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ABSTRACT 

Asphalt pavement temperature finds application in several areas of pavement engineering 

including pavement structural evaluation and design, asphalt mixture design, asphalt material 

aging characterisation, and asphalt binder grade selection. Predictive models may be used in 

the estimation of asphalt pavement temperature when necessary, however, such models tend to 

have limited transferability and applicability to other regions where the environmental 

conditions are significantly different from those under which the models were developed. To 

avoid the risk of using foreign-developed models in estimating the temperature of asphalt 

pavements in Ghana using local data, this research set out to develop asphalt pavement 

temperature prediction models applicable to the climatic conditions of the country. Two 

locations in the country, one within the Savannah climatic zone and the other within the Forest 

climatic zone, were used for the study. Mid-depth and surface asphalt pavement temperatures, 

along with climatic data, were collected over a 12-month period (May 2022 to April 2023) at 

the two study locations. The dataset was then used to develop separate asphalt pavement 

temperature prediction models applicable to each climatic zones.  Additional pavement 

temperature and climatic data were also collected on separate roads within the corresponding 

climatic zones for model validation. When tested against some high-rated foreign-developed 

models, using local environmental data inputs, the locally-developed models predicted asphalt 

pavement temperatures that were much superior in accuracy (R2 ≥ 0.919, RMSE < 2.8 ºC) to 

those predicted using the best-performing foreign-based model (R2 ≤ 0.905, RMSE ≥ 3.2 ºC).  

The local models are, therefore, recommended for predicting mid-depth asphalt pavement 

temperatures in the Forest and Savannah zones of Ghana for pavement engineering purposes. 
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CHAPTER 1: INTRODUCTION 

1.1 Problem Statement 

Asphalt concrete (AC) behaves essentially as an elastic material at low temperatures; so, its 

deformation at such temperatures under low strain levels is recoverable (Diefenderfer et al., 

2006). However, in hot environment, the material behaves as a thick fluid and suffers 

irrecoverable strain under load. Between the low and high temperature extremes, AC exhibits 

viscoelastic behaviour. Due to the viscoelastic behaviour, the material’s modulus is 

temperature dependent. For a variety of applications in pavement engineering, such as 

pavement structural evaluation and design, asphalt binder grade selection, asphalt mixture 

design and aging characterisation, knowledge of in-situ asphalt pavement temperature is 

important. 

Currently, Ghana implements the empirical pavement design method of the American 

Association of State Highway and Transportation Officials (AASHTO), which does not 

directly consider temperature effects on AC modulus. The concern with this is that the 

geographical characteristics and seasonal variation of air temperature can have significant 

influence on AC modulus and, hence, on pavement performance.  For this reason, pavement 

structural design in several countries across the world is shifting from a purely empirical 

approach to a mechanistic-empirical (M-E) approach (AASHTO, 2015; Koranteng-Yorke et 

al., 2015). Unlike empirical pavement design methods, M-E design considers seasonal changes 

in the AC modulus and is seen as a robust approach to the consideration of the impacts of 

environmental factors on pavement performance (Koranteng-Yorke et al., 2015; Saliko et al., 

2023).  

A crucial component of any M-E design system is pavement temperature estimation (Saliko et 

al., 2023). For instance, the AASHTOWare Pavement M-E Design (developed to replace the 
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AASHTO empirical design method) has an in-built climate model for estimating temperature 

variation in the AC layer (Papagiannakis, 2013; AASHTO, 2015). This helps to account for 

local environmental conditions and their impact on pavement response to loading and, hence, 

performance.  

The selection of an appropriate laboratory asphalt mixture aging and testing temperature is 

crucial in designing and constructing durable pavements. For instance, the Marshall mix design 

method assumes 60oC to be the hottest pavement surface temperature. This temperature has 

been adopted in Ghana, although maximum pavement surface temperatures in some parts of 

the country could be higher. This suggests that the laboratory mixture aging and testing 

protocols associated with the Marshall mix design may not accurately characterise some local 

conditions in the country, and may result in problematic pavement performance. 

In the superior performing asphalt pavements (Superpave) binder grading system, an asphalt 

binder grade is selected for a project location based on the traffic and weather conditions 

(Kennedy et al., 1994). The Superpave binder grade is described by the lowest and highest 

pavement temperature under which the asphalt mixture is expected to serve (Kennedy et al., 

1994). Asphalt pavement temperatures may be obtained through in-situ measurements or 

predicted using mathematical models. In-situ measurements may provide a more accurate data, 

but the process is time-consuming, labour-intensive and could interrupt traffic flow. In 

addition, in-situ measurement provides temperature data only for the period of measurement 

(Minhoto et al., 2005; Gedafa et al., 2014). These challenges associated with in-situ pavement 

temperature measurement have led to the development of pavement temperature prediction 

models. Asphalt pavement temperature prediction models provide a quicker means for 

obtaining data, are resource-efficient, and provide temperature data over a broad range of site 

conditions. 
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In recent times, several projects in Ghana have utilized Superpave performance-grade (PG) 

binders but the country lacks a locally-developed model for predicting asphalt pavement 

temperatures for effective Superpave binder grade selection. As part of a broader scope of 

developing a framework for pavement design in Ghana, Koranteng-Yorke (2012) formulated 

mathematical relationships between ambient air temperature and AC layer temperature. 

However, these relationships were not validated nor were goodness-of-fit parameters reported 

to judge their applicability. Lekea and Steyn (2023) evaluated models developed by SHRP 

(Huber, 1994), Viljoen (2001), and Diefenderfer et al. (2006)  using Koranteng-Yorke's (2012) 

asphalt pavement temperature data collected in two Ghanaian towns (Sogakope and 

Akumadan), and found them to perform poorly. It should be noted that data provided by 

Koranteng-Yorke (2012) excluded the Savannah climatic zone of Ghana. The study by Lekea 

and Steyn (2023) demonstrated the risk of using foreign-developed models in estimating the 

temperature of an asphalt pavement using local data. 

Despite the availability of several models for predicting asphalt pavement temperature, the 

accuracy of such models is often applicable to the locations for which they were developed 

(Alavi et al., 2014). Therefore, before applying foreign models in a significantly different 

environment, it is necessary to evaluate the accuracy of their predictions to guide their 

applicability. The consequence of ignoring the climatic conditions of Ghana in asphalt 

pavement temperature prediction models for Ghana is uncertainty in the model estimates.  A 

validated asphalt pavement temperature prediction model, based on the climatic data of Ghana, 

will be useful for various pavement engineering applications, such as pavement structural 

design and evaluation, asphalt binder grade selection, and asphalt material aging evaluation. 

1.2 Aim and Objectives 

The aim of this study was to develop asphalt pavement temperature prediction models for the 

Forest and Savannah climatic zones of Ghana. The objectives were to: 
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i. Establish the state of practice of asphalt pavement temperature determination in Ghana. 

ii. Evaluate the prediction accuracy of some foreign asphalt pavement temperature models 

using data from Ghana. 

iii. Develop asphalt pavement temperature prediction models for the Savannah and Forest 

climatic zones of Ghana. 

1.3 Scope of Work 

The scope of work comprised interviews, in-situ pavement temperature and climate data 

collection. The state of practice of asphalt pavement temperature determination in Ghana was 

established through interview of practicing engineers from road agencies, consulting firms and 

contractors. The climate and asphalt pavement temperature data were gathered in the Forest 

and Savannah zones represented by Kumasi and Tamale, respectively. The measured pavement 

temperature, along with other relevant climatic data, were used to evaluate six foreign asphalt 

pavement temperature prediction models to ascertain if they could be adopted for Ghana. The 

study then proceeded to develop a model each for the Forest and Savannah climatic zones, 

employing regression modelling with SPSS Statistics (Version 23) and R studio packages.  

Unlike Koranteng-Yorke (2012), the current study formulated, calibrated and validated non-

linear regression models for predicting mid-depth asphalt pavement temperatures for the Forest 

and Savannah climatic zones of Ghana. Again, the current study utilised the input parameters 

of pavement surface temperature, mean air temperature of previous day and time of pavement 

temperature measurement to predict asphalt layer temperature compared with the sole use of 

ambient temperature by Koranteng-Yorke (2012).  

1.4 Justification of the Study 

Koranteng-Yorke (2016) recommended that developing countries should develop local M-E 

pavement design systems that incorporate pavement temperature prediction models. Tutu et al. 
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(2022) reiterated the need for locally-developed models for Superpave PG binder selection for 

Ghana. Additionally, knowledge of asphalt pavement temperature is required for characterising 

AC material aging. The aging process renders AC material brittle, making it susceptible to 

cracking (Sirin et al., 2018). Hence, some M-E pavement design systems consider the effect of 

AC modulus aging (Tsai and Wu, 2009; Ullidtz et al., 2010). A proper understanding of the 

AC material aging process will help to select appropriate laboratory testing protocols for 

asphalt mixture.  

Currently, pavement structural design in Ghana does not consider AC material aging. Hence, 

a major step toward incorporating aging effects in pavement design is to develop models for 

estimating in-situ temperature of asphalt pavement layer.  

Further, in-situ pavement temperature is a key input in using the Falling Weight Deflectometer 

(FWD) device for the structural evaluation of asphalt pavements. FWD deflection 

measurements are dependent on the pavement temperature at the time of testing. Considering 

the sensitivity of the AC modulus to temperature variation, the back-calculated AC modulus 

should be adjusted to a preferred temperature (Chowdhury and Hossain, 1999; Gedafa et al., 

2014). Temperature-corrected AC modulus is then used in pavement structural evaluation. 

There is, therefore, a need for a validated asphalt pavement temperature model for pavement 

structural analysis and evaluation.  With the increasing popularity of Superpave PG binder 

grade application in Ghana, a validated asphalt pavement temperature prediction model will 

help to leverage advanced asphalt pavement technology for local adaptation.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 Introduction  

Whether it is the application of the M-E design systems, the investigation of asphalt material 

aging, Superpave binder grade selection, or pavement structural evaluation through falling 

weight deflectometer testing, asphalt pavement temperature is an indispensable input. The 

approaches to determining asphalt pavement temperature are gradually shifting to the use of 

mathematical models due to challenges associated with direct measurement methods, 

especially on large scale projects (Minhoto et al., 2005; Gedafa et al., 2014). While such 

temperature prediction models exist mainly in the temperature regions, simply applying them 

in different environments without recalibration may result in significant prediction 

inaccuracies. This chapter discusses the climatology of Ghana and the applications of 

temperature of asphalt pavement layer in pavement engineering, and models for predicting 

asphalt pavement temperature by highlighting the theoretical underpinnings, assumptions, 

strengths, and weaknesses of each model type. Also, interview methodology, empirical model 

evaluation, regression analysis, and solar radiation computations are discussed.  

2.2 Climatology of Ghana 

2.2.1 Climatic Zoning 

A climatic zone is a geographical region that exhibits steady climatic conditions (Bessah et al., 

2022). Distinctive climatic zones have been proposed based on either climate parameters, 

vegetation type, or agro-ecological factors.  As seen in Table 2.1, Arulansandan et al. (1963), 

Dickson and Benneh (1988), and Klutse et al. (2013) categorised Ghana into four climatic 

zones. Gidigasu (1972) and the Ministry of Food and Agriculture (MOFA, 2016) suggested six 

zones while Bessah et al. (2022) identified three zones. Lastly, the Food and Agriculture 

Organisation’s (FAO, 2006) seven agro-ecological zones remain the highest number of 

climatic zones proposed for Ghana. Dickson and Benneh's (1988) Tropical Continental or 
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Savannah zone is comparable with the Semi-Arid used by Arulanandan et al. (1963), the 

Northern Savannah by Klutse et al. (2013), and Bessah et al.’s (2022) Savannah zone. The 

combined Guinea and Sudan Savannahs, as used by Gidigasu (1972) and the Ministry of Food 

and Agriculture (MOFA, 2016), plus the Transitional zone of FAO (FAO, 2006) together 

describe the same zone as the Tropical Continental or Savannah zone by Dickson and Benneh 

(1988). 

Similarly, the Wet Semi-Equatorial is synonymous with the Dry Moist Sub-Humid and the 

Moist Semi-Deciduous Forest. Again, the Wet Semi-Equatorial zones are subdivided into the 

Deciduous Forest and Moist Evergreen (FAO, 2006) or the Transitional and Deciduous Forest 

by the Ministry of Food and Agriculture (MOFA, 2016), while Klutse et al. (2013) adopted the 

Forest and Transition zones for the same Wet Semi-Equatorial, with the Forest zone covering 

the South-western Equatorial. A critical look at Table 2.1 reveals that the South-Western 

Equatorial falls under the Humid, Rain Forest zone, and the Wet Evergreen zones, with some 

portions being covered by the Coastal zone (as per Bessah et al., 2022). The Dry Equatorial 

feeds into the Coastal Thicket and Coastal Savannah or simply Coastal and the Semi-Arid or 

Dry Sub-Humid climatic zones, as depicted by Table 2.1.  

Clearly, there has not been a single climatic zone demarcation for Ghana. For example the use 

of the four climatic zones— Coastal Savannah, Forest, Transition and Northern Savannah by 

the Ghana Meteorological Agency (GMet)—were intended for weather condition forecasting  

and agricultural purposes (Yamba et al., 2023). This climatic zone was used by Klutse et al. 

(2013) to examine climate change impact on maize production in the Forest and Transitional 

zones of Ghana. Aryee et al. (2018) used rainfall data and the k-means clustering technique for 

a climatic zone delineation of Ghana and came out with four zones that were consistent with 

the zoning proposed by Dickson and Benneh (1988) and Arulanandan et al. (1963). However, 

the use of Aryee et al.'s (2018) zoning is limited to rainfall applications, such as hydrological 
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modelling. Recently, Yamba et al. (2023) has used rainfall and temperature data from 1981 – 

2010 to demarcate the country into five zones: the Coastal, Forest, Transition, Sudan Savannah 

and Guinea Savannah zones. 

Bessah et al.’s (2022) re-demarcation of the country into three climatic zones appears to bring 

the curtain down on the long-standing debate surrounding this subject. Their approach utilized 

wider climate variables comprising maximum and minimum temperatures, rainfall, and air 

humidity data from all 22 GMet synoptic weather stations over four decades (1976 – 2018).  

The zones proposed by Bessah et al. (2022) are shown in Figure 2.1. 
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Table 2.1. Proposed Climatic Zones of Ghana 

Dickson and 

Benneh (1988) 

Arulanandan et 

al. (1963) Gidigasu (1972) FAO (2006) MOFA (2016) Klutse et al. (2013) Bessah et al. (2022) 

       

Tropical 

Continental or 

Savannah 

Semi-Arid 
Guinea Savannah 

Guinea 

Savannah Guinea Savannah 
Northern Savannah Savannah 

Sudan Savannah 

Sudan Savannah Transitional Sudan Savannah 

Wet Semi-

Equatorial 

Dry Moist Sub-

Humid 

Moist Semi-

Deciduous Forest 

Deciduous 

Forest Transitional Transition 

Forest 
Moist Evergreen Deciduous Forest 

Forest 
South-Western 

Equatorial 
Humid Rain Forest Wet Evergreen Rain Forest 

Coastal  

Dry Equatorial 
Semi-Arid/Dry 

Sub-Humid 

Coastal Thicket Coastal 

Savannah 
Coastal Savannah Coastal Savannah 

Coastal Savannah 
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Figure 2.1. Climatic Zoning of Ghana (Bessah et al., 2022) 

2.2.2 Climatic Patterns  

Based on the climatic zoning by Bessah et al. (2022), the Savannah zone spans between 

latitudes 11°0´0´´ to 7°0´0´´N. The Coastal zone stretches from the coastline to 30 km inland 

while the Forest zone covers the area between the Coastal and Savannah zones. There is a 

bimodal rainfall pattern in the Coastal and Forest areas, while uni-modal rainfall exists in the 

Savannah zone (Klutse et al., 2013; MOFA, 2016; Tutu et al., 2022). The average annual 

rainfall for the Savannah ranges between 900mm and 1,200mm, that of the Forest zone  

between 1,300mm and 1,800mm, while the Coastal zone ranges between 1,100mm and 
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1,200mm (Yamba et al., 2023). According to Yamba et al., (2023), the length of the single wet 

season of the Savannah zone varies from four to seven months. The major rainy season spans 

from March to July, and the minor is from September to October (Klutse et al., 2013, Bessah 

et al., 2022) with about 60% of rains occurring in the major season (Bessah et al., 2022). 

Despite Axim’s location in the Coastal zone, it exhibits similar rainfall characteristics as the 

Forest zone with its peak monthly rainfall being higher than all other Coastal synoptic stations 

(Bessah et al., 2022). 

It has been reported by Bessah et al. (2022) that the Savannah zone is the driest part of the 

country, with relative humidity increasing towards the coast.  Monthly relative humidity ranges 

from 20% in January to 70% in August in the zone. The Forest zone records 30% to 80% mean 

monthly relative humidity, with January experiencing the lowest and June – September 

experiencing the highest. The Coastal zone records mean monthly relative humidity of 68–80% 

(Koranteng-Yorke, 2012; Bessah et al., 2022).  

In terms of global solar radiation (GSR), Asilevi et al. (2019) indicated that the Savannah zone 

experiences its maximum mean daily insolation (i.e. the incoming solar radiation) during 

February–May, with Navrongo recording the highest value of 22.57 MJm-2day-1, while its 

lowest daily insolation of 15.80 MJm-2day-1 is experienced during June –September at Yendi. 

The average monthly GSR for the Savannah zone is 20.22 MJm-2day-1. The Forest zone is 

characterised by two maximum insolation patterns, first between February and May with mean 

daily GSR of 19.5–21.0 MJm-2day-1, and then a shorter period between October and November, 

with average value of 17.7–20.5 MJm-2day-1 (Asilevi et al., 2019). The Coastal zone exhibits 

the same pattern of mean daily GSR as the Forest zone but with the maximum and minimum 

values being relatively higher. Asilevi et al. (2019) estimated maximum insolation values of 

20.3–21.8 MJm-2day-1 and 18.5–21.3 MJm-2day-1 for the period February–May and October–

November, respectively, for the Coastal zone, while a lowest insolation of 12.4– 5.4 MJm-2day-
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1 was estimated for the period June–August. Also, Tutu et al. (2022) reported maximum 

duration of sunshine of 7 hours, 8 hours, and 9 hours in the Forest, Coastal, and Savannah zones 

respectively.  

The Savannah zone records its highest mean monthly maximum air temperature between 34 

°C in November and 40°C in April, and its lowest of 29°C in August. Mean monthly minimum 

air temperature is experienced between November and January at 21°C but a highest of 25°C 

is recorded in April (Bessah et al., 2022). For the Forest zone, the mean monthly maximum air 

temperature varies from 28°C in August to 34°C in February. Also, mean monthly minimum 

air temperature varies from 21°C in January to 23°C in April but could be in the broad range 

of 20°C – 25°C year round (Bessah et al., 2022). The mean monthly maximum air temperature 

in the Coastal zone reaches extreme values between August (27°C) and March (32°C) and 

generally less than 30 °C from July – September. Monthly mean minimum air temperature for 

the Coastal zone is typically 25°C in March (Bessah et al., 2022). Clearly, the varying climatic 

patterns may be expected to influence asphalt pavement temperature and, hence, pavement 

performance. 

2.3 Applications of Asphalt Pavement Temperature  

2.3.1 Pavement Structural Design 

The temperature of the asphalt pavement layers influence its performance (Hasan and Tarefder, 

2017). Changes in pavement temperature influence pavement distress development. For 

instance, permanent deformation (rutting) in asphalt pavements, although a load-associated 

distress, is exacerbated by extremely high temperatures, whereas thermal cracking is induced 

by low temperatures (Breakah et al., 2011; Hasan and Tarefder, 2017). For this reason, asphalt 

pavement temperature variation is considered in the M-E pavement design process (Wistuba 

and Walther, 2013; Koranteng-Yorke et al., 2015). In contrast, empirical pavement design 

methods hardly require direct consideration of asphalt pavement temperature variation.  
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The AASHTOWare Pavement M-E design software has an in-built Enhanced Integrated 

Climatic Model (EICM) for predicting temperature profile in an asphalt pavement (Breakah et 

al., 2011; Hasan and Tarefder, 2017). The EICM implements the finite difference method, a 

numerical model, which depends on heat transfer theory. The model provides pavement 

temperature distribution over time and depth (Houston et al., 2006). The input data 

requirements of the EICM includes wind velocity, percentage of sunshine and ambient 

temperature (Hasan and Tarefder, 2017). Bryce and Ihnat (2020) have suggested in the current 

EICM model to curtail an overestimation of pavement temperature, and this requires local 

climate data. 

