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Abstract 

One of the main variables needed in analyzing quantitative growth, mortality, and 

stock assessment models in fishery has been age data. Unfortunately, age as the 

biological measure of time is not readily available in Ghana and other tropical 

countries. Also, the graphical based methods used by most fishery scientists to dissect 

and estimate demographic parameters from fishery length frequency data (a viable 

substitute for the age data) makes statistical inference unreliable. In this work, the 

computational method of FMM is used to decompose the 2014 yellowfin tuna 

population into components (age-groups) and the estimates of each component 

obtained by the Maximum Likelihood (ML) method via Expectation Maximization 

(EM) and Newton Raphson (NR) algorithms. Based on the size selection in this fishery, 

it could be infered that the yellowfin tuna population consists of five subpopulations. 

The mixing proportions for successive age groups increase continuously until at least 

the fourth component. The difference in the continuous increment in the mean-

lengths is at least twice the standard deviations. For efficient decomposition and 

estimation of the mixture parameters, the 

study recommeds the FMM and ML method via EM and NR algorithms over 

traditional graphical methods. 
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Chapter 1 

1.0 Introduction 

The yellowfin tuna is one of the most important species of fishes found in the atlantic 

ocean of Ghana. Its contribution to job creation, nutrition, and gross domestic 

product (GDP) is very significant. It is the main raw material used by pioneer food 

canery in Tema, and also served as a source of employment to some local folks. The 

good news is that, fishery resources and for that matter the yellowfin species are 

renewable unlike mineral resources. Hence, the need for quantitative and scientific 

information to be made available for prudent management of this important species. 

Age data and length-at age data have been considered the most precise and 

commonly used data in quantitative fishery assessment models such as stock, growth, 

and mortality rate. But in the tropics like Ghana, reading the precise age of yellowfin 

tuna by observing calcified structures such as hard parts (otoliths) is complex and 

costly because sensitive microscopes need to be used. Fortunately, due to the large 

availability of length frequency data on yellowfin tuna from the database of Fishery 

Commission of Ghana, meaningful demographic parameters such as the age-groups, 

mean lengths, proportions, and standard deviations can be estimated by the 

maximum likelihood method from Gaussian finite mixture model. 

1.1 Background 

In heterogeneous or mixed population, if the number of components and the 

underlying distributions are known, then finite mixture model (FMM) can be fitted to 

the sample meaningfully. But in practice, the number of components are unknown 

and therefore need to be estimated or assumed based on previous work in similar 
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population. The distribution is also assumed to come from the exponential family 

particularly the normal distribution. 

Generally, the finite mixture distribution model is define as: a compounding 

distribution which consists of a finite (k) components of distributions sampled from 

an unknown number of subpopulations (heterogeneous) with each component 

distribution assuming a certain probability density functions (pdf), fi(x) and mixing 

proportions πi. In theory, the components pdfs fi(x) may be consisdered differents. 

However, in practice, the same form is frequently used, the most popular being the 

Gaussian or the log normal. 

For the estimation of the mixture parameters from FMM to be meaningful, the 

necessary and sufficient condition of identifiability have to be satisfied. The GFMM 

has been demonstrated to satisfied this critirion (Yakowitz 1969). In principle, this 

condition gurantees that, all the parameters in each component can be estimated 

from the normal finite mixture model. That is, given two distinct mixture densities, 

g1(x|Ψ1) and g2(x|Ψ2) being equal, the two sets of the parameter values Ψ1 and Ψ2 

are also equal. Contrapositively, no two sets of distinct parameter values will produce 

the same mixture density function g(x|Ψ). 

The application of this important distribution model to incomplete data problems 

(grouped, truncated, missing, etc.) dated back to the works in the last century. 

Pearson (1894), published a paper on estimating the parameters of two components 

Gaussian distribution. In recent times, it has been applied in several fields such as: 

medical, biology, etc. For instance, in this study, the GFMM is used to dissect and 

estimate the yellowfin tuna demographic parameters. 

There are various methods for estimating the mixture parameters from incomplete 

data problems. These includes: the methods of moment, the maximum likelihood 

(ML), minimum Chi-square, and Bayesian method. Macdonald and Pitcher (1975) in 

their paper showed that the minimum Chi-square and the ML methods yield 
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equivalent estimates in large sample. In this study, the ML method via two iterative 

procedures: EM algorithm and the NR algorithm are used. 

The primary concept of the ML estimation method is to find the parameter estimate 

that maximizes the log likelihood function of the finite mixture model given in a given 

grouped data. In practice, this log likelihood function is analytically intractable (lack 

closed forms). This is due in part to the mixed data problem and also in part to the 

grouped data problem. In such cases, iterative procedures (EM and NR) are use to 

approximate the estimates. 

The EM algorithm is a standard tool used to approximate intractable ML estimators 

in finite mixture models. The general concept behind this algorithm is to convert the 

maximization problem involving the complex incomplete log likelihood function into 

a complete data log likelihood whose gradient or score equation can be approximated 

iteratively with some appropriate initial values. Its slow convergence property and 

inability to authomatically compute the variance covariance matrix are among the 

obvious weaknesses of this algorithm. Dempster el al. (1977) claimed that the roots 

to the M-step of the EM algorithm applied to incomplete data cannot be solve 

analytically since the function from the E-step is not in a closed form. 

Various methods to solve this problem have been proposed. Wengrzik et al. (2011), 

in their paper presented five comparative methods using simulation study to find the 

roots to the M-step. The Macdonald et al. (1975), approach implemented in the 

mixdist R package was considered the most outstanding method and package for 

modeling mixture problems with grouped data. In this method, NR algorithm was 

employed to solve the intractable score equation generated in the E-step of the EM 

algorithm by approximating the gradient function with some Taylor series expansion. 

The NR algorithm converges quicker and also, authomatically estimate the error 

covariance matrix. However, it is considered to be very sensitve to the choice of the 

initial values and difficult to implement as a stand alone algorithm. This is the method 

used in this work. 
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Furthemore, a data problem is said to be incomplete data problem (finite mixture 

with grouped data) if the components the individual observations belong to are not 

observed directly but only the marginal distribution of the observations are observed. 

In contrast, in a complete data problem, both the individual observations and the 

components the distribution belong to are observed. 

Finally, a finite mixture data is said to be grouped if the individual observations are 

not reported but rather the number of observations (frequencies) falling into the 

respective class intervals with fixed boundaries are reported. 

1.2 Problem Statement 

In order to judiciously manage the exploitation of the different tuna species in the 

atlantic ocean, fishery scientists and policy makers over the years have relied on 

growth, mortality and stock assessments modeling. The main variables used in these 

modelings have been age and length-at-data of the particular species. However, in 

the tropics like Ghana, reading the precise age of yellowfin tuna by observing calcified 

structures such as hard parts (otoliths) and scales are very complex and costly since 

sensitive microscopes need to be employed. In the absence of the individual age data, 

the size structure (length or weight frequency data) is considered a viable 

replacement commonly used in fishery assessment models (Newman, et al. 2007). 

Length increments as the biological measure of time in the juvenial stages of fishes 

are considered to be proportional to age or growth increments. Also, length 

frequency data are easy and cheaper to collect. Hence, large samples are readily 

available. 

The traditional parametric method used by most biologists in analysing (dissecting 

and estimating fishery demographic parameters) from length frequency data has 

been variants forms of graphical methods. See the works of Petersen (1891) and 

Bhattacharya (1967). These methods make meaningful statistical inference 
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unreliable. For instance, the interpretation of the estimates from the inspection of 

modes (Petersen 1891) and the inflexion points (Bhattacharya 1967) from the 

probability plots are strictly subjective. The computational FMM method of dissecting 

and the ML method of estimating the mixture parameters are considered by far more 

statistically significant. 

The study anticipates to find: the number of subpopulations in the 2014 yellowfin 

tuna population from the length frequency data and to estimate the demographic 

parameters of each component. That is : the age-groups, proportions, meanlengths, 

and standard deviations by the ML estimation method via EM and NR algorithms. The 

MacDonald and Du (2011) mixdist package in R was used in 

the fitting. Furthermore, for meaningful inferencing and diagnosis, the Chi-square 

goodness of fit to test the assumption of normality and the complete covariance 

matrix of the estimates will be computed. 

1.3 Objectives 

The aim of this project is to apply the GFMM to the yellowfin tuna grouped data and 

also to estimate the parameters of the mixture model (age-groups, mixing 

proportions, mean lengths, and standard deviations) using the ML method through 

the EM and NR algorithms. 

This study specifically seeks to: 

1. find the number of subpopulations (age groups) by dissecting the 2014 length 

frequency data into its constituent components 

2. estimate the parameters of each component by the ML method via the EM and 

NR algorithm. 

3. obtain the complete variance covariance asymptotic matrix and the Chisquare 

goodness of fit test. 
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1.4 Methodology 

Due to the mathematical and statistical complexity in dissecting and estimating 

mixture parameters from length frequency data, fishery biologists have over the 

years relied on less efficient graphical methods such as the Bhattacharya method for 

the decomposition and the estimation of the cohorts parameters. The problem at 

hand is to dissect into components and estimate all the parameters of each 

component using the GFMM from yellowfin tuna length frequency by ML method in 

conjunction with two iterative algorithms: EM and NR algorithms. 

The data used for the model was 2014 monthly length frequency yellowfin tuna data 

from the atlantic ocean of Ghana collected from the log books of the fishery 

commission of Ghana. These species and the year was chosen because of their high 

market value and their abundance in 2014. The data was first grouped into class 

intervals of equal width of 2cm and the number of yellowfin falling into each interval 

was reported. The histogram was chosen for the exploratory data 

analysis. 

1.5 Significance of Study 

Several studies on length frequency analysis of fishery species particularly using the 

graphical methods like Bhattacharya have been conducted by fishery scientists in 

Ghana. However, there is very little or no detail statistical analysis obtained from 

applying FMM to dissect and estimate the mixture parameters from length 

frequency. This could hinder meaningful demographic information (growth, 

mortatlity, and stock assessment) about these important species to policy makers in 

the industry. All such stock assessment and other complete analysis of the tuna 

species are performed outside the country, particularly in Portugal. 



 

7 

Now that the commission is planning to perform all these analysis within, findings 

from this research could fill the temporal gap in making information available to 

decision and policy analyst locally. The result from this findings could also be adopted 

in regulating fishing activities of the various vessels that docked at the Tema harbour. 

The study was restricted to the atlantic ocean of Ghana. The random sample was 

collected from landings of various vessels that docked at the Tema fishing Harbour in 

2014. It consisted of the fork length FL (in cm) of yellowfin tuna sampled monthly 

from the Eufra fleet using the PS gear and free school samplying method. This data 

was made available by the fishery commission of Ghana. 

1.6 Limitation of Study 

The research intended to model the individual growth rate of the yellowfin tuna using 

the Von Bertanllanfy growth model to the monthly length at age data. However, the 

individual age data is not available in Ghana. Hence the mean lengths (which could 

be interpreted as the mean growth rate) at successive age groups was estimated from 

GFMM. The correct number of components could not be estimated by our method, 

and hence was guessed based on the visual inspection of the histogram. The 

appropriate initial values for the iterative algorithms should have come from a small 

subsample of direct age readings which is unavailable in our case. Again, our initial 

values were purely guessed through trial and error aided by the sample histogram. 

