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Abstract

Solution to four-body version of the boundary corrected first Born (CB1-4B) ap-

proximation has been solved by Dževad Belkić. We consider symmetric double-charge

exchange in fast collisions of bare nuclei with helium-like atomic systems. We par-

ticularly are interested in the calculation of the four-body version of the boundary

corrected second Born (CB2-4B) approximation with full account of the long-range

Coulomb effects arising from the relative motion of the scattering aggregates. Using

the formalism of Perturbation Theory in Quantum Mechanics, we employ Lippman-

Schwinger Equation with free Green Function. We write the transition matrix ele-

ments for the second order contribution as a set of nine integrals. This makes use of

unperturbed wavefunctions from the entrance and exit channels. We did not consider

calculating the matrix elements.
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Chapter 1

Introduction

1.1 Background

It is important for me to mention here that, the review of works in the area of

Four-body methods for high-energy ion-atom collision techniques has a lucid write up

by Belkić et al. [1], and this accounts for all the inputs made to the field.

Determination of the interactive dynamics of atomic systems is still among the

most fundamental challenges in physics. Since the interaction potentials in atomic

systems are exactly known, any discrepancy between experimental measurements and

theories can be attributed to inappropriate theoretical models for describing many-

particle systems or to unreliable experimental techniques. One of the central questions

which arises in scattering problems involving many-electron systems concerns the in-

fluence of the electron-electron interaction on the overall dynamics in these collisional

phenomena. Since the helium atom (or a heliumlike ion) is the simplest many-electron

target where one can assess the importance of electronic correlations, its investiga-

tion has attracted most attention from both the theoretical and experimental sides.

Collisional processes in which two nuclei and two electrons take part represent pure

four-body problems [2][3][4][5]. A basic motivation for developing four body theo-
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ries to treat ion (atom)-atom collisions is to more thoroughly understand the role of

the electron-electron correlation and phase coherences in such important processes.

In atomic physics, electronic correlation effects originate from pure Coulombic in-

teractions between active electrons. Phase coherences are interference patterns for

competing mechanisms in four-body collisional transitions.

In ion-atom collisions, there are two kinds of electronic correlations: static and

dynamic. Static correlations are built into multi electron bound-state wave functions

without any reference to collisions. Quantum-mechanical bound states are prepared

without the presence of an incident beam. Several methods for obtaining bound-state

wave functions and the corresponding eigenenergies for two-electron atomic systems

have recently been reviewed [6]. The dynamic correlations describe interactions be-

tween two electrons in the exit channel, if we deal with ZP − (ZT ; e1, e2)i collisions,

or in the entrance channel, if (ZP , e1)i1 − (ZT , e2)i2 process is considered. The elec-

tronic interactions alone are capable of causing a transition of the entire collisional

system from an initial to a final state. Such a dynamical effect automatically pos-

sesses both radial and angular correlations through the inclusion of the interelectron

Coulomb potential 1
r12

in the final interaction potential Vf appearing in the post form

of the transition amplitude T+
if , if the ZP − (ZT ; e1, e2)i collisions are studied. The

same potential 1
r12

appears in the initial perturbation potential Vi of the prior form

of the transition amplitude T−if , if the (ZP , e1)i1−(ZT , e2)i2 collisions are investigated.

The majority of the theoretical studies that have considered the ZP − (ZT ; e1, e2)i

collisions employed the independent-particle model (IPM) ([7][8][9][10][11][12][13][14]

[15][16][17][18][19][20][21][22][23][24][25][26][27] [28][29][30][31][32][33]). The basic fea-

ture of all these previous investigations within the IPM and its variants is the preser-

vation of a pure three-body formalism, despite the fact that the studied four-body

problems include two active electrons. Within the IPM itself, there are many ways

2



of approximating the wave function of a heliumlike atomic system. An approach in

which an active electron of a two electron atom or ion moves in an effective potential

generated by the other nucleus and the passive electron has frequently been used.

The term passive electrons is used here in the sense that their interactions with the

active electrons do not contribute to the collisional process. Thus, in the IPM, the

initial four-body problem is effectively reduced to a three-body problem. The main

drawback of the IPM is that the dynamic correlation effect during the collisional phe-

nomenon are completely ignored from the outset.

Hence, if we are to adequately assess the role of electron-electron correlations,

we must deal with four-body problem from the beginning. Guided by this argu-

ment, various quatum-mechanical four-body methods have been proposed to study

one-electron and two-electron transitions in scattering of completely stripped projec-

tiles on heliumlike atomic systems or in collisions between two hydrogenlike atoms or

ions. In addition to four-body theories, the role of electronic correlations in energetic

ion-atom collisions has also been investigated elswhere [25][26][24][34].

The first formulation and implementation of the four-body continuum distorted-

wave (CDW-4B) method for double-electron capture was carried out by [4][5]. The

CDW-4B method obeys the asymptotic convergence criteria of [35][36] for Coulomb

potentials. These initial computations of [4][5] on the formation of H− in the H+ − He

collisions yielded total cross sections that were in excellent agreement with available

experimental data. Subsequently, the CDW-4B method was applied to other colli-

sional systems [37][38][39][40][41], including double capture into singly and doubly ex-

cited final states by multiply charged projectile ions. Further, an adequate description

of simultaneous transfer and ionization has been devised using the CDW-4B method

[2][3][42][43]. Studies of transfer ionization by means of the CDW-4B method indicate

that dynamic electronic correlations in perturbation potentials are more important
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than the static ones. The substantial improvement of the CDW-4B method over, e.g.,

the IPM has been attributed solely to the role of dynamic electron correlation effects.

Throughout this review, emphasis is placed on the adequate solutions of the

asymptotic convergence problem [36][44] by requiring not only the correct asymp-

totic behaviours of all the scattering wave functions, but also their proper connec-

tions with the corresponding perturbation interactions. This strategy proves to be

simultaneously fundamental (consistency of theory by reference to the first princi-

ples of physics), and practical (stringent scrutiny of theory through its systematic

verification against experiment). A striking example which illustrates this issue is a

four-body problem with single-electrom detachment from H− by H+. For this prob-

lem, the eikonal Coulomb-Born method has been proposed by [45] with the correct

asymptotic behaviours of the initial and final scattering states. Yet, the ensuing total

cross sections of this method overestimates the corresponding experimental data by

some 2-3 orders of magnitude at all impact energies. As shown by [2][3], the reason for

this discrepancy was the lack of the proper link between the initial scattering state

and the perturbation potential in the entrance channel. When this link has prop-

erly been established for the same collisional problem, the modified Coulomb-Born

method emerged [2][3], exhibiting excellent agreement with the experimental data at

all impact energies. This latter approximation is a simplified version of the CDW

method for ionization proposed by [46], who originally derived the scattering wave

for the final state as the product of three full Coulomb functions (later called the

C3 function) to satisfy the correct boundary condition for three charged particles in

the exit channel. This C3 scattering wave function has repeatedly been rediscovered

in subsequent studies [47][48]. Throughout the years, and especially more recently

[49][50], it was conclusively established that the most successful theory for heavy-

particle ion-atom ionization at high energies is the CDW method of [46] regarding

both differential and total cross sections. Of late, the CDW method has been ex-
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ported to neighboring research fields, such as medical physics for a more adequate

description of the stopping power of multiply charged ions passing through matter,

as encountered in applications to hadron radiotherapy [51].

The three-body reformulated impulse approximation (RIA-3B) of [52][53], after

resolving a longstanding problem on the inadequacy of the corresponding impulse

approximation (IA) for the total cross sections in the H+ − H charge exchange, has

been extended to four-body collisions. Cross sections of the four-body reformulated

impulse approximation (RIA-4B) of Belkić for transfer ionization (TI) in the H+ − He

collisions have been reported in a joint theoretical and experimental study [54]. The

total cross sections of the RIA-4B for the TI process have indicated a trend of the

υ−11 behavior at sufficiently large values of the impact velocity υ. This asymptotic be-

havior, as the quantum-mechanical counterpart of the corresponding classical double

scattering [55], has been confirmed on the same collision by two subsequent measure-

ments [56][57].

As a further exploration of the CDW-4B method, simultaneous transfer and ex-

citation (TE) have also been the subject of studies [58][59][60][61][62]. This process

takes place when a target electron is captured by a non bare projectile, while the

initial electronic structure of the latter is excited at the same time. For the process of

TE, where a doubly excited autoionizing state is formed on the projectile, two modes

have been identified and termed the resonant (RTE) and the nonresonant transfer

excitation (NTE). In the RTE, excitation of the projectile is due to the dielectronic

interaction between the projectile electron and the target electron, which is captured.

In the NTE, a target electron is transferred and excitation of the projectile comes

from the interaction with the rest of the target. In addition to these two-electron

transitions, the CDW-4B method has also been applied to single-electron capture

[63][64][43] in a number of processes, such as the H+ − He,H+ − Li+,He2+ − He, and
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Li3+ − He collisions. In the CDW-4B method, the electronic continuum intermediate

states are included in both channels through the full Coulomb waves. Using this

method, we emphasize the pivotal role of the dynamic electron correlations in dif-

ferential cross sections. In particular, the CDW-4B method predicts two competing

double scattering mechanisms leading to a double structure with the Thomas peak

of the 1st (P − e − T ) and 2nd (P − e − e) kind, where the former (standard) is a

purely high-energy occurrence, whereas the latter novel systematically persists at all

impact energies [65][66].

