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ABSTRACT 

This study develops an objective rainfall pattern assessment through Markov chain analysis 

using daily rainfall data from 1980 to 2010 for five towns along the south eastern coastal 

belt of Ghana namely Keta, Akatsi, Akuse, Accra and Cape Coast.  The transitional 

matrices were computed for each town and each month using the conditional probability of 

rain or no rain on a particular day given that it rained or did not rain on the previous day.  

The steady state transition matrices and the steady state probability vectors were also 

computed for each town and each month.  It was found that, the rainy or dry season pattern 

observed using the monthly steady state rainfall vectors tended to reflect the monthly 

rainfall time series trajectory.  In particular, for Accra, the rainy season was observed to be 

in the months of May to June and September to October. Also, it was observed that the 

probability of rainfall tended to increase from east to west along the south eastern coast of 

Ghana.  
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CHAPTER ONE 

INTRODUCTION 

 

1.0 Background 

A study has yielded the first confirmation that global warming is already affecting the 

world's rainfall patterns, bringing more precipitation to northern Europe, Canada and 

northern Russia but less to swathes of sub-Saharan Africa, southern India and South-East 

Asia. The changes "may have already had significant effects on ecosystems, agriculture and 

human regions that are sensitive to changes in precipitation, such as the Sahel". Scientists 

have long said that, global warming is bound to interfere with snow and rainfall patterns, 

because air and sea temperatures and sea-level atmospheric pressure - the underlying forces 

behind these patterns - are already changing. However, until now, evidence that, the 

interference was already happening, existed anecdotally or in computer models, rather than 

from observation. One problem for researchers has been lack of accurate, long-term rainfall 

data from around the world that would enable them to distinguish between regional or 

cyclical shifts in rainfall. 

Zwiers (1999), a scientist with Environment; Canada, Toronto, found a way around these 

problems by using two data-sets of global rainfall pattern beginning, conservatively, in 1925 

and ending in 1999.  He compared these figures with 14 powerful computer models that 

simulate the world's climate system and found a remarkably close fit. 

Over the 75-year period under study, global warming "contributed significantly" to 

increases in precipitation in the northern hemisphere's mid-latitudes, a region between 40 

and 70 degrees north, he said. In contrast, the northern hemisphere's tropics and subtropics, 

a region spanning from the equator to 30 degrees latitude north, became drier. 
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Notwithstanding, torrential rains have hit the nation‘s capital creating floods in various parts 

that have caused great havoc to lives and property. The ravages and the ruins of the flood 

captured and highlighted on our television screens and newspaper pages are quite dreadful. 

According to BBC report, 23 people have died and several dozens were swept away on 

Sunday night by rapidly rising waters whiles others were stranded on the roofs of their 

houses. Transport links between the capital and other cities were disrupted.  The ‗Daily 

Graphic‘ on Tuesday 22nd June, 2010, put the death toll to 35.  As we write this piece, there 

are scenes of collapsed buildings and fence walls, damaged roads, falling electricity and 

telephone poles with mangled wires, choked drains, gutters and ramshackle structures.  It is 

deplorable and pathetic situation that is unbecoming of the status of Accra as the capital of 

Ghana.  

The issue of floods has become annual ritual and it amazes me that the authorities wait till 

the worst happen before they start announcing their unexciting solutions. Are we reactive or 

proactive? Why must we wait for these things to happen before we find lasting solutions to 

them?  

It is very disturbing to wake up every day after heavy a downpour to hear of loss of lives 

and property as a result of poor structuring of houses in the city. How many deaths do we 

expect to occur before our leaders take a critical look at the situation and come out with 

urgent solutions to mitigate this flooding problem? Are lives of innocent people precious to 

us? The inundated nature of Accra after down pour has always been disastrous and the 

nation spent millions of Ghana cedis to provide shelter, tents and relief items for the 

victims. Why can‘t our leaders re-structure the city to avoid the incident from occurring 

again? 

You do not have to be a pilot to understand and appreciate the power of navigational 

system. These days most new cars are equipped with navigational system to save us time on 
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a trip because it helps us to avoid needless delays by simply telling us where we are in 

relation to where we are going. This device is capable of showing the best route to take. so 

why are our leaders refusing to think out of the box.  

As a nation, do we know where we‘re going? The apprehension is, how long does the nation 

have to wait to find solution to the flooding problems? How far can we see the problem? 

And whose job is it to protect us from this annual ritual of flooding and severe draught 

causing starvation like that which occurred in 1983? We are literally in crises situation as a 

result of persistent flooding; yet, we are busy building houses on water ways. So how far 

can we see the future? Who is responsible for the quality of our lives? To be able to see 

clearly, we have to think outside the box.  

Climate change according to the United Nations Framework Convention on Climate Change 

(UNFCCC),  is  ‗‗a change of climate which is attributed directly to human activity that 

alters the composition of the global atmosphere, and which in addition to natural climate 

variability, observed over a comparable time period''. One of the effects of climate change is 

increased in precipitation which in most cases causes flooding. 

On Friday, June 19, 2010, Accra, Kumasi, Takoradi and other towns were hit by a severe 

downpour of rain. In Accra, the rainfall which lasted for over four hours has been described 

by the Meteorological Services Department as one of the highest in the country's history.  

Accra has an average rainfall of 22.8mm for 15 "raining days." At Kaneshie, a commercial 

hot-spot in Ghana's capital, the activities of traders, commuters and pedestrians came to a 

halt. Drivers were compelled to pack their vehicles because they run the risk of falling into 

gullies and trenches that had developed. But this did not save them either, as many of such 

vehicles, except very heavy ones, were carried away by the running water. 
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Five days after this terrible incidence, the death toll was reported by the National Times 

newspaper as totaling 45. It is very sad to lose lives and properties through disasters like 

this. This year's flooding situation has not been the highest to hit only Ghana, but other 

countries alike all over the world have bitten part of this bitter cake. 

In China, Nearly 3900 people have been killed or left missing in flood-related incidents. 

About 1750 people were also affected by devastating mudslides after long hours of rainfall 

on August 7 and 8, 2010. 

According to Aljazeera, the recent flooding in Pakistan is the worst to hit the country in 80 

years. The country's worst ever humanitarian disaster has ravaged an area roughly the size 

of England and affecting about 20 million people. "We had goats and buffalo and a wooden 

hut. We had grain to eat. The river ate everything, leaving the whole family hungry and 

empty-handed". This was narrated by a 50 year old victim. Should we sit down and watch 

without taking any cue from this? Certainly, no! We have to take lessons from the Twi 

adage which literally says that ‗When you see a friend‘s beard burning you have to place 

water besides yours'‘. This therefore, brings into mind a very important question; what is 

our adaptation level so far as these natural disasters are concerned? 

A water expert has attributed the decline of water bodies in Ghana to increasingly high 

temperatures in the country. The possible effect of world-wide climate change also had led 

to less rainfall.  Dr Philip Gyau-Boakye, the CEO of a water agency that provides rural 

water supply in Ghana, Community Water and Sanitation Agency (CWSA), made the 

disclosure today Monday 6
th
 (2010) as the world celebrates the International water Day. Dr 

Gyau-Boakye said rainfall patterns, for the past two decades in Ghana, had been changed 

into lower rainfall, which consequently dries up water bodies. This does not spare even 

rivers; he said environmental pollution also affected both the quantity and quality of water 
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bodies. Dr Gyau-Boakye said stringent measures to protect water bodies from total 

extinction must be done. Some days back, geologists shocked the world with reports that the 

world's ten biggest rivers were at the risk of drying up. 

Ghana is one of the poorest countries in the world whose economy is highly dependent on 

rain-fed agriculture. Climate variability is assumed to be the main cause for the frequently 

occurring drought in Ghana.  Nowadays, famine and the name of Ghana are highly 

associated. This is because, for countries like Ghana, meteorological drought (deficiency of 

rain with respect to meteorological means) and agricultural drought (deficiency of rain with 

respect to crop water requirement) are immediate causes of famine.  

Accordingly, the National Meteorological Services Agency of Ghana ((NMSAG), should 

build its capacity and tailor its services in the way that decision-makers get benefit from its 

services. In fact, the National Meteorological Services Agency of Ghana is actively 

participating in the National Early Warning System aimed at mitigating the effects of 

natural disasters, such as drought and flood. But the role of the Agency will be more 

beneficial if the information it provides is updated each time by results of various research 

activities. 

 

As Ghana is located within the tropical region, it is influenced by weather systems of 

various scales, from mesoscale, such as thunderstorms, to large-scale ENSO related 

phenomena. The major rain-bearing system for the main rainy season (June to September) is 

the Inter Tropical Convergence Zone (ITCZ). On the other hand, the eastward moving mid-

latitude troughs will facilitate the interaction between the mid-latitude cold air and the 

tropical warm air so that unstable conditions will be created for the moisture that comes into 

Ghana from the Atlantic ocean during the small rainy season (Feb. to May) (NMSA, 1996). 
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Most of the time, agricultural planning is difficult during the small rainy season due to the 

erratic nature of the rains. Moreover, in association with ENSO phenomena, a significant 

year-to-year variation in the performance of the rainy seasons has influenced the 

agricultural activities of the country. The forecasters of the NMSA of Ghana are aware of 

the problems associated with a reliance on forecasts using ENSO analogues. They have 

succeeded for the past several seasons during which such forecasts were issued. The 

government decision-makers are using their recommendations to alter agricultural practices 

on relatively short notices in order to maximize the value of the forecasted rains and 

minimize the impacts of forecasted droughts Nicholls & Katz (1991). 

 

Recent advances in statistical methods have dramatically improved the range of techniques 

available for analysing data that are not from normal distribution. These new techniques, 

which are used in this study, parallel those used in the analysis of variance and regression 

for normally distributed data. This development is of considerable importance, since daily 

rainfalls are clearly not normally distributed (Stern et al., 1982). 

 

Nowadays, rainfall pattern of Ghana has drastically changed leading to major disasters in 

the country. Such disasters include severe floods and draught, which affects most part of the 

country; especially the southern zones including Agbozome in Volta region and some part 

of Agona Swedru in central region which were affected by severe rains, which causes flood 

destroying lives and properties.    

 

Furthermore, fitting and testing a wide range of models for daily rainfall data is easy due to 

the wide availability of computer packages associated with these new techniques, 

particularly, the Instat package developed by the Statistical Services Centre of the 
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University of Reading. Instat for windows (Version 1.3.1 test) is used for the most of the 

analysis done in this work. 

 

Prediction of rainfall has remained an unsolved problem till this date. It has inevitable 

impact on crop production also influencing the socio-economic texture of the globe.  In fact, 

it is one of the most important factors that govern the life of the earth.  A mean temperature 

change of 10 near the earth surface leads to large change in rainfall. With the development 

of industrialization and the rapid growth of population, the management of water resources 

is becoming more important not only in Ghana but throughout the world.   