Finally, a lot of constraints were imposed in order to estimate all the parameters of 

each component meaningfully. 

1.7 Thesis organization 

The rest of this study is organized as follows: Chapter two contains review of related 

literature or abstract relating to length frequency analysis of the yellowfin tuna, finite 

mixture distribution model, ML estimation method, EM algorithm, and NR algorithm. 

In Chapter three, the theories behind the GFMM and the estimation methods of 
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mixture parameters particularly, the ML via EM and NR are examined in detail. 

Furthermore, the error covariance matrix and the Chisquare goodness of fit test as 

diagnostic measures are discussed. The analysis and discussion of the estimates from 

the fitting of the GFMM to the yellowfin length frequency data is carried out in 

chapter four, and finally, chapter five presents the appropriate conclusion and 

recommedation of the study.  
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Chapter 2 

LITERATURE REVIEW 

2.0 Introduction 

This chapter reviews relevant literature on the theory and application of the GFMM 

in various fields particularly in fisheries. In particular, the chapter reviews related 

papers on the various estimation methods for mixture parameters particularly 

estimation by ML method via Expectation Maximization and Newton Raphson 

algorithms. 

2.1 General Background on Finite Mixture Model 

(FMM) 

The study of fitting mixture distribution model to subpopulations sample dated back 

to the last century. Pearson (1894) estimated two proportions by the method of 

moments from a histogram of two normal mixtures. His sample size of 1000 crabs 

was obtained from the measure of the ratio of forehead to body length. With the 

popularity of high speed computers, finite mixture distribution models have become 

the standard statistical model for fitting problems in heterogeneous or a number of 

homogeneous populations in several fields: in fishery, biology, economy, etc. For 

instance, in fishery, the mixture model is used to dissect a number of homogeneous 

or heterogeneous populations into constituent components (age groups). This is very 

crucial to the fishery worker since indispensible age data used in stock assessment 

and other related models are very difficult, costly, and time consuming to obtain 
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directly from calcified structures especially in the tropics like Ghana (MacDonald and 

Pitcher, 1979; Pauly and Mogan, 

1987). 

The extensive background and literature on the theory and application of the 

FMM are reviewed by Everitt and Hand (1981), Titterington et al. (1985), MaLachlan 

and Basford (1988), Lindsay (1995), Bhoning (1991), and MaLachlan and Peel (2000). 

In practice, the distribution of the mixture density is not known, but only assumed or 

chosen based on the histogram. The fittings of some of these models focus on 

distributions assumed to come from the discrete family of which the poisson and the 

binomial are the commonest (Blischke, 1965 and Schilling, 1947) , whereas the 

majority of the fitting assumed the Guassian or the easily transformed log normal 

distribution. Everitt and Hand (1981) and MaLachlan and Basford (1988) argued that 

the choice is purely due to popularity , convenience, and desirable 

statistical properties. 

MaLachlan and Peel (2000) detailed historical review of the FMM since the last 

century revealed that the evolution of the FMM was necessitated by the difficulty in 

implementing Pearson’s estimation method of moment in many empirical situations. 

This was due partly to the mathematical complexity in the mixture denstity functions 

and also partly to the difficulty to program this method on low speed computers. 

2.2 Estimation Methods of FMM 

The absence of high speed computers together with the intractability of the methods 

of moment paved way for various statistical computational and graphical estimation 

methods (Fowlkes, 1979) all assuming a certain distribution. The graphical methods 

entail plottings on normal probability paper and the most popular one has been the 

Bhattacharya method. The computational methods consist of the methods of 
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moment, various minimum distance methods, the ML method, and the Bayesian 

method. 

A comprehensive review of the various graphical methods were included in the works 

of Buchanan-Wollaston and Hodgson (1929), Harding (1949), Preston (1953), and 

Cassie (1954). Related improved graphical methods can be found in the works of the 

following authors: Hald (1952), Oka ( 1954), Tanaka (1962), Taylor (1965), 

Bhattacharya (1967), and Harris (1968). 

The graphical methods were introduced in the last century by Petersen (1891). His 

method consisted of the processes of graphically dissecting length sample into 

components or cohorts and then identifying the peaks of each relative age of the fish. 

Afterwards, the peaks are then linked together in a process called modal progression 

analysis. Pauly and Gayanilo (1997) claimed that one weakness in this method is that 

both the processes of identification and connection of the peaks cannot be repeated 

with precision. The interpretations are also purely subjective and less reliable. Thus, 

make statistical inference unreliable. 

In recent times, the Bhattacharya (1967) method has been the most popular graphical 

method used in the biological and fishery sciences. This method assumed that fish 

lengths follow the normal or the log normal distribution before dissecting the lengths 

into age-groups or cohorts each representing a component of the mixture. This was 

achived by transforming the normal mixture distribution problem (non linear 

problem) into a linear, and then computing the estimates from a regression analysis. 

Kolding and Ubal Giordano (2002) elaborated on the steps in transforming the normal 

distribution to a linear before the computation of the mean lengths, proportion sizes, 

and the standard deviations from the regression equation. Pauly and Caddy (1985) 

claimed that this method is less subjective and cumbersome compared to the 

Pertersen method. 

Pearson (1894) was the first person to apply the method of moments to obtain the 

five parameter estimates of a two mixture components distribution. Since then, this 
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method of estimation has gained an extensive application in various fields. Pearson 

proposed comparing all the potential solutions and selecting the best fit as the 

solution to the multiple critical values problem of the likelihood function. 

Another method of estimation of mixture parameters that has received considerable 

attention in practice is the various minimum distance methods. See Titterington et al. 

(1985) and McLachlan and Peel (2000). A version of this method that has been 

reviewed in most journals is the Hellinger distance minimum distance estimation 

method. Wordward et al. (1983, 1984, 1990) applied the Hellinger distance method 

to estimate the parameters (proportions) of two components normal mixture 

distribution. They demonstrated that the Hellinger minimum distance estimator is 

statistically efficient and robust compared to the Cramer-Mises minimum distance 

method. Beran (1977) also theoretically confirmed that the Hellinger minimum 

distance method is a viable alternative in 

certain situations. 

The most popular and standard method of finding the parameter estimates in mixture 

models has been the ML method via EM-algorithm. It is argued that the 

ML method is asymptotically consistent, efficient, and unbiased (Ojeda, 2001). That 

is, it is statistically stable and converges optimally. However, Anandkumar et al. 

(2012) argued that this method is computationally complex and likely to diverge or 

fail when the number of components become very large even with advent of high 

speed computers. He demonstrated that the method of moments is a viable empirical 

alternative in multi-mixture and hidden Markov models situations where the number 

of components and hence the parameter estimates 

increases. 

Unlike the ML estimation method which maximizes the log likelihood density 

function, the various minimum distance estimation methods attempt to minimize the 

sum of the squares of the distance between the theoretical denstity distribution 

function and its empirical funtion. Quandt and Ramsey (1978) proposed the use of 
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the moment generating functions of the theoretical and the empirical functions 

respectively. 

Wirjanto and Xu (2009) in their survey, applied moment generating function 

minimum distance estimation method to stock data finance. They demonstrated that 

this method overcame the initial requirement of the log likelihood function in the ML 

method to be bounded over the parameter space. They concluded that in empirical 

situations, where most of the log likelihood functions are not bounded, a viable 

alternate approach is to apply Qandt and Ramsey (1978) moment generation function 

and Schmidt (1982) modified moment generating function to the traditional 

minimum distance method. 

With the popularity of high speed computers, mixture distributions have become the 

defacto statistical distribution for fitting problems in heterogeneous populations in 

several fields: in fishery, biology, economy, etc. 

In their paper, Macdonald and Pitcher (1975) asserted that the histogram should be 

chosen as the standard representation of size frequency data over traditional 

graphical methods used by most biologists. They also demonstrated that the 

minimum Chi-square estimators and the ML estimators are asymptotically stable and 

equivalent when applied to grouped data. In large grouped sample, minimizing the 

log likelihood density is prefered to maximizing it. They argued that, the 

interpretation of the discrepancy between the mixture density and the empirical 

denstiy is easy and meaningful, and also, the minimized estimator can easily be used 

in the computation of the Chi-square goodness of fit test. 

The ML method has been argued to be the most popular or widely used of all 

estimation methods. This method was first advocated by Rao (1948). He applied the 

ML method through iterative procedure making use of Fisher’s scoring method to 

approximate the parameters in two component univariate mixture distribution. 

Other authors like Baker (1940) and Mendenhall and Harder (1958) obtained mixture 

estimates through similar iterative approach. For instance Mendenhall and Harder 
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obtained the mixture estimates by applying the the Newtons method as the required 

iterative procedure. 

A thorough application of the ML estimation method are captured in the works of 

Everitt and Hand (1981) and Titterington et al. (1985). Under certain conditions, the 

ML estimators have been proven to be theoretically friendly and statistically efficient, 

consistent, and robust compared to other methods. One major weakness in this 

method was that, it was computationally tedious to implement prior to the popularity 

of high speed computers (Everitt and Hand, 1981). 

The advent of high speed computers couple with powerful iterative and numerical 

procedures have seen a renew interest in the application of the ML estimation 

method by researchers. Complex and intractable computations can now easily be 

programmed on computers (Brady, 2008; Redner and Walker, 1984). 

Redner and Walker (1984) wrote an extensive review on the various estimation 

methods focusing especially on the minimum distance method and the ML methods. 

They commented that, of all the various iterative procedure avalaible, the EM-

algorithm is by far the most popular and widely used procedure to approximate 

intractable mixture parameters. Less sensitivity to initial values and easy 

programmability on computers are some of its advantages. However, the 

EMalgorithm have been demonstrated to converge really slow due to its linear rate 

of convergence compared to NR-algorithm quadratic convergence rate. 

Dong (1996) in his paper cited instances of earlier application of the ML estimation 

method in various fields. For instance, he commented that Do and McLachlan (1984) 

applied mixture analysis to owl population and hence was able to estimate the 

proportions and the diet of the owl. 

For the decomposition of subpopulations into constituent components to be 

statistically meaningful, the trivial choice of distribution have been the mixture 

distribution. However, one major challenge faced by researchers have been which 

particular estimating method is more viable. Holgersson and Jorner (1978) in their 
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paper gave a detailed theoretical and empirical account of the all the estimation 

methods of mixture models. 

Day (1969) examined the problem of estimating mixture parameters from the normal 

distribution by comparing the methods of moment, minimum Chi-square, Bayesian, 

and the ML methods under simulation study. He concluded that the first three 

methods are inferior to the likelihood method partly due to the computational 

complexity and also partly to weaknesses in their sampling properties except in 

univariate cases. 

2.2.1 Expectation Miximization (EM) Algorithm 

Prior to the formal introduction of the EM-algorithm by Dempster et al. (1977), 

Sundberg (1974, 1976) introduced the iterative method of approximating roots from 

ML equations encountered in most incomplete data problems. Dempster et al. (1977) 

was accredited with formally introducing the EM-algorithm based upon Sundberg’s 

work. 

