
KWAME NKRUMAH UNIVERSITY OF SCIENCE AND TECHNOLOGY 

 

 COMPARISON OF STABILITY OF SELECTED NUMERICAL METHODS IN 

SOLVING STIFF SEMI-LINEAR DIFFERENTIAL EQUATIONS 

 

 

 

By 

Isaac Azure,  

Bsc. Mathematics and Statistics 

 

 

 

A Thesis submitted to the Department f Mathematics, Kwame Nkrumah University 

of Science and Technology in partial fulfillment of the requirement for degree of 

 

 

MASTER OF SCIENCE 

INDUSTRIAL MATHEMATICS 

INSTITUTE OF DISTANCE LEARNING 

 

 

JUNE, 2013 



 
 

i 

DECLARATION 

I hereby declare that this thesis is my own work towards the Master of Science and that, to 

the best of my knowledge, it contains no material previously published by another person 

nor material which has been accepted for the award of any other degree of the university or 

elsewhere, except where due acknowledgement has been made in the text. 

 

 

 

Azure Isaac    ……………………..     ……………………. 

PG6318511    Signature     Date 

(Student’s Name & ID) 

 

Certified by: 

Mr. K.F. Darkwah  ……………………..     ……………………. 

Supervisor    Signature     Date 

          

Certified by: 

Prof. S.K. Amponsah  ……………………..     ……………………. 

(Head of Dept.)     Signature     Date 

     

 

Certified by: 

Prof. I.K. Dontwi     ……………………..     ……………………. 

(Dean, IDL)     Signature     Date 

  



 
 

ii 

ABSTRACT 

Many real-world applications involve situations where different physical phenomena 

acting on very different time scales occur simultaneously. The partial differential equations 

(PDEs) governing such situations are categorized as “stiff” PDEs. Stiffness is a 

challenging property of differential equations (DEs) that prevents conventional explicit 

numerical integrators from handling a problem efficiently. For such cases, stability (rather 

than accuracy) requirements dictate the choice of time step size to be very small. 

Considerable effort in coping with stiffness has gone into developing time-discretization 

methods to overcome many of the constraints of the conventional methods. Recently, there 

has been a renewed interest in exponential integrators that have emerged as a viable 

alternative for dealing effectively with stiffness of DEs. 

Our attention has been focused on the explicit Exponential Time Differencing (ETD) 

integrators that are designed to solve stiff semi-linear problems. Semi-linear PDEs can be 

split into a linear part, which contains the stiffest part of the dynamics of the problem, and 

a nonlinear part, which varies more slowly than the linear part. The ETD methods solve the 

linear part exactly, and then explicitly approximate the remaining part by polynomial 

approximations. 

The first part of this project involves a general study of the stiff semi-linear differential 

equations. 

The second part of this project involves an analytical examination of the asymptotic  

stability properties of the Exponential Time Differencing Schemes in order to present the 

advantage of these methods in overcoming the stability constraints. 
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CHAPTER 1 

INTRODUCTION 

This chapter consists of background of the study, statement of the problem, objectives, 

methodology, justification and organization of the study. 

1.0 Background of the Study 

Various problems in the world can be solved when they are modeled and presented in the 

form of an ordinary differential equation or partial differential equation. However, there 

are times where different phenomena acting on very different time scales occur 

simultaneously introducing a parameter called stiff parameter which sometimes makes it 

difficult to solve. All differential equations with this property is said to be a stiff 

differential equation. Differential equations can be grouped into two type’s namely Partial 

Differential equations (PDE) and Ordinary Differential Equations (ODE). 

 

A partial differential equation (PDE) is a mathematical relation which involves functions 

of multiple variables and their partial derivatives. PDEs are used to formulate (and hence 

to aid in the solution of) problems involving functions of several variables, and they arise 

in a variety of important fields. For example, in physics, they are used to describe the 

propagation of sound or heat, electrostatics, electrodynamics, fluid flow and elasticity, 

whilst in finance; they have been used in the modeling of the pricing of financial options. 

Accordingly, the study of their properties and methods of solution has received a great deal 

of attention. 

 

The earliest detection of stiffness in differential equations in the digital computer era, by 

Curtiss, et al (1952), was apparently far in advance of its time. They named the 
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phenomenon and spotted the nature of stiffness (stability requirement dictates the choice of 

the step size to be very small).To resolve the problem they recommended possible methods 

such as the Backward Differentiation Formula for numerical integration. In 1963, 

Dahlquist defined the problem and demonstrated the difficulties that standard differential 

equation solvers have with stiff differential equations. 

For a numerical method which makes use of derivative values, the fast component 

continues to influence the solution, and as a consequence, the selection of the step size in 

the numerical solution is problematic. This is because the required step size is governed 

not only by behavior of the solution as a whole, but also by that of the rapidly varying 

transient which does not persist in the solution that we are monitoring. 

In reality, numerical values occurring in nature are frequently sure as to cause stiffness. 

Therefore, a realistic representation of a natural system using a differential equation is 

likely to encounter this phenomenon.  

Practical application of stiff PDEs can be found in almost all technical disciplines. For 

example mathematical models of electrical circuits, mechanical systems, chemical 

processes, etc. are described by systems of PDEs. 

 

1.1 Statement of the Problem 

Various authors have looked at solutions of differential equations using the Exponential 

Time Differencing (ETD) and Exponential Time Differencing Runge-Kutta (ETDRK) 

methods without checking their stability. This study seeks to compare the asymptotic 

stability of some of these methods and to obtain stability expressions for these numerical 

schemes. 1.2 Objectives 
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1. To obtain stability expression for selected numerical methods. 

2. To compare the stability of the selected numerical schemes using the asymptotic 

stability criteria. 

 

1.3 Methodology 

The problem is to determine the effectiveness of some Exponential Time Differencing 

Methods using the asymptotic stability criteria. Methods employed are ETD1, ETD2, 

ETD2RK1 and ETD2RK2. Computations leading to results will be carried out manually. 

