
i 
 

DYNAMIC PROGRAMMING BASED BUS REPLACEMENT POLICY FOR 

METRO-MASS TRANSIT LIMITED-KUMASI DEPOT 

 

 

 

 

 

ABDUL RASHID (BSc Computer Science) 

 

 

 

 

A thesis submitted to the Department of Mathematics, Kwame Nkrumah  

University of Science and Technology, Kumasi  

in partial fulfilment of the requirements for the degree of  

 

 

Master of Science  

 

Industrial Mathematics 

 

 

 

 

 

 

 

 

 

OCTOBER, 2011 

 



ii 
 

DECLARATION 

 

I hereby declare that this submission is my own work towards the Master of Science 

Industrial Mathematics and that, to the best of my knowledge it contains no material 

previously published by another person or material which has been accepted for award of any 

other degree of the university except where due acknowledgement has been made in the text. 

 

Abdul Rashid, PG3005509          ………………….    …………………… 

Student‟s Name & ID    Signature    Date 

 

 

Certified by: 

Mr. F. K. Darkwah    ………………….   …………………… 

Supervisor‟s Name     Signature    Date 

 

Certified by: 

Prof. I.K Dontwi    ………………….   …………………… 

Dean of IDL     Signature    Date 

 

 

Certified by: 

Mr. F. K. Darkwah      ………………….   …………………… 

Head of Department‟s Name    Signature    Date 

 



iii 
 

ABSTRACT 

Recent advances in automobile replacement have made possible the deployment of several 

strategies aimed at minimising the total operational cost on one hand and maximising the 

total net profit on the other hand of an equipment in service of a given organization. 

This thesis looks at the various operational costs associated with running an automobile bus 

as a background to making a future replace or keep decision throughout a given planned 

horizon. Our work focuses on using dynamic programming in solving the backward profit 

recursive relation for an optimal replacement policy via Microsoft Excel solver 

implementation.  

This approach finds the optimal replacement policies to be replaced in every five and four 

years of the bus‟s service life: Verband Deutscher Lokomotivindustrie (VDL) Commuter, 

Verband Deutscher Lokomotivindustrie (VDL) Neoplan City (2
nd 

generation), Verband 

Deutscher Lokomotivindustrie (VDL) Daf and Verband Deutscher Lokomotivindustrie 

(VDL)Jonckheere buses should be replaced every five (5) years  with Neoplan City (1
st
 
  

generation) bus replaced every four (4) years. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND TO THE STUDY 

The timely replacement of buses in the fleet is one of the fundamental programs that serve as 

a backbone of a successful transport system. Buses are a transit system‟s most valuable asset 

because good customer service is dependent on the condition of the fleet. The total cost of the 

fleet is usually the most expensive asset, even more so than the facilities that house the 

operation. An aging fleet presents a poor image to the system‟s customers and the general 

public. Bus maintenance expenses usually increase as the age of a bus advances thereby 

triggering replacement. 

All transport service providers in Ghana maintain large fleets of equipment. This equipment 

represents a substantial investment and is a vital set of resources that is used to maintain 

roads and highways. Managing such a large amount of equipment is an important and 

difficult challenge of deciding when to replace existing equipment. Such decisions have a 

clearly documented economic impact, and they also affect the ability of the fleet to provide 

required equipment when needed.  

In particular, the Metro-Mass Transit (MMT) Limited Fleet Services Section provides 

management of MMT‟s fleet, which consists of over 1000 pieces of active equipment worth 

approximately GH₵540 - GH₵590 million. This equipment includes a variety of buses. 
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1.2 PUBLIC TRANSPORT IN GHANA 

Transport in Ghana is accomplished by road, rail, air and water. Ghana's transportation and 

communications networks are centered in the southern regions, especially the areas in which 

gold, cocoa, and timber are produced. The northern and central areas are connected through a 

major road system with some areas relatively isolated. 

Road transport is by far the dominant carrier of freight and passengers in Ghana‟s land 

transport system. It carries over 95% of all passenger and freight traffic and reaches most 

communities, including the rural poor and is classified under three categories of trunk roads, 

urban roads, and feeder roads. The four major means of public transport in Ghana are taxi 

(cab), “trotro”, commuter buses and the train. 

It is said that Ghana is the country with most taxis in the world. A taxi will be shared by 4 or 

5 passengers and its presence is felt even in the remotes village in Ghana. Taxis are largely 

saloon cars being run commercially. 

The name trotro means coin - coin and refers to the little amount paid to travel from one place 

to another. Without doubt, the trotro is the most common way to travel for Ghanaians. Mini-

buses and Urvans dominate this category of commercial cars. 

Commuter buses are used by a few transport organizations to perform long distance transport. 

As well private companies use commuter buses to collect and deliver staff from and to their 

homes. MMT operates commuter buses in the main corridors of the cities and to the outskirts. 

In a nutshell, this is what is called intra-city mass transport. 

 

http://en.wikipedia.org/wiki/Ghana
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Railway transport in Ghana is still in a development stage, the southern sector is the only 

portion of the country benefiting at the moment. The northern part of the country is soon to 

be connected with the national rail line after the completion of the tracks connecting the south 

to the north. 

1.2.1 BACKGROUND TO METRO MASS TRANSIT LIMITED 

The Metro Mass Transit Limited (M.M.T.) is a local bus company which is identified to 

explore the application of dynamic programming for its bus replacement needs. Established 

in October 2003, the MMT, owned by both the government of Ghana and private investors is 

poised to providing an efficient urban mass transport system in Ghana through the use of 

buses. The company aims at operating an effective and affordable transport system in an 

economical sustainable way in Ghana and that is characterized by the three bus service 

systems below:  

 Bus Rapid Transit System - designed only for the congested roads in Ghana; these 

are presently the main corridors of Accra and Kumasi.  

 Urban Service - operates in any greater urban area connecting central bus terminals 

with city outskirts and provides upon that medium-distance transportation to villages 

in the surrounding of a regional capital.  

 Rural Bus services - This long distance rural bus service of MMT operate mainly on 

rough roads. Because of the long journey, the rural service has a low but solid 

frequency.  

The company‟s bus terminal in Kumasi is made up of four DAF buses, forty-six VDL 

Neoplan City buses, thirty VDL Commuter buses and fourteen VDL Jonckheere buses that 

operate on six intercity routes; twelve inter urban / rural urban routes and thirteen intra city 
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routes. Table 1.1 summarizes the fleet size of each bus type with their corresponding capacity 

respectively. 

Table 1.1: Bus types and their capacities  

BUS TYPES NO. OF BUSES BUS CAPACITY 

DAF 4 63 

VDL Neoplan City 

(1
st 

generation) 

 

(2
nd 

generation) 

17 

 

 

29 

37 

 

 

47 

VDL Commuter 30 63 

VDL Jonckheere 14 62 

 

1.3 DESCRIPTION OF BUS MAINTENANCE  

Regular Preventive Maintenance encompasses that each bus has a regular oil changes as 

specified by the manufacturer. Buses also maintain annual state inspection. The regular 

maintenance contributes to the efficiency of bus serviceability. Normal preventive tasks 

include the following: state inspection, as required by the law; oil changes, as stated by the 

manufacturer of the bus; tune-up, as stated by the manufacturer of the bus; and minor 

maintenance and safety items like wiper, bulbs, etc., as needed.  
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Oil changes and minor repairs are carried out in a timely fashion at the specified bus 

maintenance facility. MMT has selected a bus repair sub-contractor close to the research 

facility for these tasks. Estimated time for this service is one and a half hours including all 

travel times.  

Major maintenance on any bus failure not covered under regular preventive maintenance is 

defined as a major failure event. Currently there is no established assessment policy for major 

maintenance. Estimated repair time for major maintenance work is on an average 8 hours. 

During bus downtime repairmen are highly constrained in carrying out their tasks. A bus 

needing major maintenance is repaired as needed. The company is in outsourcing partnership 

agreement with Neoplan Ghana Ltd to take care such situations.  

Catastrophic failure on any bus is when the bus is out of commission given that the estimated 

repair cost is high and possibly exceeds the future benefits from the usage of the bus in 

question. There is no formal system in place for estimating the future value of the bus. 

However, if it is felt by the bus supervisor that cost of repair is too high, it is considered 

catastrophic failure and such an event triggers an automatic bus replacement process. 

1.4 PROBLEM STATEMENT 

Prior to this study, MMT Ltd was challenged with how buses could be rated for replacement 

purposes but to a large extent based any such decision on the buses expected useful life 

(economic life span). These decisions were meant to ensure that buses purchased with MMT 

funds are maintained and remained in transit use for a minimum normal service life.The 

scenario has a lot of validity considerations both within Fleet Services and with the various 

bus crews that receive and evaluate its output. 



6 
 

Data from MMT Fleet Services clearly showed that for many large equipment classes, newer 

equipment was being utilized more than older equipment. As an example of how this may 

occur, it may be common for users of passenger buses in a fleet to request newer buses to hire 

when they are available. This decreasing utilization of older equipment was occurring as the 

overall service provided by the fleet stayed constant. The end effect of this was that 

replacement decisions not only affected the specific equipment being replaced, but also the 

utilization of other equipment in the same class (assuming the replacement is new). 

Furthermore, it was known that reduced utilization of a single piece of equipment as it ages 

extended the equipment‟s economic life. This research examined how these facts affected 

MMT Ltd‟s net profit. 

1.5 OBJECTIVE OF THE STUDY 

The objectives of this work are: 

1. To model operational costs of MMT Ltd as a recursive function. 

2. To solve for an optimal policy for replacing MMT Ltd‟s buses using dynamic 

programming technique. 

1.6  METHODOLOGY 

MMT is faced with a replacement problem and a dynamic programming method which 

usually refers to simplifying a decision by breaking it down into a sequence of decision steps 

over time was used. The backward cost/profit recursive algorithm which solves automobile 

replacement problems of DP kind was employed and implemented using Microsoft Excel 

solver.  
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Data on the types of buses, replacement cost of a buses, maintenance cost of buses and 

income generated (yr) by each bus was obtained from the workshop manager and the 

statistical office of the company respectively.  

The internet to a large extent used in obtaining the relevant and related literature. Books from 

the main Library at KNUST and the Mathematics Department‟s library were thoroughly read 

in the course of the project. 

1.7 JUSTIFICATION 

The accomplishment of the dynamic programming based automobile replacement policy 

stated will assist MMT and other Transport Service Providers nationwide to better access and 

manage equipment needs particularly replacement. The creation of a more effective 

equipment replacement system will be of tremendous benefit both in potential labour and 

equipment cedi savings. Additionally, it will be possible to identify the limitations of current 

research when considering the real-world characteristics and availability of data. 

1.8 THESIS ORGANIZATION 

Chapter one covers the background to the study and public transport in Ghana, brief 

discussing of the methodology and the objective of the study were also handled in this 

chapter. The Literature review is contained in chapter two with chapter three solely devoted 

to the methodology/research approach adopted for this study. 

Chapter four contains data collection, analysis and discussion whereas the conclusions and 

recommendations are dealt with in chapter five. 
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CHAPTER TWO 

LITERATURE REVIEW 

The purpose of this study was to conduct a dynamic programming survey and come to terms 

with the state-of-the-art in equipment replacement models in published research literature as 

well as in practice. 

2.1 DYNAMIC PROGRAMMING REVIEW 

The term dynamic programming was originally used in the 1940s by Richard Ernest Bellman 

to describe the process of solving problems where one needs to find the best decisions one 

after another ( Adda et al, 2003). 

Slater (1964) uses dynamic programming to determine an optimal path from a number of 

alternatives paths, in order to move from a given initial state to a desired final position.  

In identifying an optimal strategy for finding a solution to a contract bridge tournament, 

Beaumont (2007) used dynamic programming to accomplish this task. The contract bridge 

tournament comprises several rounds of matches in which players compete as pairs for 

„master points‟ awarded for each match won or drawn and for being highly placed at the end 

of the tournament. In the second and subsequent rounds, pairs are matched against other pairs 

that have been approximately equally successful so far. The optimal strategy is a function of a 

pair‟s ability.  

The best-scoring set of beat times that reflects the tempo as well as corresponding to 

moments of a high „onset strength‟ in a function derived from audio was found using 

dynamic programming as seen in Daniel (2007). This very simple and computationally 
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efficient procedure is shown to perform well on the MIREX-06 beat tracking training data, 

achieving an average beat accuracy of just fewer than 60% on the development data.  

 Nicole and Quenez (1995) also used to determine a solution for the problem of pricing 

contingent claims or options from the price financial market. In this situation, there is a price 

range for the actual market price of the contingent claim. The maximum and minimum prices 

are studied using stochastic control methods. The main result of this work is the 

determination that the maximum price is the smallest price that allows the seller to hedge 

completely by a controlled portfolio of the basic securities. A similar result is obtained for the 

minimum price (which corresponds to the purchased price).  

Bush, et al (1990) describes a compile-time analyzer that detects dynamic errors in large, real 

– world programs. The analyzer traces execution paths through the source code, modeling 

memory and reporting inconsistencies.  

Zeqing and Shin (2006) introduced and studied properties of solutions for functional 

equations arising in dynamic programming of multistage decision processes.  

Quansong, et al (2006) in their studies identified the microbial community composition and 

its variations in environmental ecology using dynamic programming. Clustering analysis of 

the Automated Ribosomal Interagency Spacer Analysis (ARISA) from different times based 

on the dynamic programming algorithm binned data revealed important features of the 

biodiversity of the microbial communities.  

Stochastic dynamic programming model was used by Norman and Clarke (2004) to examine 

the appropriateness of sending a lower order batsman into „hold the fort‟ on a „sticky 

wickets‟. In cricket, a rain-affected pitch can make batting more difficult than normal. 
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Several other conditions such as poor light or an initially lively pitch may also result in 

difficulties for the batsman. All these are referred to us „sticky wickets‟.  

Dynamic programming was used to get an optimal price for a car of a professor who had 

limited number of days to leave a country after his sabbatical leave. Mahmut (2000) details 

this classical dynamic programming application. 

2.2  REPLACEMENT PROBLEMS REVIEW 

Fleet managers and researchers in their bid to addressing the problem of equipment 

replacement identified long ago, developed a variety of strategies. In order to complete a 

comprehensive and a thorough overview of developed approaches, published models and 

studies were reviewed and a survey was carried out to answer how replacement problems are 

managed in practice at various Transport service providers. This approach revealed among 

other things a difference between theory and practice. 

This assessment focused on equipment replacement studies and research that are applicable 

or motivated by replacement for bus fleets. The main question that was addressed was how to 

identify replacement candidates among fleet members so that total fleet costs are minimized 

in the long run. It is worth noting however that equipment replacement dates back from two 

early works of (Taylor, 1923; Hotelling, 1925). Taylor in his paper developed by means of a 

discrete period analysis, a formula relating the average unit cost of the output of a machine 

over L years (the years of machine life) to the cost of a new machine, the scrap value of the 

machine after L periods of service, the operating costs of the machine in each period of 

service up to the L period, the output of the machine in each period, and the rate of interest. 

The manufacturer‟s desire to make his unit cost a minimum or that consideration of profit led 

him to scrap the machine at some different point in time from that which makes the unit cost 
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a minimum remained the key challenge that propelled Hotelling‟s different dimension to 

Taylor‟s preposition. He advances the view point that the owner of the machine wishes to 

maximize the present value of machine‟s output minus its operating costs. 

Preinreich (1940) explained that the economic life of a single machine could not be 

determined in isolation from the economic life of other machines in the chain of future 

replacements extending as far as into the future as the firm‟s profit horizon. He argued that 

the firm should maximize the present value of the „aggregate goodwill‟ of all replacement, 

where the goodwill is the present value of earnings of the future machine, replacements 

minus the present value of costs of all such machines.  

An intuitive method for identifying replacement candidates is to define a replacement 

standard such as an equipment age standard. Assets that exceed the age standard are 

candidates for replacement. A ranking can then be implemented that sorts equipment units by 

how much they exceed the standard. One of the most popular approaches to derive an age 

standard is the application of single asset replacement analysis to compute an “economic 

life,” which is also known as life cycle cost analysis (LCCA). LCCA is extensively covered 

in the engineering economics literature. Eilon et al. (1966) considered acquisition cost, resale 

value and maintenance cost in order to derive the minimum average costs per equipment year 

and the corresponding optimal equipment age policy for a fleet of fork lift trucks. Chee 

(1975) analyzed the fleet of Ontario Hydro using LCCA and generated optimal equipment 

age policies for different equipment classes. Chee proposed to also consider repair costs for 

individual equipment units given that LCCA gives only one replacement criterion– namely 

the economic life – for a whole equipment class. As a result, repair cost limits are computed 

in addition to an economic life. If a fleet member stays within the repair cost limits for each 

year, it is replaced only after reaching the economic life of its class. 
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Weismann et al. (2003) applied LCCA to individual pieces of equipment in the Texas DOT 

fleet. Their results indicated that this approach combined with a multi-attribute ranking is 

more cost efficient than utilizing a single age standard. This multi-attribute ranking considers 

economic life, operation costs, repair costs and usage in order to assign replacement priorities 

to equipment units.  

Ayres and Waizeneker (1978) normalized annual maintenance costs by mileage and current 

acquisition costs, and then used this inflation-independent parameter for LCCA. The 

normalization is assumed to fix the problem of differences in complexity and function of 

equipment units. Thus, the method can make replacement decisions fleet-wide – ignoring the 

fact that a fleet consists of different equipment classes. 

Another popular replacement criterion utilized was repair costs. Some literature provides 

evidence that repair cost limit policies have some advantages over lifetime limit policies. 

Data for army buses was analyzed by Drinkwater and Hastings (1967) where they derived 

age dependent frequencies for repair visits per year and distributions for repair costs per visit. 