In the boundary-corrected four-body first Born approximation (CB1-4B) , pure

electronic continuum intermediate states are not taken into account. Here the scat-

tering state vectors are given by the product of unperturbed channel states and log-

arithmic distortion phase factors due to the Coulomb long-range remainders of the

perturbation potentials. The CB1-4B method was initially formulated and applied

to double-electron capture by [67][68]. This method has subsequently been used for

describing single-charge exchange in energetic collisions between two hydrogenlike

atoms or ions [69][70].

The four-body boundary-corrected continuum intermediate state (BCIS-4B) method

of [71] and the four-body Born distorted-wave (BDW-4B) method of [37] have been

introduced and used first for investigation of double-electron and then single-electron

capture. These two methods, with the correct boundary conditions, can be applied

and extended to any number of colliding particles, so that the more generic acronym

BCIS and BDW can be used. Both methods employ the scattering wave functions

from the CDW method in one of the two channels, in either the entrance or exit chan-

nel, for the initial or final state, depending on whether the prior or post form of the

transition amplitudes is used. For the other channel, the BCIS and BDW methods

use the corresponding wave functions of the CB1 method. As a result, the distort-
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ing potentials that cause the transitions from the initial to final states of the system

are different in the BCIS and BDW methods. These latter potentials are the usual

electrostatic Coulomb interactions in the BCIS method (shared by the CB1 method)

, whereas they are the operator-type potentials ~∇ · ~∇ in the BDW method (shared

by the CDW method). Thus, if one wishes to make these remarks more transparent,

the original acronym BDW introduced by [37], and subsequently used by [72] and

[73], could be relabeled as CDW-CB1. In particular, the notations for the post and

prior BDW or, equivalently, CDW-CB1 can further be differentiated by highlighting

the use of the boundary-corrected first-order Born initial and final states (BIS and

BFS). This has led to yet another equivalent set of acronyms, CDW-BIS and CDW-

BFS [74][75] for the post and prior versions of the BDW method of [37]. Using the

BCIS and BDW methods, [71][37] has shown that double-charge exchange is sensitive

to the inclusion of long-range Coulomb effects through electronic continuum states.

These latter states play an important role even at those incident energies at which

the Thomas double scattering is not apparent. By means of the mentioned hybrid

four-body approximations, one can study various mechanisms that can produce the

Thomas peaks in the differential cross sections. Even for single-charge exchange with

heliumlike targets, these methods deal explicitly with two active electrons from the

onset and, therefore, they preserve the four-body nature of the original problem. The

post and prior BDW methods (or, equivalently, the CDW-BIS and CDW-BFS meth-

ods, respectively) have been employed to compute both differential and total cross

sections for single-electron capture in collisions between bare projectiles and helium-

like atoms or ions [72][74][75][73].

Additionally, there are other hybrid-type approximations with the correct bound-

ary conditions known as the continuum distorted wave eikonal initial state (CDW-

EIS) and the continuum distorted wave eikonal final state (CDW-EFS) methods

[76][77][78][79]. The CDW-EIS method was originally introduced by [76] for ioniza-
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tion of hydrogenlike atomic systems by nuclei treated as a pure three-body problem.

In the work of [78], the CDW-EIS and CDW-EFS methods for single-electron capture

from a two-electron target are reduced to a one-electron process. Here, the active cap-

tured electron was described by a self-consistent field orbital. The other noncaptured

electron is passive, since it is considered as frozen in its initial state during the colli-

sion. Therefore, such versions of the CDW-EIS and CDW-EFS methods [77][78][79]

belong to the category of three-body approximations. As to pure four-body collisions

with two active electrons, the four-body continuum distorted wave eikonal initial

state (CDW-EIS-4B) method has also been introduced and applied to double capture

from helium by alpha particles [41], but without any success. The CDW-EIS and

CDW-EFS methods differ from the CDW-BIS and the CDW-BFS methods, since

EIS and EFS are different from BIS and BFS, respectively. Specifically, the differ-

ence is in the independent variables in asymptotic states {EIS, EFS} and {BIS, BFS}.

The dominant feature of most of the quoted quantum-mechanical four-body ap-

proximations is that they show systematic agreement with the corresponding experi-

mental data at intermediate and high impact energies. This is striking in view of the

fact that the impact parameter versions of the investigated approximations often fail

(and do so dramatically in some cases) in their attempts to reproduce experimental

data. The first indication on the breakdown of the IPM for double-electron capture

has been given by [4]. The clear implication of this is that dynamic correlation effects

are of critical importance for two-electron transitions. One of the tasks is to highlight

this latter feature and to assess its overall significance for energetic ion-atom collisions

with two actively participating electrons. The major goal is to critically evaluate the

efficiency and overall utility of the leading methods within the realm of four-body

quantum-mechanical scattering theory. For validation purposes, we shall formulate

the necessary theoretical criteria that adequate four-body methods are expected to

satisfy. Intermediate and high nonrelativistic energies permit a consistent extension of
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rigorous pure three-body distorted-wave methods to their pure four-body counterparts

without any significant additional approximation. This represents an excellent oppor-

tunity to estimate the relevance of the well-known asymptotic convergence problem

from formal scattering theory for Coulomb potentials when more than three particles

are actively involved. Such an opportunity will presently be seized by building on the

past successful experience with the similar challenges encountered in simpler three-

body ion-atom rearrangement collisions for which, [44] have conclusively established

the critical importance of the correct Coulomb boundary conditions in the most gen-

eral case with the exact eikonal transition amplitude. Subsequent detailed numerical

computations, with dramatic improvements relative to experimental data, expecially

for the boundary corrected three-body first-order approximation of this exact eikonal

T matrix [80][81][82][83][84], confirmed the validity of this theoretical concept, which

was then widely accepted and reviewed in several articles and books on the subject

[85][86][87][88][89][65][66][51].

1.2 Problem

We consider a projectile nucleus (bare nucleus), ZP , approaching a target helium-like

atomic sytem with nucleus ZT from inifity. The occurence of scattering ensures that

the projectile nucleus capture the two orbiting electrons and leaves the target nucleus

bare. In this senario, we are required to formulate a theory that account for coulombic

interaction at great distances between the projectile and the target nuclei. This occur

in the entrance and the exit channels. Of great importance is the behaviour of the

system when the projectile nucleus, ZP , flies close to the target nucleus ZT . Figure

2.1 and Figure 2.2 inlustrate this description.
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1.3 Objectives

In this work we attempt to correctly

1. define boundary conditions of the unperturbed wavefunction in both the en-

trance and exit channels.

2. Solve the resulting Schrödinger equation governing the unperturbed states an-

alytically.

3. Write the matrix elements of the second order contribution to the Second Born

Approximation.

1.4 Methodology

The problem at hand will be divided in two parts, the entrance and exit channels. In

the entrance channel, we write explicitly the Hamiltonian with the correct boundary

conditions accounted for via introduction of the perturbation potential at infinity.

The associated Schrödinger wave equation is solved to obtain the unperturbed wave-

function Φ+
i ≡ Φc

i(~ri → ∞). Similarly, we obtain the unperturbed wavefunction to

the exit channel state as Φ−f ≡ Φc
f (~rf →∞).

Next we introduce the formalism of Perturbation Theory of Quantum Mechanics

[90] to write explicitly the matrix elements of the second order contribution to the

Second Born Approximation.

Atomic units will be used throughout unless otherwise stated.

1.5 Justification of Problem

In principle the study is abstract and more theoretical and unrealistic in everyday life

application. To many it is more pronounced in its applications to theoreticians. Now,
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such investigation as this has huge impact in Medical Sciences for treating patients

in hospitals. Below are some of the methods and techniques employed.

1. Hadrontherapy; utilizes beams of light ions of atomic number around Z = 6.

Better control slow growing radioresistant tumours which represents about 20%

of all irradiated tumours [91].

2. A new application of great importance is the development of X-ray Emitting

Free Electron Lasers. Availability of these intense sources will allow even to

’see’ moving microstructures of angstrom dimensions. A project is under way

in USA [91].

3. Cyclotrons are used to produce the medical isotopes used for Positron Emis-

sion Tomography (PET) and Single Photon Emission Computed Tomography

(SPECT). Still, in diagnostics, about 80% of all examinations use isotopes (in

particular Technetium 99m) produced at old reactors [91].

1.6 Structure of the Thesis

This thesis is in the three major phases. The first comprise chapter one, which ba-

sically reviews all the literature on the subject till 2008 [1]. It also clearly states

the problem at hand , objectives and the justification of the study especially to the

benefit of society.

