 53 

4.3 Equilibrium Points……..………...…………………………………………………… 56 

4.4 Stability Analysis……………………………………………………….……..……… 57 

4.4.1 Stability Analysis of the Disease-Free Equilibrium point…..……………… 57 

4.4.2 Stability analysis of the Endemic Equilibrium point….…...……………….. 58 

4.5 Sensitivity Analysis………………...…………………………………………...…….. 60 

4.5.1 Sensitivity Analysis using the Basic Reproduction Number……………….. 60 

4.5.2 Sensitivity Analysis of Tuberculosis Transmission by Simulation………… 62 

4.6 Discussion........................................................................................................ 68 

 

CHAPTER FIVE………………….………………………….… 71 

CONCLUSION AND RECOMMENDATIONS………………………………………. 71 

5.1 Introduction……….……………………………………………………….………… 71 

5.2 Conclusion…………………………………………………………………………… 71 

5.3 Recommendation….………………………………………………………………… 72 

Appendix………………………………………………………………………………… 73 

References……………………………………………………………………..………….. 76 



ix 
 

LIST OF TABLES 

Table 4.1 Summary of estimated parameter values………………………………………. 56 

Table 4.2: Actual parameter values against 
oR  and changes in the proportions  

of (s, e, i)…………………………………………………………………… 62 

Table 4.3: Parameter values against 
oR  and changes in the proportions of (s, e, i) when α 

increases from 0.35 to 0.99………………………………………..……… 64 

Table4.4: Parameter values against 
oR  and changes in the proportions of (s, e, i) when σ reduces 

from 0.757 to 0.35……………………………………….……….. 65 

Table 4.5: Effect of parameter values on 
oR  and the proportions of (s, e, i) when ω increases 

from 0.038 to 0.5 …………………………………………..……………… 66 

Table 4.6: Effect of parameter values on 
oR  and the proportions of (s, e, i) when κ reduces from 

0.076 to 0.001……………………………………………………………………...…

 67 

Table 4.7: Summary of the effects of parameter value variation on 
oR  and the proportions of  (s, 

e, i)………………………………………………………………………... 70 

 

  



x 
 

LIST OF FIGURES 

Figure 1.1 Mycobacterium tuberculosis scanning electron micrograph….. 4 

Figure 1.2 The immune response to Mycobacterium tuberculosis infection……………. 7 

Figure 1.3 BCG Vaccine……………………………………………….………………….. 8 

Figure 2.1 SEIRS Compartment Model…………………………………………………... 26 

Figure 3.1Flow chart for SEIS Model…………………………………………………….. 37 

Figure 4.1: A graph of SEIS Model for Tuberculosis in Central Region……………...... 63 

Figure 4.2: the nature of the graph when α is increased from 0.35 to 0.99 with other       

parameter values maintained……………………………………………………………… 64 

Figure 4.3: the nature of the graph when σ is decreased from 0.757 to 0.35 with other       

parameter values maintained……………………………………………………………… 65 

Figure 4.4: nature of the graph when ω is increased from 0.038 to 0.5………………… 66 

Figure 4.5: the effect of decreasing κ from 0.076 to 0.001while maintaining other parameter 

values……………………………………………………………………………………… 67 



1 
 

CHAPTER 1 

  

INTRODUCTION 

1.1 Background of the study 

Mathematical models used for the spread of infectious disease are called dynamic 

epidemiological models because they describe change over time. They have a long history in 

epidemiology and have been used in a wide variety of diseases, including measles, influenza, 

rubella and chicken pox (Feng et al., 2000). Most diseases studied using modeling techniques 

have age-specific transmission rates. They tend to have relatively short latent periods and 

relatively short contagious periods resulting in permanent immunity in the infected individual. A 

unique feature of tuberculosis is the ambiguity in the biological processes involved in disease 

transmission and activation. Transmission is further complicated by the inclusion of both 

biological and social factors. Hence, there have been relatively few attempts to use mathematical 

modeling to describe the behaviour of tuberculosis (TB). 

Tuberculosis models are either deterministic or stochastic. The models operate by defining states 

for individuals within a population. Individuals are assigned to subpopulation groups based on 

characteristics such as ‗infected with,‘ or ‗immune to,‘ tuberculosis. Deterministic models have a 

finite number of states, and specify rules by which individuals move from one state to another 

through a series of differential equations. Stochastic models specify probabilities of movements 

between populations, and can therefore provide probabilities of particular model outcomes. 

Agent-based models also referred to as micro simulations and individual-based models represent 

a large set of individuals, each with their own independent, defined characteristics. Unlike 

compartmental models, agent-based models consider individuals as discrete entities. This 

information is updated at various time points, either stochastically (event driven models) or 

periodically (regular discrete models). The level of detail of such models is only limited by 

population size and computing power (Getz et al., 2006). 
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By far the most common type used in the TB modeling literature, deterministic models are based 

on a series of classes, potentially including susceptible, infected and recovered, lending the name 

―SIR models.‖ 

Other possible classes include exposed, immune, and stages of disease. The movement from one 

class to another is defined by the modeler to reflect his/her understanding of tuberculosis 

epidemiology, and the questions to be tested by the model. For example, a TB model may be an 

SEIR model, or it may be an SEI model with no recovery. 

In epidemiological models,    is defined as the basic reproduction number, which is the average 

number of secondary infections produced from one infected individual in a totally susceptible 

population.    is also referred to as the basic reproduction ratio or basic reproductive rate. In a 

deterministic model,    is a threshold quantity that must be greater than one for an infection to 

invade a new population and persist over time. However, because risk of infection may vary with 

many factors (e.g., age, vaccination, and nutritional status), the determination and interpretation 

of      depends on the susceptible population structure. 

A dynamic model is, by definition, a simplification of reality. Every population exhibits 

heterogeneity; the degree of detail included in a model depends upon the goals of the modeler. In 

a deterministic model, a heterogeneous population can be split into a finite number of 

subpopulations, each of which is homogeneous. Then the epidemic dynamics are modeled 

deterministically with movement among subpopulations. However, placing an individual into 

one of a series of subpopulations is problematic, because group boundaries may not be mutually 

exclusive. Furthermore, many variations between individuals are better described by continuous 

rather than categorical variables. However, categorical approaches are often simpler to use 

mathematically than models including continuous variation, and model detail must be balanced 

against mathematical tractability (Getz et al., 2006).  

A second approach is described as an application of stochastic branching process theory where 

the    associated with each infectious case is allowed to vary. This approach is used to describe 

measles and smallpox (Getz et al. 2006), and it is demonstrated that assumptions of homogeneity 

oversimplify epidemic models of infectious disease such that estimates of     alone do not 

adequately describe disease dynamics. A failure to consider heterogeneity therefore may 
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seriously bias probability estimates of disease invasion or prevalence. A third approach is to 

create discrete-time stochastic simulation models based on individuals. This can be done in a 

network characterized by non-random associations between individuals (Achterberg, 2009). 

Though complex, the process of creating a mathematical model forces the modeler to clarify 

disease assumptions and parameters; model results can provide qualitative and quantitative 

results including basic reproduction number and thresholds. They can be experimental tools for 

formulating and testing hypotheses, answering key questions, and estimating sensitivity to 

parameter changes (Achterberg, 2009). 

 

1.2 Tuberculosis 

Tuberculosis (TB) is an infectious disease that has plagued humans for many years. The 

organism that causes tuberculosis is known as the Mycobacterium tuberculosis. 

Mycobacterium tuberculosis is a rod-shaped, slow-growing bacterium. Its cell wall has high acid 

content, which makes it hydrophobic, resistant to oral fluids. 

Tuberculosis continues to kill millions of people yearly worldwide. In 1995, three (3) million 

people died from TB. More than 90% of TB cases occur in developing nations that have poor 

hygiene and health-care resources and high numbers of people infected with HIV (CDC, 2005). 

In 2008, the World Health Organization (WHO) estimated that one-third of the global population 

was infected with TB bacteria. 
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Mycobacterium tuberculosis scanning electron micrograph is shown in the figure below 

 

 

Figure 1.1: Mycobacterium tuberculosis scanning electron micrograph 

 

1.2.1 Causes and Symptoms of Tuberculosis 

All cases of TB are passed from person to person via droplets. When someone with TB infection 

coughs, sneezes, or talks, tiny droplets of saliva or mucus are expelled into the air, which can be 

inhaled by another person. 

Once infectious particles reach the alveoli (small saclike structures in the air spaces in the lungs), 

another cell, called the macrophage, engulfs the TB bacteria. 



5 
 

Then the bacteria are transmitted to the lymphatic system and bloodstream and spread to other 

organs occurs. 

The bacteria further multiply in organs that have high oxygen pressures, such as the upper lobes 

of the lungs, the kidneys, bone marrow, and meninges -- the membrane-like coverings of the 

brain and spinal cord. 

When the bacteria cause clinically detectable disease, you have TB.  

Only about 10% of people infected with M. tuberculosis ever develop tuberculosis disease. 

People who have inhaled the TB bacteria, but in whom the disease is controlled, are referred to 

as infected. Their immune system has walled off the organism in an inflammatory focus known 

as a granuloma. They have no symptoms, frequently have a positive skin test for TB, yet cannot 

transmit the disease to others. This is referred to as latent tuberculosis infection or LTBI. 

Risk factors for TB infection include the following: HIV infection, low socioeconomic status, 

alcoholism homelessness, crowded living conditions, diseases that weaken the immune system, 

migration from a country with a high number of cases and health-care workers. 

The symptoms of tuberculosis do not become evident in most cases, unless the disease has 

advanced. The common symptoms of tuberculosis include cough for a prolonged duration that is 

more than three weeks, unexplained or intended weight loss, fatigue, general feeling of tiredness, 

fever, sweating at night, chills and loss of appetite. Having these signs and symptoms does not 

mean that you have tuberculosis. There are many other diseases which have the same symptoms. 

So you need to undergo various tests, so that you are sure that you have tuberculosis. Signs and 

symptoms of active tuberculosis may also vary depending on the organ that is affected. Most of 

the times, the lungs of the patients are affected. Symptoms of tuberculosis of the lungs include 

cough for three or more weeks, blood in cough, chest pain or pain while breathing or coughing. 

Tuberculosis can also affect organs apart from the lungs. The other organs that are affected by 

tuberculosis include lymph nodes, genitourinary nodes, bone and joint sites, lining covering the 

outside of the gastrointestinal tract (Centre for Disease Control and Prevention, 2007). 
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1.2.2 Testing for TB Infection 

There are two kinds of tests that are used to determine if a person has been infected with TB 

bacteria: the tuberculin skin test and TB blood tests. 

A positive TB skin test or TB blood test only tells that a person has been infected with TB 

bacteria. It does not tell whether the person has latent TB infection (LTBI) or has progressed to 

TB disease. Other tests, such as a chest x-ray and a sample of sputum, are needed to see whether 

the person has TB disease. 

 

1.2.2.1 Tuberculin skin test   

The TB skin test (also called the Mantoux tuberculin skin test) is performed by injecting a small 

amount of fluid (called tuberculin) into the skin in the lower part of the arm. A person given the 

tuberculin skin test must return within 48 to 72 hours to have a trained health care worker look 

for a reaction on the arm. The health care worker will look for a raised, hard area or swelling, 

and if present, measure its size using a ruler.  Redness by itself is not considered part of the 

reaction.  

The skin test result depends on the size of the raised, hard area or swelling. It also depends on the 

person‘s risk of being infected with TB bacteria and the progression to TB disease if infected.  

1.2.2.2 TB Blood Tests  

TB blood tests (also called interferon-gamma release assays or IGRAs) measure how the 

immune system reacts to the bacteria that cause TB.  An IGRA measures how strong a person‘s 

immune system reacts to TB bacteria by testing the person‘s blood in a laboratory  

(Centre for Disease Control and Prevention, 2007). 
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1.2.3 How to Cure Tuberculosis 

The tuberculosis cure usually involves taking antibiotics for 6 to 12 months. Tuberculosis 

continues to kill about 2 to 3 million people every year. Treatment of tuberculosis requires the 

use of special tuberculosis medications. All these medicines produce serious side effects. To cure 

tuberculosis, the patients have to take several antibiotics. The tuberculosis bacteria should 

respond to at least three of them every day for up to two years. However, even with this 

treatment, there is a possibility that some patients might die. Between 4 and 6 out of every 10 

patients die during the treatment of tuberculosis (Centre for Disease Control and Prevention, 

2007). 