Sundberg (1974, 1976) elaborated on the incomplete data problem as data coming 

from mixture population, missing data, grouped, censored or truncated data which 

are usually associated with exponential family of distributions. According to him, the 

Newton-Raphson and the Fisher’s scoring methods used as the standard numerical 

procedures at the time in solving the intractable likelihood equations are often 

asymptotically instable. The initial matrices inversion of these procedures are tedious 

and failed in many empirical situations, and also, the starting values are sensitive and 

hence does not often converge. He therefore proposed an iterative procedure that is 

simpler, less sensitive, and converges quickly based on the works of Blight (1970) who 

failed to prove its convergence. 

According to Dempster el at. (1977), the EM algorithm is an iterative procedure used 

in estimating ML parameters of data observations considered to come from 

incomplete data problem. In the expectation (E-step), a certain Q(.) function is 
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generated using the conditional expectation of the complete log likelihood data given 

the observed with the appropriate initial values. A transformation of the incomplete 

log likelihood yields the required complete data likelihood. The Mstep then 

maximizes the Q(.) function generated in the E-step iteratively until convergence or a 

certain tolerance is reached. They argued that, the EM algorithm is simpler to 

implement, less sensitive to initial values, and has broad area of applications. Apart 

from its slow convergence, EM algorithm has the weakness of not being able to solve 

all incomplete data problem. It is also argued that the EM-algorithm lacks the 

computational power to directly estimate the covariance matrix. 

In order to speed up the rate of convergence and also solve the analytically 

intractable equation at the M-step, variants forms of Newton’s numerical procedure 

such as the quasi Newton, Newton Raphson method, and conjugate gradient 

acceleration have been proposed. Jamshidian and Jennrich (1977, 1993) applied new 

hybrid quasi-Newton to poisson mixtures and the conjugate gradient acceleration to 

the EM-algorithm to estimate the covariance matrix from incomplete multivariate 

normal mixtures respectively. They concluded that the new hybrid quasi-Newton 

method accelerate the convergence rate of the EM-algorithm in excess of over 50 

factors and also the conjugate gradient acceleration method speeds up the 

convergence rate in over 10 factors. 

Recently, Du (2002) in his thesis and R-package, Rmix applied the combination of EM-

algorithm and NR-algorithm based on MacDonald and Green (1988) mix software to 

northern pike fishery dataset. He concluded that NR-algorithm applied to the M-step 

of the EM-algorithm after appropriate initial values have been chosen in the E-step 

speed the convergence of the EM-algorithm tremendously and also help in 

approximating the analytically intractable log likelihood equation in the M-step. 

MacDonald and Du (2011) R-package “mixdist” which is used in this thesis was based 

on the works of the former two authors. 
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One of the basic requirements for the convergence of the EM-algorithm is the 

monotonicity (non-decreasing) property of the log likelihood denstity function. 

See Dempster et al., (1977), Redner and Walker (1984), Meng and Rubin (1993), 

Chen and Gupta (2010), Wu (1983), Xu and Jordan (1995), etc. That is, if the 

(m+1)th parameter iterate of the Q(.) function in the M-step increases continuously 

than the current mth, then the log likelihood of the (m+1)th parameter is guarantee to 

be non-decreasing (increases) in contrast to the log likelihood of the mth. Chen and 

Gupta (2010) argued that, the monotonic property together with appropriate initial 

values under some regularity conditions of the conditional statistics, Q(.) in the E-step 

are the necessary requirements to guarantee convergence. 

Wu (1983) answered two critical questions ignored by Dempster et al. That is, 

whether the log likelihood of the parameter converges to global maximum, local 

maximum or some saddle points. He demonstrated that general convergence to 

global maximum is not feasible. Convergence to local maximum is only possible under 

mild conditions, but he failed to demonstrate it empirically. However, together with 

some other conditions, he proved that the log likelihood converges to some critical 

or stationary values. 

Chen and Gupta (2010) in their tutorial, give a detail mathematical background of the 

EM-algorithm. Applications of the GFMM and Hidden Markov model 

(HMM) were carefully discussed. To overcome the weaknesses and near to failure 

(divergence) of the EM-algorithm due to non-concavity and singularities of the log 

likelihood function resulting from lack of boundedness, Chen and Gupta (2010) 

proposed the use of global optimizers like the Newton Raphson algorithm in 

conjuction with the EM-algorithm. Also, the Bayesian estimation method could be 

employed to overcome the problem of singularities of the log likelihood. 

Couvreur and Bresler (1995) applied the ML method via EM-algorithm to decompose 

a mixture consisting of finite length and authoregressive model in order to determine 
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and classify the number of authoregressive signals of unknown variances. They used 

the methods of moment to obtained the initial values for the 

EM-algorithm. The comparative advantages of applying the EM-algorithm to 

incomplete data problem to other numerical methods like NR and Scoring methods 

has been studied by Couvreur (1996). He argued that, the initial values of the 

numerical methods are analytically complex to guess and also exhibit convergence 

instabilities when the number of parameters to be estimated are high. He 

demonstrated the application of the EM-algorithm to estimate the parameters of a 

poisson mixture of positions emission tomography. Several acceleration schemes 

have been derived to address the slow convergence property of the EM-algorithm 

and also to approximate the indirect covariance matrix. 

One of the unresolved challenges in applying the ML method in mixture modeling 

situations have been how to estimate the correct number of components or classes 

(subpopulations). See Nylund et al. (2001). In their simulation study, they examined 

and compared the likelihood based tests, Information Criterion like the Akaike 

Information Criterion (AIC), and the Bayesian Information Criterion 

(BIC) used by many researchers. They concluded that, the Boostraped Likelihood 

Ration Test (BLRT) applied to different mixture problems is superior followed by the 

Bayesian Information Criterion (BIC), and then the adjusted BIC. 

Hathaway (1983, 1985) in his Phd thesis and article attempted to solve the problem 

of divergence usually encountered in empirical situations when the ML method is 

used to estimate mixture parameters. He proposed applying basic constraints to the 

parameter set (standard deviations, mean-lengths and the proportions) will 

transform the mixture problem into a well poised optimization one. He concluded 

that the EM-algorithm when applied to a constraint mixture problem will yield 

consistent and efficient estimates. 

MacDonald and Pitcher (1979) imposed the following basic constraints: the mixing 

proportions or weights to sum to one and to fall between zero and one, the standard 
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deviations to be positive and the consecutives means to be strictly increasing. They 

argued that these basic constraints together with the knowledge of the distribution 

of each k subpopulation in the mixture model, will ensure that the necessary 

condition of identifiability of the GFMM to be satisfy as showed by Yakowitz (1969). 

MacDonald and Green (1988) and Du (2002) expanded on these basic constraints to 

include combinations of several other constraints on the proportions, standard 

deviations, and the means all being dictated by the particular problem encountered 

by the researcher. Without appropriate constraints on a particular problem, the 

estimation of all the parameters will not be meaningful especially when the 

components are heavily overlapped and large. 

Most datasets used in both supervised and unsupervised learning come from an 

incomplete data source partly due to missing data values. To be able to learn from 

these incomplete datasets, FMM are considered the standard model. Likewise, the 

ML estimation method via the EM-algorithm has been the standard method used to 

estimate the mixture parameters. (Ghahramani and Jordan, 1994). 

Laslett et al. (2004) estimated the GFMM parameters (mean lengths and standard 

deviations) from the South Australian bluefin tuna length frequency data by the ML 

method. The estimates were obtained through a first and second derivative 

optimization method implimented by Polacheck et al. (2003). They argued that the 

decomposition is only meaningful in juvenial bluefin tunas together with the 

assumption that spawning activities is within a limited biological time. In older 

fisheries, there is a heavy overlapping of the components and hence estimation could 

be problematic. 

Similarly, Zhu and Zhao (2013) applied MacDonald (1987, 2008) and Du (2002) Mix 

and Rmix techniques (packages) to decompose the American Eel into components 

(cohorts) and was able to estimate the mean lengths and the age groups of the Eel. 

Haitovsky (1983) in his paper gave a concise definition of a grouped data and 

summarized the major reasons for grouping data. He cited among other reasons: for 
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easy descriptive purposes as in the graphical or tabular displays and data privicy 

requirements in analysing confidencial data. Also, for easy computation and storage 

in situations where the datasets are really large. Lastly, due to the inaccuracies in 

measurements that could result from imprecision of some instruments, subjectivity 

of the researcher in taking the readings, etc. 

One major challenge in implementing the grouped data densities has been the 

disparities in the various estimation methods, and hence the inferences of the 

parameters. Heijan (1989) compiled a comprehensive historical literature on the 

various estimation methods. He recommended the ML based methods and the recent 

Bayesian method to the method of moments. 

Some obvious weaknesses encountered when applying the EM-algorithm to 

incomplete data have been : it has a relatively slow convergence rate (linear rate), 

and the inability to directly compute the standard error or the covariance matrix. 

Louis (1982) attempted to overcome the problems encountered in the EMalgorithm 

based on earlier historical reviews by proposing procedures that speed the 

convergence rate and also estimate the information matrix. He solved the 

information matrix problem by applying Woodbury (1977) missing information 

principle to the computation of the gradient vector and the negative Hessian matrix 

of the associated complete-data. 

For a successful implementation of the EM-algorithm to estiamte the mixture 

parameters, the number of components (age-groups) have to be known in advance. 

However, in real situations, only the data through the histogram is available which is 

not reliable. The components from the histogram are often overlapped and do not all 

form distinct modes. MacDonald and Pitcher (1975) proposed direct ageing of a small 

sub-sample in fisheries to estimate the number of agegroups and some initial 

parameters of the mixture model. On the other hand, Wang et al. (2004) proposed a 

computational procedure, stepwise split-and-merge EM (SSMEM) algorithm based on 

two posterior probability critiria that could simulteneously estimate the number of 
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components and the parameters of the mixture model. Their implementation 

revealed that the SSMEM is statistically robust and significant. 

Chapter 3 

METHODOLOGY 

3.0 Introduction 

This chapter discusses the mathematical and the statistical theories behind the 

GFMM and the various estimation methods of estimating the mixture parameters. In 

particular, the ML method from incomplete data problems is examined in detail. The 

iterative procedures: EM and NR algorithms used to approximate the analytically 

intractable log likelihood function will also be discussed briefly. Finally, the complete 

covariance matrix of the mixture problem applied to grouped data will be deduced. 

3.1 Finite Mixture Distribution Model 

A finite mixture distribution model is a standard and a very flexible model used in 

modeling data that are encountered in many practical situations such as: data from 

heterogeneous population, complete and incomplete data problems (missing data 

problems, truncated, and censored data) situations. Its worth to statiscians and 

researchers is underscored by the volume of articles published on it. 

Generally, it is define as a compounding distribution which consists of a finite k 

subpopulations (components) of distributions sampled from a number of 

homogeneous or heterogeneous populations with each component distribution 

assuming the same or different density function, fi(x). This important model is applied 
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in various fields such as: biology, astronomy, medicine, engineering, marketing, 

economics, etc. For instance, in biology it is used in the determination of sex and age 

groups parameters from size frequency data and in the medical field, it is used in the 

diagnosis and prognosis in patients. 

