THERMAL PROPERTIES OF SELECTED SPECIES OF BANANA GROWN IN

GHANA

by

(HND AGRICULTURAL ENGINEERING)

A Thesis submitted to the Department of Agricultural Engineering,

Kwame Nkrumah University of Science and Technology

in partial fulfillment of the requirement for the degree of

MASTERS OF SCIENCE IN FOOD AND POSTHARVEST ENGINEERING COLLEGE OF ENGINEERING

AUGUST, 2011

DECLARATION

I hereby declare that this submission is my own work towards the Masters of Science and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text.

DEDICATION

This project work is dedicated to my lovely sons, Daniel and Newton.

ACKNOWLEDGEMENT

My greatest appreciation goes to my maker, God almighty for His protection, guidance and sustenance throughout my journey and studies at the University. TO GOD BE THE GLORY.

I wish to register my sincere heartfelt gratitude to my supervisors, Professor Ato Bart-Plange and Dr. Ahmad Addo for painstakingly reading through the entire write-up and their constructive advice, corrections and suggestions. Furthermore, I wish to thank Mr. Asare Vandyke of the Physics Department of KNUST for his precious time-off schedule in assisting me through the experimental data collection procedures. May the almighty God shower His unfolding blessings upon you all?

I also appreciate the effort of my friends, especially Mr. Frank Ansah, Mr. Stephen Nabila, Mr. Bismark Osei, Bro. Jonathan Ampaw and all colleagues of the master's programme (2009-2011) in the Department of Agricultural Engineering and the entire church members of Ebenezer Presbyterian Church, Osino for their prayers and support in diverse ways.

I appreciate the role played by Mrs. Mavis Ofori (my dearest wife), Mrs Patricia Bennuenya Asigbee, my parents and others whose names are not mentioned in this write-up for their financial and moral support. I am also indebted to all whose work inadvertently or advertently found itself in this write-up.

Finally, it is needless to say however, that any inadequacies or errors substantially or marginally that may be detected in this write-up all remains my responsibility.

ABSTRACT

Banana (*Musa acuminata*) is an important fruit eaten by most Ghanaians in raw state. The fruit has a very short life span after ripening, hence most are discarded during bumper harvest. Processing will increase its shelf-life and also add value to the product. In order to design equipment, facilities and determine the amount of heat to be added or removed from banana during processing, knowledge of thermal properties of these locally grown bananas of which specific heat, thermal conductivity and thermal diffusivity are vital. The selected varieties for the study were dried to moisture content (MC) ranging from 18.5 - 50.0% wb for gros michel and 34.4 - 65.9% wb for the medium cavendish. Specific heat was measured by the method of mixtures while the thermal conductivity was measured by the line heat source probe method. Thermal diffusivity was then calculated from the experimental results obtained from specific heat, thermal conductivity and bulk density. Bulk density was measured by the mass per unit change in volume of the sample. The bulk densities for both varieties of banana were found to be in a range of 1376.2 – 1130.0 kg. m^{-3} and 1233.5 -1065.3 kg. m^{-3} for the gros michel and medium cavendish varieties respectively, which was found to decrease in with increasing MC. The coefficients of determination were 94.1% and 96.4% respectively for the gros michel and medium cavendish. The specific heat for gros michel variety ranged from $1574 - 2506.8 \text{ Jkg}^{-1} \text{ °C}^{-1}$ and that of the medium cavendish variety was 1982.9 – 2970.6 J kg⁻¹ °C⁻¹. The coefficients of determination were 95.4% and 99.9% for the gros michel and medium cavendish varieties of banana respectively. The thermal conductivity of gros michel varied from $0.249 - 0.458 \text{Wm}^{-1} \text{ °C}^{-1}$ and that of the medium cavendish also varied from $0.317 - 0.543 \text{ Wm}^{-1} \text{ }^{\text{o}}\text{C}^{-1}$.

The LSD and coefficient of determination were 0.0091 and 0.0084; and 98.1% and 97.2% for gros michel and medium cavendish respectively. The thermal diffusivity range for gros michel was 1.15 $x10^{-7}-1.62 x10^{-7}m^2s^{-1}$ and that of the medium cavendish also ranged from $1.29 x10^{-7}-1.7x10^{-7}m^2s^{-1}$. Specific heat, thermal conductivity and thermal diffusivity were found to increase with increasing MC for both varieties. The effects of MC on all parameters studied were significant at $p \ge 0.05$. Regression equations of second order of polynomials were established which could be used to reasonably estimate the values of bulk density, specific heat, thermal conductivity and thermal diffusivity respectively.