 

 

Figure 1.2: The immune response to Mycobacterium tuberculosis infection or 

vaccination with BCG or recombinant modified BCG. 
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There are chances that a patient suffering from tuberculosis can be completely cured today. But 

the patient has to understand the disease and co-operate fully in the treatment program. Both 

latent and active tuberculosis can be treated with antibiotics. Latent tuberculosis can be treated 

with only one antibiotic; active tuberculosis is treated with several antibiotics at one time. Active 

tuberculosis has to be treated really well, and patients will have to start treatment by admitting 

themselves in the hospital so that they will not spread the disease, as tuberculosis is highly 

contagious (Centre for Disease Control and Prevention, 2007). 

 

1.2.3.1 Bacille Calmette-Geurin(BCG)  Vaccine 

The BCG vaccine is a vaccine that was developed to prevent tuberculosis (TB) disease. It is 

often given to newly born individuals, where there is a high prevalence of TB. This is done in 

order to prevent childhood tuberculosis, meningitis, and miliary disease. The vaccine is a live 

vaccine, derived from a strain of Mycobacterium bovis. It was first administered to humans in 

1921(CDC,2008). 

 

 

Figure 1.3 BCG Vaccine 
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1.3 Problem Statement 

Tuberculosis, an ancient disease that has caused more suffering and death than any other 

infectious disease continues to be a major public health problem in Ghana (CDC, 2007). Over 

forty-six thousand (46,000) new cases of TB are annually estimated by the World Health 

Organization (W.H.O.) in Ghana. According to the latest W.H.O. data published in April 

2011, death as a result of TB infection in Ghana reached 11,738 or 6.25% of total deaths. 

Also, TB occupies sixth position of the top twenty causes of death in Ghana. The 

epidemiology of TB in Ghana has therefore become imperative, needing research and effort to 

help control the spread and eradicate this disease (CDC, 2005).    

                           

   1.4 Objectives of the Study  

    The main objectives of the study are: 

 To formulate a modified constant population SEIS model for tuberculosis in Central 

Region 

 To determine the spread of the disease in Central Region 

 To perform the stability analysis of the equilibrium states of the SEIS model 

  

1.5 Methodology 

An SEIS model would be formulated and it is one of the models used to describe the 

epidemiology of infectious diseases. This computes the amount of Susceptible, Exposed and 

Infected individuals in a locality. In this model, recovered individuals do not acquire immunity 

as in some models, but rather become susceptible to the disease again. The model equation 

would be solved and analysed by the deterministic approach. Simulation will be done using 

MatLab and sensitivity analysis will then be carried out on the parameter values to determine 

their effect on the spread of the disease. 
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1.6 Justification 

Although there have been researches on Tuberculosis in Ghana, there has not been any 

Mathematical modeling of Tuberculosis using the SEIS model. A combination of this thesis and 

other models of TB will pave a broader way for us to overcome the problem of TB in this 

country. Tuberculosis is a retrogressing factor in the country‘s development. Death as a result of 

Tuberculosis hampers the country‘s productivity and hence a threat to socio-economic 

development. This thesis will therefore be of paramount importance by helping in the control of 

Tuberculosis in Ghana. 

 

1.7 Organization of the Thesis 

The thesis is made up of five (5) main chapters. Chapter one being the introduction of the thesis 

comprises of the background of TB, problem statement, objectives, methodology and 

organization. Related researches done by others would be reviewed in chapter two. Chapter 2 

will also include some Mathematical definitions and theorems related to the model under study.   

Chapter three would be about Mathematical model formulation. The analysis and results are 

presented in chapter four. Chapter five is about conclusion and recommendations for further 

studies. 
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CHAPTER 2 

 REVIEW OF FUNDAMENTALS 

This chapter looks into the review of related works on tuberculosis using the SEIS and other 

deterministic models. Besides, some definitions and theorems related to the study will be 

considered. 

The first mathematical model of TB was presented by Waaler et al. (1962). Following this, there 

were several numerical studies, primarily focusing on cost-effectiveness of different 

interventions (Brogger, 1967; Revelle et al., 1969). Revelle et al. (1969) used a model with one 

progression rate and various latent classes representing different treatment and control strategies, 

and argued that vaccination was cost-effective in countries with high TB burdens. Waaler 

continued his work in Waaler (1968a), Waaler (1968b), Waaler and Piot (1969), Waaler (1970) 

and Waaler and Piot (1970). After the 1970‘s little work on models of tuberculosis appeared in 

the literature until the mid-1990‘s. 

 

2.1 THE SEIS MODEL FOR TUBERCULOSIS 

Feng et al. (1999) studied differential equations and differential-integral equations that describe 

the dynamics of disease transmission for tuberculosis (TB). The main interest was to study these 

models to understand the long-time behaviour of the dynamics of disease transmission, thus, 

whether the disease would die out eventually or would persist. They looked at the effects of 

variable periods of latency on the dynamics of TB by considering an SEIS model with 

individuals moving back to the susceptible (S) class from both the Exposed (E) and the 

Infectious (I) classes due to treatment. The findings of their studies revealed that the addition of 

an arbitrarily distributed latency period to the basic TB model does not alter the qualitative 

dynamics of TB, the disease either dies out or remains endemic regardless of the shape of the 

incubation/latent period distribution. 
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Rui Xu (2012) investigated an SEIS epidemiological model with a saturation incidence rate and a 

time delay representing the latent period of the disease. By means of Lyapunov functional, 

LaSalle's invariance principle and comparison arguments, it was shown that the global dynamics 

is completely determined by the basic reproduction number. It is proven that the basic 

reproduction number is a global threshold parameter in the sense that if it is less than unity, the 

disease-free equilibrium is globally asymptotically stable and therefore the disease dies out; 

whereas if it is greater than unity, there is a unique endemic equilibrium which is globally 

asymptotically stable and thus the disease becomes endemic in the population. Numerical 

simulations were carried out to illustrate the main results. 

Fan et al. (2001) presented a mathematical model on the global dynamics of an SEIS 

epidemiological model that incorporates constant recruitment, exponential natural death as well 

as the disease related death, so that the population size might vary in time. They established that 

the basic reproductive number (  ) is a sharp threshold parameter and completely determines the 

global dynamics of their model. Besides, they again established that if   ≤1, the disease free 

equilibrium is globally stable and the disease always dies out and if   >1, a unique endemic 

equilibrium is globally stable so that the disease persists at the endemic equilibrium if it is 

initially present. 

 Heterogeneity is experienced in every population in a variety of forms. A number of models 

have tried to clearly model such heterogeneous characteristics. Though the root causes of 

heterogeneity differ between models, the methodological formulations are similar. These models 

exhibit a framework that can be reduced to comparable general models of TB transmission 

dynamics. However, these models give room for a number of explicit assumptions, and allow for 

the study of a wider range of aspects of TB. Two articles (Murphy et al. 2002 & 2003) are 

discussed in detail as examples of the inclusion of heterogeneity in a deterministic model.  

Murphy et al. (2002) developed a TB model on the effects of heterogeneity in demographically 

distinct populations. In a deterministic model, the overall population was split into six 

subpopulations: for each group of ‗uninfected with TB,‘ ‗latently infected,‘ or ‗actively infected,‘ 

there existed a group that was genetically neutral and a group that was genetically susceptible 

(rates of TB acquisition and progression are higher compared to the genetically neutral group) 

toward TB. Though the authors interpret their model in terms of underlying genetic 
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susceptibility, the results are equally applicable to any environmental or behaviour condition that 

creates variable susceptibility to TB. There is a constant birth rate, and death rates are dependent 

on disease status. Active TB individuals only die from constant disease rate. All births enter into 

uninfected categories (either genetically susceptible or neutral). Individuals move from 

uninfected categories to latently infected or actively infected. Latently infected individuals move 

to actively infected. Individuals can leave any population by death, and those in the actively 

infected population have a given disease-related death rate. The results indicate that in a 

population with a high level of genetic susceptibility, TB prevalence is only slightly affected by 

changes in transmission. Conversely, in a population with a small genetically susceptible 

subpopulation, transmission rates are more important. The determination of    for a 

heterogeneous population is done here using numerical simulations. Their model had several 

unique biological assumptions and they include the following: 1) Latently infected individuals 

cannot be re-infected by active TB individuals; 2) there exists an annual reactivation rate for 

latently infected individuals; and 3) the contact rates are non-linear. In 2003, Murphy et al.  did 

further work on their  model by considering how the presence of a genetically susceptible 

subpopulation alters the effects of TB treatment at both latent and active stages. It is assumed 

that treatment doesn‘t guarantee immunity, but instead it moves individuals from actively 

infected to latently infected. Treatment of latently infected individuals reduces their reactivation 

rate. Results indicate that exclusive treatment of latently infected individuals alone is not as 

effective as treatment of actively infected individuals alone. Treatment strategies of latently 

infected individuals show that low chemotherapy levels have almost no effect on reducing 

prevalence regardless of the genetic susceptibility level. 

  

2.2 THE EFFECT OF HIV ON TUBERCULOSIS INFECTION 

In a deterministic model and numerical analysis, West and Thompson (1997) investigated the 

magnitude and duration of the effect that increasing HIV may have on TB. Similarly focused, 

Porco et al. (2001) use a discrete event model simulation to predict the potential impact of HIV 

on the probability and severity of TB outbreaks. 

However, while West and Thompson model individuals as having TB stages nested within each 

stage of HIV, the stochastic model of Porco et al. is based on four main populations: uninfected 
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individuals; those infected only with HIV; those infected only with TB; and those dually 

infected. HIV-positive individuals are further subdivided by stage of infection—the nesting order 

is reversed from that used by West and Thompson (1997). 

Using available parameter estimates, West and Thompson conclude that the background rate of 

TB infection, interaction between subpopulations of HIV stages, and the increase in TB 

susceptibility for HIV-positive individuals will have strong effects on future TB incidence in the 

United States. The model results of Porco et al. (2001) indicate that at moderate to low TB 

treatment rates, a moderate HIV epidemic can double the size of TB outbreaks compared to 

when HIV is not present. However, when the treatment rate of TB is very high, the amplification 

effect of HIV can be significantly reduced. Simulation results agree with molecular 

epidemiological data in that the incidence rate of TB is comprised of multiple small and a few 

large outbreaks. However, these large outbreaks may occur as a result of chance and not 

necessarily due to increased strain fitness. Based on their results, the authors advocate for both 

TB and HIV treatment as a means to control TB outbreaks; the presence of HIV does not negate 

the value of TB therapeutics in developing nations. 

To explicitly consider HIV and TB combined control efforts, Currie et al. (2003) compare TB 

chemotherapy with three strategies for prevention, two of which focus directly on HIV treatment, 

in a deterministic model. The model includes TB reinfection and treatment failure. They find that 

even where HIV prevalence is high, treating active TB is the most effective way to minimize the 

number of TB cases over the next 10 years. Treatment of only latent TB is comparatively 

ineffective over all time scales. Reducing HIV is relatively ineffective over 10 years, but much 

more effective over 20 years. 

 

Though Porco et al. (2001) state that TB therapeutics are not ineffective in the presence of HIV, 

Getz et al. (2006) further explore this relationship, and preliminary model results indicate that a 

2 month TB treatment compared to a 6 month treatment regime may offer important benefits that 

appear to be reduced when HIV prevalence is high. The model is currently being used to 

investigate scenarios with increased treatment compliance, reduced relapse after treatment and 

enhanced case detection. 