 

The analysis of precipitation‘s behavior particularly in terms of amount of rainfall 

occurrence is beneficial for managing the consumption of water. Rain plays a major role in 

hydrology that finds its greatest applications in the design and operations of water 

resources, engineering works as well as agricultural systems, Srikanthan and McMahon 

(2005).  Raiford et‘al (2007) opines that; quantification of rainfall is generally done by 

using pluvial maps and Intensity-Duration-Frequency (IDF) curves. 

Modeling rainfall data at useful time for different applications has been an important 

problem in hydrology for the last 30 years.  A more recent interest in rainfall modeling is 

the perspective of using model parameters to characterize changes in the precipitation 

patterns because of the greenhouse effect and climate change.  Available models have 

usually linked to the temporal and spatial scale required for the analysis. 

 

In the spatial scale, the models at a single location and models that simultaneously represent 

rainfall at several locations (multisite models). There are considerable developments of 

models, which represent rainfall continuously in space. Cox and Isham (1994) presented an 
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interesting classification of rainfall models in three types: empirical statistical models, 

dynamic models and intermediate stochastic models. The idea behind this classification is 

the amount of physical realism incorporated into the model structure.  In the empirical case, 

there is no attempt to incorporate physical modeling of the atmosphere but to the empirical 

stochastic models to the available data. While the second type of models are pure physically 

based models, the third group is a combination of both method by which certain physical 

process of rainfall structure as for example, rain cells, rain bands and cell clusters, are 

described with a stochastic approach. 

 

The probability estimation of rainfall states from available time series helps to obtain 

predictions for rainfall statistical parameters such as the averages, standard deviations and 

the first order autocorrelation coefficient. The transition probability estimations between the 

states of successive time instances are necessary for model construction.   

Furthermore, theoretical Weibull, Gamma, Extreme Value Distribution functions are used 

most often in practice and for predicting the magnitude of rainfall. For accounting 

dependence in any time series, often a first order Markov Chain is used for modeling. For 

instance, large variety of weather events modeling and simulation were studied through 

Markov Chain Gringorten (1996). Markov Chain Racsko et al (1991) had achieved long 

time series of weather data generations also. For rainfall data, many authors have 

demonstrated that Markov Chain model is used to synthesize rainfall time series. 

 

Gabriel and Neumann (1962) started the study on the sequence of daily rainfall occurrence. 

They found that the daily rainfall occurrence for the Tel Aviv data was successfully fitted 

with the first-order Markov chain model. Meanwhile, Kottegoda et al (2004) reported that 

the first order of the Markov chain model was found to fit the observed data in Italy 
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successfully. The model is based on the assumption that there is a dependency of the daily 

rainfall occurrence to that of the previous day. Stern and Coe (1984) stated that the two 

most attractive features of the Markov chain models involved providing the ease in 

identifying the seasonality in daily rainfall occurrence and in most cases, the Markov chain 

of the first-order model can describe the daily rainfall occurrence; however, there are cases 

where this model failed to fit the observed data. As an alternative, the use of the Markov 

chain model of higher order often improved these inadequacies (Wilks, 1999; Hayhoe, 

2000). 

The main purpose of this research is to show the use of first order Markov Chain modeling 

for daily basis of rainfall measurements over south eastern coast of Ghana. 

 

1.1 Problem Statement  

The recent change in climate is disturbing and has led to disaster in various parts of the 

world including Ghana. Untimely rainfall has destroyed lives and property in some part of 

the country like Agona Swedru in the central region, Agboxome in the Volta region, in and 

around Accra and the Bui dam in the northern region. Farmers also suffer losses from 

unexpected rainfall patterns.   

 

1.2 Objectives 

The objectives of the study are as follows;  

1. To model the rainfall pattern in south eastern coast of Ghana; using Markov chain 

analysis.  

2. To investigate the position of rainy or dry seasons within the year in selected 

meteorological stations. 
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3. To make recommendations for agricultural and commercial applications in south 

eastern coast of Ghana. 

 

1.3 Methodology 

The analysis of daily rainfall data shows that Markov Chain approach provides one 

alternative to modeling future variation in rainfall. These variations may either be in the 

form too much water, which will lead to flooding or too little water, which will lead to 

draught.  Markov modeling is one of the tools that can be utilized to assist planners in 

assessing the rainfall.  

The daily rainfall data used in this study were obtained from Meteorology Department, 

Accra, and cover the period, 1980-2010 in respect of Keta, Akatsi, Akuse, Accra and Cape 

Coast stations spinning the south eastern coast of Ghana.  Microsoft Excel and Matlab were 

used to analyses the data.   

 

1.4 Justification  

The information on weather‘s wet and dry behaviour has vital importance to all allied fields 

like insurance, agriculture, and industry etc. Once the rainfall process is adequately and 

appropriately modeled, the model can then be used in agricultural planning, may be able to 

aid in draught, soil erosion and flood predictions, impact of climate change studies, rainfall 

runoff modelling, crop growth studies and other important fields 

 

1.5 Limitations 

Due to time constraints, the researcher considered data from 1980 to 2010 within Southern 

zone of Ghana. This could have been done using long term data from 1930 till now to make 

the work more reliable. The source and the reliability of the data is a source of problem 
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since most departments were not willing to give out data. Further, the work was an 

academic work and needs to be done within a stipulated time frame. The analysis could 

have been done using other models, but the researcher dwelt with only Markov chain which 

may not be accurate but the researcher considered the advantages of Markov chain over 

other methods.  

 

1.6 Organisation of Thesis  

 The first chapter of this thesis talks about the introduction to the topic which is, the 

background discusses a few findings about recent climate changes, the importance and 

effect of rain on lives and damages cause to humanity. The chapter two discusses literature 

review (work done by other researchers on the same or similar field and the method 

applied). The third chapter deals with the mathematical model (methodology) applied by the 

researcher in dealing with the problem or the topic (it is the actual work done by the 

researcher). The forth chapter is titled Data Analysis and discussion; it explains the meaning 

of the result obtained from the work and its relevance and application. The final chapter 

which is the fifth is given the heading conclusion. It is the summary of the piece of work 

done by the researcher. It also gives recommendation to areas that can be researched in the 

near future by other researchers and some techniques that can help others to do good work 

in the same or similar area of research.    
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CHAPTER TWO 

LITERATURE REVIEW  

2.0 Introduction 

Early development of weather generators was motivated by desire to generate synthetic 

weather sequences that would capture essential statistical features of observed weather data, 

and to capture the effects of year-to-year weather variability on crop response, using 

biological simulation models. 

Several applications have emerged that involve generating sequences of synthetic daily data 

that represent time series of climatic variables aggregated to, e.g., a monthly time scale – a 

procedure referred to as ‗‗stochastic disaggregation‘‘ or ‗‗temporal downscaling‘‘ – for use 

with hydrological or biological simulation models. These include: (a) predicting crop 

production impacts of climate change scenarios; Mearns et al. (1996), Semenov and Barrow 

(1997), Mavromatis and Jones (1998), (b) predicting crop yields based on seasonal climate 

forecasts; Hansen and Indeje (2004), (c) analyzing crop yield variability using long-term 

monthly meteorological records where the original daily observations have been lost or are 

otherwise unavailable  Boer et al. (2004), and (d) interpolating between stations, e.g., to 

create gridded daily meteorological time series data sets; Kittelet et‘al. (2004). 

 

The need to preserve key statistical properties of the historic daily time series justifies the 

use of a stochastic model in each of these applications. Crops respond not to climatic 

averages, but to the dynamic, nonlinear interactions between daily sequences of weather, 

soil water, and nutrient balance. The statistical properties of rainfall are particularly 

important because of its influence on processes, such as solute leaching, soil erosion and 
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crop water stress response, which depend on soil water balance dynamics. Any biases in 

variability of daily weather can seriously distort crop model prediction.  

 

Osborn and Hulme, (1997), study spatial averaging or interpolation of daily weather data 

among stations that tends to distort day-to-day variability, biasing simulated crop response.   

 

Hansen and Jones (2000), also study a particular problem for predicting crop response to the 

soil water balance is the tendency for spatial averaging to increase the frequency of days 

with rain and reduce the mean intensity of rainfall events. This distortion can result in either 

under-prediction of crop yields due to increased evaporative loss from the soil surface, or 

over prediction due to reduced dry spell duration, deWit and van Keulen (1987), Carbone 

(1993), Mearns et al., (1996), Riha et al., (1996), were also of the same view.   

 

Mearns et al. (1995), Mavromatis and Jones (1999), opines that the same challenge arises 

when using the output of physically based global circulation models (GCMs) to predict crop 

response to either climate change scenarios or predicted seasonal climate variations. 

Although GCMs operate on sub-daily time steps, the spatial averaging that occurs within 

grid cells distorts the variability of daily weather sequences, generally resulting in too many 

rainfall events, with too little rain per event, suggested in the views of Goddard et al. 

(2001). Therefore, their predictions are typically aggregated into monthly or seasonal  

(i.e., _3 months) anomalies.  

 

Wilks (1992), Katz (1996), Mearns et al. (1997), suggested two general approaches that are 

used with stochastic weather generators to disaggregate monthly climatic means into daily 

realizations. The most common is to adjust the input parameters of the stochastic model to 
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match target means or other statistics. Understanding the statistical properties of a stochastic 

weather generator allows one to manipulate its input parameters to reproduce a wide range 

of statistical properties of interest, such as means, variances, and the relative influence of 

the number of storms (i.e., frequency) and the type of storm (i.e., the intensity distribution) 

on total rainfall,. This approach has been applied to climate change impact studies and 

disaggregation of seasonal climate Forecasts. 

 

Multivariate techniques have been underlined as suitable and powerful tool to find 

hydrologically homogeneous region or to classify meteorological data such as rainfall. 

Principle component analysis, factor analysis and different cluster techniques have been 

used to classify daily rainfall patterns and their relationship to atmospheric circulation.  

 

Romero et al. (1999), classify rainfall into spatio-temporal pattern in Iran, Singh (1999), 

classify flood and drought years and Stahl and Demuth (1999), classify streamflow drought. 

They used cluster analysis for regionalization involves grouping of various observations and 

variables into clusters, so that each cluster is composed of observations or variables with 

similar characteristics such as geographical, physical, statistical or stochastic behavior.  

 

Mosely (1981), used hierarchical cluster analysis on rivers in New Zealand and 

Tasker(1982), compared methods of defining homogeneous regions including cluster 

analysis with a complete linkage algorithm. Acerman (1985), and Acerman and Sinclair 

(1986), concluded that clustering has some intrinsic worth to explain the observed variation 

in data. Gottschalk (1985), applied cluster and principal component analysis to the territory 

of Sweden and found that cluster analysis is an appropriate method to use on a national 

scale with heterogeneous hydrological regimes.  
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Nathan and McMahon (1990), performed hierarchical cluster analysis for the prediction of 

low flow of rain characteristics in southeastern, Australia. They found that Ward method 

with a similarity measure based on the squared Euclidean distance is the best method for 

cluster analysis. 

