
 

 

Development and evaluation of temperature and 

surface hydrology schemes for dynamical 

vector-borne disease models 

By 

ASAREERNESTOHENE 

(BSc Physics, PGDip Earth system physics) 

A Thesis submitted to the Department of Physics, 

Kwame Nkrumah University of Science and Technology in 

partial fulfilment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

(Atmospheric Physics) 

College of Science 

 c Department of Physics 

July 2015 



 

i 

Declaration 

I hereby declare that this submission is my own work towards the PhD and that, to the best 

of my knowledge, it contains no material previously published by another person nor 

material which has been accepted for the award of any other degree of the University, 

except where due acknowledgement has been made in the text. 

Asare Ernest Ohene (20255667) ................................... ............................ 

Student Name & ID 

Certified by: 

Signature Date 

Dr. Leonard K. Amekudzi ................................... ............................ 

Supervisor Name 

Certified by: 

Signature Date 

Prof. Sylvester K. Danuor ................................... ............................ 

Head of Dept. Name Signature Date 



 

ii 

 

 

 

 

 

 

 

 

 

 



 

iii 

 

Abstract 

Surface hydrology and water temperature are two key factors for the life cycle of mosquito 

larvae, and thus their realistic representation is required for the latest generation of 

dynamical disease models. A new prognostic surface hydrology scheme based on 

diagnostic area-depth relations and nonlinear treatments of infiltration and run-off terms 

has been developed to simulate temporal evolution of the pond surface area and depth. 

The scheme is evaluated using in situ data from daily observations of potential mosquito 

developmental habitats in a suburb of Kumasi, Ghana. The ponds reveal a strong variability 

in their water persistence times, which ranged between 11 and 81 days. The pond 

persistence was strongly tied with rainfall, location and size of the puddles. Based on a 

range of evaluation metrics, the prognostic model is judged to provide a good 

representation of the in situ pond coverage evolution at most sites. It was further 

demonstrated that this developed prognostic equation can be generalized and applied to 

a grid-cell to derive a fractional pond coverage, and thus can be implemented in spatially 

distributed models for relevant vector-borne diseases such as malaria. Th new prognostic 

scheme is implemented in the vector-borne disease community model of the International 

Centre for Theoretical Physics, Trieste (VECTRI) model and in addition to the VECTRI default 

surface hydrology scheme are validated using a resolution Hydrology, Entomology, and 

Malaria Transmission Simulator (HYDREMATS) model. Based on multi-member ensemble 

Monte Carlo technique, the VECTRI model parameter setting that minimizes water fraction 

differences was identified. Despite the simplicity of the two VECTRI surface hydrology 

parametrization schemes, they perform relatively well (NS E > 0.85) at reproducing the 

seasonal and intraseasonal variability in pond water fraction, with the prognostic scheme 

able to produce a closer match to the explicit benchmark model, HYDREMATS. However, 

the default VECTRI scheme tends to overestimate water fraction in 2005 and 

underestimate it in 2006, and also relatively overestimates water fraction during the 

monsoon onset period. This systematic error was improved by treating run-off and 

infiltration terms in the prognostic scheme. Simulations of vector densities with the 

prognostic scheme implemented in the VECTRI model were also close (NS E = 0.71) to the 

detailed agent based model contained in HYDREMATS. The results indicate that, with 

knowledge of local soil parameters and terrain, VECTRI schemes parameters could be 

adjusted to simulate malaria transmission on a local scale. Furthermore, VECTRI driven by 

satellites rainfall estimates produces a reasonable simulation of the sub-seasonal evolution 

of the pond fraction for the study area, thus indicating the possibility of driving the malaria 

model with satellite rainfall estimates in the absence of ground observations. In addition 

to the surface hydrology scheme, a new energy balance scheme that assumes a 



 

iv 

homogeneous mixed water column driven by empirically derived fluxes has been 

developed. The model shows good agreement at both diurnal and daily time scales with 

10-minute temporal resolution observed water temperatures monitored between June 

and November 2013 within a peri-urban area of Kumasi, Ghana. In addition, there was a 

close match between larvae development times calculated using either the model-derived 

or observed water temperatures, with the modelled water temperature providing a 

significant improvement over simply assuming the water temperature to be equal to the 

2-metre air temperature. Furthermore, the results show that diurnal variations in water 

temperature are important for simulation of aquatic-stage development times, however, 

effect of sub-diurnal variations on larval development are similar to that of the diurnal. This 

highlights the potential of the model to predict mosquito developmental habitat water 

temperature, thus can be implemented in dynamical malaria models to predict larvae 

development times, especially in regions without observations of the input energy fluxes. 

Finally, VECTRI runs over Ghana reveal malaria transmission ranging from six to twelve 

months, with minimum intensity occurring between February and April. The correlation 

between mean annual model predicted entomological inoculation rate (EIR) and recorded 

national malaria cases from public health facilities was more than 0.5. On a local scale, the 

agreement between hospital recorded monthly malaria cases and VECTRI simulated EIR 

values was better relative to using only rainfall. This result demonstrates the potential 

ability of the VECTRI model to predict malaria transmission dynamics at both local and 

national scales. Thus VECTRI model can provide early warning information for malaria and 

in addition, provide useful information about intervention targeting aquatic and adult 

stages. The performance of the VECTRI model is likely to improve significantly when the 

developed temperature scheme is implemented.  
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                  CHAPTER 1 

             Introduction 

1.1 Background and Motivation 

Malaria is a mosquito-borne, protozoal disease that continues to be a major public health 

issue of the world, although high severity occurs across sub-Saharan Africa (SSA). For 

instance, WHO (2014) estimated 198 million malaria cases worldwide, with around 585 

thousand mortalities in 2013. Interestingly, about 82% and 90% reported cases of 

morbidity and mortality respectively, occurred in Africa. Although malaria affects people of 

all ages, significant proportions of mortality and morbidity are found in the most vulnerable 

groups, that is, children under five years, pregnant women and population with low 

immunity. These groups account for about 90% of reported malaria-related deaths in SSA 

(Organization, 2000; Greenwood and Mutabingwa, 2002). In addition to the enormous 

public health impact of malaria, the disease negatively impedes socio-economic 

development. For instance, WHO (2014) estimated funding for malaria control and 

elimination to be US$ 2.7 billion in 2013, which is about 53% of the required amount to 

achieve global malaria control and elimination targets. In countries with high malaria 

transmission, Gallup and Sachs (2001) estimated positive economic growth of 0.3% after 

10% reduction in malaria transmission over 25 year period. 
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On the country level, in Tanzania, Jowett and Miller (2005) found that malaria costs about 

1% and 39% of the national Gross Domestic Product (GDP) and health budget, respectively. 

Similarly, in 2009, Sicuri et al. (2013) estimated the annual cost of treatment and 

prevention of malaria for children under five to be 0.14%, 0.62% and 0.36% of the GDP of 

Ghana, Tanzania and Kenya, respectively. Furthermore, malaria poses a substantial 

economic burden on individual households and as in 2009 the average household paid 55% 

and 70% of the total cost of malaria treatment in Tanzania and Ghana, respectively (Sicuri 

et al., 2013). Consequently, controlling malaria remains one of the key factors for the 

attainment of Millennium Development Goals (MDGs) for sub-Saharan countries (Sachs 

and McArthur, 2005). 

In Ghana, malaria poses a significant challenge to public health. Malaria is hyperendemic in 

Ghana and remains the leading cause of morbidity and mortality among the entire 

population. For instance, between 2000 and 2011 (Fig. 1.1), malaria alone accounted for 

an average of about 40% of all out-patient attendance (OPD) in public health facilities 

(Adams et al., 2004; NMCP, 2008; GHS, 2011). Similarly, between 2000 and 2011 an average 

of 28% (range: 18 to 44) and 11% (range: 6 to 17) reported mortality for children under five 

and pregnant women respectively, at the public hospitals are as result of malaria (GHS, 

2011). Most importantly, actual malaria cases are likely to be higher than the reported 

cases since private health facilities and the home treatment of uncomplicated malaria are 

not taken into account. This high incidence of the disease suggests that effective and 

sustainable control strategies are still required to suppress malaria in the country. 
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Figure 1.1: Trend in percentage of hospital reported cases or death attributed to malaria in 

Ghana. Source of data: (Adams et al., 2004; NMCP, 2008; GHS, 2011). 

In addition to health implications, malaria also presents a substantial economic and 

developmental challenges in Ghana. Asante and Asenso-Okyere (2003) found a negative 

association between malaria cases and GDP. Furthermore, a large fraction of Ghana’s 

health budget goes to treatment and prevention of malaria. The estimated budget for 

National Malaria Control Programme (NMCP) strategy plan for effective malaria prevention 

and treatment between 2008 and 2015 is US$ 880 million (GHS, 2009). In addition, the 

disease is adversely affecting sustainability of the National Health Insurance Scheme (NHIS) 

due to high reported cases at various hospitals across the country (Dontwi et al., 2013). On 

the household level, Akazili et al. (2008) found the cost of treatment of malaria to be about 

1% and 34% of the household’s income for the poor and the wealthy respectively in the 
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Kassena-Nankana district of northern Ghana. More recently, Sicuri et al. (2013) estimated 

that about 55% of the total cost of malaria treatment , which ranges from US$ 7.99 to 

229.24 per episode was borne by the patient in 2009. This clearly shows that successful 

implementation of an effective malaria control program will have a huge socio-economic 

and public health impact on the country. 

Climatic, hydrological, and environmental variability greatly impact malaria transmission 

dynamics and to some extent define the geographical distribution and seasonal variations 

of the disease. Among these, temperature (both water and air temperatures) and rainfall 

are two key climate drivers known to influence malaria vectors development and survival 

rates. The parasite development inside both the human host and the vector is strongly 

dependent on ambient temperature (Nikolaev, 1935; Patz and Olson, 2006). Rainfall 

directly influences mosquito density by creating additional, or modifying the existing, 

developmental habitats (Fillinger et al., 2004) and indirectly impacting adult mosquito 

longevity through its effects on relative humidity. In addition to rainfall and temperature, 

relative humidity and wind speed are other important climate drivers that influence the 

adult lifespan and activity of the adult mosquito (Wernsdorfer and MacGregor, 1988). The 

interplay between these climate parameters and non-climatic factors, such as local 

hydrological parameters (controls stability of breeding habitats), land use changes (that 

modify both air and water temperatures and also creates favourable breeding habitats), 

human immune system, irrigation and economic levels, controls transmission intensity. 

Understanding how these factors interact and their influence on each stage of the vector 

and parasite life cycles and present day disease dynamics is key to predicting future malaria 

distribution patterns under climate change. 
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Recently dynamical weather-driven malaria models have become extremely important 

tools used in an attempt to understand malaria transmission and potential of the available 

control intervention. Various models have been developed based on interaction between 

climate factors and vector and parasite ecology which can provide an early warning system 

(Hoshen and Morse, 2004; Thomson et al., 2006; Tompkins and Di Giuseppe, 2015), identify 

effective control intervention for a particular epidemiological setting (Okell et al., 2008; 

Smith et al., 2009; Chitnis et al., 2010) and understand disease patterns under future 

climate change (Bomblies and Eltahir, 2009; Gething et al., 2010). Although, modeling has 

played a significant role to aid our understanding of the complexity of malaria transmission 

dynamics, considerable model limitations are apparent and thus improvement in 

simulating key stages of the mosquito and parasite life cycles are still required. 

Notable model limitations include the representation of surface hydrology and water 

temperature of the developmental habitat. These are the two key factors that control the 

aquatic stage life cycle of mosquitoes and thus adult abundance by influencing the stability 

of habitat and larvae growth rates, respectively. For instance, accurate model simulation 

of surface water stability and water temperature of aquatic stage development habitat can 

reveal much useful information about vector population and distribution dynamics. While 

accurate prediction of water temperature provides egg to adult emergence time, skillful 

prediction of habitat lifespan differentiates productive from unproductive habitats. 

Consequently, if existing models could forecast these processes realistically, the output will 

indicate which breeding sites to target for aquatic stage control strategies and in addition, 

the time interval to conduct adult residual spraying (Gu and Novak, 2005; Mutuku et al., 

2006b). Despite the importance of these drivers, there exist substantial research challenges 
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associated with their representation in available dynamical models. Adequate 

representation of surface hydrology and water temperature of the developmental habitat 

could improve the predictability of existing dynamical models, which is the focus of this 

present study. 

1.2 Problem statement 

In order to model malaria effectively using a dynamical modeling approach, a realistic 

representation of the surface hydrology and developmental habitat water temperature is 

required. However, models incorporate surface hydrology schemes that vary in complexity. 

For instance, Hoshen and Morse (2004) ignores surface hydrology treatment and thus 

simply relate the oviposition rate to the 10 day rainfall rate in the Liverpool Malaria Model 

(LMM). Lunde et al. (2013b) parameterized surface hydrology as a function of river length 

and soil moisture based on the assumption that potential habitats are located within the 

vicinity of rivers and lakes. The Open Malaria Warning (OMaWa:Lunde et al. (2013b)), 

designed to be run on a large scale, may have limited application in areas of relatively flat 

topography where habitats are only rain-fed and can be located far away from permanent 

water bodies. Another recently introduced regional scale dynamical malaria model, the 

vector-borne disease community model of the International Centre for Theoretical Physics, 

Trieste (VECTRI; Tompkins and Ermert (2013)) uses a simple surface hydrology 

parameterization that models the evolution of the fractional water coverage within each 

grid cell. However, the scheme ignores the nonlinearities of infiltration and runoff. For 



 

7 

local, village scale modeling, Bomblies et al. (2008) introduced the high-resolution 

Hydrology, Entomology, and Malaria Transmission Simulator (HYDREMATS). HYDREMATS 

runs with 10 meter spatial scale grid-cells to explicitly simulate pool formation and 

persistence time which control aquatic stage development of mosquito for each individual 

pond. The scheme application on regional scale would be expensive to run and in addition 

the required input data may not be available from most meteorological stations. 

Similarly, many spatial, dynamical mathematical-biological malaria models lack a precise 

simulation of water temperatures. For instance, the Liverpool Malaria Model (LMM) 

(Hoshen and Morse, 2004; Ermert et al., 2011b;a) completely neglects the influence of 

water temperatures on the larval development since the aquatic stage duration is constant 

in the model. Tompkins and Ermert (2013) in their grid-point distributed dynamical model 

(VECTRI), which runs on a regional scale, simply equate 2 m mean air temperature to water 

temperature to drive the aquatic stage component of the model, which uses development 

times and mortality rates derived from Craig et al. (1999) and Bayoh and Lindsay (2003), as 

detailed in Tompkins and Di Giuseppe (2015). This leads to inaccurate prediction of larvae 

development time which negatively affects the models simulated malaria transmission. 

Some attempts have been made to develop more complex representations of water 

temperature. Lunde et al. (2013b) in their model equated the mean breeding water 

temperature to top soil temperature obtained from the NOAH land surface model. Depinay 

et al. (2004) also introduced a simple water temperature scheme. They used relative 

humidity to estimate cloud cover and then predict maximum water temperatures from 

both the cloud cover and maximum air temperature, whereas the minimum water 
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temperature was equated to the minimum air temperature. Neither the Lunde et al. 

(2013b) nor Depinay et al. (2004) schemes were evaluated using in situ data. 

Various energy balance schemes to predict water temperature are available (Paaijmans et 

al., 

2008a;b). Despite good performance of some of these models, their application regionally 

over Africa and other malaria endemic areas are hindered by a lack of the appropriate in 

situ observations required to define some of the energy fluxes. 

Achieving the goal of a realistic representation of surface hydrology and habitat water 

temperature is hindered by the fact that the two key African malaria vectors, Anopheles 

gambiae sensu stricto and Anopheles arabiensis prefer shallow water breeding sites that 

are usually small in spatial scale, ranging from small permanent ponds to temporary 

puddles. This small spatial scale confounds modeling efforts as the topography on such 

small scales is unknown, and also renders detection by remote sensing techniques difficult. 

This cause for the use of in-situ observations to evaluate parametrization assumptions. 

More importantly, in Ghana, studies linking climate fluctuations and malaria transmission 

across the various agro-ecological zones are limited. A few available studies are based on a 

single or at most two ecological zones and over a short time period (Danuor et al., 2010; 

Tay et al., 2012; Klutse et al., 2014). Thus, it becomes clearly difficult to understand malaria 

transmission dynamics over the entire country. 
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1.3 Justification 

Despite a recent increase in malaria treatment and control intervention strategies, the 

disease still remains a major public health (Fig. 1.1) and economic burden in Ghana and 

other parts of SSA. This is partly due to lack of comprehensive understanding of the biology 

of the vector and parasite and its relation to the climate drivers. On the other hand, 

difficulty exists in assessing the appropriate cost effective and sustainable control 

interventions for a particular epidemiological zone. 

The above challenges could be addressed using dynamical modeling approach if existing 

models are able to accurately represent the various local hydroclimatic and environmental 

variables that control the mosquito and the parasite life cycles. Without this, models 

cannot be used to properly evaluate and identify effective control strategy, develop early 

warning systems or assess disease transmission patterns under future climate change. 

This study attempts to address some of the shortcomings of mosquito aquatic stage 

simulations by introducing and validating simple schemes to improve representation of 

habitat water temperature and surface hydrology in dynamical models. The significance of 

the introduced surface hydrology and habitat water temperature schemes relative to the 

others are that evaluation was performed using in-situ field observations. In addition, the 

driving climatic variables are available from most meteorological stations making the 

schemes applicable at regional and local scales. Furthermore, these schemes can be useful 

in other vector-borne disease models. 



 

10 

Due to limited financial resources available for malaria control in Ghana, understanding the 

spatio-temporal variability of the epidemiology of the disease is required for well-planned 

effective control programs such as liviciding, indoor and outdoor residual spraying. The 

VECTRI model output variables such as vector and larvae densities provide estimated time 

such interventions are likely to have a greater impact. More importantly, this study reveals 

the potential of VECTRI model to simulate seasonal, inter- and intra-ecological transmission 

variations and therefore could be used to develop real-time operational malaria early 

warning system for Ghana. 

1.4 Objectives 

The primary objective of this study is to develop and validate water temperature and 

surface hydrology schemes for use in dynamical vector-borne disease transmission models 

using in situ measurements. The potential application of these schemes in regional 

distributed disease transmission models is assessed using the vector-borne disease 

community model of the International Centre for Theoretical Physics, Trieste (VECTRI; 

Tompkins and Ermert (2013)). 

The specific objectives include, to: 

• Develop and evaluate a breeding site model for regional, dynamical malaria 

simulations using in situ temporary ponds observations in Ghana. 
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• Evaluate a regional model for malaria vector developmental habitats using explicit, 

pond-resolving surface hydrology simulations. 

• Develop and evaluate an energy balance pond water temperature scheme suitable 

for vector-borne disease transmission models using in situ measurements in Ghana. 

• Assess climate driven malaria variability in Ghana using a regional scale dynamical 

model. 

1.5 Research questions 

This research seeks to answer the following questions in an attempt to address some 

dynamical modeling deficiencies in simulating the aquatic stage development of mosquito 

in an effort to improve model performance in predicting malaria transmission dynamics. 

1. Does a simple prognostic geometrical model have potential in the representation of 

surface water evolution? 