Including treatment and progression dynamics of both HIV and TB introduces a high level of 
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complexity into a model, which is compounded by high levels of uncertainty in parameter values 

characterizing both TB and HIV (Getz et al. 2006). To attempt to resolve this uncertainty, 

Raimundo et al. (2003) use empirical data from a closed environment to try to better estimate 

transmission coefficients for both HIV and TB in a deterministic model. The threshold between 

absence of infection and endemic basins are analyzed. The interaction between TB and HIV is 

considered with data from women incarcerated in the Female Penitentiary of Sao Paulo State, 

Brazil. Homogeneous mixing among all individuals is assumed, there is no recovery, and 

reinfection (and/or reactivation) exists. Model results indicate that TB can, to some extent, be 

preventative for HIV infection when HIV incidence and prevalence are low (and assuming 

segregation for AIDS patients). On the other hand, the presence of HIV, even when low, 

increases rates of TB and speeds progression to active disease. In combination with the results of 

Getz et al. (2006), it is clear that the combination of HIV and TB in a population will increase 

transmission of each, and limit the treatment of both. 

 

 

 

2.3 SOME STUDIES ON TUBERCULOSIS USING 

DETERMINISTIC MODELS EITHER THAN THE SEIS MODEL 

Castillo-Chavez and Feng (1996) formulated one-strain and two-strain TB models to determine 

possible mechanisms that may allow for the survival and spread of naturally resistant strains of 

TB as well as antibiotic-generated resistant strains of TB. Analysis of their models showed that 

non-antibiotic co-existence is possible but rare for naturally resistant strains while co-existence is 

almost the rule for strains that result from the lack of compliance with antibiotic treatment by TB 

infected individuals. 

Blower et al. (1997) present time-dependent uncertainty and sensitivity analyses in order to 

quantitatively understand the transmission dynamics of tuberculosis epidemics in the absence of 

treatment. The time-dependent uncertainty analysis enabled them to evaluate the variability in 

the epidemiological outcome variables of the model during the progression of a tuberculosis 

epidemic. Calculated values for the disease incidence, disease prevalence, and mortality rates 
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were approximately consistent with historical data. The time-dependent sensitivity analysis 

revealed that only a few of the model's input parameters significantly affected the severity of a 

tuberculosis epidemic; these parameters were the disease reactivation rate, the fraction of 

infected individuals who develop tuberculosis soon after infection, the number of individuals that 

an infectious individual infects per year, the disease death rate, and the population recruitment 

rate. Their analysis demonstrated that it is possible to improve the understanding of the 

behaviour of tuberculosis epidemics by applying time dependent uncertainty and sensitivity 

analysis to a transmission model. 

Deterministic model of tuberculosis without and with seasonality was designed and analyzed into 

its transmission dynamics by Bowong and Kurths (2011). They first presented and analyzed a 

tuberculosis model without seasonality, which incorporates the essential biological and 

epidemiological features of the disease. The model was shown to exhibit the phenomenon of 

backward bifurcation, where a stable disease-free equilibrium coexists with one or more stable 

endemic equilibriums when the associated basic reproduction number is less than unity. Then, 

the extension of their TB model by incorporating seasonality was developed and the basic 

reproduction ratio defined. Parameter values of the model were estimated according to 

demographic and epidemiological data in Cameroon. 

The simulation results were in good accordance with the seasonal variation of the reported cases 

of active TB in Cameroon. 

E. Salpeter and R. Salpeter also formulated a Mathematical model for TB. The authors used 

epidemiologic data on tuberculosis to construct a model for the time delay from initial latent 

infection to active disease, when infection transmission occurs. They used case rate tables in the 

United States to calculate the fractional rate of change per annum (A) in the Incidence of active 

tuberculosis. They then derived estimates for the effective reproductive number (R) and the 

cumulative transmission, defined as the number of people whom one infected person will infect 

in his or her lifetime and over many multiple successive transmissions, respectively. For A of -4 

percent per year, the average US condition from 1930 to 1995, they estimated the reproductive 

number to be about 0.55 and the cumulative transmission to be about 1.2. The estimated rate of 

the new latent infections in the United States is 80, 000 per year, the estimated prevalence of 

latent infections is 5 percent, and the number of transmissions of infections per active case is 3.5. 
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From the model, the authors predicted active case rates in various age groups and compared them 

with published tables. The comparison suggests that the risk of activation decreases rapidly, then 

gradually, for the first 10 years after initial infection; the risk is relatively constant from 10 to 40 

years and may decrease again after 40 years. The authors also discussed how this model could be 

used to help make decisions about tuberculosis control measures in the population. 

An SIS model for bacterial infectious diseases, like tuberculosis, typhoid,etc., caused by direct 

contact of susceptibles with infectives as well as by bacteria was proposed and analyzed by M. 

Ghosh et al (2005). Here the demography of the human population was constant immigration and 

the cumulative rate of the environmental discharges was a function of total human population. 

Further their model was extended to the model for socially structured population (rich and poor) 

where poor people worked as service provider in the houses of rich people but did not settle in 

the habitat of rich people. It was assumed that bacteria population did not survive in the clean 

environment of rich people and only affected the population in the degraded environment of the 

poor class. The stability of the equilibriums was studied by using the theory of differential 

equation and computer simulation. It was concluded that the spread of the infectious disease 

increased when the growth of bacteria caused by conducive environmental discharge due to 

human sources increased. Also the spread of the infectious disease in rich class increased due to 

the interaction with service providers, who were living in relatively poor environmental 

condition, suggesting the need to keep our environment clean all around. 

Achterberg (2001) used the deterministic mode to study demographic non-stability and 

environmental change over time. To do so, vaccination, population growth, overall well-being, 

and exposure are modeled as functions of both contact rate and infectivity per exposure. Though 

interpreted as environmental and behavioural change, mathematically this construction is similar 

to the way in which Murphy et al. (2002 & 2003) carried out their study on heterogeneity. 

 

Several TB models aim to investigate optimal treatment strategies. Lietman and Blower (2000) 

study pre- and post-exposure vaccines, using models with fast and slow progressors, and 

vaccines parametrized by their ―take‖, ―degree‖ and ―duration‖, permitting various mechanisms 

by which these programs may be less than 100% effective. They find that even if a vaccine is 

only moderately effective, it may reduce TB epidemics if coverage is high. A strategy of 
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continuous vaccination of newborns after a single mass vaccination of susceptibles appears to 

perform best. However the vaccines simulated are theoretical and estimates of the efficacy of the 

existing vaccine Bacille Calmette-Gu´erin (BCG) are highly variable (Colditz et al., 1994, 1995). 

In Ziv et al. (2001) the authors use an SEIR-model with fast and slow progression to numerically 

compare the effects of preventative treatment of those in the fast-progressing latent class with 

treatment of those with active, infectious disease; they conclude that contact tracing and 

preventative treatment compare quite favorably to treatment of those with disease. 

 

 

2.4 Differential Equation 

Definition: An equation containing the derivatives of one or more dependent variables, with 

respect to one or more independent variables, is said to be a differential equation. An example of 

a differential equation is shown below; 

                             a
   

   
 + b

  

  
 + cx = d                                                                 (2.01) 

where x is the variable and t is its derivative. 

Differential equations play a prominent role in engineering, physics, economics, and other 

disciplines. Differential equations arise in many areas of science and technology, especially 

whenever a deterministic relation involving some continuously varying quantities and their rate 

of change in space or time is known. This is illustrated in classical mechanics, where the motion 

of a body is described by its position and velocity as the time value varies. Newton's laws allow 

one (given the position, velocity, acceleration and various forces acting on the body) to express 

these variables dynamically as a differential equation for the unknown position of the body as a 

function of time. In some cases, this differential equation may be solved explicitly. 

An example of modeling a real world problem using differential equations is the determination 

of the velocity of a ball falling through the air, considering only gravity and air resistance. The 

ball's acceleration towards the ground is the acceleration due to gravity minus the deceleration 
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due to air resistance. Gravity is considered constant, and air resistance may be modeled as 

proportional to the ball's velocity. This means that the ball's acceleration, which is a derivative of 

its velocity, depends on the velocity (and the velocity depends on time). Finding the velocity as a 

function of time involves solving a differential equation (Wikipedia, Differential Equations). 

Differential equations are mathematically studied from several different perspectives, mostly 

concerned with their solutions, the set of functions that satisfy the equation. Only the simplest 

differential equations admit solutions given by explicit formulas; however, some properties of 

solutions of a given differential equation may be determined without finding their exact form. If 

a self-contained formula for the solution is not available, the solution may be numerically 

approximated using computers. The theory of dynamical systems puts emphasis on qualitative 

analysis of systems described by differential equations, while many numerical methods have 

been developed to determine solutions with a given degree of accuracy (Abbott and Neill, 2003). 

2.4.1 Types of differential equations 

2.4.1.1 Ordinary differential equation 

Definition: An ordinary differential equation (ODE) is a differential equation in which the 

unknown function (also known as the dependent variable) is a function of a single independent 

variable. That is, 

F (x,y,  ,……….,    ) = 0                                                                  (2.02) 

where y is a function of x   = 
  

  
 is the first derivative with respect to x and      =         is the 

nth derivative with respect to x. 

In the simplest form, the unknown function is a real or complex valued function, but more 

generally, it may be vector-valued or matrix-valued. This corresponds to considering a system of 

ordinary differential equations for a single function. 

Ordinary differential equations are further classified according to the order of the highest 

derivative of the dependent variable with respect to the independent variable appearing in the 
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equation. The most important cases for applications are first-order and second-order differential 

equations. 

2.4.1.2 Partial differential equation 

Definition: A partial differential equation (PDE) is a differential equation in which the unknown 

function is a function of multiple independent variables and the equation involves its partial 

derivatives. Generally, it is represented as shown below; 

                  F (  u(x),     u(x),……,Du(x),u(x),x) = 0     (2.03) 

 x   where u:     is the unknown. 

The order is defined similarly to the case of ordinary differential equations, but further 

classification into elliptic, hyperbolic, and parabolic equations, especially for second-order linear 

equations, is of utmost importance. Some partial differential equations do not fall into any of 

these categories over the whole domain of the independent variables and they are said to be of 

mixed type (Blanchard et al. 2006). 

2.4.2 Linear and non-linear differential equations 

Both ordinary and partial differential equations are broadly classified as linear and nonlinear. 

Definition: A differential equation is linear if the unknown function and its derivatives appear to 

the power 1. When the unknown function and its derivatives appear to the power either than 1, 

then the differential equation is described as nonlinear. Examples of linear and nonlinear 

differential equations are shown in equations (2.04) and (2.05). 

 
  

  
 =   y + cost                      (2.04) 

   

   
 = 2x (

  

  
                      (2.05) 
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The characteristic property of linear equations is that their solutions form an affine subspace of 

an appropriate function space, which results in much more developed theory of linear differential 

equations. Homogeneous linear differential equations are also such that the sum of any set of 

solutions or multiples of solutions is also a solution. The coefficients of the unknown function 

and its derivatives in a linear differential equation are allowed to be functions of the independent 

variable or variables and if these coefficients are constants then one speaks of a constant 

coefficient linear differential equation. 

There are very few methods of solving nonlinear differential equations exactly; those that are 

known typically depend on the equation having particular symmetries. Nonlinear differential 

equations can exhibit very complicated behaviour over extended time intervals, characteristic of 

chaos. Even the fundamental questions of existence, uniqueness, and extend ability of solutions 

for nonlinear differential equations, and well-posedness of initial and boundary value problems 

for nonlinear PDEs are hard problems and their resolution in special cases is considered to be a 

significant advance in the mathematical theory.  

Linear differential equations frequently appear as approximations to nonlinear equations. These 

approximations are only valid under restricted conditions. For example, the harmonic oscillator 

equation is an approximation to the nonlinear pendulum equation that is valid for small 

amplitude oscillations (Zwillinger, 1997). 

 

2.5 Description of some Deterministic Models 

When dealing with large populations, as in the case of tuberculosis, deterministic mathematical 

models are used. In a deterministic model, individuals in the population are assigned to different 

subgroups or compartments, each representing a specific stage of the epidemic. Letters such as 

M, S, E, I, and R are often used to represent different stages. 