2.3.2 Pavement Structural Evaluation 

Falling weight deflectometer (FWD)-measured deflections are affected by  temperature (Chang 

et al., 2002). Hence, during FWD testing, either a temperature probe is used to measure the 

temperature of the pavement or mathematical models are used to estimate it. Fernando et al. 

(2001) refer to this temperature as the base temperature, while others (e.g., Chowdhury and 

Hossain, 1999) refer to it as the effective temperature.  

For large projects, challenges in conducting direct pavement temperature measurements at 

every FWD test location may motivate enumerators to resort to measuring temperatures only 

at the beginning and end of the FWD testing and, thereafter, interpolate pavement temperatures 

based on time of deflection measurement (Lukanen et al., 2000; Fernando et al., 2001). Some 

researchers (e.g., Chowdhury and Hossain, 1999; Fernando et al., 2001) measured AC 

pavement temperature at three depths (25mm from the surface, mid-depth, and 25mm from the 

bottom) and suggested the average of these measurements as the effective temperature for the 

FWD data analysis. The average temperature, thus determined, was similar to the mid-depth 

temperature (Fernando et al., 2001).  As a result, some studies have focused on the mid-depth 
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temperature measurement during FWD deflection testing (e.g., Park et al., 2001; Gedafa et al., 

2014). 

Back-calculation of AC modulus is performed using software such as WESDEF, ELMOD, 

MODULUS (Lukanen et al., 2000), MICHBACK (Park et al., 2001) and CalBack (Tsai and 

Wu, 2009).  Back-calculated AC modulus is corrected to a user-defined reference temperature 

to account for the effect of temperature (Lukanen et al., 2000; Fernando et al., 2001; Park et 

al., 2001; Chang et al., 2002). The reason for the temperature correction is the sensitivity of 

the AC modulus to temperature. Studies show that the logarithm of AC modulus has a negative 

correlation with mid-depth asphalt pavement temperature (Lukanen et al., 2000; Park et al., 

2001). Different procedures are available for temperature correction of deflection data and the 

back-calculated modulus. Park et al. (2001) and Fernando et al. (2001) expressed corrected AC 

modulus as a function of back-calculated AC modulus and a correction factor (Eq. (2.1)):  

ETr
= ET  × CF                  (2.1) 

where; 

ETr
= AC modulus corrected to a reference temperature, Tr (ºC) 

ET = Measured AC modulus at temperature, T (ºC) 

CF = correction factor 

To determine the value of the correction factor, a graph of back-calculated AC modulus against 

AC layer mid-depth temperature is plotted on a semi-logarithmic scale and a regression model 

Eq. (2.2) fitted, as proposed by Lukanen et al. (2000) and Park et al. (2001). 

log10 ET = b + aT          (2.2)  

where; 
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a, b = regression coefficients 

T = Mid-depth AC temperature (ºC) 

ET = Measured AC modulus  

The correction factor shown in Eq. (2.3) has been suggested by Lukanen et al. (2000) and Park 

et al. (2001). 

 CF = 10a (Tr−T)         (2.3) 

where; 

a = coefficient determined from Eq. (2.2).  Lukanen et al. (2000) recommended values of “a” 

as -0.0195 for the wheel paths and -0.021 for mid-lane. 

Tr= reference mid-depth AC temperature (ºC) 

T= measured mid-depth AC temperature (ºC) 

The foregoing discussion shows the key importance of pavement temperature in the FWD data 

analysis.   

2.3.3 Superpave Binder Grade Selection 

Traffic, environmental conditions, and anticipated average vehicle speed are used in the 

selection of asphalt binder grade under the Superpave system.  Environmental conditions are 

described by the 7-day mean high pavement design and the low pavement design temperatures 

(Kennedy et al., 1994). To obtain these temperatures, historical air temperature data for various 

weather stations in a given geographical area spanning not less than 20 years are required 

(Kennedy et al., 1994). The actual calculation of the pavement design high and low 

temperatures from the historic air temperature data requires the use of a mathematical model. 

Superpave base binder grade is designated as PG XX – YY, where PG refers to performance 
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grade, XX and YY, respectively, represent high pavement design temperature and low 

pavement design temperature.  

The ability of the Superpave performance grades to cater for traffic and environmental 

conditions at a project site makes them preferable compared to penetration- and viscosity- 

based grading. The restriction of the penetration and the viscosity grades to temperatures of 25 

ºC and 60 ºC, respectively, is addressed by the Superpave PG system, which accounts for a 

broader temperature range. The PG system links binder properties with field performance 

(Denneman et al., 2022), an important aspect missing in penetration- and viscosity-based 

binder grading systems. Superpave binder grade selection has been based on the SHRP models 

(Huber, 1994; Kennedy et al., 1994) and LTPP models (Mohseni, 1998). For instance, Tutu et 

al. (2022) recommended the LTPP models for Superpave binder grade selection in Ghana; 

Mirza et al. (2011) used the SHRP models suitable for Pakistani conditions to determine a  PG 

70-10 binder grade for Pakistan (Mirza et al., 2011). Lee et al. (2018) concluded that the SHRP 

models better specified binder grades for North Korea compared to local models developed 

from nearby countries of South Korea and Japan. Other researchers, such as Abbas (2017) and 

Asi (2007), have utilised both the SHRP and LTPP models for base binder grade determination 

in Iraq and the Kingdom of Jordan, respectively.  

The SHRP model for predicting the high pavement design temperature is given by Eq. (2.4) 

Huber (1994).  

T20mm = 0.9545Tair − 0.00590Lat2 + 0.21849Lat + 22.50         (2.4) 

where; 

T20mm = High pavement temperature at 20mm depth below the surface (°C) 

Tair = Seven-day mean high air temperature (°C) 
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Lat = Geographical latitude of the project location (degrees) 

Similarly, the SHRP model for predicting the low pavement design temperature is given by Eq. 

(2.5), according to Kennedy et al. (1994). 

Tpav = Tair + 0.051d − 0.000063d2                                     (2.5) 

where; 

Tpav = Low pavement design temperature in (°C) at depth, d  

Tair = Low Air temperature (°C) 

d = Depth from pavement surface (mm) 

The LTPP models (Mohseni, 1998) for predicting the high and low pavement design 

temperatures are given by Eqs. (2.6) and (2.7), respectively. 

Tpav,h = 54.32 + 0.78Tair − 0.0025Lat2 − 15.14 log10(d + 25) + z(9 + 0.61𝜎2
𝑎𝑖𝑟)0.5 

(2.6) 

where; 

Tpav,h = High pavement design temperature at depth d, below the surface (°C) 

Tair = Seven-day mean high air temperature (°C) 

Lat = Geographical latitude of project location (degrees) 

d = Depth below pavement surface (mm) 

z = Standard normal deviate corresponding to a selected reliability level 

σair = Standard deviation of average 7-day high air temperature (°C) 
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Tpav,l = −1.56 + 0.72Tair − 0.004Lat2 + 6.26 log10(d + 25) − z(4.4 + 0.52σair
2)

1

2  

                                                     (2.7) 

where; 

Tpav,l = low pavement design temperature at depth, d (°C) 

Tair = low air temperature (°C) 

d = depth below pavement surface (mm) 

z = standard normal deviate corresponding to a selected reliability level 

σair = standard deviation of low air temperature (°C) 

Denneman et al. (2022) applied the SHRP (Huber, 1994), Beecroft (2019), and Viljoen (2001) 

models developed in USA, Australia, and South Africa, respectively, to forecast the high and 

low pavement design temperatures for Australia. The models accurately predicted high 

pavement design temperatures but the SHRP model was recommended, since it had easily 

available inputs. Swarna and Hossain (2022) concluded that, in 2070, PG binder grades 

determined for Canada based on the SHRP, LTPP, and EICM models will require two grade 

increments in the high-temperature grades (i.e. 12 ºC). However, the SHRP and LTPP models 

will need four grade increments (-24 ºC) in the low-temperature grades, while EICM prediction 

will increase by three low-temperature grades. 

2.3.4 Asphalt Material Aging Characterisation 

Material aging, which is caused by the diffusion of oxygen into asphalt material and subsequent 

reaction with the binder over time, to cause changes in the chemical composition of the asphalt 

binder, leads to changes in the physical and rheological properties of the material (Sirin et al., 

2018; Liang et al., 2019). The aging process is accelerated by temperature and oxygen. 

Oxidative aging occurs in two stages; short-term which occurs during the hot-mix plant 
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production process (Idham et al., 2013; Sirin et al., 2018; Liang et al., 2019) and long-term 

which occurs in-service when the asphalt concrete material is exposed to environmental 

conditions over a long period (Idham et al., 2013). This means that the mix production 

temperature and, the in-service pavement temperature, are key to the asphalt aging 

phenomenon. Hence, knowledge of the in-service pavement temperature can help to 

characterise the aging process. Asphalt aging could be either positive or negative. While a 

stiffer asphalt (due to aging) will have a high modulus and, hence, improved resistance to 

permanent deformation (Idham et al., 2013; Sirin et al., 2018), the AC material could become 

brittle and, thus, prone to cracking and raveling. 

 The AASHTOWare Pavement M-E Design software has an asphalt concrete material aging 

prediction model referred to as Global Aging System (Zhang et al., 2019). A fresh model that 

predicts long-term aging with field-aging temperature as a predictor variable has been proposed 

by Zhang et al. (2019).  

2.4 Asphalt Pavement Temperature Prediction Models  

Asphalt pavement temperature prediction models may be broadly categorised as empirical, 

numerical, or analytical,  based on their theoretical underpinnings, and method of analysis 

(Wang et al., 2009; Chen et al., 2019; Rigabadi et al., 2021). The numerical and analytical 

models, jointly referred to as theoretical models, are based on heat flow theories and are 

analysed by solving partial differential equations for defined boundary conditions. On the other 

hand, empirical models use regression methods to establish a relationship between pavement 

temperature and prediction factors, such as climate, meteorological, geographic, and surface 

temperature of pavement (Wang et al., 2009). 
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2.4.1 Empirical Models  

Empirical models are very common and are mostly preferred because of certain advantages. 

These models are mostly simple mathematical equations for determining pavement 

temperature based on known characteristics like the temperature of the pavement surface or 

pavement depth (Wang et al., 2009; Chao and Jinxi, 2018).  They are simply statistics-based 

and are not underlined by any theory.  Empirical models are user-friendly and are easy to 

develop (Diefenderfer et al., 2006; Gedafa et al., 2014). Notwithstanding, the disadvantage of 

such models is the fact that they are developed within specific databases and their accuracies 

are restricted to the confines of the original model formulation database (Wang et al., 2009; 

Alavi et al., 2014). According to Chen et al. (2019), pavement temperature variation with layer 

depth and time is non-linear, making it improper to predict using linear regression models.  

Rather, non-linear regression models and neural network models may be more appropriate for 

the time-dependent temperature profile of pavements (Cheng et al., 2019).  

The key findings of empirical models reviewed for this study have been summarised in Table 

2.2.
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Table 2.2. Summary of Key Findings from Review of Empirical Models 

Reference Method Country Predictors Model Purpose  

Ghalandari et al. 

(2023) 

Autoencoder 

network (machine 

learning) 

Belgium  Air temperature 

 Solar radiation 

 Wind speed 

 Day of year 

 Relative humidity 

 Predict asphalt pavement 

temperature at different depths 

Walia et al. (2022) Non-linear 

regression 

Iran  Ambient temperature 

 Time of day 

 Asphalt layer depth 

 Predict asphalt layer pavement 

temperature  

Rigabadi et al. (2021) Artificial neuron 

network (ANN) 

India  Remote sensing technology  Predict temperatures at the pavement 

surface and depths of 200mm and 

250mm from the pavement surface. 

Tabrizi et al. (2021) Convolutional 

neural network with 

long short-term 

memory (CNN-

LSTM) 

Canada  Hourly solar radiation 

 Hourly air temperature 

  

 Predict pavement surface 

temperature  

Milad et al. (2021) Bidirectional long 

short-term memory  

(Bi-LSTM) 

Gaza, Palestine  Air temperature 

 Time of day 

 Depth below the pavement surface 

 Predict pavement temperature at a 

given time and depth 

Milad et al. (2021) Hybrid Random 

Forest Markov 

chain Monte Carlo 

(RF-MCMC)  

Gaza, Palestine  Air temperature 

 Time of day 

 Depth below the pavement surface 

 Predict pavement temperature at a 

given time and depth 

Khan et al. (2019) Linear regression USA  Solar radiation 

 Wind velocity 

 Relative humidity 

 Ambient temperature 

 Predict temperature of asphalt 

pavement surface 
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Table 2.2. Cont’d 

Reference Method Country Predictors Model Purpose  

Li et al. (2018) Non-linear 

regression 

China  Average air temperature over 

cumulative hours 

 Total solar radiation over cumulative 

hour historical mean monthly air 

temperature  

 Depth from the pavement surface 

 Predict asphalt pavement 

temperature at a specified depth. 

 Specifically useful for asphalt 

pavements with asphalt layer 

thickness above 200 mm. 

Chao and Jinxi (2018) Linear 

regression 

China  Air temperature 

 Wind speed 

 Cloud cover  

 Relative humidity  

 Precipitation. 

 Predict asphalt pavement 

temperatures at depths of 50mm, 

190mm, and 240mm from the 

pavement surface. 

Xu et al. (2017) Back 

propagation 

neural network 

China  Air temperature 

 Wind speed 

 Air humidity  

 Pavement surface temperature  

 Wind direction  

 Rainfall  

 Road condition 

 Predict asphalt pavement 

temperature at depth from the 

pavement surface. 

Asefzadeh et al. (2017) Linear and non-

linear 

regressions 

Canada  Solar radiation 

 Daily air temperature (average, 

minimum, or maximum)  

 Depth below asphalt layer surface 

 Predict daily mean pavement 

temperature for warm and cold 

seasons 

 Predict daily minimum, and 

maximum pavement temperatures. 

Chandrappa and Biligri 

(2016) 

Non-linear 

regression 

India  Mean monthly air temperature 

 Total solar radiation 

 Latitude  

 Month and year 

 Predict asphalt pavement surface 

temperature 
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Table 2.2. Cont’d 

Reference Method Country Predictors Model Purpose  

Taamneh (2016) Linear 

regression 

USA  Highest and lowest ambient temperature 

 Solar radiation 

 Asphalt layer depth 

 Wind speed 

 Predict daily maximum and daily 

minimum asphalt pavement 

temperatures 

Islam et al. (2015) Linear 

regression 

USA  Depth from pavement surface 

 Pavement surface temperature; and/or  

 Solar radiation 

 Predict daily maximum, average, and 

minimum pavement temperatures. 

Marchetti et al. (2015) Linear 

regression 

France  Pavement surface temperature  

 Relative humidity  

 Nebulosity 

 24hr period of precipitation 

 Wind speed 

 Solar radiation 

 Time of day and  

 Traffic situation. 

 Predict asphalt pavement surface 

temperature. 

Gedafa et al. (2014) Non-linear 

regression 

USA  Mid-depth AC layer thickness 

 Asphalt layer surface temperature 

 Time of day 

 Mean air temperature of the preceding 

day  

 Predict mid-depth temperature of 

perpetual asphalt pavement 

temperature at a given time  

Krsmanc et al. (2012) Linear 

regression 

Slovenia  Long- and shortwave radiation 

 Wind speed 

 Relative humidity 

 Air temperature 

 Cloudiness 

 Precipitation 

 Predict surface temperature of 

asphalt pavement in winter 

conditions. 
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Table 2.2. Cont’d 

Reference Method Country Predictors Model Purpose  

     

Diefenderfer et al. (2006) Linear 

regression 

USA  Ambient temperature 

 Solar radiation 

 Asphalt layer depth  

 Predict daily maximum and daily 

minimum asphalt pavement 

temperatures 

Park et al. (2001) Non-linear 

regression 

USA  Surface temperature  

 Pavement depth 

 Time of field pavement measurement. 

 Predict daily asphalt pavement 

temperature at given depths and 

times. 

Viljoen (2001) Non-linear 

regression 

South Africa  Ambient temperature 

 Depth from the pavement surface 

 Zenith angle 

 Cloud cover 

 Predict pavement surface 

temperature and pavement 

temperature at a given depth 

Lukanen et al. (2000) Non-linear 

regression 

USA  Depth from the pavement surface 

 Pavement surface temperature 

 Time of day  

 Mean air temperature of the previous 

day  

 Predict daily asphalt layer pavement 

temperature  
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2.4.2 Numerical Models  

The procedures involved in using numerical models have been described by Wang et al. (2009), 

as follows. Firstly, a partial differential equation (PDE) describing heat conduction in the 

pavement must be solved. Second, after defining the boundary conditions at the pavement 

surface using the energy balance concept, it is necessary to ascertain the relationship between 

climate data and pavement material properties. Depending on the number of dimensions of the 

analysis, it may require discretisation of the thickness and/or radial distance into control cells. 

Numerical models can be applied universally without restrictions. However, it can be difficult 

to define the boundary conditions and solve the PDE when the initial pavement temperature 

profile is unknown (Wang et al., 2009). Again, the large datasets used as input parameters 

make their analyses complicated and non-practicable (Gedafa et al., 2014; Asefzadeh et al., 

2017; Rigabadi et al., 2021). The accuracy of such models is often impacted by the difficulty 

of obtaining the pavement property inputs for numerical models (Krsmanc et al., 2012). These 

pavement properties are either obtained from existing literature or estimated (Chen et al., 

2019). 

The finite element method (FEM), finite difference method (FDM) and finite control volume 

method (FCVM) are the main categories of numerical models. Chen et al. (2019) posit that 

both the FDM and FCVM have better computational efficiency than the FEM. However, FEM 

can handle complex geometries such as three dimensions (e.g., Minhoto et al., 2005) as well 

as simpler dimensions (e.g., Teltayev et al., 2016). Comparatively, FDM is widely regarded as 

simple and efficient, hence its frequent use for numerical models (e.g., Han et al., 2011; Qin 

and Hiller, 2011; Nuijten, 2016).  

The main heat transfer processes in a pavement structure are conduction, radiation, and 

convection. Some researchers neglect the heat transfer caused by precipitation and evaporation 

(e.g., Han et al., 2011; Alavi et al., 2014). Heat conduction (diffusion) is the only means of 
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heat transfer within the pavement layers. However, the pavement surface and the surrounding 

environment interact through radiation and convection. The different types of radiation 

comprise solar radiation (including its reflected fraction by albedo from the surface of 

pavement), incoming atmospheric longwave radiation, and outgoing longwave radiation from 

the pavement surface. Heat convection takes place at the pavement surface due to the presence 

of fluid, such as wind. Figure 2.2 illustrates the heat transfer schematic of a pavement.  

 

 

 

 

 

 

 

Figure 2.2. Schematic of Heat transfer of pavement and environment (Alavi et al., 2014) 

Heat transfer equations are in the form of partial differential equations (PDE) and are solved 

by determining the various boundary conditions (i.e. expressing the various heat fluxes at those 

boundaries as equations), which are usually complex. From the literature (e.g., Han et al., 2011; 

Alavi et al., 2014), the surface boundary condition is usually catered for but the extent of 

consideration of various heat fluxes may vary. However, the bottom boundary conditions 

happen to vary based on depth from surface of pavement. Researchers, such as Han et al. 

(2011), set the bottom boundary at a depth of 3m, while others (e.g., Wang and Roesler, 2014) 

considered temperature as depth approaches infinity.  
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The expression of the energy balance equation at the various boundary conditions is illustrated 

below. 

A. Surface Boundary Condition 

The energy balance equation at the pavement surface defines the surface boundary condition 

heat fluxes, which is given by Eq. (2.8). 

Qsolar + Qrad − Qconv − Qf = ρsuf × csur  × δ × (
∂Tsur

∂t
)            (2.8) 

where; 

Qsolar = heat flux due to solar radiation  

Qrad = heat flux from net thermal radiation  

Qconv = heat flux from convection  

Qf = conduction from the surface into the pavement 

ρsuf, csur = density and specific heat capacity of the surface material respectively 

δ = assumend thickness of the surface material 

∂Tsur = Differential of pavement surface temperature  

∂t = differential of time 

Solar Radiation Heat Flux 

The Qsolar is given by Eq. (2.9). 