Keywords: Gros michel 'asante kwadu', Medium cavendish 'broni kwadu', thermal conductivity, specific heat, thermal diffusivity, bulk density, and moisture content.

TABLE OF CONTENT

COVER PAGE	i
DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
TABLE OF CONTENT	vi
LIST OF FIGURES	xi
LIST OF TABLES	xii
NOTATIONS	xiii
CHAPTER ONE	
1.0 INTRODUCTION	1
1.1 Background of the Study	1
1.2 Statement of the Problem	3
1.3 Aim and Objectives of the Study	4
1.4 Significance of the Study	6
CHAPTER TWO	
2.0 LITERATURE REVIEW	7
2.1Types of Banana Species	7
2.2 Economic Values of Banana	9

2.3 Nutritional and Medicinal Composition of Banana	12
2.3.1 Nutritional Properties of Banana	12
2.3.2 Medicinal Properties of Banana	12
2.4 Forms of Processing Banana	13
2.4.1 Processing of Banana into Different Varieties of Food	13
2.4.2 Processing of Banana into Animal Feed	15
2.4.3 Processing of Banana Bi-Products	15
2.5 Drying	16
2.6 Mode of Heat Transfer in Food Products	18
2.6.1 Conduction	18
2.6.2 Convection	18
2.7 Thermal Properties of Food Materials	19
2.7.1 Theoretical Background of Specific Heat	21
2.7.2 Theoretical Background of Thermal Conductivity	24
2.7.2.1 Methods used for measuring Thermal Conductivity	25
2.7.2.1a Steady -State method	25
2.7.2.1b Non- Steady Method	26
2.7.2.2 Forms of Measuring Non-Steady Method (Transient Method)	26
2.7.2.2a Transient Plane Source Method (TPSM)	26
2.7.2.2b Modified Transient Plane Source (MTPS) Method	27

2.7.2.2c Transient Line Source Method	28
2.7.2.3 Thermal Conductivity Equations	28
2.7.3 Theoretical Background of Thermal Diffusivity	32
2.8 Moisture Content	34
2.8.1 Wet Basis	35
2.8.2 Dry Basis	36
CHAPTER THREE	
3.0 MATERIALS METHODS	38
3.1 Materials	38
3.2 Sample Preparation	39
3.3 Experimental Procedure for Determination of Specific Heat	41
3.4 Experimental Procedure for Determination of Thermal Conductivity	43
3.5 Determination of Thermal Diffusivity	45
3.6 Determination of Bulk Density	45
3.7 Proximate Composition of Banana	46
3.8 Statistical Analysis	47

CHAPTER FOUR

4.0 RESULTS AND DISCUSSIONS	48
4.1 Bulk Density	48
4.2 Specific Heat	50
4.3 Thermal Conductivity	53
4.4 Thermal Diffusivity	56
CHAPTER FIVE	
5.0 CONCLUSIONS AND RECOMMENDATIONS	59
5.1 Conclusions	59
5.2 Recommendations	60
REFERENCES	61
APPENDIX	69

LIST OF FIGURES

Figure 1	Tiers of cavendish banana	8
Figure 2	Bunches of yellow banana	8
Figure 3	A bunch of pink banana	8
Figure 4	Home-made banana dryer with banana figs	17
Figure 5	Drying curve of gros michel banana	40
Figure 6	Drying curve of medium cavendish	41
Figure 7	Photograph of specific heat experiment set-up	43
Figure 8	Photograph of thermal conductivity experiment set-up	45
Figure 9	Variation in bulk density of banana at different moisture content	49
Figure 10	Variation in specific heat of banana at different moisture content	52
Figure 11	Variation in thermal conductivity of banana at different moisture content	53
Figure 12	Variation in thermal diffusivity of banana at different moisture content	56