 

Cox and Isham (1994), presented an interesting classification of rainfall models in three 

types: empirical statistical models, dynamic models and intermediate stochastic models. The 

idea behind this classification is the amount of physical realism incorporated into the model 

structure. In the empirical case, there is no attempt to incorporate physical modeling of the 

atmosphere but to the empirical stochastic models to the available data. While the second 

type of models are pure physically based models, the third group is a combination of both 

method by which certain physical process of rainfall structure as for example, rain cells, 

rain bands and cell clusters, are described with a stochastic approach.  

 

Andrade et al (1998),  Miranda and Andrade (1999), and Miranda et al. (2004),  used 

concepts of graph theory to analyze spatial patterns in time correlation function among rain 

events, using recorded data from a set of stations in Northeast Brazil. In previous 

contributions they investigated properties of rain events in this region with concepts of 

statistical scale invariance within the data, which can be expressed in terms of temporal and 

spatial Hurst exponents. The method they used herein is similar to that proposed for the 

analysis of brain activity signals by Eguiluz et al. (2005). Within this approach, non-local 

spatial dependence is estimated by evaluating the Pearson coefficient between time series of 

pairs of stations. 
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Le Cam (1961), in his fundamental work, propane models for spatial-temporal precipitation 

based on stochastic point processes, this approach developed rapidly in the 1980s through a 

series of papers by Waymire et al. (1984), such models are based on a hierarchical structure 

in which rainfall fields occur in a temporal Poisson process, rain bands (storms) occur 

within each field in a spatial Poisson process (the rate of which may reflect orography and 

seasonality), and rain cells occur in each storm, clustering in space and time. Typically the 

cells, storms and fields move: in the simplest models, all components have a common 

velocity. They assume stochastic stationarity in both time and space. Thus, in fitting the 

models, they treat each month separately, and use data for a relatively homogeneous 6 

spatial region.  

 

Rodriguez-Iturbe et al. (1987, 1988), generalise that the spatial-temporal models that they 

developed were spatial analogues of models that they used successfully to represent the 

temporal process of rainfall at a single rain gauge, investigation in Cox and Isham (1988). 

The multi-site models similarly generalise the models of Cox and Isham (1994). All of these 

models have the desirable feature that they preserve the structure of the single-site models 

in their marginal properties.  

 

2.1 Markov Chain Model 

 
Liu et al. (2009), said Markov chain has been widely applied in the disciplines of natural 

science, engineering, economics and management. This approach has also been widely used 

in drought forecasting, Lohani and Loganathan, (1997); Lohani et al. (1998).  

 

Paulo and Pereira (2007) stated that the Markov chain modeling approach is useful in 

understanding the stochastic characteristics of droughts and rainfall through the analysis of 
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probabilities for each severity class, times for reaching the nondrought class from any 

drought severity state, and residence times in each drought class. They found that the 

approach can be satisfactorily used as a predictive tool for forecasting transitions among 

drought severity classes up to 3 months ahead 

 

Lohani and Loganathan (1997) and Lohani et al. (1998) developed an early warning system 

for drought management using the Markov chain, in two climatic areas of Virginia (U.S.A.). 

The same approach was also adopted for developing a meteorological drought/rainfall 

forecasting model by Liu et al. (2009) in Laohahe catchment in northern China. In their 

study, spatio-temporal distributions were analyzed and forecasted by Markov chain.  

 

Steinemann (2003) adopted six classes of severity, from wet to dry conditions, similar to 

those in PDSI, and used the Markov chain to characterize probabilities for drought class and 

duration in a class. The results obtained were used to propose triggers for early-activating of 

the drought preparedness plans at the basin scale.  

 

Liu et al.(2009) demonstrated two advantages of the Markov chain technique for forecasting 

drought and rainfall conditions. They were: (1) the predictive performance increased greatly 

as the severity of drought increased, and (2) the predictive performance was always 

satisfactory for drought state transitions, and the prediction performance was acceptable for 

the successive and smooth states. 
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2.2 Spatial-temporal Models   

Northrop (1996), generalised this model in the case where cells are elliptical rather than 

circular (it is referred to as the elliptical cell Poisson process model (EPPM). EPPM is likely 

to be more realistic, especially in the cases where banding is apparent in the radar images. 

These cells are also identifiable by the elliptical contours of their spatial autocorrelation 

plots. This model requires two extra parameters, the eccentricity and orientation of the cells, 

which are both assumed to be common to all cells.  

 

 Northrop (1996), have investigated a modified version of EPPM model, the temporal 

clustering of cells is achieved using a Bartlett-Lewis structure as above. Additionally, 

spatial clustering is incorporated using a Neyman-Scott-type mechanism in which the 

displacements of the cell origins from the storm centre follow a bivariate distribution in 

space. A range of storm shapes (e.g. bands and large masses) can be produced by variation 

of the parameters of the spatial clustering distribution. An important modification to the 

model of Cox and Isham (1988) is to have the storm centre moving with the same velocity 

as the cells so that cells are born within the existing structure of the storm. Two spatial 

clustering distributions are considered:  

1. A bivariate Gaussian (normal) distribution. They refer to the resulting model as the 

Gaussian displacements spatial-temporal model (GDSTM);  

2. A uniform distribution over a random ellipse. This gives rise to the random ellipse 

spatial-temporal model (RESTM).  
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 2.3 Multi-site Models  

Kakou (1997), suggested that multi-site models are reasonably parsimonious in their 

parametrization, requiring a single extra parameter, the cell duration scalar, for each new 

site that is included in the study were considered. The cross-correlation function of the 

rainfall intensity at a pair of sites were derived and has the implied functional form of the 

probability of a cell hitting two sites. It turns out that, for individual storms, this probability 

decays approximately exponentially with inter-site distance for sites which are well-

separated and which are not aligned along the direction of the storm's movement; for sites 

which are closer together, the dependence is no longer exponential. 

 

 2.4 Single-site Models  

The models described in the preceding sections were generalizations of models that have 

been used successfully to model the temporal evolution of rainfall at a single site. A first 

step towards improving the performance of these models involves studying ways in which 

the single-site models can be improved.  

 

Rodriguez-Iturbe et al. (1987), is of the view that one of the most obvious ways in which the 

basic single-site models can be extended is by allowing for different types of stormto occur 

so as to randomize the cell duration parameter between storms in this approach; storms have 

a common structure but occur at different timescales. The main advantage of such models, 

in practical terms, lies in their ability to reproduce well the observed probability of no 

rainfall at various levels of aggregation. They have investigated an alternative to the 

randomization of the cell duration parameter for single-site models, instead allowing for 
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different types of storm using an inverse relationship between the duration of an event and 

its intensity (the motivation being that intense convective events tend to be shorter-lived 

than shallower stratiform systems.  

 

Cowpertwait (1994), adopted an explicit functional form for the dependence between cell 

depth and cell duration, it is possible to overcome the problems of over-parameterisation 

typically associated with attempts to model different cell types explicitly, Their work is 

based on the Neyman-Scott and Bartlett-Lewispoint process models, Rodriguez-Iturbe et al. 

(1987), which are modified to allow raincells with stochastically dependent duration and 

intensity, Kakou (1997).  

 

2.6 Spectral method  

The method of moments suffers from a number of disadvantages. In particular, the choice of 

features to incorporate into the fitting procedure is subjective, and the parameter values 

obtained can be quite sensitive to the features used in the fitting | hence model comparison 

can be difficult.  

Brillinger and Rosenblatt (1967), makes inefficient use of available data, as only a few 

summary statistics are used in the fitting. In an attempt to overcome some of these 

difficulties, a spectral method has been developed. This method uses the sample Fourier 

coefficients rather than the original data, and makes use of the fact that, for large samples, 

small collections of the Fourier coefficients have a joint distribution which is approximately 

multivariate normal, This enables them to write down approximate likelihood functions for 

the mode parameters in terms of small subsets of the sample Fourier coefficients.  
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McCullagh and Nelder (1989), combined all approximate likelihood functions, an objective 

function is defined which can be interpreted as a log quasi-likelihood, Chandler (1997). This 

then provides a basis for objective model comparison procedures using standard statistical 

techniques such as likelihood ratio tests, The method has been developed for use in fitting 

single-site and spatial-temporal models. The reliance on second-order properties is a 

potential disadvantage in distinguishing between models whose main difference is in their 

wet/dry interval properties. More details may be found in Chandler (1996b, 1997).   

 

Chandler (1997), describe spectral method so far as been used extensively in the fitting of 

single-site models, and some preliminary work on the fitting of spatial-temporal models has 

also been done. The main area of interest has been in the area of model comparison, as it is 

here that the apparent objectivity of the method is particularly useful. In the single-site case, 

numerous different models have been fitted to data from the HYREX raingauge network. 

Rigorous procedures for model comparison, such as likelihood ratio tests, are available 

which allow for the different numbers of parameters in the models. We conclude that the 

clustering models to the data is better than that of the Poisson model; also that storms tend 

to be asymmetric with more intense activity towards the beginning of a storm than at the 

end.  

  

2.7 Artificial Neural Network 

French et al. (1992), used Neural networks to estimate accurate information on rainfall as 

essential for the planning and management of water resources.  Nevertheless, rainfall is one 

of the most complex and difficult elements of the hydrology cycle to understand and to 
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model due to the complexity of the atmospheric processes that generate rainfall and the 

tremendous range of variation over a wide range of scales both in space and time,  

Gwangseob and Ana, (2001),described Neural networks as been an accurate rainfall 

forecasting tool which is one of the greatest challenges in operational hydrology, despite 

many advances in weather forecasting in recent decades,  Neural networks have been 

widely applied to model many of nonlinear hydrologic processes such as rainfall-runoff, 

Hsu et al. (1950), Shamseldin (1997), stream flow, Zealand et al. (1999), Campolo and 

Soldati (1999),  Abrahart and See, (2000), groundwater management, Rogers and Dowla, 

(1994), water quality simulation, Maier and Dandy (1996), Maier and Dandy (1999), and 

rainfall forecasting.  

 

Luk et al. (2000), studied and indicated that ANN is a good approach and has a high 

potential to forecast rainfall. The ANN is capable to model without prescribing hydrological 

processes, catching the complex nonlinear relation of input and output, and solving without 

the use of differential equations sited in Hsu et al. (1995), French et al. (1992). In addition, 

ANN could learn and generalize from examples to produce a meaningful solution even 

when the input data contain errors or is incomplete.  

 

Luk et al. (2000), an artificial neural network (ANN) which is a mathematical model used 

for data processing inspired by the bioelectrical networks in the brain comprised of neurons 

and synapses. In an ANN, simple processing elements referred to as neurons are used to 

create networks that are capable of learning to model complex systems. For an introduction 

to the structure and design of Artificial Neural Networks the reader is referred to Hagan et 

al. (1996).   
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Karunanithi et al., (1994) has done a number of studies into the application of ANN in the 

field of rainfall-runoff modeling and flood forecasting sited in the work carried out by  

Lorrai and Sechi, (1995); Campolo et al., (1999).  