2. How applicable is a geometrical model in dynamical distributed models? 

3. How relevant is the regional scale VECTRI model in simulating local scale malaria 

transmission? 

4. Can a simple energy balance model, driven by derived input fluxes, produce accurate 

prediction of water temperatures that are typical of mosquito developmental 

habitats? 

5. Does VECTRI provide reliable malaria transmission patterns in Ghana? 
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1.6 Outline of the thesis 

The work is organized into seven chapters. Chapter one has given a brief overview of the 

motivation, objectives and justification of the study. Chapter two provides a detailed 

review of the present state of malaria distribution and transmission dynamics. The chapter 

further presents current gains in dynamical modeling approaches to understand malaria 

transmission as well as existing challenges. 

The next four chapters are based on four manuscripts submitted to peer-review journals 

for publication as a result of this thesis work. Chapter three deals with the development 

and evaluation of prognostic geometrical model. The chapter provides an answer to the 

first research question and partly addresses the second question. Part of the second 

question is answered in Chapter four. In addition, chapter four deals with an evaluation of 

the potential of the developed prognostic scheme implemented in VECTRI model and the 

default VECTRI hydrology scheme to simulate local scale surface water dynamics. 

Furthermore, this chapter explores the impact of the differences in these two hydrology 

schemes on VECTRI simulated malaria transmission at a single location. The results provide 

a comprehensive answer to the third research question. Chapter five assesses the potential 

of a simple energy balance scheme to represent water temperature dynamics relevant for 

larvae development. Answers to the fourth research are provided in this chapter. The sixth 

chapter demonstrates the potential of VECTRI model to predict spatio-temporal variability 

in malaria transmission in Ghana which provides an answer to the last research question. 
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Finally, the last chapter concludes the thesis by presenting the summary of the main 

findings drawn from the whole study and suggestions for policy action and possible future 

modifications of the VECTRI model. 

CHAPTER 2 

Literature review 

2.1 Overview of malaria 

Malaria transmission is an interplay between the Anopheles mosquitoes, the Plasmodium 

parasites, the human host and favourable hydroclimatic and environmental variables that 

support the development and survival of the vector and the parasite. The disease 

transmission is through the bites of infective female Anopheles mosquitoes, and therefore 

disease transmission depends on their existence. 

Traditionally it has been understood that human malaria is caused by four distinct parasites 

belonging to genus Plasmodium: Plasmodium falciparum, Plasmodium vivax, Plasmodium 

ovale and Plasmodium malariae, although now it is also known that Plasmodium knowlesi 

causes malaria in humans (Cox-Singh et al., 2008). The parasite exhibits a complex 

replication and life cycle that involves two distinct stages: asexual replication (within 

vertebrates/host) and sexual replication (within mosquito/vector). 



 

14 

Plasmodium falciparum, which is transmitted by mosquito Anopheles gambiae, is the most 

lethal form of human malarial pathogen, affecting 200-300 million individuals per year 

worldwide (Bozdech et al., 2003). It is predominately confined to tropical and subtropical 

regions and is the primary cause of malaria in sub-Saharan Africa (SSA) (Hay et al., 2009). 

Plasmodium falciparum is developed over 48 hours in the red blood cells producing around 

20 merozoites per mature parasite (Miller et al., 2002) and has the shortest incubation 

period, relative to the other parasites and usually takes about 12 days. Plasmodium vivax 

is the most widely distributed of the four species and is the second most dangerous form 

of human malaria with 48 hours periodicity. According to Mendis et al. (2001), Plasmodium 

vivax is estimated to account for approximately 70-80 million global malaria cases annually, 

with SSA accounting for approximately 10-20% of the cases and majority of cases coming 

from Middle East, South East Asia, and the Western Pacific. Plasmodium malariae has 

similar geographic distribution as that of Plasmodium falciparum but with a development 

cycle that lasts on average of 72 hours (Collins and Jeffery, 2007) which is the longest 

incubation period of all the parasites. Plasmodium malariae infections not only produce 

typical malaria symptoms but the parasite may remain inactive in the liver for very long 

periods, possibly decades, without ever producing symptoms but can come out of the 

hibernation to cause malaria. Plasmodium ovale (restricted within the tropical West Africa) 

also exhibits 48-hour asexual schizogonic developmental cycle, and like Plasmodium 

malariae, exhibits relapse infection. The transmission of Plasmodium ovale was thought to 

be restricted to tropical 

Africa, however, recently there has been reported cases outside tropical Africa (Lysenko 

and 

Beljaev, 1969). 
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2.1.1 Life Cycle of Plasmodium Parasite 

Transmission of malaria from one person to another is through the bite of infective female 

Anopheles mosquito. This is shown schematically in Fig. 2.1. During feeding, the infective 

mosquito injects salivary fluids containing the sporozoites into the bloodstream of the host, 

and thus initiates host infection. The sporozoites enter the circulatory system and rapidly 

invade the liver cell, usually within one hour after a bite (Goldsmith, 2010). Once inside the 

liver cell, the parasite undergoes an asexual replication to form schizont resulting in the 

production of merozoites (Makler, 1992). This process lasts between 5 and 16 days 

depending on the Plasmodium species (Plasmodium falciparum: 5-7 days; Plasmodium 

vivax: 6-8 days; Plasmodium ovale: 9 days; Plasmodium malariae: 12-16 days) (Ngasala, 

2010). However, some sporozoite from Plasmodium vivax and Plasmodium ovale infections 

remain dormant in the liver for months or years to form hypnozoites before asexual 

replication. The relapse parasite development can be reactivated later to cause future 

infections (Krotoski, 1988). 
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Figure 2.1: The cycle of the malaria parasite between human hosts and mosquitoes. 

Once the schizont matures, it bursts to release the merozoites and quickly enters the red 

blood cells. The parasite feeds on hemoglobin while asexual replication continuous with 

release of additional merozoites into the red blood cell. This cycle of invasion and maturing 

of new blood cell by merozoites is completed and repeated every 48 hours for Plasmodium 

falciparum, Plasmodium ovale and Plasmodium vivax (tertian periodicity), but 72 hours for 

Plasmodium malariae (quartan malaria) and Plasmodium knowlesi requires only 24 hours 

(Ngasala, 2010). The disease infection and complication occurs from this cycle and is 

continuous until it is brought under control through either treatment or immune system of 

the body. 

In addition, some of the merozoites that invade the red blood cell fail to undergo asexual 

replication but instead form one nucleus gametocytes male and female sexual cells (Miller 
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et al., 2002). During feeding on an infected host, the female Anopheles mosquito ingests 

the gametocytes along with human blood to start the Plasmodium sexual life cycle. 

Parasite development in an uninfected female Anopheles mosquito begins with ingestion 

of blood containing gametocytes when feeding on an infected host. Inside the mosquito 

gut, the female and male gametes fertilize to form zygote. After some hours, the zygote 

develops into elongated actively mobile cell ookinetes, which penetrates the mid-gut to 

form oocysts. At this stage, the multiplication of the sporozoites takes place inside the 

oocysts until it matures. After maturation, oocysts rupture and release the sporozoites 

which migrate to the mosquito salivary glands to complete the sexual stage of the life cycle. 

The infected mosquito injects the matured sporozoites into human host during feeding to 

initiate the asexual stage. The duration between the time of ingestion of the parasite by 

the mosquito and the time it becomes infectious (sporogonic cycle) is about 6-12 days 

(WHO, 2010) which depends on ambient temperature (Nikolaev, 1935). In addition, 

transmission is sustained only if mosquitoes live long enough to complete this cycle. 

2.1.2 Symptoms of malaria 

Early clinical symptoms of malaria are similar to other viral infections and typically include 

periodic fever and chills, usually associated with headache, elevated body temperature, 

fatigue, vomiting and diarrhea (Hänscheid, 1999). In addition to these general symptoms 

exhibited by all the plasmodium parasites, plasmodium falciparum infections can be life 
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threatening leading to further complications including disruption of blood circulation, 

cerebral malaria, acute renal failure and coma (WHO, 2010). Due to the rapid replication 

of the parasite, the patient may die within few hours if treatment is delayed (CDC, 2004). 

Despite this, plasmodium falciparum is not always fatal, especially within highly endemic 

regions where human population have developed natural immunity due to repeated 

infections. This is not the case for children; it is estimated that one out every five children 

suffering from cerebral malaria results in death (Goldsmith, 2010). 

2.2 Mosquito life cycle 

The study of each stage of the mosquito life cycle is very important for understanding 

malaria transmission. All mosquitoes go through four basic developmental stages in their 

life cycle consisting of two parts: the aquatic stage (i.e., egg, larvae and pupae) and the 

terrestrial or adult stage. The various developmental stages and the relevant climatic 

factors that interact to influence the development are shown in Fig. 2.2. 
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Figure 2.2: Schematic diagram illustrating the mosquito life cycle and the various climatic 

variables influencing each stage. Adapted and modified from Smith et al. (2013). 

2.2.1 Egg stage 

Mosquitoes may exploit any available water for oviposition, natural or man-made 

(Imbahale et al., 2011; Fillinger et al., 2004), permanent or temporary (Fillinger et al., 2004), 

clean or polluted (Sattler et al., 2005; Awolola et al., 2007; Chinery, 1984) and of various 

sizes from hoof-prints of animals to the edges of large water bodies (Sattler et al., 2005; 

Mutuku et al., 2006b; Imbahale et al., 2011), although individual species have preferences 

of habitat type. For example, Anopheles gambiae complex mosquitoes, the principal 

malaria vector in Sub-Sahara Africa, prefer small (example, cattle hoof prints), temporary 

and sunlit water bodies for their breeding, which become abundant during the rainy season 

(Mutuku et al., 2006a; Minakawa et al., 2004), although their larvae have also been found 

in polluted waters (Imbahale et al., 2011; Awolola et al., 2007; Sattler et al., 2005). 
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Adult females lay between 50 and 200 eggs per oviposition which takes between 2 and 4 

days but can be longer depending on temperature after blood meal (Becker et al., 2010). 

The eggs are laid on the water surface, either singly (Anopheles) or in rafts (Culex), and are 

hatched within a week depending on water temperature of the habitat and the mosquito 

species. The factors that determine the choice of oviposition site of gravid mosquito remain 

unknown, however some proxy factors have been proposed. According to Becker et al. 

(2010) factors such as water quality, incidence of light, existing eggs, available food, and 

local vegetation may play an important role in the choice of a particular mosquito. 

2.2.2 Larvae stage 

The eggs are hatched within two to three days in contact with water depending on water 

temperature. The legless larvae undergoes four distinct transformations (instar) prior to 

reaching the pupal stage. Most larvae have siphon tubes for breathing and hang from the 

water surface but Anopheles larvae do not have a siphon and they lay parallel to the water 

surface. This stage of the mosquito life cycle experiences high mortality rate due to both 

biotic and abiotic factors. 

Aboitic factors like temperature and rainfall influence the survival of larvae as high intensity 

rainfall flushes larvae from their habitats (Paaijmans et al., 2007) and larvae can be exposed 

to temperatures outside the viable range for mosquitoes development (Haddow, 1943; 

Bayoh and Lindsay, 2004; Kirby and Lindsay, 2009). In addition, biotic factors such as the 

presence of predators, crowding, competition with other species, availability of nutrients 

and substrate type affect larval survival and thus influence habitat productivity (Minakawa 
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et al., 1999; Schneider et al., 2000; Koenraadt and Takken, 2003; Ye-Ebiyo et al., 2003; 

Fillinger et al., 2009). The consequence of this interaction between biotic and aboitic 

factors is that small fraction of the larvae are able to reach the adult stage. For instance, 

between 2-8% survivorship has been reported (Service, 1977; Aniedu et al., 1993; 

Mwangangi et al., 2006). 

2.2.3 Pupae stage 

After the fourth instar, larvae pupate which is resting and non-feeding stage. This stage 

usually lasts for about two days but the duration can be reduced or extended depending 

on water temperature of the breeding habitat. During this stage, metamorphosis takes 

place where pupal skin splits and the mosquito emerges as an adult. Any aquatic habitat 

that supports full completion of these three stages can be classified as productive (Gianotti 

et al., 2009). 

2.2.4 Adult stage 

The emerging adult mosquito rests temporarily on the surface of the water until it is able 

to fly. Mating occurs within the few days after emerging from the pupal stage. The female 

mosquitoes locate a potential blood meal host for feeding. After feeding, the protein in the 

blood meal is used for eggs development. Once the eggs are fully developed, which usually 

takes between 2 and 3 days depending on ambient temperature (Gillies, 1953; Detinova, 

1962), the gravid mosquito locates suitable water body for oviposition. This feeding and 
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oviposition cycle (gonotrophic cycle) repeats itself until the female dies. Temperature, 

rainfall and humidity significantly influence the life span of the adult mosquito. In addition 

to these climatic variables, wind speed also influences mosquito dispersal ability in 

searching for host and oviposition sites. 

2.3 Impact of climatic and environmental variability on malaria 

transmission 

Temperature and rainfall are two key climatic parameters influencing malaria transmission 

(see Fig. 2.2), although relative humidity and wind speed are also important. In addition to 

climatic variables, environmental parameters are equally important, modifying the existing 

equilibrium between vector, host and parasite. More importantly, all these factors do not 

act in isolation, however, what needs to be considered is their collective influence on the 

biology of the disease and vector development. 

2.3.1 Temperature and malaria transmission 

Temperature is one important abiotic environmental factor that influences the entire life 

cycle of mosquitoes (see Fig. 2.2) as well as malaria parasite development rate (Detinova, 

1962; Garrett-Jones and Grab, 1964; Kirby and Lindsay, 2004; Bayoh and Lindsay, 2004). 

Temperature regulates mosquitoes vectorial density in an area by increasing or decreasing 

the time required for larval development to adult emergence, shortening the life span of 

the adult mosquito and can even stop development at any stage of the life cycle below or 
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above threshold temperatures (see Fig. 2.3 for temperature range that supports key 

transmission cycles). In addition, the plasmodium parasite development is linked with 

temperature 

variation. 

 

Figure 2.3: Temperature impacts on (a) sporogony; (b) vector survivability; (c) vectors 

surviving sporogony; and (d) larval duration. Adapted from Craig et al. (1999) 

The aquatic stage developmental rate is highly temperature dependent provided that the 

biotic conditions are favourable. Extensive laboratory experiments have been conducted 

to understand how water temperature influences the aquatic life cycle of mosquitoes. For 

example, Bayoh and Lindsay (2003) showed that Anopheles gambiae sensu stricto emerge 
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as adults only when water temperatures ranged between 18 and 34◦C. Most adults emerge 

between 22 and 26◦C. In a related study by Bayoh and Lindsay (2004), when larvae were 

reared at constant temperatures from 10-40◦C, they survived less than 7 days at 

temperatures of 10-12◦C and 38-40◦C and no adult mosquito were able to emerge. Adult 

mosquitoes could only be produced between water temperatures of 18 and 32◦C. The 

optimum temperature in which development of larvae is favoured was found to be 27◦C by 

Lyimo et al. (1992) when larvae were reared at constant temperatures (24, 27 and 30◦C) in 

the laboratory. 

Water temperature also controls larval longevity and survival. For instance, Bayoh and 

Lindsay (2004), observed larval survival ranged between 10 and 38 days at constant 

temperature of 18◦C whereas at 32◦C longevity varied between 5 and 13 days. Similarly, 

Kirby and Lindsay (2009) observed, as expected, rapid development rates but decreases in 

survival rates with an increase in water temperature when larvae were reared at constant 

temperatures of 25, 30 and 35◦C. At the upper temperature threshold where development 

time is short, it is associated with a high larval mortality rate (Bayoh and Lindsay, 2004; 

Kirby and Lindsay, 2009). The variation in development times of the larvae within these 

range of temperatures have additional impacts on the survival probability of adult 

mosquitoes in natural settings. At the lower temperatures, larvae are subjected to 

predation over longer periods and there is also the possibility of the habitat drying out. 

Furthermore, ambient temperature substantially influences adult mosquito feeding rates 

and life span. Although increasing temperature shortens the gonotrophic cycle (Afrane et 
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al., 2005), extreme temperatures generally limit survival times of mosquitoes. For instance, 

when adult mosquitoes were exposed to constant temperature of 40◦C, Kirby and Lindsay 

(2004) observed survival duration of less than a day for Anopheles gambiae s.s.. However, 

Anopheles arabiensis survived up to a day. In addition, adult mosquitoes tend to feed 

frequently at warmer temperatures due to rapid digestion of blood meal. The consequence 

is that the the female mosquito becomes infective within fews days after biting infectious 

host. 

In addition, development of parasite inside the mosquitoes is only possible within certain 

environmental temperature range. Higher temperature shortens the incubation period of 

the parasite and below certain temperature, sporogony failed to occur. For instance, 

threshold temperatures for plasmodium falciparum and plasmodium vivax development 

are 16◦C and 15◦C, respectively (Nikolaev, 1935). The upper threshold for parasite 

development ranges between 33 and 39◦C (Patz and Olson, 2006). Within this range of 

temperatures, rate of development increases with temperature. For example, the 

plasmodium falciparum development completes in 10 days and 27 days at constant 

temperatures of 30◦C and 20◦C, respectively (Macdonald, 1957). Despite this trend of 

parasite development with temperature, higher temperatures do not necessarily lead to 

increase in malaria incidence as too high temperature is detrimental to adult mosquito 

survival. 
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2.3.2 Rainfall and malaria transmission 

Rainfall is a key determinant of mosquito density (Fillinger et al., 2004; Minakawa et al., 

2005) and in addition influences the life span of adult mosquitoes. The availability, area 

coverage and persistence of temporary surface water (which serves as developmental 

habitat for gravid mosquitoes) are tied with depth, intensity and frequency of rainfall. In 

addition, rainfall indirectly influences activity and life span of adult mosquitoes through its 

effect on surface humidity, 

Attempts to link rainfall incidence to malaria vector abundance and disease incidence have 

yielded varied results in different geographical locations. For instance, the 1997 El Niˇno 

southern oscillation (ENSO) caused an increase in rainfall in parts of eastern Africa leading 

to a malaria epidemic in southwest Uganda (Kilian et al., 1999), but conversely a reduction 

in malaria cases was observed in the Usambara Mountains of Tanzania (Lindsay et al., 

2000). In Botswana, Thomson et al. (2006) developed a malaria early warning system based 

on multi-model ensemble prediction of precipitation and found that the relationship 

between November-February precipitation and the anomaly in malaria incidence is best 

explained by a quadratic relationship with malaria incidence decreasing once rainfall 

exceeded a certain threshold. In Malawi, Lowe et al. (2013) found a similar quadratic 

relation. 

Similar nonlinear linkage between rainfall patterns and both larvae and vector density has 

been reported. Kelly-Hope et al. (2009) observed a weak correlation between precipitation 

and abundance of mosquito vectors with a correlation coefficient (r2) of 0.246 and 0.315 
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for Anopheles gambiae s.s and Anopheles arabiensis respectively. Similarly, Molineaux and 

Gramiccia (1980) found a poor correlation between mosquito abundance and seasonal 

rainfall using data from Garki district in northern Nigeria. In addition weak positive 

correlation between annual rainfall and adult mosquito density has been reported (Kelly-

Hope et al., 2009). 