LIST OF TABLES

Table 1	Proximate compositions of banana varieties	46
Table 2	Variation in bulk density of gros michel banana at different MC levels	71
Table 3	Statistical analysis (ANOVA) of bulk density for gros michel banana	71
Table 4	Variation in bulk density of medium cavendish banana at different MC levels	72
Table 5	Statistical analysis (ANOVA) of bulk density for medium cavendish banana	72
Table 6	Variation in specific heat of gros michel banana at different MC levels	73
Table 7	Statistical analysis (ANOVA) of specific heat for gros michel banana	73
Table 8	Variation in specific heat of medium cavendish banana at different MC levels	74
Table 9	Statistical analysis (ANOVA) of specific heat for medium cavendish banana	74
Table 10	Variation in thermal conductivity of gros michel banana at different MC levels	75
Table 11	Statistical analysis (ANOVA) of thermal conductivity for gros michel banana	75
Table 12	Variation in thermal conductivity of medium cavendish banana at different MC levels	s 76
Table 13	Statistical analysis (ANOVA) of thermal conductivity for medium cavendish banana	76
Table 14	Variation in thermal diffusivity of gros michel banana at different MC levels	77
Table 15	Statistical analysis (ANOVA) of thermal diffusivity for gros michel banana	77
Table 16	Variation in thermal diffusivity of medium cavendish banana at different MC levels	78
Table 17	Statistical analysis (ANOVA) of thermal diffusivity for medium cavendish banana	78

NOTATIONS

AOAC	Association of Official Analytical Chemists
C_b	Specific heat of banana (J/kg °C)
C_c	Specific heat of calorimeter (J/kg °C)
C_{f}	Specific heat of aluminium foil (J/kg °C)
C_p	Specific heat (J/kg °C)
C_{gm}	Specific heat gros michel (J/kg °C)
C_{mc}	Specific of medium cavendish (J/kg °C)
C_w	Specific heat of water (J/kg °C)
db	Dry basis
Κ	Thermal conductivity (W/ m °C)
K_{gm}	Thermal conductivity of gros Michel (W/ m °C)
K_{mc}	Thermal conductivity of medium Cavendish (W/ m $^{\circ}$ C)
M_b	Mass of banana (kg)
M_{cw}	Mass of calorimeter and water (kg)
M_{hw}	Mass of hot water (kg)
14	
M_f	Mass of aluminium foil (kg)
M_f M_w	Mass of aluminium foil (kg) Mass of water (kg)
M_f M_w T_e	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C)
$egin{array}{c} M_f & & \ M_w & & \ T_e & & \ T_f & & \ \end{array}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C)
$egin{array}{ccc} M_f & & \ M_w & & \ T_e & & \ T_f & & \ T_i & & \end{array}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C)
$egin{array}{ccc} M_f & & \ M_w & & \ T_e & & \ T_f & & \ T_i & & \ a & \end{array}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C) Thermal diffusivity (m ² /s)
M_f M_w T_e T_f T_i a a_{gm}	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C) Thermal diffusivity (m ² /s) Thermal diffusivity of gros michel (m ² /s)
$egin{array}{cccc} M_f & & & \ M_w & & \ T_e & & \ T_f & & \ T_i & & \ a & & \ a_{gm} & & \ a_{mc} & & \ \end{array}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C) Thermal diffusivity (m ² /s) Thermal diffusivity of gros michel (m ² /s) Thermal diffusivity medium canvendish (m ² /s)
$egin{array}{cccc} M_f & & & \ M_w & & \ T_e & & \ T_f & & \ T_i & & \ a & & \ a_{gm} & & \ a_{mc} & & \ ho_{gm} & & \ \end{array}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C) Thermal diffusivity (m ² /s) Thermal diffusivity of gros michel (m ² /s) Thermal diffusivity medium canvendish (m ² /s) Density of gros michel (kg/m ³)
M_f M_w T_e T_f T_i a a_{gm} a_{mc} $ ho_{gm}$ $ ho_{mc}$	Mass of aluminium foil (kg) Mass of water (kg) Equilibrium temperature (°C) Final temperature (°C) Initial temperature (°C) Thermal diffusivity (m ² /s) Thermal diffusivity of gros michel (m ² /s) Thermal diffusivity medium canvendish (m ² /s) Density of gros michel (kg/m ³) Density of medium cavendish (kg/m ³)

APPENDIX

Table 2. Variation in bulk density of gros michel banana at different moisture content

levels.