Hsu et al. (1995) compared ANN models with traditional black box models, concluding that 

an ANN model is capable of giving superior performance over a linear ARMAX 

(autoregressive moving average with exogenous inputs) time series approach, when 

observed time series of flow rate and rainfall are used as input.  

 

Smith et al. (2004), has an alternative to the ANN, genetic programming (GP) strategy 

introduced, an ANN can be considered for use in forecasting the error between the outputs 

of a physical rainfall runoff model and the observed runoff rates. A feed forward neural 

network has been used for this purpose and was found to provide similar accuracy to GP. 

An advantage of GP is that it is easier to use than an ANN approach in that it uses a 

function in the forecasting stage rather than a complicated network of neurons.  

 

Gwangseob and Ana, (2001), developed an Artificial Neural Networks (ANN), which 

perform nonlinear mapping between inputs and outputs, has lately provided alternative 

approaches to forecast rainfall. ANN were first developed in the 1940s (Mc Culloch and 

Pitts, 1943), and the development has experienced a renaissance with Hopfield‘s effort 

Hopfield, (1982) in 5 iterative auto-associable neural networks.  

 

Abraham et al. (2001) used an artificial neural network with scaled conjugate gradient 

algorithm (ANN-SCGA) and evolving fuzzy neural network (EfuNN) for predicting the 

rainfall time series. In the study, monthly rainfall was used as input data for training model. 

The authors analyzed 87 years of rainfall data in Kerala, a state in the southern part of the 
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Indian Peninsula. The empirical results showed that neuro-fuzzy systems were efficient in 

terms of having better performance time and lower error rates compared to the pure neural 

network approach. In some cases, the deviation of the predicted rainfall from the actual 

rainfall was due to a delay in the actual commencement of monsoon, El-Ni ˜no Southern 

Oscillation (ENSO). 

 

Manusthiparom et al. (2003), has another study of ANN that relates to El-Ni ˜no Southern 

Oscillation was done and the authors investigated the correlations between El Nin˜o 

Southern Oscillation indices, namely, Southern Oscillation Index (SOI), and sea surface 

temperature (SST), with monthly rainfall in Chiang Mai, Thailand, and found that the 

correlations were significant. For that reason, SOI, SST and historical rainfall were used as 

input data for standard back-propagation algorithm ANN to forecast rainfall one year ahead. 

The study suggested that it might be better to adopt various related climatic variables such 

as wind speed, cloudiness, surface temperature, and air pressure as the additional predictors.  

 

Toth et al. (2000) compared short-time rainfall prediction models for real-time flood 

forecasting. Different structures of auto-regressive moving average (ARMA) models, 

artificial neural networks, and nearest-neighbors approaches were applied for forecasting 

storm rainfall occurring in the Sieve River basin, Italy, in the period 1992–1996 with lead 

times varying from 1 to 6 h. The ANN adaptive calibration application proved to be stable 

for lead times longer than 3 h, but inadequate for reproducing low rainfall. 

 

 Koizumi (1999), has another application which employed an ANN model using radar, 

satellite, and weather-station data together with numerical products generated by the Japan 

Meteorological Agency (JMA) Asian Spectral Model for 1-year training data. Koizumi 
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found that the ANN skills were better than persistence forecast (after 3 h), the linear 

regression forecasts, and numerical model precipitation prediction. As the ANN used only 1 

year data for training, the results were limited. The author believed that the performance of 

the neural network would be improved when more training data became available. It is still 

unclear to what extent each predictor contributed to the forecast and to what extent recent 

observations might improve the forecast. 

  

Coulibaly (2000) stated that ninety percent of ANN models applied in the field of hydrology 

used the back propagation algorithm. This algorithm involves minimizing the global error 

by using the steepest descent or gradient approach. The network weights and biases are 

adjusted by moving a small step in the direction of the negative gradient of the error 

function during each iteration. The advantage of this algorithm lies in its simplicity. 

In the study, ANN model was applied for each of 75 rain gauge stations in Bangkok, to 

forecast rainfall from 1 to 6 h ahead as forecast point.  

 

2.8 Conceptual rainfall-runoff Models 

Franchini and Galeati (1997), Conceptual rainfall-runoff models (CRRMs) have become a 

basic tool for flood forecasting and for catchment basin management. These models permit 

calculation of the runoff generated by precipitation events by simulating the physical 

process that affect the movement of water over and through the soil. The accuracy of these 

calculations depends both on the structure of the model and on how the relevant parameters 

are defined. CRRMs generally have a large number of parameters which, because of their 

conceptual nature, cannot be measured directly and are therefore estimated on the basis of a 

calibration process which involves adjusting their values so that the simulated discharges fit 

the corresponding observed discharges as closely as possible. Measurement of the deviation 
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between the two series represents the objective function. Therefore, the purpose of the 

calibration is ultimately to find the values of the parameters of the CRRM which reduce this 

deviation to a minimum or, in other words, those values which minimize the objective 

function. 

 

Wang (1991), and Franchini (1996), also suggest a two step procedure which associates the 

GA with local-search optimization techniques for a subsequent ―fine-tuning‖ process. In 

water resource management the applications address the optimization of aquifer monitoring 

systems, Cieniawsky et al. (1995), Wagner (1995), and their utilization, Mc Kinney and Lin 

(1994), the containment and recovery of polluted aquifers.  

 

Rogers and Dowla, (1994), promogated the management of reservoir systems sited in Ritzel 

et al. (1994) and Esat and Hall (1994). The problems are addressed in complex single and 

multiple objective contexts and produce results which appear very promising.  

 

Whitley and Hanson (1989), also suggested combined ways with other Artificial 

Intelligence methods (Neural Networks) as in Rogers and Dowla (1994).  However, in all 

these applications the term ―GA‖ indicates an algorithm that can be formulated in very 

many ways, Davis (1991), Michalewics (1992).  It is interesting therefore to judge how the 

different GA structures affect the ability to find the region encompassing the optimum 

solution in the specific field of CRRM calibration, while considering that another different 

algorithm will perform the subsequent ―fine-tuning‖ process.  

 

Hendrickson et al. (1988), analyze the characteristics of the sequential use of two 

algorithms, the first based on the Pattern Search (PS) method, Hooke and Jeeves  (1961), 
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which is a direct search method, and the second (fine-tuning) based on the Newton method. 

This sequence, is shown to be a fairy good tool, primarily for the PS characteristics that 

make it less susceptible to irregularity of the response surface, thus less easily trapped on 

local minima, and, therefore, more efficient in the early stage of optimization. 

 

Ibbirt and Donnel (1971), said; Conceptual rainfall-runoff models usually consist of a 

number of parameters. Most of the parameters have to be calibrated by examining the 

estimated and the measured discharge series. The use of function optimization methods for 

calibrating rainfall-runoff models has been studied by Johnston and pilgrim (1976), Jupta 

and Sorooshian (1985), Hendrickson et.al. (1988). They found that the standard 

optimization methods can be easily fooled into declaring convergence far short of the true 

optima because of high dimensionality and irregularities contained in the objective function 

response such as multiple optima, unsmoothness, discontinuity, elongated ridges, flat 

plateaus and so on.  
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CHAPTER THREE 

METHODOLOGY  

3.0 Introduction  

A Markov chain, named for Andrey Markov, is a mathematical system that undergoes 

transitions from one state to another (from a finite or countable number of possible states) in 

a chain like manner. It is a random process endowed with the Markov property: the next 

state depends only on the current state and not on the past. Markov chains have many 

applications as statistical model of real-world processes. 

Formally, a Markov chain is a discrete (discrete-time) random process with the Markov 

property.  Often, the term "Markov chain" is used to mean a Markov process which has a 

discrete (finite or countable) state-space. Usually a Markov chain would be defined for a 

discrete set of times (i.e. a discrete-time Markov chain) although some authors use the same 

terminology where "time" can take continuous values.  Also see continuous-time Markov 

process. The use of the term in Markov chain Monte Carlo methodology covers cases where 

the process is in discrete-time (discrete algorithm steps) with a continuous state space. The 

following concentrates on the discrete-time discrete-state-space case. 

A "discrete-time" random process means a system which is in a certain state at each "step", 

with the state changing randomly between steps. The steps are often thought of as time, but 

they can equally well refer to physical distance or any other discrete measurement; 

formally, the steps are just the integers or natural numbers, and the random process is a 

mapping of these to states. The Markov property states that the conditional probability 

distribution for the system at the next step (and in fact at all future steps) given its current 

state depends only on the current state of the system, and not additionally on the state of the 

system at previous steps. 
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Since the system changes randomly, it is generally impossible to predict the exact state of 

the system in the future. However, the statistical properties of the system's future can be 

predicted. In many applications it is these statistical properties that are important. 

The changes of state of the system are called transitions, and the probabilities associated 

with various state-changes are called transition probabilities. The set of all states and 

transition probabilities completely characterizes a Markov chain. By convention, we assume 

all possible states and transitions have been included in the definition of the processes, so 

there is always a next-state and the process goes on forever. 

A famous Markov chain is the so-called "drunkard's walk", a random walk on the number 

line where, at each step, the position may change by +1 or −1 with equal probability. From 

any position there are two possible transitions, to the next or previous integer. The transition 

probabilities depend only on the current position, not on the way the position was reached. 

For example, the transition probabilities from 5 to 4 and 5 to 6 are both 0.5, and all other 

transition probabilities from 5 are 0. These probabilities are independent of whether the 

system was previously in 4 or 6. 

Another example is the dietary habits of a creature who eats only grapes, cheese or lettuce, 

and whose dietary habits conform to the following rules: 

 It eats exactly once a day. 

 If it ate cheese yesterday, it will not today. 

 It will eat lettuce or grapes with equal probability. 

 If it ate grapes yesterday, it will eat grapes today with probability 1/10, cheese with 

probability 4/10 and lettuce with probability 5/10. 
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 If it ate lettuce yesterday, it will not eat lettuce again today but will eat grapes with 

probability 4/10 or cheese with probability 6/10. 

This creature's eating habits can be modeled with a Markov chain since its choice depends 

solely on what it ate yesterday, not what it ate two days ago or even farther in the past. One 

statistical property that could be calculated is the expected percentage, over a long period, 

of the days on which the creature will eat grapes. 

A series of independent events—for example, a series of coin flips—does satisfy the formal 

definition of a Markov chain. However, the theory is usually applied only when the 

probability distribution of the next step depends non-trivially on the current state. 

 

3.1 Formal definition 

A Markov chain is a sequence of random variables X1, X2, X3, ... with the Markov 

property, namely that, given the present state, the future and past states are independent. 

Formally, 

 

The possible values of Xi form a countable set S called the state space of the chain. 

