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Abstract

In spite of advances in technology, occurrence of Fire Outbreaks is growing at

an increasing rate all over the world but particularly in developing countries like

Ghana. It is thus worrying that not much work appears to have been done in

Ghana regarding the formulation of statistical and other models for predicting

Fire Outbreaks. Due to this, actuarial and insurance practitioners are unable to

effectively help manage the risk of Fire Outbreaks.

A Fire Outbreaks is a sudden occurrence of fire greater than would otherwise

be expected at a particular time and place. Fire is a rare event often classified

an ’Extremal event’ and is characterized by relative rareness, huge impact, and

statistical unexpectness. In this study, monthly time series data on Fire Out-

breaks was obtained from Ghana’s Ashanti Regional Fire Service database and

was modelled using both SARIMA model and exponentially distributed survival

model for monthly prediction of fire occurrences and Fire Premium calculations

respectively. The results revealed that ARIMA (4, 1, 1)(1, 1, 1)12 model was the

best SARIMA model for the Fire Outbreaks. This model has the least AIC of

151.1116 and BIC of 176.9176. Diagnostic checks of this model with the Ljung-

Box test and ARCH-LM test revealed that the model is free from higher-order

serial correlation and conditional heteroscedasticity respectively. Moreover, the

fire premium calculation was based on the equivalence principle of calculating in-

surance premium approach based more on frequencies than on severity. A more

complete risk portfolio model is suggested depending on the availability of data,

which would capture both severity and frequency.
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CHAPTER 1

Introduction

1.1 Background of the Study

Policy makers and researchers have generally found that one major problem af-

fecting the economy of developing countries is rampant fire occurrence and Ghana

is not an exception in this respect. The current changes in ecosystem functioning

and climate systems are having major impact on Fire Outbreaks conditions glob-

ally. A Fire Outbreak is a sudden occurrence of fire greater than would otherwise

be expected at a particular time and place (investopedia). Through the centuries

there has been such an intimate connection of fire with the cultural growth of

humanity that whatever relates to the antiquity of fire is important in tracing the

history of early progress and because all inventions make use of what has gone

before, the stages, which lead up to the making of the first stoves, are necessary

in writing of their history. Logically, of course, we may assume there was once

a time when man had no fire, but very early he must have become acquainted

with fire derived from natural sources, and made use of it; for no remains of

man’s art show him without fire as his companion. Much later in the scheme of

things he invented processes for making fire artificially. Many of the legends or

myths relating to the origin of fire are vivid and dramatic, and while they vary in

detail there appears to be a similarity in many of the episodes that form the fire

origin story in all countries of the world. Fire is a good servant but a bad master

as well. Fire is a rare event and is often classified as an ’Extremal event’ and

is characterized by relative rareness, huge impact, and statistical unexpectness.

Fire Outbreaks and disasters are caused by many factors, some of which can be

blamed on humans and others beyond our control. The chief purveyors of fire

outbreaks in Ghana are classified into seven main categories namely: Electrical,
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Domestic, Bush, Institutional, Commercial, Industrial and Vehicular Fire Out-

breaks. The name extremal event connotes an extreme case: that is the chance

of occurrence is very low but the effect of which is highly severe. Fire tends to

be in this category. The Fire Service of Ghana has been targeting a reduction in

the number of Fire Outbreaks systematically on yearly basis and hope to achieve

single digit in fire fatality rate by the year 2015 (Ghana News Agency, 2010).

In order to efficiently achieve this objective, the Fire Service of Ghana needs an

accurate estimate of Fire Outbreaks.In modelling the rare phenomena that lie

outside the range of availably observations is a problem. Therefore it is very es-

sential to rely on well-founded methodology and model an appropriate time series

model to predict fire occurrence.

1.2 Problem Statement

The task of resolving the underlying risk of Fire Outbreaks in Ghana is still a big

challenge to researchers and fire stakeholders because not much works appear to

have been done in accessing the statistical model for predicting Fire Outbreaks.

Due to this, actuarial and insurance practitioners are unable to effectively help

manage the risk of Fire Outbreaks. However, the occurrences of Fire Outbreaks

and cost of damages are of an increasing trend globally for the past decade. In

Ghana, the researchers and policy makers have focused their attention on causes

of Fire without paying attention to this important indicator of economic growth.

Moreover, in Ghana, Fire Outbreaks did sustain a constant rise reflecting market

conditions such as unexpected inflations on goods and services and statistics

indicate that there has been about 1500 Fire Outbreaks recorded in Ghana for

2013 alone, and this worrying figure is expected to rise if we fail to tackle this

with urgency as a national crisis (Johnson, 2013). Also, according to the late

president Mills, Ghana lost GH�360,027,775.75 to Fire Outbreaks in the year

2011 (Ghana News Agency, 2011) which affected the country’s economic growth.

Another Research conducted by Fire Safe Europe shows that, US in 2008, the
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total cost of fire was estimated at $ 362 billion, or roughly 2.5% of US GDP.

Economic loss (property damage) reported or unreported, direct or indirect rep-

resents only $ 20.1 billion of this total. Net costs of insurance coverage ($ 15.2

billion), fire department costs ($ 39.7 billion), costs of fire protection in new

buildings ($ 62.7 billion), other economic costs ($ 44.0 billion), monetary value of

time donated by volunteer firefighters ($ 138 billion), and the estimated monetary

equivalent of civilian and fire fighter deaths and injuries due to fire ($ 42.4 billion)

are all larger components than property loss and these cases provide examples of

extreme events. If important risk management organizations such as Ghana Fire

Services cannot predict and capture the risks appropriately, their losses could be

huge and therefore extremely increase behaviour of fire damages and the substan-

tial impacts of these increments motivate us to carry out a research on modelling

fire occurrence and provide insurance premium for the Fire Outbreaks.

1.3 Justification of Study

The huge impact of catastrophic events on our society is deep and long. Investi-

gating the causes of such fire events and developing plans to protect against them

should not be the only concern but also have to resolve the results of huge finan-

cial loss. For a country to not grow economically, the existence of Fire Outbreaks

is a major contributing factor. This is because it causes both the individual

and government to lose financially leading to a poor economic growth. The high

spate of Fire Outbreaks in Ghana is said to have claimed 795 lives in total of

4577 reported cases of Fire Outbreaks recorded in the country between January -

December 2013. Furthermore, it was revealed that Brong-Ahafo region recorded

the highest number of Fire Outbreaks with 378 fires, followed by Greater Accra

region, 330, Ashanti region, 314, while Volta Region’s 46 was the lowest on record.

Another study conducted by the Research, Monitoring and Evaluation Unit of

the National Fire Service revealed that the government spend GH�40,321,963

properties (www.graphicline.com).
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1.4 The Objective of Study

Specifically, the project seeks to

� To investigate the monthly effects on the Fire Outbreaks

� To develop an appropriate time series model for predicting the Fire Out-

breaks

� To determine probabilistic actuarial models (survival model) for computing

premiums with respect to Fire Outbreaks.

1.5 Significance of the Study

The findings of this study could be used by fire stakeholders such as Ghana

National Fire Service to efficiently manage and perfectly prediction fire number

of fire in the future to prevent unforeseen governmental losses. Also help actuarial

and insurance practitioners to calculate fire premiums that will help to sustain

their insurance policies. In addition, this study could provide basis for further

researches on fire in the fire industries.

1.6 Structure of the Thesis

The thesis is organized into five chapters. Chapter one contains the introduction

of the research work. Chapter two comprises of literature review. Chapter three

outlines the methodology employed in this research while chapter four presents

the analysis and discussion of results. Chapter five is devoted to conclusion and

recommendations.
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CHAPTER 2

Literature Review

2.1 Introduction

This chapter reviews empirical works done on Fire Outbreaks. The chapter is

divided into eight main headings namely; History and Impact of Fire in Some

Part of the World, Fire and Forest Change, Overview of Fire Outbreaks Situation

in Ghana, empirical researches on fire, Generalized Linear Model, Review of Time

Series Methods, Overview of Insurance and Premium and conclusion.

2.2 History and Impact of Fire in Some Parts

of the World

Africa is mostly called ’fire continent’ (Trollope and Trollope, 2004) as a result

of widespread anthropogenic fire (i.e fire associated with anthropogenic land use)

that yearly burn the vegetation of savannah (Mbow et al., 2000; Reid et al., 2000;

Laris, 2002; Danthu et al., 2003). In the savannah of Southern Africa, where

anthropogenic fire are frequent (Shcoles and Archer, 1997), the hunter gathers

in the Kalahari region used savannah burning from manipulating vegetation to

attract the animals they hunt (Sheuyange, 2002). Fire is a widespread process in

the earth system and plays a key role in ecosystem composition and distribution

(Bond and Keeley, 2005).

Also, Herakleitos famously observed that everything is change, and more specif-

ically concluded that all things are an exchange for fire, and fire for all things.

For him fire was a metaphor for dynamism. Fire changed matter. It moved:

fast or slow, the world burned, and that burning accounted for Earth’s ceaseless
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motions. By the nineteenth century, modern science had demystified fire. Energy

replaced fire as a universal medium, and scientists reconceptualized flame as form

of oxidation, a subset of physical chemistry. But the notion of fire as a motive

power endured. Slow combustion in the form of respiration powered the living

world. Fast combustion in the guise of flames transmuted landscapes. And in-

ternal combustion within mechanical chambers powered the industrial revolution

(Pyne, 2014).

Furthermore most fire outbreaks are attributed to careless handle of fire by hu-

man of which some can be blame on us and other beyond our controls. Some

careless behavior that can cause fire outbreaks include: Irresponsible use of fire-

works; fireworks should be aimed only at the skies. Aiming fireworks to any other

direction can cause a fire disaster. Falling asleep whiles you are cooking, leaving

rubbish and trees near your house. Careless use of candle and other naked flames;

Avoid the use of candles for illumination as much as is possible. Use candle only

for your religious rituals or romantic dinners and turn them off afterwards. Pour-

ing kerosene into the kerosene tank of your kerosene lamp lit (thus may cause

explosion that can ignite a fire). Faulty electrical wiring; in order to save cost,

where thicker cables ought to be used, can cause heating, which can ignite the

insulation and spark off a fire disaster. Ensure that certified electrical engineers

are employed to supervise your house wiring.in addition, inspect the electrical

wiring of your house and ensure that it is in good condition before packing in.

Storage of fuel or other inflammable substance around the house or through the

part were naked fire may pass and smoking near inflammable substances. In

addition, ignorance can lead to fire outbreaks thus poor awareness of what fire

is and how it can be prevented has resulted to a lot of fire occurrence; however

being ignorance will also make you to ignore gadget that can save your property

during a fire outbreak and also compromise with buying a fire insurance policy.

Information about fire, how to prepare for fire disaster and to prevent fire disasters
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can be found in many books on fire. Fire requires fuel, oxygen and heat to burn.

Elimination of any of these elements will extinguish any fire no matter how intense

it is. A good knowledge of fire will enable you to know the possible fire risk areas

in your house.

Moreover, arson also causes fire outbreaks. Arson is a malicious burning of prop-

erty of another due to riot or strike and also accident do occur sometimes. When

all necessary precautions have been taken accidents can still occur. This is often

beyond your control. Electrical sparks can occur; lighting and more can cause fire

outbreaks. Knowing the causes of fire empowers you to prevent it (Beatthefire,

2006).

The establishment of India fire service in Bombay (1803), followed by Calcutta

(1822) and Madras (1908) thus completed Advisory council under Ministry of

Home Affairs recommended various aspects of uniform fire service development

throughout the country. In 1997, Ministry of Home Affairs declared that a to-

tal 1754 fire stations with 5149 fire appliances and 50730 fire professionals are

functioning throughout India. However, these services are limited to unban and

industries areas. Furthermore studies shows that major fire incidents in India are

due to the explosion in the fireworks factory and homemade fireworks followed by

residential fire and others. Each year, 450 to 470 people lives are lost in India to

burn injuries caused by firecrackers and ironically, majority of them are children

and women. The Loss Prevention Association of India Ltd (LPA) maintain that,

thousands of cases relating to burn injuries go unreported. In 2002 the LPA has

advised the government to introduce a ban on sale of fireworks to children below

15 years (India Fire Service, 1997).

Also, analysis of data showed that the total number of death due to fire in 2001,

2002 and 2003 was 5787 and total property loss was estimated to Rs 1046 crore in

India. The vast majority of all fire related mortality and morbidity in USA result

from non-catastrophic fires which is the occurrence of fire in residential areas.
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An analysis of yearly mortality data from 1978 through 1984 in USA shows that

average 4897 persons died each year in residential fires.

A similar analysis of data from 1979 through 1985 indicates that smokes inhala-

tion accounted for two-third of deaths and burns accounted for one-thirds (United

State Fire Administration, 1992).

2.3 Fire and Forest Change

Stand-maintenance vs Stand-Replacement Fire: Fires change in temperature, in-

tensity, vegetative conditions, topography, duration and size, weather conditions

and attempt to suppress the fire (Wenger, 1984).