The source of references is the internet and KNUST library.  

 

1.4 Justification 

The study would afford students the opportunity to be aware of some key numerical 

methods for solving stiff differential equations. Information gathered from the results 

would educate students about the stability of these methods and which one of these 

methods is much more preferred than the others. This would help fill the gap in the 

research carried out in Ghanaian Universities in this area.  

 

In addition, it could pave the way for more comprehensive research on the comparison of 

these methods in relation to some specified complex functions which are very significant 

in drawing conclusions to research works. 

The study would however be useful to researcher in the University. Researchers would be 

alerted of these important methods which play a very important role in obtaining accurate 

results when used to compute stiff differential equations. 
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The study would equally be helpful to chemist and physicist to understand which of these 

numerical schemes would be suitable to solve a modeled problem which turns out to be a 

stiff differential equation. 

The University as a whole will find the study relevant in keeping tracks of numerical 

schemes with respect to their stability, and embark on further research on these schemes to 

find plausible solutions to the impending problems. 

 

1.5 Organization of the Study 

Chapter 1 is made up of introduction, which comprises the background of the study, 

statement of the problem, objectives of the study and justification. Chapter 2 highlights on 

review of literature of ideas of different authors whose findings have been defined in 

relation to the topic under study. Chapter 3 focuses on methodological review in the light 

of numerical methods that are relevant to solving stiff differential equations. Basically, the 

study seeks to use manual computation to for the methods. Chapter 4 deal with data 

analysis. In the same way, chapter five consists of summary, conclusion and 

recommendations. 

 

The project report however ends with references and appendices in supportive to the 

researcher’s investigation.  
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CHAPTER 2 

LITERATURE REVIEW 

2.0 Overview 

In this section, there is a review of the work of several authors concerning concept 

definitions and various researches done to uncover different numerical methods used 

to solve stiff differential equations. Researches, empirical work and authors’ opinion 

are looked at. Below are the focuses of the review. 

 The Concept Definition of Stiff Differential Equation. 

 History of Stiff Differential Equations. 

 Solving Stiff Differential Equations with Exponential Time Differencing 

Methods. 

 Stability of Exponential Time Differential Time Differencing Methods. 

 Stability of Exponential Time Differential Time Differencing Runge-

Kutta Methods. 

 

2.1 The Concept Definition of Stiff Differential Equation 

According to Lambers ( assessed on 20/04/2013),  differential equation of the form 

          is said to be stiff if its exact solution      includes a term that decays 

exponentially to zero as t increases, but whose derivatives are much greater in 

magnitude than the term itself. An example of such a term is     , where c is a large, 

positive constant, because its kth derivative is       . Because of the factor of   , this 

derivative decays to zero much more slowly than      as t increases. Garfinkel, et al 

(1977), described stiffness as a property of differential equation that makes it slow and 
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expensive to solve by numerical methods. It is a result of the numerical coefficients in 

the differential equation (so that there is too wide a spread between the fastest and 

slowest elements).  

 

According to Moler (assessed on 14/04/2013), stiffness is a subtle, difficult, and 

important - concept in the numerical solution of ordinary differential equations. It 

depends on the differential equation, the initial conditions and the numerical method. 

Dictionary definitions of the word “stiff” involve terms like “not easily bent”, “rigid”, 

and “stubborn”. We are concerned with a computational version of these properties. 

An ordinary differential equation problem is stiff if the solution being sought is 

varying slowly, but there are nearby solutions that vary rapidly, so the numerical 

method must take small steps to obtain satisfactory results. Stiffness is an efficiency 

issue. If we weren't concerned with how much time a computation takes, we wouldn't 

be concerned about stiffness. Nonstiff methods can solve stiff problems; they just take 

a long time to do it.  

 

Dahlquist et al (1973), defined a stiff system as one containing very fast components 

as well as very slow components. They represent coupled physical systems having 

components varying with very different time scales: that is they are systems having 

some components varying much more rapidly than the others. (Liniger, 1972). 

At the moment, even if the old intuitive definition relating stiffness to multi scale 

problems survives in most of the authors, the most successful definition seems to be 

the one based on particular effects of the phenomenon rather than on the phenomenon 

itself, such as for example, the following equivalent definitions. According to Curtiss, 
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et al (1952), stiff equations are equations where certain implicit methods perform 

better, usually tremendous better, than explicit ones; while Hairer, et al (1996), 

defined stiff equations as problems for which explicit methods don’t work. 

As it usually happens, describing a phenomenon by means of its effects may not be 

enough to fully characterize the phenomenon itself. For example, saying that fire is 

what produces ash would oblige fire men to wait for until the end of a fire to see if the 

ash has been produced. In the same way, in order to recognize stiffness according to 

the previous definitions it would be necessary to apply first explicit methods and see if 

they work or not. 

 

2.2 History of Stiff Differential Equations 

Curtiss et al (1952), detected stiffness in differential equations. They named the 

phenomenon and spotted the nature of stiffness (stability requirement dictates the 

choice of the step size to be very small). To resolve the problem they recommended 

possible methods such as the Backward Differentiation Formula for numerical 

integration. In 1963, Dahlquist, defined the problem and demonstrated the difficulties 

that standard differential equation solvers have with stiff differential equations. 

At about this time several authors participated in independent research for handling 

and evading the problems posed by stiff differential equations. For example, Gear 

(1968), became one of the most important names in this field. Considerable efforts 

have gone into developing numerical integration for stiff problems, and hence, the 

problem of stiffness was brought to the attention of the mathematical and computer 

science community for a comprehensive review of this phenomenon. Stiff differential 
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equations are categorized as those whose solutions (or different components of a 

single solution) evolve on very different time scales occurring simultaneously, i.e. the 

rates of change of the various components of the solutions differ markedly. Consider, 

for example, if one component of the solution has a term of the form    , where c is a 

large positive constant. This component, which is called the transient solution, decays 

to zero much more rapidly, as t increases, than other slower components of the 

solutions. Alternatively, consider a case where a component of the solution oscillates 

rapidly on a time scale much shorter than that associated with the other solution 

components. For a numerical method which makes use of derivative values, the fast 

component continues to influence the solution, and as a consequence, the selection of 

the step size in the numerical solution is problematic. This is because the required step 

size is governed not only by the behavior of the solution as a whole, but also by that of 

the rapidly varying transient which does not persist in the solution that we are 

monitoring. 