The transition rates from one class to another are mathematically expressed as derivatives, hence 

the model is formulated using differential equations. While building such models, it must be 

assumed that the population size in a compartment is differentiable with respect to time and that 
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the epidemic process is deterministic. In other words, the changes in population of a 

compartment can be calculated using only the history used to develop the model (Brauer & 

Castillo-Chavez, 2001). 

Some deterministic models have been discussed below. 

2.5.1 SI(S) Models  

The SI(S)model is a two-state deterministic model which assumes that a person can be in one of 

only two states, either susceptible(S) or infectious(I). These states are often called compartments, 

and the corresponding models are called compartment models. Not all diseases are accurately 

described by a model with only two states, but a two-state model is useful in describing some 

classes of micro parasitic infections to which individuals never acquire a long lasting immunity. 

Certain RNA viruses such as rhinoviruses and coronaviruses (the common cold) mutate so 

rapidly that individuals recently recovered from a cold will still be susceptible to other strains of 

the same virus circulating in a population. In a simple model for this process, individuals never 

enter a recovered state, but rather alternate between being susceptible and being infectious. 

In an SI model (or any standard compartment model), individuals move from the Susceptible 

state (S) to the Infectious state (I) by mixing or interacting with infectious individuals. If almost 

the entire population is Susceptible, then the rate of change in the number of Infectious people  

(Δ I) must be proportional to the transmission rate:  

                     Δ I α βI                                                                                                                    (2.06)                  

where β, is the transmission rate. This expression is, of course, incorrect for large numbers of 

infectious people because the total population is not always entirely susceptible to infection. 

Once there are no susceptible people left to infect, there can be no new infections. The correct 

expression is given by:  

                         I SI   
p


                                                                                                       (2.07)                                                           
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where the total population P = (S+I), and S/P is the fraction of the population Susceptible to 

infection. The proportionality expression (2.07) is an interaction product that represents the 

interaction between infectious people and susceptible people as a simple product. This 

interaction product, determines the new incidence of infection (McKendrick, 1925). 

 

The Reproductive Number of an SI(S) model 

Whether or not a disease will spread throughout a population is determined by the Basic 

Reproductive Number,Ro. For an SIS model, Ro is the product of the infectious period and the 

transmission rate.  

When Ro > 1.0, the disease is infectious. When Ro < 1, the disease will die out. By implementing 

interventions that lower the transmission rate, public health officials can reduce the basic 

reproductive rate of a disease.  

 

2.5.2 SIR(S) Models  

The SI(S) model contains the important interaction product,  

                    SI  
p


                                   (2.08)  

which describes how infectious people transmit an infection to susceptible people. However, 

notall infectious disease is well described by only two states. More generally, after exposure to 

micro parasitic infection, individuals who recover from a disease will enter a third state where 

they are immune to subsequent infection. This Recovered State, R, appears in the SIR(S) 

compartment models.  

For infections that confer lifelong immunity in the recovered state, an SIR model is appropriate. 

Typical examples for which an SIR model is used include measles and mumps. In cases 
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involving seasonal flu, immunity is not lifelong and may decrease over time. Immunity loss can 

reflect a decrease in an individual‘s immune response, or a genetic drift in the circulating strain 

of virus that diminishes the effectiveness of the acquired immunity. In either case, an SIRS 

model represents the rate at which people in a Recovered state return to a susceptible state at a 

rate α, the immunity loss rate. The equations that define an SIR or SIRS model are shown in 

equations (2.09). 

                                    
s

S   ( )I  R  µ P  S
p

     ─ ─  

                                   
s

I   ( )I  I  µI
p

  ─ ─                                                                          (2.09) 

                                    R  I  R  µR   ─ ─  

In an SIR(S) model, the disease parameters include the total population, the transmission rate, the 

recovery rate, and the initial number of infectious people. It also includes the initial Recovered 

population, the number of people who are initially immune. Assume this number is initially set to zero 

and, as before, the birth rate and death rates are also taken to be zero. Below these constants, the number 

of people in each of the states, S, I, and R is a function of time. At t=1 (day), the population in S is simply 

the total population – the number initially infectious. The new incidence is calculated from these two 

numbers, using Equation 2. From this term and the other terms in Equation 2, the number of people in the 

S, I, and R states is computed at each successive time step. Assume, for example, that the immunity loss 

rate is set near zero (α = 0.01). Since initially almost the entire population is susceptible, an epidemic 

wave results. Over long periods of time, the model still goes to a fixed point with a very low level of 

endemic infection. However, if the immunity loss rate had been set to zero (lifelong immunity), the 

infectious disease would have gone extinct since this is a closed compartment model.  

The Recovered State, R, in an SIR(S) model is sometimes called the Removed state. This 

alternate name is appropriate as recovered individuals are immune in the model and therefore 

―removed‖ from the interaction term that leads to new incidence of infectious individuals 

(Equation 1a). If the immunity loss rate is non-zero, then Removed individuals become 

susceptible at a rate α. If we include a mortality rate m in each compartment, for an SIR(S) 

model, the basic Reproductive Number, Ro, is given by:  
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oR



 

                                                                                                (2.010)       

(Kermack and McKendrick  , 1932). 

 

2.5.3 SEIR(S) Models  

Many infectious diseases are also characterized by an incubation period between exposure to the 

pathogen and the development of clinical symptoms. If the exposed individual is not infectious 

during this incubation period (e.g., not shedding virus), it is important to model the incubation 

time explicitly. Note that there is a difference between an incubation time and a period of 

latency. A virus may or may not be dormant when an individual is in an exposed state. It is 

important to model the Exposed (E) state explicitly when there is a delay between the time at 

which an individual is infected and the time at which that individual becomes infectious. In this 

case an SEIR(S) model is appropriate. Smallpox, for example, has an incubation period of 7-14 

days.  

 

Figure 2.1: An SEIR(S) compartment model.  
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The rate parameters are the same as for an SIR(S) model with the addition of an incubation rate e 

which reflects the time between exposure (infection) and becoming infectious.  

The Exposed State 

As shown in Figure 2.1, the SEIR model has four compartments or states, and therefore four 

equations are required to parameterize it. The infectious process is the same as for SI and SIR 

except that infected individuals first enter the exposed state where they begin an incubation time. 

Equation (2.07) then becomes:    

                                         ∆E α β(
 

 
)I                                                                                      (2.011) 

Exposed individual transition from the E state to the I state at a rate ε, which reflects the 

incubation rate of the disease.  

SEIR(S) Rate Equations 

The rate equations for the SEIR model are shown in equations (2.07) below:  

                                      
s

S   ( )I  R  µ P  S
p

     ─ ─  

    

s
E   ( )I  E  µE

p
  ─ ─                                                                   (2.012) 

                                     I  E  I  µI   ─ ─  

                                     R  I  R  µR   ─ ─  

The four states defined by the SEIR model by no means reflect the totality of compartmental 

models in epidemiology. In many cases, the population itself is segmented. The reproductive rate 

of a disease, the incubation rate, recovery rate, and mortality can all vary based on socio-

economic factors, gender, age, and infrastructure (health care, sanitation, water quality). For 

many studies, the population itself is divided based on these or other factors that affect the 
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transition rates from one state (compartment) to the next. For instance, studies involving finite 

birth and death rates may account for the maternal immunity conferred on new born infants; this 

transient immune state can be added to any of the models describe above. Models of sexually 

transmitted diseases (STDs) distinguish between males and females, partitioning an SI model 

into the states Sm, Sf, Im, If. Even more complex models include multi-serotype models for 

Flaviviridae viruses such as Dengue Fever. In Dengue Fever, previous infection by one strain of 

Dengue Fever can lead to more severe infection (and a greater viral load) in newly infected 

individuals. Multi-serotype models have been developed that account for historical infection in 

populations where several serotypes of the virus are circulating (Porter, 1978). 

2.5.4 The SEIS Model 

The SEIS model takes into consideration the exposed or latent period of the disease, giving an 

additional compartment, E(t). 

                                      S→E→I→S 

In this model an infection does not leave a long lasting immunity thus individuals that have 

recovered return to being susceptible again, moving back into the S(t) compartment. The 

following differential equations describe this model:  

                                    
dS

B SI S I
dT

      

    

dE
SI ( )E

dT
                                                                             (2.013) 

                                    
dI

E ( )I
dT

      
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2.6 Linear and Nonlinear Models 

Another important concept in modeling is linearity. A linear model uses parameters that are 

constant and do not vary throughout a simulation. This means that we can enter one fixed value 

for the parameter at the beginning of the simulation and it will remain the same throughout. 

A non-linear model introduces dependent parameters that are allowed to vary throughout the 

course of a simulation run, and its use becomes necessary where interdependencies between 

parameters cannot be considered insignificant. The choice between using a linear and a non-

linear model is dependent upon how significantly the values of any of the parameters involved 

vary in relation to any of the other parameters. 

In a linear model, all the parameters are independent of any of the others. In a real device, 

however, parameters are always dependent upon other parameters to some degree, but in many 

cases if the dependency is so small it can be ignored. For example, the density of any solid 

material is dependent upon its temperature, but the variation is generally so small over normal 

temperature ranges that it can be ignored, and the material density is usually modeled as a linear, 

constant parameter. Where possible, it is always best to use a linear model, as it is simpler and 

faster running than a non-linear model (Blanchard et al. 2002). 

To model a non-linear parameter, we must update the simulation material parameters at each 

iteration step of the simulation. Although modeling parameters as non-linear in a simulation 

gives a more accurate representation, it increases simulation run time significantly. 

 

2.7 Equilibrium States 

Equilibrium is a state of a system which does not change. If the dynamics of a system is described by a 

differential equation (or a system of differential equations), then equilibriums can be estimated by setting 

a derivative (all derivatives) to zero. 
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Equilibrium may be stable or unstable. Equilibrium is considered stable if the system always 

returns to it after small disturbances. If the system moves away from the equilibrium after small 

disturbances, then the equilibrium is unstable. 

The notion of stability can be applied to other types of attractors (limit cycle, chaos), however, 

the general definition is more complex than for equilibriums. Stability is probably the most 

important notion in science because it refers to what we call "reality". Everything should be 

stable to be observable. For example, in quantum mechanics, energy levels are those that are 

stable because unstable levels cannot be observed. 

In this study, our equilibrium states will be a analyzed using the Routh-hurwitz stability criterion. 

2.8 Routh-Hurwitz stability criterion 

Routh-hurwitz stability criterion is a method that can be used to establish the stability of a system 

without solving its characteristic equation. 

(Hurwitz, 1964).  

 

Consider the characteristic equation  

n n 1 n 2

0 1 2 n 1 n
... 0a a a a a

 


                                                   (2.014) 

describing the dynamic system. Note that the necessary condition for the stability is satisfied if 

all the coefficients ai > 0. Therefore, we assume that the coefficient a0 > 0. We write the so-

called Hurwitz matrix. It is composed as follows. The main diagonal of the matrix contains 

elements a1, a2, ..., an. The first column contains numbers with odd indices a1, a3, a5, .... In each 

row, the index of each following number (counting from left to right) is 1 less than the index of 

its predecessor. All other coefficients ai with indices greater than n or less than 0 are replaced by 

zeros. The result is a matrix shown below:  
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                      (2.015)  

  

 

The principal diagonal minors Δi of the Hurwitz matrix are given by the formulas  
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a
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We now formulate the Routh-Hurwitz stability criterion : The roots of the characteristic equation 

have negative real parts if and only if all the principal diagonal minors of the Hurwitz matrix are 

positive provided that 0 1 2 na  0 :   0,   0,  ...,   0       . Since n n n 1a    , the last 

inequality can be written as na  0 . 

 For the most common systems of the 2nd, 3rd and 4th order, we obtain the following stability 

criteria:  

 

For a second order system, the condition of the stability is given by  

                              
0

 0,a     
1 1
= 0a  ,    1 0

2 1 2

3 2

= = 0
a a

a a
a a

    

                                                              Or 

                                 
0

0a  ,  
1

0,a      
2

0,a       
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that is, all coefficients of the quadratic characteristic equation must be positive. In other words, 

for a system of 2nd order, the necessary condition of the stability is also the sufficient one. We 

emphasize that we consider here the asymptotic stability of the zero solution.  