Qsolar = (1 −  ά )Qs                 (2.9) 

ά = pavement surface albedo (fraction of the solar radiation that is reflected). 

Qs = incident global solar radiation. This is usually computed from a formula.  
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Net Radiation Heat Flux 

The longwave radiation emitted from the pavement surface, as well as the longwave radiation 

absorbed by the pavement surface, makes up the net radiation heat flow. This is expressed 

mathematically in Eq. (2.10). 

Qrad =  Qincoming − Qoutgoing =  εaσTair
4 − εrσTsur

4           (2.10) 

where; 

εa = Absorption coefficient of the pavement surface 

σ = Stefan − Boltzmann constant 

εr = Emissivity of the pavement surface 

Tair = Air temperature, K  

Tsur = Surface temperature, K  

Qincoming = Incoming longwave radiation 

Qoutgoing = Outgoing longwave radiation 

Convection Heat Flux 

Convection heat flux is computed using Eq. (2.11). 

Qconv =  hc (Tsur −  Tair)             (2.11) 

where; 

hc =  convection coefficient. This is dependent on wind speed 

Tair = air temperature, K  

Tsur = surface temperature, K  
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Conduction Heat Flux 

The heat conduction (Qf) within the top surface and underneath pavement layers is 

demonstrated by Fourier’s law, as shown in Eq. (2.12). 

Qf = −k(∂T/∂x)                  (2.12) 

where; 

k = asphaltic material’s thermal conductivity  

∂T = temperature differential  

∂x = differential of the depth of the pavement structure, x 

B. Heat Transfer within the Pavement 

A one-dimensional PDE, also known as the classical thermal diffusion equation (Han et al., 

2011), defines the heat conduction within the pavement as shown in Eq. (2.13). The PDE (Eq. 

2.13) compares the differential temperature with time to the temperature differential with 

pavement depth. 

∂T/∂t = α(
∂2T

∂x2
)             (2.13) 

where; 

α =
k

ρ.c
= thermal diffusivity           (2.14) 

The literature review on numerical models have been summarised in Table 2.3. 
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Table 2.3. Summary of Key Findings from Review of Numerical Models 

Reference Method Country Predictors Model Purpose  

Manikkunambi et 

al. (2023) 

Finite Element 

Method 

USA  Air temperature  

 Layer thickness 

 Conductivity 

 Heat capacity  

 Density  

 Emissivity   

 Absorptivity 

 Solar Radiation 

 Wind velocity 

 Predict the asphalt layer’s 

temperature of flexible pavement 

Saliko et al. 

(2023) 

Finite Control 

Volume Method 

Sweden  Air temperature 

 Solar radiation 

 Wind speed 

 Predict pavement temperature profile 

at given time and depth 

Nuijten (2016) Finite 

Difference 

Method 

Norway  Air temperature  

 Relative humidity  

 Wind speed 

 Precipitation  

 Shortwave radiation  

 Cloud cover  

 Pavement dimension  

 Density  

 Specific heat capacity 

 Thermal conductivity 

 Air traffic data  

 Surface condition  

 Chemicals present on the runway. 

 Predict airport runway surface 

temperature for winter conditions 
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Table 2.3. Cont’d 

Reference Method Country Predictors Model Purpose  

Teltayev et al. 

(2016) 

Finite Element 

Method 

Kazakhstan  Air temperature  

 Pavement surface temperature  

 Pavement layers’ thermal conductivity 

 Specific heat capacities  

 Densities of layer materials 

 Emissivity   

 Absorptivity 

 Predict temperature profile 

fluctuations. 

Alavi et al. (2014) Finite Control 

Volume 

Method 

USA  Air temperature  

 Wind speed  

 Solar radiation 

 Pavement surface albedo; 

 Surface emissivity  

 Absorption coefficient  

 Diffusivity. 

 Study the temperature profile of 

asphalt pavement 

Qin and Hiller 

(2011) 

Finite 

Difference 

Method 

USA  Air temperature  

 Wind velocity  

 Cloud cover  

 Dew point temperature  

 Thermal conductivities of pavement layers 

 Densities of pavement layers 

 Specific heat capacities of pavement layers 

 The emissivity of pavement surface  

 Absorptivity of the pavement surface. 

 Predict temperature fluctuation in 

rigid pavements.  

 Found it feasible to replace air 

temperature data with sinusoidal 

approximation function as model 

input. 
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Table 2.3. Cont’d 

Reference Method Country Predictors Model Purpose  

Han et al. (2011) Finite 

Difference 

Method 

USA  Solar radiation  

 Wind speed  

 Air temperature  

 Pavement surface albedo  

 Surface emissivity  

 Absorption coefficient   

 Diffusivity. 

 Predict asphalt pavement temperature 

and is useful for binder oxidation.  

Minhoto et al. (2005) Finite Element 

Method 

Portugal  Hourly air temperature 

 Hourly solar radiation  

 Mean daily wind speed  

 Pavement surface emissivity 

 The absorption coefficient of pavement surface  

 Specific heat capacity of pavement layers  

 The density of pavement layers 

 Predict the temperature at various 

asphalt pavement depths. 

Yavuzturk et al. 

(2005) 

Finite 

Difference 

Method 

USA  Thermal conductivity 

 Specific heat capacity  

 Pavement surface emissivity  

 Pavement surface absorptivity  

 Pavement geometry and orientation  

 Air temperature  

 Solar radiation  

 Wind speed  

 Dew point temperature 

 Predict temperature variation in asphalt 

pavement in vertical and horizontal 

planes. 

Hermansson (2001) Finite 

Difference 

Method 

USA  Solar radiation 

 Air temperature  

 Wind speed  

 Pavement surface temperature  

 Pavement surface albedo  

 Emissivity   and Absorptivity  

 Predict the summertime temperature. 
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2.4.3 Analytical Models 

Analytical models share similar characteristics with numerical models regarding their 

theoretical underpinnings but are much more complicated to analyse. They offer a better 

avenue to solving partial differential equations emanating from the definition of boundary 

conditions in situations where the initial condition (initial pavement temperature) is unknown 

(Wang et al., 2009). The pioneering work on analytical models is attributed to Barber (1957), 

who established a model for predicting the maximum asphalt pavement temperature based on 

climatic and pavement thermal property data. Based on high ambient temperature, high hourly 

solar radiation, and other pavement parameters, Solaimanian and Kennedy (1993) provided an 

analytical solution to estimate the high pavement surface temperature, in furtherance of 

Barber’s (1957) work. In recent times, several attempts have been made to improve analytical 

models. Table 2.4 provides summary findings of some analytical models reviewed in this study. 
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Table 2.4. Summary of Key Findings from Review of Analytical Models 

Reference Mathematical tools Country Predictors Model Purpose 

Ayasrah et al. (2023) Infinite series Jordan  Solar radiation & wind speed 

 Air temperature  

 Diffusivity 

 Predict temperature profile through a 

pavement structure 

Chen et al. (2017) Green’s function China  Air temperature; solar radiation; 

 Pavement surface albedo  

 Emissivity  

 Thermal conductivity  

 Specific heat capacity. 

 Predict the temperature profile of the 

asphalt layer of flexible pavement.  

Wang (2016) Eigenfunction 

expansion 

USA  Pavement surface temperature history 

thermal diffusivity of surface material 

 Total time of interest. 

 Predict time variation of temperature 

of asphalt layer of flexible pavement 

from FWD testing data. 

Chen et al. (2015) Green’s function China  Solar radiation  

 Air temperature  

 Cloud cover  

 Wind speed 

 Thermal conductivity  

 Specific heat capacity  

 Surface temperature  

 Emissivity   

 Absorptivity of surface material. 

 Predict asphalt pavement’s  

temperature field. 

Wang (2015) Separation of 

variables/Duhamel’s 

principle 

USA  Pavement surface temperature;  

 Thermal diffusivity of the asphaltic 

layer; 

 Initial pavement temperature at 

specified depths   

 Deep soil temperature. 

 Predict variation of temperature with 

time within the asphalt layer of a 

single-layered flexible pavement. 
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Table 2.4. Cont’d 

Reference Mathematical tools  Country Predictors Model Purpose 

Wang and Roesler 

(2014) 

Separation of 

variables method 

USA  Air temperature  

 Solar radiation  

 Layer thicknesses   

 Material thermal properties  

 Predict the time variation of 

temperature. 

Wang (2013) Odd extension  

Gaussian quadrature 

formula 

USA  Pavement surface temperature 

 Initial pavement temperature profile  

 Thermal diffusivity of the AC layer. 

 Predict the inherent temperature of 

the asphalt layer of a flexible 

pavement during FWD testing. 

Alawi and Helal 

(2012) 

Finite integral 

transform 

Saudi Arabia  Air temperature 

 Solar radiation 

 Predict transient pavement 

temperature for spherical roads with 

non-linear boundaries. 

Wang (2012) Laplace 

transformation 

USA  Pavement surface temperature 

 Layer thicknesses 

 Thermal conductivities 

 Diffusivities of layer materials 

 Average initial pavement temperature 

along depths. 

 Predict the temperature profile of 

multi-layered asphalt pavement 

Wang et al. (2009) Hankel integral 

transform 

USA  Air temperature  

 Solar radiation 

 Wind speed  

 Emissivity   

 Absorptivity  

 Thermal conductivity  

 Thermal diffusivity of pavement layers. 

 Predict the temperature of rigid 

pavement with unknown initial 

conditions. 
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2.4.4 Factors Influencing Asphalt Pavement Temperature 

A. Climatic Factors 

Attempts to quantify climate variables to determine which of them have the greatest impact on 

pavement temperature have generated a variety of opinions. Climate parameters, including air 

temperature, solar radiation, and wind speed, individually exert greater influence on pavement 

temperature (Minhoto et al., 2005; Yavuzturk et al., 2005; Alavi et al., 2014). However, Chen 

et al. (2019) opined that the debate surrounding the quantification of the impact of climatic 

factors on pavement temperature has resulted from the non-recognition of the interrelation 

among the climatic factors. Hence, proper quantification of influential climatic factors of 

pavement temperature must consider the dependency among them. 

The importance of air temperature, solar radiation, and wind speed is seen in the analysis of 

the heat flux at the pavement surface. Incident solar radiation is required in computing the 

short-wave radiation on the pavement surface, while computing the net longwave radiation on 

the pavement surface uses air temperature and pavement surface temperature. Wind speed, on 

the other hand, is required for computing convection heat flux. In several empirical models, air 

temperature (e.g., Mohseni, 1998; Taamneh, 2016) and solar radiation (e.g., Taamneh, 2016) 

have a positive correlation with the daily maximum and daily minimum asphalt pavement 

temperatures.  According to Taamneh (2016), wind speed is negatively correlated with both 

the daily maximum and daily minimum asphalt pavement temperatures.  

Non-climatic influencing factors of pavement temperature, such as latitude (e.g., Mohseni, 

1998), depth from pavement surface (e.g., Gedafa et al., 2014), month and year of field data 

collection (e.g., Chandrappa and Biligiri, 2016), are often used in pavement temperature 

models. In some studies (e.g., Mohseni, 1998; Taamneh, 2016), maximum daily pavement 

temperature was found to have an inverse relationship with AC layer depth, while minimum 
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daily temperature showed a positive relationship with depth. Mohseni (1998) found the latitude 

of pavement location to be non-linearly related to both low and high pavement temperatures. 

However, according to Chandrappa and Biligiri (2016), latitude is positively and inversely 

related to the maximum and minimum mean monthly pavement surface temperatures, 

respectively.  

B. Internal Factors  

I. Pavement surface albedo 

Surface albedo, also known as solar reflectivity, is the fraction of the incident solar radiation 

at the pavement surface that is reflected into the sky. Mathematically, albedo is the ratio of the 

radiation reflected to the solar radiation incident on the pavement surface. It is a dimensionless 

value ranging from 0 to 1. An albedo of 0 indicates a perfectly absorbing black surface with 

non-reflection of the solar radiation, whereas an albedo of 1 indicates a perfectly reflecting 

white surface, where all radiation is reflected (Li et al., 2013). Li et al. (2013) postulated that 

the temperature of a pavement surface is affected by the incident solar radiation, depending on 

its albedo. If the material surface has low albedo such as a black stone, the extent of influence 

of the solar radiation on the surface temperature is large due to the increased absorbed radiation. 

In contrast, in a material with high surface albedo (little absorption), there is a low influence 

of solar radiation on the surface temperature. The effect of albedo on pavement surface 

temperature is significant in the daytime. Li et al. (2013) reported higher surface albedo 

measured in the morning and late afternoon than during the mid-day. Pomerantz et al. (2000) 

found a correlation between albedo and pavement age. The albedo of asphalt concrete increases 

with age (Pomerantz et al., 2000; Carnielo and Zinzi, 2013; Li et al., 2013; Chen et al., 2019). 

In comparison with Portland cement concrete, asphalt concrete has a relatively low albedo 

(Pomerantz et al., 2000; Chen et al., 2019). This is because asphalt concrete, being black, 

absorbs more incident solar radiation. Albedo for cement concrete, in contrast, decreases with 
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age (Chen et al., 2019). According to Chen et al. (2017), a negative correlation exists between 

albedo and an asphalt layer’s maximum temperature and that pavement surface temperature 

decreases by 33.3°C for every 0.1 increase in surface albedo. Surface albedo greatly affects 

daytime maximum pavement temperature more than daytime minimum pavement temperature 

(Qin et al., 2022). 

II. Surface Absorptivity and Emissivity 

Surface absorptivity, which is related to incoming longwave radiation at the pavement surface, 

is the portion of incident radiation that is absorbed into the pavement. Its value ranges from 0 

to 1. The sum of the surface absorptivity and albedo equals unity (Chen et al., 2019). The solar 

radiation absorption rate is positively related to pavement temperature (Yinfei et al., 2015). In 

contrast, the difference between the radiation released by a surface at a certain temperature and 

the same radiation emitted by a black body at the same temperature is known as emissivity. 

While both absorptivity and emissivity are associated with longwave radiations, their values 

are different due to differences in wavelengths so their summation may not be equal to unity 

always (Chen et al., 2019). Chen et al. (2019) observed variations in the emissivity of different 

pavement surfaces. Asphalt concrete surfaces have higher emissivity compared with Portland 

cement concrete surfaces (Chen et al., 2019). 

III. Pavement Material’s Thermal Properties  

The commonly-used thermal parameters of pavement materials in most numerical and 

analytical models are thermal conductivity, specific heat capacity, and thermal diffusivity (as 

seen in Tables 2.2 and 2.3). Thermal conductivity is a metric for a material's capacity to conduct 

heat, according to Cengel (2003). When exposed to solar light, thermal conductivity enables 

heat to transfer between pavement layers. Thermal conductivity has a similar impact on heat 

flow at the pavement surface (as shown in Eq. 2.12). Feng et al. (2013) concluded that where 
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several asphalt layers exist, it is the top asphalt layer whose thermal conductivity significantly 

influences the temperature gradient in the pavement. Chen et al. (2017) found that, while the 

maximum surface and minimum bottom temperatures were inversely related to the asphalt 

mixture's thermal conductivity, the minimum surface and maximum bottom temperatures were 

actually positively associated.  

Specific heat capacity is the energy per unit mass and unit temperature (Chen et al., 2019).  

Specific heat capacity measures the amount of heat stored by a material per unit volume 

(Cengel, 2003) and has an inverse relationship with the maximum pavement surface 

temperature, but it is positively related to the minimum surface temperature (Gui et al., 2007). 

A high specific heat capacity indicates high heat storage in a material; this causes massive heat 

sink into the pavement from the surface during the day and, thus, reduces the maximum 

pavement surface temperature. 

Thermal diffusivity measures the comparison of heat conducted to the heat stored by a material 

per unit volume (as shown in Eq. 2.14). Gui et al. (2007) reported that thermal diffusivity has 

an inverse and positive relationship, respectively, with the maximum surface and minimum 

surface temperatures.  

2.5 Asphalt Pavement Temperature Prediction Model Evaluation Techniques 

Model evaluation compares the level of agreement between model predictions and measured 

values. Parameters that may be used to judge the level of agreement include; Root Mean Square 

Error (RMSE), Mean Percentage Error (MPE), Mean Absolute Percentage Error (MAPE) and 

Mean Bias Error (MBE). In addition, the line of equality (LOE) and the coefficient of 

determination (𝑅2) have also been used for judging the prediction accuracies of models (e.g., 

Park et al., 2001; Diefenderfer et al., 2006; Khalil and Shaffie, 2013; Gedafa et al., 2014; 

Quansah et al., 2014; Taamneh, 2016).  
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The RMSE, MPE, MBE and R2 are calculated by Eqs. (2.15), (2.16), (2.17) and (2.18), 

respectively.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑇𝑐𝑎𝑙 − 𝑇𝑚𝑒𝑎)2𝑛

𝑖=1                                                                                     (2.15) 

𝑀𝑃𝐸 =  
1

𝑛
∑ (

𝑇𝑚𝑒𝑎−𝑇𝑐𝑎𝑙

𝑇𝑚𝑒𝑎
× 100)𝑛

𝑖=1                                                                                   (2.16) 

𝑀𝐵𝐸 =
1

𝑛
 ∑ (𝑇𝑐𝑎𝑙 −  𝑇𝑚𝑒𝑎)𝑛

𝑖=1                                                                                (2.17) 

𝑅2 = 1 − 
𝑆𝑆𝑅

𝑇𝑆𝑆
                (2.18) 

where; 

𝑇𝑚𝑒𝑎 = Measured values 

𝑇𝑐𝑎𝑙 = Predicted values 

n = Number of observations 

SSR = sum of square of residuals 

TSS = total sum of squares 

The RMSE quantifies the variation of the model-predicted values from observed values, with 

an RMSE of zero indicating a perfect prediction. MBE determines over-prediction or under-

prediction by a model. A positive MBE indicates over-prediction and vice versa. MPE accounts 

for the level of divergence of predicted values from measured values and is expressed as a 

percentage. Muzathik et al. (2011) suggested an acceptable range of MPE as between -10% 

and +10%. MAPE is similar to MPE but the deviation of predicted values from measured 

values is given in absolute terms. The LOE, on the other hand, is a 45-degree line drawn from 

the origin of a scatter plot of predicted against measured values. A well-fitted model has both 

predicted and measured values equally displaced on either side of the LOE. The R2 shows the 



 

41 
 

goodness-of-fit of the model. The value of R2 indicates the proportion of variance in the 

outcome variable that can be explained by the predictor variable. Higher values of R2 indicate 

a well-fitted model; a perfect fit will have R2 = 1. Hence, low values of MPE, MBE, RMSE, 

and high value of R2 indicate a model with high prediction accuracy. 

As noted by Khalil and Shaffie (2013) and Muzathik et al (2011), although the above error 

estimates provide a reasonable comparison of models, they do not indicate the level of 

statistical significance of the model estimates. Hence, a t-test, at a given confidence level, is 

employed to determine the statistical significance of such estimates. Gedafa et al. (2014) 

employed both the two-sample t-test and paired sample t-test to check for significant 

differences between predicted mid-depth asphalt pavement temperature at 0% sensitivity level 

and various independent variables at all other sensitivity levels. They concluded that the time 

of pavement temperature measurement was the most influential independent variable to 

predicted mid-depth pavement temperature. The paired sample t-test is used to compare the 

mean difference between two measures of a variable observed on the same samples (Bluman, 

2012). One-way analysis of variance (ANOVA) may also be used (Ibili et al., 2022). 

A prerequisite of using the paired sample t-test, the two-sample t-test and ANOVA (all 

parametric tests) is normality assumption. However, violation of the normality assumption 

should not pose significant issue for large sample sizes (> 30), indicating that parametric 

approaches may be utilised although the data are not normally distributed (Ghasemi and 

Zahediasl, 2012; Bluman, 2012). 

2.6 Empirical Models of Routine Industry Application 

A thorough search of the literature, revealed six asphalt pavement temperature prediction 

models which are currently being used by industry, and practitioners. The models are briefly 

described, below.  
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a) BELLS 3 (Lukanen et al., 2000) Model 

The model was developed by Lukanen et al. (2000) from the first version of the Baltzer Ertman-

Larsen Lukanen Stubstad (BELLS) pavement temperature prediction model, using data 

collected over two years (1994–1996) from 41 sites, under the Long-Term Pavement 

Performance (LTPP) study in the U.S.  The AC layer thicknesses used for the model ranged 

from 46 mm to 305 mm. The BELLS 3 model, which is a revised version of the first, corrects 

for pavement surface shading to enable wider field application (Lukanen et al., 2000). The 

model, which is expressed by Eq. (2.19), predicts asphalt pavement temperature at a given time 

using the pavement depth, pavement surface temperature, time of day, and mean air 

temperature of the preceding day.  