The second part comprise chapter two. In this chapter the problem is described

in terms of the standard four-body formalism and the approach to solving it is in

two phases. Thus, we derive the unperturbed wavefunctions of the entrance and exit

channel states in both asymptotic form and series solutions to the resulting trans-

formed Schrödinger wave equation. Here we ensure correct boundary conditions for

the unperturbed wavefunctions. The associated perturbation terms V c
i and V c

f are

correctly stated.
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The last part including chapter three, makes use of Perturbation Theory of Quan-

tum Mechanics [90]. We put together results in chapter two and the T Matrix of the

Second Born Approximation to produce matrix elements of the second order contri-

bution. The first order contribution having already been computed by Dževad Belkić

[92]. This is the result stated in chapter four. Finally, chapter five comprise discussion

of results and conclusion.
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Chapter 2

General Theory Of The Four-Body

Formalism

2.1 Introduction

We are interested in ion-atom collisions in which two electrons take part. Such pro-

cesses involve scattering between a bare nucleus (projectile) P of charge ZP and a

heliumlike atomic system consisting of two electrons e1 and e2 initially bound to the

target nucleus T of charge ZT , i.e the ZP −(ZT ; e1, e2)i collisions, where the parenthe-

ses indicate the bound states. Specifically, we examine here double–electron capture

in a colliding heliumlike projectiles:

ZP + (ZT ; e1, e2)i → (ZP ; e1, e2)f + ZT (2.1)

were indices i, f represents the collective labels for the set of quantum numbers needed

to describe the initial and final bound states.

Let the position vectors of the projectile nucleus, the target nucleus, and electrons

e1,2 relative to an arbitary coordinate frame be, respectively, denoted by ~r1, ~r2, ~r3

13



and ~r4. Then the kinetic energy operator is given by

H0 = − 1

2MP

∇2
r1
− 1

2MT

∇2
r2
− 1

2
∇2
r3
− 1

2
∇2
r4

(2.2)

where MP and MT are the masses of the projectile and target, respectively. The

position vectors of electrons e1,2 relative to ZP and ZT are denoted by ~s1,2 and ~x1,2,

respectively. We denote by ~R, the position vector of the projectile ZP relative to ZT

and by r12 the interelectron distance.

Figure 2.1: Arbitrary Coordinate Frame.

Figure 2.2: Relative vectors between (ZP

and ZT ), (ZP and e12), and (ZT and e12).

2.2 The entrance channel

We concentrate on the collisions of completely stripped projectiles with heliumlike

targets, i.e, the ZP -(ZT ; e1, e2)i collisions. Introducing ~ri as a relative vector of ZP

14



with respect to the center of mass of (ZT ; e1, e2)i we have

~ri = ~r1 −
~r3 + ~r4 +MT~r2

MT + 2
.

As a matter of convenience we express the Hamiltonian Ĥ0 alternatively via a set of

independent variables (~x1, ~x2, ~ri)

Ĥ0 = − 1

2µi
∇2
ri
− 1

2b
∇2
x1
− 1

2b
∇2
x2
− 1

MT

~∇x1 · ~∇x2 (2.3)

where

µi =
MP (MT + 2)

MP +MT + 2

and

b =
MT

MT + 1
.

The last term in equation (2.3) is the so-called mass polarization term, which can be

neglected for heavy particles beacuse MT � 1.

The total Hamiltonian of the system under study in the center-of-mass frame for

the whole system is given by

Ĥ = Ĥ0 + V (2.4)

where V represents the interaction potential operator

V =
ZPZT
R
− ZP

s1
− ZP

s2
− ZT
x1
− ZT
x2

+
1

r12
(2.5)

Now, rearranging collisions, the complete Hamiltonian from equation (2.4) can be

split into the following form

Ĥ = Ĥi + Vi (2.6)

where Ĥi and Vi are the Hamiltonian and the perturbation potential in the entrance

channel

Ĥi = Ĥ0 −
ZT
x1
− ZT
x2

+
1

r12
,

Vi =
ZPZT
R
− ZP

s1
− ZP

s2
. (2.7)
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The unperturbed channel state Φi is defined by

(Ĥi − Ei)Φi = 0,

Φi = ϕi(~x1, ~x2)e
i~ki.~ri . (2.8)

The function ϕi(~x1, ~x2) represents the two-electron bound-state wave funtion of the

atomic system (ZT ; e1, e2)i, whereas ~ki is the initial wave vector. This latter wave

function satisfies the following eigenproblem

(ĥi − εi)ϕi(~x1, ~x2) = 0

ĥi = − 1

2b
∇2
x1
− 1

2b
∇2
x2
− ZT
x1
− ZT
x2

+
1

r12
, (2.9)

where ĥi is the electronic Hamiltonian and εi is the electronic binding energy. The

total energy of the four-body system is given by

E = Ei =
k2i
2µi

+ εi

and it is conserved during the scattering event.

The wave functions of two-electron atomic systems have been the subject of exten-

sive studies [93][6]. In the case of helium, the variational estimate εi = −2.903724377034105

[94] via a fully correlated Hylleraas wave function, with explicit allowance for the in-

terelectron coordinate r12 (through some 600 expansion terms), could be treated as

practically the exact value.

The initial state Φi is distorted even at infinity, due to the presence of the asymtotic

Coulomb repulsive potential V ∞i = ZP (ZT−2)
R

between the projectile and screened

target nucleus. Notice that V ∞i is the asymtotic value of the perturbation Vi.

Vi =
ZPZT
R
− ZP

s1
− ZP

s2
→ ZP (ZT − 2)

R
= V ∞i (2.10)

as ri → ∞, s1, s2 → R. Bearing in mind the long-range nature of the Coulomb

interaction, the Hamiltonian Ĥ can be decomposed according to
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Ĥ = Ĥc
i + V c

i ,

Ĥc
i = − 1

2µi
∇2
ri

+
ZP (ZT − 2)

ri
− 1

2b
∇2
x1
− 1

2b
∇2
x2

− ZT
x1
− ZT
x2

+
1

r12
,

V c
i =

ZPZT
R
− ZP (ZT − 2)

ri
− ZP

s1
− ZP

s2
.

(2.11)

The potential V c
i exhibits short-range behaviour when R → ∞. The difference

1
R
− 1

ri
is by a factor δ smaller than

~R.(~x1+~x2)
R3 , where δ = 1

MT+2
, as can be checked

using Taylor series expansion. Thus, neglecting the terms of the order of 1
MT

, we have

that ri ' R, so that V c
i can be approved as

V c
i =

2ZP
R
− ZP

s1
− ZP

s2
. (2.12)

Obviously, V c
i tends to O( 1

R2 ) as R → ∞. It should be emphasized that the

perturbation V c
i depends only on the interaction between electrons and the projectile.

The term 2ZP

R
in equation (2.12), despite its form, is not related to the internuclear

potential, but originates solely from the electron-projectile interaction. The asymtotic

tail of the potential −ZP

s1
is −ZP

R
, since s1 → R as R → ∞. This can be seen by

utilizing a Taylor expansion for ZP

s1
around R. The small value of the x1 coordinate in

the entrance channel justifies this development. The same statement also holds true

for the potential −ZP

s2
. It is important to note that, unlike the channel perturbation

V c
i , the corresponding perturbation Vi from equation (2.7) contains the internuclear

interaction ZPZT

R
. With the Hamiltonian Ĥc

i from equation (2.11), the eigenproblem

in the entrance channel reads

(Ĥc
i − Ei)Φc

i = 0. (2.13)

This is the counterpart of equation (2.8) when there is a remaining Coulomb potential

in the asymtotic region. Using equations (2.9),(2.11) and substituting into equation

(2.13) we have; (
− 1

2µi
∇2
ri

+
ZP (ZT − 2)

ri
+ ĥi

)
Φc
i = EiΦ

c
i (2.14)
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We consider the wavefunction of the electronic Hamiltonian ϕi(~x1, ~x2) to be indepen-

dent of the wavefunction generated by the projectile nucleus as follows;

Φc
i = φi(~ri)ϕi(~x1, ~x2) (2.15)

Hence, substituting equation (2.15) into (2.14)(
− 1

2µi
∇2
ri

+
ZP (ZT − 2)

ri
+ ĥi

)
φi(~ri)ϕi(~x1, ~x2) = Eiφi(~ri)ϕi(~x1, ~x2),

gives two sets of independent second order differential equations as,

ĥiϕi(~x1, ~x2) = εiϕi(~x1, ~x2), (2.16)(
− 1

2µi
∇2
ri

+
ZP (ZT − 2)

ri

)
φi(~ri) = Eiφi(~ri). (2.17)

We proceed to calculate the wavefunction of equation (2.17).(
∇2
ri

+ 2µiEi −
2µiZP (ZT − 2)

ri

)
φi(~ri) = 0(

∇2
ri

+ k2i +
2γiki
ri

)
φi(~ri) = 0. (2.18)

where, k2i = 2µiEi, −γiki = ZP (ZT − 2)µi and µi =
MP (MT + 2)

MP +MT + 2
.

