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Abstract

The rapid growth of bandwidth demanding wireless technologies has led to the

problem of spectrum scarcity. However, studies show that licensed spectrum is

underutilized. Cognitive radio technology promises a solution to the problem

by allowing unlicensed users, access to the licensed bands opportunistically. A

prime component of the cognitive radio technology is spectrum sensing. Many

spectrum sensing techniques have been developed to sense the presence or not of a

licensed user. This thesis evaluates the performance of the energy detection based

spectrum sensing technique in noisy and fading environments. Both single user

detection and cooperative detection situations were investigated. Closed form

solutions for the probabilities of detection and false alarm were derived. The ana-

lytical results were verified by numerical computations using Monte Carlo method

with MATLAB. The performance of the energy detection technique was evaluated

by use of Receiver Operating Characteristics (ROC) curves over additive white

Gaussian noise (AWGN) and fading (Rayleigh & Nakagami-m) channels. Results

show that for single user detection, the energy detection technique performs bet-

ter in AWGN channel than in the fading channel models. The performance of

cooperative detection is better than single user detection in fading environments.
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Chapter 1

Introduction

1.1 Background and Motivation

The possibility of electronic wireless communication would not exist without the

electromagnetic frequency spectrum. Traditionally, licensed spectrum is allocated

over relatively long time periods, and is meant to be used only by licensees [1]. A

government agency is responsible for allocating spectrum bands to operators. In

Ghana, the National Communications Authority is responsible for this exercise.

So is the Nigerian Communications Commission (NCC) and Federal Commu-

nications Commission (FCC) of the USA. This approach is termed the Fixed

Spectrum Allocation (FSA) scheme.

With this, the radio spectrum is split into bands allocated to distinct technology

based services, e.g. mobile telephony, radio and TV broadcast services, on abso-

lute basis. The FSA management framework guarantees that the radio frequency

spectrum is exclusively licensed to an authorized party, (i.e. the primary user

(PU)) without interference [2].

As a result of the transition from regular voice-only communication to multime-

dia type application, the need for high data rate has increased. Apparently, the
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FSA will not have the capacity for these rapid increase in the number of high

data rate technology [3].

However, background studies [4] show that spectrum use is intense on certain

portions while a significant amount remains underutilized. High utilization is

common in the cellular and FM radio bands, while other bands indicate low us-

age levels. More so, most of the license owners do not transmit all the time in

all geographic locations where the license covers. Records from the FCC indicate

that spectrum allocated in the bands below 3GHz have a utilization range of 15%

to 85% [5].

Figure 1.1 depicts measurements taken by Shared Spectrum Company (SSC) to

determine spectrum occupancy over several localities [6]. Observations from this

exercise imply that the average occupancy of spectrum over the seven locations is

only about 5.2%. It can be inferred from these measurements that an important

part of the radio frequency spectrum is unused or underutilized most of the time,

leading to large chunks of “spectrum holes” (whitespaces).

Figure 1.1: Spectrum occupancy measurement over some locations [6].

The static frequency allocation scheme as in place currently will not be suit-

able, since it creates an artificial shortage. The development of new bandwidth

demanding wireless technologies would depend on the availability of radio spec-

trum [3].
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As spectral resources become more limited, the [7] FCC recommends that sig-

nificant efficiency can be realized by deploying wireless devices that coexist with

primary users. Thus the secondary users take advantage of the available resources

with minimal interference to the primary users.

Consequently, groundbreaking techniques that provide new ways of exploiting the

available spectrum are required. As a result, Dynamic Spectrum Access (DSA)

was proposed to solve the inefficiency caused by the static allocation of spectrum.

With this concept, use of existing radio spectrum is enhanced by opportunistic

spectrum access (OSA) of the frequency bands that are not occupied by the li-

censed or primary user. The enabling technology for this Next Generation (xG)

network is the Cognitive Radio.

A Cognitive Radio (CR) is an intelligent radio platform with the ability to exploit

its environment to increase spectral efficiency and capacity. CR’s are regarded as

transceivers that automatically detect (sense the existence of) available channels

in a wireless spectrum and accordingly, change their transmission or reception

parameters [8]. The CR technology is envisaged to enable identification, use and

management of vacant spectrum, known as Spectrum Holes [9]. A spectrum hole

is a region of space-time frequency, where a primary user is absent and a par-

ticular secondary use is possible [10]. An illustration of this concept is shown in

Figure 1.2 below.

By dynamically switching between unoccupied spectrum gaps, CRs take advan-

tage of the locally unused spectrum.

Cognitive radios possess the ability to observe their communication environment

and adapt the parameters of their communication scheme to maximize the spec-

trum, while minimizing interference to the primary users [12] . To do so, [13],

asserts that CRs must continuously sense the spectrum in use in order to detect

3



Figure 1.2: Illustration of the Spectrum Hole concept [11].

re-appearance of a primary user. This and other functions of CRs are contained

in the basic cognitive cycle shown in Figure 1.3.

When implemented, the CR undergoes the various phases of the cognitive cycle.

Thus specifying how the radio learns, as well as responds (adapts) to its operating

environment [13].

From this cycle, the radio receives information (senses) it’s operating environ-

ment by performing direct observation; searching and identifying spectrum holes.

The information obtained is then analysed to ascertain characteristics of the en-

vironment; i.e. to estimate the spectrum holes. Based on this evaluation, the

radio determines its alternatives; selecting an option in a way that improves the

evaluation carried out previously [4]. The radio then employs these observations

and decisions to improve its operation (adaptation).

As seen from the figure, the initial phase of the cognitive cycle consists of the

sensing process. Hence, it is evident that reliable spectrum sensing is the most

critical function of the cognitive radio process [14].
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Figure 1.3: The Cognitive cycle [13].

By sensing and adapting to the environment, a cognitive radio will possess the

ability to fill in the spectrum holes and serve its users without causing harmful

interference to the primary user. Ultimately, a spectrum sensing scheme should

give a general picture of the medium over the entire radio spectrum. This allows

the cognitive radio network to analyze all parameters (time, frequency and space)

in order to ascertain spectrum usage [15].

From the aforesaid, it is essential that there should be efficient spectrum detection

techniques that ensure secondary user transmissions, while safeguarding primary

users.

The challenge then is that the procedure needs to have as little delay as possible,

so that once channels are available, transmission commence immediately. Conse-

quently, one would want as few false detections and missed detections as possible.

Three well studied spectrum sensing (SS) techniques are the matched filter, cy-

clostationary detection and energy detection. Both the matched filter detection

and the cyclostationary based detection concern prior knowledge of the primary

signal, which is not obtainable in practical scenarios [16] . Heterogeneous wire-
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less communication systems licensed to different primary spectra may overlap

within a geographical region. In such events, matched-filter detection or feature

detection are too costly for sensing multiple primary spectra [17]. More so, these

two techniques require a significant amount of time to detect a signal and there

include more complexity in the detection process of the CR. Among them, the

energy detection scheme is widely feasible. It does not require a priori knowledge

of the primary signals and has lower complexity than the other two schemes. The

ED method essentially ascertains the energy of a received signal to decide whether

a detected signal is noise or a primary user signal. Consequently, the energy de-

tection technique fits well into the general purpose of sensing the spectrum for

different wireless communication systems.

1.2 Problem Statement

In opportunistic spectrum access, a failure in the performance of spectrum sensing

implies a missed opportunity for secondary users to utilize the whitespace of the

spectrum, thereby causing harmful interference to the primary user [17].

The problem considered in this work is to ascertain the performance of a detection

scheme that quickly scans a spectrum band to decide on the availability of a

primary user. This system will not involve prior knowledge of the primary user

signalling scheme and channel information between users.

The performance of a single secondary user (SU) using the energy of a received

signal to determine presence of a primary user over fading and non-fading channels

is to be investigated. More so, the impact of employing cooperating secondary

user nodes over fading channels is also considered.
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1.3 Motivation

The challenge of spectrum scarcity and underutilization has gained prospects with

opportunistic spectrum access (OSA) and cognitive radio (CR) concepts lately.

CR in itself, aside from being a novel concept, presents a worthwhile area of

research. This technology offers a solution to the spectral scarcity phenomenon

by offering spectral awareness; hence its adaptive application. Since, a radio

that identifies its local radio spectral situation to recognize temporarily vacant

spectrum has a potential to present higher bandwidth services. It also lessens the

need for centralized spectrum management. This, in the long run allows for new

technologies in ubiquitous wireless communications. For this reason, spectrum

sensing, which involves ascertaining the frequency spectrum for empty bands; and

a foremost part of the cognitive cycle, is a stimulating research area.

1.4 Objective

The main objective of this thesis is to assess the performance of the energy de-

tection method for spectrum sensing.

1.4.1 Specific Objectives

The specific objectives of this study are:

1. To study and analyze the performance of the energy detection based spectrum

sensing technique in additive white guassian noise (AWGN).

2. To study and analyze the impact of fading channels on the energy detection

spectrum sensing technique, viz.;

(a) Rayleigh
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(b) Nakagami,

3. To investigate if cooperative detection has any effect on the performance of

the energy detection spectrum sensing technique over fading channels.

1.5 Outline of the study

The rest of this thesis will be as follows. Chapter two presents previous work

related to spectrum sensing for oppurtunistic spectrum assess. In chapter three,

we discuss the system model for the proposed technique. Chapter four provides

an assessment of the method described in Chapter three; by way of simulations.

In chapter five, we conclude and put forward recommendation(s) that can lead

to further research.
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Chapter 2

Review of Literature

In this chapter, the role of spectrum sensing (SS) to the overall opportunistic

spectrum access is reiterated. Basic concepts concerning SS are discussed, with

a view to deepen understanding. State-of-the-art techniques involved with SS

available in literature are described; while identifying research gaps.

2.1 Introduction

The goal of cognitive radio (CR) technology is to improve the spectral efficiency

through dynamic access by the unlicensed users [4, 18]. Opportunistic spectrum

access (OSA) is one that facilitates exploitation of local spectrum availability

without deleterious effect to the primary user [19]. The foundation on which the

CR paradigm is built is the OSA. With this paradigm, devices would be capa-

ble of sensing the environment over swaths of spectrum to find spectral holes

and expeditiously make use of frequency bands that are not occupied by pri-

mary users, inducing no harm to the legacy system in the process. Basically, the

secondary user identifies “gaps” in the spectrum, known as a spectrum holes or

white spaces and puts them to use. These white spaces originate from partial
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or no occupations by the incumbent users, i.e primary users (PU) (e.g. Digi-

tal TV broadcasters). The secondary communication can be executed once the

white spaces are identified in the spatio-temporal domain [20]. The function of

spectrum sensing therefore, is to be aware of the spatio-temporal electromagnetic

environment by determining the frequencies occupied by the PU.

A number of methods have been proposed for identifying spectrum opportunities

in a scanned frequency band. Typically, spectrum sensing is grouped within three

main detection approaches, namely, transmitter based detection methods, coop-

erative detection methods and interference based method. Transmitter detec-

tion methods consist of matched filter, cyclostationary and energy detection [21].