Considering these factors, fire effects on ecosystem can be viewed over continuum,

ranging from small scale low intensity fires such as single lighting struck snag, to

large scale high intensity fire such as those that burned a third of Yellowstone

National Park in 1988.

Fire effect are mostly characterized according to the effect the fire has on the

ecosystem. Stand replacement fires are also called ’catastrophic’ fires ,which

is characterized by moderate to high intensity fire activity that kills almost all

vegetation within fire bounds. The dead vegetative substance left after the fire

often creates a further fuel hazard resulting to increased fire danger in the future.

Stand fire include low to adequate intensity fire activity which commonly burn

slow to the ground and mainly affect shrubs, grasses, and small trees. This type

of fire typically burn off accrue vegetation debris on the ground without killing

larger trees and thus reduce the danger of future fires without causing major

impact on the current vegetation component of the area (Wenger, 1984).

Notwithstanding, Guyette et al. (2002) conducted a research on dynamics of an-

thropogenic fire regime. They noted that human interaction with fire and vegeta-

tion occurs at many levels of human population density and cultural development,
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from subsistence cultures to highly technological societies. The dynamics of these

relations with respect to wildland fire are often challenging to understand and

identify at short temporal scales. Also dendrochronological fire histories from

the Missouri Ozarks, coupled with human population data, offer a quantitative

means of investigative historic from 1680 to 1990 changes in the anthropogenic

fire regime. Furthermore an indication of percent of sites burned and fire intervals

of anthropogenic fires are conditioned by the following four limiting factors: (a)

anthropogenic ignition, (b) surface fuel production, (c) fuel fragmentation, and

(d) cultural behaviour based on temporal analysis of fire scar dates over the last

3 centuries. The following conclusions were made during an ignition-dependent

stage (fewer than 0.64 humans/km2), the percent of sites burned is logarithmi-

cally related to human population (r2 = 0.67). During a fuel-limited stage, where

population density exceeds a threshold of 0.64 humans/km2, the percent of sites

burned is independent of population increases and is limited by fuel production.

During a fuel-fragmentation stage, regional trade allows population densities to

increase above 3.4 humans/km2, and the percent of sites burned becomes in-

versely related to population (r2 = 0.18) as decreases in fuel continuity limit the

propagation of surface fires. During a culture-dependent stage, increases in the

value of timber over forage greatly reduce the mean fire interval and the percent

of sites burned.

2.4 Overview of Fire outbreak Situation in Ghana

The Ghana National Fire Service was established in 1963 by Act 219 with the

primary objective of firefighting and extinguishment and to render humanitarian

service. Subsequently, in 1997 Ghana National Fire Service Act (Act 537) was

enacted to reestablish the National Fire Service with the objective of Prevent-

ing and managing undesired fires and other related matters with an expanded

mandate.

There has been so many statistics on fire incidents in Ghana. Notably among

9



them are Anaglatey (2013) reports that barely 14 days in 2013, Ghana witnessed

254 fire cases in the country. These fire cases include market fires which is a

common issue that Ghanaian markets face.

Again, according late president Mills, Ghana lost GH�360, 0277,775.75 to fire

outbreaks which affected the economy of the county, therefore noted that bushfire

were more frequent and urged Metropolitan, Municipal and District Assemblies

and Traditional authorities to enforce bye laws to protect the environment (Ghana

News Agency, 2011).

Also, Dr. Albert Brown Gaizie, Chief Fire Officer of GNFS in January 2015

revealed a statistics on reduction of fire outbreak in the 2014. He compared

a total of 3783 cases of fire outbreaks recorded in 2014 as against 4171 cases

recorded in 2013, representing a decrease of 388 cases. Furthermore, noted that

on a Regional basis, the statistics showed that there were considerable declines

in most of the regions. The Ashanti Region recorded 646 in 2014 as against 836

in 2013, Brong Ahafo registered 382 in 2014 compare with 553 in 2013, while

Central Region recorded 320 cases in 2014 down from 405 in 2013. However,

Greater Accra recorded the highest fire outbreaks with 857 in 2014 up from

547 reported cases in 2013. He said the service had employed several measures

such as market patrol teams, where personnel are deployed to all the markets to

educate the traders and ensure fire safety as well as protect lives and property.

He added that the service would establish a rapid deployment force to be the first

response to any unforeseen fire outbreaks since some of the incidences requires

rapid response and extrication. The following recommendations were made in

order to combat fire incidence in Ghana by appealing to industries to employ the

services of fire safety officers to ensure safety on their premises at all time and

enumerated inadequate water hydrants, unauthorised electrical connections, and

inadequate number of fire station in newly developing communities as some of

the challenges facing the Service and called for government support.

10



Furthermore, the Ghana National Fire Service (2014) gave statistics on fire out-

breaks and revealed that Accra tops the list with a total damage valued at

GH�564,168,260, followed by Ashanti Region (ASHR) with GH�96,680, then

Brong Ahafo Region (BAR) GH�80,621 while that of Volta Region (VR) stands

at GH�60,270.

The Northern Region (NR) recorded GH�14,780 while Tema (TR) had GH�7,300.

The cost of items which were salvaged was GH�7,070. Currently, there has been

300 domestic fires, 71 bush fires, and 107 commercial fires all totaling 779. The

number of persons who got injured are 256 while 48 died within January and

February. It is estimated that the numbers of fire for March and April would

increase as the country keeps recording rampant fire outbreaks.

For the whole of 2013, the cost of damage from disasters across all the 10 re-

gions of the country was GH�25,081,919.05. Accra recorded GH�19,940,469,

BAR GH�2,476,204.00, Eastern Region GH�1,013,409.05, NR GH�44,090, TR

GH�23,610, Upper East Region (UER) GH�850,411, and WR GH�733,726.

Meanwhile, there was a total of 5489 fire outbreaks across the nation last year

which injured 1,128 persons and caused 213 deaths.

Table 2.1 gives the statistics on fire outbreak in Ghana and Ashanti in the year

2011.

2.5 Empirical Researches on Fire

Many researches have been carried out on Fire using different theorem and math-

ematical models. Hence, Hansen (1999) modelled a Risk-Based Fire Research

Decision to support United States Coast Guard regulators’ determinations of

the most appropriate fire safety areas for allocating research and development

resources.

The methodology consists of risk based analysis of past shipboard fire and ex-
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plosion incidents to establish historical problem areas and trends. Moreover the

following results were obtained as the top five areas for possible allocation of

research and development resources are: egress of passengers and crew, develop-

ment of international design and approval standards for fire protection systems,

hazard analysis review of fire safety regulations, development of alternative de-

sign assessment methodology, and investigation of lagging requirements for fire

protection.

Furthermore Twum-Barima (2014) made a research on assessing the Awareness

of Fire Insurance in the Informal Sector by considering a sample of 95 traders

and found out most was found out that majority (50.52%) of the traders did not

understand the concept of insurance by wrong perception about it but they were

aware of the causes of fire outbreak and ranked electricity power fluctuations

as the major cause. The Relevant recommendations have been made for these

traders and policy makers to strategize in order to have better protection on the

markets.

Next, Dare et al. (2009) modelled on Incidents of fire outbreaks during fuel truck

accidents in Oyo State. They argued that accident explosions have mechanical

induced activities on the road, with potential costly damages to structures and

nonstructural property exposed to them, and loss of lives. The objective was

to determine the various causes of accidents and rollover fire outbreaks in fuel

trucks in Oyo State, Nigeria in order to properly plan to avoid costly damages to

structures and non-structural property exposed to them, and loss of lives.

Using primary data collected from field and secondary data obtained from the

Nigeria Police, Road Safety Commission and Fire Services Agency. The following

findings were obtained: from about 358 transport accidents recorded in Nigeria

between 1999 and 2002, only 33 were due to cars while the rest involved trucks

and heavy-duty vehicles. The survey showed that about 32 per cent of truck

drivers are below 30 years and probably immature. Also 62 per cent of fuel
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truck tanks manufactured are of inferior quality and may thus have been aiding

fire outbreaks when there is an accident. The study also showed that about 54

per cent of tank leakages that may lead to fire outbreak are due to operators’

carelessness. The research recommended that more education must be given to

drivers and adequate legislation for tank manufacturers.

Again, Ignas et al. modelled on an investigation of provisions of fire safety mea-

sures in buildings in Dar es salaam. They revealed that one of the major causes

of damage of constructed facilities in particular buildings in Tanzania is fire. Re-

cently, numerous cases of fire outbreaks have caused serious damage to buildings

and other properties especially in Dar es Salaam. However, the research further

revealed that fire damages can be significantly reduced if appropriate fire pre-

vention and protection measures are taken into account during the design and

construction stages of buildings. In this manuscript, therefore, observations and

results of investigation carried out to determine the provisions of fire safety mea-

sures in the design and construction of buildings in Dar es Salaam are presented.

It has been established that in some of the buildings investigated, fire safety

measures have not been adequately provided and in case of fire outbreaks serious

damages are likely to occur.

In addition, Keane et al. (2013) also conducted a research on Fire Severity Map-

ping System for Real-Time Fire Management Applications and Long-Term Plan-

ning. Accurate, consistent, and timely fire severity maps are needed in all phases

of fire management including planning, managing, and rehabilitating wildfires.

The problem is that fire severity maps developed from satellite imagery are dif-

ficult to use for planning wildfire responses before a fire has actually happened

and can’t be used for real-time wildfire management because of the timing of the

imagery delivery. The objective of the research was to blend many fire severity

mapping approaches that will help meet demands from fire and other natural

resource managers for accurate and rapid assessment of spatial fire severity given
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time, funding, and resource constraints.

Also, China fire services in 2012 modelled Fire Risk Assessment of Residential

Buildings Based on Fire Statistics from China by considering incidence of fire

from 1991 to 2001. From their analysis, it was noted that, the spatial, temporal

and causal fire incident data for the last six years have been analysed to gain

an understanding of fire characteristics and the elements affecting fire risks. It

was found that the number of fires was observed to be higher during cold winter

months, and fires were more frequent during the weekend. The number of fires

was lower during night time, whereas the number of fire deaths between midnight

and 4 a.m. was much higher than at other times of the day. Most fire incidents

occurred in residential buildings. In economically developed East China, the fire

situation is much more serious. Electrical failures and improperly fire use in daily

life were major causes of fire incidents. Based on the statistical data from China’s

fire services and the China Statistical Yearbook, the risk of occupant deaths and

the risk of direct property loss are calculated to express the risk level in residential

buildings. It was found that the risk of occupant deaths had a declining trend

over the years. Statistics is considered a useful tool for learning from the actual

events, and it helps decision makers develop proactive fire protection measures to

reduce fatalities and financial losses caused by fires.

In 2008, National Research Council Canada conducted a research in Fire risk

evaluation and cost assessment model and presented building fire risk analysis

model based on scenario clusters and its application in fire risk management of

buildings. Building fire risk analysis is a process of understanding and character-

izing the fire hazards, the unwanted outcomes that may result from the fire, and

the probabilities of fire and unwanted outcomes occurring. Their determination

was to evaluate and make a decision about the level of fire risk to determine

whether to take appropriate risk management measures or not. Therefore, build-

ing fire risk analysis serves as a basis for fire risk management. In the research,
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scenario clusters were constructed in the process of building fire risk analysis,

and the number of deaths and directive property loss are selected as building fire

risk indexes. Finally, the average fire risk of residential buildings was quantified

in detail. With the types of detailed fire risk models developed here, fire risk

management measures could be taken to improve the building fire safety grading

and reduce fire risk levels and subsequent damage.

Also Yung and Benichou (2002) studied how design fires can be used in Fire

Hazard Analysis. Many countries have introduced, or are planning to introduce

in the near future, performance and aim based codes by the use of engineering

analysis of fire development and occupant evacuation the performance and aim

based code were considered and the level of safety provided to the occupants

in a building by a particular fire safety design were assessed Central to this

performance based on the approach that was used for a suitable design fires that

can characterize typical fire growth in a fire compartment.

The research gave description of what features of design fires needed and how they

can help analyse fire hazards to the occupants in a building as a result of smoke

movement, untenable state in the stairs, and occupant response and evacuation.

2.6 Generalized Linear Model

The generalized linear model (GLM) is a flexible generalization of ordinary linear

regression that allows for response variables that have error distribution models

other than a normal distribution.

The GLM generalizes linear regression by allowing the linear model to be related

to the response variable via a link function and by allowing the magnitude of the

variance of each measurement to be a function of its predicted value General-

ized linear models were formulated by John Nelder and Robert Wedderburn as

a way of unifying various other statistical models, including linear regression, lo-

gistic regression and Poisson regression. They proposed an iteratively reweighted
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least squares method for maximum likelihood estimation of the model parameters

(Wikipedia).

Regression is from the Latin root ’re’ and ’gradus’ and littrally translate ’to go

back’. The general meaning to return to an earlier or more general pattern, fits

well with the application to mathematics and statistics. The fire use of word

is usually credited to Sir Francis Galton in 19th century to describe a biology

phenomenon (Wilson, 2011).