 

For a 3rd order system, the stability criterion is defined by the inequalities  

                            
0

0a  ,   
1 1

0,a    1 0

2 1 2 0 3

3 2

= = 0,
a a

a a a a
a a

    
3 3

0a   

                                             Or  

                            
0

0a  ,  
1

0a  ,   
2

0a  ,   
3

0a  ,
1 2 0 3

 0.a a a a   

  Similarly, for a 4th order system, we obtain the following set of inequalities:  

                           
0

0a  ,   
1 1

0,a        1 0

2 1 2 0 3

3 2

= = 0,
a a

a a a a
a a

                     

                             
1 0

2 2

3 3 2 1 1 2 3 1 4 0 3

4 3

0

0

0

a a
a a a a a a a a a a

a a

    

              (2.016)

 

                                                  or  

                             
i

0 (i = 0,..., 4)a  ,      
1 2 0 3

0a a a a  ,   
2 2

1 2 3 1 4 0 3
0a a a a a a a   . 

If all the n − 1 principal minors of the Hurwitz matrix are positive and the nth order minor is 

zero: n  0  , the system is at the boundary of stability. Since , then there are two options: The 

coefficient  = 0. This corresponds to the case when one of the roots of the 

characteristic equation is zero. The system is on the boundary of a periodic stability. 

The determinant Δn −1 = 0. In this case, there are two complex conjugate imaginary roots. The 

   s,e,i  to s*,e*,i* . 
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system is on the boundary of the oscillatory stability. The Routh-Hurwitz stability criterion 

belongs to the family of algebraic criteria. It can be conveniently used to analyze the stability of 

low order systems. The computational complexity grows significantly with the increase of the 

order. In such cases, it may be preferable to use other criteria such as the Lienard-Shipart 

theorem or the Nyquist frequency criterion (Routh, 1877). 

 

2.9 Uncertainty and Sensitivity analysis in modeling  

Uncertainty in model predictions can arise from many sources including  

 

 Conceptualization of disease, either the disease is too complex or too simple. 

 Inaccuracies/ uncertainty in input data  

 Use of inappropriate data/ inappropriate interpretation of data  

 User error  

Impact of the uncertainty from some of these sources can be quantitatively assessed through 

sensitivity analysis which involves specifying a potential range over which the parameter is 

thought to vary. 

Sensitivity analysis methods can either be deterministic or stochastic (Drummond,2005). 

 

. Main types of sensitivity analysis used:  

(1) One way sensitivity analysis 

(2) Multi way sensitivity analysis 

(3) Scenario analysis 

(4) Threshold analysis 

(5) Probabilistic sensitivity analysis 

(Oxlade, 2011). 

One way sensitivity analysis 

Estimates for each parameter are varied one at a time to investigate the impact on study results. 
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Multi way sensitivity analysis 

 This recognizes that more than one parameter is uncertain and that each could vary within its 

specified range. Better approach, but with many parameters there can be an infinite number of 

combinations to consider  

 

Scenario analysis 

 A series of scenarios are constructed representing a subset of the potential multi-way analysis.  

 

Threshold analysis                                                                                                                 

Critical values of a parameter central to decision are identified. Aanalyst determines threshold 

and then assess which combination of parameters cause the threshold to be exceeded. All of 

these approaches are deterministic.  

Probabilistic sensitivity analysis (PSA):  

Probabilistic sensitivity analysis is often called Monte Carlo simulation and incorporates 

stochastic element into analysis.  

PSA is important when you do not want an ―average‖ result. It provides a sense of uncertainty in 

predictions and requires defining ranges/distributions for parameters.  

Can run the model repeatedly (1000‘s of times) and each time it will select input parameter 

values from set distributions can build up a distribution of outcomes and see range/uncertainty.  
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2.9.1 Limitations of Sensitivity Analysis  

 Variation of uncertain parameters one at a time ignores possible interaction between 

parameters.  

 The analyst has discretion as to which variables and what alternative values are included 

in sensitivity analysis.  

 Interpretation is arbitrary as there are no guidelines/standards as to what degree of 

variation in results is acceptable evidence that the analysis is robust (Oxlade,2011). 
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CHAPTER 3 

THE MODEL 

  

3.1 Introduction 

Tuberculosis models are either deterministic or stochastic. The models operate by defining states 

for individuals within a population essentially assigning individuals to subpopulation groups 

based on characteristics such as ‗infected with,‘ or ‗immune to,‘ tuberculosis.  

Deterministic models have a finite number of states, and specify rules by which individuals 

move from one state to another through a series of differential equations. 

In this chapter, we are going to formulate our SEIS model based on the deterministic approach 

and develop expressions for the equilibrium points. Expressions which will be used to test for the 

stability of these steady states will also be developed, as well as the formula that will be used to 

calculate for the basic reproductive number. 

  

3.2 Preliminaries                                            

Differential equations have been developed as mathematical models to study the dynamics of 

disease transmission for many communicable diseases. 

When a community identifies people infected with tuberculosis, new individuals get infected by 

coming in contact with members of the infected population. In epidemics, it is of high interest to 

know how the disease will spread. Thus, what we really want to know in many cases is how 

many infected individuals there will be in the next period. In this chapter, a mathematical model 

will be developed to study the epidemiology of tuberculosis in the central region of Ghana. The 

specific model to be developed is the Susceptible-Exposed-Infected-Susceptible (SEIS) model.  
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3.3 Model formulation 

3.3.1 Model Assumptions 

1. An individual can be infected only by contacting infectious individuals. 

2. The death rate is assumed to be the same constant µ for all hosts, and the total deaths 

is balanced by total recruitment, hence the population is constant. 

3. Age, sex social status, and race do not affect the probability of being infected. 

4. Individuals of the population have the same interactions with one another to the same 

degree. 

5. It is assumed that, after the initial infection, a host stays in a latent period for some 

time and either recovers and gets back into the susceptible class or become infectious. 

6. An infectious host may die from disease or recover with no acquired immunity to the 

disease and again become susceptible. 

7. We assume that latently infected individuals are not infectious, that is they are not            

capable of transmitting bacteria. 
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3.3.2 Description of SEIS Model                                              

The SEIS model is made up of a host population which is grouped into three classes: the 

susceptible, the exposed (latent/incubation), and infectious, with sizes denoted by S,E,and I 

respectively. The host total population, N=S+E+I. The dynamical transfer of hosts is described in 

the following figure; 

 

      µE                                     

 

βN S 
σSI

N
  E     E       I         I     

 

 E   

                                                                                                                µI  

            µS 

 

                                           Figure 3.1: Flow chart of SEIS model                                                                                                                                               

Where 

   is the constant recruitment rate 

    is the transmission rate 

µ is the death rate 

   is the rate at which an individual leaves the latent class by becoming infectious 

  is the treatment rate of latent individuals 

   is the treatment rate of infectious individuals 
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S is the number of susceptible individuals 

E is the number of exposed individuals 

I is the number of infectious individuals  

N is the  total population size 

 

The inflow of susceptible comes from three sources, a constant recruitment β, recovered 

individuals from latency αE, and recovered individuals from the infectious class ωI. The 

parameters κ, α, and ω denote the transfer rates among the corresponding classes. 

 

 

3.3.3 Model equations 

The population is divided into three classes based on epidemiological status. Individuals are 

classified as either susceptible, latently infected (exposed), or infectious. 

The sizes of these groups are represented by S, E and I, respectively. 

In each time unit, a susceptible individual has an average σI contacts that would be sufficient to 

transmit the disease. Thus, the expression that shows how susceptible individuals are infected is 

represented as  
σSI

N
. 

 Individuals who die naturally from the susceptible class is expressed as µS and 

individuals who recover from the latent class and get back into the susceptible class is also 

expressed as αE. 

Those that recover from the infectious class is expressed as ωI. 

The above statements can be put together to form one equation showing the rate of change of the 

susceptible class. Thus, 
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dS SI

   N  µS  E  I
dt N


     ─ ─                                                         (3.01) 

 

The inflow of the latent class comes from a single source, being those members that move from 

the susceptible class and this is represented by 
σSI

N
 . 

The population of exposed individuals reduces as a result of the following three factors; 

 Death  

 Recovery rate of exposed individuals into the susceptible class    

 Progression of exposed individuals into the infectious class 

The rate of change of the latent class is equal to the difference between exposed members that 

moved from the susceptible into the latent class and the rate at which exposed individuals die 

naturally, recover into the susceptible class and also move into the infectious class. 

Thus,   

           
dE SI

  µ E   
dt N


  ─                                                                                            (3.02) 

                                 

From the above equation the number of people leaving the exposed class for the infectious class 

is denoted by κE. Some of the infectious individuals die naturally while some also die due to the 

disease, the total death is denoted by µI. Finally some recover and move back into the 

susceptible class which is denoted by ωI. 

From what has just been discussed above, the rate of change of the infected class can be put into 

an equation form as below, 

             
dI

     E –  µ  I    
dt
                                                                                              (3.03) 
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Putting these equations together, we obtain the following system of differential equations  

              
dS SI

   N  µS  E  I
dt N


     ─ ─                                                                       (3.01) 

              
dE SI

  µ E   
dt N


  ─                                                                                   (3.02)   

            
dI

     E –  µ  I    
dt
                                                                                             (3.03) 

which, together yields                             

               N=S+E+I                                                                                                              (3.04) 

We scale the above equations by letting  

S
                            s  

N
 ,  

E
  e 

N
  , and  

I
i 

N
  where s, e and i are the susceptible, exposed 

and infected proportions of the population respectively. The scaled equations are shown below: 

                                                                                                                     

                      

ds
      -  µs  e  i 
dt
      si -                                                                         (3.05) 

               
 

de
      si  µ e 
dt
   ─                                                                               (3.06)    

 
di

  e –  µ  i
dt
                                                                                   (3.07) 

 

3.5 Equilibrium Points                                                  

Under this, two equilibrium states will be considered, the disease- free equilibrium (where i = 0) 

and the endemic equilibrium (where i ≠ 0). We set the right hand side of equations (3.05),( 3.06) 

and ( 3.07) to zero and solve for the values of s, e and i. That is, 
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    -  µs  e  i  0      si-                                                               (3.08)             

    si  µ e  0   ─                                                                     (3.09) 

    
  e –  µ  i 0                                                                         (3.010) 

 

 3.5.1 Disease-free Equilibrium Point                              

At disease-free equilibrium, it is assumed that there is no disease in the system, therefore 

substituting i 0 ,   into the above equations will yield 

  

 

  -  µs  (0)  i(0) = 0

  s(0)  µ (0)  0

  (0) –  µ  (0) = 0

     

   

  

s(0) -

─  

which  reduces to  

                            µs  0                  

                      s  





 

So from the evaluations at disease disease-free equilibrium,      s,e,i  ( ,0,0)  1,  0,  0 .


 


 

3.5.2 Endemic Equilibrium                                                                        

Endemic equilibrium state indicates that the disease persists in the system. 