To determine optimal repair cost limits, they used this information in a combination of 

dynamic programming and Monte Carlo simulation and it shown that their repair cost limit 

policy leads to financial savings when compared to an LCCA-based economic age policy, 

and also when compared to an experience-based repair cost limit policy (which was 

previously applied on the army fleet). Love et al. (1982) came out with similar results having 

worked with fleet data from Postal Canada and compared economic age policies with repair 

cost limit policies. They derived economic ages analytically and repair cost limits were 

generated in a Markov simulation. Applied to the Postal Canada fleet, the repair cost limit 

policy was superior to the economic age policy. 
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Instead of using repair cost limits for repairs that have occurred, Hastings (1969) derived 

repair cost limits for estimates of future repair costs. He assumed that before any repair 

measure was conducted, fleet members were run through an inspection and repair costs were 

estimated. The actual repair was only undertaken if estimated costs were smaller than the 

derived repair cost limit. 

Nakagawa and Osaki (1974) in a much more different approach did not focus on repair costs, 

but on repair time. Their policy was characterized by defining a limit for the time a broken 

unit of equipment spends in repair measures. Minimizing expected costs per unit time over an 

infinite time span yielded the repair time limit as per its derivation. 

The problem of optimal replacement to the problem of optimal buy, operate and sell policies 

has been expanded by other approaches. Simms et al. (1984) detailed data from an urban 

transit bus fleet. Equipment units in this fleet were operated at different levels and performed 

different tasks as a function of age or cumulative mileage, subject to varying capacity 

constraints. Consequently, newer equipment units had different acquisition and operating cost 

structures than older less sophisticated fleet members. By applying a combination of dynamic 

programming and linear optimization, an optimal buy, operate and sell policy was derived for 

the investigated fleet.  

Hartman (1999) in a similar fashion as Simms et al looked for the minimum cost replacement 

schedule and associated utilization levels for a multi-asset case – emphasizing that utilization 

is a decision variable and not a parameter. The author examined the problem of simultaneous 

determination of asset utilization levels as well as replacement schedules, while the total costs 

of assets that operated in parallel were minimized. A linear program that considered 

dependency of operating costs on utilization levels and dependency of utilization levels on a 

deterministic demand solved the problem. 
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In later works, Hartman was encountered with the same challenge, but asset utilization levels 

had to meet a stochastic demand (Hartman 2004). With two equipment units and parallel 

operation of both assets in a much more simplified case, the author determined the optimal 

replacement schedules and utilization levels for both individual buses by applying dynamic 

programming. Both Simms and Hartman faced complex equipment replacement, operating 

and scheduling problems in bus fleets. They did not promote particular replacement criteria 

but presented optimization methodologies that led to cost efficient results for a specific fleet. 

Previous works reviewed specifically did not consider decreasing utilization levels of assets 

as they age. At MMT, equipment utilization has been decreasing with equipment age, but 

constant utilization has been a widely spread assumption made in the replacement models 

literature. 

Simms et al. (1984) derived an optimal buy, operate and sell policy for an urban transit bus 

fleet whose members operated at different levels depending on equipment age. They reduced 

the problem to two levels of utilization: young buses were operated at a constantly high level 

meeting the base demand, while utilization was constantly low for buses older than ten years 

because they were only used when needed to meet peak demand. Unlike the replacement 

decision at other transport service providers however, they assumed utilization was 

controllable. 

Redmer (2005) derived the optimal lifetime limit or economic life for freight transportation 

fleet, which showed decreasing utilization as equipment grew older and constant utilization 

levels within age classes. The basis of his model was the LCCA approach from Eilon et al. 

(1966), which assumed constant utilization, and thus, was not directly applicable to the fleet 

considered. Eilon et al. considered analyzed costs per unit time. Redmer concluded that 

Eilon‟s model provided lifetime limits approaching infinity when the fleet data showed 
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decreasing utilization with age. Instead of using costs per unit time, Redmer modified Eilon‟s 

LCCA approach so that costs were given per kilometer. As a result, discounted costs of 

ownership per kilometer were minimized over replacement age and a feasible, cost 

minimizing economic life was provided. 

The second study underlining the importance of decreasing utilization levels over equipment 

age was published by Buddhakulsomsiri and Parthanadee (2006). Their model was adopted 

from Hartman (1999). A major difference was that in Hartman‟s model, utilization was 

defined as a decision variable, whereas in Buddhakulsomsiri and Parthanadee‟s study it was 

assumed that utilization per age class was constant, and thus utilization was a model 

parameter. Their assumptions about utilization levels were identical to the assumptions made 

by Redmer. In addition, Buddhakulsomsiri and Parthanadee explained that decreasing 

utilization might follow from a dependent use pattern: “Given that the various buses are 

available to provide the same service or perform the same function, it is the newer ones that 

are generally preferred.” 

Eventually, by minimizing the total costs of purchasing, selling, owning, and operating 

equipment units over a finite planning horizon Buddhakulsomsiri and Parthanadee provided a 

fleet specific and cost minimal buy, operate, and sell policy. 

Problems related to equipment replacement in fleets were analyzed by Khasnabis et al. 

(2003), Davenport et al. (2005) and Rees et al. (1982). Rees et al. made a replacement 

demand forecast by simulating the steady process of deterioration and equipment breakdown 

within a Markov type network. Davenport et al. on their part created a fleet condition forecast 

model for a fleet of cutaway passenger vans by using a regression model they found out that, 

the parameters equipment age, total mileage, miles per year on unpaved roads, lift equipment, 

and percentage of population older than age 65 were the best equipment condition predictors. 
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With the assumption that future demand for fleet services and the expected costs of 

replacement, rehabilitation and remanufacturing were known, Khasnabis et al. showed that 

the optimal capital allocation for the dual purpose of purchasing new equipment units and 

rebuilding existing ones within the constraint of a fixed budget could be obtained with linear 

programming.  

The available literature on discrete time maintenance models predominantly treats an 

equipment deterioration process as a Markov chain. Sherwin and Al-Najjar (1999) presented 

a Markov model to determine the inspection intervals for a phased deterioration monitored 

complex components in a system with severe down time costs. An example involved roller 

bearing in paper mills with three phases; no defect, possible defect and final deterioration 

towards failure. In the last phase, continuous monitoring was used. The output of the model 

was an optimum inspection rate for each phase given a switching rule for going over to 

continuous monitoring. Wang and Hwang (2004) presented a Markov model that could be 

applied to construct the relationships among maintenance cycle, maintenance personnel 

allocation, human recovery factor, and system‟s tolerance time. Zhou et al. (2006) presented 

a dynamic opportunistic condition-based predictive maintenance policy for a continuously 

monitored multi-unit series system that was proposed based on short-term optimization with 

the integration of imperfect effect into maintenance actions. In their research, it was assumed 

that a unit‟s hazard rate distribution in the current maintenance cycle could be directly 

derived through CBPM. Whenever one of the units fails or reaches its reliability threshold, 

the whole system has to stop and PM opportunities arise for the system units. Jardine et al. 

(1997) presented an optimal replacement policy based on Markov stochastic process. Gupta 

and Lawsirirat (2006) presented a simulation based optimization method for strategically 

optimum maintenance of monitoring-enabled multi-component systems using continuous-

time jump deterioration models. 
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Sherwin (1999) with the concept of opportunity maintenance suggests new ways to construct 

and update preventive schedules for a complex system by making better use of system failure 

down time to do preventive work. Sinuany-Stern et al. (1997) concentrated on the 2-action 

version of this preventive schedules problem. They suggested an extremely practicable 

decision rule in partial observability, and proved empirically that this rule more than 

satisfactory competes with the state of- the-art generic algorithm when implemented with its 

recommended grid usage. Sinuany-Stern (1993) considered a production system (machine) 

which deteriorates over time and the system deterioration over time was assumed to be 

Markovian. Moreover, the time scale assumed discrete and the „true‟ state of the system 

(excellent, medium and bad) was not directly observable. What is observed was the 

performance of the system measured in terms of „number of defectives‟ per time period. At 

the end of each period, a decision was to be made: whether to replace the system or not and 

the objective was to minimize the total cost in the long run. 
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CHAPTER THREE 

METHODOLOGY/ RESEARCH APPROACH 

This chapter looks at optimization techniques, dynamic programming technique and its 

application to various problems, survey of replacement models. 

3.1  OPTIMIZATION TECHNIQUES  

Optimization techniques are designed to maximize profit or minimize cost of any business 

operation. There are specialized techniques under the optimization model for specific 

problems.  

The models include:  

i. Linear Programming: It is best handled by the simplex algorithm, and also solves 

linear models. Linear programming (LP) is a technique for optimization of a linear 

objective function, subject to linear equality and inequality constraints. Linear 

Programming determines the way to achieve the best outcome (such as maximum 

profit or minimum cost) in a given mathematical model, given some list of 

requirements represented as linear equations (Alexander, 1998). 

ii. Integer Programming: It solves the same mathematical model as that of linear 

programming, but with the additional restriction that some of the decision variable 

must have integer values.  

iii. Dynamic programming: Dynamic programming works on the principle of finding 

an overall solution by operating on an intermediate point that lies between where 

we are now and where we want to go. Since the intermediate point is a function of 

the point already visited, the procedure is said to be recursive.  
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3.2 RECURSIVE PROGRAMMING  

Dynamic programming and many useful algorithms are recursive in structure. In solving a 

given problem the algorithm calls a subroutine recursively one or more times to deal with 

closely related sub-problems. These algorithms typically follow a divide-and-conquer 

approach in the sense that they break the problem into several sub-problems that are similar 

to the original problem but smaller in size. The sub-problems that are similar to the original 

problem but smaller in size are solved recursively, and then these solutions are combined to 

create a solution to the original problem.  

3.2.1 DIVIDE-AND-CONQUER ALGORITHM  

The divide-and-conquer paradigm is a recursive algorithm and it involves three steps at each 

level of the recursion.  

i. Divide the problem into number of sub-problems.  

ii. Conquer the sub-problems by solving them recursively. If the sub-problem sizes are 

small enough, however, just solve the sub-problems in a straightforward manner.  

iii. Combine the solutions to the sub-problems into the solution for the original problem 

for example, consider the minimization problem below: 

Minimize 𝑓 𝑥 = 𝑋4 − 5𝑋 + 2𝑋 subject to −1 ≤ 𝑋 ≤ 1, by reducing the interval of 

uncertainty to less than 10% of the original and using the Fibonacci search algorithm with  

𝐹0 = 𝐹1 = 1; 𝐹𝑛−2 + 𝐹𝑛−1 = 𝐹𝑛 , 𝑛 ≥ 0   (Amponsah, 2006).  

 Thus           𝐹 =  [1, 1, 2, 3, 5, 8, 13, 21, … ] 

We choose n such that 1< 10 =0.1. Now for n =6, 1 = 1 = 0. 076923 < 0.1 and hence  
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We shall make six applications of the Fibonacci numbers as follows: 

Let [a, b] = [-1, 1], then 𝐿1 = 𝑏1 − 𝑎1 = 1 + 1 = 2. Using the formula 𝑙𝑖 =
𝐹𝑛−(𝑖+1)

𝐹𝑛−(𝑖−1)
𝐿𝑖 

calculate the interval of reduction 1i such that the point 𝑥𝑖  and 𝑦𝑖  divide Li into three 

sections with 𝑥𝑖 = 𝑎𝑖 + 𝑙𝑖  and 𝑦𝑖 = 𝑏𝑖 − 𝑙𝑖 , 𝑖 = 1,2, … 

    1i      𝐿𝑖–  2𝑙𝑖      𝑙𝑖  

 𝑎𝑖       𝑥𝑖                                                                                                   𝑥𝑖       𝑏𝑖  

Evaluate 𝑓(𝑥𝑖) and 𝑓(𝑦𝑖) and select the point that gives the minimum evaluation.  

For sub problem 𝑖 = 1, 𝑛 = 6, 𝐿1  =  2. 

Using the formula 𝑙𝑖 =
𝐹𝑛−2

𝐹𝑛
𝐿𝑖,   𝑙1 =

5

13
× 2 = 0.76923.                                                         

𝐻𝑒𝑛𝑐𝑒 𝑥1   =  𝑎1   +  𝑙1  = − 1 + 0. 76923 = −0.23077 𝑎𝑛𝑑 𝑦1 = 𝑏1 − 𝑙1 = 1 − 0.76923

= 0.23077. 

𝑓(𝑥1)  = 3.15668, 𝑓(𝑦1) = 0.848985. Since 𝑓(𝑥1) we discard [𝑎1, 𝑥1] and set    

 𝑎2 = 𝑥1,      𝑏2 = 𝑏1 

For sub problem 𝑖 = 2 

Put [𝑎2, 𝑏2] = [−0.23077, 1] and 𝐿2 = 1 + 0.23077 = 1.23077 

𝑙2 =
𝑓6−3

𝑓6−1
𝐿2  =  

3

8
 ×  1.23077 = 0.461538. 

Hence 𝑥2 = 𝑎2+𝑙2= -0.23077+0.461538 = 0.23007 and 𝑦2= 𝑏2 – 𝑙2 = 10.461538= 
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0.538462, 𝑓(𝑥2)  =  3.15668 and 𝑓(𝑦2)   =   −0.608245. 

Since 𝑓(𝑥2) >  𝑓(𝑦2) we discard the interval [𝑎2, 𝑥2] and put [𝑥3 , 𝑏3]  =  [0.23077,1].  

For sub problem 𝑖 = 3 

𝐿3 = 𝑏3–  𝑎3 =  0.76923 𝑎𝑛𝑑  𝑙3 =
𝐹6− 3+1 

𝐹6− 3−1 
𝐿3 =

2

5
×  0.76923 = 0.307692. 

Hence 𝑥3 =  𝑎3 +  𝐼3 =  0.229719 +  0.3076923 =  0.538462 =  𝑦2 

and  𝑦3 =  𝑏3 − 𝑙3  =  1 − 0307692 = 0.692308.  

𝑓(𝑥3) =  −0.608245, 𝑓(𝑦3)  =  − 1.23182, 𝑠𝑖𝑛𝑐𝑒 𝑓(𝑥3) >  𝑓(𝑦3) we discard the interval 

[𝑎3, 𝑥3] and [𝑎4, 𝑥4] =[0.58462, 1]. 

Continuing we have the as final interval of uncertainty to be and min. 𝑓(𝑥6)  =  −1.71814 

occurs as 𝑥6 =  0.846154 (Amponsah, 2006). 

The interval of uncertainty currently becomes the search domain for the solution of the 

current sub problem. After the solution of each sub problem the interval of uncertainty is 

reduced further.  

The interval of uncertainty is a division of the original domain and that solution in that 

interval is the conquest of the interval. This continues until we obtain the final interval of 

uncertainty that satisfies the formulation condition. The optimal solution to the original 

problem is then determined. Thus the optimal solution is a conquest of the final part division 

of the original domain by use of the recursive formula.  
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3.2.2  GREEDY ALGORITHM  

A greedy algorithm is a recursive algorithm that follows the problem solving heuristic 

approach and makes locally optimal choice at each stage in the computation with the hope of 

finding the global optimum.  

An optimization problem can be solved by greedy algorithm, if the problem has two 

ingredients (properties): 

(i) Greedy choice property 

A globally optimal solution can be arrived at by making a locally optimal (greedy) choice 

thereby remains the most vital ingredient. In order words when we are considering which 

choice to make, we make the choice that looks best in the current stage of the problem, 

without considering the results from subsequent choices to be made. Here is where greedy 

algorithms differ from dynamic programming. In dynamic programming, we make a choice 

at each step, but the current choice usually depends on the solutions to previous sub 

problems. Consequently, we typically solve dynamic programming problems in a bottom-up 

manner, progressing from smaller sub problems to larger sub problems. In a greedy 

algorithm, we make whatever choice seems best now and then solve the sub problem arising 

after the choice has been made. The choice made by a greedy algorithm may depend on 

choices so far, but cannot depend on any future choices or on the solutions to other sub 

problems. Thus, unlike dynamic programming, which solves the sub problems bottom up, 

greedy strategy usually progresses in a top-down fashion, making one greedy choice after 

another, reducing each give problem instance to a smaller one.  

ii. Optimal Substructure  
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A problem exhibits optimal substructure if an optimal solution to t he problem contains 

within it optimal solutions to sub problems. This property is a key ingredient of assessing 

the applicability of dynamic programming as well as greedy algorithm. Optimal 

substructure varies across problem domains in two ways. 

a. The number of sub problems used in the process of computing the optimal solution  to the 

original problem, and  

b. The number of choices available in determining which sub problem(s) to use in an 

optimal solution process.  

AN ILLUSTRATIVE EXAMPLE  

A customer went to the sorcery shop. He paid for the items bought and was to receive a 

change of 41 cents. However the sales clerk had the following denomination of coins: 

i. 25 cents (quarter) denominations  

ii. 10 cents (dime) denominations.  

iii. 5 cents (nickel) denominations  

iv. 1 cent denominations.  

The sales clerk is to give the minimum number of coins that will be equal the change of 41 

cents.       

The problem is which denominations should she select and how many coins of each selected 

denomination should be used to give the minimum of coins for the 41 cents change.  

Greedy choice option: The coin with the highest denomination is chosen at each step.  
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Optimal sub structure: The problem of selection of a coin denomination is a sub problem. 

The choice of highest coin denomination possible is an optimal solution to the sub problem. 

Since the solution of the original problem is the count of the number of coin denominations 

selected at the various sub problems the problem possesses an optimal substructure.  

Sub problem 1: 

Select coin to reduce change of 41 cents.  

Greedy solution: Choose highest coins denomination of 25 cents  

Solution of sub problem 1 is 1 coin of 25 cents.  