Note that γi < 0 corresponds to repulsion. As long as we are interested in a pure

Coulomb field, it is possible to write our solution φi(~ri) to equation (2.18) as

φi(~ri) = ei
~ki.~riχi(υi).

υi = ikiri(1− cos θ) (2.19)

υi = iki(ri − zi) = ikiwi.

We note that wi = ri − zi and ~ki.~ri = kizi. The separation of variables for φi(~ri)

in equation (2.19) is plausible if we recognize;

1. that the solution will not involve the azimuthal angle because of the axial sym-

metry of the problem and.
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2. since φi(~ri) represents the complete Coulomb-wave function (incident plus scat-

tered wave), terms must exist in its dominant asymptotic form that contains

ei
~ki.~ri and r−1eiki.ri . We demonstrate that, with the choice of indenpendent

variables we are about to make, this will indeed be the case [95].

Let us choose independent variables (zi, wi, λi) where wi = ri−zi and λi can be taken

as the azimuthal angle, on which the solution φi(~ri) does not depend. In changing

from our Cartessian coordinates (x, y, z) to (zi, wi, λi), we use chain rule expressions

such as [95]

∂

∂x
=

∂wi
∂x

∂

∂wi
+
∂zi
∂x

∂

∂zi
+
∂λi
∂x

∂

∂λi
,

=
∂wi
∂x

∂

∂wi
+
∂λi
∂x

∂

∂λi
, (2.20)

∂

∂y
=

∂wi
∂y

∂

∂wi
+
∂zi
∂y

∂

∂zi
+
∂λi
∂y

∂

∂λi
,

=
∂wi
∂y

∂

∂wi
+
∂λi
∂y

∂

∂λi
, (2.21)

∂

∂z
=

∂wi
∂z

∂

∂wi
+

∂

∂zi
+
∂λi
∂z

∂

∂λi
, (2.22)

Note that because eikiziχ(υi) is independent of λi, the operation ∂
∂λi

makes no contri-

bution. We recognize that

zi = ri cos θ,

ri =
√
x2 + y2 + z2,

∂wi
∂x

=
x

ri
,

∂wi
∂y

=
y

ri
and

∂wi
∂z

= −wi
ri
.

We take the second derivative with respect to the x variable as

∂2

∂x2
=

x

ri

∂

∂x

(
∂

∂wi

)
+

∂

∂x

(
x

ri

)
∂

∂wi
,

=
x

ri

∂wi
∂x

∂

∂wi

(
∂

∂wi

)
+

∂

∂x

(
x√

x2 + y2 + z2

)
∂

∂wi
, (2.23)

=
x2

r2i

∂2

∂w2
i

+

(
1

ri
− x2

r3i

)
∂

∂wi
.
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Similarly, we have
∂2

∂y2
=
y2

r2i

∂2

∂w2
i

+

(
1

ri
− y2

r3i

)
∂

∂wi
. (2.24)

We obtain the second order derivative with respect to the z variable as

∂2

∂z2
=
w2
i

r2i

∂2

∂w2
i

+

(
wi
r2i
− w2

i

r3i

)
∂

∂wi
− 2wi

ri

∂2

∂zi∂wi
+
wi
r2i

∂

∂wi
+

∂2

∂z2i
. (2.25)

Using equations (2.23),(2.24) we have

Φi(~ri) = ei
~ki·~riχ(υi) = eikiziχ(υi),

I1 =
∂

∂wi
Φi(~ri) =

∂

∂wi

(
eikiziχ(υi)

)
,

=
∂

∂wi

(
eiki(ri−wi)

)
χ(υi) + eiki(ri−wi)

∂χ(υi)

∂υi

∂υi
∂wi

,

= −ikiχ(υi)e
iki(ri−wi) + iki

∂χ(υi)

∂υi
eiki(ri−wi)

= ikie
iki(ri−wi)

(
∂χ(υi)

∂υi
− χ(υi)

)
. (2.26)

where ∂υi
∂wi

= iki. Now we let

I2 =
∂

∂wi
(I1) =

∂

∂wi

(
−ikiχ(υi)e

ikizi + iki
∂χ(υi)

∂υi
eikizi

)
,

= −iki
∂χ(υi)

∂υi

∂υi
∂wi

eikizi + (iki)
2χ(υi)e

ikizi + iki
∂2χ(υi)

∂υ2i

∂υi
∂wi

eikizi

− (iki)
2∂χ(υi)

∂υi
eikizi ,

= (iki)
2∂

2χ(υi)

∂υ2i
eikizi − 2(iki)

2∂χ(υi)

∂υi
eikizi + (iki)

2χ(υi)e
ikizi ,

= −k2i eiki(ri−wi)

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
.

(2.27)

Substituting equations (2.26) and (2.27) into equation (2.23) we obtain

∂2Φi(~ri)

∂x2
= −k2i

x2

r2

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eiki(ri−wi)

+ iki

(
1

ri
− x2

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eiki(ri−wi),

(2.28)
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and similary we obtain by substituting equation (2.26) and (2.27) into equation (2.24)

∂2Φi(~ri)

∂y2
= −k2i

y2

r2

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eiki(ri−wi)

+ iki

(
1

ri
− y2

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eiki(ri−wi).

(2.29)

In the same manner, we substitute equation (2.26) and (2.27) into equation (2.25) as

follows

∂2Φi(~ri)

∂z2
= −k2i

w2
i

r2i

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eiki(ri−wi)

+ (iki)

(
wi
r2i
− w2

i

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eiki(ri−wi)

− (iki)
2wi
ri

∂

∂zi

((
∂χ(υi)

∂υi
− χ(υi)

)
eikizi

)

+ (iki)
wi
r2i

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi +

∂2

∂z2i

(
eikiziχ(υi)

)
.

(2.30)

We set

I3 =
∂

∂zi

((
∂χ(υi)

∂υi
− χ(υi)

)
eikizi

)
(2.31)

I4 =
∂2

∂z2i

(
eikiziχ(υi)

)
. (2.32)

From equations (2.31) and (2.32) we have that

I3 = (iki)

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi +

(
∂υi
∂zi

∂

∂υi

(
∂χ(υi)

∂υi

)

− ∂υi
∂zi

∂χ(υi)

∂υi

)
eikizi ,

= (iki)

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi +

(
−(iki)

∂2χ(υi)

∂υ2i
+ (iki)

∂χ(υi)

∂υi

)
eikizi ,

= −(iki)

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi .

(2.33)
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I4 = ∂
∂zi

(
ikiχ(υi)e

ikizi + ∂υi
∂zi

∂χ(υi)
∂υi

eikizi

)
,

= iki
∂
∂zi

(
χ(υi)e

ikizi − ∂χ(υi)
∂υi

eikizi

)
,

= −k2i

(
∂2χ(υi)

∂υ2i
− 2∂χ(υi)

∂υi
+ χ(υi)

)
eikizi . (2.34)

Thus, by equations (2.33) and (2.34), equation (2.30) becomes

∂2Φi(~ri)

∂z2
= −k2i

w2
i

r2i

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi

+ (iki)

(
wi
r2i
− w2

i

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi

− k2i
2wi
ri

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi

+ (iki)
wi
r2i

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi

− k2i

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi ,

= −k2i
(

1 +
2wi
ri

+
w2
i

r2i

)(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi

+ (iki)

(
2wi
r2i
− w2

i

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi ,

Finally we obtain

∂2Φi(~ri)

∂z2
= −k2i

(
1 +

wi
ri

)2
(
∂2χ(υi)

∂υ2i
− 2

∂χi(υi)

∂υi
+ χ(υi)

)
eikizi

+ (iki)

(
2wi
r2i
− w2

i

r3i

)(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi .

(2.35)
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Now adding equations (2.28), (2.29) and (2.35) produces

∇2
ri

Φi(~ri) =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φi(~ri),

= −k2iA

(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi

+ ikiB

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi ,

(2.36)

where A and B are defined;

A =

(
x2

r2i
+
y2

r2i
+

(
1 +

wi
ri

)2
)

B =

(
2

ri
− x2

r3i
− y2

r3i
+

2wi
r2i
− w2

i

r3i

)
.

Thus, for w = r − z, we have

A =
x2

r2i
+
y2

r2i
+

(
2− zi

ri

)2

=
x2

r2i
+
y2

r2i
+
y2

r2i
+ 4− 4

zi
ri

= 1 +
4wi
ri
. (2.37)

B =
2

ri
− x2

r3i
− y2

r3i
+

2wi
r2i
− (ri − zi)2

r3i

=
2

ri
− x2

r3i
− y2

r3i
+

2wi
r2i
− (r2i − 2rizi + z2i )

r3i

=
1

ri
+

2wi
r2i

+
2zi
r2i
− 1

ri

(
x2

r2i
+
y2

r2i
+
z2i
r2i

)
=

2(ri − zi)
r2i

+
2zi
r2i

=
2

ri
. (2.38)

∇2
ri

Φi(~ri) = −k2i
(

1 +
4wi
ri

)(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
eikizi

+
2iki
ri

(
∂χ(υi)

∂υi
− χ(υi)

)
eikizi .