These techniques are further classified as [22] coherent, semi-coherent or non-

coherent; that is, either having complete, partial or no prior knowledge of the

transmitter respectively. Schemes that are cooperative include centralized, dis-

tributed and cluster based sensing methods. Whereas transmitter and cooper-

ative detection methods “perceive” spectrum to avoid interference to primary

transmitters; interference based detection guarantees minimal primary receiver

interference [23]. Figure 2.1 below describes in detail, classification of spectrum

sensing techniques. The transmitter and cooperative detection approaches fall

under the category of spectrum overlay; wherein SUs only transmit over the li-

censed spectrum when PUs are not using the band.

10



Figure 2.1: Classification of Spectrum Sensing Techniques [21].

In the next section, a review of relevant works undertaken in the area of SS as

found in literature is described.

2.2 Transmitter Detection Methods

An efficient approach to identify spectral opportunities with low infrastructure re-

quirement is to detect the primary receiver within operative range of a secondary

user (SU). Practically however, this is not feasible as the SU cannot locate a

receiver since it is not intelligent enough. Hence, spectrum sensing methods rely

on detecting the primary transmitter [21]. With this, a primary user transmitter

is detected on the basis of the received signal at the secondary user end. The

primary transmitter detection model represents analysis of the received signal at

the secondary user. In its simple form, the idea is to find primary transmitters

operating at a given time by using local measurements and observations. With

these technique, the SU examines the signal strength generated from the PU to
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exploit the free space (whitespace) within the channel.

Analytically, when the decision on the availability of a primary user is to be made,

it is reduced to an identification problem [15]. This is formalized as an hypothesis

test as:

Figure 2.2: Hypothesis test with possible outcomes and their corresponding prob-
abilities.

x(k) =


n(k), H0

h(k)s(k) + n(k), H1

(2.1)

where, x(k) represents the sample to be analyzed at instant k, h(k) denotes

the channel gain at each instant k, s(k) represents the signal to be detected

and n(k) is noise (of variance σ2) in the channel. H0 is the null hypothesis;

representing a sensed state with an absence of the licensed user signal. H1 denotes

the existence of a licensed user signal within the spectrum under consideration.

From Figure 2.2, four possible cases can be defined for the detected signal;

1. declaring H0 when H0 is true (H0|H0);

2. declaring H1 when H1 is true (H1|H1);

3. declaring H0 when H1 is true (H0|H1);

4. declaring H1 when H0 is true (H1|H0).

12



Case 2 is known as a correct detection, whereas cases 3 and 4 are termed a missed

detection and false alarm respectively.

The goal of the signal detector is to achieve correct detection all the time. How-

ever, this cannot be accomplished absolutely in practice because of the statistical

nature of the problem. Therefore, signal detectors are designed to function within

minimum error levels. A prominent issue for spectrum sensing is missed detection;

as it implies interfering with the primary system. Also, the false alarm rate has

to be kept as low as possible, to enable the system exploit possible transmission

opportunities.

The performance of the spectrum sensing technique is influenced by the proba-

bility of false alarm, PFA = P (H1|H0), an important metric forspectrum sensing.

Equation (2.1) shows that a reliable method to differentiate a signal form noise

is required. Transmitter detection methods under study include the following:

energy detection, matched filter and cyclostationary detection [3, 4]

2.2.1 Energy Detection

An appropriate option to ascertain the availability of an active communication

link when the transmitted signal structure is unknown consists of using an energy

detector [24]. This method is based on the premise that the energy of a signal to

be detected is always higher than the energy of the noise. This classic method,

referred to as radiometry is founded on two assumptions, viz; 1.) that the noise

power is known a priori ; and 2.) the test statistics can be accurately modeled as

independent and identically distributed (IID) Gaussian random variables (RVs)

[25]. In practice, the ED is suitable when the SU cannot gather sufficient in-

formation about the PU signal [21]. This method is more generic (as compared

to other methods described later in this section), as receivers do not need prior

13



knowledge of the primary user’s signal; by which case it is non-coherent. The ED

method is also by far the most versatile means of spectrum sensing because of its

low computational and implementation complexities [11].

Originally, this approach was outlined in the classic work by Urkowitz [26], were it

is assumed that the signals are deterministic in nature, existing over a flat band-

limited Gaussian noise channel and exact noise variance is known a priori. By

applying the sampling theorem to estimate the received signal energy and from

the chi-square statistics of the resulting sum of the squared Gaussian random

variables, signal detection in [26] is reduced to a simple identification problem;

formalized as a hypothesis test. Based on this assumption, a proposed model

for detection of energy in deterministic signals under AWGN in the time domain

was presented in [26]; consisting of passing the received signal y(t) through an

ideal bandpass filter (BPF) with a center frequency fo and bandwidth W , with

transfer function ;

H(f) =


2√
N0

, |f − f0| ≤W

0, |f − f0| > W

(2.2)

where N is the one-sided noise power spectral density which normalizes if found

convenient to compute the false-alarm and detection probabilities using the re-

lated transfer function. From these, the signal is then squared and integrated

over an interval T , to produce a test statistic, V , compared to a threshold, κ.

The receiver makes a decision on the target signal, based on the condition that

the threshold is exceeded. The received signal s(k), of the SU is represented by

the binary hypotheses, as represented in equation (2.1).

Where x(k) is the transmitted unknown deterministic signal, and n(k) is assumed

to be AWGN with zero mean and the variance is known beforehand. H0 and H1

14



correspond to the absence and presence of the primary user respectively. Though

the archetype energy detector proposed in [26] addresses detection of unknown

deterministic signals buried in Gaussian noise, the analysis carried out therein

however concerns the time domain, which makes it difficult to estimate the spec-

tral component.

Since then however, ED analysis has been considered with several modifications

in literature. In Shehata et al. [27], the authors propose an adaptive scheme

to explore ED based spectrum sensing. This method comprises a side detector

applied to monitor the spectrum to improve the detection probability. The sys-

tem model consists of a PU transmitting a QPSK modulated signal within a

200KHz bandwidth. The sampling frequency is set 8 times the bandwidth and a

1024-point FFT is used to compute the received signal energy. Results presented

indicate improved execution of spectrum sensing during reemergence of the PU

in the wake of the sensing time. Nonetheless, from the choice of bandwidth under

consideration, this study is restricted to only frequency modulated (FM) signals.

Numerical analysis of the ED method over fading channels is presented by Reisi

et al. in [28]. In this work, deviating from exact solutions since there are compu-

tationally complex, the authors derive approximate closed form expressions for

the probability of detection (PD) for Nakagami fading channels and also obtain

a rule of thumb expression relating the number of samples (sensing time) to the

SNRs for a given PD and PFA regarding Nakagami fading models.

In [14] [26, 29, 30, 31, 32, 33] however, detecting unknown deterministic signals is

developed as a binary hypothesis test problem. With this, the detection statistics

is based on the Neyman-Pearson criterion, wherein the performance of the sys-

tem is expressed in terms of false alarm and detection probability. These articles

for the most part, deal with the sophistication, while leaving out the reliability

15



and accuracy of these technique. The focus in [34] is shifted towards the sensing

latency. The possibility of quickest detection, founded on a statistical test to

detect the change of distribution in observations as responsively as possible is

applied to reduce the transient time between the two states, while ensuring cer-

tain false alarm probability. These methods apply well-known algorithms like the

generalized likelihood ratio (GRL) test, parallel cumulative sum (CUSUM) test,

windowed GRL e.t.c. In retrospect, the methods of energy detection described

in the above studies have no resolution component. Likewise, the sensitivity

is critically impeded by the practical restriction from the sampling rate of the

analog-to-digital converter (ADC) [14].

With the aim of improving the overall sensing performance while scanning wide

frequency bands, [35] proposes another form of this method using rows of filters

(filter banks). With this, a collection of N sub-filters is used to divide whole fre-

quency bands of interest into N sub-bands. The ith sub-filter of the bank is used

to extract spectral information from the ith subband of interest with a normalized

center frequency. It is noteworthy that filters of this nature are not very reliable

in implementation since the frequency response of the filter influences the quality

of estimated power in the sub-band [21].

In [25], an experimental study of ED based spectrum sensing is realized using a

software defined radio testbed. Since the choice of the theoretical threshold relies

largely on acquisition of a perfect knowledge of noise power (which is challenging

in a real environment), the authors apply a histogram based method to deter-

mine an appropriate threshold. The offered method eliminates the need to model

the test statistics in energy detection by collecting a sufficiently large number of

samples to obtain two histograms of the test statistics under hypothesis H0 and

H1. Based on these histograms, a threshold, Phth, is chosen to meet a design cri-
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teria of the false-alarm and miss-detection probabilities. The construction of the

histogram method however, require large number of samples to ascertain a wide

range of noise power in the signal; making selection of these threshold require a

considerable amount of time. Added to this, the proposed model functions more

like an off-line process; which should be done before energy detection.

Recently, in [36] and [37], detection of signals operating in a band of frequencies is

executed by splitting spectrum into multiple channels using a theory of quickest

detection. Quickest detection refers to real-time detection of changes as quickly;

after they occur. In [36], the authors study a case where single narrowband en-

ergy detector node is to sense multiple channels. This detector operates with a

predetermined belief factor - based on past primary user action to ascertain which

channel to sense in the future. This approach proved to reduce sensing time; en-

suring a certain false alarm rate is met. In [37], the authors extend this to a case

involving multiple narrowband detectors employed to sense wide band channels,

with an assumption that the number of channels are more than the number of

detectors. Similar analysis in [36] assumes a belief factor, adopted to show more

spectrum holes can be harvested, as opposed to concentrating each detector on a

particular narrowband at all times. An underlying premise from these studies so

far is the dynamic range of detector spanning entire bandwidths, while sensing a

narrowband per time. Moreover, this assumptions will involve fast changes in the

frequency of the local oscillator which imposes its own limitation to the viability

of this approach. More so, the analysis so far relies heavily on accurate knowledge

of the distribution of primary user activities to reach an optimum detection.

In as much as several techniques have been propounded in literature for detecting

the availability of a signal using a single node, it is apparent that not much work

has been done in assessing the performance of the energy detection scheme as a
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de facto standard of spectrum sensing employed for opportunistic access.

2.2.2 Matched-Filter Detection

Unlike energy detection, a matched filter (MF) is a linear filter designed to max-

imize the output signal-to-noise ratio for a given input signal [38]. With this

scheme, secondary users (SU) require complete knowledge of the PU transmitted

signal. These information includes modulation format, carrier frequency, order,

pulse shape, and packet format, are to be known to the secondary user before-

hand [39]. These features are used to detect and implement a MF when primary

users have pilots, preambles, synchronization words or spreading codes, leading

to coherent detection. A matched-filtering process is equivalent to a correlation

scheme; wherein a signal is convolved with a filter whose impulse response is a

mirror and time shifted version of the reference signal [40]. In operation, a MF

convolves the received signal r(t) with a time-reversed version of the known signal

as;

r(t)⊗ s(T − t+ τ)

where T refers to a symbol time duration and τ is a shift in the known signal.