Markov chains are often described by a directed graph, where the edges are labeled by the 

probabilities of going from one state to the other states. 
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3.2 Variations 

 Continuous-time Markov processes have a continuous index. 

 Time-homogeneous Markov chains (or stationary Markov chains) are processes 

where 

 

for all n. The probability of the transition is independent of n. 

 A Markov chain of order m (or a Markov chain with memory m) where m is finite, 

is a process satisfying 

 

In other words, the future state depends on the past m states. It is possible to 

construct a chain (Yn) from (Xn) which has the 'classical' Markov property as 

follows: 

Let Yn = (Xn, Xn−1, ..., Xn−m+1), the ordered m-tuple of X values. Then Yn is a Markov 

chain with state space S
m
 and has the classical Markov property. 

 An additive Markov chain of order m where m is finite, is where 

 
for n > m. 
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Example 3.1 

fig 3.1 

 

A simple example is shown in the figure (3.1) above, using a directed graph to picture the 

state transitions. The states represent whether the economy is in a bull market, a bear 

market, or a recession, during a given week. According to the figure, a bull week is 

followed by another bull week 90% of the time, a bear market 7.5% of the time, and a 

recession the other 2.5%. From this figure it is possible to calculate, for example, the long-

term fraction of time during which the economy is in a recession, or on average how long it 

will take to go from a recession to a bull market. 

A thorough development and many examples can be found in the on-line monograph Meyn 

& Tweedie (2005). The appendix of Meyn (2007), also available on-line, contains an 

abridged Meyn & Tweedie. 

A finite state machine can be used as a representation of a Markov chain. Assuming a 

sequence of independent and identically distributed input signals (for example, symbols 

from a binary alphabet chosen by coin tosses), if the machine is in state y at time n, then the 

probability that it moves to state x at time n + 1 depends only on the current state. 

 

http://en.wikipedia.org/wiki/File:MarkovChain1.pn
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3.3 Markov chains 

The probability of going from state i to state j in n time steps is 

 

and the single-step transition is 

 

For a time-homogeneous Markov chain: 

 

and 

 

The n-step transition probabilities satisfy the Chapman-Kolmogorov equation, that for any k 

such that 0 < k < n, 

 

where S is the state space of the Markov chain. 

The marginal distribution Pr(Xn = x) is the distribution over states at time n. The initial 

distribution is Pr(X0 = x). The evolution of the process through one time step is described by 

 
 

 

Proof: from the chapman – kolmogorov equation, we have 
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Set r =1, s =1, so that 
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From this theory, the n-step transitions probabilities can be easily obtained by Simple 

matrix multiplication, for larger state space efficient of 
np  are needed. 

 

3.4 Reducibility 

A state j is said to be accessible from a state i (written i → j) if a system started in state i has 

a non-zero probability of transitioning into state j at some point. Formally, state j is 

accessible from state i if there exists an integer n ≥ 0 such that 

 

Allowing n to be zero means that every state is defined to be accessible from itself. 
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A state i is said to communicate with state j (written i ↔ j) if both i → j and j → i. A set of 

states C is a communicating class if every pair of states in C communicates with each 

other, and no state in C communicates with any state not in C. It can be shown that 

communication in this sense is an equivalence relation and thus that communicating 

classes are the equivalence classes of this relation. A communicating class is closed if the 

probability of leaving the class is zero, namely that if i is in C but j is not, then j is not 

accessible from i. 

That said, communicating classes need not be commutative, in that classes achieving greater 

periodic frequencies that encompass 100% of the phases of smaller periodic frequencies, 

may still be communicating classes provided a form of diminished, downgraded, or 

multiplexed cooperation exists within the higher frequency class. 

Finally, a Markov chain is said to be irreducible if its state space is a single communicating 

class; in other words, if it is possible to get to any state from any state. 

 

3.5 Periodicity 

A state i has period k if any return to state i must occur in multiples of k time steps. 

Formally, the period of a state is defined as 

 

(where "gcd" is the greatest common divisor). Note that even though a state has period k, it 

may not be possible to reach the state in k steps. For example, suppose it is possible to 

return to the state in {6, 8, 10, 12, ...} time steps; k would be 2, even though 2 does not 

appear in this list. 
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If k = 1, then the state is said to be aperiodic: returns to state i can occur at irregular times. 

Otherwise (k > 1), the state is said to be periodic with period k. 

It can be shown that every state in a communicating class must have overlapping periods 

with all equivalent-or-larger occurring sample(s). 

It can be also shown that every state of a bipartite graph has an even period. 

 

 Recurrence 

A state i is said to be transient if, given that we start in state i, there is a non-zero 

probability that we will never return to i. Formally, let the random variable Ti be the first 

return time to state i (the "hitting time"): 

 

Then, state i is transient if and only if: 

 

If a state i is not transient (it has finite hitting time with probability 1), then it is said to be 

recurrent or persistent. Although the hitting time is finite, it need not have a finite 

expectation. Let Mi be the expected return time, 

 

Then, state i is positive recurrent if Mi is finite; otherwise, state i is null recurrent (the 

terms non-null persistent and null persistent are also used, respectively). 
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It can be shown that a state is recurrent if and only if  

 

A state i is called absorbing if it is impossible to leave this state. Therefore, the state i is 

absorbing if and only if 

 

3.6 Ergodicity 

A state i is said to be ergodic if it is aperiodic and positive recurrent. If all states in an 

irreducible Markov chain are ergodic, then the chain is said to be ergodic. 

It can be shown that a finite state irreducible Markov chain is ergodic if it has an aperiodic 

state. A model has the ergodic property if there's a finite number N such that any state can 

be reached from any other state in exactly N steps. In case of a fully-connected transition 

matrix where all transitions have a non-zero probability, this condition is fulfilled with N=1. 

A model with just one out-going transition per state cannot be ergodic. 

3.7 Steady-state analysis and limiting distributions 

If the Markov chain is a time-homogeneous Markov chain, so that the process is described 

by a single, time-independent matrix pij, then the vector is called a stationary 

distribution (or invariant measure) if its entries πj are non-negative and sum to 1 and if it 

satisfies 
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An irreducible chain has a stationary distribution if and only if all of its states are positive 

recurrent. In that case, π is unique and is related to the expected return time: 

 

Further, if the chain is both irreducible and aperiodic, then for any i and j,  

 

Note that there is no assumption on the starting distribution; the chain converges to the 

stationary distribution regardless of where it begins. Such π is called the equilibrium 

distribution of the chain. 

If a chain has more than one closed communicating class, its stationary distributions will not 

be unique (consider any closed communicating class in the chain; each one will have its 

own unique stationary distribution. Any of these will extend to a stationary distribution for 

the overall chain, where the probability outside the class is set to zero). However, if a state j 

is aperiodic, then 

 

and for any other state i, let fij be the probability that the chain ever visits state j if it starts 

at i, 

 

If a state i is periodic with period k > 1 then the limit 
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does not exist, although the limit 

 

does exist for every integer r. 

3.8 Steady-state analysis and the time-inhomogeneous Markov chain 

A Markov chain need not necessarily be time-homogeneous to have an equilibrium 

distribution. If there is a probability distribution over states such that 

 

 

for every state j and every time n then  is an equilibrium distribution of the Markov chain. 

Such can occur in Markov chain Monte Carlo(MCMC) methods in situations where a 

number of different transition matrices are used, because each is efficient for a particular 

kind of mixing, but each matrix respects a shared equilibrium distribution. 

3.8 Finite state space 

If the state space is finite, the transition probability distribution can be represented by a 

matrix, called the transition matrix, with the (i, j)th element of P equal to 
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Since each row of P sums to one and all elements are non-negative, P is a right stochastic 

matrix. 

3.9 Time-homogeneous Markov chain with a finite state space 

If the Markov chain is time-homogeneous, then the transition matrix P is the same after 

each step, so the k-step transition probability can be computed as the k-th power of the 

transition matrix, P
k
. 

The stationary distribution π is a (row) vector, whose entries are non-negative and sum to 1, 

that satisfies the equation 

 

In other words, the stationary distribution π is a normalized (meaning that the sum of its 

entries is 1) left eigenvector of the transition matrix associated with the eigenvalue 1. 

Alternatively, π can be viewed as a fixed point of the linear (hence continuous) 

transformation on the unit simplex associated to the matrix P. As any continuous 

transformation in the unit simplex has a fixed point, a stationary distribution always exists, 

but is not guaranteed to be unique, in general. However, if the Markov chain is irreducible 

and aperiodic, then there is a unique stationary distribution π. Additionally, in this case P
k
 

converges to a rank-one matrix in which each row is the stationary distribution π, that is, 

 

where 1 is the column vector with all entries equal to 1. This is stated by the Perron-

Frobenius theorem. If, by whatever means, is found, then the stationary 
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distribution of the Markov chain in question can be easily determined for any starting 

distribution, as will be explained below. 

For some stochastic matrices P, the limit does not exist, as shown by this example: 

 

Because there are a number of different special cases to consider, the process of finding this 

limit if it exists can be a lengthy task. However, there are many techniques that can assist in 

finding this limit. Let P be an n×n matrix, and define  

It is always true that 

 

Subtracting Q from both sides and factoring then yields 

 

where In is the identity matrix of size n, and 0n,n is the zero matrix of size n×n. Multiplying 

together stochastic matrices always yields another stochastic matrix, so Q must be a 

stochastic matrix. It is sometimes sufficient to use the matrix equation above and the fact 

that Q is a stochastic matrix to solve for Q. 

Here is one method for doing so: first, define the function f(A) to return the matrix A with 

its right-most column replaced with all 1's. If [f(P − In)]
−1

 exists then 
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One thing to notice is that if P has an element Pi,i on its main diagonal that is equal to 1 and 

the ith row or column is otherwise filled with 0's, then that row or column will remain 

unchanged in all of the subsequent powers P
k
. Hence, the ith row or column of Q will have 

the 1 and the 0's in the same positions as in P. 

3.10 Reversible Markov chain 

A Markov chain is said to be reversible if there is a probability distribution over states, π, 

such that 

 

for all times n and all states i and j. This condition is also known as the detailed balance 

condition (some books refer the local balance equation). With a time-homogeneous Markov 

chain, Pr(Xn+1 = j | Xn = i) does not change with time n and it can be written more simply as 

pij. In this case, the detailed balance equation can be written more compactly as 

 

Summing the original equation over i gives 

 

so, for reversible Markov chains, π is always a steady-state distribution of 

Pr(Xn+1 = j | Xn = i) for every n. 

If the Markov chain begins in the steady-state distribution, i.e., if Pr(X0 = i) = πi, then 

Pr(Xn = i) = πi for all n and the detailed balance equation can be written as 
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The left- and right-hand sides of this last equation are identical except for a reversing of the 

time indices n and n + 1. 