The phenomenon was that the height of descendants of tall ancestors tends to

regress down towards a normal average (this phenomenon is also known as re-

gression towards the mean) (Mogul, 2004). For Galton, regression had only this

biological meaning but his work was later extended by Udyny Yule and Karl

Pearson to a more general statistical context. It is also known that the published

by Legendre in 1805 and by Gauss in 1809. Legendre and Gauss both applied

the method to the problem of determining from astronomical observations, orbit

of bodies about the sun. Gauss published a further development on the theory

of least square in 1821, including a version of the Gauss Markov Theorem.

Furthermore, Albert et al. (2013) studied the year effect on the volume of Cur-

rency in Circulation in Ghana was studied.

The New Year effect was seen in the Currency in Circulation as the first three

months of Circulation. The months of January, February and 7.4309, 5.0307 and

0.2112 percent respectively. The December effect was also seen in the volume

of Currency in Circulation as the month of had the highest incremental effect of

(18.6046

Also, Alexander (2014) researched in Modelling Apartment Prices with the Mul-

tiple Linear Regression Model andstudied factors that were of most statistical

significance for the sales prices of apartments in the Stockholm City Centre. Fac-

tors considered during his study were area, balcony, construction year, elevator,
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fireplace, floor number, maisonette, monthly fee, penthouse and number of rooms.

On the basis of this examination, a model for predicting prices of apartments is

built. In order to evaluate how the factors influence the price, his research em-

ployed was the multiple linear regression model to analyze sales statistics and

the mathematical method The result of the research stated that, it is possible

to construct a model, from the factors analyzed, which can predict the prices of

apartments in Stockholm City Centre with an explanation degree of 91% and a

two million SEK confidence interval of 95%. Furthermore, a conclusion can be

drawn that the model predicts lower priced apartments more accurately. In the

case-study and literature review, the result indicates support for the hypothesis

that proximity to public transport is positive for the price of an apartment. How-

ever, such a variable should be regarded with caution due to the purpose of the

modelling, which differs between an individual application and a social economic

application.

Next, Bhattacharya and Joshi (2001) modelled the Currency in Circulation in

India using regression model. They argued that the standard currency demand

equation based on the theory of transactions and portfolio demand for money,

and the univariate time series models used for modelling Currency in Circulation,

only work well for low frequency data: their scopes are limited for high frequency

series. They therefore proposed an alternative approach of modelling Currency in

Circulation by incorporating day of the month effect. Their estimated equation

behaved very well for the in and out of sample forecast.

Additionally, Bepari and Mollik (2009) employed a combined regression-time se-

ries model with dummy variable for months to study the monthly effect in stock

returns of the Dhaka Stock Exchange (DSE).

The results of their study confirmed the existence of seasonality in stock returns

but do not support the ’tax-loss-selling’ hypothesis. Instead of ’July or January

effect’ they found an ’April effect’ in the DSE.
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Moreover, Asante (2012) modelled on regression analysis on Fire Outbreaks in

Assin North Municipality. The analysis sought to identify the five main cause

of fire outbreaks (electrical, commercial, domestic, bush fire and institutional)

and determine its effect on quarterly total number of Fire Outbreaks and develop

implementation control and precaution system. The study was based on cases in

Assin North Municipality Fire Outbreaks and covered ten years quarterly period

from 2001 to 2010.

During the analytical stages of the project, it was realized that the data obtained

defined the assumption of the normal distribution. From the analysis, it was

concluded that, the five variables: electrical, commercial, domestic, bush fire

and institutional were the best predictors of the quarterly total number of fire

outbreaks and recommended that there should be intense educational on fire

outbreak country wide and also urge people that call the fire service helpline to

fake fire outbreaks to stop in order for Ghana Fire Service to embark on their

duties professionally and efficiently.

2.7 Review of Time Series Methods

2.7.1 Unit Root Tests

Modelling time series data require the process of checking stationarity of the data.

On the contrary, most time series data are found to be non-stationary. However,

Fuller (1976) and Dickey and Fuller (1979) advocates tests (Dickey-Fuller (DF))

test and Augmented Dickey-Fuller (ADF) test) in which a null hypothesis is a

non-stationary process with a unit root and an alternative hypothesis is a trend

stationary process.

Numerous methods have been developed for testing unit root. In 1982, Nelson

and Plosser used the tests developed by Dickey and Fuller to test the economic

indicators of the American economy. They established a fact that almost all

economic time series such as the Gross National Product have unit root.
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Furthermore, Phillips and Perron (1988) weakened a strong assumption on the

error term and extended the Dickey-Fuller test to a more general test (Philips-

Perron (PP) test). However, the PP-test did not alter the result of Nelson and

Plosser (1992), even using the same data as Nelson and Plosser (1992). In 1992,

Kwiakowski et al. also made a vital contribution on unit root test . They devel-

oped a unit root test that reversed the null hypothesis and alternative hypothesis

(KPSS test) and verified that only half of the economic time series had unit root

using the same data set as Nelson and Plosser (1992).

Furthermore, Christiano (1992) criticised Perron’s exogenous treatment of a struc-

tural change and devised a method with which structural changes with a drift

term and a trend can be detected endogenously and proposed a test whose null

hypothesis is a unit root process without a structural change and whose opposing

hypothesis is a stationary process with a structural change.

Again, another test whose null hypothesis is a unit root process without any

change in a drift term and whose alternative hypothesis is trend stationary pro-

cess with a structural break was proposed by Zivot and Andrews (1992). This

proposed test can detect a time point of a structural change endogenously and

its asymptotic distribution is constant regardless of the time points of structural

changes.

Dickey et al. (1984) following the methodology suggested by Dickey and Fuller

(1979) for the zero-frequency unit-root case, proposed the Dickey, Hasza and

Fuller (DHF) test to test for seasonal unit root. The DHF test only allows for

unit roots at all of the seasonal frequencies and has an alternative hypothesis

which is considered rather restrictive, namely that, all the roots have the same

modulus. Trying to overcome these drawbacks Hylleberg et al. (1990) propose a

more general testing (HEGYs test) strategy that allows for unit roots at some

(or even all) of the seasonal frequencies as well as the zero frequency. HEGY’s

methodology allows testing for unit roots at some seasonal frequencies without
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maintaining that unit roots are present at all seasonal frequencies.

Finally, Banerjee et al. (1992) proposed three kinds of unit root tests. Firstly, a

recursive test that is extended on the basis of a structural stability test of Brown

et al. (1975) which uses recursive residuals. Secondly, a rolling test that shifts a

partial testing period successively among the whole sample period and thirdly a

sequential test that conducts t-tests or Quandt likelihood ratio tests while shifting

a time point of a structural change among the whole sample.

2.7.2 Overview on Time Series Methods

In the mid 1920s time series began to be treated in stochastic sense (Gottman,

1981). Yule (1927) first came out with an Autoregressive (AR) model when work-

ing on wolfer’s sunspot data and in 1927 Slutzky also firstly developed a Moving

Average (MA) model when studying a white-noise series. Box and Jenkins (1970)

developed the Autoregressive Moving average (ARMA) model and gave a full ac-

count of the Integrated Autoregressive Moving average (ARIMA) model.

Also, a theorem to estimate the AR (p) parameters by the least squares method

was proved by Mann and Wald (1943). For simplicity, Quenouille (1947) pre-

sented a test for AR (p) models and far along extended to MA models. Further-

more, Anderson (1971) developed a procedure to estimate the order of the AR

model as well as the AR parameter.

Moreover, a non-linear least squares technique procedure that resulted in devel-

oping technique of approximated likelihood solution for ARMA (p, q) models was

developed by Box and Jenkins (1970). In addition, the parameter estimation for

Moving Average model of order q and for Autoregressive Moving Average of order

p and q models was developed by Newbold (1970). The Box-Pierce statistics was

developed by Box and Pierce (1970) and modified by Ljung and Box (1978).

Again, Akaike (1974) proposed an information criterion to assist in the selection
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of an ARIMA model and concluded that a model with the smallest Akaike Infor-

mation Criterion (AIC) is the best model to have minimum forecast mean square

errors.

Also in 1978, Schwarz indicated that AIC was not consistent when probability

approaches one, and proposed a Bayesian Information Criterion (BIC).

Moreover, Harvey and Phillips (1979) developed an exact likelihood procedure to

estimate parameters of an ARIMA model in State-Space form. The State-Space

models are also called Structural Time Series (STS) models. Many researchers

have pointed out the advantages of the State-Space form over the ARIMA models

(Durbin and Koopman, 2001). A time series might be characterised with trend,

seasonal cycle and calendar variations, together with the effects of explanatory

variables and interventions. These components can be processed separately and

for different purposes for a State-Space model.

On contrary, the Box-Jenkins ARIMA model is a black-box model, which solely

depends on the data without knowledge of the system structure that produces

the data. The second advantage is the recursive nature of the State-Space model

that obviously allows change of the system overtime, while ARIMA models are

homogenous through time, based on the stationary assumption.

In 1982 Eagle came out with another important contribution in the area of time

series analysis when he introduced the Autoregressive Conditional Heteroscedas-

ticity (ARCH) model, to model changing volatility. The non-linear term is the

variance of the disturbance. An extension of the ARCH model to the Gener-

alised Autoregressive Conditional Heteroscedasticity (GARCH) model was made

by Bollerslev (1986).

Again, Weiss (1984) proposed an ARMA-ARCH model, in which an ARMA model

is used to model mean behaviour and an ARCH model to model the residuals of

the ARMA model. The quasi-maximum-likelihood method is used to estimate

23



model parameters.

Furthermore, Nasiru and Sarpong (2012) modelled the pattern of reserve money

growth in Ghana of which the Currency in Circulation forms an integral part of

it. Box-Jenkins methodology was used in their study and an appropriate seasonal

ARIMA model for the reserve money growth was identified. Their result exhibited

that there was a decrease in the pattern of the reserve money from September,

2010 and a continuous surge from the middle of the year 2011 to December,

2012. They made recommendation that both government and policy holders

should slow down the growth rate of the reserve money because this could lead

to an increasing inflation thus high prices of commodities in the country.

In addition, Nasiru (2013) researched on Modelling of Currency in Circulation in

Ghana. The Currency in Circulation was monthly data obtained from the Bank of

Ghana database and modelled using both SARIMA model and Regression model

with ARIMA errors. The results revealed that ARIMA(0, 1, 1)(0, 1, 1)12 model

was the best SARIMA model for the Currency in Circulation. This model has

the least AIC of -372.16, AICc of -371.97 and BIC of -363.53. Also, regression

model with ARIMA (0, 0, 1) errors was identified as the best regression model

with ARIMA errors. This model has an AIC of -417.39, AICc of -416.57 and BIC

of -396.60. Diagnostic checks of both models with the Ljung-Box test and ARCH-

LM test revealed that both models are free from higher-order serial correlation

and conditional heteroscedasticity respectively. A comparative analysis of the

forecasting accuracy of these models with the Diebold-Mariano test revealed that

there is no significant difference in the forecasting performance of the two models.

The two models were therefore proposed for predicting Currency in Circulation

in Ghana. However, the Currency in Circulation is volatile and subject to several

unobservable developments in the economy.

Therefore continuous monitoring of the forecasting performance of these models,

review of market conditions and necessary adjustments are required to make the
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use of these models more realistic.

Also, Cabrero et al. (2002) modelled the daily series of bank notes in circulation

in the context of managing the European monetary system. Empirical models

in that paper relied on two liquidity forecasting approaches; seasonal ARIMA

method and Structural Time Series (STS). Cabrero et al. (2002) noted that the

error in forecasting banknotes in circulation never exceeded one billion Euros in

both models and they concluded that econometric models are able to explain an

important part of the variation in the Currencies in Circulation.

Furthermore, Lang et al. (2008) modelled the currency outside banks in Croatia

using regression analysis. They fitted two regression equations to the series.

They fitted a regression model based on the first difference of the series and a

regression model with the residuals having an Autoregressive Integrated Moving

Average (ARIMA) structure. They compared these models with the naive model

which assumes no change in the level of currency in the future, as well as the staff

forecast created by the liquidity forecast division of the Croatia National Bank

(Expert). Both models outperformed the naive model, due to strong seasonality

of the series. Also, both statistical models slightly outperformed the Expert

model in 2005. With the two models, the regression model gave the best short

term forecasts up to five days ahead while the ARIMA model outperformed it at

the long horizon.

Also, Dheerasinghe (2006) modelled on an impact in Currency in Circulation by

forecasting the Currency in Circulation based on daily, weekly and monthly data

for the period 2000 to 2005 in Sri-Lanka. Dheerasinghe (2006) captured trend and

seasonal effects by regressing on trend and seasonal dummies. Cyclical dynamics

were captured by allowing for Autoregressive Moving Average (ARMA) effect

in the regression disturbances. The forecast produced by all the three models

accurately match the shape of the monthly, weekly and daily oscillations, and

capture the trend, seasonal and cyclical effects. Post sample estimation errors
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of the models were small and remained less than one percent in all models. All

the three models clearly identified both inter-month and intra-month variations

of Currency in Circulation. The forecast based on the daily and monthly models

performed very well, predicting similar results and were close to realised data

when used within sample.

