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ABSTRACT

Motor Insurance provides protection for vehicles that operate on the roads in

Ghana and it is mandatory. A large sample from an insurance data with a

significant proportion of censored observations was used to determine the average

time it takes for losses to occur and be paid by an insurance company in Ghana

using the Kaplan-Meier approach. An analysis of this portfolio presented using

the Cox proportional hazard model to determine if the type of insurance affects

the time it takes for a claim to be paid and to establish which variables contribute

significantly to the time for a claim to be settled. The study revealed that age,

gender, marital status, are significant risk factors that affect the occurring of a

loss but not significant in the payment of claims using the log rank test and Cox

proportional hazards regression model. Type of policy and type of vehicle were

significant factors that influence the survival duration of settling claims. This

clearly indicates that in the quoting (calculation) of premiums these risk factors

are considered in Ghana.
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CHAPTER 1

INTRODUCTION

1.1 Background of the Study

The provision of protection against a possible eventuality such as damage,

illness, death or a specified loss in return for payment of a specified premium is

known as Insurance. A motor insurance policy is a mandatory policy issued by

an insurance company as part of prevention of public liability. The ‘Act only’

policy (i.e., third party liability) and the Comprehensive policy are broadly the

two types of insurance in Ghana, (NIC, 2009).

In the auto insurance market the factors considered before rating includes; age

(Crocker and Snow, 1986) driving history (being an accident-free driver discounts

are applicable), marital status (married drivers have fewer accidents than single

drivers), vehicle type (with vehicles purchased under a hire-purchase agreement,

the financiers insist upon a comprehensive policy to take care of their interest as

collateral security), where one lives, and gender (men under the age of 25 are

involved in more accidents than women under the age of 25 and have more than

three times as many fatal accidents), (Kiebach, 2014).

The demand for payment of a loss by a policyholder or by an injured third party

is considered a claim. The claims are organized by accident date - i.e. the

date on which the accident occurred, leading to the claim and by report date -

i.e. the date on which the insurer is notified of the claim, (McClenahan, 2001).

Section 44 (4) of Ghana’s insurance Act, 2006 [Act724] states that ‘The
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Commission in consultation with the insurance industry shall by Regulations

prescribe a formula to compute the compensation in respect of injury and

deceased claims arising out of a motor accident’. The claims are recorded and

computed, (NIC, 2011).

Claims settlements are indeed one of the fastest priorities that make an insurance

company unique. The insured and insurer must share agreements designed by

the policy provided to avoid the need for argument or blame. The insured must

be able to provide the following to the insurer after which effective action will be

taken:

1. Police Report Form

2. Pictures of the accident

3. Estimates of items damaged in the vehicle

4. Driving License

5. Proof of doctors’ report if any.

The National Insurance Commission (NIC), the Ghana Insurers Association

(GIA) and the Ghana Insurance Brokers Association (GIBA) in response to legal

requirements on 17th August, 2011, set up the Motor Insurance Compensation

Guidelines, which states that, “All Motor Insurance claims are to be settled

and paid within sixty (60) working days upon receipt of all relevant documents.

Reasons for delays should be clearly stated in the claim file for the inspection of

the Regulator. Where claims are unreasonably delayed, appropriate sanctions

shall be applied”, (NIC, 2011)

In Ghana, the payment of claims by some insurance companies has been of great

challenge especially in the automobile industry. Therefore, this study applies Cox

regression analysis to determine the type of insurance and variables that affect

the time it takes for a claim to be settled.
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1.2 Problem Statement

It is by law required that every car owner will have some sort of insurance cover

for the vehicle that is at least the third party insurance which seeks to provide

insurance for the innocent pedestrian and other vehicles. Insurers compete among

themselves in order to attract customers by tending to quote premiums below or

under coverage. Even under such circumstances, people are not patronizing well

enough, since apparently, customer satisfaction refers to the provision of quality

services in which time is key. Customers go through a lot of stress before receiving

their claims. Ofori-Attah (2012) conducted a study on the effects of slow claims

settlement on the sales and marketing of insurance products by administering

questionnaires to both customers and staff. The results obtained from the data

collection were cross tabulated and subjected to descriptive analysis. In his cross

tabulation of the effect of time claim is settled and satisfaction derived revealed

that a total of 133 respondents had their claims settled. 80 claims were settled

within 3 months, 18 claims were settled in 4-6 months, whilst 5 claims were

settled within 7-12 months, 6 and 24, were settled within 1 year and 2 years

respectively. It was worthy to note that, from the valid respondents, none of the

claims took more than two years before settlement was effected. Out of the 133

valid respondents who made a claim, 112 indicated that they were satisfied with

the duration of settlement while 21 indicated they were not satisfied. He saw

that 64% of claimants whose settlement lagged from 4 months to 2 years were

not willing to take another policy. This indicates that the rate of dissatisfaction

increased with increasing period of claim settlement.

1.3 Objectives of the Study

The objectives of the present study are as follows:

• To determine the average time for a claim to occur and be settled using the

Kaplan-Meier approach.
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• To determine if the type of insurance (policy) affects the time it takes for a

claim to be settled and to establish which variables contribute significantly to the

time for a claim to be settled using the Cox-Regression.

1.4 Methodology

The study utilized administrative data, gathered from the National Insurance

Commission and some insurance companies in Ghana. The data contained

the underwriting of 1,000 insureds that purchased insurance policy for their

automobiles commencing from January, 2010 and expiring on December, 2010.

Some insureds were involved in motor accidents collisions which resulted to

damage to either their vehicles or a third-party individual during their cover of

insurance. The variables under study in this project were age, gender, marital

status, the type of vehicle involved in the accident, type of insurance policy

bought, and the nature of the claim. Another variable used in this study was

time: this variable was defined as the length of having an insurance policy until

a loss occurs and when it was paid.

To facilitate the analysis of the data the variable age was grouped into four

categories, i.e., 21-29years, 30-45years, 46-59years and 60years and above. The

nature of the claim as to whether a third party policyholder or a comprehensive

policyholder was involved in an accident were considered. The data entry and

preliminary analysis were done using the statistical software package for social

scientist (SPSS) version 17. Further analysis was then done using R.

1.5 Justification

One of the key values to customer loyalty to a company or product is customer

satisfaction. Day in and out companies and institutions which render services

lose their customers due to the fact that customers are not satisfied for services

4



rendered to them. This does not exclude insurance companies who lose most

of their customers due to some few challenges customers face with the insurer.

Some of these challenges include inability to render claim settlement in due

time. However, the regulator NIC is making every effort to improve the delivery

of insurance as well as the settlement of claims by setting up guidelines and

conditions to monitor the payment of these claims in Ghana. The aim of this

project is to provide an estimate for the average time to claims settlement and

also determine the survival and hazard rates of cases reported at an insurance

company from January, 2010 to December, 2010. The findings of the study will

inform insurers, policy makers, law enforcement agencies, academicians, and the

country at large in setting of priorities, and formulation of policies to address

issues related to delay’s in claim settlement in Ghana.

1.6 Organization of the Thesis

The first chapter of the thesis is made up of the introduction, which comprises the

background of the study, problem statement, and objectives of the study, as well

as the methodology and justification of the study. The second chapter comprises

the literature review, that is, scholarly work done by other people on the topic.

These are empirical evidences of the topic been studied. The third chapter talks

about the methodologies employed in the study. This includes secondary data

collection, models to be used, the tests to be used and the software to be used

in the analysis of the data collected. The fourth chapter deals with data analysis

and discussion of results and the fifth chapter concludes the study and offers

recommendations.
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CHAPTER 2

LITERATURE REVIEW

This chapter deals with the review of related literature on the topic under study.

The review includes concepts, theories found in literature, and empirical studies

documented in journals and on the Internet. Motor insurance is a major concern

in our part of the world due to the increasing nature of vehicles on our roads

and its hazards. Czado and Rudolph (2002) saw that a large claims portfolio

with significant proportion of censored observations availed was due to the

introduction of compulsory long term care (LTC) insurance in Germany in 1995.

They used the (Cox, 1972) and estimated transition intensities that computed

premiums for LTC insurance plans using the multiple state Markov model,

(Haberman and Pitacco, 1999). The estimation of the survival rate of cases in

some insurance companies in Ghana will likely explore all useful information

that may help policy makers and stakeholders in their quest to improve delays

in claim settlement and also compute premiums in automobile insurance.

Harrison and Ansell (2002) used survival analysis to predict cross-selling

opportunities that would retain a customer in the insurance industry. They

determined who is likely to buy additional product from the same company,

what the next product is likely to be and when the purchase is likely to be

made using a sample of 9,000 customers selected at random. Harrison et al.

(2007) further demonstrated how lifestyle segmentation and survival analysis

can identify cross-selling opportunities in life insurance and pension products.

They applied the lifestyle analysis and Cox’s regression model to behavioral

and demographic data describing 10,979 UK customers of a large international

insurance company. They observed that “mature” segments appear to offer
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greater opportunities for retention and cross-selling than the “younger” segments

from the company and the time frames within which that is likely to take place.

Nasvadi and Wister (2009) used survival analysis of insurance data from British

Columbia to determine if restricted driver’s licenses lower crash risk among

older drivers. They used a cohort study design and examined licensing and

insurance claims crash records of all drivers aged 66 years and older for the

years 1999-2006. Nonparametric and Cox proportional hazards survival analyses

were used to compare restricted vs. unrestricted drivers and to estimate crash

risks. They saw that the risk of causing a crash was 87% lower for restricted

drivers compared with unrestricted drivers after controlling for age and gender.

The most common restriction was a combination of daylight driving only plus

a speed maximum of 80 km/hr. Restricted drivers retained a driver’s license

for a longer period of time than unrestricted drivers and continued to drive

crash free longer than unrestricted drivers. There was no difference in severity

of collisions, and results suggest a high level of compliance with daylight-only

restrictions. Therefore they concluded that driving restrictions may be effective

for prolonging the crash-free driving of some aging drivers, thus supporting their

continued independence and delaying institutionalization.

Raftery et al. (1995) researched on how accounting for model uncertainty

improves predictive performance and can be clinically useful in survival analysis.

They said model uncertainty can be substantial but it is ignored in the

model-building process where predictor variables are selected. Meyer and

Laud (2002) using a stepwise procedure to test for their significance to select

a single model, and then make inference conditionally on the selected model.

They reviewed the standard Bayesian model averaging solution to the problem

(Kalbfleisch, 1978) and extended it to survival analysis, introducing partial Bayes

factors (Kass and Raftery, 1995) to do so for the Cox proportional hazards model.
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Aslanidou et al. (1995) researched on Bayesian analysis of multivariate survival

data using Markov Chain Monte Carlo methods. Metropolis along with Gibbs

algorithm (Metropolis et al., 1953; Muller, 1991) was used to calculate some

of the marginal posteriors hence proposed multivariate survival model because

survival times within the same ‘group’ are correlated as a consequence of a frailty

random block effect; (Vaupel and Stallard, 1979). The conditional proportional

hazards model of Clayton and Cuzick (1985) was used with a martingale

structured prior process, (Arjas and Gasbarra, 1994) for the discretized baseline

hazard. Besides the calculation of the marginal posteriors of the parameters,

they used Bayesian EDA diagnostic techniques to detect model adequacy of a

kidney infection data where the times to infection within the same patients are

expected to be correlated. Further Sinha and Dey (1996) analyzed some common

types of survival data from different medical studies. They used semi-parametric

Bayesian analysis of survival data.