Definition: 3.1 

Let X be a k component random variables in the sample space X. Furthermore, 

supposed f x|θi, i=1,...,k denote the mixture components densities with parameter vector θi 

consisting of the parameters (µi,σi), then the finite mixture density 

function is defined as : 

g(x|Ψ) = π1f1(x)+···+πkfk(x) 

 

k 

 = Xπif x|θi
 (x ∈ X), 

(3.1.1) 

i=1 

where πi are the mixing proportions or weights and are constrained to 0 ≤ πi ≤ 1 ,(i = 

1,...,k) with π1+···+πk = 1 and Ψ = πi,...,πk, θT
1 ,...,θT

k 
T is the complete collection of all 

distinct parameters occuring in the mixture model. 

Assuming that all the fi(x|θi) are normally distributed, but with different means and 

standard deviations, then fi(x|θi) is define as: 

Definition 3.2 

Let X be a random variable with a parameter vector θ ∈ (µi,σi), then the Gaussian or 

normal distribution density function of X is given by 

 

 f(x|θi) = f(x|µi,σi)2

 (3.1.2) 
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where µi and σi denote the mean and standard deviations of the i0th component 

distribution. 

3.2 Other Constraints and Conditions Necessary for a 

meaningful estimation of mixture parameters 

In addititon to the basic constraints on the mixing proportions in definition 3.1, 

Macdonald and Green (1988) imposed variants forms of constraints on the 

proportions, means, and the standard deviations. Also, the necessary condition for 

the estimation to be meaningful is that the mixture densisty function must be 

identifiable. 

3.2.1 Constraints on the Proportions 

In empirical situations, the estimation of all the mixture parameters are very difficult. 

Hence it becomes necessary to impose some basic constraints in order to 

meaningfully estimate all the parameters. 

3.2.1.1 Proportions Free (None) 

Here, only the basic constraint 0 ≤ πi ≤ 1 (i = 1,...,k) with π1+···+πk = 1 is imposed. The 

first (k −1) proportions will be estimated directly with the πk
th proportion calculated 

from the relation 

k−1 

 πk = 1− X πi (3.2.1) 
i=1 
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3.2.1.2 Specified Proportion Fixed (SPF) Constraint 

Here, some or all of the proportions are held fixed in addition to the basic constraint 

while the other parameters are estimated. Suppose n is the number of proportions 

held fixed, then the number of free proportions to be estimated is k−(n+1). All the 

proportions can be made equal by evaluating each one at 1/k. 

3.2.2 Constraints on the Means 

3.2.2.1 Means Free (None) 

The constraint 

 µ1 < µ2 < ... < µk (3.2.2) 

is imposed in order to uniquely estimate all the means directly. This is to avoid 

multiciplity of the mean estimates. This is the constraint that is employed in the 

current work. 

3.2.2.2 Specified Means Fixed (SMF) 

Some means are held at fixed values while the remaining are estimated 

3.2.2.3 Equally Spaced Means (ESM) 

If the number of component k is quite large, the mean can be constraint to: 

 (µ2−µ1) = (µ3−µ2) = ··· = (µk −µk−1). (3.2.3) 

Only two means, µ1 and µ2 are estimated directly. The subsequents ones are 

computed from the relation: 
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 µi = µ1+(i+1)(µ2−µ1), 3 ≤ i ≤ k (3.2.4) 

This assumption corresponds to linear growth in size frequency analysis and only 

holds if there are at least three components. 

3.2.2.4 Growth Curve Means (GCM) 

This constraint forces the means to lie along a von Bertalanffy growth curve of the 

form 

   

 µi = L∞ 1−exp[−k(ti −t0)] (3.2.5) 

where 

(µ −µ )2 

 L

  (3.2.6) 

 µ3−µ2! 

k = −log µ2−µ1 

(3.2.7) 

 µ1 ! 

(ti −t0) = −k−1log 1−  

L∞ (3.2.8) 

According to Macdonald and Green (1988), given the components (age-groups), µi is 

the mean fish size in the ith age-group, t0 is the hypothetical age at size zero, ti is the 

actual age of the ith age-group, L∞ is the asymptotic mean size and k is the growth 

paramter. 

Note that the growth curve constraint is only applicable if there are at least four 

components or age-groups and (µ3−µ2) < (µ2−µ1) is valid. 
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3.2.3 Constraints on the Standard Deviations 

3.2.3.1 Standard Deviaton Free (None) 

The basic constraint for the standard deviations is that they must all be strictly 

positive. That is: 

 σi > 0, (1 ≤ i ≤ k) (3.2.9) 

In principle, all the standard deviations can be estimated. However, it is not 

empirically feasible when the number of standard deviations are large. 

2.3.2.3 Constant Coefficient of Variations (CCV) 

With this constraint, only the first standard deviation σ1 is estimated directly. The 

remaining σk−1 is computed from this one and all the estimated means µi 

using the relation: 

σ1 

σi = µi, i = 2,...,k (3.2.10) µ1 

The CCV constraint is also employed in the work under review. 

Other constraints that could be impose on the standard deviation are Specified 

Standard Deviation Fixed, all Standard Deviation Equal, and Fixed Coefficient of 

Variation. 

3.2.4 Identifiability 

Definition 3.3 

Let D be a parametric class of mixture densities and suppose further that 

∀ g(x|Ψ), g(|Ψ∗) ∈ D , then the class D is said to be identifiable for Ψ if 
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 g(x|Ψ) = g(|Ψ∗)  

k k0 (3.2.11) 

⇒ Xπif x|  Xπj0 f0(x|θ∗j) 
i=1 i=j 

This further implies that k = k∗, and ∀i, ∃j such that πi = πj
∗ and  

The identifiability condition guarantees that there is a unique characterization of 

every parameter set considered, and hence no two sets of distinct parameters can 

give rise to the same mixture density model. 

3.3 Estimating the parameters of FMM 

This section discusses the various methods of estimating the parameters from FMM. 

Basically, there are three parametric approaches to estimating mixture parameters. 

These are: the graphical methods, nongraphical (statistical) methods (namely the 

method of moments, maximum likelihood, and various minimun distance methods), 

and the Bayesian method. 

This paper focuses on the nongraphical methods particularly estimation by the ML 

method. Unfortunately, the log likelihood functions of most FMM and incomplete 

data problems often do not exist in closed forms. Hence analytically intractable to 

compute the parameter estimate. To solve this probem, a brief discription of how to 

use some iterative procedures: the Expectation Maximization (EM) algorithm and the 

Newton Raphson (NR) algorithm to approximate these solutions are examined. 

3.3.1 The method of moments 

Let n be identically independent observations from a k component population with 

densities functions and a k unknown parameter set θ. Suppose further that ν(θ) 

denote a vector of k independent moments and m the corresponding sample 

moments. Then the method of moments estimator θˆ satisfies the relation: 
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 ν(θˆ) =m (3.3.1) 

This method is considered the least efficient and computationally unstable. Also, in 

practice, when the components are more than two, it is rarelly applicable. 

3.3.2 The Minimum Distance Estimation Method 

In this method various distance funcitons are used to compute the discrepancies that 

exist between the theoretical and the empirical distribution functions obtained from 

a sample of n identically independent observations. The distance functions together 

with some numerical methods are then used to approximate the parameters that 

minimize the discrepancies. This method is usually used for binned data. 

Definition: 3.4 

Suppose G(x|Ψ) is the theoretical mixture distribution density function of interest with 

Ψ, the unknown parameters. Suppose further that Gn(x) is the empirical distribution 

function obtained from the observed sample. If δ(G,Gn) is the measure of the 

discrepancy between the functions G(.) and Gn(.). Then, the minimum distance 

estimator, Ψˆ for Ψ is the value of Ψ that minimizes 

 δ[Gn(x),G(x|Ψ)] (3.3.2) 

Note that if the distance measure is δ(Ψ), then Ψˆ is the critical or the stationary 

point (the estimator of the parameter of interest Ψ) of δ(Ψ) such that: 

  (3.3.3) 

There are various estimators that can be derived from this method all depending on 

the type of distance function used to measure the discrepancy, and also the choice 
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of the numerical method employ to approximate the parameter values. The choice 

of the measure is very important. This will determine the statistical properties of the 

estimates such as asymptotic consistency and continuous partial derivative with 

respect to the paramter of interest Ψ. Also, this has a bearing on the choice of 

numerical methods needed for the minimization (Macdonald and Pitcher, 1979). 

A few useful distance functions are listed below. Suppose the data is grouped over k 

size intervals with ni,(i = 1,...,k) being the observed size frequencies such that Pni = n. 

Suppose further that πi(θ),(i = 1,...,k) is the hypothetical propabality distribution with 

respect to each parameter θ. Then the Chi-Square χ2 statistic (distance function or 

measure) is given as 

 k i −nπi(θ)2 

n 

where; pˆi = n
n

i is the observed relative frequency of the ith interval, pi(θ) is the 

hypothetical probability function with respect to the parameter θ. 

δχ2(θ) = X i=1

 i(θ) 

nπ 

 

 2 n 
 k ni −πi(θ) 

= nX  

π 

 i=1 i(θ) 

 k −pi(θ)2 

pˆ 
X i 

= n , i=1

 i(θ) 
p 

(3.3.4) 
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Similarly, the Modified Chi-Square χ2
mod distance measure is given as 

pˆi 

 Xk −pi(θ)2 

 δχ2mod(θ) = 
i=1 pˆi (3.3.5) 

where 0 < pˆi ≤ 1 

Other distance measure functions used in the estimation of grouped data are: 

Hillinger Distance given by: 

 

 Xk qˆi −qpi(θ)2 (3.3.6) 

δH.D(θ) =  p 
 i=1 

The Kullback-Leibler Seperator: 

k 
 X pi(θ) 

δK.L(θ) = pi(θ)log  (3.3.7) i=1 pˆi 

Haldane’s discrepancy: 

(n+k)! Xk ni!pki +1(θ) 

 D  

 k = n! i=1 (ni +k)! , (3.3.8) 

where k , 1. For k = −1, then 

1 k 

D−1 = − Xni logpi(θ) 

n i=1 

Note that the Kullback-Leibler distance measure δK.L(θ) when minimized, gives exactly 

the same estimate θˆ as maximizing the log likelihood function 

k 

logL(θ|pˆ) = nXpˆlogpi(θ) 
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i=1 

All these distance functions when minimized give equivalent best asymptotic normal 

property like the ML. That is, in large sample, they are asymptotically consistent, 

normal, and have continuous partial derivatives like the ML. In particular, Neyman 

(1949) and Titterington et al. 1985 showed that the system of equations of the first 

partial derivatives of the Chi-square and the Modified Chisquare distance funcitons 

with respect to the k parameter θi,(i = 1,..,k) satisfy the best asymptotic normal 

property of the ML in large sample. Thus, preferred in situations where the data come 

grouped. That is 

 ∂δχ2(θ) Xk  pˆi 2 0 

 = −n  pi(θ) 

 ∂θi i=1 pi(θ) 

= 0 

and 

∂ mod χ2(θ) Xk pi(θ) 0 

 = p (θ) = 0 

 ∂θi i=1 pˆi 

when solved with the the appropriate numerical methods deliver the same 

asymptotic estimate property in large sample like the maximum likelihood estimates. 