Replication /						
	Ι	II	III	IV	Total	Mean
Treatment (MC % wb)		12		ст		
50.0	1129.5	1132.5	1128.0	1130.0	4520.0	1130.0
39.7	1194.2	1195.8	1195.0	1192.6	4777.6	1194.4
24.5	1255.4	1260.0	1257.0	1256.4	5028.8	1257.2
18.5	1377.5	1372.4	1378.0	1377.2	5504.8	1376.2

Anova: Single Factor

SUMMARY	-		2 V	
Groups	Count	Sum	Average	Variance
Row 1	4	4520	1130	3.5
Row 2	4	4777.6	1194.4	1.866667
Row 3	4	5028.8	1257.2	3.92
Row 4	4	5505.1	1376.275	6.7825

ANOVA						
Source of		~	SAI	NE NO	>	
Variation	SS	df	MS	F	P-value	F crit
Treatment	132179.8	3	44059.93	10967.57**	6.89E-21	3.490295
Error	48.2075	12	4.017292			

Table 3.	Statistical analysis	(ANOVA) of bulk	density for groat	s michel banana

15

** Highly significant at P ≥ 0.05

132228

Total

LSD (3.09)

Replication /							
Treatment (MC %wb)	Ι	Π	III	IV	Total	Mean	
65.9	1068.0	1066.2	1062.4	1064.6	4261.3	1065.3	
59.3	1152.4	1155.9	1158.8	1155.3	4622.4	1155.6	
45.3	1190.0	1194.0	1197.0	1199.0	4780.0	1195.0	
34.4	1229.5	1240.0	1234.0	1230.5	4934.0	1233.5	
			1 CM	1			

Table 4. Variation in bulk density of medium cavendish banana at different moisture content levels.

ctor					
Count	Sum	Average	Variance	$ \leq $	
4	4261.2	1065.3	5.666667	2	
4	4622.4	1155.6	6.886667		
4	4780	1195	15.33333		
4	4934	1233.5	22.5		
3		\leq			
	27	2	5	85	
SS	df	MS	FO	P-value	F crit
62370.44	3	20790.15	1650.448**	5.85E-16	3.490295
151.16	12	12.59667			
62521.6	15				
	tor <u>Count</u> 4 4 4 4 4 4 4 5 62370.44 151.16 62521.6	tor <u>Count</u> 4 4261.2 4 4622.4 4 4622.4 4 4780 4 4934 <u>SS</u> <u>df</u> 62370.44 3 151.16 12	tor <u>Count</u> <u>Sum</u> <u>Average</u> 4 4261.2 1065.3 4 4622.4 1155.6 4 4780 1195 4 4934 1233.5 <u>SS</u> <u>df</u> <u>MS</u> 62370.44 3 20790.15 151.16 12 12.59667 62521.6 15	tor <u>Count</u> <u>Sum</u> <u>Average</u> <u>Variance</u> 4 4261.2 1065.3 5.666667 4 4622.4 1155.6 6.886667 4 4780 1195 15.33333 4 4934 1233.5 22.5 <u>SS</u> <u>df</u> <u>MS</u> <u>F</u> 62370.44 3 20790.15 1650.448** 151.16 12 12.59667	tor Count Sum Average Variance 4 4261.2 1065.3 5.666667 4 4622.4 1155.6 6.886667 4 4780 1195 15.33333 4 4934 1233.5 22.5 Ss df Ms F P-value 62370.44 3 20790.15 1650.448** 5.85E-16 151.16 12 12.59667 15 1650.448** 5.85E-16

** Highly significant at $P \ge 0.05$ I

LSD (5.47)

Table 6. Variation in specific heat of gros michel banana at different moisture content

levels.