Also, Liu (1980) studied the effect of holiday variation on the identification and

estimation of ARIMA models. He suggested modifications of ARIMA models

by including holiday information as deterministic input variable(s) and used the

monthly highway traffic volume in Taiwan as a case study.

Another contribution to the study of Currency in Circulation was made by

Simwaka (2006). He studied the determinants of Currency in Circulation in

Malawi using regression analysis. He first fitted a regression model using annual

data and then fitted a second model using monthly data in order to capture some

seasonal factors affecting the Currency in Circulation.

The model fitted with the monthly data captured seasonal variable such as the

tobacco market season and Christmas effect on Currency in Circulation. Also, the

effects of ATM cards and smart card were captured in this model. Simwaka (2006)

also employed the Augmented Dickey-Fuller (ADF) test to test for the stationarity

of all the series before fitting the regression model. The model estimated in this

study followed the standard demand for money model that includes the traditional

variables such as the real interest rates, Gross Domestic Product growth, inflation

and a measure of financial deepening. Instead of using the nominal value of the

Currency in Circulation as the dependent variable, the Currency in Circulation

per money stock ratio was used.

2.8 Overview of Insurance and Premium

The history of insurance is probably as old as the story of human. The same

instinct that prompts modern businessmen today to secure themselves against
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disaster and loss existed in primitive men also. They most at times sought to

avert the evil consequences of flood and fire and loss of life, and eager to make

some sort of sacrifice in order to achieve security(Scribed, 2011).

Insurance is planned to meet the financial status of a company, individual and

other entity in the case of unexpected losses. The agreement terms between an

insured and the insurer create an insurance policy. In exchange for premium pay-

ments from the insured, the insurer agrees to pay the policyholder compensation

upon the occurrence of a specific event (Gart, 1990).

Insurance Premium is the sum of money that the insured will be paid to the

insurer in the exchange of taking the risk from the insurer. The amount of

money to be charged for a certain amount of insurance coverage can be a term

insurance, deferred insurance, and a whole life insurance. Insurance is a pooling

of risks and based on the premise that whereas many people will pay premiums

to the insurance company, probably only a few will make claims. Part of the

payment of the many is used to pay compensation to the few who suffer losses

(Troxel and Comick, 1983).

Conceptually, insurance is a devise whereby many individuals facing the same risk

form a pool into which each individual contributes premiums, and out of which

the few who actually suffer unforeseen and unexpected losses are compensated.

Moreover, Fire insurance is a specialized form of insurance beyond property in-

surance, and is designed to cover the cost of replacement, reconstruction or repair

beyond what is covered by the property insurance policy. Policies cover damage

to the building itself, and may also cover damage to nearby structures, personal

property and expenses associated with not being able to live in or use the property

if it is damaged (Investopedia).

Yaohua et al. (2002) modeled on the Calculating Method of Insurance Premium

of Residential Mortgage Loan and noted that residential mortgage loan insur-
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ance are developing very rapidly in current years. However, there are still some

inevitable risks, how to calculate insurance rate has been a magnitude task for

insurance companies. Based on discrimination between residential mortgage loan

insurance and other insurances, the research analyzed an insurance structures of

United States and found that insurance institute in USA can often establish its

corresponding insurance structure (include insurance payment mode, number of

insurance rate, disposal method when pre-payoff) according to client’s specific

circs (such as sum of loan, term of loan, loan to value), so the controlling of risk

of regional mortgage loan insurance is become easy, the rights and interests of

insurance institute can be well protected. Moreover the research present a new

calculating method that can calculate insurance premium in different insurance

structures by using expected return equals the expected loss, the excellence of this

method was that we can calculate insurance premium in different circs if we have

related parameters (such as default rate, pre-payoff rate); it’s shortcoming was

that these parameters are not easy to get, and so we must often change insurance

premium because these parameters often change along with time.

Furthermore, Yu (2015) also modelled on Hierarchical Bayesian Modeling of

Health Insurance Claims and the objective of the thesis was propose a statistical

model for health insurance total claim amounts classified by age group, region of

residence and time horizon of the insured population under Bayesian framework.

This model can be used to predict future total claim amounts and thus to facilitate

premium determination. The future is based on the past observed information

and prior beliefs about the insured population, number of claims and amount of

claims. The insured population growth is modelled by a generalized exponential

growth model (GEGM), which takes into account the random effects in age re-

gion and time classifications. Based on the predicted values, the premiums are

estimated using four premium principles and two risk measures.

Again, Brisard (2014) modelled on Pricing of Car Insurance with Generalized
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Linear Models. The argument was that tarification is a difficult exercise since

different explanatory variables are available and often a long history preceeds the

analysis, therefore. He noted that when pricing premium the following factors

must be considered; claim frequency, claim severity and Generalized linear models

is very efficient to predict important ratios, like the claim frequency, claim severity

and pure premium.

2.9 Conclusion

The chapter dealt with reviewing of literature that is relevant to the study.

Reviewing of the literature has exposed us to the diverse techniques that re-

searchers have employed in modelling the Fire Outbreaks. However, among the

diverse techniques reviewed the Seasonal Autoregressive Integrated Moving Av-

erage model was employed in this study to model the Fire Outbreaks because

they were the techniques used frequently in literature.

29



CHAPTER 3

Methodology

3.1 Introduction

This chapter deals with the data and statistical techniques that were employed

in order to achieve the objectives of the study. The chapter is divided into eight

main headings namely; data and source, regression analysis, Box and Jenkins

time series methodology, unit root test, autoregressive integrated moving aver-

age model, model selection criteria, model diagnostics and modelling insurance

premium.

3.2 Data and Source

In order to achieve the objectives of this study, secondary data on monthly fire

outbreaks and was obtained from the Ashanti Regional Fire Station database.

The data consists of monthly fire outbreaks from January, 1997 to August, 2014.

The Computational Software employed to analyze the data were R, Minitab and

Gretl.

3.3 Regression Analysis

The concept of regression analysis is to explain the variation in an outcome or

response variable using one or more predictor variables. The end result of a

regression analysis is often to generate a model that can be used to predict future

values of the response variable given specified values of the predictor variables.

When the model involves a single predictor variable, the model is referred to as

simple linear regression model. The simple linear regression model is given by

Y = β0 + β1X + ε (3.1)

30



where Y is the response, X is the predictor variable, β0 and β1 are unknown

parameters and ε is an error term. The model parameters, β0 and β1 have physical

interpretation as the intercept and slope of straight line respectively. When the

simple linear regression model is extended to include additional predictor variables

say k predictors, then we have the multiple linear regression model. The multiple

linear regression model is given by

Y = β0 + β1X1 + β2X2 + · · ·+ βkXk + ε (3.2)

The parameters β0, β1, β2,· · · , βk in this model are called the partial regression

coefficients because they convey information about the effect on Y of the predic-

tor that they multiply given that all other predictors in the model do not change.

In the theoretical model, many assumptions are made about the predictor vari-

ables and the error term. This model is said to be linear because it is a linear

function of the unknown parameters; β0, β1, β2,· · · , βk. In the theoretical model,

many assumptions are made about the predictor variables and the error term.

When these assumptions are satisfied, the estimators are unbiased and have the

minimum variance property. Some of these assumptions of the regression model

are;

i. εi is a random real variable.

ii. The mean value of εi in any particular period is zero.

iii. The variance of εi is constant in each period.

iv. The variable εi has a normal distribution.

v. The random term of different observations (εi, εj) are independent.

vi. The predictor variables are not perfectly linearly correlated.
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Least Square Estimation method of least square may be used to estimate the

regression coefficients in the multiple regression model.

Given

yi = β0 + β1Xi1 + β2Xi2 + · · ·+ βkXik + εi

This can also be simplified as

yi = β0 +
k∑
j=1

βjXij + εi for i = 1, 2, · · · , n

The least square function is

L =
n∑
i=1

ε2i =
n∑
i=1

(yi − β0 −
k∑
j=1

βjXij)
2

Minimizing L with respect to β0, β1, β2,· · · , βk. The Least Square estimate of

β0, β1, β2,· · · , βk must satisfy

∂L

∂β0
(β0, β1, β2, · · · , βk) = −2

n∑
i=1

(yi − β̂0 −
k∑
j=1

β̂jXij)
2 = 0, for i = 1, 2, · · · , k

3.4 Trend Analysis

Many financial and economic time series data exhibit trend. It is therefore imper-

ative to investigate what the nature of the trend is. A trend is a slow, long-run,

evolution in the financial or economic variable (Dheerasinghe, 2006). Thus, the

trend reflects the long-run growth or decline in the time series. The trend in a

time series data may appear as a linear function of time, non-linear function of

time or the trend may be characterised by a constant growth rate. If the trend

in the time series is a linear function of time t, then

32



Yt = β0 + β1t+ ε (3.3)

where Yt are the observations of the time series, t is a time dummy (t = 1, 2, · · · , n−

1, n) and εt is a random error component.

Sometimes, the series may exhibit a quadratic trend or the nature of the trend

may be a polynomial of higher order say k. If the trend is quadratic, then

Yt = β0 + β1t+ β2t
2 + ε (3.4)

For a polynomial of order k

Yt = β0 + β1t+ β2t
2 + · · ·+ βkt

k + ε (3.5)

If the trend is characterised by a constant growth rate, then the equation is

Yt = βeβ1tεt (3.6)

In logarithmic form

lnYt = lnβ0 + lnβ1t+ lnεt (3.7)

If the constant growth rate is quadratic, then

lnYt = lnβ0 + lnβ1t+ lnβ2t
2 + lnεt (3.8)

The coefficients appearing in the equations (3.3) to (3.8) above are obtained by

applying the principles of Ordinary Least Squares.
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3.5 Box and Jenkins Time Series Methodology

Box and Jenkins was named after the statisticians George Box and Gwilym Jenk-

ins. Box and Jenkins Analysis refers to a systematic method of identifying, fitting,

checking, and using integrated autoregressive, moving average (ARIMA) time se-

ries models. The method is appropriate for time series of medium to long length.

The first stage is the identification of the appropriate ARIMA models through the

study of the autocorrelation and partial autocorrelation functions. The next step

is to estimates the parameters of the ARIMA model chosen. The third step is the

diagnostic checking of the model. The Ljung Test, ARCH-LM Test and CUSUM

Test are used for the model adequacy check. If the model is not adequate then

the forecaster goes to stage one to identify an alternative model and it is tested

for adequacy and if adequacy then the forecaster goes to the final stage of the

process. The fourth step is where the analysis uses the model chosen to forecast

and the process ends.

The Figure in 3.1 below is the diagrammatic representation of Box -Jenkins pro-

cess.

3.6 Unit Root Test

A very important aspect of time series analysis is to ensure that the data is

weakly stationary. A weakly stationary time series is one whose first and second

moments are invariant of time. That is, the expected value of the time series does

not depend on time and the autocovariance function, cov(yt, yt+k) for any lag k

is only a function of k and not time, that is γy(k) = cov(yt, yt+k).

Many methods have been proposed for testing for stationarity of a time series

data. These include both graphical and quantitative methods. The graphical

approach includes observing the Autocorrelation function (ACF) plots. A strong

and slow dying ACF will suggest deviation from stationarity. For the purpose

of this study, in addition to the ACF, two quantitative techniques for testing
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Figure 3.1: Box and Jenkins Process

for unit root were employed. These are; the Augmented Dickey-Fuller test and

Kwiatkowski-Phillips-Schmidt-Shin test.

3.6.1 Augmented Dickey-Fuller (ADF) Test

The ADF test proposed by Dickey and Fuller (1979) was an improvement of the

Dickey-Fuller (DF) test. The test is based on the assumption that the series

follows a random walk. Consider an autoregressive process of order one, AR(1),

below

Yt = φYt−1 + εt (3.9)

where εt denotes a serially uncorrelated white noise sequence with a mean of zero

and constant variance. If φ = 1, equation (3.9) becomes a random walk model
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without drift, which is known as a non-stationary process. The basic concept

of the ADF test is to simply regress Yt on its lagged value Yt−1 and find out

if the estimated φ is statistically equal to one or not. Equation (3.9) can be

manipulated by subtracting Yt−1 from both sides to obtain

∆Yt = δYt−1 + εt (3.10)

where δ = φ− 1 and ∆Yt = Yt − Yt−1. In practice instead of estimation equation

(3.9), we rather estimate equation (3.10) and test for the null hypothesis of δ = 0

against the alternative δ 6= 0. If δ = 0, then φ = 1, meaning that the series

have a unit root. Under the null hypothesis δ = 0, the t-value of the estimated

coefficient of Yt−1 does not have an asymptotic normal distribution (Erdogdu,

2007).

