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A B S T R A C T   

Solar PV mini-grids are increasingly being deployed in off-grid and island communities especially in sub-Saharan 
Africa (SSA) countries to meet household energy demand. However, one challenge of solar PV mini-grids for 
community energy supply is the mismatch between the PV energy generation and household energy demand. PV 
mini-grid energy generation is highest in the afternoon whilst household energy demand is highest in the 
mornings and evenings, but lowest in the afternoons. This mismatch creates redundant energy generation during 
peak sunshine hours when battery energy storage is full, leading to low profitability for mini-grid systems. In this 
study, four machine learning models have been applied on an installed 30.6 kW mini-grid system in Ghana to 
ascertain the level of the redundant energy. The study has revealed that redundant energy exists on the mini-grid, 
in the range of 56.98 – 119.86 kWh/day. Further analysis has shown that the redundant energy can support 
household cooking energy demand through sustainable thermal batteries. With the four machine learning (ML) 
models applied in predicting the redundant energy, the most accurate ML model, K-nearest Neighbour Regressor, 
had a root mean square error (RMSE) of 0.148 and a coefficient of determination (R2) value of 0.998.   

1. Introduction 

For many energy-deprived communities in developing countries [44] 
and sub-Saharan Africa (SSA) in particular, solar PV mini-grids have 
been found to be cost-effective and practical in providing energy access 
[42,5,47] to meet the 2030 target of clean and affordable energy for all 
(SDG 7) [33,50]. Investment in mini-grids in SSA has therefore increased 
for the past decade [49], targeting electricity supply for household en-
ergy needs such as light bulbs, ventilation fans, television set, re-
frigerators and phone charging. This has increased electrification rates 
for rural communities, usually for those far-removed from the national 
grid due to long distances. 

In SSA, it is reported that about 1% of energy demand is met by the 
use of solar PV mini-grids [14]. In countries like Chad, where 75% of the 
population lives in rural communities [7,8,21], studies have shown that 
their electrification rate of 10% [24] could be substantially increased by 
use of solar PV mini-grids [20]. In a study on power generation in 

Uganda, [17] found out that mini-grids can provide grid-like services at 
a relatively cheaper cost for off-grid rural communities, compared to if 
the grid was to be extended to those areas. 

Solar PV mini-grids have been used to electrify very remote rural 
communities, both off-shore and islands communities, where there is no 
possibility of national grid extension [22,35]. In Ghana for example, as 
at the end of the year 2022, 5 mini-grids had been developed for off-grid 
island communities, beyond the Lake Volta. The Government is planning 
additional 35 mini-grids under the project: “Scaling-Up Renewable 
Energy Program (SREP)” to meet its renewable energy policy target of 
10% RE penetration by 2030 [27]. 

For community-based solar PV mini-grids, battery energy storage 
(BES) needs to be installed to store energy during the daytime for 
continuous energy supply to the households during the evenings and 
early mornings when the sun is not available [40]. BES takes significant 
portion of community solar PV mini-grid investment (usually more than 
30% of total capital cost) [6]. For many community-based mini-grids 
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that have been installed in SSA and Ghana in particular, lead-acid bat-
teries have been used due to their relatively cheaper capital cost 
compared to lithium-ion batteries [50]. 

For community-based PV mini-grid systems, the BES is the most 
critical component for sustainability. Huge replacement cost for BES 
after every 3–5 years [9] when it has reached its end-of-life is a big 
challenge for sustainability of mini-grids. This is because payments 
made by customers (which is heavily subsidized, due to their economic 
status) is not able to match BES replacement cost. Many community- 
based mini-grids have therefore been found to be less profitable and 
unsustainable after battery end-of-life [12]. Enhancing the profitability 
and sustainability of community mini-grids is therefore of high interest 
to energy service companies (ESCOs), project developers, national 
governments and international donor agencies [13]. 

Generally, one technical challenge of solar PV systems for household 
energy supply is the mismatch between household energy demand and 
energy generation from the PV system. Household energy demand is 
highest in the mornings and evenings, whilst PV energy generation is 
highest in the afternoon [40,28]. This mismatch creates redundant en-
ergy generation and low profitability for solar PV systems. In a study 
conducted by [40] on a household, they defined a new parameter called 
“solar system redundancy factor (RF)”, which is the ratio of unused PV 
energy to the PV energy generation available after the batteries are fully 
charged. In their study, they highlighted that the redundant energy 
associated with the solar PV system of the household could be harnessed 
and used for productive purposes such as water pumping, cooking, water 
heating, etc. 