In matrix notations, let p = p(θ) and pˆ be some m−row vectors and p(θ) a function of 

the s−row vector parameter. Also suppose that V = p/n is some m×m square diagonal, 

symmetric and positive definite matrix with zeros off the leading diagonals. Then 

δχ2(θ) and δχ2mod(θ) can be written as: 

0 

δχ2(θ) = (pˆ−p) V −1(pˆ−p) (3.3.9) 
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δ − ˆ −1 0 χ2 (θ) = (pˆ p) V 

(pˆ−p) (3.3.10) 
mod 

respectively. 

The minimization of the quadratic distance measure (χ2 and mod .χ2) have the 

following advantages over the maximization of the log likelihood funtion: 

1. the minimized distance method (Chi-square) is simpler to implement. 

2. the estimates are directly used in the computation of the Chi-square GOF 

test. 

3. it is easier to interprete as the discrepancy between the theoretical and 

theempirical distribution. 

In most empirical situations, the stationary equations from the first partial derivatives 

of the distance measure quadratic functions do not exist in closed form, therefore the 

parameters have to be approximated iteratively. In such case, the NR quadratic 

method is chosen. 

3.3.3 The Maximum Likelihood (ML) Estimation Method 

The ML estimation method is considered by far the most consistent and efficient 

mixture estimation method. It has desirable statistical properties. The estimates are 

asymptotically consistent. That is, they converge to the true parameter values if the 

sample size is large enough. The estimates are also consisderd to be asymptotically 

efficient and unbiased meaning that they are most precise and give the right value on 

average for large sample compared to other methods. This section reviews the 

general likelihood and log likelihood functions, the score/gradient statistic, the 

hessian, the observe information, and its equivalent expected information matrix of 

the mle. 
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Definition 3.5 

Let X be an iid random variable that assume values x≡ (x1,...,xn)T on a vector random 

sample of size n .Also, suppose Ψ ≡ (Ψ1,...,Ψn)T is the vector of distinct parameters to 

be estimated on the parameter space Ω. If the pdf is fi xi|Ψ, then the likelihoodfunction 

for the entire sample is given as: 

n 

Ln(Ψ,x) =Yf xi|Ψ 
i=1 

Instead of maximizing the likelihood, the log likehood function 

(3.3.11) 

n logLn(Ψ,x) = 

`n(Ψ,x) =Xlog{f(xi|Ψ)} (3.3.12) 
i=1 

is rather maximized. 

Definition 3.6 

The maximum likelihood estimator Ψˆ of Ψ is the value of Ψˆ that maximizes `n(Ψ,x) 

such that: 

 `n(Ψ,xˆ ) ≥ `n(Ψ,x), ∀Ψ ∈ Ω (3.3.13) 

Note: If the mle, Ψˆ is unique which is always not the case and Ln(Ψ,x) or `n(Ψ,x) is 

bounded and differentiable, then the values of Ψˆ can be found by using the 

score/gradient equation.. 
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Definition 3.7 

The score or the gradient equation is the simultaneous equations of the first partial 

derivatives of `n(Ψ,x) with respect to each parameter in Ψ such that Sn

 

n 1 = X

 

( ) 

∂  f 

xi|Ψ 

(3.3.14) 

i=1 f(xi|Ψ) ∂Ψ 

= 0 

To prove that indeed, the mle, Ψˆ is the maximum estimate but no other critical 

point, the Observed Information Matrix or negative of the Hessian matrix is 

computed. 

Definition 3.8 

The observed information matrix is the negative of the second order partial derivatives 

(the Hessian matrix) of the loglikelihoodfunction, with respect to elements of Ψ. That 

is: 

(Ψ,x) 

In(Ψ,x) = − T 

∂Ψ∂Ψ 

= −H(Ψ,x) 

(3.3.15) 

(Ψ,x) 
where H(Ψ,x) = T is the Hessian matrix. 

∂Ψ∂Ψ 
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Definition 3.9 

The Fisher or the expected information matrix under regularity conditions is the 

expectation of the observed information matrix. Alternatively, it is the negative 

expectation of the Hessian matrix given by: 

. 

In(Ψ) = E[Sn(Ψ)Sn
T (Ψ)]  

= E[In(Ψ,x)] = 

−E[H(Ψ,x)] 

(3.3.16) 

Note that the asymptotic variance covariance matrix is the inverse of the expected 

information matrix. That is: 

V ar(Ψˆ) =I−
n

1(Ψ,ˆ x) 

(3.3.17) SE(Ψˆ) = {I−
n

1(Ψˆ)}ii  

where the standard error SE(Ψˆ) is the the square root of the diagonal elements of 

variance covariance matrix V ar(Ψˆ). 

In practice, most of the log likelihood functions are complicated and do not exist in 

closed-forms and hence the parameter estimation are analytically intractable. In such 

cases, numerical procedures such as the EM and NR algorithms are employed in the 

estimation process. In the case of estimating the parameters of the mixture models, 

the likelihood functions are complex depending on whether the problem is a 

continuous or of incomplete data (missing data, grouped, censored, or truncated) 

problem . The next subsections describe the data type used in this work. Finally, the 

likelihood functions of the finite mixture distributions, grouped, and combined 

likelihood functions of two are examined. 
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Definition 3.10 Complete Data Problem 

Let x1,...,xn be n identically independent realized observations of the random vector X 

from a mixture density. Suppose further that z = (z1,..,zn) is a k dimensional 

components indicator vector values of zeros and once of the vector random variable 

Z such that the missing values are define as 

 

1, 

zij = 

0, 

if xi belongs to the jth component if xi does not 

belong to the jth component 

for i = 1,..,n and j = 1,...,k, then the complete data observation vector yc from 

the random vector variable Y is given as  

yc = (x,z) (3.3.18) 

Here, both the individual observations and their respective subpopulations are 

directly observed. 

For the complete data vector yc, the likelihood and log likelihood functions for the 

parameter Ψ are given by: 

n 

Ln(Ψ,yc) =Yg(xj|Ψ) 
j=1 

(3.3.19) 
 n  k z 

=Y Yπiijf xj|θizij j=1 i=1 

and 

 n k n k 

`n(Ψ,yc) =XXzijlogπi +XXzijlogfi(xj|θi) 

 j=1 i=1 j=1 i=1 

(3.3.20) 
 k n 

=XXzij{logπi +logfi(xj,|θi)} 
j=1 i=1 

respectively. 
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Note that mle of the log likelihood function of the complete data problem can be 

obtained directly under some assumptions. 

Most of the statistical problems fall under the category of incomplete data problems 

and the finite mixture densities are no exceptions. Unfortunately, the log likelihoods 

of these densities are quite complicated and hence the ML not applicable directly. 

The challenge then is to transform the incomplete data problem to a complete one 

by introducing the appropriate missing variable. 

Definition 3.11 Grouped Data 

Let X be a random variable with density function f(x;Ψ). Suppose further that the sample 

space of X is partioned into m exclusive interval with boundaries a0,...,an. Individual 

observations x1,...,xn are made on X but only the number of observation (frequency) ni 

falling into interval [ai−1,ai)i=1,...,m are reported such that n =Pm
i=1ni. Then the data form: 

 yi = (ai,ni), i = 1,...,m (3.3.21) 

is call a grouped data. 

Note that the observed data vector y = (n1,...,nm) has multinomial distribution 

consisting of n draws on m categories with probabilities P1(Ψ),...Pm(Ψ), where 

ai 

Pi(Ψ) =f(x,Ψ)dΨ, i = 1,...m (3.3.22) 
ai−1 

is the probability that an individual x belongs to the ith interval and f(x,Ψ) is the 

density function of X. 

Note that the likelihood function of the observed data y with multinomial probability 

Pi(Ψ) is given as: 
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 n! n1 nm 

 L(Ψ) = [P1(Ψ)] ...[Pm(Ψ)] (3.3.23) 

n1...nm 

In computing the log likelihood, only the part of the likelihood function that depend 

on the parameter of interest Ψ is used. That is: 

m 

 logL(Ψ) = `(Ψ) =Xni logPi(Ψ) (3.3.24) 
i=1 

The next subsection deals with the general theory behind the EM −algorithm. 

This algorithm is used to approximate the finite mixture grouped parameters. Finally, 

the Newton Raphson (NR) numerical method which is used in the M − step of the EM 

−algorithm if the function from the E-step is not in a close form as discussed. 

3.3.4 The Expectation Maximization (EM) Algorithm 

The EM Algorithm is one of the commonly iterative method used in approximating 

ML mixture parameters from complex data problems. Common and less complicated 

approach is its application to continuous data. In this work, the EM algorithm is used 

to approximate the GFMM parameters given that the data come grouped. The log 

likelihood of these incomplete data do not exist in close form and hence the 

parameter estimates are analytically intractable. 

The EM algorithm consists of two steps: the Expectationstep, (E-step) and the 

Maximization−step (M-step). In the E-step, the incomplete observed data is 

transformed to a complete one whose log likelihood function often exist in close 

form, and is easy to solve analytically. Instead of the incomplete data, the conditional 

expectation of the complete data given the observed data is rather use. Together the 

appropriate initial values, the E-step generate some function Q(.) which is iteratively 

maximized in the M-step until convergence or stopping critirion is reached. 
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Summary of the EM-algorithm 

1. Transform the given incomplete data to complete data 

2. generate a certain Q(.) function consisting of the conditional expectation of the 

complete data log likelihood given that the observe exist and obtain 

appropriate initial values. 

3. maximize the Q(.) function in the m-step to obtain new estimates 

4. update the initial values with the new estimates. 

5. repeat step 2 and 3 until convergence and/or stopping critirion is reached. 

Mathematically, the EM Algorithms can be formulated as follows: 

Let Y be random vector variable assuming observed incomplete data y=(yi,... ,yn)T with 

pdf g(y|Ψ), where Ψ is the vector of parameters to be estimated. Suppose further that 

X is the random vector variable assuming the complete data values x = (x1,...,xn)T with pdf 

fc(x|Ψ) and log likelihood logfc(x|Ψ). Let Ψ(0) be the appropriate initial value of Ψ. Then 

on the first iteration, the E-step requires the calculation of the conditional expectation 

of the complete data log likehood given the observed data x. That is 

 EΨ(0)[logLc(Ψ)|X] = Q Ψ|Ψ(0) (3.3.25) 

where Ψ(0) is the initial value. 

In the M-step, Q Ψ|Ψ(0) is maximized with respect to Ψ over the parameter space Ω. 

That is, choose each Ψ(1), ∀Ψ ∈ Ω such that 

 Ψ(1) = arg max[Q Ψ|Ψ(0)] (3.3.26) 
Ψ 

The E-and the M-step are then carried out repeatedly but at this time, Ψ(0) is replaced 

by Ψ(1). 
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On the (k+1)th iteration, the E- and M-step is given as: 

E-step: Q(Ψ|Ψ(k)) = EΨ(k)[logLc(Ψ)|X = x] 

M-step: Ψ(k+1) = arg max[Q(Ψ|Ψ(k))] 
Ψ 

This process is alternated repeatedly until a certain stopping critirion say TOL (ε) or 

convergence is attained. 

 || ε, (3.3.27) 

where ε is some small chosen value. 