The output of a MF, M is compared with a threshold factor κ , to decide the

presence or absence of a PU. [38]. Typically, an MF is implemented digitally, and

Figure 2.3: Realization of a Matched-filter detector for sensing a PU

its realization is illustrated in Figure 2.3 [41].

An advantage of the MF is that it requires less time to achieve detection; however,

false detection occurs when incorrect information concerning the transmitted sig-
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nal is available at the SU end. A significant drawback of this technique is that

an SU would require dedicated receivers for every primary user class. Another

demerit of this scheme is the large amount of power consumed as several receiver

algorithms relating to the various technology schemes are executed for detection

[3].

So far, research work involved with this method is based to a large extent on

tackling the disadvantages posed by the conventional design of an MF. In [42] a

reconfigurable matched-filter based spectrum is proposed to tackle the flaws as-

sociated with the traditional MF design. The generic filter method is the option

adopted. In this set up, the coefficient set of the generic filter is changed peri-

odically to scan spectrum of the wireless channel associated with each standard.

The effectiveness of this technique relies on reconfiguring the filter to implement

the numerous communication standards available. In contrast, weighing the vari-

ability of the filtering requirements for different standards, the generic filter will

have to be designed for the worst case to accommodate all standards. Aside this,

the features of generic designs are slow and large with some degree of power con-

sumption, making a generic implementation of the filtering block less attractive.

The second option implemented is a design of optimized individual filters for each

wireless standard; termed “space-multiplexing”. Nonetheless, this would increase

the size of the circuitry, not scalable with a number of standards; while power

consumed is not featured in the final analysis. The authors in [43] apply MF

spectrum sensing approach to sense the presence of a digital television (DTV)

signal. First, the pilot tone is detected by passing the DTV signal through a

delay-and-multiply circuit. A decision is reached if the squared magnitude of

the output signal is larger than a threshold; by which case presence of a DTV

signal is established. But in the generalized SS scenario however, use of a MF
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can be severely limited since complete information of the tranmitted PU signal

is hardly available. In [44], a MF is adapted to sense unused spectrum in a

WLAN (IEEE802.11a) by exploring the signals presence in minimum time. This

is executed by incorporating an optimal threshold selection that increases sensing

accuracy and interference reduction produced by the secondary network.

From the foregoing, it is apparent that [3] this method is only applicable to sys-

tems with known signal patterns, such as wireless metropolitan area network

(WMAN) signals, thus this method is often referred to as a waveform-based type

of sensing; since it works on the signals characteristics. A challenge for this type

of detector occurs often when it does not have information about the PU signal,

making it suboptimal for efficient spectrum sensing for opportunistic access.

2.2.3 Cyclostationary Feature Detection

When signals exhibit statisitical attributes (like mean, autocorrelation e.t.c.) that

change periodically with time, there are termed Cyclostationary Features (CF)

[45]. Usually, [20] wireless transmissions present cyclostationarity features de-

pending on their data rate, modulation type, and carrier frequency. Most com-

munication signals can be modelled as cyclostationary, since there exhibit under-

lying periodicities in their signal structures. Cyclostationary feature detection

(CFD) is a method that applies cyclostationary features to detect a signal. The

identification of a unique set of characteristics particular to a radio signal for a

wireless access system can be used to detect the system based on its cyclosta-

tionarity features. These features have periodic statistics and spectral correlation

not obtained with interference signals or stationary noise. Thus exploiting this

periodicity in the received primary signal to identify the presence of primary users

makes this method possess a high noise immunity compared to other spectrum
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sensing methods [46]. This theory conceptualises the fact that man-made signals

possess hidden periodicities such as the carrier frequency, symbol rate or chip

rate, which can be regenerated by a sine-wave extraction operation, thus produc-

ing features at frequencies that depend on the built-in periodicities [47]. A basic

analysis of this theory will suffice to help understand its application.

A signal x(t) is said to be cyclostationary, if its mean and autocorrelation function

Ex(t), Rx(t, τ) are periodic [20, 48], expressed respectively by,:

E(x) = µ(t+mTo) (2.3)

and

Rx(t, τ) = π(t+mTo, τ) (2.4)

where, t is the time index, τ is the lag associated with the autocorrelation function

and m is an integer. The periodic autocorrelation function is expanded by Fourier

series, as,

Rx(t, τ) =
∞∑

α=−∞

Rα
x(τ) exp(2πjαt) (2.5)

where,

Rα
x(τ) = lim

T0→∞

1

T0

∫
T

x(t− τ

2
)x(t+

τ

2
) exp(−2πjαt)dt (2.6)

The term in (2.6) is the cycle autocorrelation, and for a cyclostationary process

with period T0, the function Rα
x(τ) possesses a component at α = 1

T0
. But, for a

stationary process such as noise, (2.6) will be zero-valued. Employing the Wiener

relationship (i.e taking the Fourier series representation with respect to τ ), re-

sults in the cyclostationary spectrum density (CSD), or the spectral correlation
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function (SCF), which when evaluated leads to,

Sαx (f) = lim
τ→∞

τ∫
−τ

Rα
x(τ) exp(−j2πfτ)dτ (2.7)

The SCF in (2.7) is a function of frequency, f , and the cycle frequency α, which

makes it possible for cyclostionarity feature to be detected in the cycle frequency

domain. Since different types of signals have different non-zero cyclic frequencies,

they can be identified from their signature. To ease computing of the SCF, (2.7)

is expressed alternatively as,

Sαx (f) = lim
T→∞

lim
T0→∞

1

T0T

T/2∫
−T/2

XT0(t, f +
1

α
)X ′T0(t, f −

1

α
)dt (2.8)

The term XT0(t, f) represents the short time Fourier transform of x(t) with band-

width
1

T
, where X ′T0(t, f) is the complex conjugate of XT0(t, f) given by ;

XT0(t, u) =

t+T0/2∫
t−T0/2

x(v) exp(−2jπfv)dv (2.9)

The expression (2.8) is known also as the time smoothed SCF which theoretically

achieves true SCF for T >> T0. The CSD is a two dimensional transform that

consists of two variables: the cyclic frequency and the spectral frequency, f , [20].

It is clear from the foregoing that the cyclic spectral correlation function (or SCF)

is the parameter employed for detecting primary user signals with this method.

When SCF is plotted, the occupancy status of the spectrum can be determined.

If a primary user signal is present in the operating frequency range, the SCF

presents a peak at the center. The peak will be absent in a case where there is no

primary user signal present in the frequency range of interest [46]. Also, the SCF
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can be used to ascertain the type of modulation scheme applied to the primary

user signal. This is accomplished by considering the number of secondary peaks

at the double frequencies. If the modulation scheme employed is BPSK, there

will be single secondary peaks when the operating frequency is doubled.

Unlike the matched filtering approach that involves close synchronization with

the signal of interest, cyclostationary analysis does not require frequency or phase

synchronization, making it an attractive approach to detection of signals whose

carrier frequencies and symbol timing are unknown [49]. Comparatively, the

strength of this method lies in its strong performance under low SNR, since noise

is totally random and does not present a form of periodic behavior [50, 51].

Using cyclostationary analysis as a technique to accomplish signal detection was

described in [45]. In [52], the authors study spectrum detection in a low SNR

environment applying the noise rejection property of the cyclostationary spec-

trum. This is computed by measuring the cyclic spectrum of the received signal.

Statistics concerning the spectrum of the stationary white Gaussian process were

fully analyzed. An application to the IEEE 802.22 WRAN1, alongside analytic

derivation of the probability of false alarm is also presented. Since the stationary

Gaussian process has a zero-valued spectral correlation density function (SCD) at

nonzero frequencies, the desired signal is detected by computing the SCD - pro-

vided the signal is cyclostationary - such that its cyclic spectrum is not identically

zero at some nonzero cyclic frequency. The authors in [48] present a theoretic

and hardware implementation of this method, which involves spectral estimation

of the cyclostationary spectrum density (CSD) . This is executed by selecting an

appropriate size of the FFT; since from (2.8), the number of correlations is largely

determined by the size of the FFT. In this paper, CSD estimation is performed

1The IEEE802.22 is a standard for Wireless Regional Area Network (WRAN) using whites-
paces in the TV frequency spectrum.
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along the axis of zero cyclic frequencies and the axis of zero spectral frequency

i.e. (2.8) is evaluated at a set of discrete frequency pairs ({αk, fj}). Since prac-

tical estimation can only be performed within a limited time duration, CSD is

estimated by performing a sliding N point FFT, and correlating the appropriate

spectral components. For the hardware implementation, use is made of field pro-

grammable logic arrays (FPGA).

With this type of analysis however, a tradeoff exists between the size of FFT and

hardware cost. Usually, an FFT with a large data size provides more accuracy,

more averaging time for CSD estimation, but with an increase in cost of hard-

ware. It is also noteworthy that CSD estimation is a two dimensional transform,

making it computationally complex.

Sutton et al. in [49] propose an alternative approach to feature detection us-

ing signatures embedded in a signal to solve a number of challenges associated

with dynamic spectrum access applications; especially receiver complexity. Us-

ing a flexible cognitive radio platform, implementation of a full OFDM-based

transceiver using cyclostationary signatures is presented and the system per-

formance is examined from experimental results. Although, methods presented

therein are OFDM specific, similar techniques can be developed for any type of

signal. A hardware implementation of the CFD technique is presented in [50].

A detector for OFDM signals based on cyclostationary features is presented in

[53]; this exploits the inherent correlation of OFDM signals obtained by data

repetition in the cyclic prefix; i.e. using knowledge of the length of the cyclic

prefix and length of the OFDM symbol. The authors demonstrate that detection

performance improves by 5dB in applicable cases.

In [54], the problem existent in many systems, where for particular applications,

statistical features may not be the same for two adjacent periods, but change
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smoothly is considered. The periodicity that appears in the aforementioned pro-

cess does not necessarily extend to a pure cyclostationary process, but leads to an

almost cyclostationarity which presents a limitation using cyclostationary feature

detection approach. The authors propose a novel estimator for almost cyclosta-

tionary signals. Even as the CFD has advantages that include reduced sensitivity

to noise and interfering signals, as well as the ability to extract key signal pa-

rameters - including carrier frequencies and symbol rates; on the flip side, an

analysis of cyclostationarity is computationally intensive, requires significantly

longer observation time and processing resources of the SU may be limited for

the needed signal processing tasks [20, 46]. Added to this,when an insufficient

number of samples are utilized, the detection performance will degrade due to

the poor estimate of the cyclic spectral density.