Td = 0.95 + 0.892(IR) + [log(d) − 1.25][1.83 sin(hr18 − 15.5) − 0.448(IR) + 0.621Tavg]

+ 0.042(IR) sin(hr18 − 13.5)                                                                (2.19) 

where; 

Td =pavement temperature at a specified depth, d (ºC) 

IR = pavement surface temperature (ºC) 

d = Depth from pavement surface (mm) 

Tavg = Mean air temperature of the preceding day to the test (ºC) 

sin = sine function on an 18-hour clock system (one 18-hour cycle equal to 2π radians) 

hr18 = time of day in 24-hr (converted to 18-hr asphalt concrete (AC) rise and fall cycle). 

Calculation of the sin(hr18 − 15.5) and sin(hr18 − 13.5) has been detailed in Lukanen et al. 

(2000). 
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The model's adjusted coefficient of determination (adjusted R2) was reported to be 0.975, and 

the standard error (S.E.) was 1.9 ºC (Lukanen et al., 2000). Marshall et al. (2001) evaluated 

the BELLS 3 model for four counties in the state of Tennessee, U.S. and found the predicted 

mid-depth AC temperature to be reasonably accurate.  

b) Diefenderfer et al. (2006) Model 

Diefenderfer et al. (2006) developed models to predict high and low daily temperatures of 

asphalt pavements using data from the Virginia Smart Road and validated them using data from 

the LTPP sites (Diefenderfer et al., 2006). The model for daily maximum pavement 

temperature prediction (see Eq. (2.20)) had an adjusted R2 of 0.78 and a root mean square error 

(RMSE) of 5.8 ºC.   

Tp,max = 2.78752 + 0.686Ta max + 5.6736 × 10−4Rs − 27.8739Pd                               (2.20)     

where; 

Tp,max = Predicted maximum pavement temperature (ºC) 

Ta max = Daily maximum air temperature (ºC) 

Rs = Daily solar radiation (kJ/m2day) 

Pd = Asphalt layer depth (m) 

c) Taamneh (2016) Model 

Using data collected in two years on Interstate 90 in the Ohio state of U.S., Taamneh (2016) 

built models for predicting daily maximum and daily minimum asphalt pavement temperatures. 

The daily maximum pavement temperature prediction model is presented in Eq. (2.21) and had 

an adjusted R2 of 0.83 and RMSE of 5.1 ºC. 

TP−max = 9.720 + 0.947TA−max − 24.179D − 1.231WS + (4.01 × 10−4RS)              (2.21) 
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where; 

TP−max= Predicted maximum pavement temperature (ºC) 

TA−max =Daily maximum air temperature (ºC) 

WS = Daily wind speed (m/s) 

D = Desired depth below the pavement surface (m) 

RS = Daily Solar Radiation (kJ/m2day) 

The Taamneh (2016) model is useful for Superpave PG binder selection.  

d) Gedafa et al. (2014) Model 

This model uses inputs of pavement surface temperature, the day-time (in decimal hours), the 

average air temperature of previous day and mid-depth AC layer thickness to predict mid-depth 

asphalt pavement temperature. This model was developed and validated using data from six 

pavement sections in the U.S. state of Kansas. The Gedafa et al. (2014) model is presented in 

Eq. (2.22) and was reported to have an adjusted R2 of 0.94. 

Tpave = −5.374 − 0.752Tsur + 0.022T2
sur + 2.016Tavg − (0.032Tsur × Tavg) + 1.549td

− 0.022D                                                                                                                (2.22) 

where; 

Tpave= mid-depth AC pavement temperature (ºC) 

Tsur = Pavement surface temperature (ºC) 

Tavg = Mean air temperature of the preceding day (ºC) 

td = Time of day (decimal hours) 

D = AC Mid-depth thickness (mm) 
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e) Park et al. (2001) Model 

The model developed by Park et al. (2001), based on asphalt pavement surface temperature, 

depth below the pavement surface, and time of surface temperature measurement, predicts AC 

pavement temperature that is depth- and time-dependent. The model was developed using data 

from three test roads in the U.S. State of Michigan. The model does not directly depend on 

climate information. The adjusted R2 of the validated model exceeds 0.9.  The Park et al. (2001) 

model is expressed by Eq. (2.23). 

𝑇𝑧 = 𝑇𝑠𝑢𝑟𝑓 + {(−0.3451𝑧 − 0.0432𝑧2 + 0.00196𝑧3) ∗ sin (−6.3252𝑡 + 5.0967)}      (2.23) 

where; 

𝑇𝑧 = AC pavement temperature at depth, z (ºC) 

𝑧 = Depth where pavement temperature is required (cm) 

t = Time when AC surface temperature was measured (days). [0<t<1 (e.g., 2:15pm = 14.25/24 

=0.59375 days]. 

The Park et al. (2001) model was calibrated by Asefzadeh et al. (2017) for Edmonton, Canada, 

using data from the Integrated Road Research Facility (IRRF) and found the prediction 

accuracy to be good.  

f) Asefzadeh et al. (2017) Models 

The daily maximum pavement temperature prediction model developed by Asefzadeh et al., 

(2017), based on two years of data collected from an instrumented road test section in 

Edmonton, Canada, is given by Eq. (2.24). The model was based on asphalt concrete layer 

depths ranging from 9 mm to 250 mm.   

𝑇𝑚𝑎𝑥 = 2.0237 + 0.8709(𝑇𝑎𝑖𝑟−𝑚𝑎𝑥) + (7.6 × 10−4𝑆𝑅) − 16.1886𝐷,  R2 = 0.91        (2.24) 

where; 
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𝑇𝑚𝑎𝑥 = Daily maximum pavement temperature (ºC) 

𝑇𝑎𝑖𝑟−𝑚𝑎𝑥 = Daily maximum ambient temperature (ºC) 

SR = Daily solar radiation (kJ/m2day) 

D = Depth from pavement surface (m) 

2.7 Interview Methodology  

2.6.1 Interview Data Collection  

Interviews are conducted either through telephone, in-person, or by focus groups. These 

interviews usually involve limited, unstructured, and usually open-ended questions that are 

meant to elicit the participants' views and opinions (Cresswell and Cresswell, 2018). Roulston 

and Choi (2018) describe three interview types: structured, semi-structured, and unstructured 

interviews. In a structured interview, candidates are asked a sequence of predetermined 

questions with a constrained number of response options. Thus, organizing and measuring the 

results is usually simple. Because the interviewer reads from a script and tries to stay as close 

to it as possible, structured interviews are rigorous (Qu and Dumay, 2011).  

Gubrium and Holstein (2002) note that unstructured interviews take place in an informal 

atmosphere that gives both interviewers and interviewees flexibility in how the interview 

questions responses are framed. The interviewer would, therefore, be eager to track fascinating 

events and to have the interviewee clarify numerous themes in this instance. Roulston and Choi 

(2018) note that, in unstructured interviews, topics are determined by the interviewee, and 

because there may not have been a pre-formatted interview guide, the dialogue is more likely 

to resemble a casual chat.  

In a semi-structured interview, however, questions are guided by defined themes and may be 

interspersed with probes to elicit in-depth responses. To steer the conversation toward issues 
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the interviewers want to learn more about, the interview guide will incorporate a number of 

major themes (Qu and Dumay, 2011).  

Interview has its disadvantages. Roulston et al. (2003) argue that unexpected participant 

behavior, handling the effects of the interviewer's actions and subjectivities, developing and 

delivering questions, and handling delicate subjects are some challenges interviewers may 

encounter. In-depth interviews may also produce unreliable data because of their flexibility. 

They also need interviewers who are quite skilled. Respondents' subjectivity makes it possible 

for them to "say" whatever the interviewer wants to hear, which calls into question the 

reliability and validity of the interview findings. 

Alshenqeeti (2014) argues that using several data-collecting instruments would aid in getting 

detailed information and confirming the research findings. Researchers should consider 

improving their interviewing skills and choose the approach that best answers their research 

questions, keeping in mind that the more precise the researchers are with their questioning, the 

more accurate the data will be (Alshenqeeti, 2014). 

2.6.2 Interview Data Analysis 

Thematic analysis is a technique for analysing data that aids in finding themes and patterns of 

meaning concerning a certain research question or questions (SAGE, 2019). It is widely used 

for analysing interview data. To meaningfully respond to the study's research questions, the 

researcher can use this data analysis technique to find significant patterns and relationships. 

This approach entails seven processes, according to Braun and Clarke (2013) and Cresswell 

and Cresswell (2018): data organisation and preparation, reading and familiarization, data 

coding, finding themes, examining themes, naming and characterizing themes, and conclusion 

development.  
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a) Data organisation and preparation 

This involves the transcription of recorded interview data and typing of notes from the 

interview and arranging them in a meaningful order to make analysis easier. Any extra 

source of information obtained during the interview data is considered at this stage. 

b) Reading and Familiarisation of Data 

This automatically begins from the first step which gives a broad understanding of the data 

and a chance to consider its overall significance. By carefully reading and re-reading the 

interview data, the researcher can ask himself certain questions. For instance, what are 

participants saying generally? What kind of tone do the thoughts have? What impression 

do you have of the information's overall depth, reliability, and application? The researcher 

must, therefore, carefully examine the material while keeping the theoretical lenses in the 

back of their mind to see how these are reflected in the data (SAGE, 2019). 

c) Coding of Data 

Coding is the process of locating all pertinent data within the full dataset to respond to the 

research questions (SAGE, 2019). It entails gathering text or image data acquired during 

data collection, dividing it into paragraphs, and then identifying those categories with a 

phrase, frequently based on the participant's actual language (Cresswell and Cresswell, 

2018). Coding can be done either manually or through the use of software such as Nvivo 

and MAXDA. 

d) Identifying Patterns (Codes to Themes) 

Once the full dataset has been coded, it is time to search for patterns that may be present in 

the data. The frequency with which a given code appears is crucial in determining which 

patterns are most pertinent to addressing a specific research subject. Even so, there will be 
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some codes that are less common but nonetheless important for addressing the study 

subject. Therefore, when analyzing patterns in the data, it is also necessary to consider the 

frequency of each code, as well as how crucial it is to answering the study issue (SAGE, 

2019). 

e) Finding, Examining and Concluding Themes 

The next stage is to find the major data patterns that can be used to address the research 

topic. By looking at the patterns in the data, themes and sub-themes can be found (SAGE, 

2019). A theme captures a key aspect of the data with respect to the study question and 

illustrates the degree to which the data collection contains patterned responses or meaning 

(SAGE, 2019). These themes are the ones that typically appear as major findings in 

qualitative research and are used as headings in the findings section of the report. They 

should provide a variety of perspectives from diverse people and be supported by several 

quotes and specific examples (Cresswell and Cresswell, 2018). Braun and Clarke (2013) 

advise updating the identified themes as necessary. Secondly, because qualitative research 

tells a story about the data in a way that responds to the research questions, themes need 

not encompass all of the data (SAGE, 2019). 

2.8 Regression Model Development 

The most common forms of regression employed in building models for asphalt pavement 

temperature prediction are multiple regression (e.g., Krsmanc et al., 2012; Asefzadeh et al., 

2017; Khan et al., 2019), principal component analysis (PCA) (e.g., Marchetti et al., 2014;  

Marchetti et al., 2015) and partial least square (PLS) regression (e.g., Marchetti et al., 2015; 

Chao and Jinxi, 2018).  

PCA makes use of the statistical tool variance-covariance matrix. Also, PCA employs linear 

transformation of a correlated matrix to produce uncorrelated transformed variables with 
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orthogonal eigenvectors (Marchetti et al., 2014). PCA is used to describe links between 

variables (columns) in a multivariate table. Chao and Jinxi (2018) noted that PLS regression, 

as a modelling approach, is very powerful compared with ordinary multivariate regression, as 

the former allows for multiple response and predictor variables. It also allows for the 

simplification of models by reducing multi-dimensional data to two-dimensional data 

(Marchetti et al., 2015; Chao and Jinxi, 2018). PCA is mostly used in conjunction with PLS 

but they are much more complicated to implement compared with multiple regression. 

Multiple regression describes a relationship between a set of independent variables and a 

dependent variable. Multiple regression could be either linear or non-linear. Bluman (2012), 

describes the following assumptions of multiple linear regression: 

i. A linear relationship must exist between the dependent variable and each of the 

independent variables (linearity assumption). A scatter plot of the dependent variable 

versus independent variables is used to check the type of relationship. In case of non-

linear relationship, a non-linear transformation of the independent variable is done (e.g., 

Mohseni, 1998) to achieve linearity. Some non-linear transformations are logarithmic 

transformation, square root transformation, inverse transformation, or multiplicative 

function of one variable with another variable (interaction terms). 

ii. There should be no strong correlation between the independent variables (non-

multicollinearity assumption). A Pearson correlation coefficient matrix or the variance 

inflation factor is used to check if any of the independent variables strongly correlates 

with each other.  

iii. The regression residuals must follow a normal distribution (normality assumption). 

This is examined using a histogram with a normal curve. If the curve is bell-shaped, 

then the normality assumption is satisfied. 
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iv. Residuals must have equal variances (equal variance assumption). This is examined 

using a scatter plot of regression standardised residual against standardised predicted 

values. If the data points are evenly clustered at the centre and do not form a triangle, 

then there is equal variance. 

Multiple linear regression is carried out using any statistical software (e.g., R, Minitab, SPSS, 

Microsoft Excel) to determine the model’s good-of-fit parameters (e.g., R-square, F-statistic) 

and coefficients of the independent variables and the intercept. This process can be done by the 

standard regression or stepwise regression approaches.  

In standard multiple regression, all the independent variables are entered at once into the 

regression equation to determine the unique contribution of each independent variable to the 

dependent variable. For instance, Taamneh (2016) and Diefenderfer et al. (2006) used this 

approach. However, with stepwise regression, the list of independent variables is added or 

removed one at a time, based on a statistical criterion. The criteria could be the variable’s 

contribution to the coefficient of determination (R2) and the level of significance. When a 

stepwise regression adds independent variables one at a time, it is known as a forward stepwise 

regression. A backward stepwise regression removes predictor variables which make no 

significant statistical contribution to the model, one at a time. Asefzadeh et al. (2017) and 

Krsmanc et al. (2012) utilised backward stepwise regression in their model development. 

Having fitted an adequate model fulfilling the multiple linear regression assumptions, the 

model is validated with different datasets (as done by Taamneh, 2016 and Asefzadeh et al., 

2017). Some researchers use 80% of the datasets for the calibration (fitting) of the model and  

the remaining 20% for the validation (e.g., Lukanen et al., 2000). The error statistics, LOE, R2 

and statistical significance test, as explained earlier, are employed to finalise the model 

validation process (e.g., Walia et al., 2022). 
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2.9 Global Solar Radiation Computation  

The incident global solar radiation on a horizontal surface has two components: diffuse 

radiation and direct radiation. It is measured with a pyranometer. The high cost of the device 

makes it unavailable at various meteorological stations. As such, models are used to compute 

the global solar radiation. Several factors—ranging from meteorological factors such as 

sunshine duration and air temperature and geographic factors, including the location latitude 

and day of the year—have been used to compute the global solar radiation. Some models used 

to compute global solar radiation are discussed below: 

2.9.1 Angstrom-Prescott Equation  

The Angstrom-Prescott equation (Quansah et al., 2014) for predicting monthly mean global 

solar radiation is given by Eq. (2.25). 

𝐺𝑚 = 𝑅𝑒𝑥𝑡 {𝐴 + 𝐵(
𝑘

𝑁
)}                                                                                                       (2.25) 

where; 

𝐺𝑚 = Predicted mean monthly global solar radiation (MJ/m2day) 

𝑅𝑒𝑥𝑡 = Monthly mean of extra-terrestrial solar radiation (MJ/m2day). 𝑅𝑒𝑥𝑡 depends on the 

location latitude (𝜑), solar declination angle (𝛿), eccentricity factor (E0), solar constant (Isc), 

and hour angle (𝜔). 

k = Monthly mean daily sunshine hours 

N = Maximum monthly mean daily sunshine duration = day length  

A, B = location-specific empirical coefficients, from measured solar radiation data. Quansah 

et al. (2014) found A=0.22 and B=0.43 for Kumasi, while Asilevi et al. (2019) estimated 

A=0.25 and B=0.5 for Ghana. 
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Solar declination angle (𝛿) indicates how the axis of the sun through the north-south direction 

is tilted such that different portions of the earth's surface receive varying amounts of the sun’s 

radiation as the earth revolves around the sun (Diefenderfer et al., 2006). Eccentricity factor 

(E0), however, is the average Earth-Sun distance, while the sun hour angle (𝜔) indicates the 

angle between the observer's meridian (the line of longitude passing through the observer's 

location) and the meridian that contains the Sun (Diefenderfer et al., 2006). 

The Angstrom-Prescott model estimates the monthly mean solar radiation rather than daily 

solar radiation.   

2.9.2 Weather Condition-Based Models 

a) Ho and Romero’s (2009) Model 

Ho and Romero (2009) provided a model given by Eq. (2.26) for computing the daily incident 

solar radiation. 

𝐺𝑑 =  𝐼𝑒𝑥𝑡 cos 𝜃𝑧 {
2

3
exp [

−𝑇𝑅

0.9+9.4𝜃𝑧
] +

1

3
}                                                                         (2.26) 

where; 

𝐺𝑑 = daily incident solar radiation (kWh/m2day) 

𝐼𝑒𝑥𝑡 = intensity of extra-terrestrial radiation, which is a product of the solar constant and the 

eccentricity factor 

TR = turbidity factor for flat land which is 1.8 for sunny conditions and in January, 5 for partly 

cloudy and 10 for most cloudy conditions.  

𝜃𝑧 = zenith angle, the angle between the sun’s rays and a 90 degree line to the horizontal plane. 

Zenith angle is a function of 𝜑, 𝜔 𝑎𝑛𝑑 𝛿.  

b) Huang et al.’s (2017) Model 



 

54 
 

This model gives no information on how the angles, as well as indirect and direct solar 

radiations are calculated. Huang et al. (2017) provided the model given by Eq. (2.27). 

𝐺𝑑 = [𝐼𝑑 sin 𝜃 + 𝐼𝑖(1 + cos 𝛾)/2]                                                                                    (2.27) 

where; 

𝐺𝑑 = Total solar radiation (W/m2) 

𝐼𝑑 = Direct solar radiation (W/m2) 

𝐼𝑖 = Indirect solar radiation (W/m2) 

𝜃 = Incident angle (degrees) 

𝛾 = Inclination angle (degrees) 

On a cloudy day, 𝐼𝑑 =0 and 𝐼𝑖 = 10%-100% (Huang et al., 2017). 

2.9.3 Peak Solar Radiation-Based Models 

a) Li et al.’s (2014) Model 

A model for computing the daily solar radiation, as suggested by Li et al. (2014), is by Eq. 

(2.28) as a function of time (t). 

𝐺𝑑 = 𝐻𝑜 cos 𝑚𝜔(𝑡 − 𝑡𝑠𝑜)  𝑓𝑜𝑟 𝑡𝑠𝑜 − 0.5𝑐 ≤ 𝑡 ≤ 𝑡𝑠𝑜 + 0.5𝑐                                          (2.28) 

where; 

𝐺𝑑 = Daily solar radiation (kJ/m2day) 

𝐻𝑜 = Noontime peak solar radiation (h) = 0.131mQ 

m = Solar radiation’s coefficient of distribution = 12/c 

c = Effective sunshine hours in a day (h) 
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Q = Volume of overall solar radiation in a day (J) 

𝑡𝑠𝑜 = Peak position =13 

𝜔 = Angular frequency (radians per second) 

The calculation of the daily solar radiation is iterative and requires the application of Fourier 

series. The total daily solar radiation is only provided but how to obtain it is not covered by the 

model. 

b) Qin et al.’s (2016) Model 

This approach to computing solar radiation is complicated and may be associated with 

uncertainty in obtaining the daily sunrise and sunset times from respective meteorological 

agencies. 

Equation (2.29) illustrates Qin et al.'s (2016) model for computing incident solar radiation. 