Gepp (2005) used an evaluation of decision tree and survival analysis techniques

for business failure prediction. He saw that the potential value of an accurate

business failure prediction model has been emphasized by the extremely costly

failure of high profile businesses in both Australia and overseas, such as HIH

(Australia) and Enron (USA). He said there has been a significant increase in

interest in business failure prediction, from both industry and academia. He

used survival analysis and decision trees to review various statistical models

that attempt to predict the failure or success of a business based on publicly

available information about that business (or its industry and the overall

economy), such as accounting ratios from financial statements compared with

the use of discriminant and logit analysis approaches. Overall, the decision tress

provided the most accurate predictions of business failure while survival analysis

techniques are slightly less accurate, they provided more information that can
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be used to further the understanding of the business failure process.

Brockett et al. (2008) said “Customer-side influences on insurance have been

relatively ignored in the literature”. They researched on how much time a

customer has to stop total defection using survival analysis of a household

portfolio of insurance policies. They focused on the behavior of households

having multiple policies of different types with the same insurance company, and

who cancel their first policy. They considered the time after the household’s

cancellation of the first policy that the insurer have to retain the customer and

avoid customer defection on all policies to the competition: - and, what customer

characteristics are associated with customer loyalty. Using logistic regression

and survival analysis techniques they assessed the probability of total customer

withdrawal, and the length of time between first cancellation and subsequent

customer withdrawal. A European database spanning 54 months of household

multiple policyholder behavior, resulted in the fact that cancellation of one

policy is a very strong indicator that other household policies would be canceled.

Further, the insurer can have time to react to retain the customer after the first

cancellation. However, this time was significantly dependent on the method

used to contact the company, household demographics, and the nature of the

household’s insurance policy portfolio. Surprisingly, core customers having three

or more policies in addition to the canceled policy were more vulnerable to total

defection on all policies than noncore customers. Further, the potential customer

repelling effects of premium increases seemed to wear out after 12 months.

Volinsky and Raftery (2000) also investigated the Bayesian Information Criterion

(BIC) for variable selection in models for censored survival data. Kass and

Wasserman (1996) showed that BIC provides a close approximation to the Bayes

factor when a unit-information prior on the parameter space is used. They

revised the penalty term in BIC so that it is the number of uncensored events
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instead of the number of observations which corresponded to a more realistic

prior on the parameter space and shown to improve predictive performance for

assessing stroke risk in a Cardiovascular Health Study. For the censored data

model the exponential distributions of survival times (i.e. a constant hazard

rate) resulted in a better approximation to the exact Bayes factor based on a

conjugate unit-information prior. In the Cox proportional hazards regression

model they used the maximized partial likelihood.

Moncrief et al. (1989) examined data from a large national insurance firm and

introduced methodologies of survival analysis to trace the retention of insurance

sales agents over a two year period. They saw that existing empirical research

findings rely on “cross sectional window designs” and therefore designed the flaws

in the traditional approaches and demonstrated how the flaws may have affected

the validity of previous studies. Survival analysis was a valuable tool for sales

force turnover research and it also traced the survival function of new hires over

time. The effect of independent variables on retention examined effect of sales

productivity on retention rates.

Chuang and Yu’s (2010) study incorporated the survival analysis of

unemployment duration into the insurance pricing framework to measure

the fairly-priced premium rate for Taiwan’s unemployment insurance (UI)

program. They saw that the fair premiums range from 0.2041% to 0.2436%

under the 1999-2002 scheme and from 0.1388% to 0.1521% under the 2003-2009

scheme for various possible levels of average unemployment duration in Taiwan,

and they are all lower than the current UI premium rate 1%, explained why

there is a persistent surplus in the UI program. The sensitivity analysis

results indicated that the fair premium rate decreases with the hazard rate of

exiting from unemployment and increases with the probability of entering into

unemployment. The effect of the entering probability is found to be larger than

10



that of the exiting probability. Hence they provided a wide range of systematic

risk coefficient (β) values generated from three alternative methods to measure

its impact on fair premium rates and found that the effect of β on premium rates

is stronger under the 1999-2002 scheme than that of the 2003-2009 scheme.

Zhang (2008) researched on parametric mixture models in survival analysis with

applications. Kouassi and Singh (1997) methodology, estimated the hazard

function of a weighted linear mixture of parametric and nonparametric models

and their semiparametric mixture model provided flexibility in estimation by

assigning more weight to the component in the mixture that fits the data better.

Zhang (2008) extended this to the estimation of survival function that minimizes

the mean-squared-error. In Zhang dissertation an Expectation-Maximization

algorithm was implemented to achieve the maximum likelihood estimation of

mixture model and a model selection statistic based on Bayesian Information

Criterion was applied to find the mixture form that best fits the data. He

exploited the asymptotic properties of the maximum likelihood method for

statistical inference about the parameters. The parametric mixture model

was extended to a regression framework for analyzing the survival data with

covariates and to assess their effects on the joint distribution of survival time and

type of failure. Compared the results to a real datasets saw that the applications

indicated that the parametric mixture model with its flexibility was a good

alternative tool in the analysis of survival data.

Zhang (2010) worked on, "Regression survival analysis with dependent censoring

and a change point for the hazard rate: With application to the impact of

the Gramm-Leach-Bliley Act to insurance companies’ survival." The events of

interest were bankruptcy and acquisition, which were correlated and censored.

They first assessed the effect of assuming independent censoring on the regression

parameter estimates in Cox proportional hazard model then applied the copula
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function to model the dependent censoring. Next an extended partial likelihood

function maximized with an iteration algorithm was used to estimate the

regression parameters and to derive the marginal survival functions under a

dependent censoring setting. Lastly, they tested the existence and identified

the location of a change-point in a hazard function. The application of their

methodology to real insurance companies’ survival data disclosed important

influence of the GLB Act on insurance companies’ survival.

Louzada et al. (2010) researched on the bivariate long-term distribution survival

model based on the Farlie-Gumbel-Morgenstern copula model applied to a

Brazillian HIV data. This model allows for the presence of censored data and

covariates in the cure parameter. For inferential purpose a Bayesian approach via

Markov Chain Monte Carlo (MCMC) was considered. They developed a Bayesian

case deletion influence diagnostics based on the Kullback-Leibler divergence.

Their newly developed procedures were illustrated on artificial and real HIV data.

Grohn et al. (1998) worked on the effect of seven diseases on the Culling of

7523 Holstein Dairy cows in New York State. The cows were from 14 herds

and had calved between January 1, 1994 and December 31, 1994; all cows were

followed until September 30, 1995. Survival analysis was performed using the

Cox proportional hazards model to incorporate time-dependent covariates for

diseases. Different intervals representing stages of lactation were considered

for effects of the diseases. Five models were fitted to test how milk yield and

conception status modified the effect of diseases on culling. Covariates in the

models included parity, calving season, and time-dependent covariates measuring

diseases, milk yield of the current lactation, and conception status. Data were

stratified by herd. The seven diseases and lactational risks under consideration

were milk fever (0.9%), retained placenta (9.5%), displaced abomasum (5.3%,

ketosis (5.0%), metritis (4.2%), ovarian cysts (10.6%), and mastitis (14.5%).
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Older cows were at a much higher risk of being culled. Calving season had no

effect on culling. Higher milk yield was protective against culling. Once a cow

had conceived again, her risk of culling dropped sharply. In all models, mastitis

was an important risk factor throughout lactation. Milk fever, retained placenta,

displaced abomasum, ketosis, and ovarian cysts also significantly affected culling

at different stages of lactation. Metritis had no effect on culling. The magnitude

of the effects of the diseases decreased, but remained important, when milk

yield and conception status were included as covariates. Results indicated that

diseases have an important impact on the actual decision to cull and the timing

of culling. Parity, milk yield, and conception status are also important factors in

culling decisions.

Reproduction can be affected directly by toxic chemicals, or indirectly via effects

on feeding, growth or maintenance because these processes are intimately linked

to each other. The Dynamic Energy Budget (DEB) theory provides a mechanistic

basis that has been tested against many experimental data, Kooijman (1993)

and Kooijman and Bedaux (1996) presented a statistical analysis of routine

toxicity tests on Daphnia survival and reproduction based on insights from the

DEB theory. They compare a formulation in terms of effects on survival during

oogenesis to various direct and indirect effects on the energetics of reproduction.

All formulations characterize the effects by a no-effect concentration, a tolerance

concentration and the elimination rate. They conclude that all options lead to

similar no-effect levels and compare the analysis to the standard NOEC/EC50

analysis which concluded that their analysis is both simpler and more effective.

Svard and Price (2001) report the long-term survival rate of the Oxford Knee

in a series of patients with anteromedial osteoarthritis in which the operations

were performed by three surgeons in a non-teaching hospital in Sweden. All the

knees had an intact anterior cruciate ligament, a correctable varus deformity
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and full-thickness cartilage in the lateral compartment. Thirty-seven patients

had died; the mean time since operation for the remainder was 12.5 years (10.1

to 15.6). Using the endpoint of revision for any cause, the outcome for every

knee was established. Six had been revised (4.8%). At ten years there were 94

knees still at risk and the cumulative survival rate was 95.0% (95% confidence

interval 90.8 to 99.3). This figure is similar to that reported by the designers of

the prosthesis below; Goodfellow and OConnor (1978) introduced the Oxford

prosthesis, with congruent mobile bearings, for arthroplasty of the knee. In

1982, the first unicompartmental replacement with the Oxford prosthesis was

performed. The implant was designed in the belief that the large areas of contact

provided by the congruous articulation would diminish polyethylene wear and

improve the long-term survival of unicompartmental arthroplasty. White and

Ludkowski (1991) defined the clinicopathology of ‘anteromedial osteoarthritis’

and suggested that its anatomical features made it suitable for unicompartmental

replacement. Murray et al. (1998) reported a cumulative survival rate of 98%

(confidence interval (CI) 95 to 100) at ten years for the designer’s own series of

144 arthroplasties performed for anteromedial osteoarthritis. Lewold et al. (1995)

described the results of 699 Oxford replacements (medial and lateral) enrolled in

the Swedish Knee Arthroplasty Register between 1983 and 1992. They found a

cumulative survival rate at six years of only 89%. Most of the failures (70%) had

occurred in the first two years after surgery and dislocation of the bearing was

found to be the commonest cause of failure. They cast doubt on whether the good

results reported by the designer could be achieved elsewhere and suggested that

to validate this a well-documented series from an independent center was required.

Wintrebert et al. (2005) worked on Joint Modelling of Breeding and Survival in

the Kittiwake Using Frailty Models. They saw that assessment of population

dynamics is central to population dynamics and conservation. In structured

populations, matrix population models based on demographic data have been
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widely used to assess such dynamics. Although highlighted in several studies,

the influence of heterogeneity among individuals in demographic parameters and

of the possible correlation among these parameters has usually been ignored,

mostly because of difficulties in estimating such individual-specific parameters.

Several approaches have been used in the animal ecology literature to establish

the association between survival and breeding rates. However, most are based on

observed heterogeneity between groups of individuals, an approach that seldom

accounts for individual heterogeneity. Few attempts have been made to build

models permitting estimation of the correlation between vital rates. For example,

survival and breeding probability of individual birds were jointly modelled using

logistic random effects models by Cam et al. (2002). Wintrebert et al. (2005)

therefore adopted the survival analysis approaches from epidemiology. They

model the survival and the breeding probability jointly using a normally

distributed random effect (frailty). Conditionally on this random effect, the

survival time is modelled assuming a lognormal distribution, and breeding is

modelled with a logistic model. Since the deaths are observed in yearly intervals;

- they also took into account that the data are interval censored. The joint model

is estimated using classic frequentist methods and also MCMC techniques in

Winbugs. The association between survival and breeding attempt is quantified

using the standard deviation of the random frailty parameters. They applied

joint model on a large data set of 862 birds, that was followed from 1984 to 1995

in Brittany (France). Survival was positively correlated with breeding indicating

that birds with greater inclination to breed also had higher survival.