Furthermore, in Banizoumbou village in southwestern Niger, Bomblies (2012) showed that 

temporal patterns of individual rainfall events can explain a large part of the variance in 

mosquito abundance, partially explaining previously observed poor correlations which 

typically consider monthly or seasonal total precipitation. In relation with larvae, 

interesting findings have been reported. For instance, in western Kenya, Imbahale et al. 

(2011) observed that an increase in weekly rainfall intensity resulted in an increase in 

mosquito larval abundance with fourteen day time lag in Fort Ternan (highland village), but 

caused a reduction in larval density in Nyalenda (peri-urban area). The nonlinear 

relationship of mosquito abundance to precipitation is poorly understood and may be 

partially due to intense rainfall reducing larvae density by flushing first stage larvae 

(Paaijmans et al., 2007). 

2.3.3 Relative humidity and malaria transmission 

Relative humidity prolongs mosquito survival (Wernsdorfer and MacGregor, 1988) and 

influences dispersal range (Shaman and Day, 2007) of adult mosquitoes. For example, 

Molineaux et al. (1988) reported 60% as the minimum relative humidity that supports 
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malaria transmission because adult survival is reduced below this relative humidity value. 

Jawara et al. (2008) observed that increase in relative humidity resulted in an increase in 

Anopheles gambiae s.l. abundance. Similarly, in the Nile basin, Wernsdorfer and 

Wernsdorfer (1967) found daily mortality rates of 5% and 15% for An. gambiae at relative 

humidities of 65% and 50% respectively. Bhattacharya et al. (2006) using 30-year average 

monthly mean data found a relative humidity ranging between 55 to 80% to be favourable 

for malaria transmission with temperature within the transmission range (15-35◦C). In 

Burkina Faso, Yé et al. (2007) observed a nonlinear relationship between relative humidity 

and clinical malaria risk among children under five years. Although there is no direct 

relationship between relative humidity and parasite development inside the mosquito, the 

former influence on the vector longevity indirectly allows the parasite to develop 

completely in the mosquito. 

2.3.4 Wind speed and malaria 

Wind speed and direction is important in malaria transmission in terms of passive dispersal 

and distribution of the vectors. Due to wind action, mosquito flight range varies on the 

order of 1 to 5 km (Gillies, 1961; Rowley and Graham, 1968; Thomson et al., 1995). In 

addition, the ability of a mosquito to locate their host through the body odor and carbon 

dioxide plumes is controlled by wind direction and speed (Healy and Copland, 1995). 

However, extreme strong winds could also blow mosquitoes away from their host thereby 

reducing biting rates considerably. 
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2.3.5 Land use change and malaria 

Land use and land cover changes such as deforestation, urbanization, agriculture, irrigation 

among others significantly influence the spatio-temporal distribution of malaria by creating 

or destroying suitable vector development habitat. In addition, land use modifications can 

change the microclimate to support or suppress local scale transmission dynamics. For 

example, in Uganda, Lindblade et al. (2001) found a significant high malaria patterns among 

villages located along swamps converted to farm land relative to natural papyrus swamps. 

Land cover changes also impact the larval development rate through its effects on water 

temperature of developmental habitats. For instance, in western Kenya highlands, Wamae 

et al. (2010) observed difference in maximum water temperature as much as 5.7◦C between 

habitats located along non-shaded and shaded channels. Consequently, they observed high 

anopheline larvae density at the non-shaded area relative to the shaded area. In a related 

study, Afrane et al. (2008) observed a decrease in the length of the sporogonic cycle by 1.1 

days due to deforestation. Thus, these changes in turn would be expected to have a 

potential impact on the local malaria transmission and should be accounted for in latest 

generation of dynamical disease models to simulate spatial heterogeneities in disease 

patterns. 
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2.3.6 Urbanization impacts on malaria 

Malaria burden within the urban areas are less relative to the rural settings (Robert et al., 

2003), nevertheless transmission is still high. For example, Keiser et al. (2004) estimated 

between 24.8 and 103.3 million clinical malaria cases among urban dwellers in SSA. Due to 

human activities, urban transmission tends to be unevenly distributed and often more 

focal. It has been established that urban agriculture plays an important role in creating 

conducive breeding grounds. For instance, in Kumasi Ghana, Afrane et al. (2004) 

consistently captured more mosquitoes from urban areas surrounding irrigated farms 

relative to non-agricultural areas. Similar heterogeneity in the vector density and malaria 

incidence between irrigated and non-irrigated areas within the same locality have been 

reported elsewhere (Matthys et al., 2006; Dongus et al., 2009; Yadouléton et al., 2010; Sovi 

et al., 2013). 

Another important factor accounting for heterogeneity in urban malaria transmission is the 

disparity in socio-economic status of the population. While wealthier households have 

adequate resources to protect themselves using appropriate control intervention, this is 

not the case for poorer households. For example, in Kumasi and Accra, Klinkenberg et al. 

(2006) found higher malaria parasitemia prevalence among children living in poorer 

households relative to their counterparts in wealthier households. 
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2.3.7 Local hydrology and malaria vector abundance 

Due to the nonlinear relationship between habitat stability and rainfall, other studies have 

focused on using local hydrological parameters that are more directly connected to the 

surface hydrology to predict mosquito vector abundance and incidence of malaria. Patz 

(1998) observed an improvement in predicting An. gambiae biting rate from 8% with raw 

precipitation to 45% with modeled soil moisture. In a related study in South Africa, Montosi 

et al. (2012) found that soil moisture predicts better sub-seasonal variability in malaria 

cases relative to rainfall and temperature. Shaman et al. (2002) found a positive association 

between modeled local surface wetness with ≈ 10 days time lag and abundance of 

Anopheles walkeri and Aedes vexans in the eastern United States. On a local scale, observed 

changes in surface hydrological parameters have been used to predict mosquito 

abundance and malaria transmission variabilities. Bomblies et al. (2009), showed inter-

village difference in abundance of mosquitoes vectorial density between two villages in 

Niger which are only 30 km apart. This difference was due to the difference in hydrological 

conditions that influence the persistence time of breeding habitat after the end of the rainy 

season. 

Furthermore, Shaman et al. (2010) demonstrated that the differences in human cases of 

West Nile virus between eastern plains and western mountains of Colorado are due to 

hydrological 

variability. 

The key advantage of hydrological modeling lies in its ability to incorporate climatic 

variables, soil characteristics, topography and vegetation at smaller scales that depict the 
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ecology of the mosquito larvae (Bomblies et al., 2008; Patz, 1998; Gianotti et al., 2009; 

Cohen et al., 2010; Hardy et al., 2013; Smith et al., 2013). Despite this, in situ observations 

at the resolution of these mosquito development habitats are not available to evaluate 

these hydrology models over a wider area. In addition, due to numerous mosquito 

developmental habitats especially for the important vectors, explicitly modeling individual 

breeding sites would be expensive to run and computational time requirements make this 

approach impossible for regional scale simulations. However, recently Tompkins and 

Ermert (2013) proposed a surface hydrology scheme based on a parametrization approach 

that requires the representation of the net aggregated dynamics of micro habitats at each 

grid cell instead of modeling individual ponds. This scheme is implemented in the VECTRI 

model and has been successfully used to delineate periods where climate variables, 

particularly rainfall and temperature, significantly controls interannual variability in malaria 

transmission over Africa (Tompkins and Di Giuseppe, 2015). Thus, this hydrology scheme 

can be useful for both local and regional scale dynamical models. 

2.4 Geographical distribution of malaria 

Malaria is extremely sensitive to climatic variables. The intensity and spatio-temporal 

distribution of the disease is constrained by interaction between climatic factors, 

environmental conditions, vector competence, parasite, host population and control 

intervention. On the global scale, malaria endemicity is highly confined within the tropical 

and subtropical regions (see Fig. 2.4) where humid and warm climate favours the timely 
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development of both the parasite and the vector (Kiszewski et al., 2004; Sachs and 

Chambers, 2009). 

 

Figure 2.4: The global malaria distribution map. Adapted from Hay et al. (2004). 

In SSA, which experiences the majority of malaria mortality, the disease transmission 

dynamics can be classified as seasonal (comprising areas where temperature or rainfall 

limit transmission) and perennial (areas with year-round transmission). In most parts of this 

region, with the exception of highland areas, temperatures are almost always above the 

minimum threshold that favours both the vector and parasite development. However 

temperatures above the upper threshold are often encountered (Holstein, 1954). 

Temperature limits malaria transmission over the East African highlands. The general lower 

temperatures in these areas negatively affect vector development and parasite replication. 

However, few malaria cases have been recorded for the past century over this region 

during periods of suitable climatic conditions. Recently, due to climate variability and other 

factors, the number of epidemics has substantially increased resulting in a weak level of 
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endemicity in some parts of the region (Lindsay and Martens, 1998; Cox et al., 1999; Hay 

et al., 2002; 

Omumbo et al., 2011). 

Rainfall variability that controls surface water dynamics plays a dominant role in defining 

seasonal and intraseasonal vector population and disease patterns. For example, in water-

limited areas such as the Sahel, malaria transmission exhibits seasonal variation with a 

rapid increase in both the mosquito population and disease incidence after the onset of 

rain (Bomblies et al., 2008; Ye et al., 2009; Bomblies, 2012). Bomblies et al. (2008) observed 

that seasonal peaks in weekly malaria cases in Niger lag several weeks behind rainfall peaks. 

In addition, in the Sudanian region, the length of intense transmission is determined by the 

duration of the rainfall season. For example, in the Kassena-Nankana District of northern 

Ghana, Koram et al. (2003) found that seasonal increase in transmission starts from June 

and ends in November. Despite these, focal year-round transmission is possible in this 

region due to presence of permanent water bodies, such as man made dams (Dolo et al., 

2004). 

2.5 Climate change and future malaria transmission 

Due to strong influence of climate drivers on interaction between the malaria vector, the 

parasite and the human host, changes in future climate variables are likely to create 

favorable conditions to alter the spatial and temporal transmission dynamics (Martens et 

al., 1997; McMichael et al., 2000). Consequently, the effects of global climate change on 
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survival and development of mosquitoes and plasmodium parasite and in addition, future 

malaria incidence variability and geographical (latitudinal and altitudinal) distribution have 

attracted increasing attention in recent years (Craig et al., 1999; Kovats et al., 2001; Hay et 

al., 2002). Within malaria endemic regions, climate change may alter seasonal temperature 

and rainfall patterns which can, in turn, affect disease transmission and intensity dynamics 

(Tanser et al., 2003). For instance, there has been a reduction in disease morbidity and 

mortality despite rising global mean temperatures (Hay et al., 2009; Gething et al., 2010). 

Attempts have been made to attribute the recent increase in the number of malaria 

epidemics in most highland areas of Africa to climate change in general and rising 

temperatures in particular. However, considerable uncertainty with regard to the potential 

role of climate change still exists. While some authors associate the resurgence of malaria 

in the highlands to climate change, others suggest non climatic factors (Hay et al., 2000; 

Shanks et al., 2000; Pascual and Dobson, 2005). For instance, Hay et al. (2002) attributed 

rise in malaria cases to factors other than climate since there was very little change in 

climatic parameters over the study period between 1911 and 1995. Conversely, Pascual et 

al. (2006) using the same data and study sites, observed significant positive warming trend 

which is enough to alter mosquito population dynamics and disease transmission. A clear 

limitation of these two studies was that the use of mean monthly climate variables may not 

account for the diurnal temperature variability which is relevant for vector and parasite 

development rates (Paaijmans et al., 2010). 

In Africa, Sahel marks the northern limit of malaria transmission due to low rainfall. 

However, there has been a shift between dry and wet conditions in this zone and the 
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Sahara desert (Claussen, 1998; Wang and Eltahir, 2000). This is likely to impact the disease 

transmission dynamics in a number of ways. Firstly, there is potential of disease epidemic 

whenever climatic variables favour the survival and development of the vector and parasite 

inside them. For instance, Bomblies and Eltahir (2009) demonstrated that the number of 

rainfall events and interstorm duration is important for the disease interannual variability 

over the Sahel. In the Gambia, Brewster and Greenwood (1992) attributed the increase in 

malaria epidemic to the shorter rainy season. Secondly, there is low level of immunity 

among the population due to unstable patterns of the disease, thus increasing human 

susceptibility to influence epidemic (Kiszewski and Teklehaimanot, 2004). 

Aside these fringe regions where epidemics are common, there are other uncertainties 

about whether climate change will lead to latitudinal shift of global malaria belt (Rogers 

and Randolph, 2000; Reiter, 2001; Tanser et al., 2003). Gething et al. (2010) observed 

reduction in both the malaria transmission intensity and geographical extent despite rise 

in global mean temperatures. Similarly, Tanser et al. (2003) using different climate 

scenarios observed insignificant latitudinal shift in malaria distribution at the end of 2100. 

On the contrary, (Martens et al., 1995b; 1999) predicted possibility of malaria extending to 

temperate regions where Anopheles mosquito are present but low temperature inhibits 

parasite development. 

A possible cause of this disparity might be due to the increase in global control 

interventions which in effect suppress transmission (O’Meara et al., 2010). In addition, 

models that attempt to assess the spatial and temporal malaria distribution under future 

anthropogenic climate change all ignore the contribution of non-climatic factors such as 
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control interventions, economic development and host behaviour (Tatem et al., 2008). This 

tends to amplify the effect of climate variables on future projected disease transmission 

from models. 

2.6 Malaria control 

Effective control of malaria consists of minimizing host vector contact, reduction of vector 

population and effective case management. These control strategies include 

environmental management, residual spraying, insecticide treated nets, chemoprophylaxis 

for the vulnerable groups and laviciding. However, it is evident that a single strategy is not 

sufficient to be effective in controlling malaria, an integrated approach which combines 

multiple interventions is therefore proposed for different epidemiological settings (Killeen 

et al., 2004; Chanda et al., 2008). 

2.6.1 Aquatic stage intervention 

This is an ancient but still the most effective control method (WHO, 1982; Walker and 

Lynch, 2007), with the aim of preventing the completion of aquatic stage development. The 

aquatic stage intervention includes habitat manipulation (temporary changes to the vector 

habitats), habitat modification (permanent changes to vector habitats), larviciding and 

biological control. 
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In spite of the successes of aquatic stage control intervention, it has been neglected in 

tropical Africa. A possible reason has to do with the diverse range of temporary 

development habitats of the prolific vectors which become abundant especially during the 

rainy season (Holstein, 1954). This makes larval control extremely difficult and costly 

targeting all available habitats. However, Gu and Novak (2005) demonstrated that not all 

habitats need to be covered to achieve the desired impact. For instance, they showed that 

targeting 30% of the productive habitats for effective larval control translated to a 70% 

reduction in the total habitats productivity. Gianotti et al. (2009) showed that 

environmental (manipulation and modification) methods have the potential to control 

malaria over the Sahel. More importantly, aquatic stage intervention also has a significant 

impact on adult life span and gonotrophic cycle duration (Killeen et al., 2004; Gu et al., 

2006). 

Aquatic stage productivity can also be controlled through larviciding and biological agents 

which act as predators (Scholte et al., 2005). Although some fish species are effective 

predators, its application on a large scale is difficult due to the quantity of fish required 

(Garcia, 1983). In addition, this approach will have limited impact on temporary habitats. 

Furthermore, bacterial pathogens such as Bacillus thuringiensis israelensis and Bacillus 

sphaericus have been reported to be effective against mosquito larvae (Das and Amalraj, 

1997; Mittal, 2003; Raghavendra et al., 2011; Abdul-Ghani et al., 2012). These microbial 

agents are considered safe for the environment and humans. However, biological control 

agents tend to be species specific and their efficiency varies under different ecological 

conditions (Das and Amalraj, 1997). 
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For effective and efficient larval control method, a model that accurately simulates the 

stability of development habitats would therefore be useful in identifying the productive 

habitats. For example, if the model is able to predict habitats persistence times, then pools 

with stability less than 7 days are unproductive and should be neglected for aquatic stage 

intervention. 

2.6.2 Prevention of host vector contact 

The adult mosquito control strategies rely on insecticide-based interventions such as 

insecticide-treated nets (ITNs) and indoor residual spraying (IRS) of insecticide. These are 

the current preferred control strategies (Malaria, 2008), and its purpose is to prevent or 

reduce contact between the host and the vector. 

The ITNs which were later improved to long-lasting ITNs (LLINs) that do not require 

retreatment is the most common and widely accepted adult control strategy. This approach 

prevents host vector contact in three different ways: the insecticide kills some of the 

mosquitoes after some exposure time, the net acts as a barrier and the insecticide also 

works as repellent. This intervention tool proved to be successful in reducing disease 

transmission and child mortality due to malaria in SSA as well as other endemic regions 

(Lengeler, 2004). Even though ITNs have been recommended as one key malaria control 

strategy, they tend to be less effective for predominantly exophilic and exophagic vectors 

(Hill et al., 2007). Consequently, it is clearly necessary to implement ITNs in addition with 

other strategies aimed at reducing vector population to achieve greater impact. In addition, 

due to the single use of pyrethroid insecticide to treat the bed nets, the malaria vectors are 
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increasingly developing resistance to it (Coleman and Hemingway, 2007). This calls for an 

alternative insecticide development. 

The IRS strategy for malaria control reduces transmission by decreasing the daily survival 

rate of mosquitoes. It is one of the widely used methods for vector control and became 

very popular and mainstay during first global malaria control programme using 

dichlorodiphenyltrichloroethane (DDT) as the insecticide (Robert et al., 2003). Although 

DDT was successful in the regions of low transmission, it failed to make significant impact 

in Africa. This was partly due to development of resistance to DDT among anophelines 

species in Africa (Coleman et al., 2006). Similarly, resistance to alternative insecticides such 

as carbamates, dieldrin and pyrethroids used for IRS have been reported especially in Africa 

(Ryciak and Vujoen, 1999; Coleman et al., 2006). Aside these, IRS is less effective in the 

control of mosquitoes which rest and bite outdoors (Najera and Zaim, 2001). 

2.7 Malaria in Ghana: An Overview 

Malaria is hyperendemic with year-round transmission in Ghana and remains a key major 

threat to public health (NMCP, 2008). The disease has consistently been the leading cause 

of morbidity, mortality and productivity loss due to work loss days in the country. For 

example, GHS (2011) report indicates that suspected malaria cases account for about 

40.2% outpatient morbidity, 35.2% hospital admissions and 18.1% of all recorded death at 

the hospitals. This high percentage of hospital visits attributed to malaria has been the 
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same over the past years. The average of all outpatient cases due to malaria between 2000 

and 2011 is about 40%. Although the whole population is at risk of malaria, high mortality 

and morbidity are among children under-five years and pregnant women. For instance, 

GHS (2009) estimated that up to 30% and 11% of all mortalities in children less than 5 years 

and pregnant women respectively, in Ghana are related to malaria. 

2.7.1 Socio-economic costs of malaria in Ghana 

Malaria has a significant impact on Ghana’s economy due to cost of treatment and loss of 

productivity days as those severally infected are unable to work (Asenso-Okyere, 1994; 

Asante and Asenso-Okyere, 2003; Akazili et al., 2008; Okorosobo et al., 2011; Sicuri et al., 

2013). For instance, Asante and Asenso-Okyere (2003) found a negative association 

between malaria cases and Gross Domestic Product (GDP). Their model estimated 0.41% 

decrease in GDP for 1% increase in the malaria morbidity. In a related model study, Sicuri 

et al. (2013) estimated annual total cost of malaria treatment and prevention for children 

under-five years to be US$ 37.8 million in 2009. In addition, they estimated the expenditure 

for treating a single malaria episode to range between US$ 7.99 and US$ 29.24 depending 

on disease severity. A large fraction of Ghana’s health budget goes to treatment and 

prevention of malaria and also remains a major threat to sustainability of the National 

Health Insurance Scheme (NHIS) (Dontwi et al., 2013). 