The decision to reject the null hypothesis or not is based on the DF critical values

of the τ -statistic. The DF test is based on the assumption that the error terms

are uncorrelated. However, the errors of the DF test usually show evidence of

serial correlation. In order to overcome this problem, the ADF test includes the

lags of the first difference series in the regression equation to make the error term

white noise and therefore the regression equation is presented in the following

form

∆Yt = δYt−1 +

p∑
i=1

γi∆Yt−1 + εt. (3.11)

To be more specific, the intercept may be included as well as time trend t, after

which the model becomes

∆Yt = α + βt+ δYt−1 +

p∑
i=1

γi∆Yt−1 + εt. (3.12)

where α is a constant, β the coefficient on time trend series,
∑p

i=1 γi∆Yt−1 is the
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sum of the lagged values of the dependent variable ∆Yt and p is the lag order of the

autoregressive process. The parameter of interest in the ADF test is δ. For δ = 0,

the series contains unit root and hence non-stationary. The choice of the starting

augmentation order depends on; data periodicity, significance of yi estimates and

white noise residuals. After preliminary estimation, non-significant parameter

augmentation can be dropped in order to enjoy more efficient estimates. The test

statistic for the ADF test is given by

Fτ =
δ̂

SE(δ̂)

where SE(δ̂) is the standard error of the least square estimate of δ̂. The null

hypothesis is rejected if the test statistic is greater than the critical value.

3.6.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

This is complementary test for investigating the order of integration of a series

Yt and Yt is to test H0 : Yt ∼ I(0), thus the data generating process is stationary

against the alternative H1 : Yt ∼ I(1) that it is non-stationary. Kwiatkowski

et al. (1992) derived a test for this pair of hypotheses by assuming that there is

no linear trend term therefore the point of departure is a data generating process

of the form

Yt = Xt + εt

where Xt is a random walk and Xt = Xt−1 + vt, vt ∼ iid(0, σ2
v) and εt is a white

noise sequence. In this context, the foregoing pair of hypotheses is equivalent to

the pair;

H0 : σ2
v = 0

H1 : σ2
v > 0.
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IfH0 holds, Yt is composed of a constant and the stationary process εt. Kwiatkowski

et al. (1992) proposed the following test statistic

KPSS =
1

T 2

T∑
t=1

S2
t

σ̂2
∞

where T is the number of observations, St =
∑t

j=1 ω̂j with ω̂j = Yt − Ȳ and σ̂2
∞

is a Hac estimator of

σ̂2
∞ = lim

T→∞
T−1V ar

(
T∑
t=1

εt

)

That is, σ̂2
∞ is an estimator of the long-run variance of the process εt. If Yt is a

stationary process, St is integrated of order one (I(1)) and the quantity in the

denominator of the KPSS statistic is an estimator of its variance, which has a

stochastic limit. The term in the denominator ensures that overall; the limiting

distribution is free of unknown nuisance parameters. If, however, Yt is integrated

of order one (I (1)), the numerator will grow without bounds, causing the statistic

to become large for large sample sizes. The null hypothesis of stationarity is

rejected for large values of KPSS.

3.7 Autoregressive Integrated Moving Average

(ARIMA) Model

An ARIMA model is a concatenation of Autoregressive (AR) model which shows

that there is a relationship between present and past values, a random value and

a Moving Average (MA) model which shows that the present value has something

to do with the past shocks. It is called integrated because the stationary Autore-

gressive Moving Average (ARMA) model that is fitted to the differenced data

has to be integrated to provide a model for a non-stationary data. A time series

is said to be integrated if it has to be differenced d times to make it stationary

and is denoted I (d).
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3.7.1 pth- Order Autoregressive (AR (p)) Model

A time series variable follows an AR process if the current value depends on its

past values. That is, the future of the series can be predicted using its past values.

A general pth- order AR model denotes as AR (p) is given as

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φYt−p + εt (3.13)

where εt is a white noise process and φi are constants, i = 1, 2, . . . , p. Using the

lag operator, the model can be written as

Φ(L)Yt = εt (3.14)

where Φ(L) = 1− Φ1L− Φ2L
2 − . . .− ΦpL

p.

The AR (p) time series {Yt} is stationary if the roots of the associated polynomial

mp − φ1m
p−1 − φ2m

p−2 − . . .− φp are less than one in absolute value.

3.7.2 qth-Order Moving Average (MA (q)) Model

A time series {Yt} is said to follow a Moving Average process if its current values

depends on its past shocks. That is the forecast values of the series depends on

the past errors. Thus, a Moving Average process of order q (MA (q)) is given as

Yt = εt − θ1εt−1 − · · · − θqεt−q (3.15)

where εt is white noise and θj are constants, j = 1, 2, . . . , q. MA (q) process is

always stationary regardless of values of the weights. In terms of the lag operator,
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the MA (q) process is

Yt = (1− θ1L− θ2L2 − . . .− θqLq (3.16)

=

(
1−

q∑
i=1

θiL
i

)
εt (3.17)

= Θ(L)εt (3.18)

where Θ = (1−
∑q

i=1 θiL
i).

3.7.3 Autoregressive Moving Average (ARMA) Model

ARMA model is a concatenation of the AR and MA model of order p and q

respectively. In general, an ARMA (p, q) model is given as

Yt = φ1Yt−1 + φ2Yt−2 + . . .+ φY t− p+ ε− θ1εt−1 − · · · − θqεt−q (3.19)

where φi and θj are parameters of the autoregressive and moving average com-

ponents respectively, i = 1, 2, · · · , p and j = 1, 2, · · · , q. The stationarity of an

ARMA process is related to the AR component in the model and can be checked

through the roots of the associated polynomial. If all the roots are less than one

in absolute value, then ARMA (p, q) is stationary.

3.7.4 Seasonal ARIMA (SARIMA) Model

The strong periodic patterns exhibited in a time series data is often referred to as

seasonal behaviour in the time series and when this happens the ARIMA model

becomes inefficient because it may not be able to capture the behaviour along the

seasonal part of the series which result in wrong order selection for non-seasonal

component. An extension of an ARIMA model is known SARIMA model which

capture both seasonal and non-seasonal behaviour. The SARIMA model denoted

by ARIMA(p, d, q)(P,D,Q)s can be expressed using the lag operator as (Halim
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and Bisono, 2008);

φ(L)Φ(Ls)(1− L)d(1− Ls)DYt = θ(L)Θ(Ls)εt

φ(L) = 1− φ1L− φ2L
2 − . . .− φpLp

Φ(Ls) = 1− Φ1L
s − Φ2L

2s − . . .− ΦPL
Ps

θ(L) = 1− θ1L− θ2L2 − . . .− θqLq

Θ(Ls) = 1−Θ1L
s −Θ2L

2s − . . .−ΘQL
Qs

where

p, d, q are the orders of non-seasonal AR, differencing and MA respectively

P,D,Q are the orders of seasonal AR, differencing and MA respectively

Yt represent the time series data at period t,

s represent the seasonal order,

L represent the lag operator and

εt represent white noise error at period t.

3.8 Model Selection Criteria

When fitting models, there is the tendency of two or more models competing and

for that reason it is appropriate to use good model selection criteria to select the

most adequate model. In this study, the Akaike Information Criterion (AIC) and

the Bayesian Information Criterion (BIC) were the measures of goodness of fit

that were employed to select the most adequate model. For a given data set,

several competing models may be ranked according to their AIC, or BIC values

with the one having the lowest information criterion value being the best. The

information criterion attempts to find the model that best explains the data with

a minimum of free parameters but also includes a penalty that is an increasing
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function of the number of estimated parameters. This penalty discourages over

fitting (Aidoo, 2010). In the general case, the AIC, and BIC are given by;

AIC = 2k + n log

(
RSS

n

)
BIC = log(σ2

e) +
k

n
log(n)

where

k is the number of parameters in the statistical model,

RSS is the residual sum of squares of the estimated model,

n is the number of observations in the data,

σ2
e is the error variance.

3.9 Model Diagnostics

In order to use any developed model to draw any meaningful conclusion or make

generalisation, it is important to diagnose the model to see whether there is

concordance of the model with the real world observations. Thus, we employed

the Ljung-Box, ARCH-LM and the CUSUM test in diagnosing the developed

models.

3.9.1 Ljung-Box Test

One of the major problems that a researcher is likely to encounter in fitting time

series models is serial correlation. That is, temporal dependency between suc-

cessive values of the model residuals. In this study, the Ljung-Box test proposed

by Ljung and Box (1978) was used for testing the assumption that the residuals
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contain no serial correlation up to any order k. The test procedure is as follows;

H0 : There is no serial correlation up to orderk

H1 : There is serial correlation up to orderk.

The test statistic is given by;

Qm = T (T + 2)
m∑
k=1

(T − k)−1r2k

where r2k represent the residual autocorrelation at lag k, T is the number of

residuals, m is the number of time lags included in the test.

When the p-value associated with Qm is large, the model is considered adequate

else the whole estimation process has to start again in order to get the most

adequate model.

3.9.2 ARCH-LM Test

The issue of conditional heteroscedasticity is one of the key problems that a

researcher is likely to encounter when fitting models. This happens when the

variance of the residuals is not constant. To ensure that the fitted model is

adequate, the assumption of constant variance must be achieved. The ARCH-

LM test proposed by Engle (1982) was used to test for the presence of conditional

heteroscedasticity in the model residuals. The test procedure is as follows;

H0 : There is no heteroscedasticity in the model residuals

H1 : There is heteroscedasticity in the model residuals.

The test statistic is

LM = nR2
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where n is the number of observations and R2 is the coefficient of determination

of the auxiliary residual regression.

e2t = β0 + β1e
2
t−1 + β2e

2
t−2 + · · ·+ βqe

2
t−q + vt

where et is the residual. The null hypothesis is rejected when the p-value is less

than the level of significance and is concluded that there is heteroscedasticity.

3.9.3 CUSUM Test

Another important way to check a model is to investigate its stability overtime.

The CUSUM test proposed by Brown et al. (1975) was used to test the stability

of the models developed. The test statistic is given by;

CUSUMτ =
τ∑

t=k+1

û
(r)
t

σ̂u

where û
(r)
t are the recursive residuals and σ̂u is the standard error of the regression

fitted to all T sample points and τ = K + 1, · · · , T . If the CUSUM wanders off

too far from the zero line, then there is evidence of structural instability of the

underlying model. A test with a significance level of 5% is obtained by reject-

ing stability if CUSUMτ crosses the lines ±0.948
[√

T −K + 2(τ−K)√
T−K

]
(Ploberger

et al., 1989). This test is designed to detect a non-zero mean of the recursive

residuals due to shift in the model parameters.

3.10 Modelling Insurance Premiums

Insurance is a promise of compensation for specific potential future losses in ex-

change for a periodic payment (Rejda, 1992). In analysis of risk of catastrophic

event an insurer uses the exponential distribution with mean µ as the distribution

of the time until the event occurs. However, the third objective based on equiv-

alence principle of a semi-continuous level month benefit premium for a unit fire
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insurance payable immediately fire occur at time ’t’ where x will be the month

of inception into the fire policy. The following assumptions were made for the

premium calculations;

Let S1, S2, S3, . . . be the count of sequential arrival of fire outbreaks which we

assume is Poisson distributed. The count differences X1, X2, X3, . . . correspond

to inter-arrival duration and these are positive random variables defined in terms

of the count arrivals by X1 = S1 and Xi = S1−Si−1 for I > 1. These inter-arrival

duration follows an exponential distribution.

Moreover, total loss (Y ) by fire is given as

Y = S1 + S2 + · · ·+ SN (3.20)

where

N is a random variable and represent frequency of fire loss and

Sk is the individual losses in the risk portfolio and represent severity.

Therefore

Y = N · E[X/N ] (3.21)

Alternatively,

Y = X1 +X2 + · · ·+XT

where

T represent frequency in the durational time and is continuously distributed,

X represent severity in the duration T .
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Also,

Y = T · E[X/T ] (3.22a)

E[Y ] = E[T ] · E(E[X/T ]) (3.22b)

= E[T ] · E[X] (3.22c)

Equation (3.22c) is indicating the product of frequency and severity,

where, by assumption,

E[T ] = 1
µ

(T is exponentially distributed) and

E[X] is assumed to correspond to a uniform distribution (level benefit).

Furthermore, let present value for GH�1 be denoted by V T . Therefore the Ac-

tuarial Present Value (APV) can be expressed as

(APV ) = E[V T ] (3.23a)

=

∫ k

0

vtfT (t)dt (3.23b)

=

∫ k

0

e−δtµe−µtdt (3.23c)

=

∫ k

0

e−(δ+µ)tdt (3.23d)

Note that the model (3.23d) closely resembles temporary life insurance, where ’age

x’ correspond to inception month and θ is the average number of fire outbreaks

in a month and µ play the role of an instant force of mortality while µ = 1
θ

is

average time until fire occurs.

Henceforth, because of the apparent resemblance, we shall use the corresponding

notation of a temporary life insurance model in our fire premium calculation.