𝐺𝑑 = 𝐻𝑜 cos(𝜔𝑡 − ∅𝑠)  𝑓𝑜𝑟 𝑡𝑠𝑟 < 𝑡 < 𝑡𝑠𝑠                                                          (2.29)    

where; 

  𝐺𝑑 = Incident solar irradiation (W/m2) 

𝐻𝑜 = peak solar irradiation at noon (W/m2) 

𝜔 = sunshine hour angle (degrees) 

∅𝑠 = phase of the incident solar irradiation = π at noon. 

𝑡𝑠𝑟= sunrise time 

𝑡𝑠𝑠 =sunset time 

2.9.4 Other Model Types 

a) Diefenderfer et al.’s (2006) Model 
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Equation (2.30) gives the Diefenderfer et al. (2006) solar radiation prediction model. It is 

mainly from the latitude of the meteorological station where solar radiation is required and the 

day of the year. 

𝐺𝑑 = (
24

𝜋
) × 𝐼𝑠𝑐  × 𝐸0 × sin(𝜑) sin( 𝛿) × {

𝜔𝑠×𝜋

180
 − tan(𝜔𝑠)}                                  (2.30) 

𝐺𝑑 = solar radiation recorded daily on a horizontal surface (kJ/m2day) 

𝐼𝑠𝑐 = solar constant =4,871 kJ/m2 h 

𝜑 = location latitude (degrees) 

𝛿 = solar declination angle (degrees) 

𝜔𝑠 = sunrise hour angle (degrees) 

𝐸0 = eccentricity factor  

The eccentricity factor, Eo, is computed using Eq. (2.31) as follows;  

𝐸0 = 1.000110 + 0.034221 cos 𝑇 + 0.001280 sin 𝑇 + 0.000719 cos 2𝑇 +

0.000077 sin 2𝑇                                                                                                          (2.31) 

where;  

T = day angle (radians). T is computed with Eq. (2.32) 

T = 2𝜋(𝑑𝑛 − 1)/365                                                                                                    (2.32) 

𝑑𝑛 = day number of the year (e.g., 𝑑𝑛 = 33 for February 2, and so on). 

Equations (2.33) and (2.34) are used to respectively calculate the values of  𝛿 and 𝜔𝑠; 

𝛿 = (0.006918 − 0.399912 cos 𝑇 + 0.070257 sin 𝑇 − 0.006758 cos 2𝑇 +

0.000907 sin 2𝑇 − 0.002697 cos 3𝑇 + 0.00148 sin 3𝑇) ×
180

𝜋
                                (2.33) 
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𝜔𝑠 = 𝑐𝑜𝑠−1(− tan 𝜑 tan 𝛿)                                                                                         (2.34) 

This approach to calculating the daily solar radiation is relatively straightforward with only 

two inputs – latitude and day of the year, which are easily obtainable from any 

meteorological station.  

b) Nuijten's (2016) Model 

Nuijten's (2016) equation for the incoming solar radiation is given by Eq. (2.35). 

𝐺𝑖𝑛 = 𝑅𝑠𝑘𝑦 ∙ 𝑎𝑚(1 − 0.0065𝐶2)                                                                                  (2.35) 

where; 

𝐺𝑖𝑛 = incoming solar radiation (Wm-2) 

 𝑅𝑠𝑘𝑦 = clear sky radiation and is a function of the solar constant and solar altitude (Wm-2) 

𝑎𝑚 = factor for insulation by the atmosphere 

C = cloud cover (in tenths) 

No further detail is given on how the values of  𝑅𝑠𝑘𝑦 and 𝑎𝑚 may be computed, Hence, adopting 

this approach for calculating the daily solar radiation could prove challenging. 

c) Minhoto et al.’s (2005) Model 

Equation (2.36) expresses Minhoto et al.’s (2005) approach to calculating the incident solar 

radiation.  

𝐺𝑑 = 𝐿𝑆𝑐𝐸0𝜃𝑧                                                                                                                    (2.36) 

where; 

𝐺𝑑 = total incident solar radiation (W/m2) 

L = loss factor accounting scattering and absorption of shortwave radiation by the atmosphere 
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𝑆𝑐 = solar constant =1,353 W/m2 

𝐸0 = eccentricity factor of the earth’s orbit 

𝜃𝑧 = zenith angle 

As there is no elaboration on how the loss factor (L) is obtained, implementing this model could 

be challenging. 

2.10 Summary of Key Literature Review Findings 

Based on the literature review, the following key findings are summarised: 

i. Despite the different climatic zoning proposals, the climatic zoning by Bessah et al. 

(2022) that incorporates data from all 22 GMet synoptic stations over four decades 

appear to be realistic and simple to adopt for this study. Three climatic zones—the 

Savannah, Forest, and Coastal zones—were defined by Bessah et al. in 2022.  

ii. The impacts of pavement temperature on material properties have been factored in the 

M-E pavement design concepts for a more robust pavement analysis and design. 

iii. Asphalt pavement temperature prediction models can be categorised into empirical, 

numerical or analytical models.   

iv. Empirical models are easy to develop and user-friendly but their accuracy is generally 

limited to the scope of the original data used in developing them.  

v. Numerical and analytical models might have a wider application due to their 

consideration of physical processes, however, they are not user friendly. 

vi. Asphalt pavement temperature prediction may employ climatic variables (e.g., air 

temperature, solar radiation, wind speed, etc.) and material factors (e.g., surface albedo, 

emissivity and absorptivity, specific heat capacity and conductivity). The material 

factors are usually selected from literature and may sometimes be characterised by 

approximation errors. 
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vii. Techniques employed in the evaluation of empirical models include error statistics, 

good-of-fit parameters and line of equality plots. Also, t-tests may be used to check the 

statistical significance of the model predictions. 

v. The literature review identified the following empirical asphalt pavement temperature 

prediction modes, namely, ELLS 3, Diefenderfer et al. (2006), Taamneh (2016), Gedafa 

et al. (2014), Park et al. (2001) and Asefzadeh et al. (2017), having practical relevance 

and being straightforward to use. 

viii. A well-fitted multiple linear regression model must satisfy the linearity, non-

multicollinearity, normality and equal variance assumptions. A different dataset is used 

to validate the fitted and the t-test is used to check the statistical significance.  The error 

statistics, the line of equality and R2 are also verified as part of the validation. 

ix. The incident global solar radiation on a horizontal surface is either measured with a 

pyranometer or estimated using models. Several factors, ranging from meteorological 

factors such as sunshine duration and air temperature to geographic factors, including 

latitude and day of the year, have been used to compute global solar radiation. 

x. Interviews provide an in-depth understanding of a subject matter. They help explore 

emerging subjects that could escape the interviewer in designing the questions. 

Thematic analysis is a common approach for analysing interview data. 
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CHAPTER 3: METHODOLOGY 

3.1 Study Areas 

The study focussed on the Forest and Savannah zones of Ghana (Bessah et al., 2022) for the 

following reasons. First, the Savannah and Forest zones constitute the largest area by land area 

and the share of the country’s road network. Secondly, most of the climatic factors are severest 

in the Savannah and the Forest zones. For instance, while both the Forest and Coastal have 

bimodal rainfall patterns, the Savannah zone has only one rainfall pattern. Again, average 

sunshine duration is highest in the Savannah zone (9 hours) and lowest in the Forest zone (7 

hours) (Tutu et al., 2022). Also, while the Savannah zone has the highest mean monthly 

maximum air temperature, the Forest zone records the lowest mean monthly minimum air 

temperature.  

The study was conducted on selected roads in the cities of Kumasi (Ashanti Region) and 

Tamale (Northern Region) of Ghana. The choice of Kumasi and Tamale in the Forest and 

Savannah climatic zones, respectively, was influenced by their approximate central locations 

in their respective climatic zones. Two roads were selected in each city—one for collecting 

data for calibration of new model and evaluation of existing models, and the other for validation 

of new model. The selection process for the study roads are described below: 

i. QGIS was used to geo-reference the two GMet synoptic weather stations located in 

Kumasi and Tamale.  

ii. Open street maps served as raster data (image maps) to locate the coordinates of the 

weather stations with the help of a control point to align the raster data. 

iii. A 3-km buffer was created around the GMet synoptic weather stations. The roads 

enclosed by the buffers were noted for further inquiries from the respective owners 

(KNUST Development Office and DUR). 
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iv. Pavement construction and maintenance information was obtained from the road 

owners. 

v. Only asphalt roads that had been rehabilitated or reconstructed within the previous two 

years (2020 - 2022) were considered. 

vi. Where several roads met the criteria above, only those with a flatter terrain were 

considered for safety reason.  

vii. Two asphalt-surfaced roads in Kumasi—the Mango Road and the Antoa Road and two 

similar roads in Tamale—the RSM Road and Air Force Road, were selected for the 

study.  

There are two GMet synoptic stations in Kumasi, located at 6°42´36´´N and 1°36´0´´W at the 

Kumasi Airport area and at 6°41´0´´N and 1°33´0´´W on the Kwame Nkrumah University of 

Science and Technology (KNUST) Campus. Kumasi has a Forest climate, with a bimodal 

rainfall pattern, moderate temperature, and humidity. Mean monthly rainfall in Kumasi peaks 

in June. The mean monthly maximum relative humidity of 70% occurs between June and 

September while the lowest value occurs around January. The highest mean monthly maximum 

air temperature of 34 °C is recorded in February while the lowest mean monthly minimum air 

temperature of 21 °C occurs in January (Bessah et al., 2022).  

The Mango Road, classified by the DUR as a collector road, was the data collection site for the 

calibration of new models and evaluation of existing selected models. The road was overlaid 

with asphalt (wearing course) in 2021, with layer thickness varying from 75 to 100 mm. The 

road has two lanes with a total width of 8.6 m, abutted by concrete U-drains on either side. The 

section of the Mango Road where the temperature data were collected has a flat terrain, with 

no vegetation cover and is about 0.8 m from the GMet station.  
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The Antoa Road is classified by DUR as a major arterial. The data collected on it were used 

for validation of new models. The Antoa Road links the Airport Roundabout to Kenyasi via 

Buokrom and is dualized at some sections. It was rehabilitated in 2020 up to the binder course. 

The binder course has a thickness of 70 mm. The dualized section, where the data were 

collected, has flat terrain and is approximately 1.0 km from the GMet station located at the 

Kumasi Airport. The road width for each carriageway is 7.5 m, with concrete U-drains on either 

side of the carriageway. Figure 3.1 shows the Mango and Antoa Roads. 

 

Figure 3.1. Google Map Showing the Mango Road and Antoa Road in Kumasi 

Tamale’s GMet synoptic station is located on latitude 9°34´48´´N and longitude 0°51´36´´W 

and it is 169 m above sea level (Bessah et al., 2022). Tamale has a Savannah climate with one 

rainfall season. The mean monthly rainfall peaks in September at 200 mm but reaches a lowest 

of nearly zero in January. During the rainy season in August, Tamale records its highest mean 

monthly humidity of 70% compared to at most 20% in January. The mean monthly maximum 
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air temperature is highest between November and March whiles the mean monthly minimum 

air temperature reaches its lowest in December or January (Bessah et al., 2022). 

The two study roads in Tamale (RSM Road and the Air Force Road) are both located within 

the Bawah Barracks, near the Tamale Airport. The RSM Road was used for the collection of 

data for the calibration of new models and evaluation of existing asphalt temperature prediction 

models, while data for the validation of the new models were collected on the Air Force Road. 

Both roads are classified as local roads by DUR. The widths of the RSM and Air Fore Roads 

are, respectively, 6.7 m and 5.8 m. The roads have flat terrain and are without any side drains. 

The RSM and Air Force Roads are approximately 1.99 km and 2.49 km, respectively, from the 

GMet synoptic station located at the Tamale Airport.  Both roads received asphalt overlay in 

2021 on the wearing course by the Department of Urban Roads. The roads have asphalt layer 

thickness of 70 mm. It is worth mentioning that the sections of the roads where the data were 

collected were not shaded by any vegetation. A map of Tamale showing the study roads is 

shown in Figure 3.2. 

 

Figure 3.2. Google Map Showing the RSM Road and Air Force Road in Tamale 
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3.2 Research Design 

The first objective of this study, was to establish the state of practice of asphalt pavement 

temperature determination in Ghana. This was achieved through the use of interview. The 

choice of a qualitative approach allowed the respondents to freely share their views without 

restriction. With a small sample size anticipated for the study, a qualitative approach provided 

in-depth information from the participants. The nature of the study design afforded the 

researcher opportunity to ask probing or follow-up questions, which other approaches would 

not have provided. 

A longitudinal survey design, which involved the collection of data repeatedly over a certain 

period and allowed for hypothesis testing and correlation analysis, was employed for 

Objectives 2 & 3. Objective 2 sought to evaluate the prediction accuracy of some foreign 

asphalt pavement temperature prediction models for Ghana while Objective 3 developed new 

models for predicting asphalt pavement temperature in Ghana.  

3.3 Interview Procedure 

The population of interest was all public sector civil engineers, consulting engineers, and road 

construction contractor staff who have experience in pavement structural evaluation using 

FWD, asphalt mixture design and Superpave PG binder grade selection. Purposive sampling 

was initially used to identify engineers from organisations who fell in the above criterion for 

interview. Three organisations—CSIR-Building and Road Research Institute, Ablin Consult, 

and Memphis Metropolitan Limited—were initially sampled. A snowball sampling approach 

was then used to locate interviewees. The snowball sampling method is a non-probability 

sampling method that allows study participants to recommend the next qualified prospective 

participant. Two road agencies—the Ghana Highway Authority (GHA) and the Department of 

Urban Roads (DUR)—were identified during the sampling process as the main agencies that 



 

65 
 

conduct FWD testing on their road network. However, only personnel from their Head Office 

in Accra and the Ashanti Regional Office (Kumasi) had experience in FWD testing.  

The field instrument for the interview data collection was designed as semi-structured, open-

ended questions. A sample of the interview guide is provided in Appendix A. The necessary 

ethical clearance was obtained from the Committee on Human Research Publication and Ethics 

(CHRPE) at KNUST. A copy of the Ethical Clearance Letter is provided in Appendix B. 

Seven interviews were conducted, involving four respondents from the road agencies (GHA 

and DUR), one pavement engineering consultant, and two road contractor staff. The 

distribution of the respondents is shown in Table 3.1.  

Table 3.1. Interview Respondents 

Organisation City Total 

Accra Kumasi 

Road Agencies (GHA and DUR) 3 1 4 

Pavement Engineering Consultants - 1 1 

Road Contractors 2 - 2 

Total Respondents 5 2 7 

 

3.4 Climate Data Collection 

Climate data were sourced from the GMet offices in Kumasi and Tamale. The data comprised 

daily minimum air temperature, daily maximum air temperature, daily relative humidity, daily 

wind speed, and daily sunshine duration over the period from 1st May, 2022 to 30th April, 2023. 

For each location and day, the minimum air temperatures were checked to ensure they were 

not higher than the maximum air temperatures. Daily solar radiation was computed by using 

the solar radiation formula by Diefenderfer et al. (2006), presented in Eq. (2.30).  The latitudes 

of the GMet stations at KNUST (on Mango Road) and Tamale Airports, are respectively 6.68 

and 9.58 decimal degrees. 

𝐺𝑑 = (
24

𝜋
) × 𝐼𝑠𝑐  × 𝐸0 × sin(𝜑) sin( 𝛿) × {

𝜔𝑠×𝜋

180
 − tan(𝜔𝑠)}                                  (2.30) 
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𝐺𝑑 = solar radiation received everyday on a horizontal surface (kJ/m2day) 

𝐼𝑠𝑐 = solar constant =4,871 kJ/m2 h 

𝜑 = location latitude (degrees) 

𝛿 = solar declination angle (degrees) 

𝜔𝑠 = sunrise hour angle (degrees) 

𝐸0 = eccentricity factor and is calculated using Eq. (2.31) 

𝐸0 = 1.000110 + 0.034221 cos 𝑇 + 0.001280 sin 𝑇 + 0.000719 cos 2𝑇 +

0.000077 sin 2𝑇                                                                                                          (2.31) 

where;  

T = day angle (radians). T is computed with Eq. (2.32) 

T = 2𝜋(𝑑𝑛 − 1)/365                                                                                                    (2.32) 

𝑑𝑛 = day number (e.g., 𝑑𝑛 = 25 for January 25, 40 for February 9 and so on). 

Equation (2.33) and (2.34) are used to respectively calculate the 𝛿 and 𝜔𝑠 

𝛿 = (0.006918 − 0.399912 cos 𝑇 + 0.070257 sin 𝑇 − 0.006758 cos 2𝑇 +

0.000907 sin 2𝑇 − 0.002697 cos 3𝑇 + 0.00148 sin 3𝑇) ×
180

𝜋
                                    (2.33) 

𝜔𝑠 = 𝑐𝑜𝑠−1(− tan 𝜑 tan 𝛿)                                                                         (2.34) 

3.5 Asphalt Pavement Temperature Data Measurement                          

3.5.1 Thermometer Calibration Verification 

An infrared thermometer (Figure 3.3) was used for the measurement of pavement surface 

temperatures, while a digital asphalt thermometer (Figure 3.4 a, b), connected by a temperature 

sensor probe (Figure 3.4 c), was used for AC layer mid-depth temperature data measurement. 

The infrared thermometers and the temperature probes were manufactured by Electronic 

Temperature Instruments Limited (ETI) under the brand name RayTemp 38, while the digital 

thermometers have the brand name “Impact Test Equipment Limited”, with a model number 

LH44T.  
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Figure 3.3. RayTemp 38 Infrared Thermometer Used for Pavement Surface Temperature 

Measurement 

The digital thermometer (LH44T) measures temperatures ranging from -50°C to +1370°C, 

with a resolution of 1°C, while the RayTemp 38 infrared thermometers has resolution of 0.1°C 

and measurement range of -59.99°C to +999.99°C.  
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                       (a) Back View                                               (b) Front View 

 

(c) 

Figure 3.4. Digital Thermometer (a and b) and Probe (c) Used for In-depth Pavement 

Temperature Measurement 
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Both digital and infrared thermometers came with certificates of calibration from the UK 

manufacturers. However, the digital thermometers were calibrated against a reference digital 

thermometer before their use. The process involved simultaneously immersing the new and 

reference digital thermometers in boiling water, and recording temperatures at specified time 

intervals. The average readings on the new and reference thermometers were computed, as 

shown in Table 3.2. The average temperature difference between the new and reference 

thermometers was very small (1 ºC), showing the thermometers presented similar temperature 

reading.  

Table 3.2. Calibration Reading of Digital Thermometers  

Time interval 

(mins) 

New Thermometer Reading (ºC) Reference 

Thermometer 

Reading (ºC) EDT001  EDT002  EDT003  EDT004  

0 100 100 100 100 99 

2 100 100 100 100 99 

4 100 100 100 100 99 

6 100 100 100 100 99 

8 100 100 100 100 99 

Average 100 100 100 100 99 

 

Similarly, all four new and reference digital thermometers were installed at one of the study 

sites, Mango Road, on 29th April, 2022, to measure the pavement temperature trend at a depth 

of 38 mm from the pavement surface at 30-minute intervals for 6 hours (6:00 GMT to 12:00 

GMT). The results shown in Figure 3.5 indicate that the new and reference digital 

thermometers recorded similar temperature data. 
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Figure 3.5. Thermometer readings on Mango Road (Kumasi) 

An ANOVA test was performed on the digital thermometer readings and the results are shown 

in Table 3.3. The results indicated that all the means of measured asphalt pavement 

temperatures were statistically equal (P = 0.97) at a 5% significance level. It was concluded 

that the new digital thermometers measured asphalt pavement temperatures similar to the 

reference thermometer. 

Table 3.3. ANOVA Results for Digital Thermometers Calibration 

Source DF SS MS F P-value 

Factor 4 3.54 0.89 0.14 0.97 

Residual 30 194.86 6.50   

Total 34 198.40    
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A reference infrared thermometer was used for road surface temperature measurement on 

Mango Road on 1st May, 2022, simultaneously with the new infrared thermometer. The 

temperature data were recorded at 30-minute intervals for four hours from 10:00 GMT to 14:00 

GMT. The results, shown in Figure 3.6, indicated the pavement surface temperatures recorded 

by the new infrared thermometers (IR1 – IR4) and the reference infrared thermometer were 

similar.  