The remaining change is 41-25=16 

Sub problem 2: 

Select coin to reduce 16 cents.  

Greedy solution: Choose highest coins denomination of 10 cents.  

Solution of sub problem 2 is 1 coin of 10 cents.  

The remaining change is 16-10=6 

Sub problem 3: 

Select coin to reduce change of 6 cents.  

Greedy solution: Choose highest coins denomination of 5 cents  

Solution of sub problem 3 is 1 coin of 5 cents.  

Remaining change: 6-5=1.  



25 
 

Sub problem 4: 

Select coin to reduce change of 1 cent.  

Greedy solution: Choose highest coins denomination of 1 cent solution of sub problem 1 is 1 

coin of 1 cent.  

Remaining change: 1-1=0 

The sales clerk should give one 25 cents, one 10 cents, one 5 cents and one 1 cent as the 

change becomes the solution.  

3.3  PRINCIPLES OF DYNAMIC PROGRAMMING 

Dynamic programming was the brainchild of an American Mathematician, Richard Bellman, 

who described the way of solving problems where you need to find the best decisions one 

after another. The word Programming as in Bellman (1957) and Bhowmik (2010) indicate 

that the name has nothing to do with writing any code or computer programs. Mathematicians 

use this speech to illustrate a set of rules which anyone can follow to solve a problem. „They 

do not have to be written even in a computer programming language‟ (David and Pass, 1997; 

Coremen et al., 2008). The word "programming" in "dynamic programming" is a synonym 

for optimization and is meant as “planning or a tabular method”. It is basically a stage wise 

search method of optimization problems whose solutions may be viewed as the result of a 

sequence of decisions as elaborated in Bhowmik (2010). 

 General working methodology for achieving solution using this approach is given as: 

i. Divide into Sub problems  

The main problem is divided into a number of smaller, similar sub problems. Alsuwaiyel 

(2002) and Bhowmik (2010) maintain that the solution to main problem is expressed in terms 
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of the solution for the smaller sub problems. Stage wise solutions start with the smallest sub 

problems. ii. Construction of Table for Storage 

The underlying idea of dynamic programming is to avoid calculating the same stuff twice and 

usually a table of known results of sub problems is constructed for the purpose.  

Bhowmik (2010) and Howard (1960) stress that dynamic programming takes advantage of 

the duplication and arrange to solve each sub problem only once, saving the solution in table 

for later use. The key to competence of a dynamic programming algorithm is that once it 

computes the solution to a constrained version of the problem, it stores that solution in a table 

until the solution is no longer needed by any future computation. The initial solution is trivial 

as in Vijaya (2006). This tells us that we trade space for time to avoid repeating the 

computation of a sub problem. 

 

iii. Combining using Bottom-up means  

Combining solutions of smallest sub problems obtain the solutions to sub problems of 

increasing size. Horowitz et al. (2008) and Bhowmik (2010) reiterate that the process is 

continued until we arrive at the solution of the original problem. 

Bhowmik (2010) and Tsitsiklis and Roy (1999) look at dynamic programming involving 

selection of optimal decision rules that optimizes a certain performance criterion: 

i. The Principle of Optimality – An optimal sequence of decisions is obtained iff each 

subsequence must be optimal. That means if the initial state and decisions are optimal then 

the remaining decisions must constitute an optimal sequence w.r.t the state resulting from the 

first decision. According to Bellman (1957), combinatorial problems may have this property 

but may exploit too much memory and/or time towards efficiency. 



27 
 

ii. Polynomial Break up - The original problem is divided into several sub problems. The 

division is done in such a way that the total number of sub problems to be solved should be a 

polynomial or almost a polynomial number. This is done for efficient performance of 

dynamic programming. 

Using the top-down view of dynamic programming, the first property mentioned above 

corresponds to be able to write down a recursive procedure for the problem that we want to 

solve. The second property makes clear in our mind that this recursive procedure builds only 

a polynomial number of different recursive calls as clearly seen in Ross (1983). 

 

3.3.1 DYNAMIC PROGRAMMING APPLICATIONS 

The versatility of the dynamic programming method is really appreciated by exposure to 

a wide variety of applications. My intent is to understand and contribute to the equipment 

replacement research on optimization problems. We provide examples in subsequent 

sections to illustrate some of the varied problems that dynamic programming can solve. 

These are; 

i) Production and inventory control problem, 

ii) The stagecoach problem(network problem), 

iii) Knapsack problem and 

iv) The equipment replacement problem.  

3.3.2 DYNAMIC PROGRAMMING STRENGTHS 

Creativity is necessary before we can distinguish that a particular problem can be casted 

effectively as a dynamic program. Kleinberg (1962) and Howard (1960) consider an even 

clever insights to restructure the formulation often are essential in useful solution. This idea 
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of reusing sub problems is the main advantage of the dynamic programming paradigm over 

recursion. The simplicity that makes dynamic programming more appealing is both a full 

problem solving method and a subroutine solver in more complicated algorithmic solutions, 

Weimann (2009) and Streufert (1998) throw more light on this. The key to competence of the 

dynamic programming approach lies in a table that stores partial solutions for future 

references. Attractiveness of dynamic programming during the search for a solution on the 

other hand lays avoidance of full enumeration by clipping early partial decision solutions that 

cannot possibly lead to optimal solution Nature, Blackwell (1965), Bergin (1998) and 

Streufert (1998) make it clear in a single word that makes the optimization procedure 

multistage in. 

The most charisma involves selection of optimal decision rules: The Principle of Optimality 

and Polynomial Break up, which optimizes performance criterion. The approach is both a full 

problem solving method and a subroutine solves. This piece is to a large extent evidenced in 

Bhowmik (2010), Skiena (1999) and Ross, (1983). These simplicities make dynamic 

programming technique more appealing in complicated algorithmic solutions that also we 

think about. 

Dynamic programming is so powerful device that encourages tremendous growth in 

researches for solving sequential decision problems, and research related to dynamic 

programming has lead to fundamental advances in theory, numerical methods, and 

econometrics. Thus, dynamic programming can be sighted as a useful “first approximation” 

scheme to human decision making. Rust (2006), Traub and Werschulz (1998) narrate that it 

will undoubtedly in near future be old-fashioned by more descriptively accurate 

psychological models. 
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Finally, Chinneck (2006) has it that though it is tedious to accomplish by hand, but dynamic 

programming is actually relatively efficient compared to a brute force listing of all possible 

combinations to find the best one.  

3.3.3 DYNAMIC PROGRAMMING SHORTCOMINGS 

The kinds of problems solved using Dynamic Programming are without any shadow of doubt 

optimization problems. But the optimal solution involves solving a sub problem, and then it 

uses the optimal solution to that sub problem, Ross (1983) explains. This key property of the 

solutions produced by dynamic programming is that they are time consistent. This is 

essentially due to direct implication of the principle of optimality as clearly indicated in Rust 

(2006). Another drawback of this practice is that it works best on objects which are linearly 

ordered and cannot be rearranged such as characters in a string, points around the boundary 

of a polygon, matrices in a chain, the left-to-right order of leaves in a search tree, Bellman 

(1957) and Weimann (2009) outline. The major shortcoming of making use of dynamic 

programming as a means is that it is often nontrivial to write code that evaluates the sub 

problems in the most efficient order as seen in Wagner (1995) and Howard (1960). The 

challenge of devising a good solution method is in steps forward to make decisions what are 

the sub problems, how they would be computed and in what order. Apart from the obvious 

requirements - The Principle of Optimality and Polynomial Break up in Bhowmik (2010) and 

Weimann (2009) is an efficient dynamic programming which induces only a “small” number 

of distinct sub problems.  

 

3.3.4 COMPARATIVE ADVANTAGE 

DP approach is by far the most powerful optimization paradigm over the others. But its 

popularity stems from the comparative study with other two popular techniques Divide-and-
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Conquer and Greedy Method carried out in Horowitz et al. (2008) and Bhowmik (2010). Like 

divide-and-conquer, dynamic programming results optimal solutions by combining the partial 

best possible solutions to sub-problems. Unlike the case in divide-and-conquer algorithms, 

immediate implementation of the recurrence results in identical recursive calls that are 

executed more than once, Alsuwaiyel (2002) explains. The structure of dynamic 

programming is similar to divide-and-conquer, except that the sub problems to be solved are 

overlapping in nature which makes as a consequence different recursive paths to the same sub 

problems, Chow and Tsitsiklis (1989) indicates. Thus, for solving a problem, divide-and-

conquers is Independent sub-problems, solve sub-problems independently and recursively. 

Conversely, in dynamic programming sub problems are dependent. Greedy method is also a 

powerful technique for optimizations but not much like dynamic programming approach. In 

greedy, we solve a problem making greedy choices. After the choice is made the sub problem 

is arising. These choices may depend on previous choices. However, the choice is 

independent of the solutions to sub problems as seen in Coremen (2008) and Vijaya (2006). 

Top-down convention is normally used towards the feasible solution decreasing current 

problem size. Unlike greedy, choice is made at each step and bottom up approach is 

employed increasing problem size from smaller to larger sub problems answering optimal 

solutions. Bhowmik (2010), Chinneck (2006) and Wilf (1994) clearly indicate that it is more 

powerful than greedy as it could be applicable to wide range of applications. 

3.4  A PRODUCTION AND INVENTORY CONTROL PROBLEM  

We consider a minimization problem where we minimize the sum of the production cost and 

inventory holding cost over a three – month period subject to demand, production capacity, 

warehouse capacity and inventory holding capacity. At any period, the ending inventory will 

be calculated as:  
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𝐸𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 +  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 –  𝑑𝑒𝑚𝑎𝑛𝑑, during the 

period the total cost for each period is the sums of production accost and inventory holding 

cost for the month and is to be minimized for each period and over the entire duration. 

The ending inventory which serves as the first constraint must be less than or equal to the 

warehouse capacity. The second constraint is that the production level in each period must 

not exceed the production capacity and the third constraint remains that the beginning 

inventory plus production must be greater than or equal to demand.  

Suppose that we have developed forecasts of the demand for cars over three months and 

that we would like to decide upon a production quantity for each of the periods so that 

demand can be satisfied at a minimum cost. There are two costs to be considered: 

production costs and inventory holding costs. We will assume that production setup costs 

will be made each period and that setup costs will be constant. As a result costs are not 

considered in the analysis. 

We consider allowing the production and inventory holding costs to depend on quantity at 

hand and vary across periods. This makes our model more flexible since it also allows for 

the possibility of using different facilities for production and different storage capacity 

constraints, which may vary across periods David, et al (1988) explains.  

Step 0: Variable definitions and data 

Let us adopt the following notation:  

𝑁 =  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 (𝑠𝑡𝑎𝑔𝑒𝑠 𝑖𝑛 𝑜𝑟 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛) 

𝐷𝑛 =  𝑑𝑒𝑚𝑎𝑛𝑑 𝑑𝑢𝑟𝑖𝑛𝑔 𝑠𝑡𝑎𝑔𝑒 𝑛;  𝑛 =  1, 2 …  𝑁. 

𝑋 =  𝑎 𝑠𝑡𝑎𝑡𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑖𝑛𝑔 𝑡𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑜𝑛 𝑎𝑛𝑑 𝑎𝑡 𝑡𝑒  
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                 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒 𝑛; 𝑛 =  1, 2, …  𝑁.  

𝑑𝑛 =  𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑛. 𝐼𝑡 𝑖𝑠 𝑡𝑒 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑓𝑜𝑟 𝑡𝑒  

𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔  𝑝𝑒𝑟𝑖𝑜𝑑 𝑛:  

𝑃𝑛 =  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑛:  

𝑊𝑛 =  𝑠𝑡𝑜𝑟𝑎𝑔𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑎𝑡 𝑡𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒 𝑛;  

𝐶𝑛 =  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑖𝑛 𝑠𝑡𝑎𝑔𝑒 𝑛;  

𝐻𝑛 =  𝑜𝑙𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑜𝑓 𝑒𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 𝑓𝑜𝑟 𝑠𝑡𝑎𝑡𝑒 𝑛. 

 Table 3.1 labels column one as the month, column two the demand (𝐷𝑛) for the month, 

column three the production capacity (𝑃𝑛), column four the storage capacity (𝑊𝑛) 

column five the production cost per unit (𝐶𝑛) and column six is the holding cost per unit 

(𝐻𝑛) for the month.  

Table 3.1: Data for the production and inventory control problem 

Month  Demand 

(𝐷𝑛) 

Production 

capacity 

(𝑃𝑛)  

Storage 

capacity 

(𝑊𝑛) 

Production 

cost per 

unit (𝐶𝑛) 

Holding 

cost per 

unit(𝐻𝑛) 

January  2 3 2 $175 $30 

February  3 2 3 $150 $30 

March  3 3 2 $200 $40 
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The beginning inventory for January is one unit. We will develop the dynamic programming 

solution for the problem covering N = 3 months of operation. These are January, February 

and March.  

 

Step 1: The structure of an optimal solution  

Out first step in dynamic programming paradigm is to characterize the structure of an optimal 

solution.  

We can think of each month in our problem as a stage in dynamic programming formulation. 

In figure 3.1, stage 3 is January, stage 2 February and stage 1 March. The ending inventory of 

January is the beginning (X2) of February and so on.  

          D3=2 P3=3 W3=2 d3=?      D2=3 P2=2 W2=3 d2=?      D1=3 P1=3 W1=2 d1=?   

 

     X3=1         X2      X1      X0

  

   

r3(x3d3)     r2(x2d2)                r1(x1d1) 

Figure 3.1: Schematic representation of the production and inventory control problem as a 

three – stage dynamic programming problem  

 

 

Stage 2 

(February) 

Stage 3 

(January) 

Stage 1 

(March) 
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(i) For state 3 (January)  

We minimize the sum of production cost and inventory holding cost in the Month of January 

subject to demand (D3=2), production capacity (P3=3), warehouse capacity (W3=2) and 

ending inventory, X2.  X3 =1 is beginning inventory.  

The stage transformation function for the month January is of the form. 

𝐸𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 – 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  𝑥1 = 1 +  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛  = 3   

𝑑𝑒𝑚𝑎𝑛𝑑 (𝐷3 = 2). 

The return (objective) function for January is the sum of production and inventory 

holding costs in January and is given by 𝑓3(𝑥3)  =  𝑚𝑖𝑛. 𝑟3(𝑥3, 𝑑3)  +  𝑓2 (𝑥2). 

(ii) For stage 2 (February)  

We minimize the sum of production cost and inventory holding cost in the Month of 

February subject to demand (D2=3), production capacity (P2=2), warehouse capacity (W2=3) 

and ending inventory.  

The stage transformation function for the month February is of the form:  

𝐸𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 = 𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 –𝑑𝑒𝑚𝑎𝑛𝑑  

(𝐷2 = 3), 𝑖𝑒 𝑥1 = 𝑥2 + 𝑃2 − 𝐷2. 

This shows that the solutions (x2) for the previous period (January) is needed to find the 

current solution x1.  
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The return function for February is the sum of production cost and inventory holding cost in 

February. The inventory holding cost depends partly on the ending inventory (x2) of the 

previous period. 

(iii) The stage 1 (March) 

We minimize the sum of production cost and inventory holding cost in the of March subject 

to demand (D1=3), production capacity (P1=3), warehouse capacity (W1=2) and ending 

inventory.  

The stage transformation function for the month of March is of the form: 

Ending inventory=beginning inventory + production-demand (D1=3). 

Return function for March is the sum of production and inventory holding costs in March.  

Step 2: A recursive solution 

In figure 1, we have numbered the periods backward; that is, stage 1 corresponds March, 

stage 2 corresponds to February and stage 3 corresponds to January. The stage transformation 

functions being the equation:  

𝐸𝑛𝑑𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 =  𝑏𝑒𝑔𝑖𝑛𝑛𝑖𝑛𝑔 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 +  𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 –  𝑑𝑒𝑚𝑎𝑛𝑑. 

Thus, we have 𝑥𝑛 − 1 = 𝑥𝑛  + 𝑑𝑛 − 𝐷𝑛  

𝑥3=1 for the inventory beginning of January.  

𝑥2 = 𝑥3  +  𝑑3 − 𝐷3 = 𝑥3 + 𝑑3 – 2 for inventory ending January/beginning February.  

𝑥1 = 𝑥2  +  𝑑2 − 𝐷2 = 𝑥2 + 𝑑2 – 3 for inventory ending February /beginning March.  

𝑥0 = 𝑥1  +  𝑑1 − 𝐷1 = 𝑥1 + 𝑑1 – 3 for inventory ending March.  
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The return functions for each stage represent:  

The sum of production and inventory holding costs for the month  

i.e. 𝑟𝑛(𝑥𝑛 , 𝑑𝑛)  =  𝐶𝑛𝑑𝑛 + 𝐻𝑛  (𝑥𝑛  +  𝑑𝑛  –  𝐷𝑛). 

i) For stage 1 : n = 1 (March)  

r1 (x1m d1) = 200d1 + 40(x1 + d1-3) represents the total production and holding costs for the 

period. The production costs are $200 per unit and the holding costs are $40 per unit of 

ending inventory.  

The other return functions are:  

ii) For February 𝑛 =  2 

𝑟3(𝑥2, 𝑑2)  =  150𝑑2  +  30 (𝑥2  +  𝑑2 − 3)   𝑠𝑡𝑎𝑔𝑒 2 

iii) For January 𝑛 =  3,  

𝑟3(𝑥3, 𝑑3)  =  175𝑑3  +  30 (𝑥3  +  𝑑3 − 2)    𝑠𝑡𝑎𝑔𝑒 3 

There are three constraints that must be satisfied at each stage as we perform the optimization 

procedure. The first constraints is that the ending inventory must be less than or equal to the 

warehouse capacity. Mathematically we have  

 𝑋𝑛  +  𝑑𝑛 −  𝐷𝑛  ≤   𝑊𝑛   𝑜𝑟  𝑥𝑛 +  𝑑𝑛  ≤ 𝐷𝑛  +  𝑊𝑛  ……………  (1).  