The premium calculation was based on semi-continuous insurance model because
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premiums are paid monthly and benefits are received immediately fire occurs, by

equivalence principle, premium for semi -continuous level 12-monthly benefit for

a unit temporary fire insurance payable immediately fire occurs is denoted by

equivalence principle, premium for semi -continuous level 12-monthly benefit for

a unit temporary fire insurance payable immediately fire occurs is denoted by;

P (Ā1
x:12

) and is such that

Ā1
x:12 − P (Ā1

x:12 )äx:12 = 0

⇒ P (Ā1
x:12 ) =

Ā1
x:12

äx:12
(3.24)

where

Ā1
x:12 =

∫ 12+x

x

e−δtµe−µtdt (3.25a)

= µ

∫ 12+x

x

e−(δ+µ)tdt (3.25b)

= µ

∫ 12+x

x

e−(δ+µ)tdt (3.25c)

äx:12 =
1− Ā1

x:12

d
(3.26)

δ(t) = ln(1 +
i

12
) (3.27)

d =
i(1 + i)−1

12
(3.28)

Ā1
x:12

indicates the actuarial present value of a 12-month term insurance

policy of fire benefit of 1 payable immediately after fire occurs.

äx:12 is an annuity due per month for fire policy.

δ(t) is the force of interest.
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However, for these insurance policies there would be no economic incentive for

the insurance policyholder to pay premium for more than 12 months, since at

that moment no additional future benefit is possible.

3.11 Conclusion

The chapter dealt with the statistical techniques employed in this study. It

presented the techniques in a clear, precise and concise manner.
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CHAPTER 4

Analysis and Discussion of Results

4.1 Introduction

This chapter analyses, discusses and interprets the results obtained from the

study. The chapter is organized into preliminary analysis, further analysis and

discussion of results.

4.2 Preliminary Analysis

This section explains the descriptive statistics of the data on Fire Outbreaks in

Ashanti Region of Ghana. The maximum (Max) and minimum (Min) values for

the Fire Outbreaks for the entire period were 218 and 18 respectively as shown in

Table 4.1. Also, the Fire Outbreaks for the entire period was positively skewed

and leptokurtic in nature with the average and coefficient of variation (CV) being

54.17 outbreaks and 52.95% respectively.

Table 4.1: Descriptive Statistics for Fire Outbreak
Variable Mean Min Max CV (%) Skewness Kurtosis
Fire Outbreaks 54.17 18.00 218 52.95 2.03 6.37

An exploration of the Fire Outbreaks for the various months indicates that, the

highest average outbreak of Fire occurred in the month of January and the least

average occurred in the month of September as shown in Table 4.2. In terms of

the maximum and minimum fire occurrences, January and June had the highest

and lowest values respectively. The month of January has the largest variability

followed by April as shown by their coefficient of variations (CV) in Table 4.2.

Again, it was observed that the occurrence of fire for each month were positively

and negatively skewed and leptokurtic and platykurtic in nature.
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Table 4.2: Monthly descriptive statistics for Fire Outbreak
Month Mean Min Max CV (%) Skewness Kurtosis
January 97.6 39.00 218.00 47.89 1.15 1.13
February 92.44 53.00 150.00 30.02 0.52 -0.43
March 68.11 38.00 99.00 25.57 0.00 -0.90
April 49.28 22.00 79.00 37.25 0.35 -1.08
May 42.78 21.00 61.00 30.00 -0.01 -1.45
June 38.56 18.00 73.00 36.68 0.87 0.68
July 38.44 21.00 62.00 30.51 0.66 0.10
August 39.17 19.00 63.00 33.46 0.41 -0.74
September 37.24 19.00 57.00 30.63 1.28 -0.67
October 43.41 29.00 75.00 35.80 1.27 0.04
November 44.71 28.00 69.00 29.87 0.59 -0.75
December 56.41 25.00 85.00 29.45 0.11 -0.56

The time series plot of the fire outbreak shows that the Fire Outbreak increase

and decrease exponentially as shown in Figure 4.1.

Figure 4.1: Time series plot of Fire Outbreak

The residual seasonality is obviously shown in the residual correlogram of the fire

model in Figure 4.2 and the Durbin-Watson (0.813031) suggests serial correlation

in errors. The following spikes 12, 24, 36 and 48 were significant at the seasonal

displayed in the residual sample autocorrelation function. The residual partial

autocorrelation function also showed significant spikes only at seasonal lag 12.

The estimated Ljung-Box statistic of 349.027 with a p-value = 0.000 at lag 12
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rejects the white noise null hypothesis of the residuals of the fire model.

Figure 4.2: Residual correlogram of the fire model

For the purpose of analysing the monthly implication of changes of Fire Outbreak,

the transformed Fire Outbreak was first differenced and regressed on the full set of

periodic dummies. The intercept was not included in the model to avoid dummy

variable trap. The result (Table 4.3) revealed that January, March, April, Octo-

ber and December had a significant monthly effects on the fire outbreaks whiles

February, May, June, July, August, September and November were insignificant.

The F -statistic of 9.651750 and p-value of 0.0000 indicates that the regression

model was significant and Durbin-Watson statistic of 2.911460 means that there

is no serial correlation of the first order in the model residuals. Also, the Ljung-

Box statistic of 19.7813 with a p-value of 0.0713 provides evidence that the model

residuals are white noise at the lag 12.

As shown in Table 4.3, the model clearly indicates significant negative seasonality

for the month of March and April and a positive significant seasonality for the

month of January, October and December.
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Table 4.3: Regression Parameters of the Transformed First Differenced Series
Variable Coefficient Standard error T-statistic p-value
January 0.54102 0.0737322 7.3377 0.00001*
February 0.00320 0.0716548 0.0447 0.96440
March -0.29607 0.0716548 -4.1320 0.00005*
April -0.35925 0.0716548 -5.0136 0.00001*
May -0.11887 0.0716548 -1.6589 0.09871
June -0.11947 0.0716548 -1.6672 0.09704
July 0.01537 0.0716548 0.2145 0.83039
August 0.00766 0.0716548 0.1069 0.91499
September -0.02860 0.0737322 -0.3878 0.69855
October 0.14928 0.0737322 2.0246 0.04424*
November 0.04012 0.0737322 0.5442 0.58693
December 0.22883 0.0737322 3.1036 0.00219*

NB: * Means statistically significant at the 5% level of significance

Considering Table 4.3, their significance does not really matter because some of

the estimated coefficients of the dummy variables are of an incremental month

effects of each year. Hence, an approach of interpreting differential coefficients

in semi-logarithmic was proposed by Halvorsen and Palmquist (1980) and the

equation of the transformations of differential coefficients are to show differential

effects in terms of change in percentage. The monthly effect for each is calculated

with the aid of an exponential transformation and further multiplied by 100%

to show percentage change as indicated in Table 4.4. The month of March,

April, May, June, and September decreases the Outbreak of Fire by 25.6268,

30.1801, 11.2076, 11.2606 and 2.8191 percent respectively. Similarly, the month

of January, February, July, August, October, November and December increases

the Outbreak of Fire by 71.7770, 0.3207, 1.5488, 0.7688, 16.0998, 4.0939 and

25.7135 percent respectively.
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Table 4.4: Monthly Effects on Fire Outbreak
Month Coefficient Percent effect
January 0.54102 71.7770
February 0.00320 0.3207
March -0.29607 -25.6268
April -0.35925 -30.1801
May -0.11887 -11.2076
June -0.11947 -11.2606
July 0.01537 1.5488
August 0.00766 0.7688
September -0.02859 -2.8191
October 0.14928 16.0998
November 0.04012 4.0939
December 0.22884 25.7135

NB : Effect of January = (e0.541027 − 1)× 100%

4.3 Further Analysis

4.3.1 Fitting the SARIMA Model

The coefficient of skewness and kurtosis of 2.03 and 6.37 respectively in the de-

scriptive statistics in Table 4.1 revealed that there are large swings in the data

indicating non-stationarity. Furthermore, seasonality and the non-stationarity

of the series can be affirmed from the oscillation of the ACF plot and a very

dominant significant spike at lag 1 and 12 of the PACF plot as shown in Figure

4.2.

A unit root test was performed to prove the proper ordering of differencing filter.

By the method of KPSS test, we test the null hypothesis that the original series is

stationary at the non-seasonal level. From the test results as indicated in Table

4.5, since the calculated value is outside the critical region at the 5% level of

significance, we reject the null hypothesis that the series is stationary.

Table 4.5: KPSS test of Fire Outbreaks in level form
Test Test Statistic Critical value
KPSS 1.12461 0.463

The results of ADF test are shown in Table 4.6 which confirm that there is
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existence of unit root under the condition where either a constant or constant

with linear trend are included.

Table 4.6: ADF test of Fire Outbreak in level form
Test Constant Constant+Trend
ADF Test Statistic P -value Test Statistic P -value

-1.0300 0.6131 -2.10498 0.5425

The ACF plot in Figure 4.2 indicates that there is clearly evidence of seasonality in

the series. Therefore, the series was transformed using logarithmic transformation

in order to stabilise the variance. The transformed series was seasonal differenced

and tested for stationarity. Both the KPSS and ADF test shown in Table 4.7 and

Table 4.8 respectively revealed that the transformed seasonal differenced series

was not stationary.

Table 4.7: KPSS of Seasonal Differenced Fire Outbreak
Test Test Statistic Critical value
KPSS 0.03697 0.463

Table 4.8: ADF test of seasonal differenced Fire Outbreak
Test Constant Constant+Trend
ADF Test Statistic P -value Test Statistic P -value

-3.8726 0.0260 -4.8635 0.0003

The transformed seasonal differenced Fire Outbreak was again non-seasonal dif-

ferenced. The KPSS test of the transformed seasonal and non-seasonal differ-

enced Fire outbreak indicates that the series is now stationary at the 5% level of

significance as shown in Table 4.9.
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Table 4.9: KPSS test of Seasonal and Non-Seasonal Differenced Series
Test Test Statistic Critical value
KPSS 0.0751 0.4630

The ADF test in Table 4.10 affirms that the transformed seasonal and non-

seasonal differenced Fire Outbreak is stationary.

Table 4.10: ADF test of seasonal and non-seasonal differenced series
Test Constant Constant+Trend
ADF Test Statistic P -value Test Statistic P -value

-5.5696 0.0300 -5.5619 0.0028

The stationarity of the series can also be confirmed from the time series plot of

the transformed seasonal and non-seasonal differenced series. As shown in Figure

4.3, the series fluctuates about the zero line confirming stationarity in mean and

variance of the series.

Figure 4.3: Time series plot of first differenced series

After the Fire Outbreak order of integration has been obtained, the order of the

Autoregressive and Moving Average for both non-seasonal seasonal components

was determined. This was obtained from the ACF and PACF plots based on the

Box and Jenkins approach. From Figure 4.4, the ACF plot have significant spike
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at the non-seasonal lag 1 and seasonal lag 12, with significant spikes at other

non-seasonal lags. The PACF plot also has significant spikes at the non-seasonal

lags 1, 2, 3 and 4 seasonal lags 12 and 36. The PACF plot also has significant

spike at other non-seasonal lags. We identified candidate models for the Fire

Outbreak by using the lower significant lags of both the ACF and PACF and

their respective seasonal lags.

Figure 4.4: Time series plot of first differenced series

The Table 4.11 shows various candidate models identified and among these pos-

sible models presented in Table 4.11, ARIMA(4, 1, 1)(1, 1, 1)12 was chosen as the

appropriate model that fit the data well because it has the minimum values of

AIC and BIC compared to other models.
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Table 4.11: Candidate SARIMA Models
Model AIC BIC
ARIMA(1, 1, 1)(1, 1, 1)12 176.4269 192.5566
ARIMA(2, 1, 1)(1, 1, 1)12 166.7311 186.0855
ARIMA(1, 1, 0)(1, 1, 0)12 399.6026 409.2798
ARIMA(3, 1, 1)(1, 1, 1)12 164.5607 187.1409
ARIMA(0, 1, 1)(0, 1, 1)12 260.3901 270.0673
ARIMA(4, 1, 1)(1, 1, 1)12 151.1116 * 176.9176*
ARIMA(0, 1, 1)(1, 1, 1)12 227.3377 240.2407
ARIMA(1, 1, 0)(1, 1, 1)12 301.9861 314.8891

*: Means best based on the selection criteria.

The estimation of parameters of our derived model is obtained by using the

method of maximum likelihood shown in Table 4.12.TheARIMA(4, 1, 1)(1, 1, 1)12

model and can be expressed in terms of the lag operator as;

(1− φ1L− φ2L
2 − φ3L

3 − φ4L
4)(1−

Φ1L
s)(1− L)(1− Ls) ln(Fire) = (1− θ1L)(1−Θ1L)εt

This implies

(1 + 0.7172L+ 0.4419L2 + 0.3441L3 + 0.2888L4)(1 +

0.4268L12)(1− L1)(1− L12)In(Fire) = (1 + L)(1 + L)εt

The observations of the p-values of the parameters of the model for both the

non-seasonal and seasonal and Autoregressive and Moving Average components

are highly significant at the 5% level. The model appears to be the best model

among the proposed models.