From the review of the transmitter detection methods so far presented, it is ap-

parent that though the energy detection method is “crude” [21]; but based on the

evaluation criteria mentioned earlier (i.e. latency, complexity etc.), it possesses

an edge over the more complex methods like cyctostationary feature and matched

filter detectors, that require absolute knowledge of the PU transmitted signal.

Also, from a practical implementation perspective [11], both matched-filter and

cyclostaionary feature detection techniques are primarily for narrowband sensing,

whereas energy detection can be applied to wideband sensing.

2.3 Interference Based Detection

This theoretical method employs an interference temperature model; which is a

measure of how well a radio operating within a particular modulation scheme

and protocol can tolerate interference in its spectrum space [55]. This follows the

fact that signal power received at a primary receiver reduces exponentially with
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distance; continuously till it reaches a level of the noise floor [23]. Though a pri-

mary transmitter still operates at this point, the receiver handles this process as

noise and not transmission. This makes it possible for a secondary user to utilize

the channel, since no interference is introduced to the primary users’ communi-

cation (as the primary receiver is not in receiving mode). Above the maximum

Figure 2.4: Interference temperature model [4].

noise level, an interference cap is introduced, beneath this threshold, the primary

receiver will treat this transmission as noise. An illustration of the interference

temperature model is shown in Figure 2.4 above. The SU may exploit the channel

if the detected primary signal level is below the interference temperature limit.

More so, if the power of transmission of an SU stays below the interference gap,

it may utilize any frequency parameter of its choice. With this approach, it is

hypothesized that the SUs will be allowed to transmit concurrently with the PUs

under stringent interference avoidance constraints; wherein it is categorized as a

spectrum underlay scheme.

It is noteworthy nonetheless, that this method is far more challenging; since the

prime problem faced with an implementation of this technique will be in determin-

ing specific receiver interference temperature levels for the various communication

standards.

Recently however, in [21], this approach to spectrum sensing was reportedly anal-
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ysed and declared to be non-implementable, thus no further survey on this method

will be conducted in this work.
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2.4 Cooperative Detection

In cooperative detection, multiple SUs collaborate in a centralized or decentral-

ized manner to ascertain spectrum holes for opportunistic access. Each cooper-

ating node within this context employs locally, any of the sensing methods pre-

viously described, while sharing the raw/refined sensing information with other

node(s); dependent on a selected cooperation strategy [21] . This concept of col-

laboration is considered since effects of shadowing, multipath fading and receiver

uncertainty pose severe challenges to single user transmitter detection approach

in SS [11]. A depiction of these phenomenon is depicted below and described in

detail afterwards.

Figure 2.5: Receiver uncertainty and multipath/shadow fading [11].

From the figure 2.5 above, CR1 and CR2 are within range of the primary trans-

mitter (PU TX1) while CR3 is not. As a result of the obstruction from the house

and due to multiple copies of the attenuated signal being sent, CR2 suffers mul-

tipath and shadowing problems, such that signals from the PU Tx may not be

detected correctly. CR3 on the other hand is unaware of the transmission fom

PU Tx and the existence of primary receiver (PU Rx), consequently, transmission

from CR3 may interfere with reception at the PU Rx; this phenomenon is known
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as the receiver uncertainty problem.

However, owing to spatial diversity, it is unlikely that all SUs spread in space

within a network will simultaneously experience receiver uncertainty or fading

problems. Since, secondary users that observe a strong signal from the PU Tx, like

CR1 in the figure, can sense and communicate sensed result to other users. This

collaborative paradigm should tackle flaws in observation at the other users con-

siderably. By this technique of cooperation amongst users, robustness is achieved

without severe demands on individual radios; thus enhancing effective primary

detection [56].

Figure 2.6: Cooperative sensing techniques: (a) Centralized, (b) Distributed (de-
centralized), and (c) relay assisted [11].

For CSS, SUs require two channels for local sensing to arrive at a decision. Ini-

tially, SUs establish a link with the primary transmitter to carryout local sensing;

this link between primary transmitter and the various cooperating SUs is known

as the sensing channel. To share local spectrum sensing data with each other or

the fusion center (FC) requires a control or reporting channel. So far, a medium

access protocol coordinates the shift between these two channels [21].

Considering the mode of collaboration between sensing nodes in a detection

scheme,CSS is broadly categorized as; centralized, distributed and relay assisted;

based on how collaborating SUs convey sensing data within the network [11].

These three cases of cooperative sensing are depicted in Figure 2.6 above. Es-
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sentially CSS consists of a series of actions requiring local sensing, reporting and

information fusion. The following subsections highlight the distinguishing fea-

tures of the various collaborative strategies.

2.4.1 Centralized Cooperative Detection

In a centralized structure, a central unit, designated the fusion center (FC) or

basestation (BS), determines eventual availability of spectrum holes after collat-

ing local SS information from cooperating SUs [56]. This opportunity is either

broadcast to all SUs or the FC itself controls traffic by managing detected spec-

trum usage opportunity in an optimum fashion. The central node (FC) could be

an access point (AP) in a wireless local area network (WLAN) or a base station

(BS) in a cellular network; while in ad hoc networks, any node - once identified

- can act as a master to coordinate CSS. In operation, the FC selects a control

channel for the transmitter and tasks the various SUs to send their local sensing

results via a reporting channel. It is envisaged, cooperating SUs would send col-

lected data to the FC, allowing it perform a data fusion to decide the presence of

a primary signal; or they could each send individual decisions and the FC con-

ducts decision fusion to assume a decision. For the scenario where the SU sends

complete local sensing data, the fusion process is termed soft combining. When

the SU quantizes the local sensing information before sending to the FC, this

fusion process is termed quantized soft combining. For hard combining fusion, an

SU makes decision after sensing and sends one bit as its decision to the FC [57].

2.4.2 Research work on Centralized Detection

In [43], employing CSS to reliably detect primary users is considered by exploit-

ing multiuser diversity; with a criteria of an SU possessing the highest SNR value

30



being selected as the cluster head. Due to the varying distances from the PU,

the value of the SNR changes among the SUs; this forms the underlying criteria

adopted in this scheme. The authors also present a two-layer model in imple-

menting this technique so as to combat fading in the channels. Though results

show a low bandwidth control channel for all spectrum sensing techniques, this

method presents a challenge in practical implementation since the time involved

in sensing will be prolonged, as it involves traversing two separate layers.

In [58], cyclostationary feature detection is proposed for CSS by applying the gen-

eralized likelihood ratio test (GLRT) (which is a complex hypothesis test involv-

ing the use of assumed parameters selected by the maximum likelihood estimates

[11]). This scheme enables detection of cyclostationary signals for multiple cyclic

frequencies. A censoring technique employed for each cooperating user conveys

locally sensed results to the FC. Empirical results presented indicate improved

energy efficiency from this approach. In this paper also, the test statistic for

data fusion at the FC is developed for cooperative sensing. Regrettably however,

the consequence of cyclostationarity resurfaces; prior information of signals to be

sensed is required, while the issue of complexity is unresolved.

Cooperative processing trade-off is addressed in [59] for energy detectors, wherein,

trade-off is formulated as an optimization problem to minimize the total sensing

time, subject to constraints of false alarm and detection probabilities. Total sens-

ing time to be minimized include integration time of an energy detector for local

processing and reporting time; proportional to the number of cooperating SUs.

The results from this work show that, for higher detection sensitivity, a longer

integration time is required. This is unlike the general notion of cooperation,

wherein an increase in the number of cooperating nodes reduce the required sens-

ing time to achieve the same level of detection sensitivity.
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A general weakness of the centralized approach however, is that a FC becomes

very critical; making its failure rue the whole concept of cooperation.

2.4.3 Distributed Cooperative Detection

In a distributed cooperation, SUs would not rely on an FC to make a cooperative

decision; rather, it is conceived that the SUs communicate within nodes, then

converge to a joint (global) decision on the presence or absence of PU in an it-

erative manner [21]. This is accomplished in three steps defined by a distributed

algorithm as follows. First, each cooperating user sends its local sensing data to

other users in its neighbourhood (defined by the transmission range of the users).

Next, cooperating users combine data with the received sensing information from

other users to decide on the presence or absence of a PU based on the local

criterion. The shared spectrum observations are usually in the form of soft sens-

ing results or quantized (binary/hard) version of local decisions about spectrum

hole availability. In a case where the spectrum hole is not identified, SUs send

combined sensing information to other users in the next iteration. These process

continues until the scheme converges and a final unanimous decision on spectrum

availability is achieved. In this manner, each SU in a distributed scheme partially

plays the role of an FC [57]. Figure 2.6(b) depicts cooperation in a distributed

mode.

2.4.4 Research work on Distributed Detection

In [60] a distributed CSS scheme for wideband sensing in cognitive radio ad-hoc

networks (CRAHNs) is proposed. With this scheme, each SU conducts com-

pressed sensing locally, determines the local spectral estimates, then conveys

the spectrum state vectors to its one-hop neighbours. The authors propose a
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distributed average consensus method, wherein each SU iteratively updates its

spectrum state with a weighted sum of the difference values between the SU and

its neighbors. From this process, the spectrum state vectors converge to the aver-

age statistic at each SU for PU detection. In the same vein, the spectral estimates

can be obtained cooperatively by consensus averaging.

In [61], the study in [60] is extended to include spectrum occupied by the SUs,

termed spectral innovation; in addition to that of the PUs within wideband sce-

nario. The accuracy of estimation is improved by utilizing a spectral orthogonality

scheme between PUs and SUs. Based on the work in [60] and [61] a distributed

consensus optimization scheme is proposed in [62] for sensing signals in a wide-

band. After sensed results are compressed, each SU determines an estimate of

the instantaneous spectrum by performing an optimized consensus, resulting in

enhanced results, which would be broadcast to the various one-hop neighbours.

This process is repeated until convergence is reached. The average consensus

technique incorporated in the above technique ensures fast convergence; though

improvement in time resulting from this approach, is however not considered in

the final analysis.

Since sensing signals in multiple bands presents a challenge, [63] introduce an

algorithm to tackle detection in a wideband via cooperative spectrum sensing.

The proposed technique involves dividing a typical wideband of interest into var-

ious sub bands, while a group of SUs are assigned the task of sensing particular

narrow subbands. A base station (or FC) is employed in collating results and

making final decisions over the full spectrum. Results indicate that the proposed

algorithm minimizes time and amount of energy spent for wideband spectrum

scanning and effectively detects primary users occupancy status in a wideband

spectrum. The algorithmic program presented in this work is purely theoretic,
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hence ambiguous; since it does not specify a method for local sensing for the

various subbands.

The various methods proposed for the application of distributed detection consist

of numerous iterations in accomplishing unanimous cooperative decisions, with

substantial network information overhead and bandwidth consumption, while

increasingly being too complex to implement, thus not aligning with the oppor-

tunistic access to spectrum bottom line.