That is, the iteration terminate at the (k+1)th step if the absolute difference in the log 

likelihood of logL Ψ(k+1),x−logL Ψ(k),x is smaller than the chosen ε. 

Note that alternatively, the stopping critirion could also be calculated using the 

change in the parameters after each iteration instead of the log likelihood. Also, 

convergence is sensitive to different initial values and stopping critirion. 

3.3.5 Monotonicity Property of the EM Algorithm. 

It is one of the major properties that gurantees convergence of the EM-algorithm. 

This theorem ensure that as the EM-algorithm iterates, the (k +1)th guess of Ψ(k+1)will 

never be less likely (perform worse) than the kth guess Ψ(k) in terms of their log 

likelihoods. 

Theorem 3.1 

Let logg(y|Ψ) be the log likelihood function. For Ψ ∈ Ω, 

if Q Ψ(k+1)|Ψ(k) > Q Ψ(k)|Ψ(k), then 

logL Ψ(k+1) ≥ logL Ψ(k) 
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3.4 Estimating GFMM parameters from Grouped 

Data via EM Algorithm 

Here, two distinct incomplete data problems with different log likelihoods (finite 

mxiture and grouped data) is combined into one complete data log likelihood 

function. Fitting GFMM to the combine data log likelihood function through EM 

algorithm takes two different approaches depending on whether individual 

observations are reported or the data come grouped. In practice, the data are 

grouped in the form of a histogram. Everitt et al.(2000) and McLachlan, et al (2000) 

have showed situations in which mixtures were fitted to continuous data. 

Definition 3.12 

Let X be a random variable with mixture density function g(x|Ψ)=Pk
i=1πif x|θi, where 

Ψ is the paramter vector in the space Ω. If y = (n1,...,nm) is the number of observations 

falling into the intervals [a0,a1),[a1,a2),...,[am−1,am) with boundaries a0,a1,...,am such 

that instead of the individual observations, ni (the frequency) are rather reported. 

Then, the log likelihood of the GFMM given a 

grouped data is: 
m 

where 

logL(Ψ) = `(Ψ) =Xni logPi(Ψ) 
i=1 

ai 

Pi(Ψ) =g(x|Ψ)dx 
ai−1 

(3.4.1) 

i 1 =  

 k ai 

= Xπj ˆ f(x|θj)dx 

j=1 ai−1 k 

(3.4.2) 
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 ai k 

={Xπjf(x|θj)}dx a − j 1 

Therefore the log likelihood function of the grouped data can be written as: 

 m k 

logL(Ψ) = Xni logXπjPi(θj) 
 i=1 j=1 

 

 m k m k 

= XXni logπj +XXni logPi(θj) 
(3.4.3) 

 i=1 j=1 i=1 j=1 

Note that the log likelihood in (3.4.3) is not in a close form, hence can not be solved 

explicitely. Macdonald and Pitcher (1979) proposed two iterative procedures: the EM 

and NR algorithm to approximate these parameters at pre-define 

constraints. A missing data variable ,...,m j=1,...,k, is introduced, which is the 

number of observations from the jth group falling into the ith interval. That is: 

 n∗i = (n∗1i,...,n∗ki)T, i = 1,...,m 

The new complete data log likelihood wi = (yi,n∗i ) can then be written as: 

 m km k 

logLc(Ψ,w) = XXn XXn  
 i=1 j=1 i=1 j=1 

(3.4.4) 
 m k 

= XXn∗ij log[πiPij(θj)] 

i=1 j=1 

= XπjPi(θj) 
j=1 
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The E-step for the logLc(Ψ,w) above is computed as: 

   

Q Ψ,Ψ(s)= EΨ(s) logLc(Ψ,W)|Y = y 

 m k   

 = EΨ(s)[XXNij∗ log πPij(θj)|y (3.4.5) 

i=1 j=1 

 m k   

= XXlogπiPij(θj)EΨ(k) Nij
∗ |y 

i=1 j=1 

  where EΨ(k) Nij
∗ |y is the conditional expected value of n∗ij given that 

the observed value y is calculated as: 

E  P Nij∗ = 1|Yi = yi 

P Yi = yi|Nij∗ = 1P Nij∗ = 1 

 

= Pkj=1P Yi = yi|N P N  

Pij  

 = niP k  (s)

 (3.4.6)  

j=1πj Pij 

 

 
= ni g xi,Ψ(s) 

= eij∗(s) 

Substituting (3.4.6) into (3.4.5), the Q(.) function can be computed as: 

 m k 

Q  XXlogπiPij(θj).eij∗(s) 
i=1 j=1    

m k m k (3.4.7) 

= XXe XXeij∗(s) logf(xi|θj) i=1 j=1 i=1 

j=1 
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The M-step: 

In this step, the Q(.) function generated from the E-step is maximized with respect to 

πj and θj independently since they are not related. To write the gradient equation for 

πj, the Lagrange multiplier λ is introduced and the constraint Pkj πj = 1 is imposed. 

∂ "Xm XkXk #   πj −1 = 0 (3.4.8) 

 
∂πj 

i=1 j=1 j=1 

or 

m X 1 ∗(s) 

eij +λ = 0 (3.4.9) i=1 πj 

summing both sides over j, then λ = −m. Therefore e∗(s) and the 

iterative estimator of πj is 
m 

X ∗(s) 
e (3.4.10) m i=1 

The maximization of Q(Ψ,Ψ(k)) with respect to θj = (µj,σj) independently does not exist 

in closed form. Therefore the estimates of θj can not be obtained analytically. The NR 

algorithm is chosen to maximize Q(Ψ,Ψ(k)) with respect to θj = (µj,σj) as implemented 

in the R package ”mixdist”. There are four other methods for maximizing the Q 

function besides the combined EM and NR algorithm implemented in mixdist by 

Macdonald and Du (2011). Two of these methods entail the idea of mapping or 

transfoming the grouped data into continuous/individual data for each interval 

making use of the midpoint. The functions generated from the E-step are in closed 

form and therefore can easily be maximize in the M-step. Other methods entail 

approximating f(xi|θj) by h.f(a,¯ θj), where h is the equal width of each interval and 

a¯ is the midpoint of each interval. 

3.5 The Convergence Rate Matrix of the EM 
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algorithm 

The EM algorithm considered in this work implicitely defines a mapping Ψ −→ 

M(Ψ) from the parameter space Ω such that 

 Ψ(s+1) =M(Ψ(s)), s = 0,1,... 

If Ψ(s) converges to some fixed point Ψ∗, and M(Ψ) is continuous, then Ψ∗ must 

satisfy the relation: 

Ψ∗ =M(Ψ∗) 

By Taylor series expansion of Ψ(s+1) =M(Ψ(s)) in the neighbourhood of Ψ∗, the 

approximate equation is: 

 , (3.5.1) 

where 

DM(Ψ) = ∂

Mj(Ψ)!∂Ψi 

Ψ=Ψ∗ 

is some d × d Jacobian Matrix for M(Ψ) = M1(Ψ),...,Md(Ψ) evaluated at Ψ = Ψ∗. Thus, 

in the neighbourhood of Ψ∗, the EM algorithm have a linear convergence rate with a 

rate matrix DM. 

3.6 Estimating the Variance-Covariance Matrix of (Ψ−Ψˆ) 

One of the main criticisms of the EM-algorithm in practice is that, it does not 

authomatically estimate the asymptotic variance-covariance matrix (from which the 

standard errors will be computed) for all the estimated parameters as compared to 
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other numerical methods like the NR-algorithm. This section will examine the method 

and procedures for approximating the variance-covariance matrix using the EM 

algorithm. 

Suppose that the observed information matrix Io(Ψ|.) of Ψ given the variables of the 

observed incomplete data X and complete data Xc are given by: 

∂2logg(X|Ψ) 

 Io(Ψ|X) = − T 

∂Ψ∂Ψ 

and 

∂2logg(X 

 Io(Ψ|Xc) = − c|Ψ) 

∂Ψ∂ΨT 

respectively, then the variance covariance matrix V ar(Ψˆ) given the observed 

variable X can be written as 

 V ar(Ψˆ) = I−
o 

1(Ψˆ|X) (3.6.1) 

Note that the observed information matrix of the observed incomplete variable X is 

analytically intractable to evaluate directly, whereas that of the complete data 

variable Xc given by the conditional expectation on the missing variable is a very 

simple function that can easily be evaluated at Ψˆ. That is 

 

 Ioc = EΨ[Io(Ψ,Xc)|X] 
Ψ=Ψˆ (3.6.2) 

Now, from the theory that the density of the complete data is the product of the 

densities of the observed and missing data given the observe. That is: 

g(Xc,Ψ) = g(X,Ψ)g(Xmis|X,Ψ) 
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Writing the log likelihood of Ψ given the observed in terms of the log likelihood of Ψ 

given the complete and the missing variables, generate the equation: 

 `(Ψ|X) = `(Ψ|Xc)−logg(Xmis|X,Ψ) (3.6.3) 

Taking the negative second partial derivative of (3.6.3), averaging over g(Xmis|X,Ψ), and 

evaluating at Ψ =Ψˆ, result in the equation: 

 Io(Ψ,ˆ X) =Ioc −Iom, (3.6.4) 

where the matrix 

  ∂2logg Xmis|X,Ψ ! 

 Iom = −EΨ T X,Ψ  (3.6.5) 

 ∂Ψ∂Ψ  Ψ=Ψˆ 

is the missing information from Orchard et al. (1972) missing information principle. 

From (3.6.4), the observed information matrix is the difference between the 

complete information and the missing information matrix. 

Rewritting (3.6.4) as 

 Io(Ψ,ˆ X) = (I −IomI−
oc

1)Ioc (3.6.6) 

and setting DM =IomI−
oc

1, the variance covariance matrix V ar(Ψ) can be com- 

puted as: 

V ar(Ψˆ) = I−
oc

1(I −DM)−1 

 

= I−oc1+I−oc1DM(I −DM)−1 = 

I−oc1+∆V ar 

where 

(3.6.7) 

∆V ar = I−
oc

1DM(I −DM)−1 (3.6.8) 

is the increase in variance due to the missing information and I is d×d identity matrix. 
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3.7 Newton-Raphson (NR) Method 

The Newton-Raphson Method (and it variants: quasi-Newton Methods and modified 

Newton-Methods) is one of the most popular numerical techniques for finding the 

parameter estimates of the score or gradient functions in situations where the 

maximized log likelihood can not be solved analytically by direct ML and EM-

algorithms. This algorithm is usually applied to complicated score functions/statistics 

by approximating it by Taylor series expansion to compute the parameter estimates 

numerically. 