When fitting data in time series analysis, the best model selection is directly re-

lated to whether residual analysis is performed well. One important assumptions

of good ARIMA model is that, the residual must follow a white noise process

which implies zero mean, constant variance and uncorrelated residual. From the

diagnostic plot in Figure 4.5, the standardised residuals revealed that the resid-
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Table 4.12: Estimates of parameters for ARIMA(4, 1, 1)(1, 1, 1)12
Variable Coefficient Standard error z-statistic p-value
φ1 -0.717208 0.0715685 -10.0213 0.0000
φ2 -0.441989 0.0843866 -5.2377 0.0000
φ3 -0.344114 0.0842333 -4.0852 0.0000
φ3 -0.288846 0.0719513 -4.0145 0.0000
Φ1 -0.426847 0.0664899 -6.4197 0.0000
θ1 -1.000000 0.0300209 -33.3101 0.0000
Θ1 -1.000000 0.0566841 -17.6416 0.0000

uals of the model have zero mean and constant variance. Also, the ACF of the

residuals shows that the autocorrelation of the residuals are all zero which implies

that they are uncorrelated. Finally, in the third panel, the Ljung-Box statistic

indicates that there is no significant departure from white noise for the residuals

as the p-values of the test statistic clearly exceeds the 5% significance level for

almost all lag orders.

Figure 4.5: Diagnostic plot of ARIMA(4, 1, 1)(1, 1, 1)12

To support the information depicted in Figure 4.6, the ARCH-LM test and t-test

were employed to test for constant variance and zero mean assumption respec-

tively. The ARCH-LM test result shown in Table 4.13, failed to reject the null
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hypothesis of no ARCH effect in the residuals of the selected model. Also, the

t-test gave a test statistic of -1.3281 and a p-value of 0.1865 which is greater

than the 5% significance level. Thus, we fail to reject the null hypothesis that

the mean of the residuals is equal to zero. Hence, the selected model satisfies all

the assumptions and it can be concluded that ARIMA(4, 1, 1)(1, 1, 1)12 model

provides an adequate representation of the Fire Outbreak.

Table 4.13: ARCH-LM test of residuals of ARIMA(4, 1, 1)(1, 1, 1)12
Lag Test statistic Df p-value
12 6.16432 12 0.907573
24 17.5799 24 0.822901
36 28.3637 36 0.813987

df: degrees of freedom

The stability test of the model parameters was analyzed using the CUSUM test.

The test observation was that, the cumulative residuals of the model fall within

the 95% confidence band as shown in Figure 4.6. It can therefore be concluded

that the parameters of the model are structurally stable.

Figure 4.6: CUSUM plot of ARIMA(4, 1, 1)(1, 1, 1)12
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The graph below depict the forecast of fire outbreak from August 2014 to August

2016. From the graph there is an indication of increase and decrease pattern in

fire outbreaks.

Figure 4.7: Forecasting plot of ARIMA(4, 1, 1)(1, 1, 1)12

4.4 Modelling Insurance Premiums

Based on equivalence principle, the calculation of a fully continuous level annual

benefit premium for a unit fire insurance payable immediately there is a fire is

tabulated in Table 4.14.
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Table 4.14: Premium Calculation For Fire Policies
Fire Categories x θ d δ Ā1

x:12
äx:12 P (Ā1

x:12
)

Domestic 0 26.14623 0.016666 0.020619 0.329132 32.5364 0.010116

Industry 0 4.000000 0.016666 0.020619 0.887896 5.436927 0.163308

Vehicular 0 7.089623 0.016666 0.020619 0.747091 12.26582 0.060908

Institution 0 1.240566 0.016666 0.020619 0.975011 1.21194 0.804504

Electrical 0 2.636792 0.016666 0.020619 0.940618 2.879965 0.326607

Commercial 0 5.122642 0.016666 0.020619 0.836612 7.924148 0.105578

Bush 0 5.688679 0.016666 0.020619 0.810247 9.202823 0.088043

Other 0 0.026833 0.016666 0.020619 0.953084 2.275377 0.418869

NB: x is the Inception Time and θ: Mean Time.

4.5 Discussion of Results

The results for the study clearly indicate that the Fire Outbreak was asymmetric

and more peaked in nature. This lack of symmetry can be attributed to the

large swings in data set and increase in the number of occurrence of Fire in the

Ashanti Region of country. The leptokurtic nature of the data set tells us about

how volatile the Fire Occurrence is. Furthermore, the nature of the distribution

of the data set shown that the Fire Outbreak is distributed closely around its

mean value.

An investigation of the residuals of the model revealed that there was season-

ality in the residuals which was obvious in the plot of the correlogram (Figure

4.2). Since there was evidence of seasonality in the residuals, the logarithmic

transformed Fire Outbreak was regressed on the periodic dummies. To pro-

vide better interpretation for the coefficient of the periodic dummies, Halvorsen

and Palmquist (1980) approach of interpreting differential coefficients in semi-

logarithmic equations was adopted and ignoring the significance of the differential

coefficients, the month of January, February, July, August , October, November

and December increases the Outbreak of Fire by 71.7770, 0.3207, 1.5488, 0.7688

,16.0998, 4.0939 and 25.7135 percent respectively. The increase in the fire out-

breaks in these months can be attributed to the bad weather conditions thus

harmattan season.
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In addition, month of January and December showed higher increment (71.7770%)

and (25.7135%) respectively than other months and can be attributed to the fact

that many farmer start preparing their land for next season cultivation during

that period.

Again, during that period visibility become very poor (fog) resulting to fuel truck

accident leading fire explosion also the reduction of electricity dam level leading

electricity power fluctuation and so forth.

Relatively, the month of March, April, May, June, and September decreases the

Outbreak of Fire by 25.6268, 30.1801, 11.2076, 11.2606 and 2.8191 percent re-

spectively and this could be due to continuous rain fall during that time.

The forecasting of the number of Fire Outbreak is important to fire stakeholders

and management in Ghana. The forecasting models were developed to aid in the

monthly prediction of the Fire Outbreak.

The model was the ARIMA(4, 1, 1)(1, 1, 1)12 model. The monthly forecasting

model ARIMA(4, 1, 1)(1, 1, 1)12 gives a non-seasonal autoregressive of order four

(4), AR(4) which indicates that the future monthly fire outbreaks correlates with

its fourth months. This as a result means that an increase or decrease in fire out

outbreaks in the fourth month will result in increase or decrease fire outbreaks in

the future and the differencing of order one , I(1) indicates the removal of linear

tread in the data which makes it stationary. Also the non -moving average of

order one, MA(1) indicates that the future monthly fire outbreaks errors depend

on error term of its preview month.

Furthermore, the seasonal autoregressive of order one, AR(1), indicates that the

monthly future fire outbreaks correlates with its preview one year monthly fire

incidence and the seasonal moving average of order one MA(1) also indicates that

the forecasting values of fire outbreaks depend on it past one year errors.
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The diagnostic checks on this model proved that the model was adequate for

predicting the monthly number of fire outbreaks in Ashanti of Ghana. Hence,

it was concluded that the model is a good for forecasting fire outbreaks. A two

years forecast with this model revealed that the number of fire outbreaks will

continue to increase with time.

This continues increase in the pattern of the number of fire outbreaks as evident

from the forecast results could be a great danger to the economy of the country.

The results achieved for fire forecasting will help to estimate number of fire events

which can be used in planning the fire activities in that region.

Also, the insurance premium calculation of level monthly benefit premium for a

semi-continuous 12 month fire insurance of GH�1.00 on an inception month were

determined and the premium calculation follow the trend of the frequency, thus

the one with higher frequency correspond to higher premiums and vice versa.

4.6 Conclusion

This chapter dealt with the analysis and discussion of results. It presented the

major findings of the study in a clear, detailed, precise and concise manner.
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CHAPTER 5

Conclusion and Recommendations

5.1 Introduction

This chapter presents the conclusion and recommendations of the study. The

chapter is further divided into conclusion and recommendations.

5.2 Conclusion

In this research, the monthly fire outbreaks in Ghana from January, 1997 to

August, 2014 was studied and before fitting model to the fire outbreaks, the

monthly characteristics of the series were explored. The research has shown that

fire outbreaks are growing at alternating increasing and decreasing rates. The fire

outbreaks revealed perfect evidence of various monthly effects. The wet season

was seen as the months of decrease in fire outbreaks whiles the harmattan period

was indicated as the period of increase in fire outbreaks. The month of January

had the highest percentage increment.

The model developed for forecasting the monthly number of fire outbreaks was

adequate for representing the series as evident from all the model diagnostics

used. Moreover, since fire outbreaks are subject to several unobservable factors

in the country and volatile, sole dependence on this forecasting model to predict

the fire outbreaks for the purpose of fire management by fire stakeholders such

as Ghana National Fire Service and insurance may have some errors.

Therefore continuous monitoring of the forecasting performance of this model is

additionally required to make the use of these models more realistic.

Furthermore the premium calculation for the corresponding fire policies will help
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the insurance companies to charge reasonable premium to their policyholders.

5.3 Recommendations

Following the outcome of this research work, the following recommendations were

made.

i. Much more education should be given to the public on the effect on dry

season against fire as indicated by the monthly percentage effects.

ii. Stakeholders should use statistical models such as the formulated model for

the purpose of predicting, mitigating and insuring against Fire Outbreaks.

iii. It is also recommended that further studies on the Fire premiums should

be carried out to consider mixed distribution to capture both high and low

severity and frequency in order to cater for extreme losses of fire.

iv. Also the assumption of uniform distribution should be replaced by a dif-

ferent distribution to capture the actual severity and the non-homogeneous

Poisson distribution could also be used capture frequency more realistically.

v. Further studies on computing fire premiums should include premium load-

ings to sustain the insurance policies.
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Appendix A

Table 5.1: Forecast Values for ARIMA (4, 1, 1)(1, 1, 1)12
Year Month Forecast LCL UCL
2014 September 3.892519 3.403343 4.381695
2014 October 4.063589 3.563136 4.564042
2014 November 4.025636 3.50969 4.541581
2014 December 4.239689 3.715059 4.764318
2015 January 4.762162 4.233711 5.290612
2015 February 4.620319 4.075072 5.165566
2015 March 4.386936 3.827369 4.946503
2015 April 4.184895 3.610431 4.759359
2015 May 3.977023 3.388798 4.565247
2015 June 3.891001 3.291507 4.490495
2015 July 3.877329 3.26619 4.488468
2015 August 3.898621 3.276018 4.521223
2015 September 3.88257 3.225933 4.539206
2015 October 4.049236 3.377682 4.72079
2015 November 4.042108 3.355405 4.728812
2015 December 4.26286 3.562472 4.963247
2016 January 4.784716 4.072043 5.49739
2016 February 4.639297 3.91212 5.366473
2016 March 4.403726 3.662587 5.144864
2016 April 4.200748 3.445755 4.955741
2016 May 3.991638 3.223152 4.760124
2016 June 3.904607 3.12322 4.685994
2016 July 3.893268 3.099099 4.687437
2016 August 3.91479 3.108036 4.721544

LCL=Lower Confidence Limit
UCL= Upper Confidence Limit

73



Table 5.2: Data on Fire Outbreak in Ashanti Region of Ghana
Year Month No. Year Month No.
1997 January 39 2006 January 49
1997 February 83 2006 February 34
1997 March 61 2006 March 45
1997 April 22 2006 April 56
1997 May 30 2006 May 70
1997 June 23 2006 June 156
1997 July 23 2006 July 64
1997 August 29 2006 August 94
1997 September 34 2006 September 71
1997 October 45 2006 October 60
1997 November 99 2006 November 50
1997 December 72 2006 December 38
1998 January 83 2007 January 50
1998 February 37 2007 February 43
1998 March 37 2007 March 44
1998 April 23 2007 April 49
1998 May 21 2007 May 34
1998 June 25 2007 June 45
1998 July 25 2007 July 56
1998 August 30 2007 August 70
1998 September 40 2007 September 156
1998 October 45 2007 October 64
1998 November 81 2007 November 94
1998 December 78 2007 December 71
1999 January 48 2008 January 60
1999 February 39 2008 February 50
1999 March 28 2008 March 38
1999 April 35 2008 April 50
1999 May 31 2008 May 43
1999 June 26 2008 June 44
1999 July 19 2008 July 49
1999 August 32 2008 August 60
1999 September 39 2008 September 117
1999 October 52 2008 October 104
1999 November 51 2008 November 79
1999 December 122 2008 December 59

No. refers to the number of fire outbreaks
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Year Month No. Year Month No.
2000 January 66 2009 January 61
2000 February 26 2009 February 42
2000 March 31 2009 March 44
2000 April 28 2009 April 43
2000 May 32 2009 May 40
2000 June 28 2009 June 35
2000 July 38 2009 July 53
2000 August 81 2009 August 58
2000 September 150 2009 September 121
2000 October 49 2009 October 58
2000 November 32 2009 November 78
2000 December 21 2009 December 54
2001 January 18 2010 January 40
2001 February 39 2010 February 42
2001 March 19 2010 March 33
2001 April 35 2010 April 42
2001 May 29 2010 May 46
2001 June 28 2010 June 42
2001 July 25 2010 July 46
2001 August 67 2010 August 59
2001 September 100 2010 September 66
2001 October 38 2010 October 100
2001 November 40 2010 November 77
2001 December 30 2010 December 56
2002 January 32 2011 January 55
2002 February 25 2011 February 40
2002 March 30 2011 March 36
2002 April 36 2011 April 25
2002 May 39 2011 May 37
2002 June 45 2011 June 40
2002 July 70 2011 July 40
2002 August 81 2011 August 57
2002 September 60 2011 September 66
2002 October 67 2011 October 80
2002 November 32 2011 November 48
2002 December 47 2011 December 55