On the household level, Asenso-Okyere and Dzator (1997) estimated average treatment 

cost of a single malaria episode to be US$ 8.67 in two districts in the Ashanti region. The 

estimated amount, which includes both direct and indirect costs, is equivalent to 3.7 or 4.7 
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average working days loss to male or female patients respectively. In a related study, Akazili 

et al. (2008) found the cost of malaria treatment to be about 34% and 1% of the incomes 

for poor and wealthy households respectively, in the Kassena-Nankana district in the Upper 

East region. Malaria therefore is not only a serious health issue but also has significant 

economic implications for the country and individual households (the patient). As a result, 

more studies need to be carried out to understand the vector dynamics, assess the present 

control strategies and to provide an integrated approach best suited for the nation to 

reduce the burden, but to do those things we need better dynamical models of malaria. 

2.7.2 Distribution of malaria vectors in Ghana 

Similar to other SSA countries, Anopheles gambiae sanso lato complex and Anopheles 

funestus are the key and most abundant malaria vectors in Ghana (Appawu et al., 1994; 

2004; Yawson et al., 2004; GHS, 2009; De Souza et al., 2010; Kasasa et al., 2013; Dadzie et 

al., 2013). An. gambiae s.s., An. arabiensis and An. melas are the three species within the 

Anopheles gambiae sanso lato complex found in Ghana (Appawu et al., 2004; Yawson et 

al., 2004). The An. gambiae s.s. are the most common within the complex and are 

distributed throughout the malaria epidemiological zones in Ghana (De Souza et al., 2010) 

as shown in Fig. 2.5. However, the other two vectors have limited distribution within the 

country with An. arabiensis being the predominant vector in the savannah and coastal 

regions while An. melas are confined within the mangrove swamps along the coast (Yawson 

et al., 2004; De Souza et al., 2010). Although their study did not cover the entire country, it 
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indicates to some extent that Anopheles gambiae sanso lato mosquitoes are distributed 

countrywide. Regarding An. funestus, Dadzie et al. (2013) found An. funestus sensu stricto 

is the only malaria transmission vector in the sub group found in the country. Although An. 

funestus sensu stricto are found all over the country, they are predominant in the savannah 

area 

(Dadzie et al., 2013). 

 

Figure 2.5: An. gambiae s.l mosquitoes distribution map. Adapted from De Souza et al. 

(2010). 

The distributions of these vectors are heterogeneous and follow climate and ecological 

conditions (Appawu et al., 1994). For instance, GHS (2009) found that about 95% of all 

mosquitoes caught are made up of An. gambiae complex and An. funestus. Similarly, 
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Yawson et al. (2004) found that Anopheles gambiae s.l. and An. funestus are sympatric in 

eleven different locations within the country. In Kassena-Nankana district of northern 

Ghana, Kasasa et al. (2013) sampled adult mosquitoes using Center for Disease Control 

(CDC) light traps over a three year period and found 52% constituting An. gambiae and the 

rest An. funestus. In Kintampo within the transition belt of Ghana, Dery et al. (2010) using 

similar method found more An. gambiae than An. funestus in 2004 but An. funestus 

dominated the 

2005 catch. Similarly, a study in a village within the coastal savannah belt, Tchouassi et al. 

(2012) collected about 99.5 % An. gambiae s.l. relative to 0.4 % of An. funestus. 

Clearly these results show that malaria vectors are present within all the ecological zones 

of the country and thereby putting the whole population under malaria risk. In addition, 

these studies are limited to specific locations and therefore extensive vector survey all over 

the country is required to provide a detailed spatial and temporal distribution of malaria 

vectors. 

2.7.3 Malaria Parasites in Ghana 

In Ghana, three out of the four main species of human malaria parasites are present. 

Plasmodium falciparum, the most severe and life threatening, is predominant in the 

country accounting for about 80 to 90% of all malaria infections. This is followed by 

Plasmodium malariae responsible for between 20 and 36% of malaria cases while 

Plasmodium ovale is less prevalent accounting for less than a percent (about 0.15%) of all 



 

45 

malaria parasitemia (Klinkenberg et al., 2005; Koram et al., 2003). Moreover, mixed 

infections of Plasmodium falciparum and Plasmodium malariae are also common. For 

instance, in Accra, Klinkenberg et al. (2005) detected a single case of mixed infection of 

Plasmodium falciparum and Plasmodium malariae for a three month study period among 

children between 6 and 60 months of age. However, 258 out of the 261 infections detected 

were due to Plasmodium falciparum with 2 cases of Plasmodium malariae. Similarly, in the 

Kassena-Nankana District located within the savannah zone, Koram et al. (2003) identified 

963, 63 and 36 cases of Plasmodium falciparum, Plasmodium malariae and mixed 

infections of the two, respectively. In addition, Dinko et al. (2013) found all the three 

species in the Ahafo Ano 

South District of the Ashanti region which is within the forest ecological zone. 

2.7.4 Spatio-temporal malaria distribution in Ghana 

Malaria transmission occurs throughout the year in Ghana, however, significant variability 

exists between the three main malaria epidemiological zones. These differences in malaria 

incidence are due to a combination of factors such as vector and parasite distribution (Afari 

et al., 1992; De Souza et al., 2010), climate drivers (Dery et al., 2010; Donovan et al., 2012) 

and land use change (Klinkenberg et al., 2008; Okoye et al., 2005). On the impact of climate 

variables, rainfall tends to control the temporal distribution of malaria vectors as 

temperature most of the time is within the range favorable for mosquito survival and 

parasite development. For instance, in the northern savannah epidemiological zone 

covering the three northern regions, transmission is intense but seasonal due to a 

prolonged dry season (Baird et al., 2002; Appawu et al., 2004). Within this zone, Appawu 

et al. (2004) found an average decrease in human biting rate (bites/person/night) from 
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about 24.3 in the wet season to about 8.3 in the dry season. In addition, they observed 

increase in An. gambiae s.s abundance from the onset of rain in June and peaked in 

September but decrease occurred in the dry season. Similarly, in the Kassena-Nankana 

District in the Upper East Region, Baird et al. (2002) found incidence density approximately 

between 5 and 7 infections/person/year for the dry and wet seasons respectively among 

children with age range between 6 and 24 months. In the same district in 2011, Koram et 

al. (2003) found a significant increase in prevalence of malaria parasitaemia from 22% in 

May representing the lowest in the dry season to 61% in November the highest in the wet 

season. 

This variation of malaria transmission levels due to seasonal rainfall patterns does not only 

pertain in the north but also other epidemiological zones. In Accra, Donovan et al. (2012) 

observed that seasonal peaks in malaria follow peaks in rainfall with one or two months lag 

time for children under five years. In this zone also, transmission in the dry season is quite 

high. For instance, Tchouassi et al. (2012) found mean biting rate for three anopheline 

species to be 11.43 bites/human/night between November 2005 and April 2006 using both 

human landing catches and indoor pyrethrum spray catches. Despite this, studies 

comparing seasonal and intraseasonal variations in malaria incidence across the various 

ecological zones are limited and the few available are over a short period (Danuor et al., 

2010; Tay et al., 2012; Klutse et al., 2014). As a result, studies that attempt to understand 

these variations maybe useful to identify the appropriate time for effective control 

programs within various ecological zones. 
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2.7.5 Malaria control strategy in Ghana 

The National Malaria Control Programme has prioritized the use of insecticide-treated 

mosquito nets (ITNs), indoor residual spraying (IRS) and effective treatment and case 

management as a key strategy for malaria control (GHS, 2009). Significant successes have 

been reported due to increased households use of ITNs. For example, in the Kassena-

Nankana District, Binka et al. (1996) observed 22% reduction malaria mortality in children 

below four years due to provision of Permethrin impregnated bednets. 

In spite of these successes, the increase Anopheles resistance to most widely used 

insecticides is a major problem. For instance, in Obuasi located in Ashanti region, Coetzee 

et al. (2006) found both An. funestus and An. gambiae S form to be resistant to DDT and 

carbamates, and in addition An. gambiae was resistant to pyrethroids. Similarly, Yawson et 

al. (2004) reported a high pyrethroid resistance gene (kdr) mutation in S molecular form 

relative to M molecular form of An. gambiae across various ecological zones. Furthermore, 

in four mining towns within the forest zone, Hunt et al. (2011) observed high resistance of 

An. gambiae S form to pyrethroids, DDT and carbamates, but organophosphates showed 

good efficacy at these study locations. Interestingly, An. gambiae S form is widely 

distributed in the country and its insecticide resistance is confounding the effectiveness of 

several available insecticides in vector control programmes. 
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2.8 Malaria models 

Mathematical models have long been applied to assess potential factors that control 

malaria transmission dynamics and effective control interventions to reduce disease 

burden (Ross, 1911; Koella, 1991; Chitnis et al., 2010; Mandal et al., 2011). Ross (1911) 

developed the first mathematical model based on few sets of differential equations that 

describe how malaria parasite is transmitted between mosquito vectors to human hosts 

and vice versa. This model was further improved by Macdonald (1957) by introducing 

additional factors such as latent period of infection to account for Anophelines population 

that are infective and are able to transmit the disease. The key conclusion from the Ross-

Macdonald malaria model was that malaria transmission strongly depends on both 

sporogonic rate and mosquito life span and hence effective eradication of malaria in any 

region requires reduction of Anopheles mosquitoes density below certain threshold (Ross, 

1928; Macdonald, 1956). The findings from this model became the basis for early malaria 

control programmes involving reduction of mosquito population through DDT application, 

larviciding and breeding habitat elimination. Despite the success of this simplified model, 

it was criticized for ignoring incubation periods of the parasite in mosquitoes and immunity 

in the human host. A significant number of malaria models have been developed by 

extending the Ross-Macdonald malaria model using different approaches or 

methodologies. Some of the available models are differential equation-based (Dietz et al., 

1974; Koella and Antia, 2003; Hoshen and Morse, 2004), agent-based or individual-based 

(Bomblies et al., 2008; Gu and 

Novak, 2009; Zhou et al., 2010; Griffin et al., 2010; Arifin et al., 2011; Tompkins and Ermert, 
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2013), habitat-based (Gu and Novak, 2005; Gu et al., 2008) and integrated (McKenzie and 

Bossert, 2005; Smith et al., 2008). Some of the models have been applied to assess the 

potential impacts intervention (Gu and Novak, 2005; Gianotti et al., 2009; Griffin et al., 

2010), climate change or variability (Tanser et al., 2003; Tonnang et al., 2010; Parham and 

Michael, 2010) and immunity (Aron, 1988). 

2.8.1 Statistical models 

Considerable research has been focused on using statistical models to assess the 

relationship between malaria incidence variability and variation in environmental variables 

influencing disease vector dynamics (Rogers and Randolph, 2000). Most of these statistical 

models are mostly based on regression approaches and other statistical techniques to 

establish a link between past malaria cases to observed climate anomalies, particularly 

rainfall and temperature to make prediction of present and future disease incidence and 

distribution (Githeko and Ndegwa, 2001; Tanser et al., 2003; Thomson et al., 2006; Tonnang 

et al., 2010). The disadvantages of statistical models include difficulties in applying the 

models across different geographical locations. In addition, the predictability of statistical 

based models largely depends on the quality and span of the data to which they are trained. 

This approach has been used to assess the impact of climate change on malaria distribution 

(Tanser et al., 2003), parasite prevalence at different agro-ecological zones (Kleinschmidt 

et al., 2001). 
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2.8.2 Dynamical models 

The dynamical models instead explicitly model the key fundamental equations driving the 

malaria transmission dynamics. This class of models has the advantage of being able to 

incorporate day-to-day and even diurnal variations in climate variables’ impact on various 

stages of vector and parasite life cycles. The main difficulty here has to do with better 

understanding of relative influence of biological and ecological factors on all aspects of the 

disease to aid in the formulation of equations to represent them in the model. This has 

been one difficult aspect of dynamical models approach as knowledge about certain 

aspects of disease biology are not clearly understood and therefore difficult to represent 

dynamically (Rogers and Randolph, 2000). Nevertheless, the main advantage of this 

approach is that it can be applied in other areas aside where the model was calibrated. 

These models have been employed to predict mosquito distribution (Shaman et al., 2002), 

local scale transmission dynamics (Bomblies et al., 2009), transmission under future climate 

scenarios (Caminade et al., 2014; Pointek et al., 2014), effects of malaria control strategies 

(Killeen et al., 2004; Gianotti et al., 2009) and in addition used as forecasting and early 

warning tool (Jones and Morse, 2010; 2012; Tompkins and Di Giuseppe, 2015). Despite the 

successful application of these models, considerable improvements in the representation 

of some key factors are still required. Among these is the surface hydrology and habitat 

water temperature which improvement is the focus this study. 
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2.9 Representation of surface hydrology and water 

temperature in dynamical models 

Despite the importance of surface hydrology and water temperature for larvae 

development and survival, their representation in dynamical models is still inadequate 

especially for regional scale models. For instance, Hoshen and Morse (2004) relate the 

oviposition rate to a 10 day rainfall rate in the Liverpool Malaria Model (LMM). In addition, 

the LLM completely neglects the influence of water temperatures on the larval 

development since the aquatic stage duration is constant in the model (Hoshen and Morse, 

2004; Ermert et al., 2011a;b). Consequently, this model is more likely to produce inaccurate 

prediction of transmission dynamics in rainfall limited areas dominated by semi-permanent 

and permanent habitats. In another regional scale model, Open Malaria Warning 

(OMaWa), Lunde et al. (2013b) parametrized surface hydrology as a function of river length 

and soil moisture based on the assumption that potential habitats are located within the 

vicinity of rivers and lakes. In their model, habitat water temperature was equated to mean 

top soil temperature obtained from the NOAH land surface model. This model may have 

limited application in areas of relatively flat topography where habitats are only rain-fed 

and can be located far away from permanent water bodies. Further uncertainties could 

arise from the difference between actual water temperature and the proxy temperature 

leading to inaccurate larvae development rate. In another recently introduced regional 

scale dynamical malaria model VECTRI, Tompkins and Ermert (2013) used a simple surface 

hydrology parametrization scheme that predicts the evolution of the fractional water 

coverage within each grid cell. The scheme is highly simplified and neglects many factors, 
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including topographical slope, soil texture, pond geometry and heterogeneity in water 

infiltration rates. For example, the rate of infiltration decreases towards the middle of 

these temporary ponds due to the effect of clogging by sediment over time (Desconnets et 

al., 1997; Martin-Rosales and Leduc, 2003). This nonlinearity in infiltration relation will 

therefore lead to constant infiltration assumptions over- or underestimating loss of water 

from the ponds. As another shortcoming, the VECTRI model does not incorporate scheme 

for water temperature, but simply use mean air temperature to drive the aquatic stage 

component of the model, which leads to inaccurate estimation of aquatic stage 

development times. 

Some attempts have been made to develop more complex surface hydrology 

representation at local scale. For example, Depinay et al. (2004) introduced a local scale 

dynamical vector life cycle scheme designed to explicitly model individual breeding sites 

using the shapes of the water bodies in question to simulate mosquito population 

dynamics. Application of this model over a large region might prove elusive as it requires 

the knowledge of the shape of all individual ponds making its application difficult. For a 

complete local scale malaria model, Bomblies et al. (2008) introduced the high-resolution 

Hydrology, Entomology, and Malaria Transmission Simulator (HYDREMATS). HYDREMATS 

runs with 10 meter spatial scale grid-cells to explicitly simulate pool formation and 

persistence time which control aquatic stage development of mosquito for each individual 

pond. In order to set up this model, Banizoumbou village in southwest Niger was manually 

mapped at this 10 m scale using survey-grade differential GPS instrumentation. The model 

simulated daily water depth and showed good agreement with observations, predicting 

seasonal and sub-seasonal mosquito abundance (Bomblies et al., 2008). Bomblies et al. 
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(2009) using HYDREMATS found good agreement with observed interannual variability in 

mosquito abundance between two villages located 30 km apart, but with contrasting local 

hydrological and environmental conditions. Furthermore, HYDREMATS has been used to 

assess the impact of environmental management in malaria control (Gianotti et al., 2009) 

and the sensitivity of the model to various climate change scenarios has been evaluated 

(Bomblies and Eltahir, 2009). Despite HYDREMATS good performance, its application over 

larger scales is hindered by the intensive input data and in addition, the model require 

recalibration when applied at different region. However, these local scale models (e.g. 

Bomblies et al., 2008) can serve as proxy for in situ observations to validate regional scale 

surface hydrology assumptions. 

In addition, there are available energy balance schemes to predict water temperature of 

temporary water bodies. Depinay et al. (2004) developed a simple water temperature 

scheme, using relative humidity to estimate cloud cover and then applied both the cloud 

cover and maximum air temperature to predict maximum water temperatures, whereas 

the minimum water temperature was equated to the minimum air temperature. However, 

this scheme was not evaluated with in situ data. Paaijmans et al. (2008a) developed a more 

detailed model that predicts the diurnal water temperature based on radiation and energy 

fluxes at the air-water and soil-water interfaces of small artificially created ponds of varying 

dimensions. Predicted temperatures agreed with in situ observations to within 2.5◦C 

between the simulated and observed water temperature using three consecutive days of 

different weather conditions. Despite good model performance, the application of these 

models regionally over Africa is hindered by a lack of the appropriate in situ observations 

required to define some of the energy fluxes. This model was further simplified by 
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Paaijmans et al. (2008b) to use only easily obtained weather data as input, but even this 

modified scheme still required cloud cover observations to compute incoming shortwave 

radiation, a parameter not readily available from most meteorological stations. 

It is clearly evident that there is still need for realistic surface hydrology and water 

temperature parametrization schemes that could be useful at both local and regional 

scales. In addition, the key driving climate variables or derived parameters should be 

available from meteorological stations especially across malarious regions. This thesis 

addresses these limitations by introducing surface hydrology and water temperature 

schemes that can be implemented in available dynamical models, evaluated using in situ 

observations. 

2.10 VECTRI model overview 

The VECTRI model is a grid-point distributed dynamical model designed to run at daily time 

step and with flexible spatial resolution that ranges from a single location to a regional scale 

(10-100 km) depending on the resolution of the driving climate data (for detailed review, 

see Tompkins and Ermert, 2013). The model uses multiple compartment structure to 

represent key stages in the transmission for each grid cell. The VECTRI model explicitly 

resolves important temperature-dependent stages such as egg-larvae-pupa development 

time in addition to the gonotrophic and sporogonic cycles. In addition, the model accounts 

for the impact of human population density in estimating daily biting rates. The progression 

rates of these cycles are presented in arrays of bins and the process continues to advance 
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once temperatures are within the range for growth. This allows the model to represent the 

inverse relation between malaria intensity and population density (e.g. Robert et al., 2003). 

The model incorporates a simple but physically-based surface hydrology scheme which 

controls larvae development. A brief description of various schemes implemented in the 

VECTRI are provided below. 