 

In reality, the numerical values occurring in nature are frequently such as to cause 

stiffness. Therefore, a realistic representation of a natural system using a differential 

equation is likely to encounter this phenomenon. An example is the field of chemical 

kinetics, Curtiss, (1952). Here ordinary differential equations describe reactions of 

various chemical species to form other species. The stiffness in such systems is a 

consequence of the fact that different reactions take place on vastly different time 

scales. 
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2.3 Solving Stiff Differential Equations with Exponential Time Differencing 

Methods 

 

Exponential Time Differencing (ETD) schemes are time integration methods that can 

be efficiently combined with special approximations to provide accurate smooth 

solutions for stiff or highly oscillatory semi-linear PDEs.  

 

According to Du (2004), Exponential time differencing schemes are time integration 

methods that can be efficiently combined with spatial spectral approximations to 

provide very high resolution to the smooth solutions of some linear and nonlinear 

partial differential equations. We study in this paper the stability properties of some 

exponential time differencing schemes. We also present their application to the 

numerical solution of the scalar Allen-Cahn equation in two and three dimensional 

spaces. 

 

Numerous time discretization methods that are designed to handle stiff systems have 

been developed. One example is the family of Exponential Time Differencing (ETD) 

schemes. This class of schemes is especially suited to semi-linear problems which can 

be split into a linear part, which contains the stiffest part of the dynamics of the 

problem, and a nonlinear part, which varies more slowly than the linear part. These 

schemes have been rediscovered several times in various forms and under various 

names, Calvo et al (2006). An example is the Exact Linear Part (ELP) schemes that 

were derived by Beylkin et al (1998) for arbitrary order. However, the authors 

Beylkin,  and Vozovoi,  did not give explicit formulas for the methods' coefficients. In 
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a subsequent paper, Cox and Matthews  gave an explicit derivation of the explicit ELP 

methods, for arbitrary order s, with explicit formulas for the methods' coefficients and 

referred to these methods as the Exponential Time Differencing (ETD) schemes (the 

term used arose originally in the field of computational electrodynamics. In addition, 

the authors Cox et al (2002) further constructed new explicit Runge-Kutta (ETD-RK) 

versions of these schemes up to fourth-order.  

 

According to Livermore et al (2007), over the last decade there has been renewed 

interest in applying exponential time differencing (ETD) time stepping schemes to the 

solution of stiff systems. In this paper, we present an implementation of such a scheme 

to the fully spectral solution of the incompressible magneto hydrodynamic equations 

in a spherical shell. One problem associated with ETD schemes is the accurate 

calculation of the necessary matrices; we implement and discuss in detail a variety of 

different methods including direct computation, contour integration, spectral 

expansions and recurrence relations. We compare the accuracy of six different second-

order methods in determining the evolution of a three-dimensional magnetic field 

under the action of a prescribed time-dependent flow of electrically conducting fluid, 

and find that for the time step restriction imposed by the nonlinear terms, ETD 

methods are no more accurate than linearly implicit methods which have the 

significant advantage of being easier to implement. However, ETD methods are more 

readily extendable than those which are linearly implicit and will become much more 

advantageous at higher order. 
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2.4 Stability of Exponential Time Differencing Methods 

According to Hala (2008), the stability of a given method for solving a system of 

ODEs is a theoretical measure of the extent to which the method produces satisfactory 

approximations. Stability is related to the accuracy of the methods and refers to errors 

not growing in subsequent steps. Such methods are called numerically stable. The 

stability analysis determines the range of time step for which the method is 

numerically stable. The stability region is the subset of the complex plane consisting 

of those       for which, with time step   , the numerical approximation produces 

bounded solutions when applied to the scalar linear model problem          

     . 

 

In general, the linear stability analysis of time discretization methods is valid for a 

linear autonomous system of ODEs, linearized about a fixed point. This analysis only 

gives an indicator as to how stable the numerical methods are. It cannot be directly 

applied to solutions of nonlinear time-dependent PDEs with large amplitude since 

convergence and stability are solution-dependent issues.  

 

Beylkin, et al. (1998) studied the stability for a family of explicit and implicit ELP 

schemes, and showed that these schemes have significantly better stability properties 

when compared with known Implicit-Explicit schemes. In addition, Krogstad, et al 

(2005), analyzed the stability regions of various time integrating methods, including 

the fourth-order ETDRK4-B method and multi-step generalizations of the IF methods, 

all of which he proposed, and the ETD4RK method of Cox, et al (2002). He deduced 
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that the ETDRK4-B method has the largest stability region. Cox and Matthews also 

studied the stability properties of the second-order ETD type schemes; the study was 

for the ETD-RK schemes of orders up to and including the fourth. All authors 

concluded that ETD type schemes maintain good stability properties and can be 

widely applicable to dissipative PDEs and nonlinear wave equations. The approach 

developed by Beylkin, et al. (1998), for the stability analysis of composite schemes, 

i.e. schemes that use different methods for the linear and nonlinear parts of the 

equation, computes the boundaries of the stability regions for a general test problem.  
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CHAPTER 3 

METHODOLOGY 

3.0 Overview 

Numerical time discretization methods that are designed to handle stiff systems have been 

developed. One example is the family of Exponential Time Differencing (ETD) schemes. 

This class of schemes is especially suited to semi-linear problems which can be split into a 

linear part, which contains the stiffest part of the dynamics of the problem, and a nonlinear 

part, which varies more slowly than the linear part.  