Replication /		Specific Heat (J/kg °C)							
Treatment (MC %wb)	Ι	II	III	IV	Total	Mean			
50.0	2510.0	2525.0	2493.1	2499.1	10027.2	2506.8			
39.7	2158.0	2149.5	2150.5	2146.8	8604.8	2151.2			
24.5	1698.0	1750.0	1786.0	1782.0	1754.0	1754.0			
18.5	1582.0	1566.0	1572.0	1576.0	1574.0	1574.0			

Anova: Single Factor

SUMMARY			- 5	-21
Groups	Count	Sum	Average	Variance
Row 1	4	10027.2	2506.8	196.1533
Row 2	4	8604.8	2151.2	22.99333
Row 3	4	7016	1754	1653.333
Row 4	4	6296	1574	45.33333

ANOVA	FR	_			13	/
Source of	No.	0			<u> </u>	
Variation	SS	df	MS	F	value	F crit
Treatment	2086603	3	695534.2	1450.682**	1.27E-15	3.490295
Error	5753.44	12	479.4533			
Total	2092356	15				
Table 7 Statist	ical analysis) of specifi	a boot for are	a michal	hanana

Table 7. Statistical analysis (ANOVA) of specific heat for gros michel banana

** Highly significant at $P \ge 0.05$

LSD (33.74)

Table 8. Variation in specific heat of medium cavendish banana at different moisture

Replication /						
	Ι	II	III	IV	Total	Mean
Treatment (MC % wb)						
65.9	2950.9	2965.7	3002.0	2963.8	11882.4	2970.6
59.3	2801.2	2805.8	2850.0	2785.0	11242.0	2810.5
45.3	2345.3	2300.5	2360.0	2375.0	9380.8	2345.2
34.4	1980.1	2001.0	1975.0	1975.5	7931.6	1982.9

Anova: Single Factor

SUMMARY	6		EIK	P(Z	
Groups	Count	Sum	Average	Variance	
Row 1	4	11882.4	2970.6	481.4333	
Row 2	4	11242	2810.5	773.0267	
Row 3	4	9380.8	2345.2	1035.06	
Row 4	4	7931.6	1982.9	150.8733	
	3				
ANOVA	19	1p			5-1
Source of		2 A		28	<i>P</i> -

Source of					1	
 Variation	SS	df	MS	F	value	F crit
 Treatment	2424996	3	808331.9	1324.921**	2.18E-15	3.490295
Error	7321.18	12	610.0983			
Total	2432317	15				

Table 9. Statistical analysis (ANOVA) of specific heat for medium cavendish banana

** Highly significant at $P \ge 0.05$

LSD (38.06)

C	ontent levels.					
Replication /		Therm	nal conductivit	y (W/m °C)		
Treatment (MC %wb)	Ι	Π	III	IV	Total	Mean

0.461

0.358

0.275

0.251

0.458

0.356

0.277

0.257

1.832

1.448

1.108

0.996

0.458

0.362

0.277

0.249

0.448

0.368

0.279

0.248

Table 10. Variation in thermal conductivity of gros michel banana at different moisture

0.465

0.366

0.277

0.240

50.0

39.7

24.5

18.5

Anova: Single Factor

SUMMARY		-	1-2	100
Groups	Count	Sum	Average	Variance
Row 1	4	1.832	0.458	5.27E-05
Row 2	4	1.448	0.362	3.47E-05
Row 3	4	1.108	0.277	2.67E-06
Row 4	4	0.996	0.249	5E-05

ANOVA	1		2		E)	
Source of	10			Jor /	<i>P</i> -	
Variation	SS	df	MS	F	value	F crit
Treatment	0.106436	3	0.035479	1013.676**	1.08E-14	3.490295
Error	0.00042	12	3.5E-05			
Total	0.106856	15				

Table 11. Statistical analysis (ANOVA) of thermal conductivity for gros michel

banana

** Highly significant at $P \ge 0.05$ LSD (0.0091)

Table 12. Variation in thermal conductivity of medium cavendish banana at different

Replication /						
Treatment (MC %wb)	Ι	П	III	IV	Total	Mean
65.9	0.535	0.539	0.546	0.552	2.172	0.543
59.3	0.457	0.458	0.460	0.465	1.840	0.460
45.3	0.380	0.382	0.374	0.376	1.512	0.378
34.4	0.314	0.324	0.320	0.310	1.268	0.317

moisture content levels.

Anova: Single Factor

SUMMARY				
Groups	Count	Sum	Average	Variance
Row 1	4	2.172	0.543	5.67E-05
Row 2	4	1.84	0.460	1.27E-05
Row 3	4	1.512	0.378	1.33E-05
Row 4	4	1.268	0.317	3.87E-05

ANOVA	131					\$
Source of Variation	SS	df	MS	F	P-value	F crit
Treatment	0.116084	3	0.038695	1275.648**	2.73E-15	3.490295
Error	0.000364	12	3.03E-05			
Total	0.116448	15				

 Total
 0.116448
 15

 Table 13. Statistical analysis (ANOVA) of thermal conductivity for medium cavendish banana

** Highly significant at $P \ge 0.05$

LSD (0.0084)

Table 14. Variation in thermal of	diffusivity of gros m	iichel banana at dif	ferent moisture
content levels.			