The second constraint is that the production level in each period must not exceed the 

production capacity. Mathematically we have 

 𝑑𝑛  ≤   𝑝𝑛…………… (2)  
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For each stage, we must have the constraint that requires beginning inventory plus production 

to be greater than or equal to demand. 

Mathematically this constraint can be written as 

 𝑥𝑛 +  𝑑𝑛  ≥   𝐷𝑛 ………  (3)  

The inventory problem is then formulated as:  

 𝐹𝑛  (𝑥𝑛)  =  𝑚𝑖𝑛 {𝑟𝑛  (𝑥𝑛 , 𝑑𝑛)   +  𝑓𝑛−1( 𝑥𝑛−1) 

 Subject to  

𝑥𝑛 +  𝑑𝑛  ≤  𝐷𝑛 + 𝑊𝑛  

𝑥𝑛 +  𝑑𝑛  ≤   𝐷𝑛  

𝑑𝑛 ≤ 𝑃𝑛  

𝑥𝑛 , 𝑑𝑛 ≥ 0 

where 𝑓𝑛−1( 𝑥𝑛−1) is the minimum value of the return function of 𝑥𝑛−1. 

Step 3: Computing stage wise the optimal costs 

i) Computations for stage 1 (March)  

Our unknowns from the inventory problem are 𝑥𝑛 , 𝑑𝑛 . Since the problem is a discrete 

problem 𝑥𝑛 , 𝑑𝑛  are discrete. However, they should satisfy the constraints           

𝑥𝑛 +  𝑑𝑛  ≤  𝐷𝑛 + 𝑊𝑛  

𝑑𝑛  ≤  𝑃𝑛 , 𝑥𝑛  +  𝑑𝑛   ≥   𝐷𝑛  

For stage 1 (March) we have n = 1, D1 = 3, P1 = 3, W1 = 2, C1 = 200, H1 = 40.  
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From 𝑑1  ≤  𝑝1  =  3, 𝑑1  =  0, 1, 2, 3 and 𝑥1  +  𝑑1  ≥  3 we get  𝑥1  = − 0,1,2,3. We use the 

values of  𝑥1, 𝑑1 to compute the minimum cost for stage 1.  

Since we are attempting to minimize cost, we will want the decision variable d1 to be as 

smaller as possible and still satisfy the demand constraint.  

  𝐹1(𝑥1)  =  𝑀𝑖𝑛 {𝑟1(𝑥1, 𝑑1)  =  240𝑑1  +  4𝑥1 –  120 

  Subject to  

  𝑥1 + 𝑑1 ≤ 5 warehouse constraint,  

  𝑑1  ≤  3, production constraint and  

                        𝑥1  +  𝑑1  ≥  3 demand constraint.  

   𝑥1  =  0 

𝑓1(0)  =  𝑚𝑖𝑛 {240 ×  3 +  40 ×  0 –  120 =  600, 𝑑1 =  3} 

Result 𝑓1(0)  =  600. Thus d1 

𝑥1 = 1, 𝑑1 = 2, 𝑑1 = 3 

𝑓1(1) = 𝑚𝑖𝑛  
240 × 2 × 40 × 1 − 120 = 400, 𝑑1 = 2

  240 × 3 + 40 − 120 = 640,    𝑑1 = 3       
  

Result 𝑓1 1 = 400.   𝑇𝑢𝑠  𝑑1
∗  =  2 

𝑥1 =  2, 𝑑1 =  1, 𝑑1 =  2, 𝑑1 =  3. 

𝑓1(2) = 𝑚𝑖𝑛  

240 × 1 + 40 × 2 − 120 = 200,   𝑑1 = 1
240 × 2 + 80 − 120 = 440,          𝑑1 = 2
240 × 3 + 80 − 120 = 680,          𝑑1 = 3
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Result 𝑓1(2)  =  200. Thus 𝑑1
∗  =  1. 

𝑥1 =  3, 𝑑1 =  0, 𝑑1 =  1, 𝑑1 =  2. 

𝑓1(3) = 𝑚𝑖𝑛  

240 × 0 + 40 × 3 − 120 = 0,        𝑑1 = 0
240 × 1 + 120 − 120 = 240,          𝑑1 = 2
240 × 2 + 120 − 120 = 480,          𝑑1 = 3

  

Result  𝑓1 3 = 0. Thus 𝑑1
∗  =  0.  

Table 3.2 below contains 𝑥1 𝑎𝑛𝑑 𝑑1  which take on values 0,1,2,3 and the values of 𝑓1 𝑥1 .  

M is used to represents no feasible solution and the last column is the optimal solution.  

Table 3.2 summary of results for March  

 𝑑1 

0 1 2 3 (𝑑1
∗, 𝑓1) 

 

 

𝑥1 

0 M M M 600 (3,600) 

1 M M 400 640 (2,400) 

2 M 200 440 680 (1, 200) 

3 0 240 780 720 (0, 0) 

We proceed to stage 2 

ii) Computations for stage 2 (February) 

𝑓2 𝑥2 = min{𝑟2 𝑥2, 𝑑2 + 𝑓1 𝑥1 = 150𝑑2 + 30 𝑥2 + 𝑑2 − 3 + 𝑓1 𝑥1 

= 180𝑑2 + 30𝑥2 − 90 + 𝑓1 𝑥1  
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Subject to  

𝑥2 +  𝑑2  ≤  6, 𝑑2 ≤  2, 𝑥2 +  𝑑2 ≥  3, and for each x2 selected we calculated 

𝑥1 =  𝑥2 +  𝑑2 –  3. Thus 𝑑2 =  0, 1, 2 𝑎𝑛𝑑 𝑥2 =  0, 1, 2, 3, 4. 

𝑓2 𝑥2 = min{180𝑑2 + 30𝑥2 − 90 + 𝑓1 𝑥1  ;  d2 =  0, 1, 2, x2 =  0, 1, 2, 3, 4.  

Note 𝑥 =  0 is not feasible since 0 plus either 1 or 2 is not up to 3 and 𝑥2 +  𝑑2 ≥  3 is not 

satisfied.  

𝑥2 =  1, 𝑑2 =  2 𝑎𝑛𝑑 𝑥1 =  1 +  2 –  3 =  0 

𝑓2 1 = min{180 × 1 × +30 × 1 − 90 + 𝑓1 0  =  360 +  30 –  90 +  600 =  900, 𝑑2  

=  2. 

 𝑓2 1  =  900.   𝑇𝑢𝑠 𝑑2
∗ =  2. 

x2 = 2, d2 = 1, d2 = 2 and x1 = 2 + 1 – 3 = 0, x1 = 1 + 2 – 3 = 0  respectively  

𝑓2 2 = 𝑚𝑖𝑛  
180 ×  1 + 30 ×  2 − 90 +   𝑓1  0 = 180 + 60 − 90 + 600 = 750, 𝑑1   = 1

180 ×  2 + 60 − 90 +   𝑓1  1 = 360 + 60 − 90 + 400 = 730,         𝑑2   = 2
  

𝑓2 2 = 730. Thus 𝑑2
∗  =  2. 

𝑥2 =  0, 𝑥2 =  1, 𝑥2 =  2 𝑎𝑛𝑑 𝑑2 =  1, 𝑑2 =  2 

Table 3.3 below contains 𝑥2  𝑎𝑛𝑑 𝑑2 which take on values 0, 1, 2 the values of 𝑓2 𝑥2   and the 

values of (𝑑2
∗ , 𝑓2

∗). M is used to represents no feasible solution. 

 

Table 3.3 summary of results for February   
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 𝑑2  

0 1 2 (𝑑2
∗ , 𝑓2

∗) 

 

𝑥2 

0 M M M - 

1 M M 900 (2,900) 

2 M 750 730 (2,730) 

iii) Computations for stage3 (January) 

F3(x3)=min {r3(x3, d3) + f2(x2) = 150d3 + 30(x3 + d3-3) + f2(x2) = 180d3 + 30x3 – 90 + f2(x2) 

X3 + d3  ≤ 4, d3 ≤ 3, i.e d3 = 1, 2, 3.  X3 + d3 ≥ 2. With x1 = 1 already by the beginning 

inventory level and x2 = x3 + d3 – 2.  

f3(x3) = min. {250d3 + 30x3 – 60 + f2 (x2). 

x3 = 1,  d3 = 1, 2, 3 and x3 = 1 + 1 – 2 = 0, x2 = 1 + 2 – 2 = 1, x2 = 1 + 3 – 2 = 2 respectively  

𝑓3 1 = min  

205 × 1 + 30   ×   1 − 60 +   𝑓2(0) = 175 + 𝑀,                          𝑑1  = 1

205 × 2 + 30 − 60 +  𝑓2 1 = 380 + 900 = 1280,                   𝑑3 = 1

205 × 3 +  30 − 60 +  𝑓2 2 = 615 − 30 +  730 = 1315 , 𝑑3  = 3.
    

   

Result 𝑓3 1  =  1280. Thus 𝑑3
∗  =  2. 

Where 𝑓3 0  is not feasible and is denoted by M.  

Table 3.4 below contains x3 and d3 which take on values 0, 1, 2, 3, the values of 𝑓3 (𝑥3) and 

the values of (𝑑3
∗ , 𝑓3

∗). M is used to represents no feasible solution. 
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Table 3.4: Summary of results for January  

 𝑑3 

0 1 2 (𝑑3
∗ , 𝑓3

∗) 

𝑥3 1 M M 1280 2,1280 

   

Thus, we find that the total cost assumed with the optimal production and inventory policy is 

1280. The optimal solution is 𝑓3(1)  = 380 + 𝑓2(1) = 380 + 900 =  1280.  

Note 𝑓2(1) is obtained from table 3.3 as 𝑓2(1) = 300 + 𝑓1(0) = 300 + 600 =  900 

where 𝑓1(0) = 600 is also from table 3.2.  

Step 4: Optimal solution from the computer results  

To find the optimal decisions and inventory levels for each period, we may trace back 

through each stage and identify 𝑥𝑛  and 𝑑𝑛
∗  as we go.  

The company should produce two (2) units of cars with a beginning inventory one (1) in 

January of a production and inventory holding cost of $380. Moreover, the company should 

produce two units of cars with a beginning inventory one (1) in February of a production and 

inventory holding of $300 and three units of cars with a beginning inventory zero (0) in 

March of a production and inventory holding cost of $600.  

Table 3.5 summarizes the optimal production and inventory policy. In column one is the 

month, column two the beginning inventory, column three production cost, column four 

ending inventory, column five the holding cost and the last column total monthly cost.  
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Table 3.5: Summary of results for the optimal  

Month  Beginning 

inventory  

Production 

capacity(Pn) 

Production 

cost(Cn dn) 

Ending 

inventory  

Holding 

cost(Hnxn-1) 

Total 

monthly 

cost  

January  1 2 $350 1 $30 $380 

February  1 2 $300 0 0 $300 

March  0 3 $600 0 0 $600 

Total    $1250  $30 $1280 

 

3.5  THE STAGECOACH PROBLEM (NETWORK PROBLEM)  

We consider a simple but illustrative deterministic dynamic programming problem that is 

known in the operations research literature as the “stagecoach problem.” It deals with a 

hypothetical 19th-century stagecoach company that transports passengers from California to 

New York. Although the starting point (California) and the destination (New York) are fixed, 

the company can choose the intermediate states to visit in each stage of the trip. We assume 

that the trip is completed in four stages (legs) where stage 1 starts in California, stage 2 starts 

in one of three states in the Mountain Time Zone (say, Arizona, Utah or Montana), stage 3 

starts in one of three states in the Central Time Zone (say, Oklahoma, Missouri or Iowa) and 

stage 4 starts in one of two states in the Eastern Time Zone (North Carolina or Ohio).When 

stage 4 ends, the stagecoach reaches New York, which is the final destination. Since in those 

days travel by stagecoach was rather dangerous because of attacks by roaming criminals, life 

insurance was offered to the travelling passengers. Naturally, the cost of the insurance policy 
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was higher on those portions of the trip where there was more danger. The stagecoach 

company thus faced the problem of choosing a route that would be cheapest and thus safest 

for its passengers. The main problem of the traveler is how to find the safest routes and the 

cheapest cost of insurance policy in order to minimize cost. 

We minimize the cost of insurance from state (A) to state (J) subject to the safety of the route. 

Current cost = immediate cost (Stag 2) + minimum future cost (stage n + 1).  

Step 0: Variables definitions and data.  

The figure 3.2 below shows the cost on the edges.  

Level    1    2          3    4       5 

 

   

 

 

 

Figure 3.2: The road system and costs for the stagecoach problem  

Table 3.6 showing the cost of insurance for moving from one state to another state and dash 

(-) is used to represent where cost is neither available nor applicable.  

 

 

B E 

H 

J 

I 

G D 

A C F 

2 6 4 4 

7 1 

3 

4 

3 

5 

4 

2 3 

1 

3 4 3 

3 

6 
4 
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Table 3.6: The road system and costs for the stagecoach problem  

 A B C D E F G H I J 

A - 2 4 3 - - - - - - 

B - - - - 7 4 6 - - - 

C - - - - 3 2 4 - - - 

D - - - - 4 1 5 - - - 

E - - - - - - - 1 4 - 

F - - - - - - - 6 3 - 

G - - - - - - - 3 3  

H - - - - - - - - - 3 

I - - - - - - - - - 4 

J - - - - - - - - - - 

 

Let us consider the cheapest possible ways to get from starting point (A) through to the last 

point (J).  

Let 𝐶𝑥𝑛 ,𝑗
, 𝑥𝑛+1,𝑗  denote the cost of insurance from stage n to stage n + 1.  

Let I be the point it is at the stage n and j the route it should take.  

Let 𝑥𝑛 ,𝑖  be the state variable  
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Let 𝑓𝑛 (𝑥𝑛 ,𝑖) denote the aluminum cost of the objective function from any city 𝑥𝑛 ,𝑖to the final 

destination J.  

 Step 1: The structure of an optimal solution  

The first step of dynamic programming is to characterize the structure of an optimal solution.  

Let divide the problem into five stages as follows; 

 

𝑓1 (x1)                     𝑓2 (x2, i)                   𝑓3 (x3, i)                   𝑓4 (x4, i)                   𝑓5 (x5, i)  

Figure 3.3: Schematic representation of the stagecoach problem as a five – stage dynamic 

programming problem.  

Stage 1: Consists of city A 

The return functions is f1(x1) = immediate cost (stage 1) + minimum future cost (stag 2).  

State 2: Consists of cities B, C, and D.  

The return functions is f2(x2) = immediate cost (stage 2) + minimum future cost (stag 3).  

State 3: Consists of cities E, F, and G.  

The return functions is 

𝑓3(𝑥3)  =  𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑎𝑔𝑒 3)  +  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑢𝑡𝑢𝑟𝑒 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑎𝑔 4).  

State 4: Consists of cities H and I.  

The return functions is ∶ 

𝑓4(𝑥4) =  𝑖𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑎𝑔𝑒 4)  +  𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑢𝑡𝑢𝑟𝑒 𝑐𝑜𝑠𝑡 (𝑠𝑡𝑎𝑔 5). 

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5 
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State 5: Consists of cities J.  

We have this as the final stage. Therefore 𝑓5(𝑥4) 

For the stagecoach problem, we start with the smaller problem where Mr. Ebenezer has 

nearly completed his journey and has only one more stage (stagecoach run) to go. The 

obvious optimal solution for this smaller problem is to go from his current state (whatever it 

is) to his ultimate destination (state J). For subsequent iterations, the problem is enlarged by 

increasing by 1 the number of stages left to go to complete the journey.  

Step 2: A recursive solution  

Let fn(xn, i) denote the optimal value of the objective function form any city x2, i to the final 

destination J. Hence the optimum is f1(x1) the minimum of the sum of cost insurances from A 

to J.  

Thus 𝑓𝑛(𝑥𝑛 ,𝑖) = min{𝐶𝑥𝑛 ,𝑖 ,𝑥𝑛+1,𝑗
+ 𝑓𝑛+1 𝑥𝑛+1,𝑗   

 Subject to 𝐶𝑥𝑛 ,𝑖 ,𝑥𝑛+1,𝑗
≥ 0 and an integer.  

i. For stage 1 : n = 1, x1 = A  

We minimize the cost of insurance from stage 1 (A) to stage 5 (J) 

𝑓1 (xn, i) = min [𝐶𝑥1,1 ,𝑥2,1
+ 𝑓2 𝑥2,1 , 𝐶𝑥1,2 ,𝑥2,2

+ 𝑓2(𝑥2,2)],.  i = 1, and j = 1, 2, 3  

ii. For stage 2 ∶  n =  2 

We minimize the cost of insurance from stage 2 (B, C, D) to stage 5(J)  

𝑓2 (x2, i) = min [𝐶𝑥2,𝑖 ,𝑥3,𝑗
 + 𝑓3 (𝑥3,𝑗 )],    i = 1, 2, 3 and j = 1, 2, 3. 
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iii. For stage 3 : n = 3 

We minimize the cost of insurance from stage 3 (E, F, G) to stage 5(J) 

 𝑓3 (x3, i) = min [𝐶𝑥3,𝑗 ,𝑥4,𝑗
+ 𝑓4 (𝑥4,𝑗 )], i = 1, 2, 3 and j = 1, 2, 3. 

iv. For stage 4 : n = 4 

We minimize the cost of insurance from stage 4 (H, I) to stage 5(J). 

𝑓4 (x4, i) = min [𝐶𝑥4,𝑗 ,𝑥5,𝑗
 + 𝑓5 (𝑥5,𝑗 )], i = 1 and j = 1, 2. 

iv) For stage 5 : n = 5, 𝑥5 = J. 