From available literature, there is dearth of knowledge on the level of 

redundancy with community-based solar PV mini-grid systems. 
Knowing the magnitude of the hourly and daily redundant energy of 
community-based solar PV mini-grid system can help to harness it for 
other productive means to increase its profitability. This study in-
vestigates through machine learning, the level of redundant energy from 
a 30.6 kW mini-grid system in an island community in Ghana. The 
metering system of the mini-grid, consisting of power analyzers and data 
loggers were used to monitor the total community energy demand and 
PV energy generation from the mini-grid. Machine learning of the en-
ergy demand and generation was then conducted to determine the 
magnitude of redundant energy and the possibility of adding cooking on 
the mini-grid. The findings of this study highlight the possibility of 
adding cooking onto the mini-grid during daytime peak sunshine hours 
to increase its profitability, at no extra cost and no mini-grid expansion. 

The research methodology used for the study is presented in section 
2. The results and discussion are also presented in section 3, and finally 
the conclusion of the study is presented in section 4. 

2. Research methodology 

2.1. Description of the mini-grid 

The case study mini-grid comprises of a 30.6 kW solar PV array, 48 
V–2124 Ah battery and a distribution grid that connects the community 
households to the solar PV system. The mini-grid has a total of 57 
connected households. Table 1 presents the specification of the mini- 
grid. The mini-grid is one of the five mini-grids developed under the 
Ghana Energy Development and Access Project (GEDAP) as part of 
Ghana’s goal of increasing renewable energy penetration to 10% by 
2030, which is in congruence with the Sustainable Development Goal 
(SDG) 7. 

Table 1 
Specification of the mini-grid.  

Component Size 

Solar PV array 30.6 kW 
Battery capacity 101.95 kWh 
Number of connections 57 Households  

Fig. 1. Schematic diagram for data collection.  
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2.2. Data collection and analysis 

2.2.1. Redundant energy from solar PV mini-grids 
Community energy demand, which is typically for household usage, 

is usually out-of-phase (mismatch) with PV mini-grid energy generation. 
Household energy usage is highest in the mornings and evenings, whilst 
PV mini-grid energy generation is highest in the afternoon [40]. This 
mismatch creates redundant energy generation and low profitability for 
mini-grids. The redundant energy (Ered) can be computed using Eq. (1). 

Ered = Enom − Egenfull − battery − charge (1)  

where Enom is the nominal PV generation from the mini-grid and Egen is 
the actual energy generation from the mini-grid. It is important to 
emphasize that the redundant energy occurs during peak sunshine hours 
when the battery is fully charged and the consumer energy demand is 
lower than the mini-grid PV energy generation. When the battery is full, 
the actual PV energy generation is dictated by the amount of load on it 
(the energy demand). That is, when the battery is fully charged during 
peak sunshine hours, a solar PV system can only generate just enough to 
meet the instantaneous demand on it, even if it can generate more. The 
redundancy can also be expressed as a ratio, known as the “solar system 
redundancy factor (RF)” [40]. The RF is the ratio of the redundant en-
ergy (or unused PV energy) to the total available PV energy generation 
[40]: 

RF =
Ered

Emini− grid
(2)  

2.2.2. Nominal and actual PV generation 
The nominal PV generation is computed using Eq. (3), where G is 

solar irradiance of the location, A is the area of a single PV panel, η is the 
rated efficiency, PR is the performance ratio, and n is the number of 
panels for the mini-grid system. 

Enom = G × A × η × PR × n (3)  

Data was collected on the actual PV generation (kW) and consumption 
(kW), all recorded at a time interval of one minute. It is important to 
mention that when the battery is not full, the actual PV generation is 
equal to the nominal PV generation, however, when the battery is full, 
the PV panel produces power just enough to meet the demand, such that 
the actual PV generation is equivalent to the demand (or the con-
sumption on the mini-grid). In the data collection process, the mini- 
grid’s metering infrastructure, made up of power analyzers and data 
loggers, were used to collect data for a span of one year (365 days). The 
collected data was then used to compute the redundant energy of the 
solar PV system using Eq. (1). Fig. 1 shows a schematic diagram for the 
data collection. Radiation data that was used to compute the nominal 
power (Eq. (3)) was accessed from the National Solar Radiation Data-
base of the National Renewable Energy Laboratory [38,46]. A detailed 
consumption profile of the mini-grid, based on the collected data, is 
presented in section 3.1. 