Replication /						
	Ι	Π	III	IV	Total	Mean
Treatment (MC % wb)						
50.0	1.64 x10 ⁻⁷	1.57 x10 ⁻⁷	1.64 x10 ⁻⁷	1.62 x10 ⁻⁷	6.47 x10 ⁻⁷	$1.62 \text{ x} 10^{-7}$
39.7	1.30 x10 ⁻⁷	1.32 x10 ⁻⁷	1.34 x10 ⁻⁷	1.32 x10 ⁻⁷	5.28 x10 ⁻⁷	1.32 x10 ⁻⁷
24.5	1.30 x10 ⁻⁷	1.27 x10 ⁻⁷	1.22 x10 ⁻⁷	1.26 x10 ⁻⁷	5.05 x10 ⁻⁷	1.26 x10 ⁻⁷
18.5	1.10 x10 ⁻⁷	1.15 x10 ⁻⁷	1.16 x10 ⁻⁷	1.18 x10 ⁻⁷	4.59 x10 ⁻⁷	1.15 x10 ⁻⁷

Anova: Single Factor

SUMMARY			E	VB		
Groups	Count	Sum	Average	Variance		
Row 1	4	6.47	1.6175	0.001092		
Row 2	4	5.28	1.32	0.000267		
Row 3	4	5.05	1.2625	0.001092		
Row 4	4	4.59	1.1475	0.001158		
ANOVA	34				-/-	2
Source of	1	5	N		an	
Variation	SS	df	MS	F	P-value	F crit
Treatment	0.481719	3	0.160573	178.0023**	3.27E-10	3.490295
Error	0.010825	12	0.000902			

Total 0.492544 15

Table 15. Statistical analysis (ANOVA) of thermal diffusivity for gros michel

banana

** Highly significant at $P \ge 0.05$ LSD = 0.0463

Table 16. Variation in thermal diffusivity at of medium cavendish banana at different moisture content levels.

Replication /						
	Ι	II	III	IV	Total	Mean
Treatment (MC % wb)						
65.9	1.70 x10 ⁻⁷	1.71 x10 ⁻⁷	1.70 x10 ⁻⁷	1.75 x10 ⁻⁷	6.86 x10 ⁻⁷	1.70 x10 ⁻⁷
59.3	1.42 x10 ⁻⁷	1.41 x10 ⁻⁷	1.39 x10 ⁻⁷	1.44 x10 ⁻⁷	5.66 x10 ⁻⁷	1.42 x10 ⁻⁷
45.3	1.36 x10 ⁻⁷	1.39 x10 ⁻⁷	1.32 x10 ⁻⁷	1.32 x10 ⁻⁷	5.32 x10 ⁻⁷	1.35 x10 ⁻⁷
34.4	1.29 x10 ⁻⁷	1.29 x10 ⁻⁷	1.29 x10 ⁻⁷	1.29 x10 ⁻⁷	5.18 x10 ⁻⁷	1.29 x10 ⁻⁷

Anova: Single Factor

SUMMARY				
Groups	C <mark>ount</mark>	Sum	Average	Variance
Row 1	4	6.85	1.7125	0.000625
Row 2	4	5.66	1.415	0.000433
Row 3	4	5.39	1.3475	0.001158
Row 4	4	5.16	1.29	0

ANOVA	121					3
Source of	175	1	-		-	9
Variation	SS	df	MS	F	P-value	F crit
Treatment	0.423725	3	0.141242	254.8722**	3.96E-11	3.490295
Error	0.00665	12	0.000554			
Total	0.430375	15				

 Table 17. Statistical analysis (ANOVA) of thermal diffusivity for medium cavendish

banana

** Highly significant at $P \ge 0.05$ LSD = (0.0363)

ITEM	Specific heat (J kg ⁻¹ °C ⁻¹)
Water	4200.0
Aluminium fold	898.6
Copper calorimeter	389.7