Since the ultimate destination (state J = 𝑥5) is reached at the end of stage 5, 𝑓5(𝑥5) = 0.  

Let 𝑓𝑛(𝑥𝑛 ,𝑖) be the optimal value of the objective function form any stage n to the final 

destination J.   

Step 3: Computing the stage wise optimal cost 

i) Computations for stage 5(𝑥5 = J): n = 5. 

Since J is the final stage there is no cost after J, then 𝑓5(𝑥5) = 0   

ii) Computations for stage 4(𝑥4,1 , = H, 𝑥4,2=I): n = 4, I = 1, 2. 

When he has only one more stage to go (n = 4), the best route is determined entirely by his 

current state (either H or 1) and his final destination 𝑥5 = J.  

Result 𝑓4 𝑥4,1 = 𝑓4(𝐻) = 𝐶𝑥4,1𝑥5,1
+ 𝑓5(𝑥5,1) = 3 + 0 = 3.  

Result 𝑓4(𝑥4,2) = 𝑓4(I) = 𝐶𝑥4,2𝑥5,2
 + 𝑓5(𝑥5) = 4 + 0 = 4 
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ii) Computations for stage 3(x31 = E, x3,2 = F and x3,3 = G): n = 3, i = 1,2.  

When he has two more stages to go (n=3). 

𝑓3 𝑥3,1 = 𝑚𝑖𝑛  
𝐶𝑥3,1 ,𝑥4,1

+ 𝑓4 𝑥4,1 = 1 + 3 = 4

𝐶𝑥3,2 ,𝑥4,2
+ 𝑓4 𝑥4,2 = 4 + 4 = 8

  

Result 𝑓3(𝑥3,1) = 4  

𝑓3 𝑥3,2 = 𝑚𝑖𝑛  
𝐶𝑥3,1 ,𝑥4,1

+ 𝑓4 𝑥4,1 = 6 + 3 = 9

𝐶𝑥3,2 ,𝑥4,2
+ 𝑓4 𝑥4,2 = 3 + 4 = 7

  

Result 𝑓3(𝑥3,2) = 7  

𝑓3 𝑥3,3 = 𝑚𝑖𝑛  
𝐶𝑥3,1 ,𝑥4,1

+ 𝑓4 𝑥4,1 = 3 + 3 = 6

𝐶𝑥3,2 ,𝑥4,2
+ 𝑓4 𝑥4,2 = 3 + 4 = 7

  

Result 𝑓3(𝑥3,3) = 6  

iii) Computations for stage 2(𝑥2,1 = 𝐵, 𝑥2,2 = 𝐶 𝑎𝑛𝑑 𝑥2,3 = 𝐷, ): 𝑛 =  2 

The solution for the second stage problem (n = 2), where there are three stages to go.  

f3 x3,3 = min  

Cx2,1 ,x3,1
+ f3 x3,1 = 7 + 4 = 11

Cx2,2 ,x3,2
+ f3 x3,2 = 4 + 7 = 11

Cx2,3 ,x3,3
+ f3 x3,3 = 6 + 6 = 12

  

𝑟𝑒𝑠𝑢𝑙𝑡 𝑓2(𝑥2,1) = 11 

f2 x2,2 = min  

Cx2,1 ,x3,1
+ f3 x3,1 = 3 + 4 = 7

Cx2,2 ,x3,2
+ f3 x3,2 = 7 + 7 = 9

Cx2,3 ,x3,3
+ f3 x3,3 = 4 + 6 = 10

  

𝑟𝑒𝑠𝑢𝑙𝑡 𝑓2(𝑥2,2) = 7 
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f2 x2,3 = min  

Cx2,1 ,x3,1
+ f3 x3,1 = 4 + 4 = 8

Cx2,2 ,x3,2
+ f3 x3,2 = 7 + 7 = 8

Cx2,3 ,x3,3
+ f3 x3,3 = 6 + 6 = 12

  

𝑟𝑒𝑠𝑢𝑙𝑡 𝑓2(𝑥2,3) = 8 

i) Computations for stage 1 (𝑥1 = A) 

Moving to the first – stage problem (n = 1), with all four stages to go.  

f1 x1 = min  

Cx1,1 ,x2,1
+ f2 x2,1 = 2 + 11 = 13

Cx1,2 ,x2,2
+ f2 x2,2 = 4 + 7 = 11

Cx1,3 ,x2,3
+ f2 x2,3 = 3 + 8 = 11

  

𝑅𝑒𝑠𝑢𝑙𝑡 𝑓1(𝑥1) = 11 

Since 11 is the minimum cost, 𝑓1(𝐴)  = 11 𝑎𝑛𝑑 𝑥2,2 = 𝐶 𝑜𝑟 𝑥2,3 = 𝐷  

Step 4: Optimal solution from the computed results  

An optimal solution for entire problem can now be identified from the results above. Results 

for the n = 1 problem that Mr. Ebenezer should go initially to either state C or state D. 

suppose that he chooses x2,2 = C. For n = 2, the results for x3,1 = E. This result leads to the n = 

3, which gives x4,1 = H for x3,1 = E and the n = 4 yields x5 = J x4,1 = H. 

Hence, one optimal route is A   C    E     H     J. Choosing 𝑥2,2= D leads to the other two 

optimal routes A    D    E    H      J and   A    D     F     I     J. They all yield a total cost of f1 

(A) = 11.  These results of dynamic programming analysis also are summarized in the 

diagram below (Hillier et al, 2005). In graphical display of the dynamic programming 

solution of the stagecoach problem, each arrow shows an optimal policy decision (the best 
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immediate destination) from that state, where the number b the resulting cost from there to 

the end is shown in figure 3.4.   

Stage  1     2         3               4                5 

 

 

 

 

 

 

Figure 3.4: A representation of the optimal solution of the stagecoach problem  

3.6 THE KNAPSACK PROBLEM  

We consider maximizing benefit (total value rating) subject to the number of days available 

(10) for processing of a job and the number of jobs available. The stage transformation 

functions are then defined as:  

xn-1 = the number of days available at stage n – the product of the number days needed to 

compete one job by the number of jobs to process.  

The return functions at each stage are based on the value rating of a job times the number of 

jobs selected for processing.  

The first constraints is that the number of days needed to process a job must be less than or 

equal to the number days available (10). 
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Secondly, the number of jobs selected must be less than or equal to the number of jobs 

available.   The basic idea of the Knapsack problem is that there are 𝑁 different types of 

items that can be put into a knapsack. Each item has a certain weight associated with it as 

well as a value. The problem is to determine how many units each item to place in the 

knapsack in order to maximum total value. A constraint is placed on the maximum weight 

permissible. 

We consider a manager of a manufacturing operation who has selection of jobs to process 

during the following 10 – day period. A list of the jobs waiting to be processed at the 

beginning of the current week is presented in table 3.7. The estimated time required for 

completion and the value rating associated with each category of job are also shown in the 

table. The main aim of the Manager is to find out how many jobs to choose from each 

category to process in order to maximize performance value, David, et al (1988) indicates. 

Step 0 Variable definitions and data 

Table 3.7: Job data for the manufacturing operation  

Job number  𝑛 No. of jobs to be 

processed (𝑁). 

Estimated completion 

time per job (days (𝑢𝑛 ). 

  Value  rating 

Category 1 4 1 2 

Category 2 3 3 8 

Category 3 2 4 11 

Category 4 2 7 20 
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The value rating assigned to each job is a subjective score assigned by the supervisor. A scale 

from 1 to 20 is used to measure the value of each job, where 1 represents jobs of the least 

value, and 20 represents jobs most value. We would like to make a selection of jobs to 

process during the next 10 – days such that all the jobs selected can be processed in 10 days 

and that the total performance value of jobs selected is maximized. In knapsack problem 

terminology we are in essence selecting the best jobs for our 10-days knapsack, where the 

knapsack has a capacity equal to the 10-day (w) production capacity. We formulate and solve 

this problem using a dynamic programming solution procedure.  

Let 𝑑𝑛  denote the number of jobs in category n selected (that is, the decision variable at stage 

n). The state variable 𝑥𝑛  (𝑥𝑛 ≤ w) is defined as the number of days of processing time 

remaining when we reach stage n.  

dn=decision variable,   𝑥𝑛= state variable,  un = the number of needed to complete one job.     

Step 1: The structure of an optimal solution  

This problem can be formulated as a dynamic programming problem involving four stages.  

    x0          x1                 x2                          x3                                     𝑥4   

             

Figure 3.5: schematic representation of the knapsack problem as a four – stage dynamic 

programming problem.   

Stage 1: Consists of category 1. The number of jobs to be selected for processing in category 

1 should be less than or equal to 4. 

The stage transformation functions are then defined as:  

Stage 1 Stage 2 Stage 3 Stage 4 
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  𝑥0  =  𝑡1 𝑥1, 𝑑1 =  𝑥1 –  𝑢1𝑑1.    𝑑1 ≤ 𝑁 

The return function is 𝑟1(𝑥1, 𝑑1) = 2𝑑1,   𝑑1 ≤ 4 

Stage 2: Consists of category 2. The number of jobs to be selected for processing in category 

2 should be less than or equal to three (3).  

The stage transformation functions are then defined as:  

   𝑥1 = 𝑡1  𝑥1, 𝑑1 𝑥2 –  𝑢2𝑑2.    𝑑2 ≤ 𝑁2 

The return function is 𝑓1(𝑥2) = 𝑟2(𝑥2, 𝑑2) + 8𝑑2 + 𝑓1(𝑥1),    𝑑2 ≤ 3 

Stage 3: Consists of category 3. The number of jobs to be selected for processing in category 

3 should be less than or equal to two (2).  

The stage transformation functions are then defined as:  

  𝑥2 = 𝑡3(𝑥3, 𝑑3) =  𝑥3 –  𝑢3𝑑3 .    𝑑3 ≤  𝑁3 

The return function is 𝑓3(𝑥3)  =  𝑟3 (𝑥3, 𝑑3)   +  𝑓2 (𝑥2)   =  11𝑑3  +    𝑓2(𝑥2) 

Stage 4: Consists of category 4.   

The number of jobs to be selected for processing in category 4 should be less than or equal to 

two (2). The stage transformation functions are then defined as:  

  𝑥3 =  𝑡4(𝑥4, 𝑑4) =  𝑥4 –  𝑢4𝑑4.       𝑑 4  ≤   𝑁4 

The return function is 

 𝑓4(𝑥4)  = 𝑟4(𝑥4, 𝑑4)   +  𝑓3(𝑥3)   = 20𝑑4 + 𝑓3(𝑥3) 
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At stage 1 we must decide how many jobs from category 1 to process, at stage 2 we must 

decide how many jobs from category 2 to process, and so on. Thus we let 𝑑𝑛  denote the 

number of jobs in category n selected (that is, the decision variable at stage n). The state 

variable 𝑥𝑛(𝑥𝑛  ≤ 𝑤) is defined as the number of days of processing time remaining when 

we reach stage n.  

Stage 2: A recursive solution  

Thus with a 10 – day production period, x4 = 10 represents the total number of days that are 

available for processing jobs. The stage transformation functions are then defined as:  

 𝑋𝑛−1 = 𝑡𝑛 𝑥𝑛 , 𝑑𝑛 = 𝑥𝑛  –  𝑢𝑛𝑑𝑛 .    𝑑𝑛   ≤  𝑁𝑛 . 

𝑓𝑛(𝑥𝑛)  =  𝑟𝑛  (𝑥𝑛 , 𝑑𝑛)   +  𝑓𝑛−1(𝑥𝑛−1).  

The 𝑓𝑛(𝑥𝑛) is the total return function after decision 𝑑𝑛  is made.  

i. Stage 4 : n = 4,  𝑥3  =  𝑡4(𝑥4, 𝑑4) = 𝑥4  −  7𝑑4 

The return at each stage is based on the value rating of jobs and the number of jobs selected 

at each stage. The return functions are as follows:  

 𝑟4  𝑥4, 𝑑4 = 20𝑑4.    𝑑4  ≤ 2 

 𝑓𝑛(𝑥𝑛) = 𝑟𝑛(𝑥𝑛 , 𝑑𝑛) + 𝑓𝑛−1 (𝑥𝑛−1). 

The 𝑓𝑛(𝑥𝑛) is the total return function after decision 𝑑𝑛  is made.  

𝑓4(𝑥4) = 𝑟4(𝑥4, 𝑑4) + 𝑓3(𝑥3) = 20𝑑4 + 𝑓3 (𝑥3).  

ii. For stage 3 : n = 3 
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𝑥2 = t3(x3, d3) = x3 –  4d3. 

𝑟3(x3, d3)  =  11d3 .   d3  ≤ 2. 

𝑓3(𝑥3)  = 𝑟3 (𝑥3, 𝑑3) + 𝑓2(𝑥2)  =  11𝑑3  + 𝑓2(𝑥2) 

iii. For stage 2 : n = 2 

x1 =  t2 (𝑥2, 𝑑2)   =  x2 –  3d3. r2 (𝑥2, 𝑑2)   =  8d2 

𝑓2 𝑥2  = 𝑟2(𝑥2, 𝑑2) + f1 (x1) = 8d2  f1 (x1),   d2  ≤  3 

iv. For stage 1 : n = 1 

X0 = t1 (x1, d1) = x1 – d2.  r1(x1, d1) = 2d1,  d1  ≤  4 

Step 3: Computing the cheapest cost at each category 

We will apply a backward solution procedure; that is, we will begin by considering the stage 

1 decision.  

i) Computations for stage 1 (filling with item category 1 only): n = 1.  

Note that the input to stage 1, x1, which is the number of days of professing time available at 

stage 1, is unknown because we have not yet identified the decisions at eh previous stages. 

Therefore in our analysis at stage 1 we will have to consider all possible valleys x1 and 

identify the best decision d1 fir each case; f1(x1) will be the total return after decision d1 is 

made.      f1(x1) = r1(x1, d1) = 2d1. d1≤  d  also we are to consider all possible values of d1 

(that is 0, 1, 2, 3, or 4).  
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The number of category 1 jobs selected will depend upon the processing time available but 

cannot exceed 4. 

Recall that f1(x1) represents the value of the optimal return from stage 1 and all remaining 

stages, given an input of x1 to stage 1. Let us move on to stage 2 and carry out the 

optimization at that stage.   

ii) For stage 2 (filling with items 1 and 2) : n = 2. 

Since the input to stage 2, x2, is unknown, we have to consider all possible values from 0 to 

10. Also we consider all possible values of d2 (that is, 0, 1, 2, or 3).  f2(x2) = 8d2+f1(x1), d2  ≤ 

3.  

Results 

Note that some combinations of x2 and d2 are not feasible. For example with x2 =2 days, d2=1 

is feasible (i.e not possible) because category 2 jobs each job require 3 days to process. 

iii) For stage 3 (filling 1, 2 and 3 items) : n=3.  

f (x3)= 11d3+f2 (x2), d3 ≤ 2.  

iv) Computations for stage 4(filling with 1,2,3 and 4): n = 4 

F4 = 20d4 + f3 (x3), d4 ≤ 2.  

The optimal solution is 𝑓4 (10)  =  20 +  𝑓3 (3)  =  28. Note that 𝑓3(3) = 0 + 𝑓2(3) =

8 𝑖. 𝑒 𝑓2(3) = 8𝑥1 = 8 
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Step 4: An optimal solution from the computed results  

The optimal decision, given x4 = 10, is d
*
4=1. In order to identify the overall optimal solution, 

we must now trace back through the tables beginning at stage 4. The optimal decision at stage 

4 is d
*
4 = 1. Thus x3 = 10 – 7 =3, and we enter stage 3 with 3 days available for processing. 

With x3 = 3 we see that the best decisions at stage 3 is d
*
3 = 0. Thus, we enter stage 2 with x2 

= 3. The optimal decision at stage 2 with x2 = 3 is d
*
2 = 1, resulting in x1=0. Finally the 

decision at table 1 must be d
*
1=0. The table 3.8 below is the optimal solution of the number 

of jobs to be processed form each category.  

Table 3.8 Summary of the optimal solution of the knapsack problem  

Decision Return 

d
*
1=0 0 

d
*
2=1 8 

d
*
3=0 0 

d
*
4=0 20 

Total return 28 

We should schedule one job form category 2 and one job from category 4 for processing over 

the next 10 -day planning period.   

3.7 THE EQUIPMENT-REPLACEMENT PROBLEM WITH TRADE-IN COST 

A replacement policy is a specification of a sequence of “keep” or “replace” actions, one for 

each period. Two simple examples are the policy of replacing the car every year and the 
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policy of keeping the first car until the end of period N. An optimal policy is a policy that 

achieves the smallest total net cost of ownership over the entire planning horizon. 

We consider a car which has to be operated throughout a planning horizon of 𝑁 periods and 

when it reaches a specific age 𝑖 will be more economical to replace. Given that each period 

corresponds to one year; and that we are required to make a decision as to whether or not to 

replace the car at the beginning of every year. The problem of interest is to determine an 

optimal replacement policy. Let: 

𝑐 𝑖 = The annual operating cost of an 𝑖-year-old car  , 𝑤𝑒𝑟𝑒 𝑖 =  1, 2, . . . , 𝑁. 

𝑝 = The price of a new car. 

𝑡 𝑖 = The trade-in value of an 𝑖-year-old car , 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑁. 

𝑆 𝑖 = The salvage value of an 𝑖-year-old car at the end of year 𝑁 , 𝑓𝑜𝑟 𝑖 =  1, 2, . . . , 𝑁. 

𝑖 = State of the car i.e. age of the car at a given stage. 