 

Figure 2.6: Schematic of VECTRI model divided into compartments representing growth 

stages of the vector and parasite development in the host and the vector. Adapted from 

Tompkins and Ermert (2013). 
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2.10.1 Surface hydrology scheme 

The VECTRI model incorporates a simple surface hydrological parametrization scheme that 

estimates at each time step the fractional water coverage area in each grid cell. Total 

fractional water coverage area is a sum of both permanent and temporary habitats (w = 

wperm +wpond), although presently no parametrization of permanent water bodies is 

included, allowing the user to set value for the permanent water fraction with knowledge 

of the study area hydrology. In this study the permanent water fraction is set to zero as 

detailed permanent water body data are not available. The net aggregated fractional water 

coverage of temporary pools in each grid cell was expressed as in Eq. 2.1: 

 dwpond   

  = Kw P(wmax − wpond) − wpond(E + I) (2.1) 

dt 

where wpond is net aggregated fractional water coverage in a grid cell, wmax is maximum 

temporary pond coverage area, P is precipitation rate, E and I which were set to a fixed 

constant are evaporation rate and infiltration rate respectively and Kw is a constant that 

links rainfall to the growth of the temporary ponds. For details see Tompkins and Ermert 

(2013). 

The scheme is highly simplified and neglects some factors, including topographical slope, 

soil texture, pond geometry and heterogeneity in water infiltration rates. For example, the 

rate of infiltration decreases towards the middle of these temporary ponds due to the 

effect of clogging by sediment over time (Desconnets et al., 1997; Martin-Rosales and 
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Leduc, 2003). This nonlinearity in infiltration relation will therefore lead to constant 

infiltration assumptions over- or underestimating loss of water from the ponds. The 

stability of ponds has also been linked with their shape. For instance, Garmendia and 

Pedrola-Monfort (2010) observed rapid drying of cylindrical shaped ponds relative to conic 

shape ponds. 

2.10.2 Larvae development scheme 

The VECTRI incorporates larvae growth rate scheme based on degree day approach 

expressed as: 

Tw − TL,min 

 RL =  (2.2) 

KL 

where RL is the fractional growth rate, TL,min (K) is the threshold temperature below which 

larval development ceases and KL is the degree days required for adult emergence. The 

value of KL has been estimated from laboratory studies to be 90.9 degree days (Jepson et 

al., 

1947) while 200 degree days was estimated from linear approximation of the relationship 

(Bayoh and Lindsay, 2003). In the model, the egg hatching and pupa development duration 

are fixed and last for a day. In between these stages, rate of the progression of larvae 

through the successive growth stages are divided into series of bins representing fractional 

growth state f ranging between 0 and 1 (where 0 and 1 is the egg and pupa stage 

respectively). The fractional growth rate through the bins at each time step is predicted 

using a simple one-dimensional advection equation: 
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 dL dL 

= RL (2.3) dt d f 

Furthermore, the model accounts for important factors such as water temperature, 

competition for food and flushing effects that control larvae mortality and daily survival 

rate. To represent combined effects of these factors on habitat productivity, VECTRI uses a 

base daily larvae survival rate (PL,surv0) value of 0.825 following (Ermert et al., 2011b). 

In addition, maximum water temperature threshold (TL,max) above which all larvae die is 

provided as a model parameter. However, the aquatic stage development rate is driven by 

daily mean temperature calculated from daily minimum and maximum temperatures 

(Tmin+
2

Tmax ). This model limitation, which is common in most available regional scale models 

is addressed in this present study. 

In addition, density-dependent processes such as competition for food and over-

population have been observed to cause high larvae mortality rate, thus affecting habitat 

productivity 

(Armstrong and Bransby-Williams, 1961; Gimnig et al., 2002; Koenraadt and Takken, 2003; 

Paaijmans et al., 2009). The VECTRI model treats these effects by introducing 

parametrization for the biomass holding capacity such that larvae survival rate probability 

(PL,surv) is high when larvae carrying capacity is low relative to the maximum defined larval 

biomass density: 

   ! 

ML 
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PL,surv = 1 −  KflushPL,surv0 (2.4) wML,max 

where ML is the total larvae biomass per unit surface area of a water body, ML,max is 

maximum carrying capacity set to 300 mg m−2 but linearly increases with the fourth instar 

capacity (Depinay et al., 2004; Bomblies et al., 2008) and Kflush flushing rate. 

The Kflush parameter accounts for reduction of larva density especially first instar due to 

effect of intense rainfall events (Paaijmans et al., 2007). The flushing rate is expressed as a 

combination of exponential and linear function of rain rate and larvae fractional growth 

state Lf : 

  −Rd  

 Kflush = Lf + (1 − Lf ) (1 − Kflush,∞)e τflush + Kflush,∞ (2.5) 

where Rd is the rain rate in mm day−1, Kflush,∞ is the maximum value of Kflush for newly 

hatched first instar larvae at high-intensity rain rates and τflush is a set parameter (50 mm 

day−1 ) that describes the rate of flushing effect as a function of Rd. The flushing effect at 

pupa stage is zero irrespective of the rain rate. 

2.10.3 Vector scheme 

The VECTRI model simulates the total vector density per square metre by dividing larvae 

into a number of development bins and vectors into a number of bins that represent the 
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state of the gonotrophic and sporogonic cycles (see middle block of Fig. 2.6). Temperature 

impacts rate of the progression of these key processes and in addition to the temperature-

dependent adult mortality rates are well resolved by the model. As a result, VECTRI is able 

to describe nonlinear response of malaria transmission to temperature variability (Craig et 

al., 1999; Beck-Johnson et al., 2013; Lunde et al., 2013a). 

The daily mosquito 

survival probability in 

the VECTRI model is 

parametrized following (Martens et al., 1995b;a) for scheme I (Eq. 2.6a) and (Martens et 

al., 1997; Craig et al., 

1999) for scheme II (Eq. 2.6b). 

where PV,surv1 and PV,surv2 are the daily mosquito survival probability for scheme I and scheme 

II respectively and T2m (K) is the 2-metre air temperature. The main difference between the 

two schemes is for scheme I, adult survival probability starts decreasing at early 

temperature of 20◦C (see Ermert et al., 2011b). In addition, scheme II agrees well with the 

Bayoh (2001) approximation based on laboratory experiment. Consequently, scheme II is 

implemented in VECTRI as the default scheme. 

2.10.4 Sporogonic cycle 

During feeding, there is probability of transfer of parasite either from the host to vector or 

vice versa depending on the status of the host or vector. The maximum probability of 

PV,surv1 = 0.45 + 0.054T2m − 0.0016T22m (2.6a) 

   ! 

−1.0 

PV,surv2 = exp 2 

−4.4 + 1.31T2m − 0.03T2m (2.6b) 
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transmission from infective host to the vector Phv is set to 0.2 following (Ermert et al., 

2011b). 

The probability of transmission (Ph→v) is given by: 

Hinf 

 Ph→v = Phv (2.7) 

H 

where Hinf and H are the infected and total host population densities respectively. This 

equation simply implies random biting rate and in addition ignores heterogeneous biting 

rate that greatly influences transmission dynamics (Smith et al., 2005; 2007). The 

expression for Ph→v parameter may require future modification to include effects such as 

bed net usage distribution and location of host relative to breeding habitat among others 

that control heterogeneous biting. 

At each time step, a fraction of biting vectors (Ph→v) gets infected and the progression in 

steps of the parasite development inside the mosquito is solely controlled by temperature 

and follows degree day concept (Eq. 2.8). The sporogonic cycle completes once the vector 

reaches the last bin, and becomes infective and remains so until death which is determined 

by the survival probability. 

T2m − Tsporo,min 

 Rsporo =  (2.8) 

Ksporo 
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where Ksporo = 111 K day value for Plasmodium falciparum at temperatures above 18◦C 

(Detinova, 1962), Tsporo,min is minimum threshold temperature below which sporogony 

ceases is set to 16◦C following (Ermert et al., 2011b). 

2.10.5 Gonotrophic cycle 

The VECTRI model assumes by default that all female vectors find blood meal the first night 

of searching, although this value can be tunned in the model. After the blood meal, the egg 

development starts controlled by ambient temperature using the degree day concept (Eq. 

2.9). Advection equation is used to predict successive growth stages until the final bin is 

reached. At this stage oviposition takes place after which the vector moves back into the 

blood meal searching bin. This process continues as long as the vector survives. 

T2m − Tgono,min 

 Rgono =  (2.9) 

Kgono 

where Kgono = 37.1 K day is the gonotrophic cycle degree days following (Detinova, 1962), 

Tgono,min = 16 K is the minimum temperature that supports sporogonic cycle (Ermert et al., 

2011b). 
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2.10.6 Host vector interaction scheme 

One novel aspect of the VECTRI model is that it incorporates human population which 

influences vector-host interaction dynamics in estimating biting rates. At each grid cell, the 

VECTRI model parametrized the human biting rate (hbr) as: 

  −
H PNj=sporo1 V(1, j) 

 hbr = 1 − e τzoo  (2.10) 

H 

PNsporo 
−H j=1 V(1,j) where (1 − e τzoo ) is a factor that accounts for vector 

zoophilic preferences, ( H ) represents the fraction of biting vectors to 

the host population. The τzoo = 50 km−2 is significant for rural settings with population 

lower than τzoo value. 

The transmission from the vector to the host depends on the infectious status of vectors 

and the host population (H(Nhost)). In the VECTRI model, the probability (Pvh) of host getting 

infected through a single bite from an infective vector is constant, then at each time step, 

daily probability of n infectious bites per individual is expressed as 1 − (1 − Pvh)n. Thus the 

daily transmission probability per person each time step is: 

∞ 
X 

 Pv→H = GEIRd(n)(1 − (1 − Pvh)n) (2.11) 
n=1 

 
where G EIRd is the Poisson distribution for mean EIRd (the daily number of infectious bites 
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by infectious vectors). The EIRd is estimated for each time step as the product of hbr and 

the circumsporozoite protein rate (CSPR: proportion of infective vector). Although Eq. 2.11 

could be modified to incorporate factors that influence biting rate such as bed nets usage, 

these are not accounted for in the present scheme. Once infected, the host acquires 

infective status after 20 days (Shute and Maryon, 1951; Day et al., 1998). 

2.10.7 Model output 

The key model-predicted variables are the EIR (which measures transmission intensity), 

parasite ratio (PR: proportion of hosts infected). In addition to these malaria variables, the 

VECTRI model also predicts variables such as hbr, CSPR, detectable parasite ratio (PRd: 

Proportion of people that have detectable cases after day 10), vector to host ratio, vector 

density (density m−2), larvae density (density m−2) and larvae biomass (mg m−2). 

Furthermore, the model predicts fractional water coverage in each grid cell which can be 

extremely useful in other applications. 

Although preliminary VECTRI performance is promising (Caminade et al., 2014; Pointek et 

al., 2014; Tompkins and Di Giuseppe, 2015), the model still needs further development. 

This study tends to improve two key important variables, surface hydrology and 

developmental habitat water temperature.  
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CHAPTER 3 

A breeding site model for regional, dynamical malaria 

simulations evaluated using in situ temporary ponds 

observations in Ghana  
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Abstract 

Daily observations of potential mosquito developmental habitats in a suburb of Kumasi, 

Ghana reveal a strong variability in their water persistence times, which ranged between 

11 and 81 days. The pond persistence were strongly tied with rainfall, location and size of 

the puddles. A simple area-depth geometrical model that requires only two measurements 

of the pond water depth and surface area is evaluated and found to fit the relationship 

between the pond depth and area well. Using the geometrical model as a basis, a 

prognostic model is derived for the temporal evolution of the pond area, which increases 

in response to rainfall, while evaporation and infiltration act as sink terms. Based on a range 

of evaluation metrics, the prognostic model is judged to provide a good representation of 

the pond coverage evolution at most sites. Finally, it was demonstrated that the prognostic 

equation can be generalized and equally applied to a grid-cell to derive a fractional pond 

coverage, and thus can be implemented in spatially distributed models for relevant vector-

borne diseases such as malaria. 

3.1 Introduction 

Surface hydrology and water body temperature are two key factors that control the aquatic 

stage life cycle of mosquitoes and thus adult abundance by influencing the stability of 

habitat and larvae growth rates, respectively. Mosquitoes may exploit any available water 

for oviposition, natural or man-made (Imbahale et al., 2011; Fillinger et al., 2004), 

permanent or temporary (Fillinger et al., 2004), clean or polluted (Sattler et al., 2005; 

Awolola et al., 2007; Chinery, 1984) and of various sizes from hoof-prints of animals to the 
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edges of large water bodies (Sattler et al., 2005; Mutuku et al., 2006b; Imbahale et al., 

2011), although individual species have preferences of habitat type. For example, 

Anopheles gambiae complex mosquitoes, the principal malaria vector in Sub-Sahara Africa 

prefer small (example, cattle hoof prints), temporary and sunlit water bodies for their 

breeding, which become abundant during the rainy season (Mutuku et al., 2006a; 

Minakawa et al., 2004), although their larvae have also been found in polluted waters 

(Imbahale et al., 2011; Awolola et al., 2007; Sattler et al., 2005). 

These small-sized breeding habitats have many advantages over larger permanent 

breeding sites that increase the developmental rate or survival probability of the aquatic 

stage. Firstly, these habitats contain small amounts of water and therefore their 

temperatures are high relative to deeper water bodies which shortens the larval-pupal 

development time (Munga et al., 2005; Bayoh and Lindsay, 2004; Ndenga et al., 2011), 

although extremely high temperature increases larval mortality (Bayoh and Lindsay, 2003). 

Several studies have found these micro habitats to be productive and therefore their 

contribution to mosquito vector abundance, especially during the rainy season, should not 

be ignored in dynamical models (Bomblies, 2012; Imbahale et al., 2011; Sattler et al., 2005). 

For example, in western Kenya, Minakawa et al. (2004) found more than 80% of Anopheles 

gambiae s.s. in isolated pools with water surface areas lower than 0.1 m2. Secondly, such 

pools are temporary and therefore contain fewer or no competitors and predators 

decreasing the larvae mortality rate (Koenraadt et al., 2004; Sunahara et al., 2002). Thirdly, 

human activities contribute to the creation of these habitats which are found near human 

settlements and thus time spent by the gravid mosquito to locate surface water for 

oviposition is reduced (Mutuku et al., 2006b; Minakawa et al., 1999). Another critical 
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parameter determining mosquito breeding habitat productivity is its stability because only 

habitats that persist long enough can produce adult mosquitoes (Gianotti et al., 2009). 

These mechanisms emphasize the importance of small-sized breeding habitats during the 

rainy season and how they can account for the seasonal variation in malaria vector 

abundance. Therefore, critical factors influencing the stability and productivity of these 

transient habitats need to be examined. The intensity and frequency of precipitation is very 

important since low frequency and intensity of rainfall can lead to desiccation of habitat 

before adult emergence (Himeidan et al., 2009; Srivastava et al., 2001). Other important 

factors that can control the stability of these small-sized habitats are hydrological 

parameters of the area which include soil type, soil moisture content and water table depth 

(Bomblies et al., 2009; Montosi et al., 2012). 

In order to model malaria effectively using a dynamical modeling approach, a realistic 

representation of the surface hydrology is required. However, present dynamical malaria 

models have simple or no representation of surface hydrology since the small spatial scale 

of these developmental habitats limits the use of remote sensing techniques to make 

parametrization assumptions, a situation not aided by the lack of in situ observations. A 

complete understanding of all factors that control productivity and stability of breeding 

habitats and accurate prediction of mosquito aquatic stage life cycle duration are 

important factors for malaria control activities that intend to reduce vector density. For 

instance, information about stability and productivity of habitats indicates which breeding 

sites to target for aquatic stage control strategies and also the time interval to conduct 

adult residual spraying (Gu and Novak, 2005; Mutuku et al., 2006b). 
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Hayashi and Van der Kamp (2000) introduced a power function area-depth (A-h) 

relationship which requires two independent measurements of pond area and depth to 

determine scaling and shape constants. This model (hereafter referred to as Hayashi 

model) is a diagnostic model of water bodies, that relates the volume, area and depth. This 

Hayashi model has been used extensively to study permanent and semi-permanent pond 

dynamics in Senegal relevant for vectors of rift valley fever that have spatial scales of tens 

of metres (Soti et al., 2010). In addition, the model has also been evaluated for regional 

terrain (Brooks and Hayashi, 2002; Minke et al., 2010). However, no study has examined 

whether such a model can also be successfully applied to small temporary sub-metre scale 

water bodies. The current study here uses in situ measurements of a range of such 

developmental habitats in a peri-urban area of Kumasi in Ghana, and then evaluate 

whether the Hayashi model can describe the relationship between area and depth of these 

small breeding sites. 

Since there is considerable variability in the availability and size of small-scale breeding sites 

over the course of a rainy season, a prognostic treatment is required that models the 

sources and sinks of ponds, namely rainfall, evaporation and infiltration. The geometrical 

model of Hayashi is thus used as a basis for developing a prognostic treatment for the 

evolution of a pool areal coverage, which is evaluated using the in situ pond data. Finally, 

to apply the surface hydrology model to regional distributed disease transmission models, 

the equation is generalized to predict the fractional water coverage of grid-cells of order of 

kilometer scales. Using an average, best-fit pond geometrical factor for all monitored sites 

in the study area, the evaluation shows that the scheme can be used in spatially explicit 

malaria transmission models with confidence. 
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3.2 Method and model description 

3.2.1 Study area and data 

The study was conducted in the Kumasi (Ghana) metropolis comprising parts of the Kwame 

Nkrumah University of Science and Technology (KNUST) campus and peri-urban areas of 

Ayeduase, a town sharing a boundary with the university (see Fig. 3.1). For 81 days between 

6 June (day 157 in 2011) and 25 August (day 237 in 2011) daily observations of small-scale 

potential mosquito breeding habitats were undertaken. Ten sites with continuous water 

presence for at least 10 days were considered for this study. The monitored ponds were 

generated during the course of the monsoonal rains of 2011. 

The potential mosquito developmental habitats consisted of a tyre truck, small surface 

depressions, puddles and ditches which collect water during the wet season (see Fig. 3.2). 

At each site, parameters measured include water temperature, water depth and the major 

and minor dimensions of water. However, irregular puddles were divided into segments 

before measuring major and minor dimensions. The daily depth of water in each pond was 

calculated as average of three readings taken at three marked points within the water 

coverage area of the pond using a tape measure of 1 mm measurement accuracy. 

Although study of mosquito larvae was not undertaken, mosquito larvae were observed 

(by visual inspection without larvae identification) in all habitats at some point during the 

study period. Pond measurements were not performed every day during the study period 
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resulting in some data gaps existing in the time series. The number of potential water 

bodies decreased over the period since various ponds dried out and those that persisted 

decreased in size and depth in August 2011 due to the reduction of rainfall during that 

month (Owusu and Waylen, 2009; Manzanas et al., 2014). While some of the habitats dried 

out within a few days of rainfall events, others persisted throughout the study period of 81 

days. The geographical-coordinates of the sites were recorded using a simple hand held 

global position system receiver (GARMIN eTrex series). Daily rainfall and evaporation data 

were obtained from a minute temporal resolution automated rain gauge installed at the 

KNUST AgroMet station (see Fig. 3.1). 