(2.39)
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Equation (2.39) is obtained by substituting equations (2.37) and (2.38) into equation

(2.36).

Now, putting the bits and pieces together in equation (2.18) we have,

− k2i
(

1 +
4wi
ri

)(
∂2χ(υi)

∂υ2i
− 2

∂χ(υi)

∂υi
+ χ(υi)

)
ei
~ki·~ri

+
2iki
ri

(
∂χ(υi)

∂υi
− χ(υi)

)
ei
~ki·~ri + k2i χ(υi)e

i~ki·~ri

+
2γiki
ri

χ(υi)e
i~ki·~ri = 0,

− k2i
(

1 +
4wi
ri

)
∂2χ(υi)

∂υ2i
+

(
2k2i

(
1 +

4wi
ri

)
+

2iki
ri

)
∂χ(υi)

∂υi

+

(
−k2i

(
1 +

4wi
ri

)
− 2iki

ri
+ k2i +

2γiki
ri

)
χ(υi) = 0.

(2.40)

Using the fact that υi = ikiwi, it follows that iki = υi
wi

and k2i = − υ2i
w2

i
, thus,

υ2i
w2
i

(
1 +

4wi
ri

)
∂2χ(υi)

∂υ2i
+

(
−2υ2i
w2
i

(
1 +

4wi
ri

)
+

2υi
riwi

)
∂χ(υi)

∂υi

+

(
υ2i
w2
i

(
1 +

4wi
ri

)
− 2υi
riwi

− υ2i
w2
i

− 2iγiυi
riwi

)
χ(υi) = 0,

υi

(
1

wi
+

4

ri

)
∂2χ(υi)

∂υ2i
+

(
−2υi

(
1

wi
+

4

ri

)
+

2

ri

)
∂χ(υi)

∂υi

+

(
υi

(
1

wi
+

4

ri

)
− 2

ri
− υi
wi
− 2iγi

ri

)
χ(υi) = 0,
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υi

(
1

wi
+

4

ri

)
∂2χ(υi)

∂υ2i
+

(
2

ri
− 2υi

(
1

wi
+

4

ri

))
∂χ(υi)

∂υi

+

(
4υi
ri
− 2

ri
− 2iγi

ri

)
χ(υi) = 0,

υi
∂2χ(υi)

∂υ2i
+

(
2wi

ri + 4wi
− 2υi

)
∂χ(υi)

∂υi
+

2wi
ri + 4wi

(
2υi − 1 − iγi

)
χ(υi) = 0,

υi
∂2χ(υi)

∂υ2i
+

(
2ri

5ri − 4zi
− 2zi

5ri − 4zi
− 2υi

)
∂χ(υi)

∂υi

+

(
2wi

ri + 4wi
(2υi − 1)−

(
2ri

ri − 4zi

)
iγi

)
χ(υi) = 0.

(2.41)

Now for r →∞ equation (2.41) is represented as follows,

υi
∂2χ(υi)

∂υ2i
+

(
2

5
− 2υi

)
∂χ(υi)

∂υi
− 2

5
iγiχ(υi) = 0

Thus, absorbing the coefficients of 2υi ; υi,
2
5
γi ; γi and setting ρ = 2

5
the results

above become

υi
∂2χi(υi)

∂υ2i
+ (ρ− υi)

∂χi(υi)

∂υi
− iγiχi(υi) = 0 (2.42)

We solve the second order differential equation above by considering the asymptotic

case-that is, solusions for large ri−zi (away from the forward direction, since ri−zi =

ri(1−cos θ) = 0 for θ = 0). Considering the two solutions (1) χ ∼ υλi and (2) χ ∼ eυi ,

we substitute the first part into equation (2.42) as

υi
(
λ(λ− 1)υλ−2i

)
+ λ(ρ− υi)υλ−1i − iγiυλi = 0

λ(λ− 1 + ρ)υλ−1i + (−λ− iγi)υλi = 0.

Thus, λ values are computed as follows,

(−λ− iγi)υλi ' 0 and λ = −iγi (2.43)

λ(λ− 1 + ρ)υλ−1i ' 0 and λ = 0. λ = 1− ρ. (2.44)
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Of interest to us is the case where λ = −iγi and hence we have the relation,

χ(υi) ∼ υλi ∼ e−iγi ln ki(ri−zi)

υi = iki(ri − zi) = i(kiri − ~ki · ~ri)

χ(υi) ∼ υλi ∼ e−iγi ln(kiri−
~ki·~ri). (2.45)

Substituting equation (2.45) into (2.19), the resulting wavefunction to the differential

equation (2.18) is given by

φi(~ri) = ei
~ki.~ri−iγi ln(kiri−~ki·~ri) (2.46)

Finally, the asymptotic solution to the differential equation governing the entrance

channel (2.14) will be given in the form,

Φ+
i ≡ Φc

i(ri →∞) = ϕi(~x1, ~x2)e
i~ki.~ri−iγi ln(kiri−~ki·~ri). (2.47)

Alternatively, the second order differential equation (2.42) has a regular singular

point and thus, we can resort to the Frobenius power series method of solution for

χi(υi). Assuming a solution of the type

χi(υi) = υβi

∞∑
n=0

anυ
n
i =

∞∑
n=0

anυ
β+n
i (2.48)

the corresponding derivatives are as follows;

dχi(υi)

dυi
=

∞∑
n=0

(β + n)anυ
β+n−1
i (2.49)

d2χi(υi)

dυ2i
=

∞∑
n=0

(β + n)(β + n− 1)anυ
β+n−2
i (2.50)

We substitute equations (2.48) – (2.50) into equation (2.42),

∞∑
n=0

(β + n)(β + n− 1)anυ
β+n−1
i + (ρ− υi)

∞∑
n=0

(β + n)anυ
β+n−1
i

− iγi
∞∑
n=0

anυ
β+n
i = 0,
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∞∑
n=0

(β + n)(β + n + ρ − 1)anυ
β+n−1
i −

∞∑
n=0

(β + n + iγi)anυ
β+n
i = 0,

β(β + ρ− 1)a0υ
β−1
i +

∞∑
n=1

(β + n)(β + n+ ρ− 1)anυ
β+n−1
i

−
∞∑
n=0

(β + n+ iγi)anυ
β+n
i = 0,

β(β + ρ− 1)a0υ
β−1
i +

∞∑
n=0

[
(β + n+ 1)(β + n+ ρ)an+1 − (β + n+ iγi)an

]
υβ+ni = 0.

(2.51)

Equating the coefficients of υi and higher order terms to zero we have respectively

the indicial and recurrence equations as follows;

β(β + ρ− 1)a0 = 0, implies that β = 0 and β = 1− ρ, (2.52)

(β + n+ 1)(β + n+ ρ)an+1 − (β + n+ iγi)an = 0

an+1 =
(β + n+ iγi)

(β + n+ 1)(β + n+ ρ)
an. (2.53)

We are particularly interested in the case when β = 0, and setting ηi = iγi gives the

recurrence formula,

an+1 =
(ηi + n)

(n+ 1)(ρ+ n)
an. (2.54)

a1 =
ηi
1!ρ

a0, for n = 0,

a2 =
ηi(ηi + 1)

2!ρ(ρ+ 1)
a0, for n = 1,

a3 =
ηi(ηi + 1)(ηi + 2)

3!ρ(ρ+ 1)(ρ+ 2)
a0, for n = 2,

...

an =
ηi(ηi + 1)(ηi + 2) · · · (ηi + n− 1)

n!ρ(ρ+ 1)(ρ+ 2) · · · (ρ+ n− 1)
a0.
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Thus, solution is represented as follows;

χi(υi) = a0 + a0

∞∑
n=0

ηi(ηi + 1)(ηi + 2) · · · (ηi + n− 1)

n!ρ(ρ+ 1)(ρ+ 2) · · · (ρ+ n− 1)
υni ,

= a0

(
1 +

ηi
1!ρ

υi +
ηi(ηi + 1)

2!ρ(ρ+ 1)
υ2i +

ηi(ηi + 1)(ηi + 2)

3!ρ(ρ+ 1)(ρ+ 2)
υ3i + · · ·

)
(2.55)

It is obvious that χi(υi) is a solution of the confluent hpergeometric series described

by 1F1(ηi, ρ; υi) [96].

1F1(ηi, ρ; υi) = M(ηi, ρ; υi) = a0

(
1 +

ηi
1!ρ

υi +
ηi(ηi + 1)

2!ρ(ρ+ 1)
υ2i + · · ·

)
. (2.56)

The wavefunction governing the unperturbed state in equation (2.15) becomes,

φi(~ri) = ei
~ki.~ri
1 F1(ηi, ρ; υi),

= a0e
i~ki.~ri

(
1 +

ηi
1!ρ

υi +
ηi(ηi + 1)

2!ρ(ρ+ 1)
υ2i + · · ·

)
,

Φc
i(~ri →∞) = a0ϕi(~x1, ~x2)e

i~ki·~ri
(

1 +
ηi
1!ρ

υi +
ηi(ηi + 1)

2!ρ(ρ+ 1)
υ2i + · · ·

)
. (2.57)

2.3 The exit channel

In this section we discuss the exit channel in respect of section 2.1. In analogy to the

vector ~ri introduced earlier, we can also consider ~rf as the position vector of T with

respect to the center of mass of the system (ZP ; e1, e2)f via

~rf = ~r2 −
~r3 + ~r4 +MP~r1

MP + 2
.