Definition: 3.13 Newton Raphson algorithm 

Suppose Sn ∈ C2[a,b] is a vector function of the set of all functions that have second 

continuous partial derivatives on the closed interval [a,b]. Let Ψ(k) ∈ [a,b] be an 

approximation to Ψ(k+1) such that S0 x |Ψ(k), 0 and also |Ψ −Ψ(k)| is 

 n i 

very small. Then the Taylor series expansion of Sn xi|Ψ(k+1) about Ψ(k) is 

0 

Sn xi|Ψ(k+1) = Sn xi|Ψ(k)+ Ψ(k+1) −ΨkSn xi|Ψ(k) 

 + Ψ(k+1) −Ψ(k)2S00n xi|ξ(Ψ(k+1)) (3.7.1) 

 

2! 

where ξ(Ψ(k+1)) is between Ψ(k) and Ψ(k+1). Now let Sn xi|Ψ(k+1)= 0 and 
0 

Sn xi|Ψ(k)=−In Ψ(k) . Assuming further that |Ψ(k+1) −Ψ(k)| is small, then the third term 

becomes insignificantly smaller and hence can be dropped and solving for Ψ(k+1) in 

(3.7.1), results in the equation: 
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 Ψ(k+1) = Ψ(k) +I−n1 xi|Ψ(k)Sn xi|Ψ(k), (3.7.2) 

where In(.) is the information matrix and Sn(.) the gradient vector statistic. In matrix 

notation, let 

D 
 

 
 

 
=   

   

  ∂pm ∂pm  

 (x) ... (x) ∂Ψ1

 ∂Ψs 

denote some m×s first partial derivative matrix with respect to each parameter Ψ. 

Then In(.) and Sn(.) can be written as: 

 0 −1 
 In =D V D (3.7.3) 

and 

 S =D0V −1pˆ (3.7.4) 

The minimum distance measure ( χ2 and mod .χ2 ) estimator Ψˆ is the root of the non-

linear normal vector equation S =0 which can only be solved numerically. That is: 

 D0V −1pˆ= 0 (3.7.5) 

Applying NR numerical algorithm to (3.7.4), the new estimate can be obtain 

from: 

Ψ1 = Ψ0+I−1S 
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(3.7.6) 

= Ψ0+(D0V −1D)−1D0V −1pˆ 

where, Ψ0 is the appropriate initial value for the parameter of interest Ψ. 

Note: In theory, Newton-Raphson method converges quadratically if and only if 

reasonable assumptions are made on Ln(Ψ) and sufficiently accurate starting values 

are chosen. But in practice, the initial values are only guess and successive 

approximations are generated by the Newton-Raphson method. The NR-algorithm 

have a quadratic rate of convergence, hence faster than the EM-algorithm. Also, it 

authomatically estimate the covariance matrix unlike EM-algorithm. However, it is 

very difficult to implement in practice due to the initial computation of some d×d 

inverse information matrx I−
n

1(xi|Ψk) for each k iteration. In addition, the initial values 

are very sensitive and it takes a lot of storage space.  
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Chapter 4 

DATA COLLECTION, 

ANALYSIS AND RESULTS 

4.0 Introduction 

This chapter illustrates the use of the ML method via the EM and the NR algorithms 

to approximate all the mixture parameters of the yellowfin tuna population from 

GFMM. The form and the summary of the dataset used is also examined. The 

histogram is chosen to summarize the length-frequency data over other methods 

such as proportional distribution structure (PPS) since modes/components are clearly 

visible to researchers with even less statistical experience. Various stages in the 

analysis involves: choosing of appropriate initial values for the EM algorithms and 

superimposing the distributions on the histogram. The sensitivity of the fits are 

examined intuitively and objectively (by computing the full covariance matrix). 

Finally, the Chi-square GOF test is used empirically to determine whether the GFMM 

fits the data well. The analysis was carried out by 

Macdonald and Du (2011) R mixdist package. 

4.1 The Nature of Data 

The dataset consisted of the 2014 monthly length-frequency data of the yellowfin 

tuna from the log files of the Fisheries Commission of Ghana. This year was chosen 

because the sample size was large enough and consistent. The fork-length of juvenile 

tuna was measured in length (cm) and constraint to (38cm < FL < 80cm) interval. This 

size was chosen in order to avoid excessive overlapping in the components when the 
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length are quite large. Each sample observation was first grouped into fork length, FL 

(in cm) with equal class intervals or width of h = 2cm. The histogram in figure 4.1.1 

shows the summary of the quarterly grouped data for the year 2014. From the figure, 

it is evident that the components are heavily overlapped and do not form distinct 

modes. 

 

 

Figure 4.1.1: Histogram of quarterly length frequency of the yellowfin tuna in the year 
2014 

Now, in order to accurately fit the mixture distribution model to this data, initial 

values of all the parameters including the number of components k need to be 

known. Unfortunately, the correct number of components k cannot be estimated 

from the histogram alone since the modes are not clearly distinct. Hence in this work, 

the number of components k was guessed through trial and error method aided by 

the histogram. 

Based on the particular value of k, the initial values of the means (mu), the 

proportions (pi), and the standard deviations (sigma) were also guessed aided by 

visual observation from the histogram. 
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Note: The following constraints were imposed on the proportions and the standard 

deviations: for the the proportions, 0 ≤ pi ≤ 1 (i = 1,...,k); pi1+···+pik = 1 while for the 

standard deviations, the CCV was imposed. 

Next, in order to assess the sensitivity of these initial values, and the normality 

assumption, the densities of each component were superimposed on the histogram 

using the initial values for each components and the fits observed intuitively. 

Figure 4.1.2 shows that the model at least graphically fit the data well. 

 
 Normal Mixture Normal Mixture 

 
 Normal Mixture Normal Mixture 

Figure 4.1.2: Quarterly length frequency histogram of 2014 yellowfin tuna fitted 

to GFMM 

Note: the green (thick) curve represents the total fit to the GFMM whereas the red 

(thin) curves represent the best fit for each component distributions from the sample 

with the triangle on the x-axis denoting the mean lengths positions. 

The hanging rootogram was used to assess the GOF intuitively (graphically) between 

the the observed and the assumed GFMM. The small rectangles around the x-axis in 

Figure 4.1.3 show that there are no clear patterns of overfitting or/and underfitting. 
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Hence, it can be concluded that the model fit the data well from the rootogram 

analyis. 

 

Figure 4.1.3: Assessing the fit of the model from the hanging rootogram analysis 

Table 4.1 , 4.2, and 4.3 display the components with their parameter estimates, 

respective standard errors and Chi-square statistic respectively for the first quarter in 

2014. 

The proportions or weights for the first four age-groups increased gradually until the 

fifth age-group where it began to decrease. The continuous increament in the mean-

lengths is at least twice that of the standard deviations across all the five age-groups. 

Note that only the first standard error (sigma.se) of the standard deviation was 

displayed, the rest set to NA. This is due to the fact that only one degree of freedom 

was used to estimate all the sigmas when the constraint CCV was imposed otherwise 

too many parameters will have to be estimated. The remaining standard errors could 
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be computed from the Delta method by using the first estimated standard deviation 

together with all the estimated mean−lengths. The square root of the diagonal 

elements of the complete covariance matrix output all these standard errors. 

In all, the total number of free parameters fitted was 10. Four free mixing proportions 

(the pi add one), one free sigma (CCV was used) and five free means. Hence the 

dimension of the inverted information matrix is (10×10). The complete covariance 

matrix for all the parameters estimated when the delta method was applied is 

captured in appendix B. Table 4. display only the standard errors computed from the 

square roots of the diagonal elements of the covariance matrix. The new dimension 

of the complete covariance matrix is now 15×15. 

Table 4.4 illustrates the use of the analysis of variance (ANOV A) and Chi-square to 

objectively test the GOF of GFMM to the sample. 

The Chi-square test of GOF with a p−value of 0.193 shows that the GFMM fit the 2014 

yellowfin tuna length frequency data in the first quarter very well. 

Table 4.1: Estimated parameters with number of estimates in each group for the first 

quarter (2014) 

age-groups proportions mean lengths standard deviations Estimated 

(k) (pi) (mu) (sigma) no.in group 

1 0.03540 45.29 1.326 42 

2 0.13932 49.92 1.461 165 

3 0.35952 54.64 1.600 425 

4 0.45219 58.59 1.715 536 

5 0.01357 64.04 1.875 16 

Table 4.2: Estimated parameters and their standard errors of the yellowfin tuna the 

length frequency data from GFMM for the 1st quarter in 2014 

 parameters  

Age-groups proportions mean-lengths standard deviations 

 k pi (SE of pi) mu (SE of mu) sigma (SE of sigma) 
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1 0.03540 0.008058 45.29 0.3904 1.326 0.08668 

2 0.13932 0.013742 49.92 0.2672 1.461 NA 

3 0.35952 0.026362 54.64 0.2125 1.600 NA 

4 0.45219 0.029243 58.59 0.1677 1.715 NA 

5 0.01357 0.007442 64.04 1.0085 1.875 NA 

Table 4.3: The complete set of standard errors for all the parameter estimates 

computed from the covariance matrix. 

(SE of pi) (SE of mu) (SE of sigma) 

0.008058 0.390354 0.086681 

0.013742 0.267155 1.149126 

0.026362 0.212482 1.261239 

0.029243 0.167670 1.353019 

0.007442 1.008475 1.482216 

That is, the mixture model fails to reject the claim that yellowfin tuna population is 

indeed come from the GFMM distribution family with 5 distinct 

components/subpopulations. 

Similar analyses were carried out for the remaining quarters and the Chi-square test 

of GOF and corresponding p-values reported in table 4.5. Examination of the p-values 

revealed that the fits were really good for the first two quarters, barely fit the the 

third quarter data and poorly fit the last quarter. This could be attributed to the fact 

that the correct number of subpopulations is five but not six as reported in the last 

two quarters and other factors to due missing data problem. 

Based on the size selection used in this study, the proportions of successive age 

groups increase continuously until the fouth component. This may not be a typiTable 

4.4: ANOVA and Chi-Squared test of goodness of fit for the parameter estimate for 

the 1st quarter 

Analysis of Variance Table 

 Df Chisq Pr(>Chisq) 

 Residuals 3 4.726 0.193 
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Table 4.5: Chi-Square statistics with degrees of freedom, p-values, and the sample 

size for the four quarters 

 Df chisq p-value sample size 

1st qter 3 4.726 0.19 1184 

2nd qter 3 4.54 0.21 1185 

3rd qter 7 19.741 0.01 ** 1601 

last qter 6 21.89 0.001 ** 441 

cal reflection of the entire population since in a stable population with mortality, the 

proportions of successive age groups are expected to be decreasing. Hence this 

conclusion could only arise from the size selection used in this fishery. 

The chapter presented the findings and discussions resulting from the application of 

the GFMM to the 2014 yellowfin tuna fork length-frequency data. The summary from 

the histogram showed that the various components modes were heavily overlapped 

and hence the histogram alone is not reliable for estimating the number of 

components/cohorts. 

The appropriate number of components and the initial values for all the parameters 

were guessed based on visual inspection of the histogram. Improved initial values 

were only chosen after the components densities were superimposed on the 

histogram and the sensitivities of the fits assessed graphically and objectively by the 

rootogram analysis and the Chi-square test of GOF from the ANOVA respectively. It 

was observed that the means and the standard deviations in particular were very 

sensitive when shifted in the horizontal and the vertical direction respectively. 