 

In this chapter, we will take a brief look at differential equations and understand the basic 

terminologies that go with it. We then take an in-depth look at the  algorithm derivation of 

the Integration Factor Methods (IF schemes), the Exponential Time Differencing Methods 

(ETD) and the Exponential Time Differencing Runge-Kutta Methods (ETDRK).In 

addition to this, we will also analytically examine the methods stability properties, which 

determines the range of time step for which the method is numerically stable. The 

approach computes the boundaries of the stability regions for a general test problem for the 

explicit ETD methods of multi-step or RK type up to fourth-order. 

 

3.1 Basic Concepts of Differential Equations 

A differential equation is an equation that involves an unknown scalar function (the 

dependent variable) and one or more of its derivatives. For example 

   

   
  

  

  
                                                                                      ) 

  

  
 

   

   
 

   

   
                                                                                       ) 
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If the unknown function is a function in one single variable then the differential equation is 

called an ordinary differential equation. An example of an ordinary differential equation is 

equation (3.1). In contrast, when the unknown function is a function of two or more 

independent variables then the differential equation is called a partial differential equation, 

in short PDE. Equation (3.2) is an example of a partial differential equation. 

 

3.1.1 Partial Differential Equations 

Definition: A Partial Differential Equation (PDE) is an equation containing partial 

derivatives of the dependent variable. 

For example, the following are PDEs 

                                                                                                               

                                                                                                     ) 

NOTE: We use subscript to mean differentiation with respect to the variables given, e.g. 

   
  

  
. In general we may write a PDE as  

                                                                                     

where x,y,… are the independent variables and u is the unknown function of these 

variables. Of course, we are interested in solving the problem in a certain domain D. A 

solution is a function u satisfying equation (3.5). From these many solutions we will select 

the one satisfying certain conditions on the boundary of the domain D. 

For example, the functions 

              

                   

are solution of (3.3), as can be easily verified. 
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Definition: The order of a PDE is the order of the highest order derivative in the equation. 

For example, equation (3.3) is of first order and equation (3.4) is of second order 

 

3.1.2 Types of PDEs 

Linear PDE: A partial differential equation is called linear if it is linear in the unknown 

function and all its derivatives with coefficients depend only on the independent variables. 

. For example, a first order linear partial differential equation has the form 

                                 

where as a second order linear partial differential equation has the form  

                                                                

Quasi-linear PDE: A partial differential equation is called quasi-linear if the highest order 

derivatives which appear in the equation are of degree one (regardless of the manner in 

which lower-order derivatives and unknown functions occur in the equation). For example, 

a first order quasi-linear partial differential equation has the form 

                               

whereas a second order quasi-linear partial differential equation has the form 

                                                                     

Semi-linear PDE: A partial differential equation is semi-linear if it is quasi-linear and the 

coefficients of the highest-order derivatives are functions of independent variables only. 

For example, a first order semi-linear partial differential equation has the form 

                                             

 

 



 
 

16 

3.2 Derivation of Algorithm 

We begin by giving briefly the main idea behind the Lawson Integrating Factor IF 

methods, Lawson et al. (2008), then give, in detail, the algorithm derivation for the explicit 

ETD scheme. 

Consider stiff semi-linear PDEs that can be written in the form 

        

  
                                                                                ( 3.1 ) 

 

Where the linear operator   contains higher-order spatial derivatives than those contained 

in the nonlinear operator  , and is mainly the term responsible for stiffness. For problems 

with spatially periodic boundary conditions, we use Fourier spectral methods to discretize 

the spatial derivations of (3.1), and hence obtain a stiff system of coupled ODEs in time t 

     

  
                                                                                     (3.2) 

 

The linear part L of the system is represented by a diagonal matrix, and F represents the 

action of the nonlinear operator on u on the grid. For problems where the boundary 

conditions are not periodic, we use finite difference formulas or Chebyshev polynomials, 

and in this case, the linearized system is represented by a non-diagonal matrix. For 

dissipative PDEs, the eigenvalues of the matrix L are negative and real, whereas they are 

imaginary for dispersive PDEs. Dissipation in a dynamical system represents the concept 

of important mechanical modes, such as waves or oscillations, loosing energy over time. 

Such systems are called dissipative systems. On the order hand, a dispersive PDE 

represents a system in which waves of different frequencies propagate at different phase 
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velocities (the phase velocity is the rate at which the phase of the wave propagates in 

space). 

 

For the stiff system of ODEs (3.2), the eigenvalues of the matrix L vary widely in 

magnitude, and the stiffness is caused by the eigenvalues of large magnitude. A 

competitive time stepping method should be able to integrate the system (3.2) accurately 

without requiring very small time steps for the largest magnitude eigenvalue. 

Simultaneously it should be able to handle small eigenvalues. The nonlinear term F 

requires an explicit treatment since fully implicit methods are too costly for a large system 

of ODEs. 

To derive the time discretization methods (Integrating Factor (IF) and ETD methods), we 

consider for simplicity a single model of a stiff ODE 

     

  
                                                                                                       (3.3) 

Where the stiffness parameter c is either large, negative and real, or large and imaginary, or 

complex with large, negative real part and           is the nonlinear forcing term. 

 

3.2.1 Integrating Factor Methods 

The main idea behind the IF schemes is to use a change variables 

               

So that when differentiating both sides of this equation we obtain 
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And then substituting from equation (3.3) we get 

     

  
                

                                                                                                                                (3.4) 

 

The main aim now is to use any numerical integrator (IF schemes can be generalizes to 

arbitrary order by applying any multi-step or Runge-Kutta methods) on the transformed 

nonlinear differential equation (3.4). The approximated solution is then transformed back 

to provide an approximate solution for the original u variable. For example, we can choose 

to apply the Euler method to the transformed differential equation as follows 

               
        

      

where    is the time step size and    denotes the numerical approximation to      , and 

then transform back to the original variable to obtain the solution approximation. This 

yields the first-order Integrating Factor Euler (IFEULER) method 

               
                                                                                          (3.5) 

Where    and    denote the numerical approximation to       and             

respectively. 