No. refers to the number of fire outbreaks
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Year Month No. Year Month No.
2003 January 29 2012 January 59
2003 February 33 2012 February 73
2003 March 33 2012 March 50
2003 April 34 2012 April 53
2003 May 53 2012 May 57
2003 June 55 2012 June 69
2003 July 97 2012 July 69
2003 August 65 2012 August 85
2003 September 39 2012 September 165
2003 October 36 2012 October 132
2003 November 35 2012 November 83
2003 December 48 2012 December 79
2004 January 39 2013 January 54
2004 February 28 2013 February 58
2004 March 35 2013 March 62
2004 April 34 2013 April 63
2004 May 42 2013 May 54
2004 June 131 2013 June 75
2004 July 87 2013 July 66
2004 August 61 2013 August 74
2004 September 56 2013 September 102
2004 October 31 2013 October 75
2004 November 26 2013 November 66
2004 December 35 2013 December 80
2005 January 37 2014 January 102
2005 February 43 2014 February 92
2005 March 34 2014 March 99
2005 April 30 2014 April 76
2005 May 40 2014 May 53
2005 June 60 2014 June 40
2005 July 53 2014 July 45
2005 August 48 2014 August 48
2005 September 35
2005 October 43
2005 November 40
2005 December 37

No. refers to the number of fire outbreaks
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Appendix B

Model 1: OLS, using observations 1997:02-2014:08 (T = 211)

Dependent variable: ld FIRE

Coefficient Std. Error t-ratio p-value
0.541027 0.0737322 7.3377 <0.00001 ***
0.00320213 0.0716548 0.0447 0.9644
-0.296074 0.0716548 -4.132 0.00005 ***
-0.359251 0.0716548 -5.0136 <0.00001 ***
-0.118869 0.0716548 -1.6589 0.09871 *
-0.119466 0.0716548 -1.6672 0.09704 *
0.015369 0.0716548 0.2145 0.83039
0.00765891 0.0716548 0.1069 0.91499
-0.0285957 0.0737322 -0.3878 0.69855
0.14928 0.0737322 2.0246 0.04424 **
0.0401232 0.0737322 0.5442 0.58693
0.228835 0.0737322 3.1036 0.00219 ***

Mean dependent var 0.000984 S.D. dependent var 0.372222
Sum squared resid 18.39145 S.E. of regression 0.304005
R-squared 0.967895 Adjusted R-squared 0.92954
F(12, 199) 9.65175 P-value(F) 1.05E-14
Log-likelihood -41.97895 Akaike criterion 107.9579
Schwarz criterion 148.1802 Hannan-Quinn 124.2166
Rho -0.471278 Durbin-Watson 2.91146

Augmented Dickey-Fuller test for FIRE

including 11 lags of (1-L)FIRE (max was 12)

sample size 200

unit-root null hypothesis: a = 1

test with constant

model: (1-L)y = b0 + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.028

lagged differences: F(11, 187) = 9.940 [0.0000]
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estimated value of (a - 1): -0.140007

test statistic: tau_c(1) = -1.34001

asymptotic p-value 0.6131

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.031

lagged differences: F(11, 186) = 9.197 [0.0000]

estimated value of (a - 1): -0.378402

test statistic: tau_ct(1) = -2.10498

asymptotic p-value 0.5425

KPSS test for FIRE

T = 212

Lag truncation parameter = 12

Test statistic = 1.12461

10% 5% 1%

Critical values: 0.348 0.463 0.739

KPSS test for FIRE (including trend)

T = 212

Lag truncation parameter = 12

Test statistic = 0.0989846

10% 5% 1%

Critical values: 0.120 0.148 0.217

Augmented Dickey-Fuller test for l_FIRE

including 11 lags of (1-L)l_FIRE (max was 12)

sample size 200
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unit-root null hypothesis: a = 1

test with constant

model: (1-L)y = b0 + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.001

lagged differences: F(11, 187) = 11.492 [0.0000]

estimated value of (a - 1): -0.0931113

test statistic: tau_c(1) = -1.19426

asymptotic p-value 0.6794

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.004

lagged differences: F(11, 186) = 10.563 [0.0000]

estimated value of (a - 1): -0.363488

test statistic: tau_ct(1) = -2.17759

asymptotic p-value 0.5016

KPSS test for l_FIRE

T = 212

Lag truncation parameter = 12

Test statistic = 1.32395

10% 5% 1%

Critical values: 0.348 0.463 0.739

KPSS test for l_FIRE (including trend)

T = 212

Lag truncation parameter = 12

Test statistic = 0.0735701

10% 5% 1%
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Critical values: 0.120 0.148 0.217

Augmented Dickey-Fuller test for sd_FIRE

including 11 lags of (1-L)sd_FIRE (max was 12)

sample size 188

unit-root null hypothesis: a = 1

test with constant

model: (1-L)y = b0 + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.030

lagged differences: F(11, 175) = 4.814 [0.0000]

estimated value of (a - 1): -0.888171

test statistic: tau_c(1) = -5.64443

asymptotic p-value 8.181e-007

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.030

lagged differences: F(11, 174) = 4.812 [0.0000]

estimated value of (a - 1): -0.900482

test statistic: tau_ct(1) = -5.64066

asymptotic p-value 8.113e-006

KPSS test for sd_l_FIRE

T = 200

Lag truncation parameter = 12

Test statistic = 0.0369742

10% 5% 1%

Critical values: 0.348 0.463 0.739
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KPSS test for sd_l_FIRE (including trend)

T = 200

Lag truncation parameter = 12

Test statistic = 0.0376102

10% 5% 1%

Critical values: 0.120 0.148 0.217

Augmented Dickey-Fuller test for d_sd_l_FIRE

including 13 lags of (1-L)d_sd_l_FIRE (max was 14)

sample size 185

unit-root null hypothesis: a = 1

test with constant

model: (1-L)y = b0 + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.001

lagged differences: F(13, 170) = 8.934 [0.0000]

estimated value of (a - 1): -4.47152

test statistic: tau_c(1) = -6.18207

asymptotic p-value 4.316e-008

with constant and trend

model: (1-L)y = b0 + b1*t + (a-1)*y(-1) + ... + e

1st-order autocorrelation coeff. for e: 0.000

lagged differences: F(13, 169) = 8.904 [0.0000]

estimated value of (a - 1): -4.48536

test statistic: tau_ct(1) = -6.18483

asymptotic p-value 4.037e-007

KPSS test for d_sd_l_FIRE

T = 199
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Lag truncation parameter = 12

Test statistic = 0.0750892

10% 5% 1%

Critical values: 0.348 0.463 0.739

KPSS test for d_sd_l_FIRE (including trend)

T = 199

Lag truncation parameter = 12

Test statistic = 0.0594839

10% 5% 1%

Critical values: 0.120 0.148 0.217

Test for ARCH of order 12

coefficient std. error t-ratio p-value

----------------------------------------------------------

alpha(0) 810.939 265.578 3.053 0.0026 ***

alpha(1) 0.312597 0.0738240 4.234 3.71e-05 ***

alpha(2) -0.156879 0.0765352 -2.050 0.0419 **

alpha(3) -0.0380928 0.0765058 -0.4979 0.6192

alpha(4) -0.0505903 0.0764717 -0.6616 0.5091

alpha(5) -0.0841647 0.0764906 -1.100 0.2727

alpha(6) -0.0438402 0.0770755 -0.5688 0.5702

alpha(7) -0.0667866 0.0770774 -0.8665 0.3874

alpha(8) -0.0719334 0.0903429 -0.7962 0.4270

alpha(9) -0.0288841 0.0922211 -0.3132 0.7545

alpha(10) -0.187010 0.0930761 -2.009 0.0461 **

alpha(11) 0.212887 0.0916247 2.323 0.0213 **

alpha(12) 0.253125 0.0871367 2.905 0.0042 ***
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Null hypothesis: no ARCH effect is present

Test statistic: LM = 59.618

with p-value = P(Chi-square(12) > 59.618) = 2.64967e-008

Test for ARCH of order 24

coefficient std. error t-ratio p-value

------------------------------------------------------------

alpha(0) 1006.74 464.068 2.169 0.0316 **

alpha(1) 0.216919 0.0777731 2.789 0.0060 ***

alpha(2) -0.119526 0.0791435 -1.510 0.1331

alpha(3) -0.0327984 0.0797876 -0.4111 0.6816

alpha(4) -0.0360151 0.0798080 -0.4513 0.6524

alpha(5) -0.0790299 0.0796963 -0.9916 0.3230

alpha(6) -0.0454734 0.0805812 -0.5643 0.5734

alpha(7) 0.0593084 0.0806095 -0.7357 0.4630

alpha(8) 0.0629647 0.0943839 -0.6671 0.5057

alpha(9) -0.0267819 0.0959880 -0.2790 0.7806

alpha(10) -0.212222 0.0966716 -2.195 0.0297 **

alpha(11) 0.0795304 0.0981753 0.8101 0.4192

alpha(12) 0.145293 0.0980641 1.482 0.1405

alpha(13) -0.0932366 0.0985166 -0.9464 0.3455

alpha(14) -0.0303339 0.0983231 -0.3085 0.7581

alpha(15) -0.0868429 0.0971802 -0.8936 0.3730

alpha(16) -0.0219194 0.0973498 -0.2252 0.8222

alpha(17) -0.0639955 0.0972968 -0.6577 0.5117

alpha(18) -0.0188265 0.0971096 -0.1939 0.8465

alpha(19) -0.0293052 0.0972837 -0.3012 0.7637

alpha(20) -0.0780540 0.0968678 -0.8058 0.4216

alpha(21) 0.00719480 0.0970110 0.07416 0.9410
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alpha(22) -0.0167362 0.0971495 -0.1723 0.8635

alpha(23) 0.139944 0.0949380 1.474 0.1426

alpha(24) 0.358203 0.0915388 3.913 0.0001 ***

Null hypothesis: no ARCH effect is present

Test statistic: LM = 76.9685

with p-value = P(Chi-square(24) > 76.9685) = 1.83623e-007

Test for ARCH of order 36

coefficient std. error t-ratio p-value

------------------------------------------------------------

alpha(0) 1054.86 613.544 1.719 0.0880 *

alpha(1) 0.249814 0.0890188 2.806 0.0058 ***

alpha(2) -0.137247 0.0916118 -1.498 0.1366

alpha(3) -0.0151607 0.0924822 -0.1639 0.8700

alpha(4) -0.0170267 0.0924846 -0.1841 0.8542

alpha(5) -0.0924963 0.0922433 -1.003 0.3179

alpha(6) -0.0353209 0.0937327 -0.3768 0.7069

alpha(7) -0.0577305 0.0939388 -0.6146 0.5400

alpha(8) -0.0578504 0.111799 -0.5174 0.6057

alpha(9) 0.0123305 0.114004 0.1082 0.9140

alpha(10) -0.233163 0.115147 -2.025 0.0450 **

alpha(11) 0.102895 0.115982 0.8872 0.3767

alpha(12) 0.152815 0.112325 1.360 0.1761

alpha(13) -0.108477 0.109828 -0.9877 0.3252

alpha(14) -0.0258925 0.107450 -0.2410 0.8100

alpha(15) -0.0909741 0.107151 -0.8490 0.3975

alpha(16) -0.00437819 0.107343 -0.04079 0.9675

alpha(17) -0.0778539 0.106966 -0.7278 0.4681
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alpha(18) -0.0287818 0.107265 -0.2683 0.7889

alpha(19) -0.0183035 0.107397 -0.1704 0.8649

alpha(20) -0.0828906 0.107243 -0.7729 0.4410

alpha(21) 0.0175625 0.107412 0.1635 0.8704

alpha(22) -0.0328345 0.107459 -0.3056 0.7604

alpha(23) 0.160596 0.107417 1.495 0.1374

alpha(24) 0.318716 0.107782 2.957 0.0037 ***

alpha(25) -0.0218595 0.110997 -0.1969 0.8442

alpha(26) 0.0338632 0.110208 0.3073 0.7591

alpha(27) -0.0545995 0.108752 -0.5021 0.6165

alpha(28) -0.0381561 0.108987 -0.3501 0.7268

alpha(29) 0.0553926 0.109347 0.5066 0.6133

alpha(30) -0.0451674 0.109256 -0.4134 0.6800

alpha(31) 0.0457762 0.112082 0.4084 0.6837

alpha(32) -0.0970395 0.112348 -0.8637 0.3894

alpha(33) 0.0212053 0.113516 0.1868 0.8521

alpha(34) -0.00479776 0.113615 -0.04223 0.9664

alpha(35) -0.0719980 0.109872 0.6553 0.5135

alpha(36) 0.0351599 0.105978 0.3318 0.7406

Null hypothesis: no ARCH effect is present

Test statistic: LM = 72.357

with p-value = P(Chi-square(36) > 72.357) = 0.000308527

85