Here, we will be solving three systems of equations to obtain the values of s, e, and i. However, 

the endemic equilibrium point will be differentiated from the disease-free equilibrium point by 

changing    s,e,i  to s*,e*,i* .  
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   -  µs  e  i  0      si-                                                                 (3.08)

    si  µ e  0   ─                                                                       (3.09) 

    
  e –  µ  i 0                                                                          (3.010) 

                         

From  equation (3.010),   

                 i  e
( )





                                                                              (3.011) 

Also from equation (3.09),  

                 s =  
 µ κ α  

σ 
                                                                                (3.012)       

Substituting equation (3.011)   into equation (3.012) will give us 

                             
( )e ( )

s     
e

  
 

 
      

                                          S* =   
( )( )  


                                                       (3.013) 

 

From equation (3.09),   si  µ e,      

substituting the above expression into equation (3.08) will yield  

 µ e  µs  e  i 0          

Also, from equation (3.011), 
κ

i e
(µ ω)




, putting this also into the above equation will give us 

 µ e  µs  e 
κ

e
(µ ω)

    


   
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We make the above equation linear by multiplying through by ( )  , thus, 

 ( ) ( ) µ e  µs( )   e(
ωκ

e)  ( )
(µ )

0
ω

          


     

Implying that  

 ( ) ( ) µ e µs( )  e( )  e 0              

From here, we group like terms, 

 e( + )   ( + ) µ e  e  µs( + ) ( + )                

factorizing e out gives us 

                           e[ ( )   ( ) µ   ]  µs( ) ( )            

 

But 
 µ κ α ( )

s
  




, therefore, the equation becomes 

                           
 µ κ α ( ( )

e[ ( )   ( ) µ   ]  µ ( )
) 

         
 







 

We multiply through by σκ to make the equation linear, 

                

 
  ( )

e [ ( )   ( ) µ   ]  
µ κ α (

µ ( )
)    

           



  

Now we divide through by  ( [     µ( ])  )           to get 

                                 
  

2
µ µ κ α µ ω β(µ ω)σκ

σκ[α(µ ω) (µ ω)(µ κ α) ωκ
e

]
*

    


     
                                           (3.014)                                         
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Since we now have an expression for e*, it can be substituted into equation 3.011as shown below 

                                       
  

2
µ µ κ α µ ω β(µ ω)σκκ κ

i e
(µ ω) (µ ω) σκ[α(µ ω) (µ ω)(µ κ α) ωκ]

    
  

       
 

 

 (µ ω) and κ  will cancel out to produce 

                               
 µ µ α (µ ω) βσ

σ[α(µ ω) (µ ω)(µ α) ω
i*

]

    


      
                                               (3.015) 

At the endemic state, the equilibrium point will be 

 
    

2
µ µ κ α µ ω β(µ ω)σκ µ µ α (µ ω) βσ

, )
σκ[α(µ ω) (µ ω)(µ κ α) ωκ] σ[α(µ ω) (µ ω)(µ α) ω ]

( )( )
s*,e*,i* ( ,

         

  

 

        



 




 

3.6 Stability Analysis of the Equilibrium Points          

For the stability analysis of the disease-free and the endemic equilibrium points, we will find the 

Jacobian matrix of equations (3.05), (3.06) and (3.07). Equilibrium points at disease-free 

equilibrium and endemic equilibrium will then be substituted into the Jacobian matrix. After this 

we will solve the matrix equations to obtain an expression for the characteristic equations which 

will be used in the stability analysis. 

 

Equations (3.05), (3.06) and (3.07) are shown below 

                                       

ds
      -  µs  e  i 
dt
      si -                                                     (3.05) 

 
 

de
      si  µ e 
dt
   ─                      (3.06)                        

 
di

  e –  µ  i
dt
                                                                            (3.07) 



45 
 

Finding the jacobian matrix of the above equations becomes 

          J(s,e,i)=      

(β σsi µs αe ωi) (β σsi µs αe ωi) [β σsi µs αe ωi]
s e i

[σsi µ κ α e] [σsi µ κ α e] [σsi µ κ α e]
s e i

[κe – (µ ω)i] [κe – (µ ω)i] [κe – (µ ω)i]
s e i

   
              

 
           

   
 

     
    

 

 

 J s,e,i =  

σi µ α σs ω

σi µ κ α σs

0 κ –(µ ω)

    
 

  
 
  

 

 

3.6.1 Stability Analysis of the Disease-free Equilibrium         

At disease-free equilibrium, i  0,  e  0 and s  /µ    .  

Substituting these values into the jacobian matrix above will produce 

β
J ,0,0

µ

 
 
 

       =   

β
µ α σ ω

µ

β
0 µ κ α σ

µ

0 κ –(µ ω)

 
   
 
 

   
 

 
 
 

 

Where      represents Jacobian matrix at disease-free equilibrium 

From here, we begin solving the matrix equation. 

     – Iλ  

1 0 0 0 0

0 1 0 0 0

0 0 1 0

I

0

λ

λ

λ

   
   


   
  



 








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Therefore,      – Iλ  implies that 

 

β
µ α σ ω

µ

β
0 µ κ α σ

µ

0 κ –(µ ω)

 
   
 
 

   
 

 
 
 

- 

0 0

0

0 0

  0

λ

λ

λ

 
 
 
  

= 0 

     – Iλ =  

 

β
µ α σ ω

µ

β
0 µ κ α σ

µ

0 κ – µ

 

ω

λ

λ

λ

 
    
 
 

    
 

  
 
 

 

Finding the characteristic equation,   determinant of      – Iλ is set to zero. 

Thus, det(     – Iλ) =  

 

β
µ α σ ω

µ

β
0 µ κ α σ

µ

0 κ – µ

 

ω

λ

λ

λ

 
    
 
 

    
 

  
 
 

 = 0 

To find the determinant of the above matrix, we reduce it to three 2×2 matrices and find their 

determinants. 

 

   

 
β β

µ κ α λ σ 0 σ 0 µ κ α λβ
µ µ ( σ ω) 0

µ 0 κ
κ – µ ω λ 0 – µ ω λ

( )
       

    



 

  

 

     ( ){[ ][µ k α – µ ] –  k } –  0  0 0d ωλ λ     


   


  
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Expanding will give us 

       2 β
µ κ α µ ω µ κ α µ ω ] }){[

µ
(            

      [ µ κ α µ ω µ κ α µ ω             2 β
] [ µ κ α µ ω µ κ α

µ
        

  2 β
µ ω ]

µ
    

Rearranging yields 

       3 2 2 2µ κ α µ ω - - µ κ α - µ ω           

     
β β

µ κ α µ ω σκ µ κ α µ ω σκ 0
µ µ

            

We then factorize to get 

          3 2 β
[ µ κ α µ ω + ] -[ µ κ α µ ω µ κ α µ ω -σκ ]

µ
                 

  
β

[ µ κ α µ ω σκ ] 0
µ

        

We multiply through by -1 to get 

          3 2 β
[ µ κ α µ ω + ] +[ µ κ α µ ω µ κ α µ ω -σκ ]

µ
                 

  
β

[ µ κ α µ ω σκ ] 0
µ

        

This is a cubic equation and to solve it, we let the coefficients of              be m, p, and q. 

 That is, 

                                       m [ µ κ α µ ω ]       

      
β

p [ µ κ α µ ω µ κ α µ ω σκ ]
µ

            
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                                      
β

q [ µ κ α µ ω σκ ]
µ

       

The characteristic equation becomes 

                            
3 2a m p q 0                                                                                (3.016) 

Using Routh-Hurwitz stability criterion, if m 0,  q>0 and mp>q,  then the system has negative 

roots and the roots are all stable, otherwise the roots are unstable. 

 

 3.6.2 Stability Analysis of the Endemic Equilibrium             

For the stability analysis of the endemic equilibrium point, we will make use of the Jacobian 

matrix of the model equations 

    -  µs  e  i  0      si-                                                           (3.08)  

    si  µ e  0   ─                                                                 (3.09) 

                           
  e –  µ  i 0                                                                         (3.010) 

 

The Jacobian matrix of the above equations is shown below, 

 J s,e,i = 3 20.515 0.026 0.034 0        

In section 3.5.2 ,we proved that, at endemic equilibrium,  

s* =
 µ κ α (µ ω)

σκ

  
 

e* =
  

2
µ µ κ α µ ω β(µ ω)σκ

σκ[α(µ ω) (µ ω)(µ κ α) ωκ]

    

     
 

i*= 
 µ µ κ α (µ ω) βσκ

σ[α(µ ω) (µ ω)(µ κ α) ωκ]

   

     
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For simplicity sake, s*, e* and i* will be maintained in the Jacobian matrix to solve for the 

quadratic equation before their actual values will be substituted. 

Thus, 

 J s*,e*,i* =     =  

* *

* *

σi µ α σs ω

σi µ κ α σs

0 κ –(µ ω)

    
 

   
  

 

Now, we find the characteristic equation of the Jacobian matrix 

    – λI = =      λ

1 0 0

0 1 0

0 0 1

 
 
 
  

 =     - 

0 0

0 0

0 0

λ

λ

λ

 
 
 
  

 

  

* *

* *

σi µ α σs ω

σi µ κ α σs

0 κ –(µ ω)

    
 

   
  

  - 

0 0

0 0

0 0

λ

λ

λ

 
 
 
  

= 0 

 
 

 

* *

* *

σi µ λ α σs ω

σi µ κ α λ σs

0 κ – µ ω λ

     
 

    
 

 
   

=0 

 

 

We will break the above matrix into three 2×2 matrices and find their determinants, 

 *σi µ ][   
 

 

*µ κ α λ σs

κ – µ ω λ

   

 
 - 

 

* *σi σs

0 – µ ω λ


 
 + 

*( σs ω)   
 *σi µ κ α

0 κ

    =0 
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     * *[ σi µ ]([ µ κ α ][ ( ) ) k s )           

* * *( [ ( )( ) 0σi ( ) ] s i          

     * 2[ σi µ ][ µ κ α ( ) µ κ α ( ) s*]             

* * * *σi ( ) σi 0σi s( )        

Expanding the expression will be 

     * 2σi µ [ µ κ α ( ) µ κ α ( ) s*]           

    2[ µ κ α ( ) µ κ α ( ) s*]          

* * * *σi ( ) σi 0σi s( )        

       * * *σi µ µ κ α ( ) µ κ α σi µ ( ) σi µ                 

       * 2 * 2 2σi µ s* σi µ µ κ α ( ) µ κ α ( )                   

3 * * * *s* σi ( ( )σi 0) σi s           

Grouping like terms and factorizing λ
      λ out will give 

 3 2µ κ α ([ ) ( i* )]        

    *[ ( i* ) µ κ α ( i* )( ) µ κ α ( ) s ]* σi                  

 * * *s*( i* ) σi ( ) ( i* ) µ κ α[ ( )] 0( ) σi s                 

multiplying through by -1 becomes 

  23 µ κ α ( ) ( i* )][          

    *[ ( i* ) µ κ α ( i* )( ) µ κ α ( ) s ]* σi                  

 * * *s*( i* ) σi ( ) ( i* ) µ κ α[ ( )] 0( ) σi s                 
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If we let  

m=      *µ κ α µ ω σi µ        

p=         * * * *σi µ µ κ α σi µ µ ω µ κ α µ ω κσs ασi               

q=        * * * * * *κσs σi µ ασi µ ω σi µ µ κ α µ ω κσi ( σs ω)             , 

then the expression becomes 

3 2m p q 0                                                                                       (3.016) 

Solving the equation will produce three eigen values (  ,     ). 

The equation also has discriminant, 

∆ =      - 4   - 4   - 27  +18mpq 

The discriminant has the following characteristics; 

If ∆=0, the equation has a multiple root and all its roots are real. 

If ∆ > 0, then the equation has three distinct real roots. 

If ∆ < 0, then the equation has one real root and two non real complex conjugate. 

 

3.7 An application of Routh-Hurwitz stability criterion       

This stability criterion can also be used to determine whether all roots have negative real parts 

and establish the stability of the system without solving the characteristic equation itself. 

Looking at our developed characteristic equation 

3 2m p q 0     , 

We can apply Routh-Hurwitz stability criterion to test its stability.  
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According to Routh-hurwitz,  

if  m>0, q>0 and mp>q, then the system has negative roots and the roots are all stable, otherwise 

the roots are unstable. 

  3.8 The Basic Reproduction Number (  )                                  

The basic reproductive number,   , is defined as the expected number of secondary cases 

produced by a single infection in a completely susceptible population.  The basic reproductive 

number is dimensionless. 

If    <1, each individual produces, on average, less than one new infected individual and hence 

the disease dies out. 

 If    >1, each individual produces more than one new infected individual and hence the disease 

is able to invade the susceptible population. 

 This allows us to determine the effectiveness of control measures.  

The basic reproductive number,    of our model equations is given by the product  
 

σ

µ κ α 
, 

the average number of susceptible infected by one infectious individual during his or her 

effective infectious period and
 µ




, the fraction of the population which survives the latent 

period(Castillo-Chavez,1997).                                    