The rainfall (P) and evaporation (E) data used to drive the models developed in this work 

were obtained from Agromet weather station which was located very close to the pond 

sites (see location AgroMet in Fig. 3.1). In this study, evaporation from the water surface 

was simply equated to the ambient air evaporation measured from the weather station. 
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Figure 3.1: Location of the study area KNUST campus and peri-urban areas of the Ayeduase. 

Also indicated are the 10 temporary sites together with the meteorological station 

AgroMet. 

 

(a) Average area = 5.0 m2 (b) Average area = 1.4 m2 
 Average depth = 13.3 cm Average depth = 8.3 cm 

Figure 3.2: Two typical monitored potential mosquito breeding habitats within the study 

area. Left: site 10; right: site 9. 

3.2.2 Diagnostic pond geometry model 

Hayashi and Van der Kamp (2000) developed an area-depth (A-h) relation for water bodies 

expressed as A α h2/p, with the pond water area estimated from Eq. 3.1: 

  ! 2p h 
A = Aref  (3.1) href 

where A is the pond water surface area, h is the pond water depth, and href and Aref are 

reference pond water depth and surface area measurements, respectively. 
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The key assumption of the model is that, averaged radially, variations in the water body 

geometry average out, so that the relationship between the water body depth and its areal 

coverage can be given by a simple power law. The relationship is specified by the exponent 

factor p, which is a constant representing the geometry of the habitat, describing how the 

depth relates to the area. Since p is assumed a constant, only two, coincident 

representative values of pond depth and area are required in order to close the equation, 

href and Aref . Several options exist to set these two parameters. For example, they could be 

set using the maximum values of the pond, an ad-hoc pair of measurements taken on a 

random day, or the average values over an entire measurement campaign. The latter 

approach is employed here to reduce sensitivity to measurement error. 

Once href and Aref are known, the key p parameter is estimated using a least-squared fit of 

the power function of the form of Eq. 3.1 to all the data points. Again, by using all 

measurements, the sensitivity to measurement error should be reduced relative to the 

method of Minke et al. (2010), who computed p based on two separate measurements of 

water surface area and depth. The p parameter is therefore equal to 2 divided by the index 

of 

the best fit regression line. 

3.2.3 Prognostic pond area model 

As pond size and breeding site availability fluctuate significantly in response to rainfall 

during a rainy season, a prognostic model for the ponds dynamics is required. The source 
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of small-sized transient breeding habitats is determined by rainfall and runoff while 

infiltration, evaporation and overflow events control their lifespan. These processes are 

schematically represented in Fig. 3.3. The daily volumetric water balance of a puddle is 

approximated by Eq. 3.2: 

 dV   A ! 

  = [ PA + (Amax − A)R ] 1 −  − (E + I)A (3.2) 

 dt Amax 

where dV
dt represents the rate of change in puddle water volume, Amax is pond catchment 

area approximated as maximum measured water surface area of the pond, A is daily pond 

water surface area, P, R, E and I are the daily amount of rainfall, runoff, evaporation and 

infiltration, respectively. The first term on the right-hand side of Eq. 3.2 represents the 

direct contribution of rainfall, the second term represents the input surface runoff, while 

the last term represents loss of water from the puddle through evaporation and infiltration. 

The coefficient of the second term (Amax − A) is zero when the area of the puddle reaches 

its maximum (i.e Amax). In this case, the contribution of runoff is zero and additional rainfall 

will lead to outflow from the puddle. 
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Figure 3.3: Schematic illustrating the various processes in the pond model. 

The runoff R term was estimated using the Soil Conservation Service curve number 

(SCS-CN) method developed by the United States Department of Agriculture (USDA) USDA 

(1972): 

CN 

where P is rainfall (mm), S is potential maximum retention (mm) and CN (range between 0 

and 100) is the curve number, a dimensionless parameter indicating the land surface and 

soil type characteristics. At the lower CN threshold, all rainfall infiltrates without generating 

runoff while all rainfall becomes runoff at the upper CN threshold. USDA (1972) provides 

CN values for various land cover and soil types. 

(P − 0.2S)2 

R = 

P + 0.8S 

(3.3a) 

25400 

S = − 254 (3.3b) 
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The loss of pond water due to infiltration increases with increase in water surface area with 

maximum infiltration occurring after rainfall events, while minimum infiltration occurs 

when water level reduces to reach the clogged region of the pond (Porphyre et al., 2005; 

Martin-Rosales and Leduc, 2003). This is represented using a linear relation with the daily 

pond water surface area and depth as given by Eqs. 3.4a and 3.4b for area and depth 

simulations, respectively: 

I 

 I = max A (3.4a) 

Amax 

I 

I = max h (3.4b) hmax 

where Imax is the estimated daily maximum infiltration, hmax is the measured maximum 

water depth and h is the daily water depth. 

In order to translate the volumetric pond equation (Eq. 3.2) to prognostic equations for 

pond area and depth, the volume, height, area relationship of the diagnostic Hayashi model 

is introduced. For generic depression shape, Hayashi and Van der Kamp (2000) further 

provided a relation that links the water depth and surface area to its volume (V = 

Aref h(1+2/p) (1+2/p) h2ref/p ), and substituting this into the Hayashi model (Eq. 3.1) gives the 

relationship between the tendencies of pond fraction and pond volume: 

p 

 dA 2 Aref ! 2 dV 

= (3.5a) dt phref A dt 
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2 dh

 1 href ! p dV 

= (3.5b) dt Aref h dt 

It is then straightforward to solve by substituting Eq. 3.2 into Eqs. 3.5a and 3.5b to derive 

the prognostic pond area and depth model: 

p dA 2 Aref ! 2    A ! ! 

= [ PA + (Amax − A)R ] 1 −  − (E + I)A (3.6a) dt phref A Amax 

2 

 dh 1 href ! p    A ! ! 

= [ PA + (Amax − A)R ] 1 −  − (E + I)A (3.6b) dt Aref h Amax 

A simple semi-implicit numerical technique is used to integrate the equation forward in 

time stably using a daily timestep, treating linear terms at time level t + 1 for stability. 

However, 

treating the power terms A−p/2 and h−2/p on the right hand side of Eq. 3.6 at future time 

levels makes the solution not generally tractable, while treating these terms at time level t 

would imply that the puddle would not be refilled once it dries out (i.e. A(t) = 0 ⇒ dA
dt = 0). 

A 

simple two-step solver approach is thus introduced to address this issue. The A−p/2 and h−2/p 
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terms are approximated with reference values, A−
ref

p/2 and h−
ref

2/p, respectively to reduce 

Eq. 3.6 to a simple linear equation. This is then solved implicitly to provide first guess puddle 

area and depth values at first time step: 

At + ph2 R(Amax − Aref )∆t 

 Afg,t = h ref Aref i (3.7a) 

1 + ph2ref E + R − P + Amax (Imax + P − R) ∆t 

 A R ref 

hfg,t =(3.7b) 

 1 + 2/p E + R 

 ht ref − P + 
hhmax (Imax + P − R) ∆t 

For the second step solution, Eq. 3.6 is solved again implicitly but replacing the power terms 

A−p/2 and h−2/p terms with A−
fg

p/2 and h−
fg

2/p respectively to provide the final model equation: 

 2R 

 p/2 

At+1 =(3.8a) 
 Aref A 
 1 + phref Afg,t E + R − P + Amax (Imax + P − R) ∆t 

 A R 

 2/p
 fg,t 

 ht+1 = h (3.8b) 

 1 + ht hfg,t E + R − P + hmax (Imax + P − R) ∆t 

To assess the model performance, Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 
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(1970)), the coefficient of determination (R2) and the Relative Mean Absolute Error (RMAE) 

defined by Eq. 5.10 are used. 

N 
P(S − Oi)2 

i 
i=1 

NS E = 1 −  
N 
P(O − O∗)2 

i 
i=1 

  2 
N 

 R2 

PN iP=−1(OO∗i)−2#0O.5∗")(PNS(iS−i S−∗S) ∗)2#0.5  (3.9) 

  (Oi 
 i=1 i=1 

 N  1 

N1 X |Oi − S 

i  

RMAE = 

O∗ i=1 

where S i refers to the ith simulated value, Oi is the ith observation, O∗ is the mean of 

observed data and N is the total number of observations. The NSE performance ratings 

(Nash and Sutcliffe, 1970) could be considered very good if (NSE > 0.75), good if (0.75 ≥ NSE 

> 0.65), satisfactory if (0.65 ≥ NSE > 0.5) and unsatisfactory if (NSE ≤ 0.5). 
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3.3 Results and discussion 

3.3.1 Pond measurements 

As expected, the depth and dimension of the ponds were strongly influenced by rainfall 

amounts and its frequency as well as the local hydrology of the pond location. The average 

pond depths of the ten monitored temporary small-sized potential mosquito breeding 

habitats varied between 5.9 and 14.5 cm with the average areas ranging between 1.4 and 

9.1 m2 and decreasing significantly towards the end of the study period (Fig. 3.4). Note that 

at the end of the observational period, only about half of the potential breeding habitats 

were available. Sites 2, 5, 6, 7 and 8 dried out, site 3 was destroyed, while sites 1, 4, 9 and 

10 remained with water at the end of observational period. This observation also reveals 

the link between pond stability and local hydrology of the pond location. 
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Figure 3.4: Top: Average area (left axis, red line) and average depth (right axis, blue line) 
of the monitored breeding habitats. Bottom: Daily precipitation amounts of the 

automated rain gauge from the KNUST campus. 

The average pond water depth and surface area, maximum pond water depth and surface 

area as well as elevation of these breeding habitats are shown in Table 3.1. The total rainfall 

recorded throughout the study period was 541.1 mm with July recording the highest 

rainfall amount (Fig. 3.4). During the months of June and parts of July (up to 21 July, day 

202), the maximum dry period (number of days between rainy days) was 5 days with 49.9 

mm being the maximum daily rainfall recorded during this period. However, after 21 July 

2011, the maximum dry period increased to 9 days with a maximum of 15.3 mm daily 

rainfall recorded during this period. Most of the ponds remained stable containing water 

from the start of the experiment until day 207 (26 July 2011) with the exception of sites 6 
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and 7, which are located far from the stream and also at a higher elevation (see Fig. 3.1 and 

Table 3.1). After this date, about 5 of the ponds dessicated and also significant reduction in 

both average area and depth occurred at the end of the study period (see Fig. 3.4). 

Table 3.1: Average area (Avg area) and depth (Avg depth), maximum area (Max area) and 

depth (Max depth), elevation, total number of days when pond contained water (pond 

water) and maximum number of days of continuous water presence (Max water) of the 10 

temporary breeding habitats. The italics represents sites that did not endure the entire 

experiment. Site 3 was destroyed and site 9 measurement started later on 26 June. 

Name Elevation pond water Avg area Max area Avg depth Max depth Max water 

 [ m ] [ Days ] [ m2 ] [ m2 ] [ cm ] [ cm ] [ Days ] 

Site 1 259 81/81 1.9 3.8 5.5 8.8 81 

Site 2 258 65/81 2.4 4.6 5.8 9.0 46 

Site 3 257 31/31 5.0 8.0 7.7 10.3 31 

Site 4 256 81/81 4.7 8.8 10.7 16.7 81 

Site 5 258 79/81 2.5 4.9 6.8 11.0 79 

Site 6 283 45/79 3.6 5.0 6.7 9.7 11 

Site 7 282 51/79 7.5 12.5 7.7 10.2 13 

Site 8 263 56/80 5.9 8.8 7.5 9.8 56 

Site 9 262 60/60 1.3 1.8 8.0 11.3 60 

Site 10 260 81/81 5.0 7.4 12.9 16.8 81 

For the ten sites studied, variability in the stability of temporary mosquito developmental 

habitats ranged from 11 to 81 days and was strongly linked with rainfall, local hydrology of 

habitat location and size of the habitat (Table 3.1). For instance, due to the short dry spell 

occurring at the Guinea Coast in August between the major and minor rainfall seasons 

(Owusu and Waylen, 2009; Manzanas et al., 2014), only about half of the monitored ponds 

had water towards the end of August. However, those ponds with persisted water at the 

end of observational period were located close to permanent streams (sites 1 to 5) and 

waterlogged areas (sites 9 and 10) (see Fig. 3.1 and Table 3.1). This is in agreement with 

the study of Himeidan et al. (2009), who also found that longer lived developmental 

habitats were located near streams and water sources in the eastern African highlands. In 
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the same district, Mushinzimana et al. (2006) made similar observations with more than 

60% of positive habitats found within 50 metres from streams in both dry and rainy 

seasons. Similar observations were made by Bomblies et al. (2009), a different water table 

was detected for two Nigerien villages, which led to a strong difference in the persistence 

of pools. In addition, these puddles are potential mosquito breeding habitats since their 

stability far exceeds the time required between the eggs laying and adult emergence 

mosquitoes (Depinay et al., 2004). However, the productivity of the longer-lived ponds 

might be affected by predators due to their long water persistence times (Chase and Knight, 

2003). 

Minakawa et al. (2005), observed that pond stability positively correlated with habitat size 

and location with the former having a higher correlation coefficient. Their results are 

consistent with our findings where both size and location influence pond stability. 

However, our results point to habitat location having a more pronounced impact. For 

instance, site 6 (average area: 3.6 m2; average depth: 7.0 cm) and site 7 (average area: 8.5 

m2; average depth: 7.7 cm) are located within the same area. In this case, site 6 with a 

smaller water volume had a shorter water persistence time (see Table 3.1). Conversely, site 

1 (average area: 1.9 m2; depth: 5.5 cm) reveals a greater stability than sites 6 and 7, due to 

its close location to a permanent stream. This site contained water throughout the study 

period despite its smaller dimension. This confirms that both habitat size and local 

hydrological conditions influence pond stability and within the same area, size might be the 

dominant factor (Minakawa et al., 2005), however, over wider area, habitats location might 

be the key factor controlling its variability in stability. For instance, Himeidan et al. (2009) 
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found that the percentage of stable habitats was 48.76% and 80.79% for habitats located 

on top of the hills and near 

streams, respectively. 

3.3.2 Evaluating the Hayashi diagnostic model 

Using the site data, the best fit p parameter for the Hayashi model was derived for each 

site. Fig. 3.5 shows example for some of the sites and the p values for all the sites are given 

in Table 3.2. The p values range between 1.1 and 2.0 with an average of 1.6. This range of 

values lies within the expected range reported for temporary pools and ponds (Brooks and 

Hayashi, 2002; Hayashi and van der Kamp, 2007). For instance, Brooks and Hayashi (2002) 

reported p values ranging between 0.6 and 2.24 for 34 vernal pools. The R2 of the power 

function fit range between 0.54 and 0.94. This results indicate that the Hayashi diagnostic 

model can also describe reasonably well the geometry of small ponds and forms a good 

basis on which to build the prognostic model for pond coverage. 

 

 (a) Site 5 (b) Site 8 
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Figure 3.5: Example of power function fit for sites 5 and 8 using the area-depth relation. 

The estimated p values for all the sites are listed in Table 3.2. 

3.3.3 Evaluating the prognostic model 

The performance of the area-depth (A-h) relation for the 10 micro-habitats was validated 

against field observations. The results (see Fig. 3.6) demonstrate the model potential to 

simulate the daily variability of the pond water surface area and depth. To assess the 

performance of the model, RMAE, R2 and NSE between observation and model output were 

computed and the results are summarized in Table 3.2. The model results are subdivided 

in relation to ponds location. 
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 Julian Day  

(g) Site 8 

 Julian Day  

(h) Site 9 

 Julian Day  

(i) Site 10 
Figure 3.6: Comparison of daily observed and simulated pond water surface area and water 

depth of temporary water bodies. Solid lines are simulated values of area (blue) and depth 

(red). Dots and crosses represent the observed values of the surface area and water depth, 

respectively. Sites names are shown under each plot. 

Sites 1 to 5 are located close to permanent stream (see Fig. 3.1), the model captured the 

observed variability of ponding due to rainfall events (see Fig. 3.6 a − d ). During the later 

period of the study, the infiltration rate reduces when the pond area is small due to the 

clogging effect of clay, the nonlinear representation of infiltration in the model was able to 

account for this effect to some extent. The R2 and NSE range between 0.78 and 0.93 and 

0.66 and 0.85, respectively, indicating good to very good acceptable model performance 

based on NSE ratings (see Table 3.2). In addition, the RMAE range from 0.10 to 0.23 (see 

Table 3.2 for range) values were obtained for these sites for both the area and depth. 

Table 3.2: Computed p values, RMAE, R2 and NSE between observation and model output 

for various sites for both area and depth simulations. For these calculations, missing days 

were left out. 

Site Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9 Site 10 

p value 1.5 1.7 2.0 1.6 1.4 1.7 1.5 1.1 1.9 2.0 

    Area       

RMAE 0.15 0.23 0.12 0.15 0.21 0.52 0.40 0.23 0.15 0.08 

R2 0.93 0.90 0.90 0.89 0.78 0.77 0.83 0.95 0.90 0.95 

NS E 0.85 0.78 0.71 0.78 0.79 0.51 0.68 0.86 0.57 0.79 
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    Depth       

RMAE 0.13 0.23 0.12 0.10 0.16 0.44 0.34 0.31 0.13 0.13 

R2 0.91 0.89 0.86 0.93 0.89 0.80 0.87 0.93 0.92 0.87 

NS E 0.81 0.79 0.66 0.80 0.78 0.64 0.70 0.74 0.63 0.59 

The model for habitats located in areas characterized by high infiltration and far from 

permanent sources of water underestimates the generation of ponds (Fig. 3.6 e − g ). The 

model fails to simulate the intermittent drying of ponds as observed and also overestimates 

the area during the latter and fairly dry part of the study period for these sites. Regarding 

the dry period, the simulation developed ponding on day 216 due to 15.3 mm rainfall event. 

However, no ponding was observed. A high infiltration rate seems to characterize these 

sites. This indicates that the model could be improved by incorporating a treatment of soil 

moisture, which would increase infiltration in the drier periods as the soil dries out. 

Regarding sites 6 to 8, the R2 and NSE values range between 0.77 and 0.93 and 0.51 and 

0.86, respectively. This indicates a satisfactory to a very good performance of the 

prognostic model based on NSE rating (see Table 3.2). The RMAE range between 0.23 and 

0.52 for both depth and area simulations. 

The water table of the waterlogged areas penetrated the surface at the peak of the rainy 

season, an effect which is not simulated by the model. In this case, the infiltration becomes 

zero and water loss is governed only by evaporation. For these reasons, the model 

underestimates the surface area and depth of the water bodies at sites 9 and 10 (see Fig. 

3.6 h & i). Despite this underestimation towards the end of the observational period, the 

model performance range between satisfactory and very good for the waterlogged area. 

The R2 and NSE values range between 0.87 and 0.95 and 0.57 and 0.79, respectively, (Table 



 

88 

3.2). The RMAE range between 0.08 and 0.15 (see Table 3.2) for both area and depth 

simulations. 

Overall, the results from the presented prognostic geometrical model demonstrate the 

potential of the model to simulate daily and intraseasonal variability in surface water area 

and depth of individual ponds under different local hydrological conditions. However, 

further significant improvement could be achieved by including a representation of soil 

moisture in the model, but at the expense of a considerable more complex model system. 