Pocock et al. (1982) illustrated methods of survival analysis for long-term

follow-up studies, by a study of mortality in 3878 breast cancer patients in

Edinburgh followed for up to 20 years. The problems of life tables, advantages

of hazard plots and difficulties in statistical modelling are demonstrated by

studying the relationship between survival and both clinical stage and initial
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menopausal status at diagnosis. To assess the ’curability’ of breast cancer,

mortality by year of follow-up is compared with expected mortality using

Scottish age-specific death rates. Techniques for analysing such relative survival

data include age-corrected life tables, ratio of observed to expected deaths

and excess death rates. Finally, an additive hazard model was developed to

incorporate covariates in the analysis of relative survival and curability.

Singer and Willett (1991) saw that psychologists studying whether and when

events occur face unique design and analytic difficulties. The fundamental

problem was how to handle censored observations, the people for whom the

target event does not occur before data collection ends. The methods of survival

analysis overcame these difficulties and allow researchers to describe patterns of

occurrence, compare these patterns among groups, and build statistical models

of the risk of occurrence over time. A unified description of survival analysis

that focuses on the study design and data analysis was presented, showing how

psychologists have used the methods during the past decade and identifying new

directions for future application. The presentation was based on the experiences

with the methods in modeling employee turnover and examples drawn from

research on mental health, addiction, social interaction, and the life course.

Abeysundara (2010) said estimating bivariate and marginal densities of paired

survival data becomes more challenging when only one component is censored.

If both components are censored or both are not censored, a bivariate version

of Kaplan-Meier remains as a consistent estimator. But if only one variable

is censored, Kaplan-Meier fails to take advantage of the information of the

remaining variable. The method proposed by Akritas and Keilegom considered

the case of single censoring as well as double censoring, a situation that is

typical in medical studies. He therefore estimated the correlation between two

variables in paired survival data at the presence of double and single censoring
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via nonparametric approaches. He used the estimates of nonparametric bivariate

distribution and marginal distribution of each variable proposed by Akritas and

Keilegom. These estimates were based on conditional distribution functions

considering only those pairs where the value of the conditioning variable is

uncensored. He then applied the method on Diabetic Macular Edema (DME)

data to estimate densities and correlation between time to cure for right and left

eye.

Arnold (2013) studied the performance, performance persistence, survival and

flow of Commodity Trading Advisors, also known as CTAs or Managed Futures

Funds. She identified two main trading styles: Systematic and Discretionary

CTAs which were the main focus of her thesis. She separated Systematic CTAs

into trend-followers with differing trading horizon.

Firstly, she investigated the differences in mortality between Systematic and

Discretionary CTAs. She saw that Systematic CTAs have a higher median

survival than Discretionary CTAs, 12 vs. 8 years. Therefore proposed new

filters that would better identify real failures among funds in the graveyard

database. Separating graveyard funds into real failure she re-examine the attrition

rate of CTAs. The real failure rate was 11.1%, lower than the average yearly

attrition rate of 17.3% of CTAs. The effect of various covariates including several

downside risk measures was investigated in predicting CTA failure. Controlling

for performance, HWM, minimum investment, fund age and lockup, funds with

higher downside risk measures had a higher hazard rate. Compared to other

downside risk measures, the volatility of returns was less able to predict failure.

Funds that received larger inflows were able to survive longer than funds that do

not. Large Systematic CTAs have the highest probability of survival.

The second part studied the performance and performance persistence of

Systematic and Discretionary CTAs. Controlling for biases, after fees the average

CTA was able to add value. These results were strongest for large Systematic
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CTAs. She then extended the seven factor model of Fung-Hsieh (2004a) and

found that this model was better able to explain the returns of Systematic

rather than Discretionary CTAs. Found three structural breaks in the risk

loadings of CTAs different to hedge fund breaks: September 1998, March 2003

and July 2007. Using these breaks showed that systematic CTAs were able to

deliver significant alpha in every sub-period. Also found evidence of significant

performance persistence. However, these findings were heavily contingent on the

strategy followed: the persistence of Discretionary CTAs was driven by small

funds whereas large funds drive the performance persistence of Systematic funds.

These results had important implications for institutional investors who faced

capital allocation constraints. They also suggest that contrary to the previous

findings, the CTA industry does not appear to be heading towards zero alpha.

The final section looked at the relationship between fund-flows and performance.

Investors chase past performance, the fund-flow-performance was significant and

concave for some strategies. Although there was some long-term performance

persistence of Systematic funds with the highest inflows, there was no smart

money effect in the CTA literature. She found no evidence of capacity constraints

among Systematic CTAs. Investors were not able to smartly allocate funds to

future best performers and take full advantage of the liquidity that CTAs offered.

Dalby (2011) thesis described, analyzed and applied the Solvency II on life and

pension insurance by using the standard formulas in the Quantitative Impact

Study 5 (QIS5) to calculate the Solvency Capital Requirement (SCR). He

specifically examined the consequences for the Norwegian occupational defined

benefit schemes, primarily for the private sector. The standard formulas in QIS5

to some extent specify stress scenarios without giving explicit formulas as they

should be exact for the application. He therefore outlined exact formulas for the

Norwegian occupational defined benefit schemes, both for the net expected cash

flows and for the stressed cash flow. Latter he gave a method for calculating
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the stressed survival and hazard rate functions. He also priced the embedded

interest rate guarantee using market consistent prices from the Norwegian

swaption market. Bonds specifically and redistribution of cash flows generally

were used to improve the precision. Using the contract boundary principle in

Solvency II he based his calculations on that all policies were converted to paid

up policies. This may primarily be relevant for pension schemes in the private

sector. However, formulas for active policies were also given. At the end he

performed a full QIS5 consequence study for a Norwegian pension fund, by

developing algorithms in Mathematica to perform the necessary calculations.

Gustafsson (2009) thesis was the application of survival analysis to predict

policy churns in a non-life insurance industry. Models and methods were

applied to estimate survival probabilities on customer-level in a competing

risk setting, where churns occur of different types of causes. By following

motor policy holders over a 3-year period, probabilites are estimated which

enables scoring of customers, especially those likely to churn within this time

period. Cause-specific semiparametric hazard functions were modelled with Cox

regression given customer data at the beginning of the study period. The models

were estimated from data on private customers in the Danish insurance company

Codan. The main conclusion was that time-fixed covariate and time-invariant

effect models that were used for prediction might be an over-simplification of

churns on customer-level, as they disregard the impact of customers-specific

events during followup. This suggested more flexible models when analysing

churns.

Tukan (2012) ran two logit regressions analyzing quality of emergency room care

as measured by survival rate and a wellness indicator of patient return within

72 hours of the initial visit in the United States healthcare industry. The data

for these regressions represents January through October 2011 individual level
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data, about 57,000 observations of patient visits gathered from one emergency

room in a low socioeconomic, urban demographic region. These logit results

illustrated that emergency room quality of care as measured by survival rate was

most affected by acuity, age, being Hispanic, and having Medicaid insurance.

For the wellness regression, the presence of a primary physician, being African

American or Asian, having no insurance, primary insurance, or Medicaid, and

age were considered.

Gong (2008) said, estimating causal effects in clinical trials is often complicated

by treatment noncompliance and missing outcomes. In time-to-event studies,

estimation is further complicated by censoring. Censoring is a type of missing

outcome, the mechanism of which may be non-ignorable. While new estimates

have recently been proposed to account for noncompliance and missing outcomes,

few studies have specifically considered time-to-event outcomes, where even the

intention-to-treat (ITT) estimator is potentially biased for estimating causal

effects of assigned treatment. He developed a series of parametric potential-

outcome (PPO) survival models, for the analysis of randomised controlled

trials (RCT) with time-to-event outcomes and noncompliance. Both ignorable

and non-ignorable censoring mechanisms were considered. He approached

model-fitting from a likelihood-based perspective, using the EM algorithm to

locate maximum likelihood estimators. He also gave new formulations for the

average causal effect (ACE) and the complier average causal effect (CACE) to

suit survival analysis. He re-analysed the HIP breast cancer trial data (Baker,

1998); (Shapiro et al., 1988) using the specific PPO-survival models, the Weibull

and log-normal based PPO-survival models, and assumed that the failure time

and censored time distributions both follow Weibull or log-normal distributions.

Furthermore, an extended PPO-survival model was derived, which permitted

investigation into the impact of causal effect after accommodating certain

pre-treatment covariates. Finally he compared the Frangakis-Rubin (F-R) model
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(Frangakis and Rubin, 1999) to the HIP breast cancer trial data.

Alberts (2006) saw that mobile telecommunication market in the Netherlands

has changed from a rapidly growing market, into a state of saturation and fierce

competition. The focus of telecommunication companies has therefore shifted

from building a large customer base into keeping customers ‘in house’. Customers

who switch to a competitor are so called churned customers. Churn prevention,

through churn prediction, is one way to keep customers ‘in house’. In his study he

focused solely on prepaid customers. In contrast to postpaid customers, prepaid

customers are not bound by a contract. The central problem concerning prepaid

customers is that the actual churn date in most cases is difficult to assess. This

is a direct consequence of the difficulty in providing a unequivocal definition of

churning and a lack of understanding in churn behavior. To overcome the problem

he presented the predictive churn model based on the theory of survival analysis.

Also, to compare the performance of the extended Cox model with the established

predictive models he used a decision tree. Both models performed approximately

similar with a sensitivity ranging from 93% to 99% and a specificity ranging from

92% to 97%, depending on the model and the churn definition.
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CHAPTER 3

METHODOLOGY

3.1 Survival Analysis

Survival analysis is a statistical technique used to describe and quantify time to

an event data, (Stevenson, 2007). Survival data is a term used for describing data

that measure the time to a given event of interest. The name survival data arose

because originally events were most often deaths. The term survival data is now

used for all kind of events. In all cases, the event can be seen as a transition from

one state to another, (Wintrebert, 2007). The response is often referred to as a

failure time, survival time, or event time. The term ‘survival time’ specifies the

length of time taken for failure to occur. Situations where survival analyses have

been used in epidemiology include:

• Survival of patients after surgery.

• The length of time taken for cows to conceive after calving.

• The time taken for a farm to experience its first case of an exotic disease.

3.2 Describing Time to an Event

In this section, the probability tools usually encountered in survival analysis and

their properties are described.

Let T be the time variable, considered as a positive real valued variable, having

a continuous distribution with finite expectation. For applications, this variable

represents the time being in a given state or the time between two events. Several

functions characterize the distribution of T:

22



3.2.1 Probability Density Function

In here, the variable under consideration is the length of time taken for an event

to occur (e.g. death). It is also known as the death density function and denoted

by f(t). The proportion of individuals who have died as a function of t is known

as the cumulative death distribution function and is called F(t).

F(t) = Pr(an individual fails before t)

F (t) = P [T 6 t], t > 0 (3.1)

When T is a survival time, F(t) was the probability that a randomly selected

subject from the population will die before time t. If T is a continuous random

variable, then it has a density function f(t), which is related to F(t) through the

following equations

S(t) =Pr(an individual survives longer than t)

F (t) = P [T 6 t] = 1− S(t), (3.2)

If F is differentiable, then the derivative, which is the density function is denoted

as;

f(t) =
dF (t)

dt
= F

′
(3.3)

The function f is sometimes called the event density; it is the rate of death or

failure events per unit time.