The number of parameters to be estimated was quite high, therefore basic 

constraints were imposed on all the set of parameters. For instance, only four out of 

the five proportions were estimated by constraining the sum of the mixing 

proportions to one. Also, the CCV constriant imposed on the standard deviations 

enabled only the first standard error to be estimated and the remaining calculated 
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from this one and all the estimated means by applying Delta method to the 

covariance matrix. 

The analysis established that the ML estimation method when used in conjunction 

with the EM and NR algorithms is in general a powerful method for estimating age-

groups related parameters if appropriate optimization constraints are imposed.  
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Chapter 5 

CONCLUSION AND 

RECOMMENDATION 

5.0 Introduction 

This chapter presents the concluding statements from the study under review. It also 

provides some recommedations resulting from the findings to fisheries scientists and 

stakeholders in the fishery industry and suggestions on possible future research 

areas. 

5.1 Conclusion 

It was evident from the study under review that the yellowfin tuna population from 

the atlantic ocean of Ghana consists of five (or six) subpopulations with the same 

(normal or log normal) distribution for each component although different 

components distributions are theoretically viable. Hence, the GFMM significantly fits 

the yellowfin tuna length frequency data irrespective of the limitations of heavy 

overlapping of the components modes and the effect of different bins size. 

For each of the five or six component (age-group), all the parameters were 

successfully estimated by the ML method via the EM and the NR algorithms. First, ten 

and twelve free parameters were estimated directly for the first two and last two 

quarters respectively. That is, for the first two quarters, four mixing proportions, five 

mean-lengths, and one standard deviation for each age-group were estimated 

directly. The remaining five (from the five subpopulations) and six (from the six 
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subpopulations) were computed from the constraints imposed particularly on the 

proportions and the standarad deviations. Most of the estimates as revealed by their 

standered errors were statistically significant. Also, the Chi-square GOF test from the 

anova table revealed that the five components mixture model fit was statistically 

better than the six. Hence, based on the size selection in this fishery, it could be 

infered that there exist five different age groups with continuous increament in the 

mean lengths. The proportions and their equivalent estimated numbers also 

increased consecutively until the fourth component where it began to decrease. 

Finally, the new variance covariance matrix (R-code) which was not originally part of 

the package together with the Chi-square GOF test addressed the inferencing 

problem encountered in the graphical methods. The new covariance matrix of 

dimension (15×15) estimated all the standard errors. 

5.2 Recommendations 

The following recommedations and suggestions are made to fisheries scientists, 

stakeholders and policy makers in the Fishery Commission: 

• It is recommended that the GFMM and ML estimation method via EM and NR 

algorithms made available in the mixdist package in R should be chosen over 

the traditional Bhattacharya graphical method used by most fishery scientists 

in dissecting and estimating the age-groups related parameters from a grouped 

length frequency data. 

• The Fishery Commission of Ghana should intensifies training and encourages 

its personel to take advantage of the flexibility and several packages in 

R to augment its research work in fishery growth modeling, mortality rate and 

stock assessments models etc. 
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5.3 Suggestions on further research 

• It is recommended that further investigation should be conducted into 

estimating the total number of the subpopulations (cohorts or components) 

from the mixture population since the scope of this work could not allow for 

that. 

• Also, the effects of differents bins size or class widths on the estimates should 

be investigated 

• Investigation into the feasibility of using only the the Newton Raphson 

algorithm (with quadratic convergence rate) as the required numerical method 

will be a big break through.  
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Appendices 

Appendix A 

First Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

43 3 YFT purse seine free school 

44 5 YFT purse seine free school 

45 9 YFT purse seine free school 

46 12 YFT purse seine free school 

47 13 YFT purse seine free school 

48 16 YFT purse seine free school 

49 28 YFT purse seine free school 

50 41 YFT purse seine free school 

51 43 YFT purse seine free school 

52 46 YFT purse seine free school 

53 57 YFT purse seine free school 

54 79 YFT purse seine free school 

55 99 YFT purse seine free school 

56 136 YFT purse seine free school 

57 122 YFT purse seine free school 

58 106 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 
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First Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

59 140 YFT purse seine free school 

60 109 YFT purse seine free school 

61 54 YFT purse seine free school 

62 38 YFT purse seine free school 

63 13 YFT purse seine free school 

64 7 YFT purse seine free school 

65 4 YFT purse seine free school 

66 2 YFT purse seine free school 

67 1 YFT purse seine free school 

68 1 YFT purse seine free school 

69 1 YFT purse seine free school 

70 0 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 

Second Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

37 0 YFT purse seine free school 

38 1 YFT purse seine free school 

39 1 YFT purse seine free school 

40 1 YFT purse seine free school 

41 1 YFT purse seine free school 

42 2 YFT purse seine free school 

43 2 YFT purse seine free school 

44 2 YFT purse seine free school 

45 2 YFT purse seine free school 
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46 3 YFT purse seine free school 

47 5 YFT purse seine free school 

48 9 YFT purse seine free school 

49 19 YFT purse seine free school 

50 36 YFT purse seine free school 

51 44 YFT purse seine free school 

52 54 YFT purse seine free school 

53 89 YFT purse seine free school 

54 138 YFT purse seine free school 

55 153 YFT purse seine free school 

56 230 YFT purse seine free school 

57 205 YFT purse seine free school 

58 186 YFT purse seine free school 

59 174 YFT purse seine free school 

60 147 YFT purse seine free school 

61 52 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 

Second Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

62 24 YFT purse seine free school 

63 10 YFT purse seine free school 

64 4 YFT purse seine free school 

65 2 YFT purse seine free school 

66 0 YFT purse seine free school 
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67 1 YFT purse seine free school 

68 1 YFT purse seine free school 

69 2 YFT purse seine free school 

70 0 YFT purse seine free school 

71 1 YFT purse seine free school 

72 1 YFT purse seine free school 

73 1 YFT purse seine free school 

74 1 YFT purse seine free school 

75 1 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 

Third Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

39 0 YFT purse seine free school 

40 1 YFT purse seine free school 

41 1 YFT purse seine free school 

42 1 YFT purse seine free school 

43 2 YFT purse seine free school 

44 3 YFT purse seine free school 

45 7 YFT purse seine free school 

46 12 YFT purse seine free school 

47 17 YFT purse seine free school 

48 24 YFT purse seine free school 

49 82 YFT purse seine free school 

50 61 YFT purse seine free school 

51 35 YFT purse seine free school 
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52 18 YFT purse seine free school 

53 7 YFT purse seine free school 

54 4 YFT purse seine free school 

55 1 YFT purse seine free school 

56 1 YFT purse seine free school 

57 0 YFT purse seine free school 

58 1 YFT purse seine free school 

59 2 YFT purse seine free school 

60 2 YFT purse seine free school 

61 4 YFT purse seine free school 

62 5 YFT purse seine free school 

63 7 YFT purse seine free school 

64 12 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 

Third Quarter Yellowfin tuna Fork Length frequency data. 

Fork Lengths in (cm) Frequencies Species Gear-type School-type 

65 18 YFT purse seine free school 

66 26 YFT purse seine free school 

67 18 YFT purse seine free school 

68 13 YFT purse seine free school 

69 15 YFT purse seine free school 

70 6 YFT purse seine free school 

71 9 YFT purse seine free school 

72 5 YFT purse seine free school 
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73 4 YFT purse seine free school 

74 7 YFT purse seine free school 

75 5 YFT purse seine free school 

76 16 YFT purse seine free school 

Source: Fishery Commission of Ghana (Marine Section, Tema, 2014) 

Appendix B 

R Codes 

### Install and load “mixdist” package from R cran repository 

> install.packages("mixdist") 

> library(mixdist) 

### Setting the working directory 

> setwd("C://Users/Peter/Desktop") 

### Loading the data 

> fqtuna = read.csv("fquotadata.csv", header=T, na.strings="") 

> fix(fqtuna) 

### Grouping the data into class width of size h = 2 

> fqtunagrp = mixgroup(fqtuna, breaks=c(0, seq(44,70,2), 75)) 

### alternatively, loading the already grouped data into R 

> fqtunagrp = data.frame(length=c(44,46,48,50,52,54,56,58, 

+ 60,62,64,66,68,Inf),freq=c(8,21,29,69,89,136,235,228 

,249,92,20,6,1,1)) 

> class(fqtunagrp)= c("mixdata", "data.frame") 

### a function for plotting grouped length frequency histogram for fqtunagrp 



 

75 

> plot.mixdata(fqtunagrp, xlab="Fork Length (cm)",ylab="Relative frequency", 

main="First Quarter (2014)") 

### Choosing the initial values with the function mixparam(mu,sigma, pi) 

> fqtunapik=param( mu=c(45,50,55,60,65), 

+ sigma = c(1.3,1.4,1.5,1.6,1.7), pi=rep(0.4,5)) 

### fitting the distribution on the histogram with the initial values 

> fitfqtunagrp= mix(fqtunagrp ,dist="norm" 

,constr=mixconstr(consigma="CCV"),emsteps=20) 

### Rootogram analysis 

> plot(fitfqtunagrp, main="1st quarter(2014)", root=T) 

### Chi-square goodness of fit test through the anova function 

> anova(fitfqtunagrp) 

### display of parameter values, standard errors, distribution, ANOVA 

> summary(fitfqtunagrp) 

### Variance Covariance matrix and their corresponding standard deviation for the 

10 free parameters estimated 

> vmat.ccv = fitfqtunagrp$vmat 

> sqrt(diag(vmat.ccv)) 

### function that compute the full covariance matrix from the Delta method and the 

constriant CCV which is not part of the original mixdist package 

> vmat.cccv = function(fitfqtunagrp) { k = 

nrow(fitfqtunagrp$parameters) sigma = 

fitfqtunagrp$parameters$mu 

Dmat = matrix(0, nrow = 3 * k, ncol = 2 * k) for (i in 1:(k - 

1)) { 

Dmat[i, i] = 1 
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Dmat[k, i] = -1 

} 

Dmat[k + 1, k] = 1 

Dmat[(2 * k + 2):(3 * k), k] =-sigma[1] * mu[-1]/mu[1] * 2 

for (i in (k + 1):(2 * k - 1)) { 

Dmat[i + 1, i] = 1 

Dmat[i + k + 1, i] = sigma[1]/mu[1] 

} 

Dmat[(2 * k + 1):(3 * k), 2 * k] = mu/mu[1] 

Dmat %*% fitfqtunagrp$vmat %*% t(Dmat) 

} vmat.cccv > vmat.seq function(fitfqtunagrp) { 

k = nrow(fitfqtunagrp$parameters) 

Dmat = matrix(0, nrow = 3 * k, ncol = 2 * k) for (i in 1:(k - 

1)) { 

Dmat[i, i] = 1 

Dmat[k, i] = -1 

} 

for (i in k:(2 * k - 1)) { 

Dmat[i + 1, i] = 1 

} 

Dmat[(2 * k + 1):(3 * k), 2 * k] = 1 

Dmat %*% fitfqtunagrp$vmat %*% t(Dmat) 

} 

> vmat.cccv(fitfqtunagrp) 

> sqrt(diag(vmat.cccv(fitfqtunagrp))) 
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Appendix C 

Variance Covariance Matrix 

 