 

The purpose of transforming the differential equation (3.3) to equation (3.4), is to remove 

the explicit dependence in the differential equation on the operator c, except inside the 

exponential. Now the problem is no longer stiff since the linear “stiff” term of the 

differential equation (3.3), that contains the stability, is gone. Therefore, it can be solved 

exactly with the possibility of larger time steps. However, according to Wright (2004), for 
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PDEs with slowly varying nonlinear terms, the introduction of the fast decay time scale 

into the nonlinear term introduces large errors in the system. 

 

3.2.2 Exponential Time Differencing Methods 

To derive the s-step ETD schemes, we follow an approach similar to that of deriving the IF 

schemes, i.e. we multiply (3.3) through by the integrating factor       and then integrate 

the equation over a single time step from      to              to get 

              
                   

  

 
                                                             

(3.6) 

 

This formula is exact, and the next step is to derive approximations to the integral in 

equation (3.6). This procedure does not introduce an unwanted fast time scale into the 

solution and the schemes can be generalized to arbitrary order. 

If we apply the Newton Backward Difference Formula, using information about  

          at the nth and previous time steps, we can write a polynomial approximation to 

                in the form 

                                
     
 

    
                                                                                 

(3.7) 

where   is the backward difference operator defined as follows 
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and  

   
  
 
                                   

(note that    
  
 
      If we substitute the approximation (3.7) in the integrand (3.6), we 

get 

              
            

   

   

           
  
 
     

 

 

                                 

Where       . 

We will indicate the integral in (3.9) by 

                  
 

 

 
  
 
                                                                                     

and then calculate the    by bringing in the generating function. For            we 

define the generating function 
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Rearranging (3.11) to form 

                                 

and expanding as a power series in z 

       
  

 
 

  

 
              

                        

we can find a recurrence relation for the    for     by equating like powers of z 

                                                                                                     (3.11a) 

             
 

 
     

 

 
       

 

   
  

  
 

     
                   

 

   

 

 

Having determined the     the ETD schemes (3.9) then can be given in explicit forms. 

Substituting (3.8) and (3.10) in (3.9), we deduce the general generating formula of ETD 

schemes of order s 

        
                

 
 
 

 

   

   

   

                                                                    

where    and    denote the numerical approximation to u(    and F(u(        

respectively, and the    are given by (3.12). 

 

3.2.3 ETD Schemes 

ETD1 Scheme 

From equation (3.11a) above,    can be written as  
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To obtain the ETD1 scheme, we set     in the explicit generating formula (3.13) to get 

        
           

                                                    
       

      

   
   , hence the ETD1 scheme is given 

by; 

                      
                                                                                          

ETD2 Scheme 

In the same manner as was than for the ETD1, setting     in (3.13) gives us the second-

order ETD2 scheme 

        
   

                                           

                 

 

ETD3 Scheme 

If     in (3.13), we obtain the third-order ETD3 scheme 

        
   

                                       

                                  

                                    
                   

ETD4 Scheme 

Set     in (3.13) to achieve the fourth-order ETD4 scheme 

        
                                   

                        

where 
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Note that as     in the coefficients of the s-order ETD methods, the methods reduce to 

the corresponding order of the Adams-Bashforth schemes. For example, if we expand the 

exponential function, using Taylor series, in the first-order ETD1 method (3.14) as follows 

              
      

 
 
      

  
          

    

 
 
     

  
     

and then take the limit as     , while keeping terms of      , we obtain 

                                  

which corresponds to the forward Euler method. In fact, in the case of    , the explicit 

formulas of the coefficients involve division by zero, and for very small values of    , the 

coefficients suffer from rounding errors due to the large amount of cancellation in the 

formulas. To tackle this problem we can use the Taylor series instead of using the explicit 

formula of the coefficients. 

 

3.2.4 Exponential Time Differencing Runge-Kutta Methods 

Generally, for the one-step time-discretization methods and the Runge-Kutta (RK) 

methods, all the information required to start the integration is available. However, for the 

multi-step time-discretization methods this is not true. These methods require the 

evaluations of a certain number of starting values of the nonlinear term          at the nth 

and previous time steps to build the history required for the calculations. Therefore, it is 

desirable to construct ETD methods that are based on RK methods. 
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ETD Runge-Kutta Schemes 

Cox et al (2002), constructed a second-order ETD Runge-Kutta method, analogous to the 

“improved Euler” method given as follows.  

ETDRK1 Scheme 

Putting     in equation (3.13) gives   

        
                                                                            

Let        , than it implies that 

      
    

          
 

                                                           

The term    approximates the value of u at        The next step is to approximate F in 

the interval          , with 

                                      

and substitute into (3.6) to give the ETD2RK1 scheme 

                                       
                                   

 

ETD2RK2 Scheme 

In a similar way, we can also form an ETD2RK2 scheme analogous to the “modified 

Euler” method. The first step 

      
        

   
          

is formed by taking half a step of (3.18); then use the approximation 

     
      

    
                            

in the interval            in (3.6) to deduce the ETD2RK2 scheme 
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  /2)/ 2                                                                                             (3.20)                     

 

In fact there is a one-parameter family of such         schemes. For     , one can 

start with any fraction     of    for the first step (3.18) which gives 

      
        

   
          

The term    approximate the value of u at          Next use the approximation 

     
      

    
                           

in the interval            in (3.6) to deduce the general         schemes as follows 

        
                                                     

  / )/( 2  ). 

 

ETD3RK Scheme 

In a similar way, for different values of the fraction     there are infinitely many third-

order and fourth-order ETD-RK schemes. For example, the third-order ETD3RK scheme 

which is analogous to the classical third-order RK method is given by 

      
                      

      
                                   

        
                                                

 2  2 3    4   ,     /( 3  2)                                                    (3.21) 
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The terms    and    approximate the values of u at         and       respectively. 

The formula (3.21) is the quadrature formula for (3.6) derived from quadratic interpolation 

through the points            and      . 