3.2.2 Survival Function

Survival Function gives the probability of surviving or been event-free beyond

time t. It is denoted by S(t) and given by;
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S(t) = Pr(T > t) =

∫ ∞
t

f(x)dx = 1− F (t) (3.4)

Survival Function, S(t) is a non-increasing function over time taking on the

value 1 at t = 0, i.e., S(0) = 1. For a proper random variable T, S(∞) =

0, which means that everyone will eventually experience the event. However,

there is the possibility that S(∞)>0. This corresponds to a situation where

there is a positive probability of not “dying” or not experiencing the event. For

example, if the event of interest is the time from response until disease relapse

and the disease has a cure for some proportion of individuals in the population,

then S(∞)>0, where S(∞) corresponds to the proportion of cured individuals,

(Tsiatis and Zhang, 2005)

Similarly, a survival event density function can be defined as

s(t) = S
′
=
dS(t)

dt
=

∫ ∞
t

f(x)dx =
d

dt
[1− F (t)] = −f(t) (3.5)

3.2.3 Hazard Function

Hazard Function represents the probability that an individual alive at t

experiences the event in the next period. The instantaneous rate at which a

randomly-selected individual known to be alive at time (t-1) will die at time t is

called the conditional failure rate or instantaneous hazard, h(t). Mathematically,

instantaneous hazard equals the number that fail between time t and time

t+M(t) divided by the size of the population at risk at time t, divided by M(t).

This gives the proportion of the population present at time t that fail per unit

time.

Instantaneous hazard is also known as the force of mortality, the instantaneous
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death rate, or the failure rate. The mortality rate at time t, where t is generally

taken to be an integer in terms of some unit of time ( e.g., years, months, days,

etc), is the proportion of the population who fail (die) between times t and t+1

among individuals alive at time t, , i.e.,

m(t) = P [t 6 T < t+ 1|T > t] (3.6)

The hazard rate λ(t) is the limit of a mortality rate if the interval of time is taken

to be small (rather than one unit). The hazard rate is the instantaneous rate of

failure (experiencing the event) at time t given that an individual is alive at time

t. Specifically, hazard rate λ(t) is defined by the following equation

λ(t) = lim
4(t)−→0

P [t 6 T < t+4t | T > t]

4t
(3.7)

Therefore, if λ(t) is very small, we have

P [t 6 T < t+ M (t)|T > t] ≈ λ(t) M (t) (3.8)

The definition of the hazard function implies that

λ(t) =

lim
4(t)−→0

P [t6T<t+4t]
4t

P [T > t]
=
f(t)

S(t)
(3.9)

= −S
′
(t)

S(t)
= −dlog{S(t)}

dt
(3.10)

From this, we can integrate both sides to get

∧(t) =
∫ t

0

λ(t)dt = −logS(t) (3.11)

where ∧(t) is referred to as the cumulative hazard function. Here we used the

fact that S(0) = 1.

Hence
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S(t) = e−∧(t) = e−
∫ t
0 λ(t)dt (3.12)

3.3 Censoring

In longitudinal studies exact survival time is only known for those individuals

who show the event of interest during the follow-up period. For others (those

who are disease free at the end of the observation period or those that were lost)

all we can say is that they did not show the event of interest during the follow-up

period. These individuals are called censored observations. Therefore, Censoring

is present when we have some information about a subject’s event time, but we

don’t know the exact event time. An attractive feature of survival analysis is that

we are able to include the data contributed by censored observations right up until

they are removed from the risk set, (Stevenson, 2007). There are generally three

reasons why censoring might occur:

• A subject does not experience the event before the study ends

• A person is lost to follow-up during the study period

• A person withdraws from the study because of death (if death is not the event

of interest) or some other reason.

The following terms are used in relation to censoring: right censoring, left

censoring and interval censoring. Right censoring is the case where an individual

may experience the event of interest after the given time t; we know only that

the individual is alive (not failed) up to the given time. Left censoring is where

an individual has experienced the event of interest prior to the start of the study.

Interval censoring is where the only information is that the event occurs within

some interval of time.

Let T and C represent the failure and censoring time respectively. Then the

three types of censoring can be expressed mathematically as the following:
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Right censoring : T ∈ (Cr,∞) and it is known only that the failure time T is

greater than the observed censoring time Cr, but exact value of failure time is

unobservable.

Left censoring : T ∈ (0, Cl) and it is known only that the failure time T is less

than the observed censoring time Cl, but its exact value is unobservable.

Interval censoring : T ∈ (Cl, Cr) and it is known only that the failure time T

is less than the observed right censoring time Cr and greater than the observed

left censoring Cl, but its exact value is unobservable.

For example, if individuals are right censored at time Ci we know that their

failure time would be at least greater than t, that is T > t, Klein (1997).

Besides censoring, there is another feature, called truncation, which may also

be present in some time-to-event studies. In this thesis, the causal effect and

potential-outcome approach does not consider truncated data. In fact, the

approach proposed in this thesis is based only on right censoring.

3.3.1 Censoring Mechanisms

There are several types of censoring schemes which lead to different likelihood

functions for inference, Cox and Oakes (1984). These are delineated below.

• Type I Censoring: For Type I censoring, the event is observed only if

it occurs prior to some pre-specified time. Censoring time may vary from

individual to individual. Owing to cost or time considerations, the investigators

may terminate the study or report the results before all subjects realize their

events. If no accidental loses or subject withdrawals, censored observations
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have times equal to the length of study time period; the censored time for each

individual is the same and can be treated as a fixed time for a certain trial.

• Type II Censoring: For Type II censoring, the study continues until r

individuals experience the pre-specified event of interest. This number r may

be some predetermined integer. Experiments for testing equipment failure time

often involve this type of censoring. In this case, the censored time for each

individual may be different and can be treated as a random variable. However,

Type II censoring rarely occurs in clinical trials involving human subjects.

• Random censoring: Random censoring involves what is called competing

risks scenario. In this, individuals experience other competing events which may

cause them to be removed from the study, and the primary event of interest is

then not observed.

3.4 Estimation of survival functions

Survival analysis can be based either on an assumption about survival following

a certain distribution or on direct observation based on the actual data. Both

procedures require dealing with censored and uncensored observations. The most

commonly used survival distributions are the negative exponential distribution,

the Weibull distribution, the Gumbel distribution, the Logarithmic normal

distribution or their combinations. Which type of function is best at describing

the survival distribution is mainly dependent on the data and can be carried out

with the Kaplan-Meier method.

3.4.1 Kaplan-Meier

Kaplan-Meier (KM) estimator, also known as the product-limit estimator, is an

estimator for estimating the survival function from lifetime data, (Kaplan and
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Meier, 1958). It is a non-parametric maximum likelihood estimate of S(t), and

incorporates information from all of the observations available, both censored

and uncensored, by considering any point in time as a series of steps defined

by the observed survival and censored times. In the medical research, it might

be used to measure the fraction of patients living for a certain amount of time

after treatment. An Insurer might measure the time of purchase of an insurance

policy until loss occurs or time of compensation after notification of a loss. The

economist might measure the length of time people remain unemployed after

job losses. An engineer might measure the time until failure of machine parts.

Survival function is a series of horizontal steps of declining magnitude which

when a large enough sample is taken approaches the true survival function for

the population. The value of the survival function between successive distinct

sampled observations is assumed to be constant. An important advantage of

Kaplan- Meier curve is that, the method can take into account some types of

censored data, particularly right-censoring, which occurs if an insured withdraws

from a study, i.e., is lost from the sample before the final outcome is observed. On

the plot, small vertical tick-marks indicate losses, where an insured survival time

has been right-censored. When no truncation or censoring occurs the Kaplan

Meier curve is equivalent to the empirical distribution function.

Suppose t1 6 t2 6, ...,6 tk are the ordered failure times.

For tk 6 t 6 t(k+1) , the probability of surviving beyond time t is;

SKM(t) = P (T > t) = P (T > t(k+1)) (3.13)

Implies SKM(t) = P (T > t1, T > t2, . . . , T > tk)

SKM(t) = P (T > t1)
k∏
j=1

P{T > tj+1 | T > tj} (3.14)

But P(T>t) = S(0) = 1,

29



Implies; SKM(t) =
∏k

j=1 P{T > tj+1 | T > tj}

SKM(t) =
∏k

j=1[1− P{T = tj | T > tj}]

ŜKM(t) =
∏j

i=1(1− λ̂j)

But λ̂j = dj/rj

Hence, the Kaplan-Meier estimator of the survival function S(t) is given as;

ŜKM(t) =

j∏
i=1

(1− dj
rj
), for0 6 t 6 t+ (3.15)

where;

ŜKM(t) = Kaplan-Meier estimator of survival at time t

dj= Number of failures (claims) at time tj

rj= Number of individuals alive (at risk) just before the time tj, including those

who will die(claim) at tj

tj, j= 1, 2, . . . , n is the total set of failure(claims) times recorded (with t+ the

maximum failure time).

3.4.2 Variance of the Kaplan Meier estimator (Greenwood

formula)

The Kaplan-Meier estimator is a statistic, and several estimators are used to

approximate its variance. One of the most common of such estimators is the

Greenwood’s formula. For tk 6 t 6 t(k+1) ,

From
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logŜKM(t) =

j∑
rj<k

log(1− dj
rj
) (3.16)

V ar[logŜKM(t)] =

j∑
rj<k

V ar[log

j∏
i=1

(1− dj
rj
)] (3.17)

V ar[logŜKM(t)] =

j∑
rj<k

V ar[log(1− λj)] (3.18)

Applying the Delta Method,

=

j∑
rj<k

[(−1)/(1− λ̂j)]2V ar(λ̂j) (3.19)

By large sample theory,

Ŝ(t) ∼ N [S(t), (S(t)(1− S(t))/n)] (3.20)

But if,

λ̂j ∼ N [λj, (λj(1− λj))/rj]

Then

V ar(λ̂j) = (λj(1− λj))/rj (3.21)

Var[log ŜKM(t)] =
∑j

rj<k
λ̂j/((1− λj))/rj), but λ̂j − dj/rj

V ar[logŜKM(t)] =

j∑
rj<k

dj/rj
(1− dj/rj)rj

(3.22)

If Var[log ŜKM(t)] =
∑j

rj<k

dj
(1− dj/rj)rj

Then Var[log ŜKM(t)] =
∑j

rj<k

dj
(rj − dj)rj
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Therefore,

V ar[logŜKM(t)] =

j∑
rj<k

dj
(rj − dj)rj

(3.23)

Also,

ŜKM(t) = exp[logŜKM(t)]

And Var[ŜKM(t)] = [ŜKM(t)]2V ar[logŜKM(t)]

Hence, the Greenwood Formula is;

V ar[ŜKM(t)] = [ŜKM(t)]2
j∑

rj<k

dj
(rj − dj)rj

(3.24)

In some cases, one may wish to compare different Kaplan-Meier curves. This may

be done by several methods including: the log rank test and the Cox proportional

hazards test.