Reversible Markov chains are common in Markov chain Monte Carlo (MCMC) approaches 

because the detailed balance equation for a desired distribution π necessarily implies that 

the Markov chain has been constructed so that π is a steady-state distribution. Even with 

time-inhomogeneous Markov chains, where multiple transitions matrices are used, if each 

such transition matrix exhibits detailed balance with the desired π distribution, this 

necessarily implies that π is a steady-state distribution of the Markov chain. 

 

EXAMPLE 3.2;  

A markov chain is a chain of events for which the probabilities of outcomes or states 

depend on what has happened previously e.g the probabilities of it being rainy or dry on a 

particular day depend on whether it was rainy or dry on the previous day.  

The researcher knowing very well that the states ―rainy‖ and ―dry‖ do no overlap and cover 

all probabilities.  

A state matrix or state vector is a row matrix which shows the probability of each state e.g 

take X= (0.15   0.85) to mean that the probability of it being rainy on a certain day is 0.15 

and probability of it being dry on that day is 0.85. The sum of the elements of a state matrix 

is 1. 
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A transition probability matrix or transition matrix is a square matrix that shows the 

probabilities of moving from each state to every other state. The sum of the elements in 

each row is 1.  An   example is shown below with values that were used to find the 

conditional probability;  

 Given that it is rainy, let the probability that it will be rainy a day later be  

 16.0
31

5

  

 Given that it is dry, let the probability that it would be rainy a day later be 

 13.0
31

4
   

This yields the table (transition matrix) below; 

          To 

 

 or    
87.013.0

84.016.0
P   From                               

 

 

 

 

 

 

 

 

 

 

 

 Rainy Dry 

rainy 0.16 0.84 

dry 0.13 0.87 
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The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

p  2p  

87.013.0

84.016.0
P  

8661.01339.0

8652.01348.0
 

  

3p  
4p  

865983.0134017.0

865956.0134044.0
 

865979.0134044.0

865979.0134044.0
 

 

Each row (0.134044 0.865979) represents the long term probabilities of each state.  

Whatever the weather is today, in the long term the probability that it will be rainy on any 

day is 0.13 and the probability that it will be dry is 0.87.  

The state matrix approaches a fixed matrix (0.134  0.866) which is called the steady state or 

stable matrix.  The steady state matrix represents the long-term probabilities of each state. 

Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.134 and the probability that it will be dry on a day is 0.866.  The state matrix 

approaches the steady state matrix (0.134 0.866) regardless of the value of the initial state 

matrix. The steady state matrix (0.134 0.866) shows that in the future, the rainfall pattern 

will follow the pattern of the given probability.  Thus, in future, the probability that it will 

rain on a particular day is 0.134 and the probability that it will be dry on a particular is 

0.866. 
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CHAPTER FOUR 

ANALYSIS OF DATA 

4.0 Introduction  

Rainfall data was gathered to cover 5 towns in the south eastern coast of Ghana, precisely 

Keta, Akatsi, Akuse, Accra and Cape Coast (refer to map at appendix A(i)).  According to 

the data gathered from 1980 to 2010 for the five towns, rainfall distribution is not evenly 

distributed.  Looking at the data, the rain pattern is centralized from May to September in all 

the five towns without any certainty.  This brings to the fore the doubt in mines of peoples 

whether to invest at a particular time. This research work is to create awareness in people to 

be able to know the certainty level of rainfall along the south eastern coast of Ghana.          

 

4.1 Data Source 

The time sequenced rainfall data used in this study were obtained from Department of 

Agricultural and Meteorology department of Ghana, for the period 1980-2010.  From each 

year the maximum amount of rainfall were derived on daily basis and in this way, the length 

of time series will be at least 60 of extreme maximum rainfall amount for the five towns 

(twelve month), which is to be analyzed in the present study. Refer to all data at Appendix 

B and C. 

 

4.2 Study Area  

The distribution will cover only the south eastern coast of Ghana constituting the areas 

specifically Keta, Akatsi, Akuse, Accra and Cape Coast (refer fig. 4.1)  
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Fig. 4.1: Map of Study Area 

 

4.3 Instrument  

The data was analysed with Microsoft excel and Matlab. This was programmed with rainfall 

data of south eastern coast of Ghana from 1980 to 2010.  

 

4.4 Preliminary Discussions on each town 

Following the trend and pattern of rainfall in each town, the observations below were made 

on each town. 

4.4.1 Preliminary discussion on Accra  

Accra is the capital city of Ghana situated on the central coast part of Ghana. The time 

series graph at fig 4.2 represent the daily rainfall pattern of Accra from January day one to 

the last day of December. The graph shows daily pattern of rain in Accra over period of 30 

years duration. The average values was used to draw the graph (refer data at appendix B(i)) 
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Fig. 4.2: Rainfall pattern of Accra 

Looking at the rainfall data gathered from 1980 to 2010, January to April seems dry with a 

little heavy rain during specific days in January and March.  The rains increase as the year 

gets into the middle part of the year (May to September) recorded a normal rainfall whilst 

June 14
th
 to 18th recorded the highest rainfall. Towards the end of the year, the rainfall 

reduces from October to December. 

 

4.4.2 Preliminary discussion on Akuse  

Akuse is located a little away from the immediate coast. The daily rainfall pattern of Akuse 

is shown in fig. 4.3.  The data used was an average data for a 30 year period, (refer to 

appendix B(ii))  
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Fig 4.3: Rainfall Pattern of Akuse 

In view of the time series graph at fig 4.3, Akuse experiences the driest moment in the 

month of January to February.  The rains set in from March to September with the highest 

rainfall occurring in May 16
th

 and average rains in the month of October.  November and 

December recorded a little rain than January and February.  The highest rainfall occurs in 

May to August. 

 

4.4.3 Preliminary discussion on Cape Coast  

Cape-Coast lies in the central part of the coastal region of Ghana.  It consists of rainforest as 

well as swamp region covering a little part of the eastern coast of Ghana.  The rainfall 

pattern of Cape Coast over the years has changed.  Looking at the time series graph at fig 

4.4; the rainfall pattern seems to be undulating and not stable. The data used was an average 

data for a 30 year period, (refer to appendix B(iii))   
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Fig. 4.4: Rainfall Pattern of Cape Coast 

The graph reviewed that, January to March each year, the region experiences milled 

drought.  During April to September and close to November, the rainfall pattern is 

averagely good. The highest rainfall occurs in May with peak on 26
th
 May. The graph is a 

normal graph. 

 

4.4.4: Preliminary discussion on Akatsi  

Akatsi is the commercial hub along the Volta coast towards Aflao.  The main occupation of 

the people are fishing and farming.  The reliance of people of Akatsi on rains to cultivate 

most of their crops has over the years eluded the people. The graph below shows the 

average rainfall pattern of Akatsi over the period of 30 years; (refer to appendix B(iv) for 

data).  
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Fig 4.5: Rainfall Pattern of Akatsi 

The observed rainfall graph at fig 4.5 for Akatsi from meteorological department of Ghana 

have revealed that over the years, the rains set in during the early part of February until 

August.  The later part of August experiences a little drought as observed in the graph at fig 

4.5.  Critically observed, the formation of rainfall around Akatsi occurs in April to June 

with normal distribution of rains in October to December. The highest rainfall occurs 

around 15
th
 February and between May and June. 

 

4.4.5: Preliminary discussion on Keta  

Keta lies along the coastal belt of Ghana precisely south-eastern coast of Ghana.  The 

geographical location of Keta is south-eastern of Accra towards Aflao. The rainfall pattern 

of Keta is very unstable. The average rainfall data was used to graph the pattern of rainfall, 

(refer to appendix B(v) for data)  
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Fig. 4.6: Rainfall Pattern of Keta 

The time series graph at fig. 4.6 shows that the rainfall in Keta starts in March to July.  

January to middle part of May has experienced little rain and some cases no rain occurring 

form 1
st
 January to 3

rd
 February.  From July 14

th
 to December experience low rainfall 

looking at the spread of rainfall in the area throughout the year. The highest rainfall occurs 

in May 27
th
 to 14

th
 July

 
.   

 

 

4.5 Markov chain Modeling  

A markov chain is a chain of events for which the probabilities of outcomes or states 

depend on what has happened previously e.g. the probabilities of it being rainy or dry on a 

particular day depend on whether it was rainy or dry on the previous day.  

The researcher knowing very well that the states ―rainy‖ and ―dry‖ do no overlap and cover 

all probabilities.  

A state matrix or state vector is a row matrix which shows the probability of each state e.g 

take X= (0.15 0.85) to mean that the probability of it being rainy on a certain day is 0.15 

and probability of it being dry on that dry is 0.85. The sum of the elements of a state matrix 

is 1. 
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4.5.1 Markov Chain analyses for rainfall pattern in Akuse 

The average daily rainfall pattern was calculated for each day in each month. For each day a 

rainy day was picked to determine whether the next day is dry or rainy. The sum of the 

number of such days (rain or dry) was calculated and divided by the total number of days in 

the month. Similar computations were done for dry days.  An   example was taken from the 

daily rainfall data of Akuse (refer data at appendix c (i)) for the month January of 31 values 

which was used to find the conditional probability as shown below;  

 Given that it is rainy, the probability that it would be rainy a day later is given by   

 13.0
31

4

 
 
 

 Given that it is dry, the probability that it would be rainy a day later is given by  

 06.0
31

2
  

This yields the table (transition matrix) below; 

          To 

 

 or    
94.006.0

87.013.0
P   From                               

 

The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

 

 

 Rainy Dry 

Rainy 0.13 0.87 

Dry 0.06 0.94 
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p  2p  
3p  

94.006.0

87.013.0
 

9358.0064.0

9309.0691.0
 

935506.0064494.0

935.0064837.0
 

   
4p  

5p  
6p  

935485.0064515.0

935461.0064539.0
 

935484.0064516.0

935482.0064518.0
 

935484.0064516.0

935484.0064516.0
 

 

Each row (0.064516 0.935484) represents the long term probabilities of each state.  

Whatever the weather is today, in the long term the probability that it will be rainy on any 

day is 0.06 and the probability that it will be dry is 0.94.  

The state matrix approaches a fixed matrix (0.064506  0.935333) which is called the steady 

state or stable matrix.  The steady state matrix represents the long term probabilities of each 

state. 

Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.045 and the probability that it will be dry on a day is 0.935.  The state matrix 

approaches the steady state matrix (0.045 0.935) regardless of the value of the initial state 

matrix.  

The steady state matrix (0.045 0.935) shows that in the future, the rainfall pattern of Akuse 

will follow the pattern of the given probability.  Thus in future, the probability that it will 

rain on a particular day in Akuse is 0.045 and the probability that it will be dry on a 

particular in Akuse is 0.935. 