2.4.5 Relay- assisted Cooperative Detection

It is envisaged that under realistic conditions, the sensing and reporting channels

in the schemes outlined previously may not function properly. For instance, a

particular SU reporting channel may be weak, while its sensing channel strong -

arising from shadowing or multipath consequences; yet another SU may possess

a strong reporting channel and a weak sensing channel [11, 21] as depicted in

Fig. 2.6(c). The relay-assisted detection paradigm provides a scheme where an

SU serves as a relay, forwarding sensed information. In [57], the centralized and

distributed schema is considered a one-hop cooperation, while the realy-assisted

approach is thought of as a multi-hop cooperative scheme.

2.4.6 Research work on Relay- assisted Cooperative De-

tection

In [64], a theoretic detection performance of an energy detector is considered

for channels encountering both multipath fading and shadowing. An analytical

framework using data and decision fusion is used to investigate performance; not

considering SNR statistics of received primary signals. Under the analysis for

data fusion, upper bounds of average detection probabilities were derived for four
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scenarios: 1) single relay; 2) multiple relays; 3) multiple relays with direct link;

and 4) multi-hop relays. The analysis contained in this work is an analytical

framework focused on the Rayleigh multipath fading and lognormal shadowing;

leaving out other fading models.

Although data and decision fusion models have been employed in earlier works

( e.g. in [65]-[64]) to improve the performance and reliability of energy detection

with distributed cooperative spectrum sensing, the analysis so far is still limited

to a range of known bandwidth. This in itself presents a research gap to be

explored.

2.4.7 Conclusion

So far, it is apparent that for transmitter based detection, energy detection

method is the most viable approach to sensing spectrum for oppurtunistic ac-

cess; since, not only does the pair of matched filter and cyclostationarity feature

detection methods present some degree of complexity, both of this techniques

require prior information on the signal type to be detected. In the same vein, for

CSS, techniques available in literature have not sufficiently assessed the capabil-

ity of the traditional energy detector.

Consequently, in this study, ED for detecting signals in a licensed band is de-

scribed and its performance evaluated for both fading and non-fading environ-

ments.

In the end, this method will prove to be an executable option for the detection

of narrow and heterogeneous wideband signals traversing spectrum spread over

multiple adjacent narrow bands.
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Chapter 3

Methodology

This chapter presents the system model of energy detection and explains the

performance metrics. Also presented in this chapter are mathematical derivations

to support the analysis adopted for both the case of a single detector and the

case of a network of cooperating nodes.

3.1 System Model

In implementing an energy detector, the received signal x(t) is filtered by a band

pass filter (BPF), followed by a square law device. The band pass filter serves to

reduce the noise bandwidth. Hence, noise at the input to the squaring device has

a band-limited, flat spectral density. The output of the integrator is the energy of

the input to the squaring device over the time interval T . Next, the output signal

from the integrator (the decision statistic), Y , is compared with a threshold, κ,

to decide whether a primary (licensed) user is present or not. Decision regarding

the usage of the band is made by comparing the detection statistic to a threshold

value κ.

Figure 3.1 overleaf shows a block diagram of an energy detector.
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Figure 3.1: Block diagram of an energy detector

Analytically, determining the sample signal x(t) is reduced to an identification

problem, formalized as an hypothesis test; H0 and H1.

H0 implies an absence of the signal, whereas H1 denotes presence of the signal.

This is represented by;

x(t) =


n(t), H0

h ∗ s(t) + n(t), H1

(3.1)

where,

x(t) is the sample to be analysed at each instant t,

n(t)- is additive noise; assumed to be white Gaussian noise (AWGN)(with samples

having zero-mean and variance σ2),

h - is the complex channel gain between the primary signal transmitter and the

detector.

s(t) - is the transmitted signal to be detected.

The goal is to observe the sample signal x(t), then have some rule decide the

correct hypothesis based on the test statistic being either greater or less than the

threshold.

Characterising the performance of such a decision rule is realised using some

metrics.
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3.2 Performance Metrics

The correctness of the spectral availability information is defined using sensing

quality parameters. This feature make up the performance metrics. Sensing the

performance of the energy detector is specified by the following general metrics:

1. The probability of detection, (PD).

2. The probability of false alarm , (PFA),

3. The probability of missed detection , (PM).

In opportunistic spectrum sensing, the probability of detection specifies that

a detector makes a correct decision that a channel is occupied (H1). The (PD) is

an indicator of the level of interference protection provided to the primary user.

Hence, a large PD denotes exact sensing; which translate to small chance(s) of

interference.

A false alarm event occurs when the detector assumes H1; when the right deci-

sion is H0. The probability of this occurrence is specified as a probability of

false alarm. When a false alarm event occurs, the SU would not exploit the free

spectrum, thus missing a chance to utilize the free channel. PFA should be kept

as small as possible in order to prevent underutilization of transmission opportu-

nities. The performance of the spectrum sensing technique is usually influenced

by the probability of false alarm , since this is the most influential metric [15].

The probability of declaring the spectrum space vacant H0, when it is indeed

occupied H1, is referred to as the probability of missed detection (PM). A

high PM implies an increase in the chance of interference between the PU and

the SU. If the detection fails, or a “miss detection” occurs, the SU initiates a

transmission , resulting in interference with the PU signal; contravening the op-
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portunistic access concept.

In essence, the spectrum sensing method should record a high probability of de-

tection (low miss detection probability) and low probability of false alarm.

3.3 Performance Measurement

The receiver performance is quantified by depicting the receiver operating char-

acteristics (ROC) curves. This curves serve as a tool to select and study the

performance of a sensing scheme. ROC graphs are preferred as a performance

measure, since simple classification accuracy do not contain much detail, hence

is a poor metric for measuring performance [66]. ROC graphs are employed to

show trade-offs between detection probability and false alarm rates, (i.e. PD

versus PFA), thus allowing the determination of an optimal threshold. Comple-

mentary ROC curves depict plots of probability of miss-detection (PM= 1−PD)

versus the probability of false-alarm (PFA).

These curves enable exploration of the relationship between sensitivity (probabil-

ity of detection) and specificity (false alarm rate) [3]. To plot ROC curves, one

parameter is varied while the other is fixed. This enables the study of various

scenarios of interest.

3.4 Derivation of PD and PFA

The noise n(t) (from (3.1)) is considered a bandpass process consisting of two (2)

components; the in-phase noise component, ni(t) and quadrature phase compo-

nent, nq(t), whose sample function is written as [68];

n(t) = ni(t) cosnct− nq(t) sinnct (3.2)
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where nc is the angular frequency. If n(t) is restricted to bandwidth Bw, with

power spectral density N0, then ni(t) and nq(t) are considered to be two low pass

processes with bandwidth less than Bw/2. The power spectral density of each

is equal to 2N0. When a sample function has bandwidth B, duration T , it is

described approximately by a set of values 2BT or its degree of freedom is equal

to 2BT . Therefore, ni(t) and nq(t) each possess degrees of freedom d, equal to

2BwT [69]. Applying the approximation in [70], that;

T∫
0

n2(t)dt =
1

2

T∫
0

[n2
i (t) + n2

q(t)]dt (3.3)

(since ni(t) and nq(t) are considered low-pass processes), and from the sampling

theorem, the noise process is expressed as [71];

ni(t) =
∞∑

j=−∞

cjk sin c(Bwt− j) (3.4)

where sin cx = sinπx
πx

and cjk = ni(
k
Bw

) are Gaussian random variables with zero-

mean and variance σ2
j = 2N0Bw,∇ j. And using the fact that [26];

∞∫
−∞

sin c(Bwt− j) sin c(Bwt−m)dt =


1
Bw
, j = m

0, j 6= m
(3.5)

Thus, from (3.4) and (3.5) we obtain,

∞∫
−∞

n2
i (t)dt =

1

Bw

∞∑
j=−∞

c2
ij (3.6)
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Since ni(t) has BwT degrees of freedom over the interval (0, T ),

ni(t) =
BwT∑
j=1

cij sin c(Bwt− j) 0 < t < T (3.7)

Also, the integral
∞∫
−∞

n2
i (t)dt over the interval 0, T can be written as;

T∫
0

n2
i (t)dt =

1

Bw

BwT∑
j=1

c2
ij (3.8)

likewise,
T∫

0

n2
q(t)dt =

1

Bw

BwT∑
j=1

c2
qj (3.9)

substituting
cij√

2BwN0
= dij and

cqj√
2BwN0

= dqj in (3.8) and (3.9), and using (3.3),

produces [26];
T∫

0

n2(t)dt =

[
BwT∑
j=1

d2
ij +

BwT∑
j=1

d2
qj

]
·N0 (3.10)

In the same vein, considering the transmitted signal s(t), as a band-pass process,

we have that:
T∫

0

s2(t)dt =

[
BwT∑
j=1

b2
ij +

BwT∑
j=1

b2
qj

]
·N0 (3.11)

or,
BwT∑
j=1

(b2
ij + b2

qj) =
Es
N0

(3.12)

where bij =
si(

j
Bw

)
√

2BwN0
, bqj =

sq(
j
Bw

)
√

2BwN0
and Es =

T∫
0

s2(t)dt is the energy of the signal.

The output of this filter is then squared and integrated over a time interval T to

yield a measure of the energy of the received waveform ( i.e. X = 1
T

T∫
0

x2(t)dt).

The output of the integrator, denoted Y , is the test statistic (testing the hypothe-
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ses H0 and H1) [24, 26];

Y =
1

N0

T∫
0

x2(t)dt (3.13)

Under Hypothesis H0 (with the primary signal absent), the received signal is only

noise, i.e. x(t) = n(t). Applying (3.10), the test statistic Y , is written as:

Y =
BwT∑
j=1

(d2
ij + d2

qj) (3.14)

The test statistic under H0 is said to be chi-square distributed with 2BwT degrees

of freedom, i.e. Y ∼ χ2
2d [24]. The chi-squared distribution is used to test for

significant difference between the expected and observed result under the null

hypothesis.

Under Hypothesis H1, the received signal is a sum of the signal and noise, i.e.

x(t) = s(t) + n(t). Therefore, using equations (3.3) - (3.11) we get;

T∫
0

x(t)dt =

[
BwT∑
j=1

(dij + bij)
2 +

BwT∑
j=1

(dqj + bqj)
2

]
·N0 (3.15)

Applying the same approach as above ( i.e. using equation (3.13) and (3.15) , the

test statistic is written as;

Y =

[
BwT∑
j=1

(dij + bij)
2 +

BwT∑
j=1

(dqj + bqj)
2

]
(3.16)

The test or decision statistic (output of the detector) under the case of H1 is

said to have a non-central chi-square distribution with 2BwT degrees of freedom.

Non-central chi-squared distribution offers a statistical test the chance to estimate

departures from the null hypothesis. This presents an admissible hypothesis

alternative to H0.
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The non-centrality parameter ψ, is given as Es
N0

[26]. Defining the SNR γ, in terms

of the non-centrality parameter, gives [71];

γ =
Es
N

=
Es

2N0

=
ψ

2
(3.17)

which is ψ = 2γ.