3.4.3 Confidence interval

The standard error of a large sample for ŜKM(t) is given by;

Se[ŜKM(t)] =

√
V ar[ŜKM(t)] (3.25)

=

√√√√[ŜKM(t)]2
j∑

rj<k

dj
(rj − dj)rj

(3.26)

= ŜKM(t)

√√√√ j∑
rj<k

dj
(rj − dj)rj

(3.27)

The point-wise confidence interval for the Kaplan-Meier estimate is;

ŜKM(t)± Z1−∝/2ŜKM(t)

√√√√ j∑
rj<k

dj
(rj − dj)rj

(3.28)
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3.5 Survival Curves

In survival curves symbols represent each event time, either a death (or claim)

or a censored time. Survival curves estimate the probability that a participant

survives past a certain period by locating the period on the X axis and reading

up and over to the Y axis. The median survival is estimated by locating 0.5 on

the Y axis and reading over and down to the X axis.

3.5.1 Comparing Survival Curves

We are often interested in assessing whether there are differences in survival

(or cumulative incidence of event) among different groups of participants. For

example, in a clinical trial with a survival outcome, we might be interested in

comparing survival between participants receiving a new drug as compared to a

placebo (or standard therapy). In an observational study, we might be interested

in comparing survival between men and women, or between participants with

and without a particular risk factor (e.g., hypertension or diabetes). There are

several tests available to compare survival among independent groups. This thesis

compares the survival among different covariates using the log rank test.

3.6 The Log Rank Test

The log rank test is a popular test to test the null hypothesis of no difference

in survival between two or more independent groups. The test compares the

entire survival experience between groups and can be thought of as a test of

whether the survival curves are identical (overlapping) or not. Survival curves are

estimated for each group, considered separately, using the Kaplain-Meier method

and compared statistically using the log rank test. The log rank test presented

in this thesis is linked to the chi-square test statistic and compares observed to

expected numbers of events at each time point over the follow-up period using
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R statistical package. Mathematically the test statistic for the log rank test is

represented as;

χ2 =
∑ (

∑
Ojt −

∑
Ejt)

2∑
Ejt

(3.29)

where
∑
Ojt represents the sum of the observed number of events in the jth group

over time (e.g., = 1,2) and
∑
Ejt represents the sum of the expected number of

events in the jth group over time.

The sums of the observed and expected numbers of events are computed for each

event time and summed for each comparison group. The log rank statistic has

degrees of freedom equal to k-1, where k represents the number of comparison

groups. In this thesis, k = 2 so the test statistic has 1 degree of freedom.

There are several variations of the log rank statistic as well as other tests to

compare survival functions between independent groups. For example, a popular

test is the modified Wilcoxon test which is sensitive to larger differences in

hazards.

3.7 Cox-Regression Model

One of the most popular regression techniques for survival outcomes is Cox

proportional hazards analysis. There are several important assumptions for

appropriate use of the Cox proportional hazards regression model, including

1. Independence of survival times between distinct individuals in the sample,

2. A multiplicative relationship between the predictors and the hazard and,

3. A constant hazard ratio over time.

Cox regression (or proportional hazards regression) allows analyzing the effect of

several risk factors on survival. The probability of the endpoint (death, or any

other event of interest, e.g. making of a claim) is called the hazard. A probability
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must lie in the range 0 to 1. However, the hazard represents the expected number

of events per one unit of time. As a result, the hazard in a group can exceed 1.

The hazard is modeled as:

λ(t; z) = exp(zβ)λ0(t) (3.30)

For the jth individual let the values of z be zj = (z1j, . . . , zpj)

Taking the natural logarithm (ln) of both sides, to produce the following which

relates the log of the relative hazard to a linear function of the predictors or risk

factors;

ln{λ(t)/λ0(t)} = β1zj1 + β2zj2 + · · ·+ βkzjk (3.31)

where λ(t) is the expected hazard at time t, λ0(t) is the unknown baseline hazard

function at time t, β is a p x 1 vector of unknown parameters. The z’s are assume

to be independent of time(constant covariates), and j is the number of variables

considered in the study.

3.7.1 Estimation of the Cox Proportional Hazard Model

Here, we describe how estimates are obtained for the parameters of the Cox

model. The parameters are the β′s in the general Cox model formula. The

corresponding estimates of these parameters are called Maximum Likelihood

(ML) Estimates.

The Cox proportional hazards model is called a semi-parametric model, because

there are no assumptions about the shape of the baseline hazard function. A

Cox model was explicitly designed to be able to estimate the hazard ratios

without having to estimate the baseline hazard function in this study. There

are however, other assumptions as noted above (i.e., independence, changes

in predictors produce proportional changes in the hazard regardless of time,
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and a linear association between the natural logarithm of the relative hazard

and the predictors). Therefore, the likelihood function is actually called a

"partial" likelihood function Cox (1975) because the likelihood formula considers

probabilities only for those subjects who fail.

3.8 Hypothesis

To compare the survival between variables the hypothesis to be used is as follows:

Ho : The survival curves are identical (or S1t = S2t)

H1 : The survival curves are not identical (or S1t 6= S2t, at any time t)(p<0.05)

The dependent variable is the time it takes for claim to occur and to be paid

(survival time). Gender, age, marital status, type of policy, type of vehicle are

the independent variables over time t and nature of the claim is a time-dependent

covariate incorporated into the survival analysis model since the risk changes over

time. The hypothesis then undertakes the form:

h(t, z) = βo + β1z1 + β2z2 + β3z3 + β4z4 + β5z5 + β6z6 (3.32)

For motor insurance policy holders who claimed and are paid.

The β′is are estimated coefficients of the regression model where,

z1 : gender,

z2 : age,

z3 : marital status,

z4 : type of policy,

z5 : type of vehicle,

z6 : nature of claim.
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These variables are represented by dummy variables(0 or 1) using SPSS software

package. The required model for the research is however, dependent on the

significance of each of these factors at a level of significance of 0.05.

3.9 Proportionality Assumption

A very important assumption for the appropriate use of the log rank test and

the Cox proportional hazards regression model is the proportionality assumption.

Specifically, we assume that the hazards are proportional over time which implies

that the effect of a risk factor is constant over time. There are several approaches

to assess the proportionality assumption, some are based on statistical tests and

others involve graphical assessments.

In the statistical testing approach, predictor by time interaction effects are

included in the model and tested for statistical significance. If one (or more) of

the predictor by time interactions reaches statistical significance (e.g., p<0.05),

then the assumption of proportionality is violated. An alternative approach

to assessing proportionality is through graphical analysis. There are several

graphical displays that can be used to assess whether the proportional hazards

assumption is reasonable. These are often based on residuals and examine

trends(or lack thereof) over time, Hosmer and Lemeshow (1999).

If either a statistical test or a graphical analysis suggest that the hazards are

not proportional over time, then the Cox proportional hazards model is not

appropriate, and adjustments must be made to account for non-proportionality.

One approach is to stratify the data into groups such that within groups the

hazards are proportional, and different baseline hazards are estimated in each

stratum.

37



3.10 Competing Risks

The competing risks issue is one in which there are several possible outcome

events of interest. For example, this thesis is to determine if the type of insurance

affects the time it takes for a claim to be settled and to establish which variables

contribute significantly to the time for a claim to be settled in the insurance

industry in Ghana. This variables include; gender, age, marital status, type

of policy, type of vehicle, and nature of the claim. The investigator measures

whether each of the component outcomes occurs during the study observation

period as well as the time to each distinct event. The goal of the analysis is

to determine the risk factors for each specific outcome and the outcomes are

correlated; (Kalbfleisch and Prentice, 2002).
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CHAPTER 4

DATA ANALYSIS AND RESULTS

4.1 Introduction

In this chapter, the analysis and results were obtained by using the various

statistical tools and procedures described in the previous chapter. It includes a

brief descriptive analysis of the raw data summarized in tables 4.1, 4.2, 4.3, 4.4,

4.5 and 4.6. The main results were achieved by the Kaplan-Meier (product limit)

approach and Cox regression model based on a 5 % level of statistical significance.

Table 4.1 shows the number of insureds that bought motor insurance. The

columns shows the covariates, insureds, frequencies and percentages respectively.

Table 4.1: Frequency Distributions of Insureds that bought Motor Insurance
Covariates Insureds Frequency Percent(%)

Gender Male 658 65.8
Female 342 34.2
Total 1000 100

Age 21 - 29 370 37.0
30 - 45 328 32.8
46 - 59 237 23.7
≥ 60 65 6.5
Total 1000 100

Marital Status Single 583 58.3
Married 417 41.7
Total 1000 100

Policy Type Comprehensive 559 55.9
Third Party 441 44.1
Total 1000 100

Vehicle Type Saloon 407 40.7
Station Wagon 219 21.9
Truck 73 7.3
Pickup 127 12.7
Motor Cycle 26 2.6
Minibus 61 6.1
Bus 86 8.6
Total 1000 100.0

39



Insureds that bought Motor Insurance and the number that Claimed:

Figure 4.1 shows the frequency distribution of insureds that claimed and those

that did not claim.

Figure 4.1: A Bar Chart showing Insureds that Claim

Figure 4.1 shows that out of 1,000 insureds that bought motor insurance 640

claimed and 360 are not claimants.

Insureds that Claimed Motor Insurance:

Table 4.2 shows the frequency distribution of insureds that Claimed. The first

column shows the covariates while the second shows the claimants and the third

and fourth columns shows the frequency and percentages respectively.
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Table 4.2: Frequency Distributions of Insureds who Claimed Motor Insurance
Covariates Claimants Frequency Percent(%)

Gender Male 427 66.7
Female 213 33.7
Total 640 100.0

Age 21 - 29 233 36.4
30 - 45 205 32.0
46 - 59 159 24.8
≥ 60 43 6.7
Total 640 100.0

Marital Status Single 378 59.1
Married 262 40.9
Total 640 100.0

Policy Type Comprehensive 388 60.6
Third Party 252 39.4
Total 640 100.0

Vehicle Type Saloon 283 44.2
Station Wagon 151 23.6
Truck 43 6.7
Pickup 79 12.3
Motor Cycle 19 3.0
Minibus 34 5.3
Bus 31 4.8
Total 640 100.0

Nature of Claim Own Damage 139 21.7
Own Damage-Total loss 52 8.1
Theft 36 5.6
Collision 179 28.0
Breakage of Windshield 91 14.2
Third Party Damage & Injury 59 9.2
Third Party Damage & Injury(Fatal) 84 13.1
Total 640 100.0

The number of Claimants whose losses have been Paid:

Figure 4.2 shows the frequency distribution of claimants whose losses have been

paid and those not paid.
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Figure 4.2: A Bar Chart showing Remark of Insureds who Claimed

Figure 4.2 shows that out of the 640 claimants 382 have been paid and 258 have

not been paid. This shows that 59.7 % have been paid and 40.3 % have not been

paid.