2.3. Machine learning of redundant energy 

The data obtained were analyzed using 4 different machine learning 
(ML) algorithms: Artificial Neural Network, K-nearest Neighbour Re-
gressor, Random Forest Regressor, and XG Boost Regressor. Root Mean 
Square Error (RMSE) was employed as the metric to evaluate the per-
formance of the machine learning models (Table 2). Six input parame-
ters, namely, nominal power, actual generated power, consumption, 
month, day and minute, were used to train the various machine learning 
models to make predictions on redundant energy. The total count of the 
datapoints was 525,600, which corresponds to the number of minutes in 
365 days of the year. Zero points in the dataset, which corresponds to 
times of the day when the sun is usually down, were removed, leaving 

only data from 7am to 5 pm for the machine learning of the redundant 
energy. 70% of the data was used to train the ML models while 30% was 
used for validation. 

Where n = total number of data points, Yp,i = predicted value, Ya,i =

actual value. 

2.3.1. Data preprocessing 
The collected data was preprocessed using python in Google Col-

laboratory and Microsoft Excel 2021. The data preprocessing was crucial 
in organizing the data to obtain accurate results. MATLAB and Google 
Collaboratory were used to run the machine learning models. There 
were no missing data points. The input data were normalized using the 
min–max normalization method to scale all input parameter values 
down to a range of 0 to 1. This was done to facilitate easy machine 
learning of the data. Equation (4) presents the min–max normalization 
Eq. [41,48]. 

Min − max (x) =
x − min(x)

max(x) − min(x)
(4)  

where x is the input data. 

2.3.2. Artificial neural network 
Artificial neural network (ANN) is a machine learning model that 

mimics the configuration and working of biological neural networks, 
like the human brain. Artificial neurons, sometimes known as “neurons,” 
are interconnected nodes that are arranged into layers to form ANNs 
[39]. A perceptron, commonly referred to as an artificial neuron, is the 
fundamental component of a neural network. Each neuron receives 
various inputs, gives them weights, and then runs the weighted sum 
through an activation function as shown in Fig. 2a. Based on the 
weighted total, the activation function chooses the neuron’s output. The 
neurons in the following layer are then given this output as input [34]. 
Eq. (5) presents the governing equation for this operation of the neurons. 
The activation function ‘F(y)’ is presented as Eq. (6). 

y =
∑n

i=1
(wixi)+ b (5)  

F(y) = f (
∑n

i=1
(wixi) + b) (6)  

where y is the output/predicted value, n is the total number of input 
variables, wi is the weight assigned to a particular neuron, xi is the input 
variable and b is the bias. 

Neurons are arranged into layers, having an input layer, one or more 
hidden layers, and an output layer as depicted in Fig. 2b. The output 
layer generates the final outcome or forecast, whereas the input layer 
receives the original data. Data processing and transformation occur 
during network transmission in the hidden layers. The network is 
trained with a set of data, to learn and make prediction. In training the 
neural network, a process called backpropagation is employed. Based on 
the error or difference between the desired output and the projected 
output, the network in this phase modifies the weights assigned to each 
connection between neurons. This adjustment aids the network’s 
continual learning and development of its forecasts [43,11]. 

Several types of neural networks exist, such as feedforward neural 

Table 2 
Machine learning models and performance evaluation metric.  

S/ 
N 

ML Model Evaluation 
Metric 

Formula 

1 Artificial Neural Network 
(ANN) 

RMSE ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(Yp,i − Ya,i)

2
√

2 Random Forest Regressor 
3 XG Boost Regressor 
4 K-nearest Neighbour 

Regressor  
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networks, recurrent neural networks (RNNs), convolutional neural 
networks (CNNs), and generative adversarial networks (GANs). Each 
type has its own architectural modifications and training algorithms and 
is designed for particular tasks. As a key component in the field of 
artificial intelligence, neural networks have been successfully applied in 
numerous fields such as image and speech recognition, natural language 
processing, recommendation systems, and autonomous driving. They 
have demonstrated remarkable abilities to learn from large amounts of 
data and make complex predictions and decisions based on patterns and 
relationships in the data [36]. 