                                             oR =
( )( ) 






                                              (3.017)                        
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CHAPTER 4 

MODEL APPLICATION 

 

4.1 Introduction 

In this chapter, we are going to estimate the parameter values that will be used for the analysis. 

The values will be substituted into equation (3.017) obtained in chapter three to get the exact 

value for the basic reproductive number. Besides, parameter values will be substituted into the 

various equations derived in chapter 3 to get their actual values. Sensitivity analysis will also be 

carried out on the parameter values to investigate their impact on study results.   

The data on tuberculosis for this thesis was obtained from the Central Regional Health Directorate, Cape 

Coast. This study is based on data on tuberculosis from 2006 to 2010. 

4.2 Parameter Estimate 

Parameter estimation was based on the data obtained from the Central Regional Health 

Directorate, and published standard estimates.  

1

death rate
= average life expectancy (years) (Gerberry, and Milner, 2012). 

According to Gerberry and Milner, the average life expectancy in Ghana is 59.12. Therefore the 

death rate, µ in Ghana is  
1

59.12
 = 0.017.  

  From 2006 to 2010, the number of patients who went for TB test was 7,619 and out of this 

number of people, 5,766 tested positive while the remaining 1,853 tested negative. 

Transmission rate= 
effective contact

total contact
    (Wikipedia, Transmission risks and rates, 2009) 

From the above definition, our transmission rate, σ   
5,766

7,619
 = 0.7568 
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Averagely, 10% of latently infected individuals develop active TB (Koo, 2009), hence, the rate at 

which people leave the latent or exposed class for the infectious class, κ = 
10

0.7568
100

 = 

0.07568 

The mean percentage of the exposed class that recovers back into the susceptible group is 60% 

(Dobler  and Marks , 2012). 

Averagely, 5 out of every 10 patients recover during the treatment of active TB. 

 

 

The rate of recovery of the infectious class into the susceptible class, ω = 0.07568×0.5 = 0.03784 

 

From the above illustrations and calculations, the estimated values for the parameters have been 

summarized in table 4.1. 
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PARAMETER DESCRIPTION VALUE 

  Transmission rate 0.757 

   Death rate 0.017 

  Treatment rate of Latent 

individuals 

0.35 

  Treatment rate of infectious 

individuals 

0.038 

  The rate at which an individual 

leaves the latent class by becoming 

infectious 

0.076 

  Constant recruitment rate 0.017 

 

 Table 4.1: summary of estimated parameter values 

Substituting the above values into the SEIS model equations developed in chapter three, thus, equations 

(3.05), (3.06) and (3.07), we obtain 

             
ds

dt
= 0.017  0.017s  0.35e  0.038i                                                ── (4.01) 

                                                
de

dt
=   0.757si 0.4437e                                                                                                  ─ (4.02) 

                                           

di

dt
=  0.076e –  0.0557i                                                                                                        (4.03) 
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4.3 Equilibrium Points 

Two equilibrium states were considered. 

The equilibrium point was given as (s,e,i) = (1, 0, 0) for the disease free equilibrium. 

Also, the endemic equilibrium point, 

 s*,e*,i* = (  
 µ κ α (µ ω)

σκ

  
 , 

  
2

µ µ κ α µ ω β(µ ω)σκ

σκ[α(µ ω) (µ ω)(µ κ α) ωκ]

    

     
,

 µ µ κ α (µ ω) βσκ

σ[α(µ ω) (µ ω)(µ κ α) ωκ]

   

     
) 

Thus, 

 s*,e*,i* =   0.424,  0.242,  0.334  
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4.4 Stability Analysis 

Here, we are going to investigate the steady states to see which of them will be stable and this 

will help us confirm whether the disease will die out or persist in the region. 

4.4.1 Stability analysis of the Disease-free Equilibrium point 

The stability of the characteristic equation would be analysed based on the Routh-Hurwitz 

stability criterion.  

The disease free equilibrium is (s,e,i)= (1, 0, 0) and 

 

 J 1,0,0    J
DFE

=  

β
µ α σ ω

µ

β
0 µ κ α σ

µ

0 κ –(µ ω)

 
   
 
 

   
 

 
 
 

 

JDFE – Iλ =  

 

β
µ λ α σ ω

µ

β
0 µ κ α λ σ

µ

0 κ – µ ω λ

 
    
 
 

    
 

  
 
 

 = 0 

 

   

0.017 λ 0.35 0.719

0 0.443 λ 0.757

0 0.076 –0.055 λ

   
 

 
 
  

 = 0 

 ( 0.017 λ) 
0.443 λ 0.757

0.076 –0.055 λ

 


─0.35

0 0.757

0 –0.055 λ
      

0 0.443 λ

0 0.076

 
 = 0 
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Implying that  

  ( 0.017 λ) 0.443 λ –0.055 λ 0.058       =0 

 
2( 0.017 λ) 0.024 0.443λ 0.055λ λ 0.058       

=0 

 
2( 0.017 λ) λ 0.498λ 0.034     

=0 

 
2 3 20.017 0.008 0.0005 0.498 0.034       = 0 

3 20.515 0.026 0.034 0          

Thus,       

3 20.515 0.026 0.034 0                                                         (4.04) 

From Routh-Hurwitz criterion, the characteristic equation for the disease-free equilibrium above  

has  -0.034<0, hence unstable. This means that tuberculosis in Central region will persist. 

 

4.4.2 Stability analysis of the Endemic Equilibrium point 

Also, the endemic equilibrium is  s*,e*,i* =  0.424,  0.242,  0.334  

 and the Jacobian matrix for the endemic equilibrium is 

 

 J s*,e*,i* = JEE=  

* *

* *

σi µ α σs ω

σi µ κ α σs

0 κ –(µ ω)

    
 

   
  
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det J
EE

– Iλ) = 

 
 

 

* *

* *

σi µ λ α σs ω

σi µ κ α λ σs

0 κ – µ ω λ

     
 

    
 

 
  

 = 0 

 

  

0.270 λ 0.35 0.283

0.253 0.443 λ 0.321

0 0.076 –0.055 λ

   
 

 
 
  

 = 0 

 

  
0.443 λ 0.321

0.
( 0.27

076
0 )

0.055 λ

 


 


 ─0.35

0.253 0.321

0 0.055 λ 

      
0.253 0.443 λ

0 0.076

 
 = 0 

  ( 0.270 )[( 0.443 )( 0.055 ) 0.24] 0.35[0.253( 0.055 )] 0.005 0             

  
2( 0.270 )[0.024 0.443 0.055 0.024] 0.0049 0.089 0.005         =0 

  
2( 0.270 )[0.498 ] 0.089 0.0001     =0 

  
2 2 30.134 0.270 0.498 0.089 0.0001        = 0 

 
3 20.768 0.045 0.0001     =0 

                                                        

                          3 20.768 0.045 0.0001    =0                                              (4.05) 
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From Routh-Hurwitz criterion, since 0.768> 0, 0.0001 > 0 and 0.768×0.045 > 0.0001, the 

characteristic equation above corresponding to the endemic equilibrium is stable. 

This means that tuberculosis in Central region will persist. 

 

4.5 Sensitivity Analysis 

Sensitivity analysis enables the determination of which parameters of a model are most responsible for 

generating the variability in the value of the model's outputs over time. In this study, one way sensitivity 

analysis will be used, thus estimates for each parameter are varied one at a time to investigate the impact 

on study results. 

 

 

4.5.1 Sensitivity Analysis Using the Basic Reproduction Number, oR                                                          

From equation 3.017, the basic reproduction number of the SEIS model will be calculated as 

                             oR =
( )( ) 






    = 2.361   2                                                          

Since Ro   2, it implies that on average, each infectious individual transmits bacteria to 2 

people; hence, the disease will spread.                                                        

 

 In this particular analysis, much concern will be on the changes that will make Ro < 1. That is, 

we are more concern with the parameters that must be well considered in order to control TB in 

the region.  

 Four out of the six estimated parameter values were varied using one way sensitivity analysis 

and σ, κ, ω and α were the parameters varied. 

                                          o  R =  
  

σκ

µ κ α µ ω  
                                  (4.06)      
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If σ is doubled, 

                                          o1   R = 
  

2σκ

µ κ α µ ω  
                                                              (4.07) 

Comparing equations (4.06) and (4.07) above, it can be established that 

o1 oR 2R  

Generally, let a  R   

Then,   

o1 oR aR  

Which implies that 

                                    o1R =  
   

               
                                                                    (4.08) 

From what has just been established above, it is clear that increasing σ or κ will increase Ro 

which will cause the disease to spread and vice versa.  

Also, doubling α will yield 

                                             o1R   =
  

σκ

µ κ 2α µ ω  
                                                          (4.09) 

and if a  R , then 

                                             o1R = 
  

σκ

µ κ aα µ ω  
                                                         (4.010) 

That is, increasing α or ω will reduce Ro. 
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4.5.2 Sensitivity Analysis of Tuberculosis Transmission by    

Simulation 

 

Figure 4.1 : A graph of SEIS Model for Tuberculosis in Central Region 

  

Parameter values  Change in the proportions of (s, e, i)  

    oR       σ      α      ω       к   μ/β s    e       i 

0.757 0.35 0.038 0.076 0.017 -0.17 +0.42 +0.09 2.361 

Table 4.2: Actual parameter values against oR  and changes in the proportions of (s, e, i). 

NB: the positive and negative signs represent increase and decrease in proportions. 

 

A graph representing  the SEIS Model for tuberculosis in the Central Region of Ghana has been 

displayed in figure 4.1. The proportion of susceptible was initially 0.8, that of infective begun at 
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0.4 and the proportion of exposed group was 0. As time progressed, there was an interaction 

between the infective and the susceptible. Some of the susceptible individuals were latently 

infected as a result which caused the exposed proportion to increase from 0 to 0.42 while the 

proportion of susceptible reduced from 0.8 to 0.63 at the end of the 5
th

 year. Considering the 

proportion of infective, it dropped from 0.4 to 0.390 within the first year and then begun 

increasing gradually till it was in equilibrium with the exposed class at 0.3955 in the year 3.879. 

From there, it again increased till it got to 0.409 in the 5
th

 year.    
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Figure 4.2: the nature of the graph when α is increased from 0.35 to 0.99 with other       

parameter values maintained. 

  

Parameter values when α increases 

from 0.35 to 0.99  

 Change in the proportions of (s, e, i)  

    oR  
     σ      α      ω       к   μ/β s    e       i 

0.757 0.99 0.038 0.076 0.017 +0.33 +0.29 -0.03 0.966 

Table 4.3: Parameter values against oR  and changes in the proportions of (s, e, i) when α 

increases from 0.35 to 0.99. 

Here, we increase the recovery rate of the exposed group from 0.35 to 0.99 and it is shown in 

figure 4.2 that the proportion of susceptible increases sharply from 0.8 to 1.13 in the fifth year. 

The proportion of exposed increased from 0 to 0.29 while that of the infective reduced from 0.4 

to 0.37 in the 5
th

 year. 
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Figure 4.3: the nature of the graph when σ is decreased from 0.757 to 0.35 with other       

parameter values maintained. 

 

Parameter values when σ reduces from 

0.757 to 0.35  

 Change in the proportions of (s, e, i)  

    oR  
     σ      α      ω       к   μ/β s    e       i 

0.35 0.35 0.038 0.076 0.017 +0.12 +0.23 -0.045 1.09 

Table4.4: Parameter values against oR  and changes in the proportions of (s, e, i) when σ reduces 

from 0.757 to 0.35. 