 
Figure 3.6. Comparison of Infrared Thermometers Readings on Mango Road (Kumasi) 

There was a need to predict the daily duration of actual pavement temperature measurement by 

knowing when the maximum and minimum hourly pavement temperatures occurred. This 

informed temperature data measurement at 38 mm from the pavement surface for 24 hours 

(6:00 GMT to 6:00 GMT) on Mango Road, with one of the verified digital thermometers. This 

was plotted to determine the hourly trend in pavement temperature, as shown in Figure 3.7. 
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Figure 3.7. Hourly Pavement Temperature Variation on Mango Road (Kumasi) 

From Figure 3.7, the minimum and maximum pavement temperature occurred at 6:00GMT 

and 14:00GMT, respectively. Based on this exercise, the in-situ pavement temperature data 

collection was designed to last for 12 hours from 6:00GMT to 18:00GMT at all data collection 

sites, as critical pavement temperatures (lowest and highest) occurred during the day.  

3.5.2 Pavement Temperature Measurement 

A. Pavement Temperature Data Collection Schedules 

The calibration data collection was scheduled as follows: 

i. A stratified random sampling was used  

ii. A calendar year was divided into 12 strata (calendar months). 

iii. Each stratum (calendar month) was further divided into sampling units of four (4) 

weeks. 
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iv. A simple random sampling was used to select the specific week number in a month for 

data collection. This was done by using a random number generator 

(www.random.org). The calibration data collection dates are shown in Table 3.4.  

Table 3.4. Model Calibration Data Collection Dates 

Month May 

2022 

June 

2022 

July 

2022 

Aug 

2022 

Sept 

2022 

Oct 

2022 

Nov 

2022 

Dec 

2022 

Jan 

2023 

Feb 

2023 

Mar 

2023 

Apr 

2023 

Week 

No. 

4 4 1 2 1 4 4 3 3 1 2 2 

Date 23rd 

–

29th 

22nd 

– 

28th 

4th 

– 

10th 

8th 

– 

14th 

1st – 

7th 

24th 

– 

30th 

22nd 

– 

28th 

15th 

– 

21st 

16th 

– 

22nd 

1st – 

7th 

8th – 

14th 

12th 

– 

18th 

 

Similarly, a stratified random sampling was used to design a data collection schedule for the 

model validation data. The process is described below: 

i. The calendar year was divided into two strata – dry season and rainy seasons. The 

months of November, December, January, February, and March constituted the dry 

season, while the April, May, June, July, August, September, and October formed the 

rainy season.  

ii. A simple random sampling was used to select two months in the dry season – November 

and February, as well as two months in the rainy season namely, July and April. 

iii. The sampling unit of interest for each selected month was the week’s number. Thus, 

each selected month was divided into four weeks. 

iv. Purposive sampling was used to select the specific week numbers in each selected 

month without coinciding with the selected week numbers for the model calibration 

dates. The model validation data collection dates, shown in Table 3.5, were selected 

based on the selected week numbers. 

 

http://www.random.org/
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Table 3.5. Model Validation Data Collection Dates 

 Month July 2022 Nov 2022 Feb 2023 Apr 2023 

Week No. 2 2 4 1 

Date 11th – 17th 8th – 14th 22nd – 28th 5th – 11th 

 

B. Pavement Temperature Data Measurement Procedure 

The as-built asphalt layer thicknesses of the selected roads were confirmed on site by drilling. 

The data collection spots were free from tree shade and buildings to ensure accurate pavement 

temperature measurement. Pavement temperatures were measured at mid-depth of the AC layer 

using the digital thermometers. The temperatures were measured at asphalt layer depths of 38 

mm in Kumasi and 35 mm in Tamale from the pavement surface using the Impact model 

LH445 digital thermometers. Pavement surface temperatures were measured using the ETI 

RayTemp38 infrared thermometers concurrently with the mid-depth measurements at half-

hourly intervals for 12 hours (6:00GMT to 18:00GMT) for seven consecutive days per month.  

The steps followed to obtain temperature measurements, at each study location, are outlined 

below: 

 An 8-mm diameter hole was drilled near the pavement edge to half the depth of the AC 

layer and cleared of debris using a vacuum blower. 

 The hole was filled with glycerine up to about 12 mm from the base of the hole to 

prevent heat transfer loss by radiation. 

 The digital thermometer was inserted in the hole to measure the AC temperature half-

hourly intervals for 12 hours on each testing day. 

 The infrared thermometer was used to measure the pavement surface temperature 

concurrently with the mid-depth temperature measurements.  
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 The time for both temperature measurements was recorded in a 24-hour clock system.  

The installed digital thermometer was left in place until the last reading was taken at 18:00GMT 

on each day. For the next data collection day, a new hole was drilled and the process described 

above repeated.  The data collection setup on the Mango Road and Air Force Road are shown 

in Figures 3.8 and 3.9, respectively. 

 

Figure 3.8. Pavement data collection set-up on Mango Road (Kumasi) 
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Figure 3.9. Pavement data collection setup on Air Force Road (Tamale) 

The pavement temperature data was checked for any inconsistency and missing data. Any 

missing data in the daily mid-depth AC and surface temperatures for each location were 

interpolated based on the data available. The pattern of hourly mid-depth AC temperature for 

each location and day was compared with the established pattern from the pilot study for 

conformity.  

3.6 Data Analysis Procedures 

3.6.1 Interview Data Analysis 

The interview data were analysed using thematic analysis (Braun and Clarke, 2013; SAGE, 

2019).  The interview responses (text and recordings) were transcribed and analysed manually. 

The data were coded and identified patterns were used to create themes to interpret the 

interviewee responses.  
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3.6.2 Evaluation of Existing Asphalt Pavement Temperature Prediction Models 

Based on the Literature Review, the following asphalt pavement temperature prediction 

models—the BELLS 3, Park et al. (2001), Diefenderfer et al. (2006), Gedafa et al. (2014), 

Taamneh (2016) and Asefzadeh et al. (2017)—were selected for evaluation. The model 

calibration data from May 2022 to December 2022 for each zone were used for the evaluation 

of the selected asphalt pavement temperature prediction models. In the evaluation of the 

selected models, values of the predictor variables were entered into each model to predict 

asphalt pavement temperature and then compared with the field-measured temperature. Line 

of Equality (LOE) was used to assess whether the predicted pavement temperatures were 

balanced with the measured temperatures. The two-sample t-test was used to compare the 

means of the predicted temperatures with the means of the measured temperatures at 5% 

significance level. Though the normality test is a prerequisite for use of parametric tests such 

as the two- sample t-test, the large number of data points used in this study (56 to 1400) justified 

the assumption that the sampling distribution was normal (Ghasemi and Zahediasl, 2012). The 

coefficient of determination (R2) was the goodness-of-fit parameter used for the model 

evaluation. Error analysis parameters—including the Root Mean Square Error (RMSE), Mean 

Percentage Error (MPE), and Mean Bias Error (MBE)—were computed for each model’s 

predictions. The R-Studio statistical software was used for the statistical significance testing, 

while the SPSS Statistics (Version 23) was used for the scatter plot development. 

3.6.3 Development New Asphalt Pavement Temperature Prediction Model  

a) Model Calibration 

Multiple regression was used to calibrate the models for predicting AC mid-depth pavement 

temperatures for Kumasi (Forest zone) and Tamale (Savannah zone). The mid-depth AC 

temperature has been found to be representative of the effective temperature of an AC layer 
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(Fernando et al., 2001) and, has been used to develop models by some researchers (e.g., Park 

et al., 2001; Gedafa et al., 2014).  

The SPSS Statistics (Version 23) was used in fitting the models by checking that the proposed 

models fulfil the assumptions of multiple linear regression—linearity, non-multicollinearity, 

normality and equal variance of residuals. Mid-depth AC layer temperature was the response 

variable (dependent variable) with a number of potential predictor variables (independent 

variables), namely, pavement surface temperature, mean air temperature of preceding day and 

time of day. In checking the non-multi-collinearity assumption, a Pearson correlation matrix 

was performed for the response and predictor variables, in addition to, some interaction terms 

and non-linear transformation (e.g., sine of time). The threshold for identifying multi-

collinearity between two potential predictor variables is a Pearson correlation coefficient of 0.7 

minimum (Shrestha, 2020). The variance inflation factor was also used to investigate the non-

multi-collinearity assumption. Secondly, a scatter plot of the mid-depth AC layer temperature 

versus each predictor variable was done to visualise the type of relationship between the 

variables. Only predictor variables linearly related with the response variable (mid-depth AC 

layer temperature) were considered in fitting the model. Both models eventually had the sine 

the time, mean ambient temperature of previous day and temperature of pavement surface as 

predictor variables.  

Scatter plots of model residuals were drawn to check conformity with the equal variance 

assumption. Finally, histogram with a normal curve was used to check if the fitted model 

followed the normal distribution. 

b) Model Validation 

In validating the models, the fitted models were used to predict mid-depth AC layer 

temperature using the model validation data for each zone. The model-predicted temperatures 
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were compared against measured temperatures, and the error statistics (RMSE and MPE) and 

R2 determined. Scatter plots of the predicted and measured pavement temperatures for each 

zone were prepared and LOE drawn to determine the accuracy of the models. A well-fitted 

model has the AC temperature data points balanced around the LOE. Also, to check for the 

statistical significance of the model predictions, a two-sample t-test was used to compare the 

mean of the predicted and measured pavement temperatures at 5% significance level. The two-

sample t-tests were performed with the R-Studio software. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

80 
 

CHAPTER 4: RESULTS AND DISCUSSION 

4.1 Interview Responses 

Based on the interview responses from industry practitioners to examine the state of practice 

of asphalt pavement temperature determination in Ghana and to justify the relevance of the 

study, two themes were generated and explained as follows. 

4.1.1 Pavement Temperature Measurement Practices 

Interviewees indicated that all FWD testing is conducted by the Ghana Highway Authority 

(GHA). Personnel of the GHA measure asphalt pavement temperature directly with digital 

thermometers in the course of the test. The process involves drilling holes into the pavement 

to about half-depth of the asphalt layer thickness, using a chisel and a hammer. A viscous 

liquid, such as glycerin, is used to partially fill the drilled hole to about 10mm from the base of 

the hole and allowed to cool. A digital thermometer is then inserted in this glycerin 

environment to measure the pavement temperature. FWD testing is typically conducted at one 

kilometer intervals and, at each FWD test location, pavement temperature is measured as 

described above. During FWD testing, ambient air temperature and the pavement surface 

temperature are recorded by using infrared (IR) sensors installed on the FWD equipment.  

Interview respondents indicated that the current manual method of determining pavement 

temperature during FWD testing was laborious, non-productive, and time-consuming. Other 

respondents held the view that, the process was not economical and temperature data was 

restricted to a particular spots making it very slow. 

4.1.2 Superpave Binder Grade Selection Practices 

Superpave binder grade selection is gradually gaining acceptance in Ghana. Previous 

applications of the Superpave binder in Ghana included rehabilitation of the Bunso Junction to 

Apedwa Junction section of the National Road 6 (N6), sections of the N1, and the Osei Tutu II 
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Boulevard in Kumasi. In all these projects, the Superpave binder selection was undertaken by 

the road contractor executing the project.   

It was noted that the non-existence of temperatures below 0ºC in Ghana gave room for guessing 

of the minimum pavement temperatures in the Superpave PG binder selection process.  It was 

revealed that there was no clear procedure for the determination of the maximum pavement 

design temperatures. Interviewees also opined that Superpave PG binder selection in Ghana 

did not follow the full guidelines, and the final PG binder grades may not be justified. For 

instance, PG 70-10 was used for the N1, while PG 84-16 was used for the Bunso Junction – 

Apedwa Junction section of the N6, without adequate justification for use of such binders.  

4.1.3 Discussion on Interview Responses 

The direct measurement of asphalt pavement temperatures during FWD testing in Ghana 

conformed to research practices elsewhere (e.g., Chen et al., 2000; Lukanen et al., 2000; Chang 

et al., 2002) even though the emergence of asphalt pavement temperature prediction models 

have come to facilitate the process in some countries. It has been considered that the mid-depth 

AC temperatures measured during FWD testing is comparable to the average AC temperature 

measured at three depths (Fernando et al., 2001). Also, the AC modulus has a correlation with 

the mid-depth AC temperature (Park et al., 2001). For this reason, researchers, including Park 

et al. (2001), and Gedafa et al. (2014) focus on the mid-depth AC temperature during FWD 

testing, which gives credence to the practice of measuring mid-depth AC temperature during 

FWD testing in Ghana.  

The interview responses indicated that manual asphalt pavement temperature measurement had 

some challenges, such as undue delays, uneconomical and labour-intensiveness, particularly 

on large projects. These challenges would be overcome if locally developed asphalt pavement 

temperature prediction models are employed. 
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The interview responses showed that Superpave PG binder selection does not follow any 

documented guideline. While Tutu et al.’s (2022) recommended PG 70-10 and PG 64-10 as 

base binder grades for the Northern Savannah zone and for the rest of the country was based 

on the LTPP models, it is important to develop local models for a more routine binder grade 

selection.  

Finally, some road agency respondents indicated their resolve to have some of trunk roads 

instrumented with thermocouples so that pavement engineering applications requiring 

temperature would be enhanced. However, this appears to be a long-term vision and would 

have financial implications depending on the number of trunk roads in consideration. Even 

with such intervention, the problem of temperature data restriction to specific pavements 

cannot be eradicated as only the instrumented pavements would have temperature data readily 

available. Some interviewees expressed willingness to use locally-developed asphalt pavement 

temperature prediction models provided such models were practical and accurate. This 

interview response reinforced the need to develop asphalt pavement temperature prediction 

models for the climatic conditions of Ghana to facilitate pavement engineering in the country. 

4.2 Evaluation of Existing Asphalt Pavement Temperature Prediction Models 

The interview responses necessitated evaluation of the prediction accuracy of some popular 

asphalt pavement temperature prediction models to examine their potential adoption in Ghana. 

The following sections of the report explain the criteria used for the evaluation of the selected 

asphalt pavement temperature prediction models and the results. 

4.2.1 Assessment by Statistical Significance 

The statistical significance testing was performed using the two-sample t-test to compare 

whether the means of the predicted and measured asphalt pavement temperatures were equal 

at a 5% significance level. If the means were equal, it implied that the model predictions were 
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satisfactory. While the two-sample t-test, and all other parametric tests thrive on normally 

distributed samples, Ghasemi and Zahediasl (2012) and Bluman (2012) noted that sample sizes 

larger than 30 can be assumed to be normally distributed and the test ignored. The sample size 

used ranged from 112 to 2800, hence a normal distribution was assumed to prevail. The data 

collection period of 8 months (8 weeks or 56 days) measured 1400 pavement temperatures. 

The BELLS 3, Gedafa et al. (2014) and Park et al. (2001) models utilised 2800 pavement 

temperature data each (1400 measured and 1400 predicted) during the t-test. In contrast, the 

Diefenderfer et al. (2006), Taamneh (2016) and Asefzadeh et al. (2017) models which predict 

daily maximum pavement temperature utilised 112 pavement temperature data (56 each for 

measured and predicted) for the t-test.   The hypothesis tests were set as follows: 

Null hypothesis (𝐻0): The means of the measured and predicted pavement temperature are 

equal 

Alternate hypothesis (𝐻𝐴): The means of the measured and predicted pavement temperature 

are different 

Results of the two-sample t-test are shown in Table 4.1.  

Table 4.1. Two-sample t-test results: predicted vs measured pavement temperatures 

Location Model df t P-value 

 

 

Kumasi 
 

BELLS3 (Lukanen et al., 2000) 2780.9 -8.704 <0.0001 

Park et al. (2001)  2676.1 1.602 0.1092 

Gedafa et al. (2014)  2761 8.965 <0.0001 

Diefenderfer et al. (2006)  59.6 -1.635 0.1074 

Taamneh (2016)  67.1 8.596 <0.0001 

Asefzadeh et al. (2017) 62.6 17.326 <0.0001 

 

Tamale 

BELLS3 (Lukanen et al., 2000) 2766.9 -9.762 <0.0001 

Park et al. (2001)  2660.9 0.014 0.989 

Gedafa et al. (2014)  2655.9 7.4895 <0.0001 

Diefenderfer et al. (2006)  63.9 -3.799 0.0003 

Taamneh (2016) 83.3 9.359 <0.0001 

Asefzadeh et al. (2017) 67.668 19.775 <0.0001 
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Based on Table 4.1, the following inferences are made: 

a) In Kumasi, the means of asphalt pavement temperatures predicted by the BELLS3 

(Lukanen et al., 2000), Gedafa et al. (2014), Taamneh (2016) and Asefzadeh et al. 

(2017) models are significantly different from the means of the measured asphalt 

pavement temperatures at a 5% significance level (p < 0.0001). This suggests that the 

asphalt pavement temperatures predicted by the models for Kumasi are not satisfactory. 

b) Again, in Kumasi, the means of asphalt pavement temperatures predicted by the Park 

et al. (2001) and the Diefenderfer et al. (2006) models were statistically equal to the 

means of the measured asphalt pavement temperatures at a 5% significance level (p > 

0.05). This indicates that asphalt pavement temperatures predicted by the Park et al. 

(2001) and Diefenderfer et al. (2006) models were comparable with the measured 

asphalt pavement temperatures. 

c) In Tamale, the means of asphalt pavement temperatures predicted by the BELLS3 

(Lukanen et al., 2000), Gedafa et al. (2014), Diefenderfer et al. (2006), Taamneh (2016) 

and Asefzadeh et al. (2017) models were significantly different from the means of the 

measured asphalt pavement temperatures at a 5% significance level (p < 0.001). This 

finding implies that asphalt pavement temperature predicted by these models were not 

comparable with the measured asphalt pavement temperatures; hence, these models 

were unsuitable for local application. 

d) Also, in Tamale, the mean of asphalt pavement temperatures predicted by the Park et 

al. (2001) model was statistically equal to the mean of the measured asphalt pavement 

temperatures at a 5% significance level (p = 0.989). This suggests that the performance 

of Park et al.’s (2001) model in predicting asphalt pavement temperature in Tamale 

may be considered acceptable. 
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The best performing models, based on statistical significance testing, for the Forest zone 

(Kumasi) are the Park et al. (2001) and the Diefenderfer et al. (2006) models, while the Park 

et al. (2001) model exhibited best performance in the Savannah zone (Tamale).  

The use of t-test to check for model satisfaction have been used by researchers such as Walia 

et al. (2022) and Gedafa et al. (2014). Also, Khan et al. (2019) and Ibili et al. (2022) both used 

the ANOVA to check for model satisfactory performance. 

4.2.2 Assessment by Error Statistics and Coefficient of Determination 

In Table 4.2, a comparison of the error statistics and the coefficient of determination (R2) of 

the models is presented. Generally, all the models recorded higher R2 values in the Savannah 

zone than in the Forest zone, except for Taamneh’s (2016) model. Table 4.2 also indicates that 

prediction of asphalt pavement temperature using the model of Park et al. (2001) for the 

Savannah zone produced the lowest error statistics. Even in the Forest zone, the lowest error 

statistics (MPE and MBE) were produced by Park et al.’s (2001) model. However, the RMSE 

of the BELLS 3 model was lowest in the Forest zone. Thus, the model of Park et al. (2001) 

exhibited better performance based on error statistics, in both climatic zones than the other 

models while the BELLS 3 model performed better in considering R2 values. The R2 values, in 

this sense, indicate the proportion of the variability in the predicted asphalt pavement 

temperature that can be accounted for by the measured asphalt pavement temperature. 

Also, both the MPE and MBE parameters portray under-prediction of asphalt pavement 

temperatures for both Kumasi and Tamale by the BELLS 3 (Lukanen et al. 2000) and 

Diefenderfer et al. (2006) models. The MPE and MBE also agree on the over-prediction of 

asphalt pavement temperature for both Kumasi and Tamale by the Gedafa et al. (2014), 

Taamneh (2016), and Asefzadeh et al. (2017) models. Meanwhile, the Park et al. (2001) model 

over-predicted for Kumasi, but its MPE for Tamale rather indicated under-prediction. The 
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Asefzadeh et al. (2017) and Taamneh (2016) models were the worst performing models in both 

climatic zones, in terms of error statistics. The Asefzadeh et al. (2017) and Taamneh (2016) 

models were associated with the lowest R2 values for the study zones. 

Table 4.2. Error Statistics and Coefficient of Determination of Model Predictions 

 

Models 

Kumasi Tamale 

RMSE 

(ºC) 

MPE 

(%) 

MBE 

(ºC) 

R2 RMSE 

(ºC) 

MPE 

(%) 

MBE 

(ºC) 

R2 

BELLS 3  3.5 6.5 -2.3 0.866 3.6 7.9 -2.8 0.930 

Park et al. (2001) 3.6 -0.9 0.5 0.825 3.2 0.8 0.0 0.905 

Gedafa et al. 