Therefore, the decision statistic for the hypothesis H1 (i.e. when the primary

signal is present) is Y ∼ χ2
2d(ψ); also Y ∼ χ2

2d(2γ).

Following the notations so far, the decision statistic for the energy of a signal is;

Y ∼

 χ2
2d, H0

χ2
2d(2γ), H1

(3.18)

The probability density function (PDF) for a chi-squared distribution; for this

case Y is (from [24]);

fY (y) =


1

2dΓ(d)
yd−1e−

y
2 , H0,

1
2
( y
ψ

)
d−1
2 e−

ψ+y
2 Id−1(

√
ψy), H1,

(3.19)

where Γ(.) is the gamma function (its definition is given in Appendix A) and Iv(.)

is the vth-order modified Bessel function of the first kind.

3.4.1 Probability of Detection for AWGN Channel

The additive white Gaussian noise (AWGN) is a channel model where the only

impairment to communication is noise; with a constant spectral density. With

this model, noise possesses zero mean, and is assumed to be white over the band-

width of consideration; i.e. samples of the noise process are uncorrelated. These

model does not account for channel impairments (hence it is considered a non-
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fading model). It produces insight to the behaviour of a system before any other

phenomenon is conceived.

The probability of detection is the probability that H1 is selected when a signal

is present. Probability of detection, PD and false alarm PFA for a given threshold

(κ), are represented respectively by [24]:

PD = P ( Y > κ|H1) (3.20)

PFA = P ( Y > κ|H0) (3.21)

where κ is the decision threshold. Expressing the PD and PFA in terms of the

probability density function yields;

P FA =

∞∫
κ

fY (y)dy (3.22)

applying (3.19);

PFA =
1

2dΓ(d)

∞∫
κ

(
y

2
)
d−1

e−
y
2 dy (3.23)

also, substituting y
2

= t, dy
2

= dt and changing the limits of (3.23);

PFA =
1

Γ(d)

∞∫
κ
2

(t)d−1e−(t)dt (3.24)

or

PFA =
Γ(d, κ

2
)

Γ(d)
(3.25)

where Γ(d, x) is the incomplete gamma function, defined by Γ(d, x) =
∞∫
x

td−1e−tdt

[72]. Since the signal power is unknown, the false alarm probability PFA is set

to a constant; applying (3.25), the detection threshold Y can be determined.
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The value of κ in real communication systems is influenced by the system re-

quirements. Research efforts like [73] choose a threshold κ in a way the PFA is

bounded by a target value. From (3.25), PFA depends on two parameters: time-

bandwidth product d and the threshold κ. Thus the value of κ is not related to

SNR (γ).

Typically, PFA is given a value between 10−1 − 10−2. The IEEE 802.22 stan-

dard recommends PFA < 0.1 for spectrum sensing [74]. Time-bandwidth product

(d = BwT ) is between the range 1−25 [26]. For example, PFA < 10−2 is attained

with d = 25 at κ ≥ 76. Since κ varies from 0 to∞, PFA is easily computed using

(3.25) for a given d.

From (3.19), the probability of detection is obtained by the cumulative distribu-

tion function (CDF);

PD = 1− FY (y) (3.26)

The CDF of Y is obtained (for an even number of degrees of freedom- 2d in this

case) as;

FY (y) = 1−Qd(
√
ψ,
√
y) (3.27)

Thus, from (3.27), the probability of detection, PD for an AWGN channel is ;

PD = Qd(
√
ψ,
√
κ) (3.28)

equivalent to;

PD = Qd(
√

2γ,
√
κ) (3.29)

where Qd(.,.) is the generalized Marcum-Q function. Using eqns. (3.25) and

(3.29); which are expressions for the PFA and PD respectively, Receiver Operating

Characteristics curves describing the performance of an energy detector in an

45



AWGN can be drawn.

3.4.2 Probability of Detection for Fading Channels

Since signals take more than a path between a transmitter and receiver, they are

generally modelled by fading distributions that account for uncertainties encoun-

tered in the channel. Among these are Rayleigh, Nakagami and Rician fading

models. These channel models serve as tools for studying both multipath and

path loss features of a typical environment where spectrum sensing is to be em-

ployed.

For Rayleigh fading, the signal is not received on a line-of-sight path; directly from

the transmitting antenna [75]. This fading model considers urban multipath fea-

tures, including effects of the ionosphere and troposphere. More so, it describes

the statistical time varying nature of the received envelope of a flat fading signal

or the envelope of an individual multipath component [76]. When this model is

employed, attenuation of the signal is Rayleigh distributed, making the SNR at

every node exponentially distributed [77].

By averaging the conditional PD in the AWGN case, (as given in (3.29)) over the

SNR fading distribution, closed form expression for the PD in Rayleigh fading

channels is expressed [24]. It is noteworthy that the PFA of (3.25) will remain

unchanged under any fading channel, since the PFA is independent of SNR.

If the signal amplitude follows a Rayleigh distribution, the SNR γ, follows an

exponential PDF [24];

f(γ) =
1

γ
exp(−γ

γ
) γ ≥ 0 (3.30)
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To obtain the Probability of Detection for Rayleigh channels, (3.29) is averaged

over (3.30) i.e.;

PDRay =

∞∫
0

PDf(γ)dγ (3.31)

from (3.29),

PDRay =
1

γ

∞∫
0

QD(
√

2γ,
√
κ) exp(

−γ
γ̄

)dγ (3.32)

Substituting
√
γ = x ; ⇒ dγ = 2xdx above, yields;

PDRay =
2

γ

∞∫
0

x.QD(
√

2x,
√
κ) exp(

−x2

γ̄
)dx (3.33)

From the solution in Appendix A.1 [78], substituting p2 = 2
γ
, a =

√
2, b =

√
κ

and M = d, yields the Probability of detection in Rayleigh channel as:

PDRay = e−
κ
2

d−2∑
n=0

1

n!

(κ
2

)n
+

(
1 + γ

γ

)d−1

[
e(−

κ
2(1+γ)) − e(−

κ
2 )

d−2∑
n=0

1

n!

(
κγ

2(1 + γ)

)]
(3.34)

The Nakagami fading distribution is a convenient model for analysing the perfor-

mance of digital communication systems over generalized fading channels. This

fading distribution is assumed in the analysis of many terrestrial wireless commu-

nication systems, since it is flexible and embraces scattered, reflected and direct

components of the original transmitted signal. For urban multipath environ-

ments, the Nakagami-m fading model has been shown to be very suitable [77].

The probability of detection over Nakagami channel is determined by averaging

the detection probability for a given SNR over the Nakagami distribution. If the
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signal amplitude follows a Nakagami distribution, then PDF of SNR γ, follows a

gamma PDF given by [24];

f(γ) =
1

Γ(m)

(
m

γ

)m
γm−1 exp

(
−m
γ
γ

)
, γ ≥ 0 (3.35)

The average PD in the case of Nakagami channels is obtained by averaging (3.35)

over (3.29)

PDNak =

∞∫
0

PD(γ)f(γ)dγ (3.36)

where f(γ) is the probability density function of the instantaneous SNR at the

receiver node, and modifying the variable x =
√

2γ results in

PDNak = α

∞∫
0

x2m−1 exp

(
−mx

2

2γ

)
Qu

(
x,
√
κ
)
dx (3.37)

where

α =
1

Γ(m)2m−1

(
m

γ

)m
(3.38)

m is the Nakagami-m fading parameter, which describes the severity of fading;

m < 1 suggests severe fading, while m > 1 indicates less severe fading [79].

Solving the integral in (3.37) as identified in [24] gives a closed form expression

of the Probability of detection in Nakagami channels as:

PDNak = α

[
G1 + β

d−1∑
n=1

(κ/2)

2(n!)
F1

(
m;n+ 1;

κ

2

γ

m+ γ

)]
(3.39)

where F1(:, :, .) is the confluent hypergeometric function, and the representations

of β and solution of G1 are provided in Appendix A.

For the special case of m = 1 in (3.39) we get an alternative relationship for

PDRay ; numerically equivalent to (3.34).
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3.4.3 Cooperative Spectrum Sensing over Fading Chan-

nels using Energy Detection

So far, we have considered the task of spectrum sensing with a single receiver,

using the energy detection method. With cooperative spectrum sensing (CSS),

sensed information collected at various locations of the SUs are used for jointly

ascertaining spectrum availability. CSS is intended to provide diversity gains

against channel fading effects, since the odds of multiple receivers undergoing

adverse fading conditions at the same time is less likely; compared to a situation

where only a single detector is employed.

Figure 3.2: A network of cooperative secondary users employing energy detec-
tion [80].

The receivers either execute detection individually, based on the measured energy

and transmit their individual hard decisions to a base station or fusion centre (FC)

for decision combining (as shown in Figure 3.2 above), or they forward soft infor-

mation to be combined at the FC to make the final decision as to the presence

or absence of a primary user [80].
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Detection of existence of an unknown signal si(t) within a bandwidth Bw was

considered earlier in Section 3.1, wherein it was thought of as a binary hypothe-

sis test; that still holds for the case of CSS. Closed form expressions were derived

to represent the probability of detection PD, and the probability of false alarm

PFA for the case of a single receiver.

With CSS, we consider M samples of the received signal collected by N energy

detectors in the system, (i.e. the various (SUs) detect the PU separately) and

send their sensing data in the form of 1-bit binary decisions (1 or 0) to the base

station (BS) or Fusion centre (FC). The hard decision combining rule (OR, AND,

and MAJORITY rule) is executed at the FC to make the final decision regarding

whether the primary user is present or not [81]. It is noteworthy that the choice

of N relies on the resolution required, with higher N resulting in more detection

of white spaces. However, a large number of N energy detectors will increase the

complexity of the detection circuitry. Under this analysis, we assume that all SUs

receive the primary signal with the same local mean power; the distance between

any two sensing nodes are negligible, more so, the noise and average SNR are the

same for all the SUs.

The process of combining the reported sensed results, for arriving at a cooperative

decision is termed Data fusion [11]; wherein, each SU (i.e. energy detector node)

sends its detection to be combined at the FC or basically amplifies the received

signal from the primary user and forwards same to the fusion centre [64]. After

the combination of sensed information from the various detector nodes, existing

receiver diversity techniques such as equal gain combining (EGC), maximal ratio

combining (MRC) and square law combining (SLC) are employed for soft combin-

ing of local observations or test statistics. Although a majority of these diversity

techniques can be applied to the energy detection scheme, we restrict our anal-
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ysis to the MRC and SLC techniques. With the MRC scheme, signals from L

autonomous diversity branches are combined before sampling; consequently, the

output SNR is a sum of the instantaneous SNRs from all diversity branches [14],

i.e. γMRC =
L∑
l=1

γL. The output decision is combined after sampling with the SLC

receiver. The decision statistics under this scheme, YSLC , is the sum of L (IID)

χ2
2d under H0 and the sum of L χ2

2d(ε) under H1; where ε = 2γSLC [82].