3.3.4 Application to regional distributed models 

It has been demonstrated that the prognostic water balance model for pond area 

presented in this work gives a good representation when validated with individual ponds. 

However, in order to apply this model to a large-scale, distributed model for vectors or 

vector-borne disease transmission (e.g. Hoshen and Morse, 2004; Tompkins and Ermert, 

2013), the model needs to be generalized to represent the total coverage of ponds over 

grid-cells that may range from several kilometres up to over 100 km in scale. 

If we denote the distributed model grid-cell size as Agrid, and the area of pond i to be Ai, 

then the fractional coverage Fi of that single pond is simply Fi = Ai/Agrid. Thus the rate of 

change of the fractional coverage of this single pond that has a shape factor pi is 

straightforward to derive: 
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pi dA 2  Fref ! 2    Fi ! ! 

= [ FiP + (Fmax − Fi)R ] 1 −  − (E + I)Fi (3.10) dt pihref Fi Fmax 

The aggregate total fractional coverage is the summation of the n individual ponds in a grid 

cell: 

p dF Xn

 n ! 2i    Fi ! ! dFi X 

 =  = [ FiP + (Fmax − Fi)R ] 1 −  − (E + I)Fi dt i dt i

 pihref Fi Fmax 

(3.11) 

This summation would be straightforward, except for the fact that each individual pond has 

its own value for the shape factor pi. If we assume, however, that an appropriate value of 

p can be adopted that adequately describes the mean shape of the aggregate pond (this is 

not 

simply n
1 Pn

i pi due to the nonlinearity), which will be referred to as ep, then the aggregate 

fractional pond coverage is 

p dF  Fref !e
2    F ! ! 

 = κ [ FP + (Fmax − F)R ] 1 −  − (E + I)F (3.12) 

 dt F Fmax 
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where κ = eph2
ref . The value of ep is set using the best fit between daily average area and 

depth (Fig. 3.7a), which gives ep=1.4, which is close to the average p value of 1.6 for the 8 

sites used to estimate the fractional water coverage. 

Fig. 3.7b shows the time series of simulated and estimated daily water fraction. The 

observed value is calculated by simply summing the pond fractions and assuming a value 

of Agrid equal to 100 Amax. The Eq. 3.12 is then integrated forward in time implicitly, 

assuming ep to be 1.4. The fact that the fit is close to that achieved for the individual ponds 

indicates that the approximation of assuming a generalized shape parameter ep across all 

individual ponds is a reasonable one. The model agrees well (NSE = 0.84) with the estimated 

fractional coverage of the ponds. Consequently, the presented model by Eq. 3.12 has been 

implemented into the vector-borne disease community model of the International Centre 

for Theoretical Physics, 

Trieste (VECTRI) malaria model and is available from v1.3.1 onwards. 

 

 (a) Power function fit (b) Water fraction 

Figure 3.7: Power function fit for average of 8 sites (excluding sites 3 and 9) (a) and 

comparison of simulated and estimated water fraction (b). 
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In summary this demonstrates the useful application of the presented geometrical model 

for gridded malaria vector borne disease models to improve their representation of surface 

hydrology using a simple model. 

3.4 Summary 

Surface hydrology is one key factor that controls the life-cycle of mosquito larvae, and is 

therefore a required parameter for dynamical disease models. A simple prognostic model 

was developed based on the diagnostic geometrical model of Hayashi, with sources and 

sinks due to precipitation, run off, evaporation and infiltration, with a nonlinear infiltration 

term to represent the clogged inner regions of puddles. Based on general performance 

rating of NSE, the model results for all the individual sites were within acceptable level of 

model performance ranging between satisfactory and very good for depth and area 

simulations. However, during the later dry phase of the study period, the model tends to 

overestimate and underestimate the pond area and depth for the sites located far away 

from permanent streams (sites 6 to 8) and within waterlogged areas (sites 9 and 10), 

respectively. This indicates that the model could be improved by incorporating a treatment 

of soil moisture, which would increase infiltration in the drier periods as the soil dries out. 

The developed single element prognostic model was further generalized to simulate the 

total fractional coverage of ponds within a grid-cell to assess the model application in 

gridded dynamical models. The model shows good agreement (NSE = 0.84) with the 

estimated fractional coverage of the ponds. This result highlights the useful application of 
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this prognostic geometrical model in spatially distributed dynamical disease models and 

thus could improve representation of surface hydrology in vector borne disease models. 

CHAPTER 4 

A regional model for malaria vector developmental habitats 

evaluated using explicit, pond-resolving surface hydrology 

simulations  
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Abstract 

The regional-scale dynamical malaria model VECTRI represents the coverage of small-scale 

breeding sites for malaria vectors in an idealized surface hydrology model. In addition to 

the VECTRI default surface hydrology scheme, we present a modified scheme that 

incorporates pond geometry and the nonlinearities of the surface runoff and the infiltration 

processes. These two hydrology schemes are evaluated using HYDREMATS, a 10 metre 

resolution village-scale model that explicitly simulates individual ponds, using a multi-

member ensemble Monte Carlo technique to identify the parameter setting that minimizes 

water fraction differences. Despite the simplicity of the two VECTRI surface hydrology 

parametrization schemes, they perform relatively well at reproducing the fractional water 

coverage evolution as simulated by the HYDREMATS model. The VECTRI model tends to 

overestimate water fraction in 2005 and underestimate it in 2006, and also to relatively 

overestimate water fraction during the monsoon onset period. This systematic error was 

improved by treating runoff in the revised scheme, although further improvements could 

be made by representing soil moisture. Simulations of vector densities with the modified 

VECTRI model were also close to the detailed agent based model contained in HYDREMATS. 

The results indicate that, with knowledge of local soil parameters and terrain, VECTRI 

schemes parameters could be adjusted to simulate malaria transmission on a local scale. 

Furthermore, VECTRI driven by satellites rainfall estimates produces a reasonable 

simulation of the sub-seasonal evolution of the pond fraction for the study area, thus 

indicating the possibility of driving the malaria model with satellite rainfall estimates in the 

absence of ground observations. 
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4.1 Introduction 

The availability of water for larvae development is a key determinant of mosquito density 

(Fillinger et al., 2004; Minakawa et al., 2005). The availability, area coverage and 

persistence of temporary surface water (which serves as developmental habitat for gravid 

mosquitoes) are tied with depth, intensity and frequency of rainfall as well as local 

hydrological 

conditions. 

Attempts to link rainfall incidence to malaria vector abundance and disease incidence have 

yielded varied results in different geographical locations. For instance, the 1997 El Niˇno 

southern oscillation (ENSO) caused an increase in rainfall in parts of eastern Africa leading 

to a malaria epidemic in southwest Uganda (Kilian et al., 1999), but conversely a reduction 

in malaria cases was observed in the Usambara Mountains of Tanzania (Lindsay et al., 

2000). In Botswana, Thomson et al. (2006) developed a malaria early warning system based 

on multi-model ensemble prediction of precipitation and found that the relationship 

between November-February precipitation and the anomaly in malaria incidence is best 

explained by a quadratic relationship with malaria incidence decreasing once rainfall 

exceeded a certain threshold. In Malawi, Lowe et al. (2013) found a similar quadratic 

relation. Kelly-Hope et al. (2009) observed a weak correlation between precipitation and 

abundance of mosquito vectors with a correlation coefficient (r2) of 0.246 and 0.315 for An. 

gambiae s.s and An. arabiensis respectively. Similarly, Molineaux and Gramiccia (1980) 

found a poor correlation between mosquito abundance and seasonal rainfall using data 
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from Garki district in northern Nigeria. In addition, in Banizoumbou village in southwestern 

Niger, Bomblies (2012) showed that temporal patterns of individual rainfall events can 

explain a large part of the variance in mosquito abundance, partially explaining previously 

observed poor correlations which typically consider monthly or seasonal total 

precipitation. The nonlinear relationship of mosquito abundance to precipitation is poorly 

understood and may be partially due to intense rainfall reducing larvae density by flushing 

first stage larvae (Paaijmans et al., 2007). 

Due to the nonlinear relationship between habitat stability and rainfall, other studies have 

focused on using local hydrological parameters that are more directly connected to the 

surface hydrology to predict mosquito vector abundance and incidence of malaria. Depinay 

et al. (2004) introduced a local scale dynamical model designed to explicitly model 

individual breeding sites to simulate mosquito population dynamics. Patz (1998) observed 

an improvement in predicting An. gambiae biting rate from 8% with raw precipitation to 

45% with modeled soil moisture. In a related study in South Africa, Montosi et al. (2012) 

found that soil moisture predicts better sub-seasonal variability in malaria cases relative to 

rainfall and temperature. Shaman et al. (2002) found a positive association between 

modeled local surface wetness with ≈ 10 days time lag and abundance of Anopheles walkeri 

and Aedes vexans in the eastern United States. 

Mosquitoes exploit diverse habitats for their oviposition though species have habitat-type 

preferences (Fillinger et al., 2004; Sattler et al., 2005; Mutuku et al., 2006b; Awolola et al., 

2007; Majambere et al., 2008; Imbahale et al., 2011; Minakawa et al., 2012). For instance, 
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the two key African malaria vectors, Anopheles gambiae sensu stricto and Anopheles 

arabiensis prefer small temporary sun-lit pools for oviposition (Minakawa et al., 1999; 

Gimnig et al., 2001; Koenraadt et al., 2004) although they also thrive in other water bodies 

(Sattler et al., 2005; Awolola et al., 2007; Minakawa et al., 2012). These temporary sun-lit 

pools typically have higher water temperatures, which shortens the length of the aquatic 

stage development of mosquitoes, but due to their size they are also prone to desiccation 

before larvae emerge as adults. This means that presence of water is not sufficient and that 

the temporal dynamics of small ponds are also important. For instance, Himeidan et al. 

(2009) found hilltop habitats to be unproductive, containing few Anopheline larvae but with 

zero pupation rate as result of habitat instability. 

Dynamical mathematical models for mosquitoes or malaria transmission have incorporated 

representations of the surface hydrology that vary in complexity. For instance, Hoshen and 

Morse (2004) relate the oviposition rate to the 10 day rainfall rate in the Liverpool Malaria 

Model (LMM). Lunde et al. (2013b) parametrized surface hydrology as a function of river 

length and soil moisture based on the assumption that potential habitats are located within 

the vicinity of rivers and lakes. Their Open Malaria Warning (OMaWa), designed to be run 

on a large scale, may have limited application in areas of relatively flat topography where 

habitats are only rain-fed and can be located far away from permanent water bodies. 

Another recently introduced regional scale dynamical malaria model, the vector-borne 

disease community model of the International Centre for Theoretical Physics, Trieste 

(VECTRI; Tompkins and Ermert (2013)) uses a simple surface hydrology parametrization 

that models the evolution of the fractional water coverage within each grid cell. For local, 

village scale modeling, Bomblies et al. (2008) introduced the high-resolution Hydrology, 
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Entomology, and Malaria Transmission Simulator (HYDREMATS). HYDREMATS runs with 10 

meter spatial scale grid-cells to explicitly simulate pool formation and persistence time that 

control aquatic stage development of mosquito for each individual pond. In order to set up 

this model, Banizoumbou village in southwest Niger was manually mapped at this 10 m 

scale using survey-grade differential GPS instrumentation. The model simulated daily water 

depth showed good agreement with observations, predicting seasonal and sub-seasonal 

mosquito abundance (Bomblies et al., 2008). Bomblies et al. (2009) using HYDREMATS 

found good agreement with observed interannual variability in mosquito abundance 

between two villages located 30 km apart, but with contrasting local hydrological and 

environmental conditions. Furthermore, HYDREMATS has been used to assess the impact 

of environmental management in malaria control (Gianotti et al., 2009) and the sensitivity 

of the model to various climate change scenarios has been evaluated (Bomblies and Eltahir, 

2009). 

The small spatial scale of breeding habitats confound modeling efforts as a result of the 

lack of data from both field observations and remote sensing techniques to assess model 

parametrization assumptions. The high resolution, explicit surface hydrology simulations 

of the HYDREMATS model therefore offer a valuable alternative to evaluate simple 

representations of surface hydrology in regional malaria models. The objectives of this 

study are therefore, firstly to evaluate the pond parametrization used in VECTRI (Tompkins 

and Ermert, 2013) using output from the high-resolution, explicit surface hydrological 

model (HYDREMATS) introduced by (Bomblies et al., 2008) as a benchmark. A modified 

version of the scheme that attempts to address some shortcomings of the default VECTRI 

model is also presented and evaluated. Finally, we examine how the simulation of mosquito 
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density by the simple bulk model of VECTRI compares to the detailed agent-based 

treatment of the HYDREMATS model. 

Rain gauge networks in most malaria endemic regions are sparse and therefore available 

satellites estimates of rainfall can be useful to drive these surface hydrology schemes. 

Recently, Yamana and Eltahir (2011), found similarities in mosquito population and malaria 

transmission simulated by HYDREMATS when driven by surface observations or the Climate 

Prediction Center morphing technique (CMORPH) rainfall estimates for Banizoumbou 

village in Niger. Their results revealed that in the absence of ground observations, satellite 

rainfall estimates may be used to drive malaria models. The second objective of this study 

is therefore to ascertain if replacing ground-based in situ rainfall measurements by 

remotely sensed rainfall data is significantly detrimental to the hydrology simulations. The 

results will indicate whether satellite products could be used to drive VECTRI so as to get 

real time prediction of malaria transmission on a regional scale. 

4.2 Method and Data 

4.2.1 Data for study Region 

The study region, Banizoumbou village in southwestern Niger (13◦ 310, 2◦ 390), was mapped 

out at 10 m resolution and in situ pond measurements were taken throughout two rainy 

seasons of 2005 and 2006. In addition, vector density was estimated using Centers for 



 

99 

Disease Control (CDC) miniature light traps deployed in six locations (four indoor, two 

outdoor) in Banizoumbou. The HYDREMATS high-resolution, coupled hydrology and 

entomology model of Bomblies et al. (2008) was then used to successfully simulate the 

pool formation and daily pond water depth at the 10 m scale as well as the vector density 

differences between the two seasons. For a comprehensive description of the study area, 

the HYDREMATS simulations, and their evaluation with in situ measurements, the reader 

is referred to Bomblies et al. (2008). 

Station rainfall data for the experiments were provided by the Banizoumbou 

meteorological station located just outside the village. To explore the potential of using 

satellite precipitation products to drive VECTRI on a regional scale, two satellite products, 

namely the Tropical Rainfall Measuring Mission (TRMM 3B42; Huffman et al. (2007)) and 

the second version of the Famine Early Warning System (FEWS RFE2; Herman et al. (1997)) 

were assessed as these are the two key daily rainfall products available in near real-time. 

The TRMM 3B42 rainfall estimates are available on a 3-hour temporal resolution and a 

spatial resolution of 0.25◦ × 0.25◦ between latitudes 50◦ north and south. Rainfall estimates 

from TRMM 3B42 are derived using a combination of passive microwave sensors (TMI, 

AMSU-B, SSM/I, and AMSR-E) and the TRMM 2A12 precipitation radar (PR) calibrated using 

available rain gauge data on a monthly timescale (Iguchi et al., 2000). The FEWS RFE2 

rainfall retrieval combines geostationary infrared information with polar orbiting 

microwave sensor (SSM/I and AMSU-B) data, replaced with rain gauge data where available 

on the global telecommunications system (GTS). This product has a spatial resolution of 

0.1◦ × 0.1◦ (Love et al., 2004). For each product the satellite pixel was selected that contains 

the study area. 
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4.2.2 VECTRI Malaria Model 

4.2.2.1 Default model hydrology 

VECTRI is an open source grid-cell distributed dynamical malaria model that operates using 

a resolution of the driving climate data (10 - 100 km). A detailed overview of the VECTRI 

model is described in Tompkins and Ermert (2013). The model incorporates a simple 

surface hydrological parametrization scheme (V1.2.6) that estimates at each time step the 

fractional water coverage area in each grid cell. Fractional water coverage area is a sum of 

both permanent and temporary habitats, although presently no parametrization of 

permanent water bodies are included, allowing the user to set value for the permanent 

fraction with knowledge of the study area hydrology. In this study the permanent water 

fraction is set to zero. The net aggregated fractional water coverage of temporary pools in 

each grid cell was expressed as in Eq. 4.1: 

 dwpond   

  = Kw P(wmax − wpond) − wpond(E + I) (4.1) 

dt 

where wpond is the net aggregated fractional water coverage in a grid cell, wmax is the 

maximum fractional coverage of temporary ponds, P is the precipitation rate, E and I which 

were set to a fixed constant are evaporation rate and infiltration rate respectively and Kw 

is a linear constant. For details see Tompkins and Ermert (2013). The scheme is highly 

simplified and neglects many factors, including topographical slope, soil texture, pond 

geometry and heterogeneity in water infiltration rates. For example, the rate of infiltration 
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decreases towards the middle of these temporary ponds due to the effect of clogging by 

sediment over time (Desconnets et al., 1997; Martin-Rosales and Leduc, 2003). This 

nonlinearity in infiltration relation will therefore lead to constant infiltration assumptions 

over- or underestimating loss of water from the ponds. The stability of ponds has also been 

linked with their shape. For instance, Garmendia and Pedrola-Monfort (2010) observed 

rapid drying of cylindrical shaped ponds relative to conic shape ponds. 

4.2.2.2 Modified model hydrology 

To address these latter two limitations, a new surface hydrology parametrization scheme 

(V1.3.0) is introduced. The scheme is still based on the concept of a certain fraction wmax of 

a grid cell that collects water locally into temporary surface pools, while precipitation falling 

on the remaining area evaporates or drains to rivers either as surface runoff or subsurface 

flow. Here the relationships are modified to relax the assumption that all precipitation 

within the local drainage contributes to pools, and to better account for pool geometry 

using the simple power function relation of Hayashi and Van der Kamp (2000). Unlike 

V1.2.6, the relationship between volume and pond fractional coverage area is also linked 

to the pond’s geometry in V1.3.0 as expressed in Eq. 4.2 following Asare et al. (2015a): 

dwpond 2  wref p/2   wpond !  

= [Pwpond +Q(wmax −wpond)] 1 −  −wpond(E+ fImax) (4.2) dt phref wpond wmax 
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where p represents the shape factor of ponds, href is the aggregated reference pond water 

depth, wref is the reference fractional coverage equated to Kw for this study, Q is the runoff 

(see Eq. 4.3), Imax maximum infiltration which depends on the local hydrology and soil type 

wpond 
and f = wmax a linear scaling function that moderates daily infiltration rate (Asare et al., 

2015a). Infiltration is expected to be maximum when the ponds reach their maximum 

surface area. For instance, in southwestern Niger, Martin-Rosales and Leduc (2003) found 

maximum infiltration of the order of 600 mm day−1 after a rainfall event which reduced 

significantly as the water depth reached the clogging region of the pond. In the same 

region, Desconnets et al. (1997) found a similar sharp decrease in infiltration rate from the 

sandy to clay-clogged area of the pond. 