Motor Insurance Claimants by Age:

Table 4.3 shows the frequency distributions of claimants by age. The first column

shows the covariates and the second shows the claimants followed by the various

categories of age and their percentages respectively.
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Table 4.3: Frequency Distributions of Claimants by Age
Covariates Claimants 21 - 29 (%) 30 - 45 (%) 46 - 59 (%) ≥ 60 (%) Total(%)

Gender Male 154 66.1 126 61.5 118 74.2 29 67.4 427 66.7
Female 79 33.9 79 38.5 41 25.8 14 32.6 213 33.3
Total 233 100 205 100 159 100 43 100 640 100

Marital Status Single 139 59.7 124 60.5 88 55.3 27 62.8 378 59.1
Married 94 40.3 81 39.5 71 44.7 16 37.2 262 40.9
Total 233 100 205 100 159 100 43 100 640 100

Policy Type Comprehensive 144 61.8 123 60.0 99 62.3 22 51.2 388 60.6
Third Party 89 38.2 82 40.0 60 37.7 21 48.8 252 39.4
Total 233 100 205 100 159 100 43 100 640 100

Vehicle Type Saloon 160 68.7 75 36.6 40 25.2 8 18.6 283 44.2
Station Wagon 62 26.6 53 25.9 29 18.2 7 16.3 151 23.6
Truck 1 0.4 11 5.4 22 13.8 9 20.9 43 6.7
Pickup 5 2.1 39 19.0 25 15.7 10 23.3 79 12.3
Motor Cycle 4 1.7 11 5.4 4 2.5 0 0.0 19 3.0
Minibus 0 0.0 9 4.4 20 12.6 5 11.6 34 5.3
Bus 1 0.4 7 3.4 19 11.9 4 9.3 31 4.8
Total 233 100 205 100 159 100 43 100 640 100

Nature of ClaimOwn Damage 49 21.0 48 23.4 35 22.0 7 16.3 139 21.7
Own Damage-Total loss 13 5.6 25 12.2 14 8.8 0 0.0 52 8.1
Theft 16 6.9 8 3.9 10 6.3 2 4.7 36 5.6
Collision 62 26.6 62 30.2 38 23.9 17 39.5 179 28.0
Breakage of Windshield 27 11.6 26 12.7 27 17.0 11 25.6 91 14.2
Third Party Damage & Injury 28 12.0 12 5.9 16 10.1 3 7.0 59 9.2
Third Party Damage & Injury(Fatal) 38 16.3 24 11.7 19 11.9 3 7.0 84 13.1
Total 233 100 205 100 159 100 43 100 640 100

Table 4.3 shows that the age group with the highest claims was 21 - 29 years

with 233 claim cases. The age group 30 - 45 years reported 205 claims and 46 -

59 years also had 159 claims. Lastly the age group 60 years and above had the

least number of claims as 43 claims.

Motor Insurance Claimants by Gender:

Table 4.4 shows the frequency distributions of claimants by gender. The first

column shows the covariates and the second shows the claimants. The third

column shows the number of male claimants and their percentages and the fourth

column shows the number of female claimants and their percentages. The last

column shows the totals and their percentages.
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Table 4.4: Frequency Distributions of Claimants by Gender
Covariates Claimants Male (%) Female (%) Total (%)

Age 21 - 29 154 36.1 79 37.1 233 36.4
30 - 45 126 29.5 79 37.1 205 32.0
46 - 59 118 27.6 41 19.2 159 24.8
≥ 60 29 6.8 14 6.6 43 6.7
Total 427 100 213 100 640 100

Marital Status Single 266 62.3 112 52.6 378 59.1
Married 161 37.7 101 47.4 262 40.9
Total 427 100 213 100 640 100

Policy Type Comprehensive 264 61.8 124 58.2 388 60.6
Third Party 163 38.2 89 41.8 252 39.4
Total 427 100 213 100 640 100

Vehicle Type Saloon 191 44.7 92 43.2 283 44.2
Station Wagon 94 22.0 57 26.8 151 23.6
Truck 19 4.4 24 11.3 43 6.7
Pickup 56 13.1 23 10.8 79 12.3
Motor Cycle 18 4.2 1 0.5 19 3.0
Minibus 25 5.9 9 4.2 34 5.3
Bus 24 5.6 7 3.3 31 4.8
Total 427 100 213 100 640 100

Nature of Claim Own Damage 90 21.1 49 23.0 139 21.7
Own Damage-Total loss 31 7.3 21 9.9 52 8.1
Theft 25 5.9 11 5.2 36 5.6
Collision 115 26.9 64 30.0 179 28.0
Breakage of Windshield 70 16.4 21 9.9 91 14.2
Third Party Damage & Injury 37 8.7 22 10.3 59 9.2
Third Party Damage & Injury(Fatal) 59 13.8 25 11.7 84 13.1
Total 427 100 213 100 640 100

Table 4.4 shows that the number of males involved in motor accident was 427

claimants and the number of females involved was 233 claimants.

Motor Insurance Claimants by Marital Status:

Table 4.5 shows the frequency distributions of claimants by marital status. The

first column shows the covariates and the second shows the claimants. The third

column shows the number of married claimants and their percentages and the

fourth column shows the number of claimants who are not married and their

percentages. The last column shows the totals and their percentages.
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Table 4.5: Frequency Distributions of Claimants by Marital Status
Covariates Claimants Married (%) Single (%) Total (%)

Age 21 - 29 94 35.9 139 36.8 233 36.4
30 - 45 81 30.9 124 32.8 205 32.0
46 - 59 71 27.1 88 23.3 159 24.8
≥ 60 16 6.1 27 7.1 43 6.7
Total 262 100 378 100 640 100

Gender Male 161 61.5 266 70.4 427 66.7
Female 101 38.5 112 29.6 213 33.3
Total 262 100 378 100 640 100

Policy Type Comprehensive 154 58.8 234 61.9 388 60.6
Third Party 108 41.2 144 38.1 252 39.4
Total 262 100 378 100 640 100

Vehicle Type Saloon 108 41.2 175 46.3 283 44.2
Station Wagon 67 25.6 84 22.2 151 23.6
Truck 22 8.4 21 5.6 43 6.7
Pickup 27 10.3 52 13.8 79 12.3
Motor Cycle 6 2.3 13 3.4 19 3.0
Minibus 18 6.9 16 4.2 34 5.3
Bus 14 5.3 17 4.5 31 4.8
Total 262 100 378 100 640 100

Nature of Claim Own Damage 50 19.1 89 23.5 139 21.7
Own Damage-Total loss 18 6.9 34 9.0 52 8.1
Theft 18 6.9 18 4.8 36 5.6
Collision 74 28.2 105 27.8 179 28.0
Breakage of Windshield 35 13.4 56 14.8 91 14.2
Third Party Damage & Injury 24 9.2 35 9.3 59 9.2
Third Party Damage & Injury(Fatal) 43 16.4 41 10.8 84 13.1
Total 262 100 378 100 640 100

Table 4.5 shows that the number of married claimants involved in motor accident

was 262 and those not married was 378.

Motor Insurance Claimants by Policy Type:

Table 4.6 shows the frequency distributions of claimants by policy type. The

first column shows the covariates and the second shows the claimants. The

third column shows the number of comprehensive policy claimants and their

percentages and the fourth column shows the number of third party policy

claimants and their percentages. The last column shows the totals and their

percentages.
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Table 4.6: Frequency Distributions of Claimants by Policy Type
Covarites Claimants Comprehensive (%) Third Party (%) Total (%)

Age 21 - 29 144 37.1 89 35.3 233 36.4
30 - 45 123 31.7 82 32.5 205 32.0
46 - 59 99 25.5 60 23.8 159 24.8
≥ 60 22 5.7 21 8.3 43 6.4
Total 388 100 252 100 640 100

Gender Male 264 68.0 163 64.7 427 66.7
Female 124 32.0 89 35.3 213 33.3
Total 388 100 252 100 640 100

Marital Status Single 234 60.3 144 57.1 378 59.1
Married 154 39.7 108 42.9 262 40.9
Total 388 100 252 100 640 100

Vehicle Type Saloon 174 44.8 109 43.3 283 44.2
Station Wagon 95 24.5 56 22.2 151 23.6
Truck 28 7.2 15 6.0 43 6.7
Pickup 48 12.4 31 12.3 79 12.3
Motor Cycle 14 3.6 5 2.0 19 3.0
Minibus 13 3.4 21 8.3 34 5.3
Bus 16 4.1 15 6.0 31 4.8
Total 388 100 252 100 640 100

Nature of Claim Own Damage 137 35.3 2 0.8 139 21.7
Own Damage-Total loss 52 13.4 0 0.0 52 8.1
Theft 36 9.3 0 0.0 36 5.6
Collision 1 0.3 178 70.6 179 28.0
Breakage of Windshield 91 23.5 0 0.0 91 14.2
Third Party Damage & Injury 22 5.7 37 14.7 59 9.2
Third Party Damage & Injury(Fatal) 49 12.6 35 13.9 84 13.1
Total 388 100 252 100 640 100

Table 4.6 shows that 388 comprehensive policies claims were reported and 252

of third party claim were also reported. This shows that comprehensive policies

are sold mostly by our insurers to insureds compared to that of the third party

liability.

4.2 Estimation of Survival Time using the

Kaplan-Meier(product limit) approach on

Motor Insurance Policies

The Kaplan-Meier approach use observed event times and censoring times by

computing their survival probabilities. The Kaplain-Meier estimate for insurance

policies been sold out of which some insureds claimed whilst others did not is
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shown in Table 4.7 below. The first column shows insureds that claimed and

those that did not. The 25th, 50th and 75th percentile are presented in the

second, third and fourth columns. The mean and 95% confidence interval are

presented in the fifth and sixth columns respectively.

Table 4.7: Summary of Time from the start of an insurance policy to claim
occurring for the entire data

Percentiles Mean

Claim
25% 50% 75% 95% Confidence Interval

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Lower Bound Upper Bound

No 365.000 .000 365.000 .000 365.000 .000 365.000 .000 365.000 365.000
Yes 270.000 5.677 207.000 7.378 43.000 6.530 179.819 4.531 170.937 188.700
Overall 365.000 .000 270.000 7.115 126.000 15.636 246.484 4.039 238.567 254.401

The quartile estimates shows that the time interval for purchasing an insurance

without a claim is 365 days. Also the time interval for purchasing an

insurance with a claim is 270 days for the 25th percentile whilst at the 75th

percentile is 43 days. The 50th percentile (average time) for a loss to

occur to a customer is within 207 days with a 95% confidence interval of

170.937 and 188.700 days. The mean for both groups was reported as 246.484

days.

Log Rank Test for Claim:

Figure 4.3 shows the log rank test for the different levels of claim reported. The

columns shows the chi-square test of the reported claims recorded, the degree of

freedom and their significance respectively using SPSS.

Figure 4.3: Test of equality of survival distributions for the different levels of
Claim.
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Figure 4.3 compares the survival of insurance between insureds with and without

claim. For this test the decision rule is to Reject Ho if χ2>3.84. We observe X2

= 950.190 on 1 degree of freedom for the log-rank test, which exceeds the critical

value of 3.84. Therefore, we reject Ho.

4.3 Estimation of Survival Time using the

Kaplan-Meier(product limit) approach on

Motor Insurance Claim Policies

Table 4.8 shows the average time for claimants to be paid their losses. The

columns shows the insureds that had a loss, the 25th, 50th and 75th percentile,

the means and 95% confidence interval respectively.

Table 4.8: Summary of Time from the start of a motor claim report date to period
of payment

Percentiles Mean

Claim
25% 50% 75% 95% Confidence Interval

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Lower Bound Upper Bound

Yes 346.000 11.282 270.000 9.287 126.000 21.006 255.725 6.437 243.108 268.342
Overall 346.000 11.282 270.000 9.287 126.000 21.006 255.725 6.437 243.108 268.342

The time interval for purchasing an insurance with a claim and paid is 346 days

and 21 days for the 25th and 75th percentile respectively. And the average

time for a loss to be paid is 270 days at the 50th percentile. The mean for

settlement of a claim is 255.725 days with a 95% confidence interval of 243.108

and 268.342 days.

Therefore the average time to claim settlement for this data holding all variables

constant is 270 days with a mean of 255.725 days.