With this, the Hamiltonian Ĥ0 can be written in terms of the independent variables

(~s1, ~s2, ~rf ) as

Ĥ0 = − 1

2µf
∇2
rf
− 1

2a
∇2
s1
− 1

2a
∇2
s2
− 1

MP

~∇s1 · ~∇s2 (2.58)

where

µf =
MT (MP + 2)

MP +MT + 2
.
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The mass polarization term 1
MP

~∇s1 · ~∇s2 can be omitted in accordance with the mass

limit MP � 1 for heavy particles. As a matter of convenience we write the total

Hamiltonian in a separate form as

Ĥ = Ĥf + Vf ,

where the channel Hamiltonian Hf and the corresponding perturbation Vf are defined

via

Ĥf = Ĥ0 −
ZP
s1
− ZP

s2
+

1

r12
,

Vf =
ZPZT
R
− ZT
x1
− ZT
x2
. (2.59)

We introduce the unperturbed state Φf in the exit channel for double-charge exchange

as the solution of the eigenproblem(
Ĥf − Ef

)
Φf = 0,

Φf = ϕf (~s1, ~s2)e
−i~kf .~rf , (2.60)

where ϕf (~s1, ~s2) is the bound state of the heliumlike atom or ion (ZP ; e1, e2)f . This

function statisfies the eigenproblem(
ĥf − εf

)
ϕf (~s1, ~s2) = 0

or, explicitly,

(
− 1

2a
∇2
s1
− 1

2a
∇2
s2
− ZP

s1
− ZP

s2
+

1

r12
− εf

)
ϕf (~s1, ~s2) = 0 (2.61)

where εf is the binding energy of the final state. Conservation of energy of the entire

four-body system requires

Ef =
k2f

2µf
+ εf = Ei = E
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where ~kf is the final wave vector.

The final state is distorted even at asymptotically large separations due to the

presence of an overall repulsive long-range Coulomb interaction between the target

nucleus and the screened projectile V ∞f = ZT (ZP−2)
R

. This suggests that the Hamilto-

nian should be written in the following additive form

Ĥ = Ĥc
f + V c

f ,

Ĥc
f = − 1

2µf
∇2
rf

+
ZT (ZP − 2)

rf
− 1

2a
∇2
s1
− 1

2a
∇2
s2
− ZP

s1

− ZP
s2

+
1

r12
,

V c
f =

ZPZT
R
− ZT (ZP − 2)

rf
− ZT
x1
− ZT
x2
.

(2.62)

Neglecting the terms of the order of 1
MP

, we have ~rf ' −~R or rf ' R, so that V c
f is

reduced to

V c
f =

2ZT
R
− ZT
x1
− ZT
x2

(2.63)

The potential V c
f is of a short-range, since it tends to ϑ( 1

R2 ) when R→∞. We recall

that

Vf =
ZPZT
R
− ZT
x1
− ZT
x2
→ ZT (ZP − 2)

R
= V ∞f (2.64)

as rf →∞. (
∇2
rf

+ 2µfEf −
2µfZT (ZP − 2)

rf

)
φf (~rf ) = 0(

∇2
rf

+ k2f +
2γfkf
rf

)
φf (~rf ) = 0. (2.65)

where, k2f = 2µfEf , −γfkf = ZT (ZP − 2)µf and µf =
MT (MP + 2)

MP +MT + 2
.

Similarly, the solution to the eigenproblem (Ĥc
f − Ef )Φc

f = 0 is given by

Φc
f (~rf ) = ϕf (~s1, ~s2)φf (~rf ),

φf (~rf ) = e−i
~kf ·~rfχ(υf ),

30



and so we have the asymptotic wavefunction in the entrance channel as

Φ−f ≡ Φc
f (rf →∞) = ϕf (~s1, ~s2)e

−i~kf .~rf−iγf ln(kf rf−~kf ·~rf ), (2.66)

and its series analog solution is

Φc
f (~rf →∞) = a0ϕf (~s1, ~s2)e

i~kf ·~rf
(

1 +
ηf
1!ρ

υf +
ηf (ηf + 1)

2!ρ(ρ+ 1)
υ2f + · · ·

)
. (2.67)

This obeys the correct boundary conditions in the exit channel.
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Chapter 3

Perturbation theory

3.1 Perturbation series with the correct boundary

conditions

We are more careful to impose the proper Coulomb boundary conditions on the

entrance and exit channels for ion-atom collisions. Disregarding this requirement,

can lead to serious problems, and such models are inadequate for a description of

experimental findings.

The dynamics of the entire four-body system are described by means of the

Schrödinger equation

(Ĥ − E)Ψ± = 0,

where Ψ± are the full scattering states with the outgoing or incoming boundary

conditions

Ψ+ → Φ+
i (ri →∞), Ψ− → Φ−i (ri →∞). (3.1)

The exact transition amplitude with the correct boundary conditions can be written

in the post(+) and prior(−) [1] forms as

T+
if = 〈Φ−f |V

c
f |Ψ+

i 〉, T−if = 〈Ψ−f |V
c
i |Φ+

i 〉 (3.2)
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Both forms are equivlent to each other on the energy shell, i.e; the exact expressions

are equal, T+
if = T−if , for transitions for which the total energy is conserved [66].

Solving a scattering problem in which four bodies take part (two nuclei and two

electrons) is extremely difficult. As usual, at intermediate and high impact ener-

gies, the perturbation procedure is frequently employed. It is convenient to convert

Schrödinger equation for a four-body problem into its corresponding integral repre-

sentation such as the Lippman-Schwinger equations.

3.2 The Lippman-Schwinger equations for four-body

collisions

The notation used here can be traced to [1] for the standard formalism of the

Lippman-Schwinger Equations. We introduce the function

Ψ+
i ≡ iεG+Φ+

i (3.3)

where Φ+
i is the wave function defined by Equation (2.47). Here ε is an infinitesimally

small positive number. In addition to the total Green’s function G± in Equation (3.3),

we also define the initial G±i , the final G±f , and the free Green’s functions G±0 as

G± = (E − Ĥ ± iε)−1; G±i = (E − Ĥi ± iε)−1

G±f = (E − Ĥf ± iε)−1; G±0 = (E − Ĥ0 ± iε)−1

These propagators are interrelated by the following Lippman-Schwinger integral

equations for the total Green’s functions.

G± = G±i +G±i V
c
i G
±,

G± = G±f +G±f V
c
fG
±, (3.4)

G± = G±0 +G±0 V
cG±.
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Thus, for G± = G±i +G±i V
c
i G
± we multiply from the left by E− Ĥc

i ± iε and simulta-

neously from the right by E− Ĥ ± iε. It follows that E− Ĥc
i ± iε = E− Ĥ ± iε+V c

i ,

is in agreement with Equation (3.3). We apply iteration procedures to Equation (3.4)

to obtain the following expansions for the total Green’s function in terms of G+
0 , G+

i

and G+
f .

G+ = G+
0 +G+

0 V G
+

= G+
0 +G+

0 V [G+
0 +G+

0 V G
+]

= G+
0 +G+

0 V G
+
0 +G+

0 V G
+
0 V G

+

= G+
0 +G+

0 V G
+
0 +G+

0 V G
+
0 V [G+

0 +G+
0 V G

+]

= G+
0 +G+

0 V G
+
0 +G+

0 V G
+
0 V G

+
0 +G+

0 V G
+
0 V G

+
0 V G

+
0 . . . (3.5)

Similarly, we obtain for G+
i and G+

f ;

G+ = G+
i +G+

i V
c
i G

+
i +G+

i V
c
i G

+
i V

c
i G

+
i +G+

i V
c
i G

+
i V

c
i G

+
i V

c
i G

+
i . . . (3.6)

and

G+ = G+
f +G+

f V
c
fG

+
f +G+

f V
c
fG

+
f V

c
fG

+
f +G+

f V
c
fG

+
f V

c
fG

+
f V

c
fG

+
f . . . (3.7)

Now, inserting G± from Equation (3.5) into (3.3), we have

Ψ+
i = iεG+Φ+

i = iε[G+
i +G+

i V G
+]Φ+

i

= iεG+
i Φ+

i +G+
i V

c
i iεG

+Φ+
i

= iεG+
i Φ+

i +G+
i V

c
i Ψ+

i (3.8)

where we write the first term as iεG+
i Φ+

i = Φ+
i . This can be directly verified if

iε

E−Ĥc
i +iε

Φ+
i = Φ+

i is multiplied from the left by E − Ĥc
i + iε. Thus, we have iεΦ+

i =

(E− Ĥc
i + iε)Φ+

i , in agreement with Equation (3.3). By this, we obtain the Lippman-

Schwinger equation for total scattering wave function in the case of a four-body

problem.