The known statistics using data fusion or soft combining include minimum, max-

imum and average. The performance of each of these case is considered next.

Case I: Minimum Selection

With this, detection decision is reached only if the detector with minimum de-

cision variable exceeds the detection threshold [83], i.e. Y = min(Y1, Y2, ...YN).

The detection probability is expressed by;

P T
D = PR [min (Y1, Y2, ...YN) > κ|H1]

=
N∏
i=1

{PR [Yi > κ|H1]} (3.40)

=
N∏
i=1

[
Qdi(

√
2γi,
√
κ)
]

and the probability of false alarm,

P T
FA = PR [min (Y1, Y2, ...YN) > κ|H0]

=
N∏
i=1

{PR [Yi > κ|H0]} (3.41)

=
N∏
i=1

[
Γ
(
di,

κ
2

)/
Γ (di)

]
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Case II: Averaging

In this instance, a decision is arrived at by considering the average of the whole

local decision, i.e. Y = (Y1 + Y2 + ...+ YN)/N . Remarkably, averaging does not

have an effect on the mean of a statistic; instead, it raises the degree of freedom

by some order n and reduces the variance by the same factor n.

The detection and false alarm probabilities are given respectively by;

P T
D = PR

[(
Y1 + Y2 + ...+ YN/N > κ/H1

)]

= Qd

(√
2γt,
√
κ
)

(3.42)

and

P T
FA = PR

[(
Y1 + Y2 + ...+ YN/N > κ/H0

)]
= Γ

(
d, κ

2

)/
Γ (d) (3.43)

where d =
N∑
i=1

di and γt =
N∑
i=1

γi is the received SNR of the signal over the

bandwidth Bw.

Case III: Maximum Selection

With this case, the detector with the maximum or peak detection decision variable

is used to make the global decision, i.e. Y = max(Y1, Y2, ...YN). The detection

and false alarm probabilities are given by;

P T
D = PR

[
max(Y1, Y2, ...YN) > κ/H1

]

= 1−
N∏
i=1

{
1− PR

[
Yi > κ/H1

]}
(3.44)
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= 1−
N∏
i=1

[
1−Qdi

(√
2γi,
√
κ
)]

and

P T
FA = PR

[
max (Y1, Y2, ...YN) > κ/H0

]
= 1−

N∏
i=1

{
1− PR

[
Yi > κ/H0

]}
(3.45)

An alternate method for making collaborative decision is for each SU to conduct

energy detection of the signal, after which the result is fused with others to form

a global decision. This process is termed Decision fusion. Assuming uncorrelated

decisions for N detectors, applying the k-out-of-N decision fusion rule where a

decision is reached once k out of N detectors agree, the effective detection and

false alarm probabilities at the fusion centre is given by;

P T
χ =

∑
i=k...N

i∏
j=1

P (j)
χ

N∏
j=i+1

(
1− P (j)

χ

)
(3.46)

Where (χ = “f”) represents the probability of false alarm and (χ = “d”) corre-

sponds to the probability of detection.

For the special case of k = 1, this corresponds to the “OR” decision rule, which

specifies that if any one of the local decisions sent to the FC is a logical one, the

final decision is one (i.e. when at least 1 out of k SUs detect a PU, it is adjudged

that a PU signal is present) [84]. (3.46) becomes;

P T
χ (k = 1) = 1−

N∏
i=1

(1− P (i)
χ ) (3.47)

which is numerically equivalent to (3.44) and (3.45).

The case where k = N , is termed the “AND” rule; which is when all the local
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decisions sent to the FC is one, resulting in the final decision being one. i.e.

P T
χ (k = N) =

N∏
i=1

P (i)
χ (3.48)

setting k = N/2 corresponds to the MAJORITY decision rule ; when half or more

of the local decisions sent to the FC is one - resulting in the terminal decision of

one. i.e. putting k = N/2 in (3.47)

P T
χ

(
k = N/2

)
=

∑
i=N

2
...N

i∏
j=1

(P (i)
χ )

N∏
j=i+1

(
1− P (i)

χ

)
(3.49)

It is noteworthy that for independent and identical fading, both OR and AND

decision fusion rules yield similar outcome as the minimum and maximum statis-

tics of data fusion respectively [14].

In the next chapter, an analysis of the case scenarios is presented, including in-

terpretation of results obtained from the analysis, which is based on the approach

hitherto described.
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Chapter 4

Results and Discussion

4.1 Introduction

In the previous chapter, the system model was introduced with mathematical

deductions to present a theoretical description of detecting the energy of a signal

in a spectrum. In this section, simulations are performed alongside description of

scenarios involved with the sensing of primary user signals embedded in various

forms of noise, applying the energy detection scheme. Results of the analysis

performed are also presented here, where deductions and interpretations are also

discussed.

4.2 Simulation Result and Discussion

In this section, through simulations, the capability of an energy detector applied

to a secondary user for spectrum sensing is evaluated. All simulations in this

work is executed using MATLAB2 version R2012a. MATLAB is an application

with tools for numerical computation and a fourth-generation programming lan-

2MATLAB is a product of The Mathworks, Inc.
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guage. MATLAB contains tools for data visualization; serving as a convenient

“laboratory” for computations and analysis.

Monte Carlo (MC) method, which is a stochastic technique (based on the use of

random numbers) forms the basis of these simulations.

The receiver performance is quantified by depicting the receiver operating char-

acteristics (ROC) curves, (PD versus PFA). Or equivalently, the complementary

ROC curves (which is the probability of a missed detection (PM= 1−PD) versus

PFA).

ROC curves show plot of probability of miss-detection (PM) (the probability that

the SU fails to detect the presence of the PU) versus the probability of false-alarm

(PFA ) (the probability that the SU decides the PU is in operation whereas it is

absent) [67]. These curves enable exploration of the relationship between sensi-

tivity (probability of detection) and specificity (false alarm rate), for a variety of

thresholds, thus allowing the determination of an optimal threshold [3]. To plot

ROC curves, one parameter is varied while the other is fixed. This enables the

study of various scenarios of interest.

Applying a single energy detector node for sensing is explored next.

4.2.1 Single User Detection

The effect of SNR on detection performance using an energy detector operating

over a non-fading (AWGN) channel is carried out next.

Figure 4.1 depicts detection performance for a single energy detector operating

over an AWGN channel. Here, the probability of false alarm PFA, is set at

0.01, the time bandwidth factor d = 1, number of Monte Carlo sample points,

N = 1000.

From the figure, it is deduced that detection performance improves with an in-
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crease in SNR values. Marginally before 15dB and prominently thereafter. This

is consistent with the overall concept of energy detection, since this method offers

optimal performance as signal power levels increase (high SNR).
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Figure 4.1: Effect of SNR on probability of detection PD, in AWGN.

Next, the effect of increased probability of false alarm (PFA) on detection per-

formance is explored. For this case, PFA is increased from 0.01 to 0.05 and 0.1

respectively, as shown in Figure 4.2. From this plot, it is inferred that a 5%

increase in the false alarm rate (i.e. from 0.01 to 0.05) increases the detection

probability up to 1.7 times for a certain values of SNR.
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Figure 4.2: Probability of detection Vs SNR with varying values of false alarm
probability in AWGN.

Figure 4.3 shows the complementary ROC curve for energy detection over a non-

fading (AWGN) channel ( a case where the form of interference is only noise).

This shows the relationship between the probability of missed detection PM , and

false alarm probability PFA, for 0 -15 dB average SNR, time bandwidth product

d = 4, sample size N = 1000 respectively.

The probability of missed detection is a complement of detection probability. Re-

lated by the expression PM = 1− PD), and is used in this case for clarity.

Numerical results shown in the plot are based on equation (3.29) and are repre-

sented by curves. While the simulation are represented by discreet marks. From

this plot, the probability of miss improves rapidly with increasing γ; roughly a

gain of one order of magnitude is achieved when γ increases from 10 dB to 15
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dB, when a node experiences no channel fading effects. This buttresses the point

made earlier that an increase in SNR produces greater detection performance for

a non-fading channel.
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Figure 4.3: Complementary ROC curves for Energy Detection over AWGN.

The complementary ROC curves over Rayleigh channel for average SNR (γ) val-

ues of 0−15dB; time bandwidth product d = 4, sample size N = 1000 is as shown

in Figure 4.4. From this PM − PFA plot, it is observed that the slopes are low

for PF< 0.1, and a 5 dB increase in SNR (from 10dB to 15dB), has an increase

in missed detection probability (reduced PD ) of up to 0.6 times; compared to

probability of detection over AWGN.

It is apparent that energy detection executed over a Rayleigh channel exhibits

a tough detection performance, compared to that of AWGN. This is not far-

fetched, since the fading severity is more in a Rayleigh channel compared to that
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of AWGN, (which is a case of no fading, shown previously).
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Figure 4.4: Complementary ROC curves for Energy Detection over Rayleigh
fading channel.

Figure 4.5 below substantiates the concept (from equation (3.17)) that for similar

signal energy, improved performance is achieved by employing less number of

samples; as obtained when the energy of the signal Es, increases for a given

number of samples N . This is observed when less number of samples are used for

10dB and 15dB respectively in the figure.
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Figure 4.5: Variation of received signal Es with sample size N .

Next, the performance of an energy detector in a Nakagami channel is explored.

This is as depicted in Figure 4.6.

From this figure, we observe that the probability of miss detection (increased

detection performance) rapidly improves with increasing average SNR (γ). A

gain of roughly one order of magnitude is observed for SNR values of 10dB and

15dB respectively; from the position of the PM for m = 2, compared to the

Rayleigh case of m = 1 in Fig. 4.4.

Where m is the Nakagami parameter, expressed in equation (3.38)).

It is deduced that greater performance is achieved in a Nakagami fading model

than a Rayleigh model, since fading severity is less (from m = 2 to m = 1). This

is adduced to the fact that the sample signals face less obstructions, as they travel

along the transmitter line-of-sight route to the receiver.
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Figure 4.6: Complementary ROC curves over Nakagami-m fading channel.

The performance gain as the Nakagami order (m) increases for a specific SNR is

quantified next.

Fig. 4.7 depicts a case for SNR (γ = 20dB). From this plot, there is approxi-

mately an increase of roughly one order of magnitude from the PM perspective

for m = 2, compared with the Rayleigh case (m = 1).

Consequently, we conclude that the receiver performance improves using the en-

ergy detection method of spectrum sensing, when the Nakagami order increases.

i.e. just as the severity of fading reduces, better detection performance is achieved.
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Figure 4.7: Complementary ROC curves for Nakagami fading at different m
values (γ = 20dB, d = 1.5 and N = 10)

4.2.2 Cooperative Detection

Next, networks of cooperative energy detectors in the various fading channels are

considered.

In Fig. 4.8, using 10 energy detectors, the performance comparison of the various

data fusion methods involved in cooperative spectrum sensing(CSS), described

in section 3.4.3, above is considered.