Kaplan-Meier survival curve for a claim to be paid:

Figure 4.4 shows the cumulative incidence(probabilities) of claim paid to

claimants enrolled in the study. The horizontal axis represents time in days,

and the vertical axis shows the probability of survival.
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Figure 4.4: Plot of Survival Function for a claim to be paid

Figure 4.4 shows the Kaplan-Meier survival curve. In the survival curve the

symbols represent each event time, either a claim paid or a censored time. The

median survival is estimated by locating 0.5 on the Y axis and reading over and

down to the X axis. The median survival is approximately 270 days.

4.4 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Age and Marital Status

Figure 4.5 shows the log rank test for the different levels of Marital Status against

Age. The columns shows the chi-square test, the degree of freedom and their

significance respectively using SPSS.
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Figure 4.5: Test of equality of survival distributions for the different levels of
Marital Status against Age.

Comparing marital status against age using the log rank test suggest that do not

reject Ho because 1.830 < 3.84. We do not have statistically significant evidence

at p < 0.05 to show that the time to pay claimants is different between groups.

This is shown in Figure 4.5

Kaplan-Meier survival curve for a claim to be paid for Marital Status

against Age:

Figure 4.6 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.
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Figure 4.6: Plots of Survival Functions for the average time for a claim to be paid
for Marital Status against Age.

The Figure 4.6 above shows the survival of claim payment among the various age

groups either married or not. It is observed that survival curves do not show much

separation, consistent with the non-significance findings in the test of hypothesis.

4.5 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Gender and Type of Vehicle

Figure 4.7 shows the log rank test for the different levels of Gender against Type

of Vehicle. The columns shows the chi-square test, the degree of freedom and
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their significance respectively using SPSS.

Figure 4.7: Test of equality of survival distributions for the different levels of
Gender against Type of Vehicle.

In here p=0.604 > 0.05 we say that there is really no difference among survival

curves between all the groups hence not statistically significant. Thus Fail to

reject Ho

Kaplan-Meier survival curve for a claim to be paid for Gender against

Type of Vehicle:

Figure 4.8 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.
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Figure 4.8: Plots of Survival Functions for the average time for a claim to be paid
for Gender against Type of Vehicle

Figure 4.8 shows the survival of claim payment for gender against type of vehicle.
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4.6 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Type of Policy and Age

Figure 4.9 shows the log rank test for the different levels of Type of Policy against

Age. The columns shows the chi-square test, the degree of freedom and their

significance respectively using SPSS.

Figure 4.9: Test of equality of survival distributions for the different levels of
Type of Policy against Age

The test statistic is approximately distributed as chi-square with 1 degree of

freedom. Thus, the critical value for the test can be found in the table of critical

values of the X2 Distribution. For this test the decision rule is to Reject Ho as

seen in Figure 4.9. This is because X2 = 21.623 > 3.84 showing there is difference

among survival curves between the groups hence statistically significant, p < 0.05.

Kaplan-Meier survival curve for a claim to be paid for Type of Policy

against Age:

Figure 4.10 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.
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Figure 4.10: Plots of Survival Functions for the average time for a claim to be
paid for Type of Policy against Age.

Figure 4.10 shows the survival of claim payment for type of policy against age.

4.7 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Type of Policy and Gender

Figure 4.11 shows the log rank test for the different levels of Type of Policy

against Gender. The columns shows the chi-square test, the degree of freedom

and their significance respectively using SPSS.
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Figure 4.11: Test of equality of survival distributions for the different levels of
Type of Policy against Gender

Comparing the Type of Policy issued to an insured against covariate Gender

notice that the survival curves show separation indicating they are statistically

significant. This is supported when performing a log rank test, which gives a

test statistic X2 = 21.933 on 1 degree of freedom in Figure 4.11

Kaplan-Meier survival curve for a claim to be paid for Type of Policy

against Gender:

Figure 4.12 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.

Figure 4.12: Plots of Survival Functions for the average time for a claim to be
paid for Type of Policy against Gender.

Figure 4.12 shows the survival of claim payment for type of policy against gender.

56



4.8 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Type of Policy and Marital Status

Figure 4.13 shows the log rank test for the different levels of Type of Policy against

Marital Status. The columns shows the chi-square test, the degree of freedom

and their significance respectively using SPSS.

Figure 4.13: Test of equality of survival distributions for the different levels of
Type of Policy against Marital Status

The log rank test of covariate Type of Policy against Marital Status, gives a

border line significant effect of the number of claims reported and paid prior to

the study on survival time, Figure 4.13

Kaplan-Meier survival curve for a claim to be paid for Type of Policy

against Marital Status:

Figure 4.14 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.
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Figure 4.14: Plots of Survival Functions for the average time for a claim to be
paid for Type of Policy against Marital Status.

Figure 4.14 shows the survival of claim payment for type of policy against marital

status.

4.9 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims Differs

for Type of Policy and Type of Vehicle

Figure 4.15 shows the log rank test for the different levels of Type of Policy

against Type of Vehicle. The columns shows the chi-square test, the degree of

freedom and their significance respectively using SPSS.

Figure 4.15: Test of equality of survival distributions for the different levels of
Type of Policy against Type of Vehicle
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Figure 4.15 shows that test statistic X2 = 22.189 >3.84. Hence conclude that,

there is a difference in survival times between them under the null of no difference

in survival, a highly significant result.

Kaplan-Meier survival curve for a claim to be paid for Type of Policy

against Type of Vehicle:

Figure 4.16 shows the cumulative survival of claim paid to claimants. The

horizontal axis represents time in days, and the vertical axis shows the probability

of survival.

Figure 4.16: Plots of Survival Functions for the average time for a claim to be
paid for Type of Policy against Type of Vehicle.

Figure 4.16 shows the survival of claim payment for type of policy against type

of vehicle.
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4.10 Analysis on Whether Survival Time to

Payment of Motor Insurance Claims is

Affected by Type of Policy

Table 4.9 shows the average time for claimants to be paid their losses for the type

of policy issued. The columns shows the insureds that had a loss, the 25th, 50th

and 75th percentile, the means and 95 % confidence interval respectively.

Table 4.9: Summary of Time from the start of a motor claim report date to period
of payment (total duration) for the Type of Policy issued.

Percentiles Mean

Type of Policy
25% 50% 75% 95% Confidence Interval

Estimate Std. Error Estimate Std. Error Estimate Std. Error Estimate Std. Error Lower Bound Upper Bound

Comprehensive 400.000 16.355 310.000 11.170 211.000 19.875 282.103 8.306 265.824 298.383
TP 335.000 7.276 227.000 14.935 53.000 14.009 219.879 9.849 200.575 239.184
Overall 346.000 11.282 270.000 9.287 126.000 21.006 255.725 6.437 243.108 268.342

The time interval for purchasing a Comprehensive and Third Party Insurance

with a claim to be compensated and for a legal liabilities to be paid is 400 days

and 335 days for the 25th percentile whilst at the 75th percentile is 211 days and

53 days respectively. The average time for a claimant to be paid is 310 days and

227 days for both policies at the 50th percentile shown in Table 4.9. The mean

for both groups was reported as 255.725 days.

Kaplan-Meier survival curve for a claim to be paid for Type of Policy:

Figure 4.17 shows the cumulative survival of claim paid to claimants for type of

policy issued. The horizontal axis represents time in days, and the vertical axis

shows the probability of survival.
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Figure 4.17: Plot of Survival Function for the average time for a claim to be paid
for the Type of Policy issued.

Figure 4.17 shows that the survival probabilities for Comprehensive policies

are higher than the survival probabilities for Third Party policies, suggesting a

survival benefit. The median survival is approximately 270 days.

Log Rank Test for Type of Policy:

Figure 4.18 shows the log rank test for the different levels of Type of Policy. The

columns shows the chi-square test, the degree of freedom and their significance

respectively using SPSS.
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Figure 4.18: Test of equality of survival distributions for the different levels of
Type of Policy.

Figure 4.18 compare survival between the groups using the log rank test. Reject

Ho because df = k-1=2-1=1 and p<0.05 as in the critical value for the X2

distribution. Thus X2 > 3.84. Hence the type of policy issued to a clientele

is a significant variable in an insurance industry.

4.11 Modeling the Average Time of How Motor

Insurance Claims are Handled and the

Variables that are Affected.

4.11.1 The Cox Regression Model for Motor Insurance

Policy Holders Who Claimed and are Paid.

Using a hazard model (Cox) with the various risk factors mentioned earlier and

allowing for time-varying effects, produced the analysis below in Table 4.10 using

R. The first column shows the various risk factors with their regression coefficient

(β) in the second column. The third column shows the exponential coefficient and

their standard error in the fourth column. The fifth column shows the z-values

and the sixth column shows the p-values.
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Table 4.10: Analysis of Maximum Likelihood Estimate for Cox Regression
Risk Factor coef (β) exp(coef) se(coef) z Pr(> |z|)
Age -0.04242 0.95847 0.05762 -0.736 0.4616
Gender 0.01549 1.01561 0.11317 0.137 0.8911
Marital Status -0.11914 0.88769 0.10680 -1.116 0.2646
Type of Policy 0.52178 1.68503 0.11364 4.592 4.4e-06 ***
Type of Vehicle 0.08540 1.08915 0.03330 2.564 0.0103 *
Nature of Claim -0.05470 0.94677 0.02992 -1.828 0.0675 .

Table 4.10 shows that at df=6, the covariate (Type of Policy, and Type of Vehicle),

p<0.05 are highly significant on the effect of survival time of having a motor

insurance. Also, the parameter estimates represent the increase in the expected

log of the relative hazard for each one unit increase in the predictor, holding other

predictors constant. There is 0.52178 unit increase in expected log of the relative

hazard for type of policy, holding type of vehicle constant. Lastly a 0.08540 unit

increase in expected log of the relative hazard for type of vehicle, holding type of

policies constant.

Hence from Table 4.10 the Cox regression model for the study is;

log
λ(t)

λo(t)
= 0.52178z1 + 0.08540z2

where:

λ(t) is the expected hazard

λo(t) is the baseline hazard function

z1 is Type of Policy

z2 is Type of Vehicle

Therefore;

λ(t) = λo(t)e
(0.52178z1+0.08540z2)

If;

S(t) = e−∧(t) = e−
∫ t
0 λ(u)du
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Then;

S(t) = e−
∫ t
0 λo(u)e

(0.52178z1+0.08540z2)du

It is observed that there is a positive association between type of policy, and

type of vehicle. This shows there is increased risk of claims for insureds when

under insurance coverage. Type of Policies are to pay for legal liabilities (i.e.,

restitution) as well as material damages, Type of Vehicle is dependent on the

make, usage and cubic capacity of the vehicle.

Hazard Ratio Computation (The R Procedure):

Table 4.11 computes the hazard ratios of the variables used in the study. The

first column shows the various risk factors. The second shows the regression

coefficient (β) with their p-values in the third column respectively. The fourth

column shows their hazard ratios with their 95% confidence interval.

Table 4.11: Analysis of Maximum Likelihood Estimate for Cox Regression
Risk Factor coef (β) Pr(> |z|) Hazard Ratio (HR)(95% CI for HR)

Age -0.04242 0.4616 0.95847(0.8561 - 1.073)
Gender 0.01549 0.8911 1.01561(0.8136 - 1.268)
Marital Status -0.11914 0.2646 0.88769(0.7200 - 1.094)
Type of Policy 0.52178 4.4e-06 *** 1.68503(1.3486 - 2.105)
Type of Vehicle 0.08540 0.0103 * 1.08915(1.0203 - 1.163)
Nature of Claim -0.05470 0.0675 0.94677 (0.8929 - 1.004)

.