In this study, a feedforward neural network with three hidden layers 
was employed to process the six input parameters and make predictions 
of the redundant energy of the mini-grid. Fig. 2b is a schematic repre-
sentation of a feedforward neural network as adopted in this study, 
showing the 6 inputs, three hidden layers (224 neurons = 128 + 64 +
32) and one output. The activation function used is the Sigmoid and Relu 
activation functions. The Levenberg Marquardt training function was 
used in the training of the model. 70% of the data set was used to train 
the model, while 30% was used for prediction and validation of the 
model. 

2.3.3. Random Forest Regressor 
A Random Forest Regressor is a machine learning model that belongs 

to the family of ensemble methods [19]. It is basically employed in 
regression problems where the objective is to forecast a continuous 
numerical value instead of a categorical label. The algorithm is based on 

the concept of a random forest, which combines multiple decision trees 
to make predictions [48]). To use this algorithm, the data is first prop-
erly cleaned and formatted, to facilitate easy learning. The algorithm 
then creates an ensemble of trees to build a forest. Each tree, also termed 
base learners, is trained using a bootstrap sample, which is a randomly 
chosen subset of the training data [1]. Additionally, during the training 
process of each tree, only a random subset of features is considered for 
each split, which helps to introduce diversity among the trees. A process 
called recursive partitioning is used to train each decision tree on its 
corresponding bootstrap sample. It involves minimizing the prediction 
error by recursively splitting the data based on features and their 
thresholds [3,51]. The splitting process goes on until a stopping 
requirement is satisfied, such as when the tree has grown to its deepest 
point or when more splits do not significantly increase the predicted 
accuracy. Equation (7) presents the governing equation for this 
operation. 

y(x) =
1
J

∑j

j=1
hj(x) (7)  

where y(x) is the ensemble predictor, and hj is the base learner of the jth 
term. 

To make predictions with the trained Random Forest Regressor, the 
predictions of each individual tree in the forest are combined by the 
algorithm. The final prediction for regression tasks is frequently calcu-
lated as the average or median of the predictions produced by each tree. 

Fig. 2. (a) Schematic of an artificial neuron [34]. (b) Feedforward neural network model with 128, 64 and 32 neurons in hidden layers 1, 2 and 3, respectively.  
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This aggregation helps to reduce the impact of individual noisy or biased 
predictions, leading to a more robust overall prediction. Random Forest 
Regressor is extensively used in several domains, like finance, health-
care, and retail, for tasks such as forecasting stock prices, valuing house 
prices, and forecasting customer demand. This study used 100 decision 
trees, and a maximum depth of 3, while the random state was set to 100. 

2.3.4. XG Boost Regressor 
XGBoost (eXtreme Gradient Boosting) Regressor is a powerful ma-

chine learning algorithm that belongs to the gradient boosting family. It 
is particularly known for its efficiency, speed, and high predictive per-
formance in regression tasks. XGBoost is designed to handle both nu-
merical and categorical features and has gained popularity in various 
domains due to its effectiveness [16,31]. The mathematical represen-
tation of the XG Boost algorithm is presented in Eq. (8). 

yi = yo + η
∑n

k=1
fk(Ui) (8)  

where yi is the predicted output for the parameter vector Ui, n denotes 
the number of estimators, yo denotes the mean of the parameters in the 
training data and η represents the learning rate of the model. XG Boost 
creates binary trees and assigns similarity weights (Eq. (9)) for the 
training of the model. 

Similarityweight =
∑

(residuals)2

numberofresiduals + α (9)  

where α is a hyperparameter, and the residuals is the difference between 
the mean and the output parameters. 