(2014) 

5.0 -7.2 2.2 0.558 4.8 -6.4 1.8 0.625 

Diefenderfer et al. 

(2006) 

4.8 1.2 -1.1 0.309 4.0 4.0 -2.2 0.599 

Taamneh (2016) 7.5 -15.6 6.4 0.594 6.7 -13.2 5.9 0.443 

Asefzadeh et al. 

(2017) 

13.2 -29.6 12.4 0.305 12.1 -25.4 11.7 0.570 

 

4.2.3 Assessment by Line of Equality. 

Figures 4.1 through to 4.12 show the Line of Equality (LOE) drawn on graphs of predicted 

versus measured pavement temperatures. Figures 4.1 shows the BELLS 3 (Lukanen et al., 

2000) model predictions versus measured asphalt pavement temperatures for Kumasi while 

Fig. 4.2 is a similar graph for Tamale. While there is under-prediction (more data points beneath 

the LOE compared to those above it) of asphalt pavement temperature for both locations, it is 

more pronounced for the Tamale data.  
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Figure 4.1. BELLS 3 model-predicted versus measured pavement temperature values on the 

Mango Road (Kumasi) 

 

 
Figure 4.2. BELLS 3 model-predicted versus measured pavement temperature values on the 

RSM Road (Tamale) 



 

88 
 

Figures 4.3 and 4.4 show that the Gedafa et al. (2014) model over-predicted asphalt pavement 

temperature for both Kumasi and Tamale, as a relatively large number of data points plotted 

above the Line of Equality.  

 

Figure 4.3. Gedafa et al. (2014) model-predicted versus measured pavement temperature 

values on the Mango Road (Kumasi) 

 
Figure 4.4. Gedafa et al. (2014) model-predicted versus measured pavement temperature 

values on the RSM Road (Tamale) 
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In Figures 4.5 and 4.6, it is seen that the measured and predicted asphalt pavement temperatures 

using Park et al.’s (2001) model for Kumasi and Tamale, respectively, are evenly distributed 

about the LOE, indicating a good prediction, although some amount of over-prediction could 

be seen for temperatures beyond 47ºC. This can be explained by the fact that the maximum 

temperature considered in the development of the Park et al. (2001) model was 43ºC (Park et 

al., 2001; Walia et al., 2022). 

 

Figure 4.5. Park et al. (2001) model-predicted versus measured pavement temperature values 

on the Mango Road (Kumasi) 
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Figure 4.6. Park et al. (2001) model-predicted versus measured pavement temperature values 

on the RSM Road (Tamale) 

Figures 4.1 through to 4.6 utilised a sample size of 1400 each. 

It is evident in Figures 4.7 and 4.8 that there is disagreement between measured asphalt 

pavement temperatures and the predicted using the model of Diefenderfer et al. (2006). This 

suggests that there could be significant error to be incurred in using the Diefenderfer et al. 

(2006) model for asphalt pavement temperature prediction in both zones. 
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Figure 4.7. Diefenderfer et al. (2006) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the Mango Road (Kumasi) 

 

Figure 4.8. Diefenderfer et al. (2006) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the RSM Road (Tamale) 

Figures 4.9 and 4.10 show that, using the Taamneh (2016) model for asphalt pavement 

temperature prediction for Kumasi and Tamale would not yield accurate results as almost all 

the data points plot above the Line of Equality. 
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Figure 4.9. Taamneh (2016) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the Mango Road (Kumasi) 

 

Figure 4.10. Taamneh (2016) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the RSM Road (Tamale) 

In the case of the Asefzadeh et al. (2017) model, it over-predicts temperatures as all the data 

points in the plot of predicted versus measured temperatures at the two study sites are above 



 

93 
 

the Line of Equality (see Fig. 4.11 for Kumasi and Fig. 4.12 for Tamale. This suggests that the 

model of Asefzadeh et al. (2017) is not suitable for predicting asphalt pavement temperatures 

for both the Forest and Savannah climatic zones in Ghana. 

 

Figure 4.11. Asefzadeh et al. (2017) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the Mango Road (Kumasi) 

  

Figure 4.12. Asefzadeh et al. (2017) model-predicted daily maximum versus measured daily 

maximum pavement temperature values on the RSM Road (Tamale) 
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It is to be noted that there are few data points in Figures 4.7 through 4.12 (sample size of 56 

each was used) because only daily maximum temperatures recorded within the data collection 

period were used for the model evaluation, as the Diefenderfer et al. (2006), Taamneh (2016) 

and Asefzadeh et al. (2017) models predict only daily maximum pavement temperatures. 

4.2.4 Discussion on Asphalt Pavement Temperature Prediction Model Evaluation 

The prediction accuracy of the BELLS 3 model in Ghana (R2 ≥ 0.866, RMSE ≤ 3.6)  was better 

when compared to similar results obtained by Kassem et al. (2020) in the U.S. State of Idaho 

(R2 = 0.834, RMSE =4.503) and by Walia et al. (2022) in India (R2 = 0.52, RMSE =7.21). In 

spite of that, judging from the distribution of points about the LOE, the model under-performed 

in Ghana compared with its performance in Tennessee (US) as reported by Marshall et al. 

(2001). The poor prediction of the BELLS 3 model in Ghana may be due to the fact that the 

model was formulated for a maximum pavement temperature of 40ºC (Lukanen et al.,  2000; 

Walia et al., 2022), which is below typical maximum pavement temperatures recorded in 

Ghana (60ºC). While the asphalt layer thicknesses of the study roads were in the range of 70 

mm to 76 mm, the Gedafa et al. (2014) was originally developed for asphalt layer thicknesses 

in excess of 200 mm and this could have accounted for its poor prediction accuracy in Ghana. 

From the statistical significance testing of the difference between the predicted and measured 

asphalt pavement temperatures, the best-performing models for the Forest zone were the Park 

et al. (2001) and Diefenderfer et al. (2006) models, whereas only the Park et al. (2001) model 

performed well in the Savannah zone. Based on Error Statistics, LOE and R2, the Park et al. 

(2001) model outperformed the Diefenderfer et al. (2006) model for the Forest zone.  Among 

the models evaluated, the Park et al. (2001) model was, therefore, ranked the best performing 

model for asphalt pavement temperature prediction for both Forest and Savannah zones. 

Overall, the performance of the Park et al. (2001) model for Tamale was better than that for 

Kumasi. 
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4.3 Development of New Asphalt Pavement Temperature Prediction Models  

4.3.1 Asphalt Pavement Temperature Variation 

A. Hourly Variation 

Figure 4.13 shows the hourly pavement temperatures obtained for the Mango Road (Kumasi) 

and the RSM Road (Tamale) sites. Generally, the mid-depth AC and surface temperatures 

followed a similar pattern, except during the hours of 6:00 GMT to 7:00 GMT. There were low 

mid-depth AC and surface temperatures in the morning and late afternoon/evening (16:00 

GMT to 18:00 GMT) compared with the mid-afternoon period. Both the mid-depth AC and 

surface temperatures attained their hourly maximum values at 14:00 GMT. However, the 

hourly minimum pavement temperature at mid-depth of the AC layer was recorded at 7:00 

GMT and was preceded by that at the surface at 6:00 GMT. These findings corroborate those 

of Koranteng-Yorke (2012), who recorded the hourly maximum and minimum in-depth AC 

temperature in the Forest zone (Akumadan) at 14:00 GMT and 7:00GMT, respectively. Also, 

mid-depth AC and surface temperatures in Kumasi were consistently lower than in Tamale for 

most hours of the day. The consistently high surface and mid-depth AC temperatures recorded 

in Tamale confirm the higher mean daily insolation in Tamale (Savannah zone) than in Kumasi 

(Forest zone) (Asilevi et al., 2019).  
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Figure 4.13. Hourly Pavement Temperatures on Mango Road (Kumasi) and RSM Road 

(Tamale) 

 

B. Monthly Variation 

The monthly pavement temperatures at the study sites are shown in Figure 4.14. The mid-depth 

AC and surface temperatures exhibited a similar pattern in a given city. In Tamale, mid-depth 

and surface temperatures were lowest in December and January but highest in March whereas 

in Kumasi, mid-depth temperatures were lowest in August and highest in April. Surface 

temperatures in Kumasi were lowest in September but highest in April and October. This is 

because both the Savannah  and  Forest zones experience maximum mean daily insolation from 

February to May, with the Forest zone experiencing another in October-November (Asilevi et 

al., 2019). The high insolation leads to increased absorbed solar radiation in the asphalt 

pavements due to the low surface albedo of the new asphalt concrete (Chen et al., 2019; 

Carnielo and Zinzi, 2013; Pomerantz et al., 2000) of the Mango and RSM Roads, which were 
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rehabilitated in 2021. These findings corroborate those of Koranteng-Yorke (2012) which 

established the maximum and minimum AC temperatures for the Forest zone (Akumadan) in 

April and August, respectively.  

 
 

Figure 4.14. Monthly Pavement Temperatures on Mango Road (Kumasi) and RSM Road 

(Tamale) 

 

4.3.2 Asphalt Pavement Temperature Prediction Models 

Time- and depth-dependent asphalt pavement temperature prediction models are usually 

designed as non-linear regression (Chen et al., 2019). Such models may utilise the input 

parameters of pavement surface temperature, the average air temperature of previous day, 

asphalt layer depth and time of day (e.g., Lukanen et al., 2000; Park et al., 2001; Gedafa et al., 

2014; Walia et al., 2022). Based on literature, temperature of pavement surface, air temperature 

and time of day are potential predictors of mid-depth pavement temperature and were used as 

such. Therefore, Eq. (4.1) is the generalized multiple non-linear regression equation proposed 
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for predicting the AC mid-depth pavement temperature in each of the climatic zones 

considered. 

𝑇𝑑𝑚𝑚 = 𝛽0 + 𝛽1𝑇𝑠𝑢𝑟 + 𝛽2𝑇𝑎𝑣𝑔 + 𝛽3 sin(𝑡)      (4.1) 

where; 

𝛽0, 𝛽1, 𝛽2, 𝛽3 = model coefficients 

𝑇𝑑𝑚𝑚 = AC pavement temperature (ºC) at mid-depth (d-mm) from the surface  

𝑇𝑎𝑣𝑔 = mean of air temperature (ºC) of the previous day 

𝑇𝑠𝑢𝑟 = pavement surface temperature (ºC) 

𝑡 = time of pavement surface temperature measurement (recorded on a 24-hr time scale and 

divided by 24), days 

  

A. Model Calibration for Kumasi 

Data collected on the Mango Road, from May 2022 to April 2023, was used for the calibration 

of the proposed model above for Kumasi. The descriptive statistics associated with the model 

calibration for the Kumasi site for an asphalt concrete mid-depth of 38mm are shown in Table 

4.3. It is seen in the table that the asphalt pavement temperature at a depth of 38mm (𝑇38𝑚𝑚) 

has a lower mean (37.7 ºC) compared to the mean (39.1 ºC) of pavement surface temperature 

(𝑇𝑠𝑢𝑟). This indicates that pavement surface temperatures are generally higher compared to 

mid-depth AC pavement temperatures in Kumasi but there is lower variability in the latter 

compared to the former.   

Table 4.3. Descriptive Statistics associated with Model Calibration for Kumasi 

Variable N Mean Std. Dev. COV (%) Minimum Maximum 

𝑇38𝑚𝑚 2100 37.7 7.1 18.8 24.0 55.0 

𝑇𝑠𝑢𝑟 2100 39.1 9.1 23.3 22.6 61.6 

𝑇𝑎𝑣𝑔 2100 27.4 1.4 5.1 22.7 29.8 

t 2100 0.50 0.2 40.0 0.25 0.75 
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*COV = coefficient of variation 

𝑇38𝑚𝑚 = AC pavement temperature (ºC) at 38mm mid-depth 

𝑇𝑠𝑢𝑟 = pavement surface temperature (ºC) 

𝑇𝑎𝑣𝑔 = mean air temperature (ºC) of previous day 

t = time of pavement temperature measurement (days) 

As discussed in the literature review section, one of the requirements of multiple linear 

regression is to check for multi-collinearity among the independent variables. This was 

accomplished using a Pearson correlation matrix. The Pearson correlation coefficient (R) are 

presented in Table 4.4. The results show a strong positive correlation (R=0.931) between 

𝑇38𝑚𝑚 and 𝑇𝑠𝑢𝑟 but a weak positive correlation (R=0.295) of 𝑇38𝑚𝑚 and  𝑇𝑎𝑣𝑔.  𝑇𝑎𝑣𝑔 values 

were computed from the daily minimum and maximum air temperature records. The sine 

function of time [sin( 𝑡)] slightly improved the correlation with 𝑇38𝑚𝑚.  

Table 4.4. Pearson Correlation Matrix of the Kumasi Calibration Data  

Variable 𝑇38𝑚𝑚 𝑇𝑠𝑢𝑟 𝑇𝑎𝑣𝑔 t sin(𝑡) 𝑇𝑎𝑣𝑔𝑡 

𝑇38𝑚𝑚 1.000 0.931 0.295 0.601 0.618 0.644 

𝑇𝑠𝑢𝑟 0.931 1.000 0.222 0.520 0.543 0.551 

𝑇𝑎𝑣𝑔 0.295 0.222 1.000 0.000 0.000 0.166 

t 0.601 0.520 0.000 1.000 0.999 0.985 

sin(𝑡) 0.618 0.543 0.000 0.999 1.000 0.984 

𝑇𝑎𝑣𝑔𝑡 0.644 0.551 0.166 0.985 .984 1.000 

 

To further strengthen the investigation of multi-collinearity among the potential predictor 

variables, the Variance Inflation Factor (VIF) presented in Table 4.5 was used. As shown in 

the Table 4.5,  𝑇𝑎𝑣𝑔, sin(𝑡) and 𝑇𝑎𝑣𝑔𝑡 recorded VIF above 10, indicating high correlation. 

Consequently, 𝑇𝑎𝑣𝑔𝑡 was not used as a predictor variable in fitting the model. 
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Table 4.5. Variance Inflation Factor for the Kumasi Model Calibration  

Model Variance Inflation Factor (VIF) 

1 (Constant)  

𝑇𝑠𝑢𝑟 1.849 

𝑇𝑎𝑣𝑔 10.610 

sin(𝑡) 322.464 

𝑇𝑎𝑣𝑔𝑡 320.021 

 

To check for the linearity assumption, mid-depth AC pavement temperature was plotted against 

pavement surface temperature, mean air temperature of the preceding day, and time of day, as 

shown in Figures 4.15 through 4.17. Figure 4.15 shows a linear relationship between the mid-

depth AC pavement temperature and pavement surface temperature. Mid-depth AC pavement 

temperature versus mean air temperature of previous day is linear (Figure 4.16), while 

pavement temperature versus time of day is non-linear (Figure 4.17).  

 

Figure 4.15. Mid-depth AC temperature versus pavement surface temperature on the Mango 

Road (Kumasi) 
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Figure 4.16. Mid-depth AC temperature versus Mean Air Temperature of the Preceding Day 

on the Mango Road (Kumasi) 

 

Figure 4.17. Mid-depth AC Temperature versus Time of Day on the Mango Road (Kumasi) 

Due to the non-linear relationship of  𝑇38𝑚𝑚 with “t”, the non-linear transformation, sin(𝑡), 

was used instead of “t”. The sine transformation of the time variable (t) is commonly used in 
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modelling pavement temperature (e.g., Walia et al., 2022; Park et al., 2001; Lukanen et al., 

2000). Therefore, the next phase of model calibration for Kumasi considered 𝑇𝑎𝑣𝑔, 𝑇𝑠𝑢𝑟 and 

sin(𝑡) as explanatory variables. 

 Multiple regression analysis was used to fit a model incorporating the predictor variables, 

𝑇𝑎𝑣𝑔, 𝑇𝑠𝑢𝑟 and sin(𝑡) and the dependent variable 𝑇38𝑚𝑚. The significance level was 5% (𝛼 =

0.05), and the statistical summary for the Kumasi model is shown in Table 4.6.  

Table 4.6. Summary Statistics of the Model Developed for Kumasi 

Summary R R2 Adjusted R2 SEE  

 0.947 0.896 0.896 2.281  

ANOVA Degree of 

freedom 

Sum of 

squares 

Mean of 

squares 

F 

statistic 

P-value 

Regression 3 94220.7 31406.9 6034.3 0.000 

Residual 2096 10909.1 5.2   

Total 2099 105129.8    

 Coefficients Standard 

error 

t-statistic VIF P-value 

Intercept  -7.43 1.012 -7.345  0.000 

𝑇𝑠𝑢𝑟 0.625 0.007 92.94 1.526 0.000 

𝑇𝑎𝑣𝑔 0.589 0.037 15.789 1.075 0.000 

sin(𝑡) 9.658 0.458 21.107 1.451 0.000 

Note: SEE= Standard error estimate; VIF= Variance Inflation Factor 

From Table 4.6, the combination of pavement surface temperature (𝑇𝑠𝑢𝑟), mean of air 

temperature of the previous day (𝑇𝑎𝑣𝑔), and sine of the time of pavement surface temperature 

measurement [sin(𝑡)] is significantly related to the AC mid-depth pavement temperature. The 

variance inflation factor (VIF) of each predictor variable is approximately 1, suggesting that 

the variables are not correlated. The adjusted R2 value of 0.896 indicates that approximately 

89.6% of the variability in the mid-depth AC pavement temperature (𝑇38𝑚𝑚) measured on the 

Mango Road (Kumasi) is accounted for by the prediction variables. Also, the p-values of the 

corresponding t-statistics of the 𝑇𝑎𝑣𝑔, 𝑇𝑠𝑢𝑟 and sin(𝑡) are all < 0.0001, indicating that the null 

hypothesis equating the coefficients of 𝑇𝑎𝑣𝑔, 𝑇𝑠𝑢𝑟 and sin(𝑡) to zero be rejected. The calibrated 
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proposed regression equation for predicting the AC mid-depth pavement temperature in 

Kumasi (𝑇38𝑚𝑚) is given by Eq. (4.2); 

𝑻𝟑𝟖𝒎𝒎 = −𝟕. 𝟒𝟑 + 𝟎. 𝟔𝟐𝟓 𝑻𝒔𝒖𝒓 + 𝟎. 𝟓𝟖𝟗 𝑻𝒂𝒗𝒈 + 𝟗. 𝟔𝟓𝟖 𝐬𝐢𝐧(𝒕) ;   𝑅2 = 0.896 (4.2) 

where; 

𝑇38𝑚𝑚 = AC pavement temperature (ºC) at 38mm mid-depth from the surface 

𝑇𝑎𝑣𝑔 = mean of air temperature (ºC) of the previous day 

𝑇𝑠𝑢𝑟 = pavement surface temperature (ºC) 

𝑡 = time of pavement surface measurement (recorded on a 24-hr time scale and divided by 24), 

days 

The assumption that the data used in the multiple regression model were normally distributed 

was checked using a histogram of the regression residuals, as shown in Figure 4.18. The 

residuals follow a normal distribution, indicating the model fulfils the normality assumption of 

multiple regression analysis. Again, the proposed model for Kumasi was checked for equality 

of variance of the residuals, using a scatter plot of the standardised residuals and predicted 

values, as shown in Figure 4.19. Since the data points are centred around the horizontal line 

through zero, it can be inferred that the variance of the residuals is equal. This also fulfils the 

equality of variance assumption of multiple linear regression. 
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Figure 4.18. Distribution of Normalised Residuals for the Kumasi Model 

 
 

Figure 4.19. Standardised Residuals versus Predicted Values for the Kumasi Model 
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With the satisfaction of the fundamental assumptions of multiple linear regression and the high 

R2, it was considered that the proposed model for predicting mid-depth asphalt pavement 

temperature for the Forest zone (represented by Kumasi) was well-fitted. 

 

B. Validation of the Model for Kumasi  

The next consideration in the model development was model validation. Model validation 

involves comparing model-predicted and measured asphalt pavement temperatures to identify 

if the difference between their average values is statistically significant, showing their 

distribution around a line of equality and computing the error statistics and the R2. The model 

validation used a dataset independent of the data used for the model calibration. The data 

gathered from the Antoa Road in Kumasi (Table 3.5) was used for the validation. The 

descriptive statistics for the validation (Table 4.7) exhibit a similar characteristic to those of 

the calibration data. However, the mean of the 𝑇38𝑚𝑚 and 𝑇𝑠𝑢𝑟 were similar (36.5 ºC versus 

36.7 ºC). Thus, the mean of mid-depth AC and surface temperatures on the Antoa Road (used 

for model validation) are lower than on the Mango Road (for model calibration). Meanwhile, 

the mean of 𝑇𝑎𝑣𝑔 for the validation dataset is equal to that of the model calibration data. 