Ψ+
i = Φ+

i +G+
i V

c
i Ψ+

i ,

= Φ+
i +

1

(E − Ĥi ± iε)
V c
i Ψ+

i . (3.9)
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This is an inhomogeneous integral equation, since it contains explicitly the incident

wave Φ+
i . The integral equation (3.9) can formally be solved iteratively as

Ψ+
i = Φ+

i +G+
i V

c
i Ψ+

i

= Φ+
i +G+

i V
c
i [Φ+

i +G+
i V

c
i Ψ+

i ]

= Φ+
i +G+

i V
c
i Φ+

i +G+
i V

c
i G

+
i V

c
i Ψ+

i

= Φ+
i +G+

i V
c
i Φ+

i +G+
i V

c
i G

+
i V

c
i [Φ+

i +G+
i V

c
i Ψ+

i ]

= Φ+
i +G+

i V
c
i Φ+

i +G+
i V

c
i G

+
i V

c
i Φ+

i +G+
i V

c
i G

+
i V

c
i G

+
i V

c
i Ψ+

i

= (1 +G+
i V

c
i +G+

i V
c
i G

+
i V

c
i +G+

i V
c
i G

+
i V

c
i G

+
i V

c
i . . . )Φ

+
i

=

(
1 +

∞∑
n=1

(G+
i V

c
i )n

)
Φ+
i = (1 +G+V c

i )Φ+
i . (3.10)

This is the case because, if we multiply Equation(3.5) by V c
i , we obtain

G+V c
i = G+

i V
c
i +G+

i V
c
i G

+
i V

c
i +G+

i V
c
i G

+
i V

c
i G

+
i V

c
i . . .

=
∞∑
n=1

(G+
i V

c
i )n. (3.11)

Hence, the formal solution of the Lippman-Schwinger equation [90] in terms of the

total Green’s function G+ is

Ψ+
i = Φ+

i +G+V c
i Φ+

i = (1 +G+V c
i )Φ+

i . (3.12)
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3.3 The Born expansions with the correct bound-

ary conditions for four-body collisions

Inserting the formal solution equation (3.12) into Equation (3.2) for the post form of

the transition amplitude, it follows that

T+
if = 〈Φ−f |V

c
f |Ψ+

i 〉

= 〈Φ−f |V
c
f |(1 +G+V c

i )Φ+
i 〉

= 〈Φ−f |V
c
f (1 +G+V c

i )|Φ+
i 〉 (3.13)

Thus, by substituting G+ from Equation (3.5) into Equation (3.13), we can write

several different versions of the Born expansion with the correct boundary conditions

as

T+
if = 〈Φ−f |V

c
f (1 +G+

0 V
c
i +G+

0 V G
+
0 V

c
i + . . . )|Φ+

i 〉

= 〈Φ−f |V
c
f |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
0 V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
0 V G

+
0 V

c
i |Φ+

i 〉+ . . .

= T
(CB1)+
if + 〈Φ−f |V

c
fG

+
0 V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
0 V G

+
0 V

c
i |Φ+

i 〉+ . . .

T+
if = 〈Φ−f |V

c
f (1 +G+

i V
c
i +G+

i V
c
i G

+
i V

c
i + . . . )|Φ+

i 〉

= 〈Φ−f |V
c
f |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
i V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
i V

c
i G

+
i V

c
i |Φ+

i 〉+ . . .

= T
(CB1)+
if + 〈Φ−f |V

c
fG

+
i V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
i V

c
i G

+
i V

c
i |Φ+

i 〉+ . . .

T+
if = 〈Φ−f |V

c
f (1 +G+

f V
c
i +G+

f V
c
fG

+
f V

c
i + . . . )|Φ+

i 〉

= 〈Φ−f |V
c
f |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
f V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
f V

c
fG

+
f V

c
i |Φ+

i 〉+ . . .

= T
(CB1)+
if + 〈Φ−f |V

c
fG

+
f V

c
i |Φ+

i 〉+ 〈Φ−f |V
c
fG

+
f V

c
fG

+
f V

c
i |Φ+

i 〉+ . . .

Here T
(CB1)+
if is the post form of the First Born-Approximation with the correct

boundary conditons for four-body collisions, i.e the CB1-4B method. It is easily seen

that, the term T
(CB1)+
if is identical in all versions. In other words, the CB1-4B method
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is obtained by replacing the total wave function Ψ+
i by the asymptotic channel state

Φ+
i . Two methods for an explicit calculation of the matrix elements in the CB1-4B

method for double-charge exchange have been devised and implemented in [67][68].

Likewise, the nth Born approximation with the correct boundary conditions (CBn-

4B) may be obtained by keeping the first n terms in the expansion. Of great interest

is the four-body second Born approximation (CB2-4B). It is obtained this way

T
(CB2)+
if ;0 = T

(CB1)+
if + 〈Φ−f |V

c
fG

+
0 V

c
i |Φ+

i 〉, (3.14)

T
(CB2)+
if ;i = T

(CB1)+
if + 〈Φ−f |V

c
fG

+
i V

c
i |Φ+

i 〉, (3.15)

T
(CB2)+
if ;f = T

(CB1)+
if + 〈Φ−f |V

c
fG

+
f V

c
i |Φ+

i 〉. (3.16)

We note that Equation (3.14) in terms of G+
0 is recognized as an extension of the

corresponding three-body second Born approximation with the correct boundary con-

ditions (CB2-3B) of Belkić [97][98][66]. Of course, many other versions of the Born

exapnsion can be formulated by utilizing various possible iterative solutions for G+.

In other words, a unique Born series of the transition amplitude T+
if does not exist.

We may embark on a similar procedure employed for the prior form of the transi-

tion amplitude. That is, the time independent wave function of the whole system in

the exit channel is given by the following integral form.

Ψ−f = Φ−f +G−V c
f Ψ−f = (1 +G−V c

f )Φ−f .

The corresponding prior form of the transition amplitude is given as

T−if = 〈Φ−f |(1 +G+V c
f )V c

i |Φ+
i 〉.
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Chapter 4

Calculation

4.1 The CB1-4B method

Several investigations and comparisons have confirmed that the CB1-3B method is an

accurate theory for rearrangement of intermediate and high impact energies. However,

it is natural to extend this approximation to four-body collisions. Belkić [68] through

the introduction of CB1-4B method has solved the problem of double-charge exchange

which is in conformity with experiment. The transition amplitudes in the CB1-4B

method for double-charge exchange within the prior (T−if ) and post (T+
if ) forms are

given by

T−if = 〈Φ−f |V
c
i |Φ+

i 〉 T+
if = 〈Φ−f |V

c
f |Φ+

i 〉.

We refer to Φ+
i and Φ−f defined by Equations (2.47), (2.66) and V c

i ,V c
f respectively

by Equations (2.12) and (2.63). Calculation of the transition amplitudes [1] are as

follows;
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T+
if = 〈Φ−f |V

c
f |Φ+

i 〉

=

∫ ∫ ∫
ϕ∗f (~s1, ~s2)e

i~kf .~rf+iνf ln(kf rf−~kf .~rf )
(

2ZT
R
− ZT
x1
− ZT
x2

)
× ϕi(~x1, ~x2)ei

~ki.~ri+iνiln(kiri−~ki.~ri) d~R d~x1 d~x2

= ZT

∫ ∫ ∫
ϕ∗f (~s1, ~s2)e

i~kf .~rf+i~ki.~rieiνf ln(kf rf−
~kf .~rf )+iνiln(kiri−~ki.~ri)

×
(

2

R
− 1

x1
− 1

x2

)
ϕi(~x1, ~x2) d~R d~x1 d~x2

= ZT

∫ ∫ ∫
ϕ∗f (~s1, ~s2)e

−2i~qP . ~R−i~ϕ.(~x1,~x2)eiνf ln(kf rf−
~kf .~rf )+iνiln(kiri−~ki.~ri)

×
(

2

R
− 1

x1
− 1

x2

)
ϕi(~x1, ~x2) d~R d~x1 d~x2

=

∫
d~Re−2i~qP .

~Reiνf ln(kf rf−
~kf .~rf )+iνiln(kiri−~ki.~ri)

× ZT
∫ ∫

d~x1 d~x2ϕ
∗
f (~s1, ~s2)e

−i~ϕ.(~x1,~x2)
(

2

R
− 1

x1
− 1

x2

)
ϕi(~x1, ~x2)

Thus we have,

T+
if =

∫
d~Re−2i~qP .