 

ETD4RK Scheme 

Introducing a further parameter, a fourth-order scheme ETD4RK is obtained as follows: 

      
                       

      
                                 

      
                                       

        
                                                    

2)( (  ,     /2)+ (  ,     /2))+    +4      2  2 3    4 (  ,     )/( 3

  2).                                                                         (3.22) 

 

The terms    and    approximate the values of u at         and the term    

approximates the value of u at      . The formula (3.22) is the quadrature formula for 

(3.6) derived from quadratic interpolation through the points            and      , 

using average values of F at    and   . 

 

In general, the ETD4RK method (3.22) has classical order four, but Hochbruck .M. and 

Ostermann, .A. et al  (2005), showed that this method suffers from an order reduction. This 

is due to not satisfying some of the stiff order conditions. These conditions were derived 

for explicit exponential Runge-Kutta methods applied to stiff semi-linear parabolic 

problems with homogeneous Dirichlet boundary condition and under appropriate temporal 
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smoothness of the exact solution. They also presented numerical experiments which show 

that the order reduction, predicted by their theory, may in fact arise in practical examples. 

In the worst case, this leads to an order reduction to order three of the Cox and Matthews 

method (3.22) and gives order four for Krogstad’s method. 

Finally, we note that as     in the coefficients of the s-order ETD-RK methods, the 

methods reduce to the corresponding order of the Runge-Kutta schemes. 

 

3.3 Stability Analysis 

The stability of a given method for solving a system of PDEs or ODEs is a theoretical 

measure of the extent to which the method produces satisfactory approximations. Stability 

is related to the accuracy of the methods and refers to errors not growing in subsequent 

steps. Such methods are called numerically stable methods. 

 

3.3.1 Diagrammatic Representation of Stability Regions for ETD and ETDRK 

Schemes 

 

Hala (2008), studied the stability of ETD and ETDRK schemes and came out with 

diagrams to represent their stability regions. These Diagrams give a clearer understanding 

of the stability of the schemes. 
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Stability Analysis of ETD1and ETD2 Schemes 

 

Figure 3.1: Stability region in the complex x plane for the ETD1 and the ETD2 

schemes 

 

As shown in figure 3.1, the boundary of the stability region for the ETD1 and the ETD2 

schemes passes through the point      (this is true for any fixed value of  y), which 

agrees with the result found for the ETD2 schemes. A view of these two diagrams above 

confirms that ETD1 is more stable than ETD2. 
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Stability Analysis of ETD2RK1 and ETD2RK2 

 

                                                                        

 

 

FIGURE 3.2: Stability Regions of ETD2RK1 and ETD2RK2 in the complex x plane. 

 

From the two figures above, it can be seen that ETD2RK1 scheme is more accurate than 

the ETD2RK2. Generally, the stability regions of the ETD-RK schemes are larger than 

those of the explicit multi-step ETD schemes making the ETD schemes more stable than 

the ETDRK schemes. 

The approach developed for the stability analysis of composite schemes, i.e. schemes that 

use different methods for the linear and nonlinear parts of the equation, computes the 

boundaries of the stability regions for a general test problem. That is to analyze the 

stability of the ETD schemes, we linearize the autonomous ODE  
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about a fixed point    (so that             , to obtain 

     

  
                                                                                                    

where      is the perturbation to    and 

  
        

  
          

Again                         

But      

Therefore, F(                                                                                                           

 

In order to keep the fixed point    stable, we require           (note that the fixed 

points of the ETD methods are the same as those of the ODE (3.23), in contrast to the IF 

methods which do not preserve the fixed points for the ODE that they discretize. It seems 

desirable for a numerical method to fulfill this property with respect to capturing as much 

of the dynamics of the system as possible). 

 

If both   and   are complex, the stability region is four-dimensional. But if both   and   

are purely imaginary or purely real, or if   is complex and   is fixed and real then the 

stability region is two-dimensional.  

This study concentrates on two cases to determine whether the schemes are asymptotically 

stable. The conditions are as follows; 

   is complex and c is fixed, negative and purely real. 

   is negative and both c and   are purely real. 
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Algorithm 

To determine whether an exponential time differencing method is asymptotically stable, 

considering the problem  

     

  
             

Step 1: Solve the problem using any one of the ETD1, ETD2, ETD2RK2 and ETD2RK2 

methods. 

Step 2: Divide through the      solution with    to obtain an equation for 
     

  
 

Step 3: Set   
     

  
,       and      , where c and   are parameters in the given 

problem and    is the time step. 

Step 4: For a scheme to be asymptotically stable then; 

  
    
  

   

Given the problem above, the asymptotic stability of the schemes can be determined as 

follows; 

 

3.3.2 Stability of ETD1 Scheme 

Equation (3.14) can be written in the form; 

    
  

      
        

   
                                                               

From equation (3.24a),    can be written as; 
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Putting (3.26) in to (3.25), gives; 

    
  

      
        

   
    

    
  

      
        

 
                                   

 

 putting             and   
    

  
  in to the above equation gives; 

     
 

 
                                               

If   

     
 

 
                                      

then ETD1 is asymptotically stable. 

 

3.3.3Stability of ETD2 Scheme 

Equation (3.15) can be written in the form; 

    
  

      
                                          

      
   

Substituting equation (3.26) in to the above equation gives; 

    
  

      
                                           

      
                

putting             and   
    

  
  in to the above equation gives; 
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If  

      
    

 
    

        

  
                         

then ETD2 is asymptotically stable. 

 

3.3.4 Stability of ETD2RK1 Scheme 

Equation (3.19)  can be written as; 

    
  

      
          

   
                                    

Substituting        in to the above equation gives 

    
  

      
           

   
              

           

        
                

Putting             and   
    

  
  in to the above equation, we get 

           
   
   

  
              

  
    

           
 

 
  

              

  
    

      
    

 
    

              

  
                       

If 

      
    

 
    

              

  
                       

then ETD2RK2 is asymptotically stable. 
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3.3.5   ETD2RK2 Scheme 

Equation (3.20) can be written as 

    

  
      

                          
                            

      
                    (3.30) 

 

Let   
    

  
       and       

 

      
                         

  
    

                 

  
    

 (3.30a) 

If  

      
                         

  
    

                 

  
             (3.30b) 

then  ETD2RK2 is asymptotically stable. 
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CHAPTER 4 

ANALYSIS AND RESULTS 

4.0 Overview 

This chapter presents manual computational results for the r values of ETD1, ETD2, 

ETD2RK1 and ETD2RK2 schemes which will be used later to determine the stability of 

each of the schemes. A brief discussion of the manual computational results is used to end 

this chapter. 