The 𝑇38𝑚𝑚, 𝑇𝑠𝑢𝑟 and “t” values had high variability compared to 𝑇𝑎𝑣𝑔values. 

Table 4.7. Descriptive Statistics of Validation Data for Kumasi Model 

Variable N Mean Std. Dev. COV (%) Minimum Maximum 

𝑇38𝑚𝑚 700 36.5 6.5 17.8 26.0 50.0 

𝑇𝑠𝑢𝑟 700 36.7 7.7 21.0 23.3 53.4 

𝑇𝑎𝑣𝑔 700 27.6 1.5 5.4 23.6 31.1 

t 700 0.5 0.2 40.0 0.25 0.75 

Note: Variables are as previously defined 

The results of a two-sample t-test performed to compare the means of the measured and 

predicted AC pavement temperatures yielded a p-value of 0.5979. This suggested that the null 

hypothesis of equating the mean of the measured and predicted AC pavement temperatures is 
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accepted. It is, therefore, inferred that the mean of observed pavement temperatures is 

statistically equal to the mean of predicted AC pavement temperatures. Due to the large data 

size (N=700), the normality check prior to conducting the t-test was ignored in line with the 

recommendation of  Ghasemi and Zahediasl (2012). 

The model was also validated by analysing a scatter plot of predicted versus measured 

pavement temperatures, as shown in Figure 4.20. As seen in the figure, there is a good 

prediction of pavement temperature, with majority of the data points distributed around the line 

of equality (LOE).  The validated model had an R2 of 0.919, RMSE of 1.924ºC, and MPE of 

0.04%, indicating a high prediction accuracy. 

The combination of the t-test and the residual analysis have been used to validate asphalt 

pavement temperature prediction models such as Walia et al. (2022) and Khan et al. (2019). 

 

Figure 4.20. Kumasi Model Validation: Predicted versus Measured Pavement Temperature 

 

R2 = 0.919 

RMSE = 1.924 ºC 

MPE = 0.04% 

Line of Equality 
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C. Model Calibration for Tamale  

The generalised model, Eq. (4.1), was calibrated for an AC pavement mid-depth of 35mm for 

the Tamale site. Data from the RSM Road from May 2022 to April 2023 were used for the 

model calibration. The descriptive statistics associated with the model calibration are presented 

in Table 4.8. The mean AC pavement temperature at a depth of 35mm (𝑇35𝑚𝑚) was close to 

the mean of the pavement surface temperature (𝑇𝑠𝑢𝑟) (39.1ºC versus 40.2ºC).  

Table 4.8. Descriptive Statistics associated with Model Calibration for Tamale  

Variable N Mean Std. Dev. COV (%) Minimum Maximum 

𝑇35𝑚𝑚 2100 39.1 7.6 19.1 24.0 58.0 

𝑇𝑠𝑢𝑟 2100 40.2 10.1 25.1 20.2 63.9 

𝑇𝑎𝑣𝑔 2100 29.6 2.1 7.1 25.9 35.0 

t 2100 0.50 0.2 40.0 0.25 0.75 

 

In order to firm the potential predictor variables for the Tamale model, a correlation analysis 

was performed with the 𝑇35𝑚𝑚, 𝑇𝑠𝑢𝑟, 𝑇𝑎𝑣𝑔 and t variables as well as non-linear transformation 

of some of the variables and their interactions. This also helped to detect multi-collinearity 

between the predictor variables. The correlation analysis results are presented in Table 4.9. 

Similar to what was obtained for the Kumasi site, the table reveals that there is a strong 

relationship of 𝑇𝑠𝑢𝑟  with 𝑇35𝑚𝑚 (R = 0.947) but a weak correlation of 𝑇𝑎𝑣𝑔with 𝑇35𝑚𝑚 (R = 

0.228). While the time (t) has a moderate correlation with 𝑇35𝑚𝑚 (R =0.697), the sine transform 

of “t” slightly improved its correlation with 𝑇35𝑚𝑚 (R =0.713). Again, there was a strong 

correlation between two potential predictor variables, sin(𝑡) and 𝑇𝑎𝑣𝑔𝑡 (R>0.7).  
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Table 4.9. Pearson correlation matrix for the Tamale model calibration data 

Variable 𝑇35𝑚𝑚 𝑇𝑠𝑢𝑟 𝑇𝑎𝑣𝑔 t sin(𝑡) 𝑇𝑎𝑣𝑔𝑡 

𝑇35𝑚𝑚 1.000 0.947 0.228 0.697 0.713 0.734 

𝑇𝑠𝑢𝑟 0.947 1.000 0.207 0.619 0.640 0.651 

𝑇𝑎𝑣𝑔 0.228 0.207 1.000 0.000 0.000 0.227 

t 0.697 0.619 0.000 1.000 0.999 0.971 

sin(𝑡) 0.713 0.640 0.000 0.999 1.000 0.971 

𝑇𝑎𝑣𝑔𝑡 0.734 0.651 0.227 0.971 0.971 1.000 

 

Also, the variance inflation factor (VIF) presented in Table 4.10 was used to confirm possible 

multi-collinearity among the potential predictor variables. Higher VIF (>10) of  𝑇𝑎𝑣𝑔, sin(𝑡) 

and 𝑇𝑎𝑣𝑔𝑡 is an indication of higher correlations. Hence, 𝑇𝑎𝑣𝑔𝑡 was not used in the fitting of the 

model. 

Table 4.10. Variance Inflation Factor for the Tamale Model Calibration  

Model Variance Inflation Factor (VIF) 

1 (Constant)  

𝑇𝑠𝑢𝑟 2.008 

𝑇𝑎𝑣𝑔 11.188 

sin(𝑡) 183.856 

𝑇𝑎𝑣𝑔𝑡 185.475 

 

A scatter plot of the T35mm against 𝑇𝑠𝑢𝑟, 𝑇𝑎𝑣𝑔, and “t” is provided in Figures 4.21 through 4.23. 

Figure 4.21 shows a linear relationship between 𝑇35𝑚𝑚   and 𝑇𝑠𝑢𝑟 . There exists a linear 

relationship between 𝑇35𝑚𝑚  and 𝑇𝑎𝑣𝑔 (Figure 4.22), while a non-linear relationship exists 

between 𝑇35𝑚𝑚  and “t”  (Figure 4.23). As a result, sin(𝑡) was considered for the model instead 

of “t”. 
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Figure 4.21. Mid-depth AC Temperature versus Surface Temperatures on the RSM Road 

(Tamale)  

 

 

Figure 4.22. Mid-depth AC Temperature versus Air Temperature on the RSM Road (Tamale)  
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Figure 4.23. Mid-depth AC Temperature versus Time of Day on the RSM Road (Tamale)  

The following independent variables were considered for predicting 𝑇35𝑚𝑚 in Tamale. 

𝑇𝑠𝑢𝑟 = pavement surface temperature (ºC) 

𝑇𝑎𝑣𝑔= mean of the air temperature of the preceding day 

sin(𝑡) = sine of time (radians). Time (t) is a 24-hr time divided by 24 (days). 

The model summary result for Tamale is shown in Table 4.11.  

Table 4.11: Summary Statistics of Model Developed for Tamale 

Regression Statistics Multiple R R-square Adj. R-sq. SEE  

 0.959 0.919 0.919 2.163  

ANOVA Degree of 

freedom 

Sum of 

squares 

Mean of 

squares 

F 

statistic 

P-value 

Regression 3 111625.2 37208.4 7952.0 0.000 

Residual 2096 9807.5 4.7   

Total 2099 121432.7    

 Coefficients Standard 

error 

t-statistic VIF P-value 

Intercept  2.644 0.700 3.777  0.000 

𝑇𝑠𝑢𝑟 0.613 0.006 96.575 1.826 0.000 

𝑇𝑎𝑣𝑔 0.22 0.024 9.324 1.078 0.000 

sin(𝑡) 11.283 0.476 23.694 1.748 0.000 
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From Table 4.11, the adjusted R-square of 0.919 means that the independent variables 

(pavement surface temperature, mean air temperature of the preceding day, and time of 

pavement surface temperature measurement) explain about 92% of variation in the dependent 

variable (AC mid-depth pavement temperature). The variance inflation factor (VIF) of each 

predictor variable is approximately 1, suggesting that the variables are not correlated. The t-

statistic of all the predictor variables yielded a p-value of < 0.0001, thus rejecting the null 

hypothesis that all the coefficients of the predictor variables are zero. It is then inferred that the 

linear combination of pavement surface temperature, mean air temperature of the preceding 

day and time of pavement surface temperature measurement significantly predict AC mid-

depth pavement temperature in Tamale. The resulting regression equation for Tamale is given 

by Eq. (4.3). 

𝑻𝟑𝟓𝒎𝒎 = 𝟐. 𝟔𝟒𝟒 + 𝟎. 𝟔𝟏𝟑 (𝑻𝒔𝒖𝒓) + 𝟎. 𝟐𝟐 (𝑻𝒂𝒗𝒈) + 𝟏𝟏. 𝟐𝟖𝟑 𝐬𝐢𝐧(𝒕);  R2=0.919     (4.3) 

where; 

𝑇35𝑚𝑚 = AC pavement temperature (ºC) at 35 mm from the surface 

𝑇𝑠𝑢𝑟 = pavement surface temperature (ºC) 

𝑡 = time of pavement surface temperature measurement (24hrs divided by 24) (days). 

𝑇𝑎𝑣𝑔 = mean of air temperature (ºC) of the preceding day 

The linear regression assumptions of normally distributed and equal variance of the residuals 

were investigated using a histogram (Figure 4.24) and a scatter plot (Figure 4.25). Figure 4.24 

shows that the residuals follow the normal distribution, based on the bell shape curve. Also, 

the residuals have equal variance, as seen in Figure 4.25. 
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Figure 4.24. Distribution of Normalized Residual for the Tamale Model 

 
 

Figure 4.25. Standardised Residuals versus Predictor Values for the Tamale Model 
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Having satisfied the multiple linear regression assumptions and the high R2, the proposed 

model for predicting mid-depth pavement temperature for the Savannah zone (Tamale) was 

deemed well-fitted. 

D. Validation of the Tamale Model 

A different dataset, collected from the Air Force Road in Tamale, was used to validate the 

newly-developed model. From Table 4.12, 𝑇𝑠𝑢𝑟 has a lower mean (40.8ºC) but with a large 

variability (Std. Dev. = 9.7 ºC) compared to 𝑇35𝑚𝑚 (mean = 41.1ºC, Std. dev. = 8.6ºC). 𝑇𝑎𝑣𝑔, 

with a mean of 30.6ºC, was clustered around the mean (Std. Dev. = 2.1ºC).  

Table 4.12. Descriptive Statistics of Validation Data for Tamale 

Variable N Mean Std. Dev. COV (%) Minimum Maximum 

𝑇35𝑚𝑚 700 41.1 8.6 20.9 25.0 58.0 

𝑇𝑠𝑢𝑟 700 40.8 9.7 23.8 20.5 59.6 

𝑇𝑎𝑣𝑔 700 30.6 2.1 6.9 26.9 34.5 

t 700 0.5 0.2 40.0 0.25 0.75 

 

In validating the model, a two-sample t-test was used to check if the means of the measured 

and predicted AC pavement temperatures were equal. A p-value of 0.289 was obtained, which 

indicated that statistical parity existed between the means of the measured and anticipated AC 

pavement temperatures. The scatter plot in Figure 4.26 shows that the model predicts AC 

pavement temperatures at 35 mm with a high accuracy. The fitted model for Tamale had an R2 

of 0.920, RMSE of 2.679ºC, and MPE of 0.295%, which also indicates that the model has high 

accuracy. 
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Figure 4.26. Tamale Model Validation: Measured versus Predicted Pavement Temperature  

 

4.4 Performance Comparison of Proposed Models with Existing Ones  

4.4.1 The Kumasi Model Versus Existing Models 

To ensure a fair comparison of model prediction performance between the proposed Kumasi 

model and existing models, the validation data collected on the Antoa Road were used to 

validate the existing BELLS 3 and Park et al. (2001) models, and the results are presented in 

Table 4.13 and Figure 4.27. As shown in the table, the Kumasi model produced the lowest 

errors (RMSE, MPE and MBE), while the BELLS 3 (Lukanen et al., 2000) model recorded the 

highest R2 value. Figure 4.27 reveals that the Kumasi model predictions were the closest to the 

measured temperature, compared with the BELLS 3 (Lukanen et al., 2000) and Park et al. 

Line of Equality 

 

R2 = 0.920 

RMSE = 2.679 ºC 

MPE = 0.295% 
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(2001) models. This observation confirmed that the Kumasi model has higher prediction 

accuracy than the BELLS 3 (Lukanen et al., 2000) and Park et al. (2001) models despite the 

highest R2 value recorded by the BELLS 3 model. 

Table 4.13. Comparison of the Kumasi Model with Some Existing Models 

Model R2 RMSE (ºC) MPE (%) MBE (ºC) 

Kumasi model 0.919 1.924 0.037 -0.173 

BELLS 3 (Lukanen 

et al., 2000) 

0.937 3.496 8.586 -3.105 

Park et al. (2001) 0.899 2.388 2.481 -0.838 

 

 
Figure 4.27. Measured and Predicted Mid-depth AC Temperatures: Some Existing Models 

and the Proposed Kumasi Model 

 

4.4.2 The Tamale Model Versus Existing Models 

The Tamale model was further validated by comparing its R2 and errors (RMSE, MPE, and 

MBE) with those of the BELLS 3 (Lukanen et al., 2000) and Park et al. (2001) models, using 
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the validation dataset collected on the Air Force Road. The results, shown in Table 4.14, 

indicated the Tamale model produced the lowest error levels, though the BELLS 3 (Lukanen 

et al., 2000) yielded the best R2. 

Table 4.14. Comparison of Some Existing Models Predictions with the Tamale Model 

Model R2 RMSE (ºC) MPE (%) MBE (ºC) 

Tamale model 0.920 2.679 0.295 -0.451 

BELLS 3 (Lukanen et al., 

2000) 

0.940 4.557 9.807 -4.028 

Park et al. (2001) 0.919 2.928 3.515 -1.332 

 

However, Figure 4.28 shows that the pavement temperatures predicted by the fitted Tamale 

model were closest to measured temperatures, followed by the Park et al. (2001) model. This 

finding indicated the high prediction accuracy of the Tamale model compared with the BELLS 

3 (Lukanen et al., 2000) and Park et al. (2001) models. 

 

Figure 4.28. Measured versus Predicted Mid-depth AC Temperatures: Some Existing Models 

and the Proposed Tamale Model  



 

117 
 

4.4.3 Some Applications of Proposed Asphalt Pavement Temperature Prediction Models 

This study is the first to develop and validate asphalt pavement temperature prediction models 

for different climatic zones in Ghana.  

Potential applications of the proposed models include the following: 

i. Predicting mid-depth AC temperature for FWD data analysis. Instead of manually 

measuring asphalt pavement temperatures from drilled holes during FWD testing, one 

can simply measure the pavement surface temperature with handheld infrared 

thermometer and record the time of the pavement surface temperature measurement. 

The mean air temperature of the previous day before the pavement surface temperature 

measurement is acquired and fed into the proposed models to predict the mid-depth AC 

temperature at given time of the day. 

ii. Superpave PG binder selection. This will require the inputs of pavement surface 

temperature, mean preceding day’s air temperature and time of surface temperature 

measurement for a minimum period of 20 years. This dataset will first be used to predict 

mid-depth AC temperature for different times of the day, and the daily maximum and 

minimum temperature determined for each year. Based on this, the 7-day moving 

average of the predicted daily maximum mid-depth AC temperature for each year is 

computed and the minimum for each year determined. The maximum pavement design 

temperature is the average of the yearly 7-day moving average for the entire duration 

of the data (minimum of 20 years).  

iii. Predicting asphalt pavement temperature to characterise long-term aging of 

asphalt concrete material. This will require developing an aging model for Ghana 

(e.g., Zhang et al., 2019) before feeding the predicted pavement temperature, among 

other inputs, to characterize the asphalt mixture aging phenomenon. 
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iv. Pavement Structural Design. The proposed models could be used to determine 

monthly average asphalt pavement temperatures for various locations in the Forest and 

Savannah zones. The monthly pavement temperatures could then be used to predict 

monthly AC modulus for use in mechanistic-empirical pavement design systems. 

v. Asphalt Mixture Design. The models could be used to investigate in-situ asphalt 

pavement temperatures to determine whether the current 60 ºC laboratory asphalt 

mixture conditioning temperature used for Marshall mix design needs revision for 

certain parts of the country. 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

This research sought to develop asphalt pavement temperature prediction models suitable for 

the Forest and Savannah climatic conditions of Ghana. The study established the state of 

practice of asphalt pavement temperature determination in Ghana, evaluated the prediction 

accuracy of selected foreign asphalt pavement temperature prediction models and developed 

new models. Based on the findings from this study, the following conclusions and 

recommendations are made. 

a) Asphalt pavement temperature is determined manually in Ghana during FWD testing 

and is fraught with safety and delay challenges. 

b) Of the six models evaluated using local data, the Park et al. (2001) model predicted 

mid-depth asphalt pavement temperatures for both the Forest and Savannah climatic 

zones of Ghana with relatively high accuracy up to about 47 ºC, beyond which there 

was either over-prediction or under-prediction. 

c) The models developed in this study for the Forest zone (Kumasi) and the Savannah 

zone (Tamale) predicted mid-depth asphalt layer temperatures more accurately than any 

of the foreign-developed models evaluated using local data. 

 

5.2 Recommendations 

a) The proposed Kumasi models is recommended for predicting asphalt pavement 

temperature at a depth of about 38 mm in Forest climatic zone of Ghana based on its 

high prediction accuracy. 
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b) The proposed Tamale model is recommended for asphalt pavement temperature 

prediction at a depth of about 35 mm in the Savannah climatic zone of Ghana based on 

its high prediction accuracy. 

 

5.3 Model Limitations and Future Research 

a) The study was limited to a city each in the two climatic zones and also utilised in-situ 

pavement temperatures measured from asphalt layer mid-depths in the range of 35mm 

– 38 mm. Hence, the prediction accuracy of the models might not apply to asphalt layer 

depths significantly different from this range.  

b) The models developed in the study may predict pavement temperatures accurately 

during daytime (6:00 GMT to 18:00 GMT) only.  

c) Future attempts to improve the proposed models should include data from additional 

cities in all the climatic zones (Forest, Savannah and Coastal) and at different pavement 

depths and on aged asphalt pavements. 

d) The pavement temperature data should be collected over a period longer than one year. 

e) A study should be conducted to examine the prediction accuracy of the proposed 

models by using data from old pavements and shady areas. 
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APPENDICES 

Appendix A: Interview Guide 

Topic: State of Practice Regarding the Determination of Asphalt Pavement 

Temperature in Ghana  

Interviewee: 

Organisation: 

Designation:  

Date:      Interviewer: 

Part one: Falling weight deflectometer (FWD) testing 

Q1. Briefly describe how your organisation determines pavement temperature during FWD 

testing. 

Q2. Describe the challenges (if any) associated with the current method of asphalt pavement 

temperature determination in FWD testing 

Q3a. Do you anticipate a change in this practice for a more robust type in the future? 

Q3b. What could be some of the challenges that such new methods may be associated with? 

Q4. How is the determined pavement temperature used in the structural evaluation of the 

pavement? 

Q5. Could you please share with me any improved asphalt pavement temperature 

determination technique that, if implemented, will help improve FWD analysis in your 

organization? 
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Part Two: Superpave Performance-Graded (PG) Binder Selection 

Q6. Describe how Superpave PG binder grades were determined for past projects in your 

organisation?  

Q7. Describe some of the challenges (if any) experienced in determining Superpave PG 

binder grades for past projects. 

Q8. As you might know (or as you said), the Superpave binder grades are determined using 

minimum and maximum pavement temperatures. Would you consider using a mathematical 

model developed locally for predicting the minimum and maximum pavement temperatures 

for selecting Superpave PG binder grades? 

Q9. What obstacles do you foresee in the use of such models? 
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