𝑘 = Stage of the i.e. year 

We derive the optimal policy for this problem using dynamic programming by organizing the 

solution procedure into four steps: 

1. Definition of appropriate stages and states. 

2. Definition of the optimal-value function. 

3. Construction of a recurrence relation. 

4. Recursive Computation. 
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Stages and States 

Since we consider one decision per year, it is natural to make each year a stage. We shall 

refer to the year count (or index) as the stage variable. The definition of states requires a little 

bit more thought. It is worth noting that the state information corresponds to a specification of 

“where we are” within a given stage. We shall also refer to the age of the car in service at the 

beginning of a year as the state variable. 

Optimal-Value Function 

The optimal-value function is a function that returns, for any given pair of stage and state, the 

best possible total cost from that point to the end. With the stage and state variables 

appropriately defined, we define the optimal-value function as 

𝑉𝑘(𝑖)  =  the minimal total net cost from year k to the end of year 𝑁, starting with an 𝑖-year-

old car in year 𝑘. 

Recurrence Relation 

We consider being at the beginning of year 𝑘 with an 𝑖-year-old car and being reduced to 

only two available actions: keep or replace (the car). 

For a given keep the 𝑖-year-old car action chosen, the immediate one-stage cost is simply 

𝑐(𝑖). Since the next stage and state as a result of this action is 𝑘 +  1 and 𝑖 +  1, the minimal 

total future net cost from that point to the end is, by definition, 𝑉𝑘+1(𝑖 +  1). 

It follows that the best possible total net cost associated with the keep action is given by 

𝑐 𝑖 + 𝑉𝑘+1 𝑖 +  1 . 
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On the other hand, if the action chosen is to replace the 𝑖-year-old car. Then, the immediate 

one-stage cost is the sum of: 𝑝 (the price of a new car), −𝑡(𝑖) (the negative of the revenue 

from trading in the 𝑖-year-old car), and 𝑐(0) (the operating cost of a new car). 

Since the next stage and state as a result of this action is 𝑘 +  1 and 1, the minimal total 

future net cost from that point to the end is, by definition   𝑉𝑘+1(1). It follows that the best 

possible total net cost associated with the replace action is given by 

 𝑝 − 𝑡 𝑖 + 𝑐 0 + 𝑉𝑘+1 1 . Since our goal is to minimize the total net cost, the recurrence 

relation is: 

𝑉𝑘(𝑖)  =  𝑚𝑖𝑛 [𝑐(𝑖)  +  𝑉𝑘 + 1(𝑖 +  1), 𝑝 −  𝑡(𝑖)  +  𝑐(0)  +  𝑉𝑘+1(1)] .   (1) 

In general, it is arguable that the price of a new car should depend on the time period. 

Consequently, it may be desirable to replace p by a set of  𝑝𝑘 ’𝑠, where 𝑝𝑘  is the price of a 

new car in year 𝑘. Such a scenario can be easily accommodated in our solution procedure by 

revising the recurrence relation to: 

𝑉𝑘(𝑖)  =  𝑚𝑖𝑛 [𝑐(𝑖)  +  𝑉𝑘+1(𝑖 +  1), 𝑝𝑘 −  𝑡(𝑖)  +  𝑐(0)  +  𝑉𝑘+1(1)] .   (2) 

Computation 

With the recurrence relation in place, the final step of the solution procedure consists of the 

recursive computation of the  𝑉𝑘(𝑖)’𝑠. 

ILLUSTRATIVE EXAMPLE 

Suppose a 2-year old car is needed for three years. The annual cost of operating a car is a 

function of its age; and this cost function is given by:𝑐 0 =  10, 𝑐 1 =  20, 𝑐 2 40,

𝑐 3 = 60, 𝑎𝑛𝑑 𝑐(4)  =  70. The price of a new car is 60, i.e., 𝑝 = 60. The trade-in value of a 
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used car is a function of its age at the time of trade in; and this function is given by: 𝑡(1)  = 

30, 𝑡(2)  =  20, 𝑡(3)  =  15, 𝑎𝑛𝑑 𝑡(4)  =  10. Finally, the salvage value of a used car is again 

a function of its‟ age; and this function is given by: 𝑠 1 =  20, 𝑠 2 =  15, 𝑠 3 =

 10, 𝑠(4)  =  0, 𝑎𝑛𝑑 𝑠(5)  =  0. We determine an optimal replacement policy under the above 

given assumptions. 

Stage and State 

Since the car is needed for three (3) years, we have 𝑁 = 3 and a 2-year old car at the 

beginning of the first year. Hence 1 ≤ 𝑘 ≤ 𝑁 where 𝑘 shall be refer to the year count (or 

index) as the stage variable. We again refer to the age of a car in service at any given stage as 

𝑖 the state variable. Hence we shall always have an 𝑖-year old car at stage 𝑘 to begin with. 

Computation 

We specify the boundary condition. For this purpose, it is convenient to view the end of year 

3 as the beginning of a final stage 4, where the only available action is to salvage the car in 

service. Since the revenue received from salvaging a car can be interpreted as a negative cost, 

this yields the boundary condition specified in the table 3.9 with column 1 representing the 

various ages of the car at stage 4 and column 2 indicates the salvage values at various states. 

Table 3.9: Solution Stage (4) 

 

 

 

𝑖 𝑉4(𝑖) 

1 -20 

2 -15 

3 -10 

4 0 

5 0 
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Note that the highest possible state is 5. This is a consequence of the fact that we begin year 1 

with a 2-year-old car and the planning horizon is 3 years. We consider stage 3, where the 

highest possible state is 4. For state 1, the one-stage costs associated with the keep and 

replace actions are 𝑐(1)  =  20 𝑎𝑛𝑑 𝑝 −  𝑡(1)  +  𝑐(0)  = 60 −  30 +  10 =  40 

respectively. For state 2, the one-stage costs associated with the keep and replace actions are 

𝑐(2)  =  40 and  𝑝 −  𝑡(2)  +  𝑐(0)  =  60 −  20 +  10 =  50, respectively. For state 3, the 

one-stage costs associated with the keep and replace actions are 𝑐(3)  =  60 and  𝑝 −

 𝑡(3)  +  𝑐(0)  =  60 −  15 +  10 =  55 respectively. Finally, for state 4, the one-stage 

costs associated with the keep and replace actions are 𝑐(4)  =  70 and 𝑝 −  𝑡(4)  +  𝑐(0)  =

 60 −  10 +  10 =  60, respectively. Substitution of these one-stage costs and the relevant 

𝑉4(𝑖)’𝑠 from the stage-4 table above into the recurrence relation; 

𝑉3(𝑖)  =  𝑚𝑖𝑛 [𝑐(𝑖)  +  𝑉4(𝑖 +  1), 𝑝 −  𝑡(𝑖)  +  𝑐(0)  +  𝑉4(1)] 

Now yields the solution at stage 3 as seen in table 3.10 with column 1 representing the 

various ages of the car, columns 2 and 3 captures the costs in line with keep or replace 

actions respectively  whereas columns 4 and 5 depict the total recursive cost and optimal 

decision associated with each state (age) of the car. 
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Table 3.10: Solution to stages (3): 

 𝐴𝑐𝑡𝑖𝑜𝑛   

 Keep Replace 𝑉3(𝑖) Optimal Action 

1 20 + (−15) = 5 40 + (−20) = 20 5 Keep 

2 40 + (−10) = 30 50 + (−20) = 30 30 Keep or Replace 

3 60 + 0 = 60 55 + (−20) = 35 35 Replace 

4 70 + 0 = 70 60 + (−20) = 40 40 Replace 

 

Note that for state 2, the costs associated with the keep and replace actions are tied at 30; 

therefore, both actions are optimal. Next, we move back one more stage to stage 2, where the 

highest possible state is 3. For all three states, the one-stage costs associated with the keep 

and replace actions are identical to the ones computed earlier in stage 3. Substitution of these 

one-stage costs and the relevant 𝑉3(𝑖)’𝑠 from the stage-3 table above into the recurrence 

relation 

𝑉2 𝑖 =  𝑚𝑖𝑛  𝑐 𝑖 +  𝑉3 𝑖 +  1 , 𝑝 −  𝑡 𝑖 +  𝑐 0 +  𝑉3 1    yields the solution at stage 2 

as shown in table 3.11 with column 1 representing the various ages of the car, columns 2 and 

3 captures the costs in line with keep or replace actions respectively  whereas columns 4 and 

5 depict the total recursive cost and optimal decision associated with each state (age) of the 

car. 
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Table 3.11: Solution to stages (2) 

𝑖 𝐴𝑐𝑡𝑖𝑜𝑛𝑠   

 Keep Replace 𝑉2(𝑖) Optimal Action 

1 20 + 30 = 50 40 + 5 = 45 45 Replace 

2 40 + 35 = 75 50 + 5 = 55 55 Replace 

3 60 + 40 = 100 55 + 5 = 60 60 Replace 

 

It follows that we should replace the car in service regardless which state we happen to be in 

within this stage. Finally, in stage 1, the only state is 2. Substitution of 𝑐(2)  =  40, 𝑝 −

 𝑡(2)  +  𝑐(0)  = 60 −  20 +  10 =  50, 𝑉2(1)  =  45, 𝑎𝑛𝑑 𝑉2(3)  =  60  into the 

recurrence relation 

𝑉1(2)  =  𝑚𝑖𝑛 [𝑐(2)  +  𝑉2(3), 𝑝 −  𝑡(2)  +  𝑐(0)  + 𝑉2(1)] yields solution at stage 1 as 

evidenced in table 3.12 with column 1 representing the various ages of the car, columns 2 and 

3 indicating the net costs in line with keep or replace actions respectively  whereas columns 4 

and 5 depict the total recursive cost and optimal decision associated with a 2 − 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 𝑐𝑎𝑟 

car. 
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Table 3.12: solution to stages (1) 

 𝐴𝑐𝑡𝑖𝑜𝑛𝑠   

𝑖 Keep Replace 𝑉1(𝑖) Optimal Action 

2 40 + 60 = 100 50 + 45 = 95 95 Replace 

 

Since 𝑉1(2)  =  95, we conclude that the minimal total net cost from year 1 to the end of year 

3, starting with a 2-year-old car in year 1, is 95. 

The sequence of optimal actions can be read from the above tables sequentially as follows. 

An inspection of the stage-1 table shows that we should immediately replace the original 2-

year-old car. This implies that the age of the car in service at the start of year 2 will be 1. 

Upon inspecting the first row of the stage-2 table, we see that we should replace again in year 

2. Finally, from the first row of the stage-3 table, it is seen that we should keep the 1-year-old 

car at the start of year 3. Thus, the optimal policy prescribes the following sequence of 

actions: replace, replace, and keep. In summary, the total optimal net cost for this optimal 

policy {R, R, K} equals 95. 

3.8 AUTOMOBILE REPLACEMENT PROBLEM WITH OR WITHOUT 

INCOME 

The D.P. recursive equation of an automobile replacement problem for either Keep or 

Replace decision with the aim of minimizing the total cost can be written as in equation (3) if 

the organization fleet of buses generates some income. Equation (4) represents the D.P. 
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recursive equation with the aim of maximizing the company pure profit. But equation (5) 

represents the D.P. recursive equation for minimizing the total cost if there is no income 

𝑉𝑘(𝑖) = 𝑚𝑖𝑛  
𝐶𝑘 𝑖 − 𝐼𝑘(𝑖) +  𝑉𝑘+1 𝑖 +  1                                              𝐾𝑒𝑒𝑝

 𝐶𝑘 0 − 𝐼𝑘 0 + 𝑅𝑘 𝑖 +  𝑉𝑘+1 1                                𝑅𝑒𝑝𝑙𝑎𝑐𝑒  
           (3) 

𝑉𝑘(𝑖) = 𝑚𝑎𝑥  
 𝐼𝑘 𝑖 − 𝐶𝑘 𝑖 +  𝑉𝑘+1 𝑖 +  1                                        𝐾𝑒𝑒𝑝

𝐼𝑘 0 − 𝐶𝑘 0 + 𝑅𝑘 𝑖 +  𝑉𝑘+1 1                        𝑅𝑒𝑝𝑙𝑎𝑐𝑒  
                (4) 

𝑉𝑘(𝑖) = 𝑚𝑖𝑛  
𝐶𝑘 𝑖 +  𝑉𝑘+1 𝑖 +  1                                                  𝐾𝑒𝑒𝑝

 𝐶𝑘 0 + 𝑅𝑘 𝑖 +  𝑉𝑘+1 1                                   𝑅𝑒𝑝𝑙𝑎𝑐𝑒  
                     (5) 

Where : 

𝐶𝑘 𝑖 =    Represent total cost at each stage (𝑘) of an old bus.   

𝐶𝑘 0 =   Represent total cost at each stage (𝑘) of a new bus.   

 𝐼𝑘 𝑖 =    Represent the old bus income at stage (𝑘). 

𝐼𝑘 0 =    Represent the new bus income at stage (𝑘). 

𝑅𝑘 𝑖 =    Represent the bus replacement cost at stage (𝑘). 

𝑉𝑘 𝑖 =    Represent the total recursive cost for a bus of age (𝑖) at stage (𝑘). 

𝑉𝑘+1 𝑖 +  1 =   Represent the total recursive cost for a bus of age (𝑖 + 1) at stage (𝑘 + 1). 

𝑉𝑘+1 1 =    Represent the total recursive cost for a bus of age (1) at stage (𝑘 + 1) 

𝑖 =      Represent the bus age at stage 𝑘, (The state variable) 

𝐷𝑘 =   Represent the decision at stage 𝑘. 

𝑘 =     Represent the stage. 
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ILLUSTRATIVE EXAMPLE 

We consider a 2-year old equipment with its data available in Tables 3.6.1 to 3.6.4 with row 1 

clearly specifying the stage in question, row 2 indicates the state variables at a given stage, 

row 3 represents the old bus income at any given state with row 4 representing the 

replacement cost of the equipment in a given state at various stages, (all values in dollars). It 

is required to find the optimal replacement policy for this equipment to minimize the total 

cost over the next 4 years. 

Table 3.6.1:   Data of the illustrative example, stage 1 

Stage 1 

𝑖 0 2 

𝐼𝑘(𝑖) 3000 2200 

𝐶𝑘(𝑖) 1100 2800 

𝑅𝑘 𝑖  --- 6200 

 

Table 3.6.2: Data of the illustrative example, stage 2 

Stage 2 

𝑖 0 1 3 

𝐼𝑘(𝑖) 5000 4600 3700 
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𝐶𝑘(𝑖) 1200 2450 6100 

𝑅𝑘 𝑖  --- 5600 8000 

 

TABLE 3.6.3:  Data of the illustrative example, stage 3 

Stage 3 

𝑖 0 1 2 4 

𝐼𝑘(𝑖) 7000 4800 4600 2700 

𝐶𝑘(𝑖) 2300 2500 4000 6000 

𝑅𝑘 𝑖  --- 5700 7500 8200 

 

Table 3.6.4:  Data of the illustrative example, stage 4  

Stage 4 

𝑖 0 1 2 3 5 

𝐼𝑘(𝑖) 6800 5000 4700 4000 2500 

𝐶𝑘(𝑖) 2400 2600 4100 5300 6600 

𝑅𝑘 𝑖  --- 7900 6600 7200 8300 
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The decision will be taken at the beginning of each year. The problem will be solved by 

backward dynamic programming by using the recursive equation (1). The problem state 

variable is shown in Table 3.6.5 with row 1 representing the individual stages and row 2 

identifying the state variables at various stages: 

Table 3.6.5:  State variables for 2 years old equipment 

𝑘 1 2 3 4 

𝑖 𝑖 = 2 𝑖 = 1,3 𝑖 = 1,2,4 𝑖 = 1,2,3,5 

Table 3.6.6 summarizes the results obtained in various states at stages (4) with column 1 

indicating the age of the equipment (state), columns 2 and 3 represent the costs associated 

with keeping and replacing an  𝑖 − 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 equipment respectively. The last column 

stipulates the optimal decision to keep or replace at various states. 

Table 3.6.6: Solution of stages (4) 

𝑖 Keep Replace 𝑉4(𝑖) 𝐷4 

5 4100 3900 3900 Replace 

3 1300 2800 1300 Keep 

2 -600 2200 -600 Keep 

1 -2400 3500 -2400 Keep 

 



71 
 

Table 3.6.7 summarizes the results obtained in various states at stages (3) with column 1 

indicating the age of the equipment (state), columns 2 and 3 represent the costs associated 

with keeping and replacing an  𝑖 − 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 equipment respectively. The last column 

stipulates the optimal decision to keep or replace at various states. 

Tables 3.6.7: Solution of stages (3) 

𝑖 Keep Replace 𝑉3(𝑖) 𝐷3 

4 7200 1100 1100 Replace 

2 700 400 400 Replace 

1 -2900 -1400 -2900 Keep 

Table 3.6.8 summarizes the results obtained in various states at stages (2) with column 1 

indicating the age of the equipment (state), columns 2 and 3 represent the costs associated 

with keeping and replacing an  𝑖 − 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 equipment respectively. The last column 

stipulates the optimal decision to keep or replace at various states. 

Tables 3.6.8: Solution of stages (2) 

𝑖 Keep Replace 𝑉2(𝑖) 𝐷2 

3 3500 1300 1300 Replace 

1 -1700 -1100 -1750 Keep 
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Table 3.6.9 summarizes the results obtained in various states at stages (1) with column 1 

indicating the age of the equipment (state), columns 2 and 3 represent the costs associated 

with keeping and replacing a  2 − 𝑦𝑒𝑎𝑟 𝑜𝑙𝑑 equipment respectively. The last column 

stipulates the optimal decision to keep or replace at state 2. 