 

4.1 Computational Results of Stability of ETD Schemes 

Du et al (2009), gave the parameter values for     and   . These values were adopted in 

this study to compute the values of x and y given that                 . 

Following the first condition in section (3.3), where   is complex and c is fixed, negative 

and both         are purely real; the values of x and y were computed using the adopted 

values for the parameters            and represented in a tabular form below. 

 

Table 4.1: x and y Values Given that c is Fixed and Negative and   is Complex 

and both are Purely Real. 
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It can be observed from Table 4.1 above that as the values of    and   increase and c 

remain constant values of x and y decreases accordingly. Because of the negative values of 

c, all values obtained for y were also negative. 

Considering the second condition in section (3.3), where   is complex and c is changing 

and negative and both         are purely real; the values of x and y were computed using 

the adopted values for the parameters            and represented in a tabular form below. 

 

Table 4.2: x and y Values Given c is Changing and Negative and   is Complex and 

both c and   are Real 

           

                                  

                                  

                                  

                                     

                                     

                                     

 

Values from Table 4.2 show that given the condition that c is changing and negative and   

is complex and both         are real, both values of x and y decrease as    increases. 

 

4.2 Computations of the r Values of the ETD and ETDRK Schemes  

From tables (4.1) and (4.2), the computed values of x and y were used to carry out the 

computations for the r values of ETDI, ETD2, ETD2RK1 and ETD2RK2. 

Considering the condition that   is complex and c is fixed and negative and both   and c 

are purely real, equations( 3.24),( 3.26a) and (3.27) computes the r values for ETD1, in a 
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similar way, equations( 3.24), (3.28) and (3.28a) computes the r values for ETD2, while 

equations (3.24), (3.29) and 93.29a) computes the r values for ETD2RK1. Finally 

equations (3.24), (3.30) and (3.30a) computes the r values for ETD2RK2. Below is a 

summary of the computed values of r for the schemes. 

 

Table 4.3: The r Values of the Schemes when Parameter c is Fixed and Negative 

and   is Complex 

                      

                          

                            

                            

                            

                            

                            

                            

 

From Table 4.3, all values corresponding to the ETD and ETDRK schemes are less than 

one indicating that all schemes are asymptotically stable at these points studied. It can also 

be observed that at each     all schemes have the same values and this is true for all values 

of   . Hence none of the schemes can be said to be more asymptotically stable than the 

other. Again descending down the table, the values of r corresponding to the schemes 

decreases, hence making the schemes more stable. 

 

Considering the condition that   is complex and c is changing and negative and both   and 

c are purely real, equations (3.24), (3.26a) and (3.27) computes the r values for ETD1, in a 

similar way, equations (3.24), (3.28) and (3.28a) computes the r values for ETD2, while 
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equations (3.24), ( 3.29) and (3.29a) computes the r values for ETD2RK1. Finally 

equations (3.24), (3.30) and (3.30a) computes the r values for ETD2RK2. Below is a 

summary of the computed values of r for the schemes. 

 

Table 4.4: The r Values of the Schemes when Parameter c is changing and 

Negative and   is Complex. 

                      

                          

                            

                            

                            

                                        

                                    

                                    

 

Again in Table 4.4, all values corresponding to ETD and ETDRK schemes are less than 

one, indicating that all schemes are asymptotically stable at these points. It can also be 

observed that at each    all the schemes have the same values suggesting that none of the 

schemes studied is better in terms of asymptotic stability than the other. Descending down 

the table, the r values of the schemes are decreasing, hence suggesting that the schemes are 

becoming more asymptotically stable. 

 

4.3 Discussion 

From Table 4.1, given that                 , c is fixed and negative and   is 

complex, results obtained for       and       showed that both values of x and y 

increased for every increase in   , however all values of y were negative. 
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In Table 4.2, if c is changing and negative and   is complex, the values of remained the 

same while y values were found to be changing. 

 

From Table 4.3, all values corresponding to the various ETD and ETDRK schemes are less 

than one indicating that all schemes are asymptotically stable at these points studied. It can 

also be observed that at each     all schemes have the same values and this is true for all 

values of   . Hence none of the schemes can be said to more asymptotically stable than the 

order. Again descending down the table, the values of r corresponding to the schemes 

decreases, hence making the schemes more stable. 

 

Again in Table 4.4, all values corresponding to ETD and ETDRK schemes are less than 

one, indicating that all schemes are asymptotically stable at these points. It can also be 

observed that at each    all the schemes have the same values suggesting that none of the 

schemes studied is better in terms of asymptotic stability than the other. Descending down 

the table, the r values of the schemes are decreasing, hence suggesting that the schemes are 

becoming more asymptotically stable. 
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CHAPTER 5 

CONCLUSION AND RECOMMENDATION 

5.1 Conclusion 

This research suggest that the comparison of the asymptotic stability of ETD1, ETD2, 

ETD2RK2 and ETD2RK2 schemes in solving the stiff semi-linear differential equation 

(3.24) was properly executed. This was made possible when some parameters            

were adopted and used for computations. 

 

To ensure that the first objective was met, ETD1, ETD2, ETD2RK1 and ETD2RK2 

schemes were used to solve the stiff semi-linear differential equation (3.24) to obtain the 

asymptotic stability expressions (3.27a), (3.28a), (3.29b) and (3.30b). 