~Reiνf ln(kf rf−
~kf .~rf )+iνiln(kiri−~ki.~ri)F+(~R)

F+(~R) = ZT

∫ ∫
d~x1 d~x2ϕ

∗
f (~s1, ~s2)e

−i~ϕ.(~x1,~x2)
(

2

R
− 1

x1
− 1

x2

)
× ϕi(~x1, ~x2)

(4.1)

4.2 The CB2-4B method

In order to perform the explicit calculations of the matrix elements, we shall presently

choose the bound-state wave functions ϕi,f in the form of the one-parameter Hylleraas
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orbitals [99],

ϕi(~x1, ~x2) = ψα(~x1)ψα(~x2),

ϕf (~s1, ~s2) = ψβ(~s1)ψβ(~s2), (4.2)

with the corresponding appropriate binding energies εi = −α2, εf = −β2, and

ψα(~xj) =

(
α3

π

)1/2

e−αxj , ψβ(~sj) =

(
β3

π

)1/2

e−βsj , (j = 1, 2) (4.3)

where α = ZT − a, β = ZP − b, a = b = 5
16

= 0.3125.

Parameters α and β are the effective charges of the target and projectile nucleus de-

fined by (4.3) in terms of ZT,P and the inner Slater sreening as = bs = 0.3125.

Now, following the wavefunctions of the the unperturbed Hamiltonian in both the

entrance and exit channels

Φ+
i = ϕi(~x1, ~x2)e

i~ki·~ri+iγiln(kiri−~ki·~ri) (4.4)

Φ−f = ϕf (~s1, ~s2)e
−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf ) (4.5)

and their corresponding series analogs

Φ+
i = a0ϕi(~x1, ~x2)e

i~ki·~ri
(

1 +
ηi
1!ρ

υi +
ηi(ηi + 1)

2!ρ(ρ+ 1)
υ2i + · · ·

)
, (4.6)

Φ−f = a0ϕf (~s1, ~s2)e
i~kf ·~rf

(
1 +

ηf
1!ρ

υf +
ηf (ηf + 1)

2!ρ(ρ+ 1)
υ2f + · · ·

)
. (4.7)

The perturbing potentials for the entrance and exit channels and the Green’s function

G+
0 are given as follows,

V c
i =

2ZP
R
− ZP

s1
− ZP

s2
(4.8)

V c
f =

2ZT
R
− ZT
x1
− ZT
x2

(4.9)

G+
0 =

1

E −H0 ± iε
. (4.10)
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Considering the second term on the right hand side of equation (3.14) and sub-

stituting equations (4.8) and (4.9) we obtain,

〈Φ−f |V
c
fG

+
0 V

c
i |Φ+

i 〉 = 〈Φ−f |
(

2ZT
R

)
G+

0

(
2ZP
R

)
|Φ+

i 〉+ 〈Φ−f |
(

2ZT
R

)
G+

0

(
−ZP
s1

)
|Φ+

i 〉+

〈Φ−f |
(

2ZT
R

)
G+

0

(
−ZP
s2

)
|Φ+

i 〉+ 〈Φ−f |
(
−ZT
x1

)
G+

0

(
2ZP
R

)
|Φ+

i 〉+

〈Φ−f |
(
−ZT
x1

)
G+

0

(
−ZP
s1

)
|Φ+

i 〉+ 〈Φ−f |
(
−ZT
x1

)
G+

0

(
−ZP
s2

)
|Φ+

i 〉

+ 〈Φ−f |
(
−ZT
x2

)
G+

0

(
2ZP
R

)
|Φ+

i 〉+ 〈Φ−f |
(
−ZT
x2

)
G+

0

(
−ZP
s1

)
|Φ+

i 〉

+ 〈Φ−f |
(
−ZT
x2

)
G+

0

(
−ZP
s2

)
|Φ+

i 〉.

(4.11)

〈Φ−f |V
c
fG

+
0 V

c
i |Φ+

i 〉 = 4Z∗TZP 〈Φ−f |
1

R
G+

0

1

R
|Φ+

i 〉 − 2Z∗TZP 〈Φ−f |
1

R
G+

0

1

s1
Φ+
i 〉+

− 2Z∗TZP 〈Φ−f |
1

R
G+

0

1

s2
|Φ+

i 〉 − 2Z∗TZP 〈Φ−f |
1

x1
G+

0

1

R
|Φ+

i 〉+

Z∗TZP 〈Φ−f |
1

x1
G+

0

1

s1
|Φ+

i 〉+ Z∗TZP 〈Φ−f |
1

x1
G+

0

1

s2
|Φ+

i 〉

− 2Z∗TZP 〈Φ−f |
1

x2
G+

0

1

R
|Φ+

i 〉+ Z∗TZP 〈Φ−f |
1

x2
G+

0

1

s1
|Φ+

i 〉

+ Z∗TZP 〈Φ−f |
1

x2
G+

0

1

s2
|Φ+

i 〉.

(4.12)

〈Φ−f |V
c
fG

+
0 V

c
i |Φ+

i 〉 =
(4β∗α)3

π2
Z∗TZP I1,1 −

(2β∗α)3

π2
Z∗TZP I1,2 −

(2β∗α)3

π2
Z∗TZP I1,3

− (2β∗α)3

π2
Z∗TZP I2,1 +

(β∗α)3

π2
Z∗TZP I2,2 +

(β∗α)3

π2
Z∗TZP I2,3

− (2β∗α)3

π2
Z∗TZP I3,1 +

(β∗α)3

π2
Z∗TZP I3,2 +

(β∗α)3

π2
Z∗TZP I3,3.

(4.13)

where,

I1,1 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1
R
G+

0

1

R
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I1,2 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1
R
G+

0

1

s1
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I1,3 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1
R
G+

0

1

s2
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉
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I2,1 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x1
G+

0

1

R
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I2,2 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x1
G+

0

1

s1
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I2,3 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x1
G+

0

1

s2
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I3,1 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x2
G+

0

1

R
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I3,2 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x2
G+

0

1

s1
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

I3,3 = 〈e−β(2~R−(x1+x2))−i~kf ·~rf−iγf ln(kf rf−~kf ·~rf )| 1

x2
G+

0

1

s2
|e−α(x1+x2)+i~ki·~ri+iγiln(kiri−~ki·~ri)〉

These are nine matrix elements which effect transition of states, from the entrance

channel to the exit channel. We note that the Dirac Bra and Ket notation has integral

representation in three dimensional form.
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Chapter 5

Discussion of results and

Conclusion

5.1 Results

It is important to note here that, all our effort was geared towards correctly de-

ducing the unperturbed wavefunctions of the entrance and exit channels of the four

body system ZP + (ZT ; e1, e2)i → (ZP ; e1, e2)i + ZT , with boundary corrected con-

ditions [67][68] proposed by Belkić. Following the correct forulation of the theory,

rigorous solutions to the unperturbed Hamiltonian is obtained as a result of coordi-

nate transformations from cartesian coordinates (x, y, z) to (zi, wi, λi). Solutions to

the resulting differential equation in equation(2.42) assumes asymtotic form, χ ∼ υλi

of the system. Equations (2.47) and (2.66) are the corresponding general solutions to

the entrance and exit channels respectively. The second approach employed Frobe-

nius series solution method to singular differential equations. The resulting solution

1F1(ηi, ρ; υi), is a confluent hypergeometric series which is in complete agreement

with the first method. Equations (2.57) and (2.67) are respectively the entrance

and exit channel general solutions to the unperturbed Hamiltonian. The literature

on the Formal Theory of Scattering [90], provides the framework for constructing
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a perturbation theory to which the Socond Born Approximation matrix elements

T
(CB2)+
if ;0 = T

(CB1)+
if + 〈Φ−f |V c

fG
+
0 V

c
i |Φ+

i 〉 is employed. The result is what we have writ-

ten down in equation(4.13).

We recommend for further studies, explicit calculations of the matrix elements in

section 4.2. The following difficulties are expected;

1. Each matrix element represent tripple integrals with a singularity inherent in the

Lippman-Schwinger representation of the free Green Function G+
0 = 1

E−H0±iε .

2. The representation of the unperturbed wavefunctions Φ−f , Φ+
i of Co-ordinate

Space in Momentum Space. There are two known methods for doing this; Using

the Standard Fourier Transform,

f̃(~p) = (2π)−3
∫

drei~p·~rf(~r) f(~r) = (2π)−3
∫

dpe−i~p·~rf̃(~p),

and the other is by completely reformulating the problem in momentum space

in which case the solution can be used direclty. Nontheless, this approach is

also plagued with singularities in the coulomb potential. It is crucial to do cal-

culations in momentum space because we have direct access to the observables.

5.2 Conclusion

We have investigated the problem of double-charge exchange in collisions between

bare ions and two-electron atomic systems and correctly written out the unperturbed

wavefunctions of the entrance and exit channels and their corresponding matrix ele-

ment representation of the Second Born Approximation. The analysis is carried out

by means of the boundary corrected Second Born(CB2) theory. Collisons involving

two-electron capture is heteronulcear in nature and we can at the same time obtain

homonuclear case if we consider the projectile to be an alpha particle. In which case
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both initial and fianl configurations of the target particle being the ground states

described by fully uncorrelated one-parameter Hylleraas wavefunctions [99].
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[2] Belkić Dž., 1997a, Nucl. Instrum. Methods Phys. Res. B 124, 365.
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[52] Belkić Dž., 1995, Nucl. Instrum. Methods Phys. Res. B 99, 218.
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[64] Mančev I., 1999a, Phys. Rev. A 60, 351.
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