XGBoost Regressor is based on the gradient boosting framework, 
where weak regression models (typically decision trees) are iteratively 
trained to correct the mistakes made by previous models [37]). The 
algorithm optimizes a loss function by minimizing the residuals or errors 
at each iteration, gradually improving the overall predictive accuracy. 
Regularization techniques are used in XGBoost to reduce overfitting and 
improve the model’s generalizability. It controls the complexity of the 
model and lessens the impact of irrelevant features by using both L1 
(Lasso) and L2 (Ridge) regularization terms in the objective function 
[4,29,45]. XGBoost provides insights into feature importance, allowing 
the contribution of each feature to be assessed in the regression task. 
Feature importance is computed based on the number of times a feature 
is used in the tree ensemble across all iterations, as well as the average 
gain in the loss function attributable to each feature. XGBoost Regressor 
has built-in capabilities to handle missing values. During the training 
process, it automatically learns how to handle missing data by creating 
default directions for missing values in the decision trees. XGBoost 
supports parallel processing, utilizing multiple CPU cores to accelerate 
the training process. This feature makes it particularly efficient when 
dealing with large datasets and complex models. XGBoost allows for 
early stopping, which means the training process can be halted when the 
performance on a validation set no longer improves. This helps prevent 
overfitting and saves computational resources. XGBoost Regressor has 
been widely adopted in various domains as it is effective in solving 
regression problems such as predicting housing prices, forecasting sales, 
and estimating customer demand. The combination of its boosting 
framework, regularization techniques, and efficient implementation 
makes XGBoost a powerful tool for regression tasks [2,32,18,30]. In this 
study, 100 n–estimators with a maximum depth of 3 were used. 

2.3.5. K-nearest Neighbour Regressor 
The k-nearest neighbors (KNN) regressor is a supervised machine 

learning algorithm used for regression problems. The average or 
weighted average values of the target variable’s k-nearest neighbors in 
the feature space is used to predict the value of the target variable 
[23,25]. During the training phase, the algorithm stores the feature 
vectors and corresponding target values from the training dataset. You 

need to specify the value of k, which represents the number of neighbors 
to consider for making predictions. The choice of k is an important de-
cision and can affect the performance of the algorithm. A smaller value 
of k tends to give more flexible predictions, while a larger value of k 
provides smoother predictions. To make a prediction for a new input 
sample, the KNN regressor measures the distance between the sample 
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and all the training samples using a distance metric, usually the 
Euclidean distance [15]. It then selects the k nearest neighbors based on 
the shortest distances. For regression tasks, the KNN regressor typically 
calculates the average or weighted average of the target values of the k 

nearest neighbors. The weights can be assigned based on the distance or 
similarity of each neighbor to the input sample. KNN’s mathematical 
model is presented as equation (10). This study used 5 k-neighbours in 
the training model. 
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Fig. 4. Nominal generation, actual generation, consumption and redundant energy of the PV mini-grid.  

R. Opoku et al.                                                                                                                                                                                                                                  



Solar Energy 262 (2023) 111790

7

yo =
1
k

∑k

i=1
gi (10)  

where yo is the output and gn is the neighbours, k is the total number of 
neighbours. 

3. Results and discussion 

3.1. Daily PV energy generation and households’ energy consumption 

(a-d) presents graphs of the actual PV generation profile and load 
consumption (power demand) on the mini-grid for 4 selected days in 
January, April, July and October. For the purpose of analysis and 
comparison, the graphs are presented for the 15th day of each month. 
From Fig. 3, it is observed that there is a sharp increase in actual PV 
generation from around 6am, due to the rising of the sun at this hour of 
the day. The actual PV generation peaks between 10am and 11am, and 
sharply drops to the level of the load consumption at about 1 pm, and 
maintains that level till sunset at 6 pm. It is important to highlight that 
before the sharp drop in PV energy generation, that is from sunrise to 
about 1 pm, the actual PV generation is equal to the nominal generation. 

The sharp drop in actual PV generation at about 1 pm is due to the 
fact that the battery gets fully charged at that time, so the PV generation 
drops to the level of the instantaneous energy demand of the commu-
nity. During the time when the actual generation of the solar PV rises 
and peaks (between 6am and 11am), the solar PV supplies power both to 
the batteries and the community. However, at full battery charge, the 
power being drawn from the solar PV to the battery gets cut off by the 
charge controller, and only the community is supplied with power. A 
critical observation of the energy demand of the community reveals that 
the demand is highest after 5 pm because that is the time that the 
community inhabitants have returned from their businesses and work-
places. For the mini-grid under study, there is a diesel generator (back- 
up generator) connected to the system, but it is usually off, and no power 

is generated from it. 