The second objective suggested the following conclusions; 

 When the parameter c is negative and changing, and   is complex, all the schemes 

are asymptotically stable, however as    increases and the parameter c is changing, 

the corresponding     values of the schemes decreases accordingly making them 

more asymptotically stable. 

 When the parameter c is negative and fixed and   is complex and both are real, all 

the schemes studied are asymptotically stable, however as    increases, 

corresponding     values of the schemes decreases accordingly making them more 

stable. 

 At each   , the     values of all the schemes are the same, that is; at         , 

    value of ETD1 is 0.9999, ETD2 is 0.9999, ETD2RK1 is 0.9999 and ETD2RK2 

is 0.9999. Hence as far as asymptotic stability is concern, none of the schemes 
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studied is more stable than the other, therefore ETD1, ETD2, ETD2RK and 

ETD2RK2 are efficient schemes for solving stiff semi-linear differential equations. 

 It will take several    values to make the schemes more stable when c is fixed and 

negative and   is complex than when c is changing and negative and   is complex. 

 

5.2 Recommendations 

The conclusions drawn in this research were based on the values of the parameters used in 

this work and may not have the same observations when different values are used for the 

similar study.  

 

This study serves as the basis for more detailed analysis in to the stability properties of 

other numerical methods to be carried out in future. It is hoped that future research should 

look at how stability affects each of these schemes studied and come out with different 

methods to improve on the stability of these methods. 
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APPENDIX 

Fourier Analysis of Steady State Solution of Kuramoto- Sivashinsky (K-S) Equation 

The Kuramoto-Sivashinsky equation, which will be refered to as K-S equation, is one of 

the simplest semi-linear PDEs capable of describing complex (chaotic) behavior in both 

time and space. This equation has been of mathematical interest because of its rich 

dynamical properties. In physical terms, this equation describes reaction diffusion 

problems, and the dynamics of viscous-fluid films flowing along walls, and was introduced 

by Sivashinsky as a model of laminar flame-front instabilities and by Kuramoto as a model 

of phase turbulence in chemical oscillations. A fairly large number of numerical and 

theoretical studies have been devoted to the K-S equation;  

The K-S equation in one space dimension can be written in “derivative” form 

       

  
        

       

  
 
        

   
 
       

   
                                           

Or in “integral” form, putting                    in equation (4.1), we have 

 

  
 
       

  
   

       

  

 

  
 
       

  
  

  

   
 
       

  
  

  

   
 
       

  
  

This reduces to; 

      

  
  

 

 
 
       

  
 

 

 
        

   
 
        

   
                               

or in a more simpler form as; 

                                                                              

where the subscript denote differentiation of the state variable u with respect to time and 

space, respectively. Here we seek steady state standing wave solution (      to the 

equation in an infinite spacial domain using Fourier analysis. 

For a start, consider the simplest model consisting of a single sine wave; 
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Taking derivatives of (4.3a), the following are obtained; 

           

              

               

               

The nonlinear term of the K-S equation is 

                  

Simplify using the following trigonometric identities; 

         
 

 
                     

To obtain the following: 

    
 

 
          

Steady state of  K-S equation 

                

Equating term by term, we have 

           

 

 
      

Clearly there is no solution except for           . However, the first equation has a 

second solution given by    , which is not very different from the value observed 

numerically at                   . 

Considering a more realistic model, motivated by a numerical solution of the K-S equation 

is  
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Taking the derivatives of  (4.3b), we have 

                     

                         

                          

                           

The nonlinear term of the equation will be 

                                                             

Simplify using the following trigonometric identity 

         
 

 
                     

to obtain the following; 

    
 

 
                            

 

 
                            

Steady state of K-S equation 

                

Equating term by term, we have 

     
 

 
              

 

 
                 

      

This system is over specified since there are four equations for three unknowns. However, 

the last two equations are only approximations since they are inconsistent with the 

assumption that only terms in       and        are present. 
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The first two equations are exact and can be simplified (for k, a and b nonzero) to; 

           

              

From the numerical solution of the K-S equation, we have  

                   

from which we can determine a and b.  

                      

                         

There values are in reasonable agreement with numerical results. Hence; 

                                              

Solving a more involving equation in the form  

                                                            

Its derivatives will be 

                                                   

                                                         

                                                             

                                                               

Therefore the nonlinear term will be 



 
 

8 

                                                       

                                              

                                                

                                             

                                           

                                                   

                                                 

                                            

                                             

                 

Simplify using the following trigonometric identities; 

         
 

 
                    

         
 

 
                    

         
 

 
                    

to obtain the following; 
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Steady state of  K-S equation 

                

Equating term by term, we have 
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The        and        terms are ignored since they would require        

Similarly; 

                        

                           

                    

                         

                         

               

           

             

             

This system is over-determined since there are nine equations for seven unknowns. Using 

only the first seven equations (ignoring the        and        terms), gives the following 

exact numerical results (may not be unique); 
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Hence 

                                                     

However, we can perform a numerical least-square fit to the entire system of nine 

equations with the following results (mean square error          

         

         

         

          

         

         

          

Hence  

                                                           

                                   

In summary, the table below shows the numerical results of the Kuramoto-Sivashinsky 

equation when using M Fourier terms. 
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Numerical Results of K-S Equation Using M Fourier terms 

                         

                 

                        

                                   

                                          

                                                

                                                  

                                                   

 

These are the values obtained by Fourier analysis of the steady state numerical solution of 

the Kuramoto-Sivashinsky equation. 

When          

 

Fourier Analysis of the Steady State Numerical Solution of the K-S Equation.  
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The table above shows the trend in the numerical results of the Kuramoto-Sivashinsky 

Equation when using M Fourier terms. From the table it can be observed that as the value 

of M increases, the K value decreases and the terms in the terms in the K-S equation 

increases. 

 

An analysis of the steady state numerical solution of the K-S equation using the Fourier 

analysis  summarized in Table(4.3) show the trend of values of the real, imaginary, 

amplitude and phase when          . From the table, values representing the phase 

decreases as the n values increase. 

 

 

 

 

 

 

 

 

 

 

 

 