From figure 4.3, and table 4.4, decreasing σ from 0.757 to 0.35 increases the susceptible 

proportion by 0.12, thus, from 0.8 to 0.92, increases the exposed proportion from 0 to 0.23 and 

reduces that of the infective from 0.4 to 0.355. 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time (years)

th
e
 p

ro
p
o
rt

io
n
s
 o

f 
s
u
s
c
e
p
ti
b
le

, 
e
x
p
o
s
e
d
 g

ro
u
p
 a

n
d
 i
n
fe

c
ti
v
e
s

A GRAPH OF SEIS MODEL FOR TB IN CENTRAL REGION WHEN THE INFECTION RATE IS REDUCED FROM 0.757 TO 0.35



66 
 

 

Figure 4.4: nature of the graph when ω is increased from 0.038 to 0.5 

 

 

Parameter values when ω increases 

from 0.038 to 0.5 

 Change in the proportions of (s, e, i)  

    oR  
     σ      α      ω       к   μ/β s    e       i 

0.75

7 

0.35 0.5 0.076 0.017 +0.09 +0.16 -0.055 0.251 

Table 4.5: Effect of parameter values on oR  and the proportions of (s, e, i) when ω increases 

from 0.038 to 0.5 . 

Considering figure 4.4, when the recovery rate of the infective increases, the proportion of 

susceptible increases sharply within the first two years and then begins to reduce gradually to 

0.89 in the fifth year. The proportion of infective also reduces drastically from 0.4 to 0.051while 

that of the exposed reduces from 0.42 to 0.154. 
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Figure 4.5: the effect of decreasing κ from 0.076 to 0.001while maintaining other parameter 

values. 

Parameter values when κ reduces from 

0.076 to 0.001 

 Change in the proportions of (s, e, i)  

    oR  
     σ      α      ω       к   μ/β s    e       i 

0.757 0.35 0.038 0.001  0.017 -0.08 +0.41 0.09 0.0374 

Table 4.6: Effect of parameter values on oR  and the proportions of (s, e, i) when κ reduces from 

0.076 to 0.001. 

When κ was reduced from 0.076 to 0.001 in figure 4.6, the proportion of susceptible reduced 

from 0.8 to 0.72 and a very small decrease in the exposed proportion, that is, from 0.42 to 0.41 

but the proportion of infective dropped from 0.4 to 0.31.  
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4.6 Discussion 

In this thesis, we attempted to modify the SEIS differential equation model developed by Castillo 

Chavez to predict the spread of tuberculosis in Central region. We discussed the existence and 

stability of the disease free and disease endemic equilibria of the model and performed 

sensitivity analysis of the model by varying some of the parameter values. We proceeded to 

simulate our model using Matlab 7.0.1.24704 (R14) by altering the values of σ, κ,ω and α, and 

observing the changes that occurred in the model. 

Based on the estimated parameter values for our SEIS model, the basic reproductive number, Ro 

= 2. The value of Ro  which is > 1 with a stable unique endemic equilibrium shows that the 

average number of secondary infections caused by a single infectious individual during their 

entire infectious lifetime is 2, hence the disease will take hold.  

The sensitivity analysis revealed that reducing the initial transmission rate and the effective 

transmission rate or increasing the treatment rate of the latent class will prevent the disease from 

spreading.  

From figure 4.2, the proportion of susceptible reduced from 0.8 to 0.63 because there was an 

interaction between the proportions of infective introduced into the population and the 

susceptible. This interaction caused the infective class to transmit bacteria to some of the 

susceptible individuals and as a result, the proportion of susceptible started decreasing while that 

of the exposed also began increasing from 0 in the beginning of the first year till it attained a 

value of 0.42 in the 5
th

 year. The proportion of infective decreased slightly within the first year. 

The reason for the decrease within the first year is due to the trend of tuberculosis infection. 

During initial infection, infected individuals are not active, that is, they do not move straight into 

the infectious class but rather get exposed (latently infected) for a period of time before some of 

them progress into the infectious class. When this happens, it means the proportion of infective 

will not increase and since some of the infectious individuals will receive treatment and recover 

within that period, the proportion of infective will reduce. It has also been observed from figure 

4.2 that the proportion of infective began increasing gradually from the 2
nd

 year till the 5
th

 year 

implying that individuals began to progress from the latent stage into the infectious stage. The 
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proportion of infective was equal to the proportion of exposed in the latter part of the 3
rd

 year at a 

point where the exposed curve crossed that of the infective. 

After analyzing the graph using the actual estimated values of the parameter, we decided to alter 

these values and observe their impact on study results.  

In figure 4.3, when the recovery rate of the exposed class increased, there was a sharp increase in 

the proportion of susceptible because more people recover and join the population of susceptible 

and when this happens, there will be a reduction in exposed group as well as the infective since 

there will be a small number of people left to progress into active TB. 

We observed a similar trend in figure 4.4 when the initial infection rate, σ was decreased. This is 

also due to the fact that less people get infected and move into the exposed class and since there 

is a small number of people in the exposed group, there are a few people who are likely to 

progress into active TB. 

When the recovery rate of the infective increased in figure 4.5, there was an increase in the 

proportion of susceptible and a drastic reduction in the proportion of infective as well as the 

exposed. The factors that account for these are that, more people will recover from TB infection 

and there will be less people with active TB in the population to infect the susceptible. Reduced 

infection of susceptible will mean there will be a small number of exposed individuals likely to 

progress into active TB. Meanwhile the recovery rate of the infective is so high that there will be 

a time when the exposed class cannot meet the demand of the infective class and will lead to TB 

disease disappearing. 

Decreasing κ, the infection rate of the exposed into the active class did not have any significant 

change in the proportion of susceptible and exposed but a reduction was observed in the 

proportion of infective as in figure 4.6. This normally happens when individuals in the exposed 

and susceptible group have strong immune system.    

A summary of our sensitivity analysis by simulation is shown in table 4.7. 
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Change in parameter value  Change in proportions   

   oR       σ      α      ω        к   μ/β      s       e     i 

0.757 0.35 0.038 

 

0.076 0.017  -0.17 +0.42 +0.09 2.361 

0.35          

(-54%) 

0.35 0.038 0.076 0.017  +0.12 +0.23 -0.045 1.09 

0.757 0.99 

(+183%) 

0.038 0.076 0.017  +0.33 +0.29 -0.03 0.966 

0.757 0.35 0.5   

(+1215.8%) 

0.076 0.017  +0.09 +0.16 -0.055 0.251 

0.757 0.35 0.038 0.001               

(-98.7%) 

0.017  -0.08 +0.41 -0.09 0.0374 

0.757 0.35 0.059 

(+54%) 

0.076 0.017  +0.01 +0.019 -0.007  

   

5.651 

0.757 0.539 

(+54%) 

0.038 0.076 0.017  0.180 +0.32 -0.055    

3.274 

Table 4.7: Summary of the effects of parameter value variation on oR  and the proportions of    

(s, e, i) 

NB: the positive and negative signs represent increase and decrease. 
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This model focused on tuberculosis transmission in Central region, Ghana through the 

deterministic approach. 

The basic reproductive number, Ro of our SEIS model was calculated to be 2, which implies that 

on average, each infectious individual transmits bacteria to 2 people. The stability analysis of the 

endemic equilibrium has been found to be stable; hence, we conclude that the transmission rate 

of TB in Central region is high and will persist.  

The sensitivity analysis that was carried out both Ro and simulation showed that the initial 

infection rate, σ has a very great influence on the spread of TB in the region than all the other 

parameters. Varying the value of σ at the same rate as the other parameter values completely 

decreases the proportions of both the infective and the exposed more effectively than any 

parameter value. We conclude that TB transmission is primarily as a result of the effective 

interaction between active TB patients and the susceptible group.  

From the analysis and discussions of the model, SEIS epidemiological model is a good model to 

study the spread of tuberculosis in Ghana. 
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5.2 Recommendations 

 

It is highly recommended that besides the attempts being made by Ghana Health Service to fight 

TB in the Central Region, there are other effective measures that can be implemented to reduce 

drastically the burden of TB on the health of the people in the region. 

 More emphasis should be laid on the preventive measures of TB in the region, especially   

educating the public on how to achieve protective or careful interaction between active 

TB patients and those with no infection to reduce initial transmission. 

 The Regional Health Directorate should sensitize all TB patients in the region (both 

clinically active and latently infected) for them to understand the nature of the disease 

and co-operate fully in the treatment programme. 

 The public should also be advised to go for early screening whenever they cough for 

more than a week for early detection in case it is TB infection. 

 

 

By doing this the TB situation in the Central Region of Ghana can be completely minimized and 

even eradicated.   

 

 It is again recommended that further studies be done on Tuberculosis by considering       

how diabetes and HIV influence the rate of TB infection and the rate of TB infection with 

respect to age.  
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APPENDIX 

Matlab code for the simulation 

 

alpha=a; 

sigma=d; 

beta=b; 

mu=g; 

kappa=k; 

omega=w; 

 

Figure 1 

 

function dy=sko(t,y) 

a=0.35;d=0.757;b=0.017;g=0.017;k=0.076;w=0.038; 

dy=zeros(3,1); 

dy(1)=b-d*y(1)*y(2)-g*y(1)+a*y(2)+w*y(3); 

dy(2)=d*y(1)*y(3)-(g+k+a)*y(2); 

dy(3)=k*y(2)-(g+w)*y(3); 

 

[t,y]=ode45('sko',[0 5],[0.8 0 0.4]) 

plot(t,y(:,1),t,y(:,2),t,y(:,3)) 

legend('proportion of susceptible','proportion of exposed','infective proportion') 

xlabel('time (years)');ylabel('the proportions of susceptible, exposed group and infectives') 

 

figure 2 

function dy=sko(t,y) 

a=0.99;d=0.757;b=0.017;g=0.017;k=0.076;w=0.038; 

dy=zeros(3,1); 

dy(1)=b-d*y(1)*y(2)-g*y(1)+a*y(2)+w*y(3); 

dy(2)=d*y(1)*y(3)-(g+k+a)*y(2); 

dy(3)=k*y(2)-(g+w)*y(3); 

 

[t,y]=ode45('sko',[0 5],[0.8 0 0.4]) 

plot(t,y(:,1),t,y(:,2),t,y(:,3)) 
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legend('proportion of susceptible','proportion of exposed','infective proportion') 

xlabel('time (years)');ylabel('the proportions of susceptible, exposed group and infectives') 

 

figure 3 

function dy=sko(t,y) 

a=0.35;d=0.35;b=0.017;g=0.017;k=0.076;w=0.038; 

dy=zeros(3,1); 

dy(1)=b-d*y(1)*y(2)-g*y(1)+a*y(2)+w*y(3); 

dy(2)=d*y(1)*y(3)-(g+k+a)*y(2); 

dy(3)=k*y(2)-(g+w)*y(3); 

 

[t,y]=ode45('sko',[0 5],[0.8 0 0.4]) 

plot(t,y(:,1),t,y(:,2),t,y(:,3)) 

legend('proportion of susceptible','proportion of exposed','infective proportion') 

xlabel('time (years)');ylabel('the proportions of susceptible, exposed group and infectives') 

 

 

figure 4 

 

function dy=sko(t,y) 

a=0.35;d=0.757;b=0.017;g=0.017;k=0.076;w=0.5; 

dy=zeros(3,1); 

dy(1)=b-d*y(1)*y(2)-g*y(1)+a*y(2)+w*y(3); 

dy(2)=d*y(1)*y(3)-(g+k+a)*y(2); 

dy(3)=k*y(2)-(g+w)*y(3); 

 

[t,y]=ode45('sko',[0 5],[0.8 0 0.4]) 

plot(t,y(:,1),t,y(:,2),t,y(:,3)) 

legend('proportion of susceptible','proportion of exposed','infective proportion') 

xlabel('time (years)');ylabel('the proportions of susceptible, exposed group and infectives') 
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figure 5 

function dy=sko(t,y) 

a=0.35;d=0.757;b=0.017;g=0.017;k=0.001;w=0.038; 

dy=zeros(3,1); 

dy(1)=b-d*y(1)*y(2)-g*y(1)+a*y(2)+w*y(3); 

dy(2)=d*y(1)*y(3)-(g+k+a)*y(2); 

dy(3)=k*y(2)-(g+w)*y(3); 

 

[t,y]=ode45('sko',[0 5],[0.8 0 0.4]) 

plot(t,y(:,1),t,y(:,2),t,y(:,3)) 

legend('proportion of susceptible','proportion of exposed','infective proportion') 

xlabel('time (years)');ylabel('the proportions of susceptible, exposed group and infectives') 
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