3.2. Redundant energy 

Fig. 4 presents graphs of the nominal PV generation, actual PV 
generation, energy consumption and redundant energy of the mini-grid 
for the 15th day of each month of the year. As explained in section 3.1, 
the actual PV generation peaks at around 11am and drops sharply to the 
level of the consumer energy demand at about 1 pm due to full battery 
charge. If there were a place to push the PV energy generation to, the PV 
system would have continued to generate more energy (at nominal en-
ergy: red color in graphs) above the community energy demand during 
the sunshine hours. The nominal PV generation extends beyond 11am 
and peaks at about 12 pm and steadily decreases to the minimum at 
sunset (between 5 pm and 6 pm). The area under the nominal PV gen-
eration curve minus the area under the actual PV generation depicts the 
redundant energy of the solar PV mini-grid (the blue line). 
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Fig. 4. (continued). 
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From the results of Fig. 4, it can be observed that generally, there is 
substantial redundant energy generation peaking at around 12 pm and 
gradually declining to about 4–5 pm when the sun sets. Analysis of the 
data showed that the redundant energy can be as high as 80–90% of the 
nominal generation during peak generation periods between the hours 
12–3 pm. This redundant energy can be used to support other household 
energy demand such as cooking. 

3.3. Redundant energy for e-cooking 

Fig. 5 presents the daily average redundant energy available on the 
mini-grid for each month. 

From the result of Fig. 5, it is observed that the highest daily average 
redundant energy was recorded in March (119.86 kWh/day) and the 
lowest in July (56.98 kWh/day). The available redundant energy could 
potentially be used as a means to increase the profitability of the mini- 
grid through e-cooking as modern energy service [10]. Using the 
redundant energy from the mini-grid for cooking in households could 
make mini-grids more profitable, without additional energy cost for 
cooking. 

Typically, cooking a staple food (usually rice, yam, cocoyam, cas-
sava, plantain, etc., with vegetable sauce, or beans stew) in a household 
of 3–5 people requires 0.8–2.22 kWh of energy [26]. With the available 
redundant energy from the mini-grid, 26–54 households cooking could 
be supported per day. 

3.4. Results on machine learning of the redundant energy 

A scatter plot of predicted redundant energy values versus actual 
redundant energy values were plotted for each ML model to visualize the 
performance (Fig. 6). It can be seen from all four graphs that a straight 
inclined regression line can be drawn through the points such that a 
large proportion of the points falls on the line or are very close to the 
line. This depicts that, generally, all four models perform well. However, 
it can be observed that among the four plots, the K-nearest Neighbour 
Regressor plot has the least points that do not align to the regression line. 
This puts the K-nearest Neighbour Regressor as the best performing 
model with the lowest root mean square error (RMSE). 

Selection of the best model for predicting the redundant energy was 
based on two performance criteria as discussed in Section 2.3. Table 3 
presents the root mean square error (RMSE) and coefficient of deter-
mination (R2) values of the four machine learning models used in this 
study. Gleaning from the table, K-nearest Neighbour Regressor had the 
lowest RMSE of 0.148 and the highest R2 value of 0.998, denoting that it 
is the best performing model among the four for predicting redundant 
energy. 

4. Conclusion 

In this study, analysis has been conducted to ascertain the level of 
redundant energy that is available for ecooking on a community-based 
solar PV mini-grid system, with a case study on a 30.6 kW system in 
Ghana. Four machine learning models have been employed to predict 
the redundant energy. From our study the following conclusions are 
made: 

Fig. 6. Regression plot of machine learning models (a) Artificial Neural Net-
works (b) Random Forest Regressor (c) XGBoost Regressor (d) K-nearest 
Neighbour Regressor. 

Table 3 
Root mean square error (RMSE) and R-squared values of the machine learning 
models.  

ML models RMSE R2 

K-nearest Neighbour Regressor  0.148  0.998 
Random Forest Regressor  0.279  0.998 
XG Boost Regressor  0.565  0.988 
Artificial Neural Network  0.542  0.994  
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1. Redundant energy exists for community solar PV mini-grids during 
peak sunshine hours when the battery is fully charged. Average 
redundant energy in the range of 56.98–119.86 kWh/day was found 
to be available for ecooking, which can support 26–54 household 
cooking load. 

2. Based on the performance metrics, the K-nearest Neighbour Re-
gressor was found to be the most accurate predictor for redundant 
energy, with a root mean square error (RMSE) of 0.148 and a coef-
ficient of determination (R2) value of 0.998. 

5. Further studies 

This study has ascertained the level of redundant energy of 
community-based solar PV mini-grid system. Using an installed 30.6 kW 
system, the study has shown that significant redundant energy exists for 
community mini-grid after 12 pm till sunset. It is recommended that 
future work should consider integrating ecooking on mini-grid to see 
how it minimizes the redundant energy and increases the profitability of 
the mini-grid. 
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