Tables 3.6.9:  Solution of stages (1) 

𝑖 Keep Replace 𝑉1(𝑖) 𝐷1 

2 1900 2550 1900 Keep 

 

From Tables 3.6.6 to 3.6.9, we obtain the optimal replacement policy in the backward 

movement fashion as shown in Table 3.6.10 with row 1 and 2 specifying the stage and keep 

or replace decisions respectively. The last column spells out the total cost in pursuance of the 

outlined policy. 

Table 3.6.10: The optimal replacement policy and its total cost 

Stage 1 2 3 4 Total Cost 

Decision Keep Replace Keep Keep $1,900 

 

It is evidenced that the company should keep the equipment at the first year, then replaces it 

by a new one, then keep the new equipment till the rest of the planned period. The total 

optimal cost for this optimal policy {K, R, K, K} equals $1900. 
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CHAPTER FOUR 

DATA COLLECTION, ANALYSIS AND RESULTS 

4.1 DATA COLLECTION 

Metro-Mass Transit Ltd (MMT) is a passenger transport company in Ghana with enviable 

track record. This company has a fleet size of more than 300 different buses with the Kumasi 

depot having 94 buses of four distinct types.  

Our research study is carried out on 5 buses, a bus each of the kinds available, namely VDL 

Daf, VDL Jonckheere, VDL Commuter, VDL Neoplan City (1
st
 

 
generation) and VDL 

Neoplan City (2
nd 

generation). 

The studied planned period is 11 years which starts from the year 2006 to 2016. The actual 

data are collected for the years 2006 to 2010. Then Microsoft Excel is used to predict the 

future values for the rest of the planned period. The tables (first three columns) in appendix 

„A‟ to „E‟ represent our case study collected and predicted data for the buses. The collected 

data include: the types of buses, replacement cost of buses, maintenance cost of buses and 

income generated (yr) by each bus for the planned period years. The income generated by the 

bus in most cases decrease with increasing age of the bus at any given stage whiles the cost of 

maintaining it increases with increasing age of the bus. 

 4.1.1 MODEL FORMULATION 

The decision will be taken at the beginning of each year. The problem will be solved by 

backward dynamic programming using the recursive equation 4 (shown in chapter three).  

The problem is to find the maximum net profit in operating each bus over the planned period. 

The problem is formulated as a dynamic programming problem with the assumption that a 
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bus can only be kept or replaced at the beginning of each year. The bus is again not subjected 

to catastrophic failure. The mathematical notation and formulation are as follows: 

Let 

𝐶𝑘 𝑖   = Represent total cost at each stage (𝑘) of an old bus.   

𝐶𝑘 0  = Represent total cost at each stage (𝑘) of a new bus.   

 𝐼𝑘 𝑖    = Represent the old bus income at stage (𝑘). 

𝐼𝑘 0    = Represent the new bus income at stage (𝑘). 

𝑅𝑘 𝑖   = Represent the bus replacement cost at stage (𝑘). 

𝑉𝑘(𝑖)  = Represent the total recursive net profit for a bus of age (𝑖) at stage (𝑘). 

𝑉𝑘+1 𝑖 +  1  = Represent the total recursive net profit for a bus of age (𝑖 + 1) at stage (𝑘 +

1). 

𝑉𝑘+1 1   = Represent the total recursive net profit for a bus of age (1) at stage (𝑘 + 1) 

𝑖  = Represent the bus age at stage 𝑘, (The state variable) 

𝐷𝑘  = Represent the decision at stage 𝑘. 

𝑘   = Represent the stage. 

The problem state variable will be shown in Table 4.1 with columns 1 and 2 representing the 

various years (stages) and their corresponding state (age) variable(s) respectively. 

Table 4.1:  State variables for MMT bus 
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𝑘 𝑖 

1 0,2 

2 1,3 

3 1,2,4 

4 1,2,3,5 

5 1,2,3,4,6 

6 1,2,3,4,5,7 

7 1,2,3,4,5,6,8 

8 1,2,3,4,5,6,7,9 

9 1,2,3,4,5,6,8,10 

10 1,2,3,4,5,6,7,8,9,11 

Since our goal is to maximize the total net profit, the MMT operational cost recursive relation 

is: 

𝑉𝑘(𝑖) = 𝑚𝑎𝑥  
 𝐼𝑘 𝑖 − 𝐶𝑘 𝑖 +  𝑉𝑘+1 𝑖 +  1                                        𝐾𝑒𝑒𝑝

𝐼𝑘 0 − 𝐶𝑘 0 + 𝑅𝑘 𝑖 +  𝑉𝑘+1 1                        𝑅𝑒𝑝𝑙𝑎𝑐𝑒  
  

With the recurrence relation in place, the final step of the solution procedure consists of the 

recursive computation of the value function 𝑉𝑘(𝑖)’𝑠 given the stages and states. 
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Microsoft Excel solver was used for solving the replacement problem as a dynamic 

programming model to find the optimal replacement policy which maximizes the net profit 

for the studied busses. 

4.1.2 RESULTS  

Table 4.2 below tabulates the optimal decision variable sequence for the studied buses as 

extracted from the last columns of the Microsoft Excel output of the tables in appendix A to 

E. 

Table 4.2: Buses optimal decision variable sequence 

Bus 1 2 3 4 5 6 7 8 9 10 11 

Commuter K K K K K R K K K K K 

Neoplan 1 K K K K R K K K K R K 

Neoplan 2 K K K K K R K K K K K 

Daf K K K K K R K K K K K 

Jonckheere K K K K K R K K K K K 

K=Keep 

R=Replace 

This means that, the VDL Neoplan City (1
st
 Generation) bus comes with the optimal policy 

{K, K, K, K, R, K, K, K, K, R, K} with a corresponding total net profit of GH₵447780.00. 

MMT should keep the bus for the first four years of service and replaced at the beginning of 

the fifth year, then keep it till the start of the tenth year where it must be replaced again. It 

then follows with keep decisions till the end of the planned horizon. 
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The VDL Commuter, VDL Neoplan City (2nd Generation), VDL Daf and Jonckheere buses 

are characterized by keep actions in the first five years then followed by replace decisions at 

the start of year 6 with keep actions spanning to the end of the period as in optimal policy {K, 

K, K, K, K, R, K, K, K, K, K}   thereby yielding GH₵303,845.00, GH₵419,900.00, 

GH₵271,733.00 and GH₵331,172.00 as optimal net profit throughout the planned horizon 

respectively. 

Table 4.3 illustrates the profit/loss (in GH₵) associated with replace and the keep actions of 

each bus at the policy year. There are huge differences between the replace and keep values. 

Replacement carried out at the policy year can allow MMT to earn about 190% pure profit 

more than the keep options.  

Table 4.3: Replace and Keep action profits/loss at given action years 

Bus Loss obtained 

from Keep 

Profit obtained 

from Replace 

Policy Year 

Commuter -4153 71486 6 

Neoplan 1 -29138 35271 5 

Neoplan 2 -15610 21550 6 

Daf -39712 17861 6 

Jonckheere -15926 19456 6 

 

Fig 4.1 illustrates the comparison between replace and keep profit/loss at their respective 

policy years where the keep actions are characterised by negative values signifying loss to 

MMT should a replace decision be compromised at the policy year. 
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Figure 4.1: Replace and keep profit/loss comparison 

4.2 DISCUSSION 

Clearly, non adherence to the policy year replace action given the available data spells out the 

danger to MMT Ltd running at a loss. Keeping the VDL Jonckheere, VDL Daf, VDL 

Neoplan City (2
nd

 generation) and VDL Commuter buses without replacing them at the start 

of the sixth year of the planned horizon results in the following losses: GH₵15,926.00, 

GH₵39,712.00, GH₵15,610.00 and GH₵4,153.00 respectively. The VDL Neoplan (1
st
 

Generation) however, registers a net loss of GH₵29,138.00 if MMT fails to replace it at the 

commencement of year 5 in its service life. Table 4.3 and figure 4.1 clearly through more 

light on this. It is however interesting to note that, adherence to the policy year replace action 

yielded not only the desired profit but also made it possible to unearth the individual bus‟s 

contribution to MMTs‟ total net profit thereby buttressing any such decision to endorse the 

usage of one kind of a bus over the other. On the other hand, the net profit realised should 

MMT stick to the policy year replace decision of replacing the VDL Jonckheere, VDL Daf, 

VDL Neoplan City (2
nd

 generation) and VDL Commuter buses is GH₵19,456.00, 

GH₵17,861.00, GH₵21,550.00 and GH₵71,486.00 respectively at the start of year 6 with the 
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VDL Neoplan City (1
st
 Generation) seeing a net profit of GH₵35,271.00 at the start of year 5 

of its policy year. On the other hand, the negative signs associated with the total net profits of 

non adherence to the optimal policy as in the case of the Commuter and Daf buses indicate 

loss to the company. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATION 

5.1 CONCLUSION 

The problem was modeled as a recursive function as shown in slide fourteen. 

All buses should be replaced at the start of the sixth year as their policy year except Neoplan 

City (1
st
 
  
generation) bus which should be replaced at the start of the fifth year of the planned 

horizon. 

Optimal replacement policies allows MMT Ltd (Kumasi depot) to earn GH₵165,624.00 in 

profit with the keep actions yielding a loss of GH₵104,539.00 It is noted that the optimal 

replacement policies allows MMT Ltd (Kumasi depot) to earn about 190% more than the 

keep actions according to the collected data. 

5.2 RECOMMENDATION 

Further research work using other methods is highly recommended to overcome the weakness 

in information, data and the predicted values to achieve more accurate policies.  

It is recommended that the MMT Limited keep their books well for easy access to 

information and data.  

Again, it is strongly recommended that MMT should dispose off all its buses stated herein 

after five (5) years of usage except the VDL Neoplan (1
st
 Generation) which should be 

disposed off after four (4) of usage. 
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DATA OBTAINED FROM MMT LIMITED   

Income Matrix of Buses in Ghana Cedis  

BUS/YEAR 2006 2007 2008 2009 2010 

COMMUTER 98073 97824 84897 85021 84524 

NEOPLAN 1 90000 78000 70800 71400 73000 

NEOPLAN 2 78900 78700 68300 68400 68000 

DAF 97662 95940 85854 83517 79704 

JONCHKEERE 98625 98375 85375 85500 85000 
 

 

Cost Matrix of Buses in Ghana Cedis 

BUS/YEAR 2006 2007 2008 2009 2010 

COMMUTER 19944 21163 28697 32132 32021 

NEOPLAN 1 12000 17000 24000 22100 27600 

NEOPLAN 2 18000 19100 25900 29000 28900 

DAF 23370 24108 36654 30873 38253 

JONCHKEERE 21654 22977 31158 34887 34767 
 

  

 Replacement Cost Matrix of Buses in Ghana Cedis 

BUS/YEAR 2006 2007 2008 2009 2010 

COMMUTER 177840 179400 195000 195000 199680 

NEOPLAN 1 110000 115000 125000 125000 128000 

NEOPLAN 2 114000 115000 125000 125000 128000 

DAF 189240 189750 190000 191250 193280 

JONCHKEERE 189240 189750 190000 191250 193280 
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APPENDIX B 

Ms Excel output for VDL Neoplan city 1st generation bus 

 

Stage 11  2016 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

12 42050 57060 141050 -15010 -157150 -15010 Keep 

10 42700 54800 138000 -12100 -85000 -12100 Keep 

9 49500 50400 138000 -900 -85000 -900 Keep 

8 58000 49900 138000 8100 -85000 8100 Keep 

7 74400 48400 138000 26000 -85000 26000 Keep 

6 74600 46100 138000 28500 -85000 28500 Keep 

5 65000 36500 138000 28500 -85000 28500 Keep 

4 75900 34600 130000 41300 -77000 41300 Keep 

3 86700 22800 127000 63900 -74000 63900 Keep 

2 86800 20000 126000 66800 -73000 66800 Keep 

1 86900 18700 125000 68200 -72000 68200 Keep 

0 87000 17900 
     

        

        

 

Stage 10  2015 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 

11 42700 54800 138000 -27110 40313 40313 Replace 

9 49500 50400 138000 -13000 40313 40313 Replace 

8 58000 49900 138000 7200 40313 40313 Replace 

7 74400 48400 138000 34100 40313 40313 Replace 

6 74600 46100 138000 -54500 40313 40313 Replace 

5 65000 36500 138000 40313 57000 57000 Replace 

4 75900 34600 130000 69800 48313 69800 Keep 

3 86700 22800 127000 105200 51313 105200 Keep 

2 86800 20000 126000 130700 52313 130700 Keep 

1 86900 18700 125000 135000 53313 135000 Keep 

0 87000 17900 
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Stage 9  2014 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

10 25700 36800 135000 29213 42316 42316 Replace 

8 36600 35900 135000 41013 42316 42316 Replace 

7 37800 35500 135000 42613 42316 42613 Keep 

6 37900 33800 135000 44413 42316 44413 Keep 

5 52000 31300 135000 75200 42316 75200 Keep 

4 55800 28300 126000 84500 51316 84500 Keep 

3 69300 24200 125000 114900 52316 114900 Keep 

2 72600 20200 124000 157600 53316 157600 Keep 

1 78600 17500 124000 191800 53316 191800 Keep 

0 81700 16800 
     

        

        

 

Stage 8  2013 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

9 29800 37600 131000 34516 34749 34749 Replace 

7 35200 35400 131000 42116 34749 42116 Keep 

6 39600 34100 131000 48113.2 34749 48113 Keep 

5 41400 34000 131000 51813.2 34749 51813 Keep 

4 51800 31900 125000 95100 40749 95100 Keep 

3 59400 25500 124000 118400 41749 118400 Keep 

2 68500 24200 124000 159200 41749 159200 Keep 

1 78200 21700 123000 214100 42749 214100 Keep 

0 79900 21600 

     

        

        

 

Stage 7  2012 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

8 37900 39700 131000 -32948 255080 255080 Replace 

6 40900 36700 131000 -46316 255080 255080 Replace 

5 50400 36500 131000 -62013 255080 255080 Replace 

4 54700 33200 131000 -73313 255080 255080 Replace 

3 60500 32700 125000 -12290 261080 261080 Replace 



89 
 

2 69300 21700 124000 16600 -262080 16600 Keep 

1 72700 18600 124000 21330 -262080 21330 Keep 

0 80400 18100 

     

        

        

 

Stage 6  2011 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 

7 37300 40800 128000 251580 25100 251580 Keep 

5 43200 38000 128000 260280 25100 260280 Keep 

4 56800 37900 123000 273980 30100 273980 Keep 

3 59100 34600 123000 279580 30100 279580 Keep 

2 63900 34200 122000 290780 31100 290780 Keep 

1 76200 22100 122000 316180 31100 316180 Keep 

0 81700 19500 

     

        

        

 

Stage 5 2010 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

6 68100 28300 128000 -29138 35271 35271 Replace 

4 73000 27600 126000 -30568 35471 35471 Replace 

3 73300 26600 125000 -32068 35571 35571 Replace 

2 77100 26300 122000 -33038 35871 35871 Replace 

1 80800 19600 121000 -35198 35971 35971 Replace 

0 82200 18200 

     

        

        

 
Stage 4  2009 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

5 68000 28500 125000 291080 173219 291080 Keep 

3 71400 22100 125000 309580 173219 309580 Keep 

2 72700 21800 122000 324880 176219 324880 Keep 

1 77600 21500 121000 335680 177219 335680 Keep 

0 79600 18100 

     

 
Stage 3  2008 
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𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

4 67400 38000 125000 320480 269580 320480 Keep 

2 70800 24000 122000 356380 272580 356380 Keep 

1 77000 19000 120000 382880 274580 382880 Keep 

0 77500 18600 

     

        

        

 

Stage 2  2007 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

3 72300 19000 115000 373780 -115000 373780 Keep 

1 78000 17000 110000 417380 -110000 417380 Keep 

0 77000 11000 

     

        

        

 
Stage 1 2006 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

2 89000 15000 110000 447780 229380 447780 Keep 

0 90000 12000 
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APPENDIX C 

Ms Excel output for VDL Neoplan city 2nd generation 

bus 
 

 

 

Stage 11  2016 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

12 44250 80450 142000 -36200 -38000 -36200 Keep 

10 45000 78800 138000 -33800 -34000 -33800 Keep 

9 57000 78300 138000 -21300 -34000 -21300 Keep 

8 63000 53000 138000 10000 -34000 10000 Keep 

7 65000 46000 138000 19000 -34000 19000 Keep 

6 60500 42500 138000 18000 -34000 18000 Keep 

5 78000 35500 138000 42500 -34000 42500 Keep 

4 74000 22100 130000 51900 -26000 51900 Keep 

3 72500 22000 127000 50500 -23000 50500 Keep 

2 80000 21900 126000 58100 -22000 58100 Keep 

1 80000 21800 125000 58200 -21000 58200 Keep 

0 80500 21500 

      

 
 

       

 
Stage 10  2015 

     

        

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

11 45000 78800 138000 -70000 69800 69800 Replace 

9 57000 78300 138000 55100 -69800 55100 Keep 

8 63000 53000 138000 11300 -69800 11300 Keep 

7 65000 46000 138000 29000 -69800 29000 Keep 

6 60500 42500 138000 37000 -69800 37000 Keep 

5 78000 35500 138000 60500 -69800 60500 Keep 

4 74000 22100 130000 94400 -61800 94400 Keep 

3 72500 22000 127000 102400 -58800 102400 Keep 

2 80000 21900 126000 108600 -57800 108600 Keep 

1 80000 21800 125000 116300 -56800 116300 Keep 

0 80500 21500 
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Stage  9 2014 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