From this figure, the OR fusion rule shows a better performance compared to

the MAJORITY and AND fusion rules. This is attributed to the fact that OR

decision fusion rule involves result of a minimum of a single user out of K energy

detector nodes to declare the availability or presence of a PU. Though AND fusion
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rule indicates a slightly better performance at low PFA, as compared to the OR

rule, as seen from the figure.
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Figure 4.8: ROC curves for OR, AND and MAJORITY fusion rules for M = 10
energy detectors at mean SNR γ = 15dB.

Since the OR combining rule minimizes communication overhead - attributed to

its property of sending a minimum of a single decision to the FC, this fusion rule

will be adopted in the rest of the analysis for cooperative users in the various

channel models under consideration.

How does cooperative reception improve the performance of the energy detector?

This question is investigated in Figure 4.9 and 4.10 respectively below.

Figure 4.9 shows the complementary ROC performance curves of the energy de-

tector over Rayleigh fading. The number of cooperating nodes (M) are 10, with

average SNR (γ) values of 0, 5, 10, 15dB, and time bandwidth product, d = 5.
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The same parameters are applied to the case of Nakagami fading of Figure 4.10.

From both Figures, there is a gain of one order of magnitude improvement in the

missed detection probability PM , (ie. an increased detection probability) using

the energy detection method applied to a network of cooperating nodes; com-

pared to the single user detection case.

Observe that the slopes of the curves in Figure 4.10 are steeper than those of

Figure 4.9. Thus, the highest performance gain is observed from the Nakagami

fading case, compared to the Rayleigh fading, with the same parameters consid-

ered.

It is interesting to note that energy detection using a single user over an AWGN

performs nearly identical with employing a network of cooperative energy detec-

tors over a Nakagami fading channel.
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Figure 4.9: Complementary ROC curves over Rayleigh channel for M = 10
cooperating detectors at SNR (γ) =0, 5, 10, 15 dB.
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Figure 4.10: Complementary ROC curves over Nakagami channel for M = 10
cooperating detectors at SNR (γ) =0, 5, 10, 15 dB.
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From the foregoing, it is apparent that cooperative sensing is a promising method

of combating the inherent performance deterioration of the energy detector at

severe fading and shadowing environments.
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Chapter 5

Conclusion and Recommendation

5.1 Conclusion

The electromagnetic spectrum is an essential, but scarce resource to the birth of

high data rate wireless communication technology. To utilize the available spec-

trum optimally, use of an intelligent radio platform (known as Cognitive Radios)

was conceived. An important prerequisite for this technology however, is the abil-

ity of unlicensed (secondary) users to detect unused (vacant) spectrum - a process

known as Spectrum Sensing. This process also has to be devoid of complexity.

Of the methods so far explored, detecting the energy of a signal within a band

(energy detection method) has proved to be less complex, most feasible; though

sub-optimal.

This study provides useful insight to the behaviour of the energy detection tech-

nique, as it relates to detecting signals in a band for opportunistic access. In

this work, the performance of an energy detector in detecting unused (vacant)

spectrum was evaluated. The study includes a theoretical background; wherein

closed form expressions for the detection probability and false alarm probabili-

ties for a sensing node over both a non-fading (AWGN) and fading (i.e. Rayleigh
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and Nakagami-m) channels were derived. Using the various fading and non-fading

models, different tests was carried out to assess the performance of the energy de-

tection technique. Employing complementary Receiver Operating Characteristics

(ROC) curves, receiver performance is quantified for both single user detection

and a network of cooperative detector nodes.

Simulation results indicate that depending on the threshold of a single user en-

ergy detector, performance improves over a non-fading channel (AWGN), com-

pared to a fading channel (Rayleigh and Nakagami), for various average values of

SNR. Comparing AWGN curves with those representing fading, spectrum sensing

presents a challenge for a single node over Rayleigh and Nakagami fading chan-

nels. More so, as SNR increases, detection probability increases for a single user

detector node in a channel with no fading. Interestingly, fewer samples produce

better performance for non-fading channels for the case of a single secondary user.

For a single energy detector node also, reducing fading severity (i.e. increasing

Nakagami parameter m values) enhances detection probability for signals over

fading channels, as result show.

A simulation comparison of AND, OR and MAJORITY cooperative decision

fusion rules was undertaken and results show that OR rule (corresponding to

considering the decision of at least one detector out of k available detectors) out-

performs the AND and MAJORITY combining rules.

The effect of cooperating nodes using ED technique over various fading channels

is examined using complementary ROC curves. Results signifying an increased

probability of detection is observed. This asserts the expectation of higher de-

tection probability to overcome effects of multipath and hidden node challenges,

encountered by signals in practical wireless scenarios. In general, our coopera-

tion study identified a robust detection performance; which relate to optimum
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detection of primary signals in the presence of radio uncertainties, compared to

the case of single user detection.

5.1.1 Recommendation

From the foregoing, it is apparent that the range of SNR studied is high, for both

the single and cooperative user cases. Further works in the study of spectrum

sensing using the energy detection method should consider the performance limits

of this method with regard to the SNR.

Though various techniques have been proposed in literature, practical implemen-

tation has remained elusive. In this regard, small scale experiments (away from

simulations) need to be conducted to ascertain the reliability of this approach

in real world scenarios. Test beds like the Universal Software Radio Peripheral

(USRP) will assist in both experimental and qualitative analysis; to reduce as

much as possible, simulation of novel techniques involved with identifying unused

spectrum and the whole concept of opportunistic spectrum access.
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Appendix A

Definition of Functions
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The equation
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can be evaluated for interger m, by making use of [78] to yield;
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A.1 MATLAB SOURCE CODES

Single user Energy Detection Spectrum Sensing for Rayleigh and Nakagami fading

channels;

%Complementary ROC curve for energy detection over Rayleigh

%and Nakagami fading channels

function[SNR]=gamma

clear all

l=1; % Number of diversity brabches

s=1;m=1;% m= Nakagami fading index (m=1 is Rayleihh) and s=1,

%is a constant parameter

color = 'rgbmy';

tick1='−−−: ';

tick2=' −. o';

i=1;

y=5; % Average Receieved SNR value in dB

omg=10ˆ(0/10);

t=1;

for pf=10.ˆ(−4:0.05:0) %False alrm probability

mu=10; %mu is half degree of freedom (Number of imput samples)
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lab = gammaincinv(1−pf,mu);

k=0:30;

P=((gammainc(lab,mu+k)).*(omg.ˆk)*(mˆ(m*l)).*gamma(m*l+k)).

/(((m+s*omg).ˆ(m*l+k))*gamma(m*l).*gamma(k+1));

Pd(t)=1−sum(P); %Detection Probability

Pm(t)=1−Pd(t); %False alarm probability

Pf(t)=pf;

t=t+1;

end

loglog(Pf,Pm,[color(i) tick1(i) tick2(i)]);

hold on

loglog(Pf (1:4:81),Pm(1:4:81),'*');

axis([1e−3 1 1e−3 1]);axis square

xlabel('Probability of False Alarm P f')

ylabel('Probability of Miss Detection P m')

Comparison of the AND, OR and MAJORITY hard decision fusion rules for

energy detetion;

% Complementary ROC curves for OR, AND and MAJORITY fusion rules

funtion[zetta]=epsilon

clear all

pfa=0:0.001:1;

lamda=norminv(1−pfa,1,sqrt(2e−4));

%snr=15; %−22,−18,−15 %(original!)

snr=15;

for i=1:length(lamda)
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A=lamda(i)−(1+10ˆ(0.1*snr));

B=2ˆ0.5*(1+10ˆ(snr*0.1))*0.01;

pd(i)=0.5.*erfc(A./B/sqrt(2));

end

pfaand=pfa.ˆ10; % where the exponent denotes the number of users

pdand=pd.ˆ10;

%PmAND=1−pdand;

pfaor=1−(1−pfa).ˆ10;

pdor=1−(1−pd).ˆ10;

%PmAND=1−pdor;

plot(pfaor,pdor,'−.r',pfaand,pdand,':g',pfa,pd,'b');

legend('OR','AND','MAJORITY')

%plot(pfa,pd);

grid;

xlabel('P {FA}');

ylabel('P D');

hold on

Cooperative Energy detection for AWGN;

funtion[alpha]=beta

clear all

i=1;u=15; %originally u=4 (so set it to this to get the original value)

snr=10ˆ(0/10); %0dB SNR

t=1;

for pf=10.ˆ(−4:0.05:0) %(−4:0.05:0)

lab = 2*gammaincinv(1−pf,u);

Pd(t)=marcumq(sqrt(2*snr),sqrt(lab),u);

Pm(t)=1−Pd(t);

Pf(t)=pf;

t=t+1;

86



end

b1=loglog(Pf,Pm,'g−.');

hold on

k1=loglog(Pf (1:5:81),Pm(1:5:81),'gd');

hold on

axis([1e−4 1 1e−6 1]);axis square

grid off

xlabel('Probability of False Alarm P f')

ylabel('Probability of Miss−detection P m')

%legend('SNR=0dB','','SNR=5dB','','SNR=10dB','','SNR=15dB', '')

snr=10ˆ(5/10); %5dB SNR

t=1;

for pf=10.ˆ(−4:0.05:0)

lab = 2*gammaincinv(1−pf,u);

Pd(t)=marcumq(sqrt(2*snr),sqrt(lab),u);

Pm(t)=1−Pd(t);

Pf(t)=pf;

t=t+1;

end

b2=loglog(Pf,Pm,'b−.');

hold on

k2=loglog(Pf (1:5:81),Pm(1:5:81),'ob');

hold on

snr=10ˆ(10/10); %10dB SNR

t=1;

for pf=10.ˆ(−4:0.05:0)

lab = 2*gammaincinv(1−pf,u);

Pd(t)=marcumq(sqrt(2*snr),sqrt(lab),u);

Pm(t)=1−Pd(t);

Pf(t)=pf;
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t=t+1;

end

b3=loglog(Pf,Pm,'k−.');

hold on

k3=loglog(Pf (1:5:81),Pm(1:5:81),'*k');

hold on

snr=10ˆ(15/10); %15dB SNR

t=1;

for pf=10.ˆ(−4:0.05:0)

lab = 2*gammaincinv(1−pf,u);

Pd(t)=marcumq(sqrt(2*snr),sqrt(lab),u);

Pm(t)=1−Pd(t);

Pf(t)=pf;

t=t+1;

end

b4=loglog(Pf,Pm,'r−.');

hold on

k4=loglog(Pf (1:5:81),Pm(1:5:81),'r+');

hold on

grid on

%legend([k1 k2 k3 k4], 'SNR=0dB','SNR=5dB', 'SNR=10dB', 'SNR=15dB')

legend([b1 b2 b3 b4], 'SNR=0dB','SNR=5dB', 'SNR=10dB', 'SNR=15dB')
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