Computing hazard ratios by exponentiating the parameter estimates in Table

4.11 for type of policy, there is a 1.68503 times expected hazard, holding vehicle

type constant(or there is 68.5% increase in the expected hazard relative to a one

year increase in type of policy). Similarly, the expected hazard is 1.08915 times

higher for type of vehicle, holding type of policy constant.

All of the parameter estimates are estimated taking the other predictors into

account. After accounting for type of policies, and type of vehicle, there are
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no statistically significant associations between age, gender, marital status and

nature of claim. This is not to say that these risk factors are not associated with

claims; their lack of significance is likely due to confounding (interrelationships

among the risk factors considered). Notice that for the statistically significant

risk factors (i.e., type of policies, and type of vehicle), that the 95% confidence

intervals for the hazard ratios do not include 1 (the null value). In contrast, the

95% confidence intervals for the non-significant risk factors (age, gender, marital

status and nature of claim) include the null value.
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CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

In this chapter, the conclusions were made based on the study findings and the

recommendations were also made based on the conclusions drawn.

5.2 Conclusion

In this thesis, the study determined the average time it takes to handle motor

claims in the automobile insurance industry in Ghana. Analyzing a given data was

able to calculate the changes in the survival function, especially in a competing

risk setting.

The Preliminary Analysis indicates that:

• Regarding the age of the insured; young and middle aged drivers were at higher

risk. This is what we can expect, since older people drive carefully.

• Regarding the gender of the insured; males are most often involved in accidents

compared to females.

• Regarding the marital status of the insured; singles are mostly involved in

accidents than the married.

• Comprehensive policies were mostly bought compared to Third Party policies.

This was because most individuals want to protect their assets and value it. Also

every company would want to grow in revenue and the sales of one comprehensive

policy can cover about several fold on Third party policies.

Overall, the main results from the Survival Analysis indicates that;
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1. The quartile estimate for purchasing a motor insurance without a claim is

365 days at the 50th percentile.

2. The average time for a loss to occur is within 207 working days.

3. The average time to payment of motor insurance claims is within 270

working days.

4. The average time to payment of motor comprehensive policy claims is within

310 working days.

5. The average time to payment of motor third party policy claims is within

227 working days.

6. The covariates (age, gender, marital status, and nature of claim) were not

significant risk factors that affect the processing (payment) of a claim.

7. Type of policy, and type of vehicle were highly significant and influence the

payment of claims.

5.3 Recommendations

From the conclusions drawn it is therefore recommended that the regulator, NIC

and other stakeholders should ensure the following;

More research on the average time to handling a claim in the motor insurance

industry is done particularly, in other insurance companies in Ghana in order

to monitor them so that appropriate control measures and strategies could be

approved and implemented to control its failure.

Insurers identify the bottleneck causing high number of days to claims payment

over and above the benchmark set by NIC.
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The average time to payment of motor insurance claims is not efficient. Hence

insurers manage the credit risk liquidity by putting in more resources as to how

to pay claims promptly and avoid piling up the books.

Actuaries and software programmers come together to design a premium software

in which claims processed by all insurance companies can be assessed by the

regulator, NIC to prevent poor delivery of claims payment.

5.4 Recommendation for further research

• The actuaries should research into the premium pricing and reserves in the

Ghana market as to whether they are viable and adequate.

• Identify those customers that are loyal and less risky and determine how they

can be compensated in other to encourage them to stay.
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APPENDIX A

> library(foreign, pos=17)

> Dataset <- read.spss("C:/Users/Patricia/Desktop/USE.sav",

+ use.value.labels=FALSE, max.value.labels=Inf, to.data.frame=TRUE)

> <-fixdata set

> Dataset <- within(Dataset, {

+ Claim <- as.factor(Claim)

+ })

> Dataset <- within(Dataset, {

+ TypeofVehicle <- as.factor(TypeofVehicle)

+ })

> CoxModel.1 <- coxph(Surv(TimeofPayment,Remark) ~ TypeofPolicy*TypeofVehicle

+ + strata(Claim), method="breslow", data=Dataset)

> summary(CoxModel.1)

Call:

coxph(formula = Surv(TimeofPayment, Remark) ~ TypeofPolicy *

TypeofVehicle + strata(Claim), data = Dataset, method = "breslow")

n= 640, number of events= 382

(372 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

TypeofPolicy 1.6882 5.4096 0.5920 2.852 0.004348 **

TypeofVehicle[T.2] 1.3913 4.0201 0.5111 2.722 0.006489 **

TypeofVehicle[T.3] 1.2547 3.5066 0.5436 2.308 0.021000 *
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TypeofVehicle[T.4] 1.6313 5.1103 0.5196 3.140 0.001692 **

TypeofVehicle[T.5] 1.9430 6.9799 0.5720 3.397 0.000681 ***

TypeofVehicle[T.6] 1.2548 3.5070 0.6459 1.943 0.052074 .

TypeofVehicle[T.7] 1.5205 4.5746 0.6271 2.425 0.015318 *

TypeofPolicy:TypeofVehicle[T.2] -1.3374 0.2625 0.6124 -2.184 0.028961 *

TypeofPolicy:TypeofVehicle[T.3] -1.2181 0.2958 0.6616 -1.841 0.065587 .

TypeofPolicy:TypeofVehicle[T.4] -1.2629 0.2828 0.6261 -2.017 0.043676 *

TypeofPolicy:TypeofVehicle[T.5] -1.0696 0.3431 0.8248 -1.297 0.194676

TypeofPolicy:TypeofVehicle[T.6] -0.9010 0.4062 0.7594 -1.187 0.235416

TypeofPolicy:TypeofVehicle[T.7] -1.3403 0.2618 0.7555 -1.774 0.076042 .

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

TypeofPolicy 5.4096 0.1849 1.69539 17.2605

TypeofVehicle[T.2] 4.0201 0.2487 1.47625 10.9475

TypeofVehicle[T.3] 3.5066 0.2852 1.20826 10.1769

TypeofVehicle[T.4] 5.1103 0.1957 1.84577 14.1486

TypeofVehicle[T.5] 6.9799 0.1433 2.27494 21.4158

TypeofVehicle[T.6] 3.5070 0.2851 0.98879 12.4384

TypeofVehicle[T.7] 4.5746 0.2186 1.33839 15.6359

TypeofPolicy:TypeofVehicle[T.2] 0.2625 3.8092 0.07905 0.8718

TypeofPolicy:TypeofVehicle[T.3] 0.2958 3.3807 0.08089 1.0817

TypeofPolicy:TypeofVehicle[T.4] 0.2828 3.5358 0.08291 0.9648

TypeofPolicy:TypeofVehicle[T.5] 0.3431 2.9143 0.06814 1.7279

TypeofPolicy:TypeofVehicle[T.6] 0.4062 2.4621 0.09168 1.7992

TypeofPolicy:TypeofVehicle[T.7] 0.2618 3.8202 0.05954 1.1507

Concordance= 0.609 (se = 0.018 )
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Rsquare= 0.067 (max possible= 0.999 )

Likelihood ratio test= 44.72 on 13 df, p=2.332e-05

Wald test = 37.31 on 13 df, p=0.0003698

Score (logrank) test = 41.52 on 13 df, p=7.832e-05

> Dataset <- within(Dataset, {

+ NatureofClaim <- as.factor(NatureofClaim)

+ })

> CoxModel.2 <- coxph(Surv(TimeofPayment,Remark) ~ TypeofPolicy

+ *NatureofClaim + strata(Claim), method="breslow", data=Dataset)

> summary(CoxModel.2)

Call:

coxph(formula = Surv(TimeofPayment, Remark) ~ TypeofPolicy *

NatureofClaim + strata(Claim), data = Dataset, method = "breslow")

n= 640, number of events= 382

(372 observations deleted due to missingness)

coef exp(coef) se(coef) z Pr(>|z|)

TypeofPolicy 0.3475 1.4156 0.3772 0.921 0.356928

NatureofClaim[T.2] -1.2971 0.2733 0.3699 -3.507 0.000453 ***

NatureofClaim[T.3] -0.5692 0.5660 0.2889 -1.970 0.048837 *

NatureofClaim[T.4] -0.3738 0.6881 1.0063 -0.371 0.710331

NatureofClaim[T.5] -0.2027 0.8165 0.1775 -1.142 0.253487

NatureofClaim[T.6] 0.2777 1.3201 0.2394 1.160 0.246094

NatureofClaim[T.7] -0.8282 0.4368 0.3084 -2.685 0.007254 **

TypeofPolicy:NatureofClaim[T.2] NA NA 0.0000 NA NA
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TypeofPolicy:NatureofClaim[T.3] NA NA 0.0000 NA NA

TypeofPolicy:NatureofClaim[T.4] 0.3199 1.3770 1.0723 0.298 0.765465

TypeofPolicy:NatureofClaim[T.5] NA NA 0.0000 NA NA

TypeofPolicy:NatureofClaim[T.6] -0.2009 0.8180 0.4824 -0.416 0.677116

TypeofPolicy:NatureofClaim[T.7] NA NA 0.0000 NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

exp(coef) exp(-coef) lower .95 upper .95

TypeofPolicy 1.4156 0.7064 0.67581 2.9650

NatureofClaim[T.2] 0.2733 3.6588 0.13238 0.5643

NatureofClaim[T.3] 0.5660 1.7669 0.32125 0.9971

NatureofClaim[T.4] 0.6881 1.4532 0.09574 4.9459

NatureofClaim[T.5] 0.8165 1.2247 0.57661 1.1563

NatureofClaim[T.6] 1.3201 0.7575 0.82568 2.1105

NatureofClaim[T.7] 0.4368 2.2891 0.23866 0.7996

TypeofPolicy:NatureofClaim[T.2] NA NA NA NA

TypeofPolicy:NatureofClaim[T.3] NA NA NA NA

TypeofPolicy:NatureofClaim[T.4] 1.3770 0.7262 0.16834 11.2633

TypeofPolicy:NatureofClaim[T.5] NA NA NA NA

TypeofPolicy:NatureofClaim[T.6] 0.8180 1.2225 0.31777 2.1057

TypeofPolicy:NatureofClaim[T.7] NA NA NA NA

Concordance= 0.618 (se = 0.018 )

Rsquare= 0.091 (max possible= 0.999 )

Likelihood ratio test= 61.35 on 9 df, p=7.371e-10

Wald test = 50.6 on 9 df, p=8.313e-08

Score (logrank) test = 55.59 on 9 df, p=9.416e-09
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APPENDIX B

Model Selection: R is a powerful tool that understands terms involving more

than one degree of freedom, so it keeps together dummy variables representing

the effects of a factor. Results were obtained by using the cox.zph function in R.

A complete overview of used data is seen below.

Covariates Class Description

Claim 0 No
1 Yes

Remark 0 Pending
1 Paid

Type of Policy 0 Comprehensive
1 Third Party

Type of Vehicle 1 Truck
2 Saloon
3 Pick Up
4 Station Wagon
5 Motorcycle
6 Minibus
7 Bus

Age 1 21 - 29 years
2 30 - 45 years
3 46 - 59 years
4 ≥ 60 years

Gender 0 Female
1 Male

Marital Status 0 Married
1 Single

Nature of Claim 1 Own Damage
2 Own Damage-Total Loss
3 Theft
4 Collision
5 Breakage Of Windshield
6 Third Party Damage and Injury
7 Third Party Damage and Injury (Fatal)
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