10 36500 46000 138000 -79300 48900 48900 Replace 

8 47000 36300 138000 -44400 48900 48900 Replace 

7 58000 32000 138000 -14700 48900 48900 Replace 

6 68500 27400 138000 70100 48900 70100 Keep 

5 73500 24000 138000 86500 48900 86500 Keep 

4 74300 23000 130000 111800 56900 111800 Keep 

3 78500 18500 125000 154400 61900 154400 Keep 

2 80000 17000 124000 165400 62900 165400 Keep 

1 82500 15500 124000 175600 62900 175600 Keep 

0 85500 14900 
     

        

 

Stage  8 2013 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

9 33500 37000 131000 45400 111100 111100 Replace 

7 37000 36000 131000 49900 111100 111100 Replace 

6 48500 27000 131000 70400 111100 111100 Replace 

5 55500 26700 131000 98900 111100 111100 Replace 

4 69000 26400 125000 129100 117100 129100 Keep 

3 70500 24000 124000 158300 118100 158300 Keep 

2 76100 22000 124000 208500 118100 208500 Keep 

1 78200 21000 123000 222600 119100 222600 Keep 

0 85500 19000 
     

        

        

        

 
Stage  7 2012 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

8 27000 29000 130000 -10910 161500 161500 Replace 

6 38000 27000 130000 -12210 161500 161500 Replace 

5 61000 26500 130000 -14560 161500 161500 Replace 

4 72000 25000 128000 -15810 163500 163500 Replace 

3 73000 24000 125000 178100 166500 178100 Keep 

2 78000 21000 123000 215300 168500 215300 Keep 

1 85000 18000 122000 275500 169500 275500 Keep 
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0 86000 17100 
     

        

 

 

Stage  6 2011 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

7 35600 41000 128000 -15610 215500 215500 Replace 

5 40800 37000 128000 -16530 215500 215500 Replace 

4 58000 35000 123000 -18450 220500 220500 Replace 

3 63000 29600 123000 -19690 220500 220500 Replace 

2 78000 24000 122000 232100 221500 232100 Keep 

1 80500 21000 122000 274800 221500 274800 Keep 

0 86000 18000 

     

        

        

        

 

Stage  5 2010 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

6 56400 31500 128000 240400 208200 240400 Keep 

4 68000 28900 126000 254600 210200 254600 Keep 

3 73000 24800 125000 268700 211200 268700 Keep 

2 75400 20900 122000 275000 214200 275000 Keep 

1 76900 19300 121000 289700 215200 289700 Keep 

0 79800 18400 

     

        

        

        

 

Stage  4 2009 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

5 67100 32000 125000 275500 173219 275500 Keep 

3 68400 29000 125000 294000 173219 294000 Keep 

2 69800 25000 122000 313500 176219 313500 Keep 

1 74500 19000 121000 330500 177219 330500 Keep 

0 79200 18500 

     

        

 

Stage  3 2008 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

4 65700 30700 125000 310500 151780 310500 Keep 

2 68300 25900 122000 336400 154780 336400 Keep 
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1 77500 19300 120000 371700 156780 371700 Keep 

0 79200 18000 

     

        
 

 

 

Stage  2 2007 

 

 
 

 

   

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

3 69500 19500 115000 360500 201880 360500 Keep 

1 78700 19100 110000 396000 206880 396000 Keep 

0 79000 18300 

     

        

        

 
Stage  1 2006 

     

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  

2 78600 19200 114000 419900 225380 419900 Keep 

0 78900 18000 
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APPENDIX D 

Ms Excel output for VDL Jonckheere bus 

2016 

       

        

12 50328 152740 223463 10241 -242563 10241 KeeP 

10 56250 94796 212520 38546 -23162 38546 KeeP 

9 71250 94195 212520 -22945 -23162 -22945 KeeP 

8 78750 63759 212520 14991 -23162 14991 KeeP 

7 81250 55338 212520 25912 -231620 25912 KeeP 

6 75625 51128 212520 24498 -231620 24498 KeeP 

5 97500 42707 212520 54794 -231620 54794 KeeP 

4 92500 26586 200200 65914 -219300 65914 KeeP 

3 90625 26466 195580 64159 -214680 64159 KeeP 

2 100000 26346 194040 73654 -213140 73654 KeeP 

1 100000 26225 192500 73775 -211600 73775 KeeP 

0 100625 25865 

     

        

        

        

11 56250 94796 212520 140958 -144320 140958 KeeP 

9 71250 94195 212520 61491 -144320 61491 KeeP 

8 78750 63759 212520 7954 -144320 7954 KeeP 

7 81250 55338 212520 40903 -144320 40903 KeeP 

6 75625 51128 212520 50410 -144320 50410 KeeP 

5 97500 42707 212520 79291 -144320 79291 KeeP 

4 92500 26586 200200 120707 -132000 120707 KeeP 

3 90625 26466 195580 130073 -127380 130073 KeeP 

2 100000 26346 194040 137813 -125840 137813 KeeP 

1 100000 26225 192500 147429 -124300 147429 KeeP 

0 100625 25865 0 
    

        

        

     

 

 
 

 

  

10 45625 55338 201480 150671 -201480 150671 KeeP 

𝑖 𝐼𝑘(𝑖) 𝐶𝑘(𝑖) 𝑅𝑘(𝑖) 𝑉𝑘 𝑉𝑟 𝑉𝑘(𝑖) 𝐷𝑘  
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8 58750 49669 201480 52410 -201480 52410 KeeP 

7 72500 48496 201480 16050 -201480 16050 KeeP 

6 85625 32962 201480 93566 -201480 93566 KeeP 

5 91875 28872 201480 113413 -201480 113413 KeeP 

4 92875 27669 189800 144497 -189800 144497 KeeP 

3 98125 22256 182500 196577 -182500 196577 KeeP 

2 100000 20451 181040 209622 -181040 209622 KeeP 

1 103125 18647 181040 222292 -181040 222292 KeeP 

0 106875 17925 

     

        

        

        

9 41875 44511 199120 153307 -199120 153307 KeeP 

7 46250 43308 199120 49468 -199120 49468 KeeP 

6 60625 32481 199120 44194 -199120 44194 KeeP 

5 69375 32120 199120 130821 -199120 130821 KeeP 

4 86250 31759 190000 167903 -190000 167903 KeeP 

3 88125 28872 188480 203750 -188480 203750 KeeP 

2 95125 26466 188480 265236 -188480 265236 KeeP 

1 97750 25263 186960 282109 -186960 282109 KeeP 

0 106875 22857 
     

        

        

        

        

        

8 33750 34887 198900 154444 -198900 154444 KeeP 

6 47500 32481 198900 34449 -198900 34449 KeeP 

5 76250 31880 198900 88565 -198900 88565 KeeP 

4 90000 30075 195840 190746 -195840 190746 KeeP 

3 91250 28872 191250 230281 -191250 230281 KeeP 

2 97500 25263 188190 275987 -188190 275987 KeeP 

1 106250 21654 186660 349832 -186660 349832 KeeP 

0 107500 20571 0 
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7 44500 49323 194560 -15926 19456 19456 Replace 

5 51000 44511 194560 -27960 19456         19456 Replace 

4 72500 42105 186960 11896 -18696 11896 KeeP 

3 78750 35609 186960 23388 -18696 23388 KeeP 

2 97500 28872 185440 29890 -18544 29890 KeeP 

1 100625 25263 185440 35134 -18544 35134 KeeP 

0 107500 21654 0 

    

        

        

6 70500 37895 193280 126662 -193280 126662 KeeP 

4 85000 34767 190260 22273 -190260 22273 KeeP 

3 91250 29834 188750 180375 -188750 180375 KeeP 

2 94250 25143 184220 302994 -184220 302994 KeeP 

1 96125 23218 182710 371816 -182710 371816 KeeP 

0 99750 22135 

     

        

5 83875 38496 191250 81283 -191250 81283 KeeP 

3 85500 34887 191250 72886 -191250 72886 KeeP 

2 87250 30075 186660 237550 -186660 237550 KeeP 

1 93125 22857 185130 373262 -185130 373262 KeeP 

0 99000 22256 

     

        

        

4 82125 36932 190000 36090 -190000 36090 KeeP 

2 85375 31158 185440 127103 -185440 127103 KeeP 

1 96875 23218 182400 311207 -182400 311207 KeeP 

0 99000 21654 

     

        

 

Stage 2 

      

3 86875 23459 189750 27327 -189750 27327 KeeP 

1 98375 22977 181500 202501 -181500 202501 KeeP 

0 98750 22015 
      

 

 Stage 1 
      

2 98250 23098 189240 102479 -189240 102479 KeeP 

0 98625 21654 
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APPENDIX E 

Ms Excel output for VDL commuter bus 

2016 

       

12 54520 61590 225000 -7071 -297240 -7071 Keep 

10 55935 87310 225000 -31375 -297240 -31375 Keep 

9 70851 86756 225000 -15905 -297240 -15905 Keep 

8 78309 58724 215280 19585 -287520 19585 Keep 

7 80795 50968 215280 29827 -287520 29827 Keep 

6 75202 47090 215280 28112 -287520 28112 Keep 

5 96954 39334 215280 57620 -287520 57620 Keep 

4 91982 24487 202800 67495 -275040 67495 Keep 

3 90118 24376 198120 65742 -270360 65742 Keep 

2 99440 24265 196560 75175 -268800 75175 Keep 

1 99440 24154 195000 75286 -267240 75286 Keep 

0 100062 23822 

     

 

 

 
      

        

 

Stage 10  2015 

     

11 55935 87310 215280 -38446 -216234 -38446 Keep 

9 70851 86756 215280 -47281 -216234 -47281 Keep 

8 78309 58724 215280 3680 -216234 3680 Keep 

7 80795 50968 215280 49412 -216234 49412 Keep 

6 75202 47090 215280 57939 -216234 57939 Keep 

5 96954 39334 215280 85732 -216234 85732 Keep 

4 91982 24487 202800 125115 -203754 125115 Keep 

3 90118 24376 198120 133237 -199074 133237 Keep 

2 99440 24265 196560 140917 -197514 140917 Keep 

1 99440 24154 195000 150460 -195954 150460 Keep 

0 100062 23822 

     

        

        

        

10 45370 50968 215280 -44045 -154587 -44045 Keep 

8 58421 40220 215280 -29080 -154587 -29080 Keep 

7 72094 35456 215280 40318 -154587 40318 Keep 

6 85146 30359 215280 104198 -154587 104198 Keep 
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5 91361 26592 215280 122708 -154587 122708 Keep 

4 92355 25484 202800 152603 -142107 152603 Keep 

3 97576 20498 195000 202193 -134307 202193 Keep 

2 99440 18836 193440 213841 -132747 213841 Keep 

1 102548 17174 193440 226290 -132747 226290 Keep 

0 106277 16509 

     

        

        

        

9 41641 40996 204360 -43400 -63294 -43400 Keep 

7 45991 39888 204360 -22977 -63294 -22977 Keep 

6 60286 29916 204360 70687 -63294 70687 Keep 

5 68987 29584 204360 143601 -63294 143601 Keep 

4 85767 29251 195000 179223 -53934 179223 Keep 

3 87632 26592 193440 213642 -52374 213642 Keep 

2 94592 24376 193440 272409 -52374 272409 Keep 

1 97203 23268 191880 287776 -50814 287776 Keep 

0 106277 21052 

     

        

8 33561 32132 202800 -41971 -2975 -2975 Replace 

6 47234 29916 202800 -5659 -2975 -2975 Replace 

5 75823 29362 202800 117148 -2975 117148 Keep 

4 89496 27700 199680 205397 145 205397 Keep 

3 90739 26592 195000 243370 4825 243370 Keep 

2 96954 23268 191880 287328 7945 287328 Keep 

1 105655 19944 190320 358120 9505 358120 Keep 

0 106898 18947 

     

        

7 44251 45428 199680 -4153 71486 71486 Replace 

5 50714 40996 199680 6743 71486 71486 Replace 

4 72094 38780 191880 150462 79286 150462 Keep 

3 78309 32797 191880 250909 79286 250909 Keep 

2 96954 26592 190320 313732 80846 313732 Keep 

1 100062 23268 190320 364122 80846 364122 Keep 

0 106898 19944 
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6 70105 34902 199680 106689 85638 106689 Keep 

4 84524 32021 196560 -123989 167562 167562 Replace 

3 90739 27478 195000 213723 169122 213723 Keep 

2 93722 23157 190320 321474 173802 321474 Keep 

1 95587 21384 188760 387935 175362 387935 Keep 

0 99191 20387 

     

        

        

5 83405 35456 195000 154639 114987 154639 Keep 

3 85021 32132 195000 220451 114987 220451 Keep 

2 86761 27700 190320 272784 119667 272784 Keep 

1 92604 21052 188760 393026 121227 393026 Keep 

0 98446 20498 
     

        

 

stage 3 

     

4 81665 34016 195000 162637 119524 162637 Keep 

2 84897 28697 190320 171187 124204 171187 Keep 

1 96333 21384 187200 194615 127324 194615 Keep 

0 98446 19944 

     

        

 

stage 2 

     

3 86389 21606 179400 227419 -62706 227419 Keep 

1 97824 21163 171600 247848 -54906 247848 Keep 

0 98197 20276 

     

        

        

        

 

stage 1 

     

2 97700 21274 177840 303845 -8121 303845 Keep 

0 98073 19944 
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APPENDIX F 

Ms Excel output for VDL Daf bus 

12 62950 93500 235600 -30550 -320537 -30550 keep 

10 65928 66912 212520 -984 -297457 -984 keep 

9 62238 63468 212520 -1230 -297457 -1230 keep 

8 97293 61377 212520 35916 -297457 35916 keep 

7 90282 59901 212520 30381 -297457 30381 keep 

6 86469 53628 212520 32841 -297457 32841 keep 

5 99015 48831 212520 50184 -297457 50184 keep 

4 101229 46986 200200 54243 -285137 54243 keep 

3 104673 38253 195580 66420 -280517 66420 keep 

2 106641 20418 194040 86223 -278977 86223 keep 

1 107010 19557 192500 87453 -277437 87453 keep 

0 107379 18942 

     

        

 
stage 8 

     

11 65928 66912 212520 -31534 -213504 -31534 keep 

9 62238 63468 212520 -2214 -213504 -2214 keep 

8 97293 61377 212520 34686 -213504 34686 keep 

7 90282 59901 212520 66297 -213504 66297 keep 

6 86469 53628 212520 63222 -213504 63222 keep 

5 99015 48831 212520 83025 -213504 83025 keep 

4 101229 46986 200200 104427 -201184 104427 keep 

3 104673 38253 195580 120663 -196564 120663 keep 

2 106641 20418 194040 152643 -195024 152643 keep 

1 107010 19557 192500 173676 -193484 173676 keep 

0 107379 18942 

     

        

        

 

stage 7 

     

        

9 32718 46986 201480 -45802 -114888 -45802 keep 

8 41451 44526 201480 -5289 -114888 -5289 keep 

7 44772 38868 201480 40590 -114888 40590 keep 

6 71094 36285 201480 101106 -114888 101106 keep 

5 76383 29643 201480 109962 -114888 109962 keep 
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4 81303 29397 189800 134931 -103208 134931 keep 

3 85854 24477 182500 165804 -95908 165804 keep 

2 92619 23247 181040 190035 -94448 190035 keep 

1 100860 17589 181040 235914 -94448 235914 keep 

0 104673 17589 
     

        

 

stage 8 

     

9 35916 46002 199120 -55888 -37867 -37867 replace 

7 48954 42312 199120 1353 -37867 1353 keep 

6 49200 36408 199120 53382 -37867 53382 keep 

5 55350 33702 199120 122754 -37867 122754 keep 

4 58917 29274 190000 139605 -28747 139605 keep 

3 60639 26445 188480 169125 -27227 169125 keep 

2 67281 26199 188480 206886 -27227 206886 keep 

1 75030 24231 186960 240834 -25707 240834 keep 

0 98031 23370 

     

        

 
stage 7 

     

8 53259 45633 198900 -30241 -33711 -30241 keep 

6 58548 37392 198900 22509 -33711 22509 keep 

5 61377 37269 198900 77490 -33711 77490 keep 

4 69003 29520 195840 162237 -30651 162237 keep 

3 76137 26445 191250 189297 -26061 189297 keep 

2 80565 24969 188190 224721 -23001 224721 keep 

1 96555 23739 186660 279702 -21471 279702 keep 

0 98523 22878 

     

        

        

 
stage 6 

     

7 41328 50799 194560 -39712 17861 17861 replace 

5 41451 49077 194560 14883 17861 17861 replace 

4 51783 47232 186960 82041 25461 82041 keep 

3 60147 42558 186960 179826 25461 179826 keep 

2 66420 36654 185440 219063 26981 219063 keep 

1 79335 34563 185440 269493 26981 269493 keep 

0 90774 23493 
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stage 5 

     

6 70479 38499 193280 49841 7087 49841 keep 

4 79704 38253 190260 59312 10107 59312 keep 

3 79827 36408 188750 125460 11617 125460 keep 

2 79950 30258 184220 229518 16147 229518 keep 

1 82779 22632 182710 279210 17657 279210 keep 

0 91020 21894 

     

        

 
stage 4 

     

5 80442 30996 191250 99287 10347 99287 keep 

3 83517 30873 191250 111956 10347 111956 keep 

2 84501 24600 186660 185361 14937 185361 keep 

1 90651 23739 185130 296430 16467 296430 keep 

0 100368 22755 

     

        

        

 
stage 3 

     

4 71586 37761 190000 133112 31892 133112 keep 

2 85854 36654 185440 161156 36452 161156 keep 

1 96309 26814 182400 254856 39492 254856 keep 

0 98892 24354 
     

        

 
stage 2 

     

3 92619 27060 189750 198671 -8694 198671 keep 

1 95940 24108 181500 232988 -444 232988 keep 

0 97170 23370 

     

        

 
stage 1 

     

2 97416 24354 189240 271733 -30544 271733 keep 

0 97662 23370 

     
 

 