The table below shows the conditional probability of either rainy or drought in a particular 

day for the various month in Akuse. 
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Table 4.1: Rainfall pattern of Akuse 

Month  Initial matrix (p)  Long term prob. Prob. for either 

rain/dry on a day 

 P  P
n
  P(rain)       P(dry)                    

January  

94.006.0

87.013.0
 

935.0045.0

935.0045.0
6p  

0.045          0.935 

February  

93.007.0

75.025.0
 

915.0085.0

915.0085.0
9p  

0.085          0.915 

March  

68.032.0

74.026.0
 

698.0302.0

698.0302.0
6p  

0.302          0.608 

April  

67.033.0

63.037.0
 

656.0344.0

656.0344.0
5p  

0.344          0.656 

May  

58.042.0

68.032.0
 

618.0382.0

618.0382.0
7p  

0.382          0.618 

June  

80.020.0

67.033.0
 

770.0230.0

770.0230.0
8p  

0.230          0.770 

July  

65.035.0

74.026.0
 

679.0321.0

679.0321.0
6p  

0.321          0.679 

August  

65.035.0

94.006.0
 

729.0271.0

729.0271.0
12p  

0.271          0.729 

September  

67.033.0

60.040.0
 

645.0355.0

645.0355.0
6p  

0.355           0.645 

October  

77.023.0

61.039.0
 

726.0274.0

726.0274.0
9p  

0.274           0.726 

November  

90.010.0

60.040.0
 

857.0143.0

857.0143.0
13p  

0.143           0.857 

December  

77.023.0

94.006.0
 

803.0197.0

803.0197.0
9p  

0.197           0.803 

 

Discussions 

Basically; the rainfall pattern of Akuse may be describe as average.  Following the 

probability at table 4.1; in the long run, the rainfall is lower in January to April. 
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From table 4.1, the rainfall increases from May towards the month October. The rains began 

to reduce again drastically from November to December. The conditional probability 

indicates that the highest rainfall would occur in May with probability of 0.382; that is if it 

will rain in any particular day in May. 

 

4.5.2 Markov Chain analysis for rainfall pattern in Accra 

The average daily rainfall pattern was calculated for each day in each month. For each day a 

rainy day was picked to determine whether the next day is dry or rainy. The sum of the 

number of such days (rain or dry) was calculated and divided by the total number of days in 

the month. Similar computations were done for dry days..  An   example was taken from the 

daily rainfall data of Accra (refer data at appendix c (ii)) for the month January of 31 values 

which was used to find the conditional probability as shown below;  

 Given that it is rainy, the probability that it would be rainy a day later is given by 

 10.0
31

3

 

 Given that it is dry, the probability that it would be rainy a day later by is given by 

 13.0
31

4
  

 

This can be seen in table below; 

          To 

 

 or    
87.013.0

90.010.0
P   From                               

 Rainy Dry 

rainy 0.10 0.90 

Dry 0.13 0.87 
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The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

 

p  2p  
3p  

87.013.0

90.010.0
 

874.0126.0

873.0127.0
 

873783.0126217.0

87381.012619.0
 

   
4p  

5p  
6p  

873787.0126213.0

873786.0126214.0
 

873786.0126214.0

873786.0126214.0
 

 

 

Each row (0.126214 0.873786) represents the long term probabilities of each state.  

Whatever the weather is today, in the long term the probability that it will be rainy on any 

day is 0.126 and the probability that it will be dry is 0.874.  

The state matrix approaches a fixed matrix (0.126214 0.873793) which is called the steady 

state or stable matrix.  The steady state matrix represents the long term probabilities of each 

state. 

Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.126 and the probability that it will be dry on a day is 0.874.  The state matrix 

approaches the steady state matrix (0.126 0.873) regardless of the value of the initial state 

matrix.  

The steady state matrix (0.126 0.874) shows that in the future, the rainfall pattern of Accra 

will follow the pattern of the given probability.  Thus in future, the probability that it will 
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rain on a particular day in Accra is 0.126 and the probability that it will be dry on a 

particular in Accra is 0.874. 

The table below shows the probability of either rainy or drought in a particular day for the 

various month in Accra. 

 

Table 4.2: Rainfall pattern of Accra  

Month  Initial matrix (p) Long term prob. 

matrix  

Prob. for either 

rain/dry on a day 

 P  P
n
  rain              dry 

January  

87.013.0

90.010.0
 

874.0126.0

874.0126.0
5p  

0.126           0.874 

February  

86.014.0

89.011.0
 

864.0136.0

864.0136.0
5p  

0.136            0.874 

March  

90.010.0

81.019.0
 

890.0110.0

890.0110.0
7p  

0.110            0.890 

April  

77.023.0

67.033.0
 

744.0256.0

744.0256.0
7p  

0.256             0.744 

May  

58.042.0

48.052.0
 

533.04677.0

533.0467.0
7p  

0.467             0.533 

June  

70.030.0

60.040.0
 

667.0333.0

667.0333.0
7p  

0.333             0.667 

July  

71.029.0

81.019.0
 

736.0264.0

736.0264.0
7p  

0.264             0.736 

August  

81.019.0

77.023.0
 

802.0198.0

802.0198.0
5p  

0.198             0.802 

September  

07327.0

63.037.0
 

70.030.0

70.030.0
7p  

0.30                0.70 

October  

74.026.0

65.035.0
 

676.0324.0

676.0324.0
6p  

0.324             0.676 

November  

87.013.0

77.023.0
 

856.0144.0

856.0144.0
8p  

0.144            0.856 

December  

97.003.0

94.006.0
 

969.0031.0

969.0031.0
5p  

0.031            0.969 

 



59 
 

 

 

 

Discussions 

Looking at table 4.2; the rainfall pattern of Accra, it reveal that the rains are averagely 

distributed among the entire zone of Accra from April to October. The data reveals that the 

highest rainfall is recorded in the month May, June and October with probability of 0.467, 

0.333 and 0.324 respectively. The rainfall reduces in December considering the probability 

value of rain in December of 0.031. 

 

4.5.3 Markov Chain analyses for rainfall pattern of Cape-Coast 

The average daily rainfall pattern was calculated for each day in each month. For each day a 

rainy day was picked to determine whether the next day is dry or rainy. The sum of the 

number of such days (rain or dry) was calculated and divided by the total number of days in 

the month. Similar computations were done for dry days.  An   example was taken from the 

daily rainfall data of Cape Coast (refer data at appendix c (iii)) for the month January of 31 

values which was used to find the conditional probability as shown below;  

 Given that it is rainy, the probability that it would be rainy a day later is given by 

 06.0
31

2

  

 Given that it is dry, the probability that it would be rainy a day later is given by 

 16.0
31

5
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This can be seen in table below; 

          To 

 

 or    
84.016.0

94.006.0
P   From                               

 

The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

p  2p  
3p  

84.016.0

94.006.0
 

856.0144.0

846.0154.0
 

8544.01456.0

8554.01446.0
 

   
4p  

5p  
6p  

85456.014544.0

85446.014554.0
 

854544.0145456.0

854554.0145446.0
 

854546.0145454.0

854554.0145456.0
 

7p  
8p   

854545.0145455.0

854546.0145454.0
 

854545.0145455.0

854545.0145455.0
 

 

 

Each row (0.145455 0.854545) represents the long term probabilities of each state.  

Whatever the weather is today, in the long term the probability that it will be rainy on any 

day is 0.15 and the probability that it will be dry is 0.85.  

The state matrix approaches a fixed matrix (0.145455  0.854545) which is called the steady 

state or stable matrix.  The steady state matrix represents the long term probabilities of each 

state. 

 Rainy Dry 

rainy 0.06 0.94 

Dry 0.16 0.84 
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Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.145 and the probability that it will be dry on a day is 0.855.  The state matrix 

approaches the steady state matrix (0.145 0.855) regardless of the value of the initial state 

matrix.  

The steady state matrix (0.145 0.855) shows that in the future, the rainfall pattern of Cape 

Coast will follow the pattern of the given probability.  Thus in future, the probability that it 

will rain on a particular day in Cape coast is 0.145 and the probability that it will be dry on a 

particular in Cape Coast is 0.855. 

The table below shows the probability of either rainy or drought in a particular day for the 

various month in Cape Coast. 
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Table 4.3: Rainfall pattern of Cape Coast 

Month  Initial matrix (p) Long term prob. 

Matrix 

Prob. for either 

rain/dry on a day 

    

January  

84.016.0

94.006.0
 

854.0145.0

854.0145.0
8p  

0.145            0.854 

February 

93.007.0

86.014.0
 p

923.0075.0

923.0075.0
6

 
0.075             0.923          

March 
   

94.006.0

77.023.0
 p

928.0072.0

928.0072.0
9

 
 0.072             0.928    

April 
   

70.030.0

77.023.0
 p

720.0280.0

720.0280.0
6

 
0.280             0.720 

May 
   

58.042.0

71.029.0
 p

628.0372.0

628.0372.0
8

 
0.372            0.628 

June 
   

43.027.0

40.060.0
 p

597.0403.0

597.0403.0
13

 
0.403            0.597 

July 
   

45.055.0

55.045.0
 p

50.050.0

50.050.0
7

 
0.50              0.50 

August 
   

61.039.0

77.023.0
 p

664.0336.0

664.0336.0
8

 
0.336            0.664 

September 
  

90.010.0

67.033.0
 p

870.0130.0

870.0130.0
10

 
0.130            0.870 

October 
  

58.042.0

68.032.0
 p

618.0382.0

618.0382.0
7

 

0.382            0.610 

November 
  

83.017.0

77.023.0
  p

820.0182.0

820.0182.0
6

            
0.182            0.820 

December 
  

87.013.0

97.003.0
 p

882.0118.0

882.0118.0
7

 
0.118             0.882 

 

 

Discussion  
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The study state probability rainfall values for the region indicate that, the highest rainfall 

was recorded in the month of July with the probability of 0.50.  This showed that the 

chances of both rain and drought indication is 50 percent.  Looking at data from January to 

December; it is vividly clear that the rainfall increases gradually from May with the 

probability of 0.372 until August with the probability of 0.336 and began to decrease from 

September gradually until December.  The maximum rainfall was recorded in the months of 

May to August. In general, Cape-Coast has a greater edge and better atmospheric conditions 

comparatively to the rest four (4) towns.    

  

4.5.4 Markov Chain analyses for rainfall pattern of Akatsi 

The average daily rainfall pattern was calculated for each day in each month. For each day a 

rainy day was picked to determine whether the next day is dry or rainy. The sum of the 

number of such days (rain or dry) was calculated and divided by the total number of days in 

the month. Similar computations were done for dry days.  An   example was taken from the 

daily rainfall data of Akatsi (refer data at appendix c (iv)) for the month January of 31 

values which was used to find the probability as shown below;  

 Given that it is rainy, the probability that it would be rainy a day later is given by 

 10.0
31

3

  

 Given that it is dry, the probability that it would be rainy a day later is given by 

 06.0
31

2
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This can be seen in table below; 

          To 

 

 or    
94.006.0

90.010.0
P   From                               

 

 

The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

 

p  2p  
3p  

94.006.0

90.010.0
 

9376.00624.0

936.0064.0
 

937504.0062496.0

93744.006256.0
 

   
4p  

5p  
6p  

9375.00625.0

937498.0062502.0
 

9375.00625.0

9375.00625.0
 

9375.00625.0

9375.00625.0
 

 

Each row (0.0625 0.9375) represents the long term probabilities of each state.  Whatever the 

weather is today, in the long term the probability that it will be rainy on any day is 0.06 and 

the probability that it will be dry is 0.94.  

The state matrix approaches a fixed matrix (0.0625  0.9375) which is called the steady state 

or stable matrix.  The steady state matrix represents the long term probabilities of each state. 

 Rainy Dry 

Rainy 0.10 0.90 

Dry 0.06 0.94 
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Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.0625 and the probability that it will be dry on a day is 0.9375.  The state matrix 

approaches the steady state matrix (0.0625 0.9375) regardless of the value of the initial state 

matrix.  

The steady state matrix (0.0625 0.9375) shows that in the future, the rainfall pattern of 

Akatsi will follow the pattern of the given probability.  Thus in future, the probability that it 

will rain on a particular day in Akatsi is 0.062 and the probability that it will be dry on a 

particular in Akatsi is 0.938. 

The table below shows the probability of either rainy or drought in a particular day for the 

various month in Akatsi. 
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Table 4.4: Rainfall pattern of Akatsi 

Month  Initial matrix (p) Long term prob. 

Matrix 

Prob. for either 

rain/dry on a day 

    

January  

94.006.0

90.010.0
 

938.0063.0

938.0063.0
5p  

0.063            0.938 

February  

96.004.0

89.011.0
 

957.0043.0

957.0043.0
6p  

0.043            0.957 

March  

96.035.0

87.013.0
 

713.0287.0

713.0287.0
p  

0.287            0.713 

April  

73.027.0

80.020.0
 

748.02532.0

748.0252.0
7p  

0.252            0.748 

May  

71.027.0

65.035.0
 

691.0309.0

691.0309.0
6p  

0.309            0.691 

June  

47.053.0

53.047.0
 

50.050.0

50.050.0
5p  

0.50              0.50 

July  

65.035.0

71.029.0
 

670.0330.0

670.0330.0
6p  

0.330            0.670 

August  

81.019.0

17.026.0
 

796.0204.0

796.0204.0
6p  

0.204            0.796 

September  

63.037.0

57.043.0
 

606.0394.0

606.0394.0
5p  

0.394            0.606 

October  

61.039.0

58.042.0
 

598.0402.0

598.0402.0
4p  

0.402            0.598 

November  

83.017.0

60.040.0
 

779.0221.0

779.0221.0
11p  

0.221            0.779 

December  

91.003.0

90.010.0
 

968.0032.0

968.0032.0
6p  

0.032            0.968 

 

Discussion 

The observed data revealed that the rains would not be enough in the month of January to 

February. Gradually, the rains increase from March to July and decrease a little bit in the 



67 
 

month of August. The month of September to October, see the increase of rainfall 

throughout the years. In June, it shows clearly that the probability of rains occurring has 

equal chance as that of drought or no rain. (Probability of 50%). Averagely, Akatsi seems to 

have a better edge over the rest of the four towns. 

 

4.5.5 Markov Chain analyses for rainfall pattern of Keta 

The average daily rainfall pattern was calculated for each day in each month. For each day a 

rainy day was picked to determine whether the next day is dry or rainy. The sum of the 

number of such days (rain or dry) was calculated and divided by the total number of days in 

the month. Similar computations were done for dry days.  An   example was taken from the 

daily rainfall data of Keta (refer data at appendix c (v)) for the month January of 31 extreme 

values which was used to find the probability as shown below;  

 Given that it is rainy, the probability that it would be rainy a day later is given by 

 03.0
31

1

  

 Given that it is dry, the probability that it would be rainy a day later is given by 

 06.0
31

2
  

 

This can be seen in table below; 

          To 

 

 or    
94.006.0

97.003.0
P   From                               

 

 Rainy Dry 

Rainy 0.03 0.97 

Dry 0.06 0.94 
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The study state value of the power of the transition matrix  

The study state transition matrix, the value of 
np  approaches a fixed square matrix as n 

increases. This is the case in the table below;  

p  2p  
3p  

94.006.0

97.003.0
 

9418.00582.0

9409.0591.0
 

941746.0058254.0

941773.0058227.0
 

   
4p  

5p  
6p  

941748.0058252.0

941747.0058253.0
 

941748.0058252.0

941748.0058252.0
 

 

 

Each row (0.058252 0.941748) represents the long term probabilities of each state.  

Whatever the weather is today, in the long term the probability that it will be rainy on any 

day is 0.06 and the probability that it will be dry is 0.94.  

The state matrix approaches a fixed matrix (0.05825  0.941712) which is called the steady 

state or stable matrix.  The steady state matrix represents the long term probabilities of each 

state. 

Whatever the weather is today, in the long term the probability that it will be rainy on a day 

is 0.058 and the probability that it will be dry on a day is 0.942.  The state matrix 

approaches the steady state matrix (0.058 0.942) regardless of the value of the initial state 

matrix.  

The steady state matrix (0.058 0.942) shows that in the future, the rainfall pattern of Keta  

will follow the pattern of the given probability.  Thus in future, the probability that it will 

rain on a particular day in Keta is 0.058 and the probability that it will be dry on a particular 

in Akuse is 0.942. 
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The table below shows the probability of either rainy or drought in a particular day for the 

various month in Keta. 

Table 4.5:  Rainfall pattern of Keta 

Month  Initial matrix (p) Long term prob. 

Matrix 

Prob. for either 

rain/dry on a day 

    

January  

94.006.0

97.003.0
 

942.0058.0

942.0058.0
5p  

0.058            0.942 

February  

96.004.0

86.014.0
 

956.0044.0

956.0044.0
8p  

0.044            0.956 

March  

90.010.0

94.006.0
 

904.0096.0

904.0096.0
5p  

0.096            0.904 

April  

77.023.0

8.02.0
 

777.0223.0

777.0223.0
5p  

0.223            0.777 

May  

77.023.0

84.016.0
 

785.0215.0

785.0215.0
6p  

0.215            0.785 

June  

80.020.0

67.033.0
 

770.0230.0

770.0230.0
p  

0.230            0.770 

July  

97.003.0

71.029.0
 

959.0041.0

959.0041.0
11p  

0.041            0.959 

August  

81.019.0

77.023.0
 

802.0198.0

802.0198.0
5p  

0.198            0.802 

September  

77.023.0

60.040.0
 

723.0277.0

723.0277.0
10p  

0.277            0.723 

October  

87.013.0

71.029.0
 

845.0155.0

845.0155.0
8p  

0.155            0.845 

November  

87.013.0

90.010.0
 

874.0126.0

874.0126.0
5p  

0.126            0.874 

December  

90.010.0

97.003.0
 

907.0093.0

907.0093.0
p  

0.093            0.907 
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Discussion 

The observed data indicates that, the rainfall pattern of keta is not favourable. Looking at 

the probability values of this town. It shows clearly that rainfall may occur a little in the 

month of April to May with even a downward trend. August and September may also hit a 

little rain where the rest of the month is likely not to experience any rain. 

 

4.6 General Findings 

The  Markov chain analysis for the various towns showed that, the probability of rain in 

each town varies day by day.  Also the long term probability differs from town to town. 

Observation made on the long term probability values for each town showed that all the 

areas tended to be dry. This is because in each case, the long term rainfall values are 

generally low.   

Table 4.6, Maximum rainfall pattern of each town 

 Keta Akatsi Akuse Accra Cape Coast 

Maximum 

rainfall 

0.277 0.50 0.382 0.467 0.50 

 

From the table, we observe that from Keta to Akatsi to Akuse to Accra through to Cape 

Coast; the maximum rainfall probability increases  (ie from east to west)  
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.0 Introduction  

This chapter presents the general summary, conclusion and recommendations of the 

research work. 

 

5.1 Summary 

 

Rainfall pattern assessment has been a challenging task among rainfall researchers and 

professionals. There are many rainfall tools that have been developed around the world and 

are commonly used to quantify rainfall conditions as was discussed in chapter two.  It was 

found that in most cases, Markov chain analysis developed for a specific region, and could 

not be directly applicable to other regions due to inherent complexity of rainfall phenomena, 

different hydro-climatic conditions and catchment characteristics. 

 

Markov chain analysis has been employed to study different climatic regions around the 

world.  However, little or no such study has been conducted to show a rainfall pattern in 

Ghana which has one of the highest recorded rainfall levels (per capita)  on the Earth. In this 

study, an employment of Markov chain analysis for modeling historical daily rainfall within 

the south eastern coast of Ghana has been done. 

 

Historical daily rainfall values recorded in south eastern coast during 1980-2010 were used 

in this study to investigate how well the Markov chain method was capable of defining 

rainfall conditions.  
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The study showed that Markov chain analysis is as good as other methods in predicting 

patterns of rainfall and detecting similarities in historical rainfall.  

The summary of the highest recorded rainfall from the time series data and the highest 

expected rainfall probability for various month is indicated in the table below; 

 

Table 5.1, Maximum rainfall and Maximum probability rainfall 

TOWN MONTH MAXIMUM 

RAINFALL 

(mm) 

MONTH MAXIMUM 

PROBABILITY 

ACCRA JUNE 17 MAY 0.467 

AKUSE MAY 13 MAY 0.382 

CAPE COAST MAY  17 MAY & JULY 0.372 & 0.50 

AKATSI JUNE 15  JUNE  0.50 

KETA MAY-JULY 20 MAY-SEPT. 0.215 & 0.277 

  

Indications from table 5.1 confirm that the highest rainfall occurring from the time series 

data tallies with the computed maximum probability from Markov chain analysis.  This 

shows Markov chain analysis is a very good tool to use to investigate the rainfall pattern of 

those towns. 

 

5.2, Conclusion 

This study aimed to classify and assessed annual rainfall over south eastern coast of Ghana 

into rainy/ drier groups. It was found that a Markov chain analysis classifies this pattern.  

The steady state transition matrices and the steady state probability vectors were computed 

for each town and each month. 

It was found that, the rainy or dry season pattern observed using the monthly steady state 

rainfall vectors tended to coincide with the monthly rainfall time series trajectory.  In 
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particular for Accra, the rainy season was observed to be in the month of May to June and 

September to October.  

The probability of rainfall tended to increase from east to west along the south eastern coast 

of Ghana.  

 

5.3 Recommendations 

It is recommended that, this work could be helpful to business organizations, Agro 

industries and Agricultural insurance practitioners to know at what time it is likely to rain or 

not.  In this way they would be able to advice their clients as to what time to invest or not to 

invest.  Further research could be done covering the whole nation since this study 

concentrated only on south-eastern coast of Ghana. 
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