The Q term in the V1.3.0 is calculated based on the United States Department of Agriculture 

(USDA) USDA (1972) Soil Conservation Service curve number (SCS-CN) method: 

CN 

where P is rainfall (mm), S is potential maximum retention (mm) and CN (range between 0 

and 100) is the curve number, a dimensionless parameter representing the land surface 

characteristics. When CN is 100, all rainfall will become runoff while all rainfall infiltrates 

without generating runoff when CN is 0 (Eq. 4.3b). The CN values for various hydrological 

(P − 0.2S)2 

Q = 

P + 0.8S 

(4.3a) 

25400 

S = − 254 (4.3b) 
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soil groups and land cover types are available from SCS-CN tables provided by the USDA 

(1972). Runoff occurs when rainfall exceeds the initial abstraction capacity of the surface 

layer which is assumed to be 0.2S. 

Hayashi and Van der Kamp (2000) introduced a simple geometrical model for ponds. 

Studies have shown that the geometrical shape parameter in the model is approximately 2 

for temporary ponds (Hayashi and Van der Kamp, 2000; Minke et al., 2010; Soti et al., 

2010). This simple geometrical model showed good agreement with daily observed surface 

area of individual micro habitats in suburb of Kumasi Ghana as shown in previous paper. 

4.2.2.3 Vector model 

The VECTRI model simulates the total vector density per square metre by dividing larvae 

into a number of development bins and vectors into a number of bins that represent the 

state of the gonotrophic cycle Tompkins and Ermert (2013). Temperature impacts rate of 

the progression of larvae through the successive growth stages, the female adult 

gonotrophic rates, and the mortality of both larvae and adults. The pond fraction limits 

larvae density through a maximum biomass carrying capacity, the value of which was 

adopted from the HYDREMATS model. 
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4.2.3 HYDREMATS malaria model 

4.2.3.1 Surface hydrology 

HYDREMATS is a mechanistic model that simulates the pool water level and flow velocity 

at each time step and grid-cell based on distributed flow routing (Bomblies et al., 2008). 

The overland flow component of the model solves the two-dimensional Saint-Venant 

equations (continuity and horizontal momentum equations). A finite difference solution of 

diffusive-wave approximations of the Saint-Venant equations is used to predict pool water 

depth and surface-water routing. The overland flow direction is strongly linked with 

variations in the slope of cell topography and surface water pools are predominantly found 

at topographic low points in the study region. The mean velocity of the routing is 

parametrized by Manning’s equation with roughness parameter depending on soil and 

vegetation characteristics of each cell. 

The HYDREMATS land surface parametrization consists of two vegetation layers and six soil 

layers based on the land surface transfer scheme (LSX) of Pollard and Thompson (1995). 

This coupled atmosphere-vegetation-soil scheme simulates momentum, energy and water 

fluxes exchanges at each grid cell, and includes the partitioning of rainfall into infiltration 

and overland runoff. 
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4.2.3.2 Vector model 

The agent-based entomological component of HYDREMATS simulates individual 

mosquitoes interacting with their environment as they progress through their life cycle. 

Flight is simulated in two dimensions using a radial random walk formulation, and 

entomologically important attributes are tracked for all mosquitoes (e.g. age, number of 

blood meals, degree-days experienced since blood meal, etc). After eclosion from one of 

the persistent pools, a simulated female adult mosquito begins her quest for a blood meal. 

She flies until she encounters a house, which is assumed to be occupied. After taking a 

blood meal, the mosquito rests for 24 hours, and then begins seeking suitable oviposition 

sites. Upon encountering a pool, the mosquito deposits a clutch of eggs in the pool and 

continues to repeat the cycle until she dies. In this way, characteristics of the entire 

mosquito population arise from the collective actions of many independent individuals. 

Bomblies et al. (2008) gives further detail concerning the functionality of the entomology 

model within 

HYDREMATS. 

4.2.4 Hydrology Comparison method 

Assuming a 5 cm water depth threshold for each cell size (10 m × 10 m) to be considered 

to contain a breeding site, HYDREMATS daily average pond coverage fraction is derived for 

the 2.5 × 2.5 km simulation area and used to evaluate the two VECTRI parametrization 

schemes which simulate a single water fraction over the study domain. Cells with water 

depth less than this threshold are likely to dry out within a day without rainfall and tests 

show little sensitivity of the results to this value (Fig. 4.1). 
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In order to identify the set of parameters that minimizes the error between VECTRI and 

HYDREMATS hydrology schemes, a deterministic optimization based on the root mean 

square error (RMSE) is used. Various parameters including wmax, Kw, E + I, Imax and CN in the 

VECTRI surface hydrology schemes are perturbed from their default values. These 

parameters have the most influence on the pond stability on both seasonal and 

intraseasonal time scales. The VECTRI model is then integrated in a Monte Carlo set of 

ensembles using combinations of parameters. The RMSE is calculated for each experiment 

for the entire simulation period of 2005 to 2006. 

To assess VECTRI performance in simulating the water fraction and vector density, the 

Nash-Sutcliffe efficiency (NS E) (Nash and Sutcliffe, 1970) given by Eq. 4.4 is used. 

N 
P(S − Oi)2 

i 
i=1 

 NS E = 1 −  (4.4) 
N 
P(O − O∗)2 

i 
i=1 

where S i is the simulated value, Oi is the observed value, O∗ is the mean of observations 

and N is the total number of observations. The NS E metric ranges between −∞ and 1 with 

NS E value of 1 indicates that observed versus simulated plot perfectly fits a 1:1 line. 
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4.3 Results and discussion 

4.3.1 High resolution integrations 

Pond stability is determined by precipitation frequency, intensity as well as local 

hydrological parameters such as soil type, water table depth and micro topography. In a 

Sahelian environment, infiltration accounts for about 90% of the loss of water (Desconnets 

et al., 1997; Gianotti et al., 2009). Total rainfall recorded was 409.3 and 478.3 mm in 2005 

and 2006, respectively falling in 44 and 39 wet days in the two years. 

An example of HYDREMATS simulated water depth using station rainfall observations for 

the entire study region for a sequence of 4 days in 2005 and 2006 is shown in Fig. 4.1. This 

figure illustrates pond water coverage and shows how grid cells with water depth less than 

5 cm tend to be short-lived in this simulation and unlikely to survive until the next day 

without rainfall. Although Bomblies et al. (2008) observed mosquito larvae in hoof-print of 

animals in this region, such habitats located far from larger scale depressions resolved by 

the 10 m model resolution tended to be short-lived, as persistence times were only several 

hours and therefore far less than the approximately seven days required under optimum 

conditions for completion of the mosquito aquatic stage development (Depinay et al., 

2004). In contrast, animal hoof-prints located within the catchment of large depressions 

were stable enough to produce adult mosquitoes. Thus productive developmental habitats 

cluster around topographical low areas (Bomblies et al., 2008). The locations of the 
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HYDREMATS simulated habitats are similar for the two years but with differences in habitat 

extent and 

stability (Fig. 4.1).  
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Figure 4.1: HYDREMATS model simulated output of daily pool water depth at each grid cell 

over the entire model domain of 4 consecutive days in 2005 (left panel) and 2006 (right 

panel). The date (Julian day) and rainfall recorded are shown under each plot. 
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4.3.2 VECTRI hydrology parametrization evaluation 

Fig. 4.2 shows the pond fraction root mean square error (RMSE) for VECTRI (V1.2.6 and 

V1.3.0) using a combination of various tunable parameters as described in the methods 

section. Regarding V1.2.6 (Figs. 4.2 a − c), decreasing Kw resulted in an increase in RMSE 

with HYDREMATS with the exception of when E + I = 50 mm day−1. Although decreasing Kw 

caused a decrease in pond growth for a given rain rate, at the same time it increases pond 

stability by reducing daily loss of water from the pond due to the linear relation between 

Kw and rainfall and E + I terms. Increasing the constant loss term E + I reduces lifespan of 

the ponds as expected. Taking an E+I value of 100 or 150 mm day−1 reduces the RMSE 

between V1.2.6 and HYDREMATS with wmax of 0.5. In this case, during intense rainfall 

events when the pond water extends to the sandy porous fringes associated with high 

infiltration, the constant infiltration rate will lead to an underestimation of the total 

infiltrated water. 
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Figure 4.2: RMSE error of water fraction between VECTRI (different surface hydrology 

parametrization) and HYDREMATS. Left panel: VECTRI hydrology V1.2.6, middle panel 

V1.3.0 varying maximum infiltration with a constant CN of 85 and right panel V1.3.0 varying 

CN with constant Imax of 500 mm day−1. 

Smaller RMSE values were observed between HYDREMATS and VECTRI V1.3.0 with 

constant CN = 85 (Figs. 4.2 d − f) at smaller wmax compared to V1.2.6. Although varying Imax 

affects the values of wmax that resulted in good agreement with HYDREMATS, the range of 

values for wmax that produce lower RMSE are smaller relative to the V1.2.6. The primary 

reason is the scaling factor f that moderates infiltration by accounting for increases or 

decreases in daily infiltration rates with pond water extent (Desconnets et al., 1997; 

Martin-Rosales and Leduc, 2003). In addition, both the runoff and Kw coefficient in V1.3.0 
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are also nonlinear. The V1.3.0 scheme with fixed maximum infiltration (Imax = 500 mm day−1) 

also shows a similar pattern to the previous V1.3.0 experiment but requires large values of 

wmax to minimize the RMSE (Figs. 4.2 g − i). The good agreement between V1.3.0 (Imax = 500 

mm day−1) and HYDREMATS at high values of wmax demonstrates that the set infiltration 

threshold is likely to be too high for the study region. 

It is clear from these experiments that there is no unique set of parameters which leads to 

good VECTRI schemes performance, but many parameter sets that enable the VECTRI 

surface hydrology schemes to reproduce water fraction similar to that of the HYDREMATS 

model. This is mainly due to the fact that the VECTRI model parameters are interdependent 

and the error associated with perturbing a particular parameter can be reduced if at least 

one other parameter also changes. The VECTRI new parametrization V1.3.0, especially with 

fixed CN, showed good agreement with HYDREMATS at lower wmax values relative to V1.2.6. 

In addition, although the VECTRI surface hydrology schemes are considerably less complex 

relative to HYDREMATS, the model parameters closely mimic processes they are meant to 

represent as seen in Fig 4.2. 

Fig. 4.3 shows an example of a 7-day moving average time series of simulated water 

fraction by the HYDREMATS and the two VECTRI schemes using combinations of 

parameters that resulted in the lowest RMSE with respect to HYDREMATS. The 7-day 

window was selected because it is the optimum time for successful completion of aquatic 

stage mosquito development Depinay et al. (2004). The simulation results clearly 

demonstrate that the variability in the daily water fraction follows trends in rainfall relating 

to its inter-storm period, intensity, and frequency. There was a slight increase in recorded 
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rainfall of about 69 mm (16%) from 2005 to 2006 with 2006 having shorter storm return 

period compared to 2005. The impact of rainfall variability on the model’s simulated daily 

pond fraction over the two year period highlights that rainfall sub-seasonal variability can 

be as important for transmission intensity as seasonal totals within the Banizoumbou 

village. Whereas greater inter-storm periods may have little influence on the stability of 

permanent and semi-permanent ponds, they will cause desiccation of temporary ponds 

Gianotti et al. 

(2009).  
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Figure 4.3: Comparison of 7-day moving average time series of water fraction simulated by 

HYDREMATS and VECTRI (using one set of parameters resulting in smaller RMSE with 

HYDREMATS). a): V1.2.6 scheme; b): V1.3.0 varying infiltration at a constant CN of 85; c): 

V1.3.0 varying CN at a constant Imax of 500 mm day−1; d): The difference between 

HYDREMATS and VECTRI. 

Fig. 4.3 further reveals that despite the simplicity of the VECTRI surface hydrology 

parametrization schemes, it is able to reproduce the fractional water coverage evolution 

as simulated by the HYDREMATS model, although the V1.3.0 scheme shows a further 

improvement (NS E = 0.96) relative to the V1.2.6 scheme (NS E = 0.85). A possible cause of 
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this disparity, for instance, the initial ponding occurring in the V1.2.6 scheme in 2005 as a 

result of two isolated rainfall events of order of 6 mm is absent in both the V1.3.0 and the 

HYDREMATS. Clearly in the area like Banizoumbou, these events are unlikely to cause 

ponding especially occurring at the onset of the monsoon season. However, the VECTRI 

model tends to overestimate and underestimate the HYDREMATS water fraction in 2005 

and 2006, respectively. A possible reason for this disparity may be the different response 

of the two VECTRI schemes to different rainfall pattern. The relative magnitude of the 

water fraction predicted by the two models changes as the season progresses. This is 

particularly apparent with VECTRI V1.2.6 in the 2006 season, where VECTRI predicts larger 

water fraction during the season onset, and lower fractions later in the season. Part of the 

disparity is due to the simple approach of the earlier surface hydrology scheme that does 

not account for run off. The rainfall events during the earlier season of 2006 are small in 

magnitude, and by introducing the curve-number based runoff scheme V1.3.0 prevents 

these events from producing breeding sites, in agreement with HYDREMATS. Nevertheless, 

further improvements could be made by including soil moisture, which would increase 

infiltration in the earlier season when soil moisture is dry and reduce it in the later season, 

albeit at the cost of increasing the complexity of the scheme. 

Furthermore, the difference in observed rainfall between the two years (see rainfall in Fig. 

4.3) caused the simulated pond water fraction by both models to have a higher mean water 

fractional coverage in 2006 relative to 2005, more than expected by 117, 15, 82 and 82% 

for HYDREMATS, V1.2.6, V1.3.0 (fixed CN) and V1.3.0 (fixed Imax) respectively. 
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This variability in daily simulated water fraction due to the influence of rainfall also impacts 

vector abundance. For example, in this same study area, Bomblies et al. (2008) captured 

140% more mosquitoes at the same locations in the village in 2006 than in 2005. The results 

from the simulated mosquito vector abundance by both models are consistent with the 

observed increase in 2006 relative to 2005 (Fig. 4.4) but with a wide range of increases. For 

instance, HYDREMATS simulates a 84% increase in mosquito vector density between 2005 

and 2006, while the three versions of VECTRI, V1.2.6, V1.3.0 (fixed CN) and V1.3.0 (fixed 

Imax), produced increases of 4, 58 and 37%, respectively. The differences in the VECTRI 

simulated vectors densities are due only to the changes in the surface hydrology scheme 

as all other model components are identical in the simulations, highlighting the critical 

importance of the hydrological component of the model, that is possibly the least 

constrained by observations and thus likely to be one of the key contributors to malaria 

model uncertainty. In particular, it is seen that the V1.2.6 suffers from a too early onset, 

particularly in 2005, due to its neglect of the runoff process, which resulted in light rains 

causing pooling in the pre-onset phase of the monsoon (Fig. 4.4). From the three model 

versions V1.3.0 (fixed CN) appears to produce the most similar vector density compared to 

HYDREMATS. In fact, considering the simplicity of the bulk larvae/vector schemes in VECTRI 

relative to the highly detailed agent based approach employed in HYDREMATS, and the fact 

that no parameter tuning of these components was performed (although it is recalled that 

the biomass carrying capacity parameter in VECTRI is adopted from HYDREMATS), the 

similarity between the conversion of water fraction to vector density by the two models is 

quite remarkable. Based on NS E evaluation metric, VECTRI schemes performance in 

simulating HYDREMATS vector density ranges between good (NS E = 0.71) and satisfactory 
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(NS E = 0.54) for V1.3.0 and V1.2.6, respectively. This result supports the conjecture that 

with knowledge of the factors that affect surface hydrology, a simple model such as VECTRI 

can potentially be employed to simulate vector density and subsequently malaria 

transmission on a local scale. 

 

Figure 4.4: Comparison of 7-day moving average time series of vector abundance simulated 

by HYDREMATS and VECTRI (using one set of parameters resulting in smaller RMSE with 

HYDREMATS). 

4.3.3 VECTRI simulation with satellite products 

Over the two year study period, TRMM 3B42 and FEWS RFE2 recorded 1305.5 and 1181.4 

mm of rainfall, about 47 and 33% respectively more than the station measurement records. 
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Fig. 4.5 shows the 7-day moving average time series of VECTRI (both V1.2.6 and V1.3.0 

schemes) driven by both rainfall estimates and station observation simulated water 

fraction. The differences in the rainfall also impact the simulated water fraction. For 

example, the mean simulated water fraction over the study period increased about 45 and 

49% for V1.2.6 and V1.3.0 driven by TRMM 3B42 rainfall respectively, when compared to 

station runs. Interestingly, the FEWS RFE2 mean simulated water fraction was about 34% 

more than station runs for V1.2.6 but about 26% less than that of station runs for V1.3.0. 

One reason for this disparity is that in V1.2.6 rainfall is used directly as input to drive the 

model while rainfall is converted to runoff in V1.3.0. To a certain extent, the initial 

abstraction term in runoff computation USDA (1972) sets the threshold below which 

rainfall amount generates no runoff. For instance, when setting CN = 85 in V1.3.0, rainfall 

less than ≈ 5 mm will produce no runoff and leads to no increase in the water fraction but 

some increase in the water fraction occurs in V1.2.6. In addition to this, the runoff term in 

V1.3.0 is highly nonlinear and so greater recharge occurs with intense rainfall events. Lastly, 

there is also the fact that infiltration in V1.3.0 adds another nonlinearity and therefore 

contributes to the different simulated water fraction results from the two schemes. 

The relatively good agreement between simulated water fractions using station data versus 

the two satellite retrievals, especially FEWS RFE2, reveals that there were few heavy rainfall 

events recorded by the station that were missed by FEWS RFE2 or TRMM 3B42. It is the 

intense rainfall events that contribute most to ponding and thus greatly influences the 

simulated water fraction as shown in Fig. 4.5. Light rainfall events that the satellites may 

miss are less important for ponding. The results clearly show that the largest disparities 

between VECTRI simulated water fractions occur on days when either TRMM 3B42 or FEWS 
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RFE2 record high rainfall amount but little or no rainfall is recorded by the ground station 

or vice versa. 

Another important finding of the VECTRI model driven by TRMM 3B42 is the ability of the 

surface hydrology scheme to simulate sub-seasonal rainfall variability impacts on both 

water fraction dynamics and vector abundance. TRMM 3B42 recorded almost the same 

amount of rainfall in 2005 (653.1 mm) and 2006 (652.4 mm) but with a variable sub-

seasonal pattern (see TRMM 3B42 rainfall in Fig. 4.5). The VECTRI simulated water fraction 

and mosquito vector abundance driven by TRMM 3B42 dataset showed a difference of 

about 21 and 69% respectively, for V1.3.0 and 1 and 5% respectively, for V1.2.6. 

 

Figure 4.5: A 7-day moving average time series of VECTRI simulated water fraction using 

station rainfall observations, TRMM 3B42 and FEWS RFE2 rainfall estimates. 



 

120 

4.4 Summary 

The challenge of validating surface hydrology parametrizations of dynamical malaria 

models arises from the lack of data from both field observations or remote sensing 

techniques due to the small spatial scales of the key malaria vector habitats. To partially 

address this, the HYDREMATS high resolution village-scale model that explicitly simulates 

individual ponds was used to provide a proxy for high resolution observations of breeding 

sites and used to evaluate the performance of the bulk parametrization scheme for water 

fraction used in the regional-scale malaria model, VECTRI. In addition to the default 

scheme, a modified scheme is proposed that accounts for pond geometry more realistically 

and also incorporates the nonlinearities of the surface runoff and the infiltration processes. 

The results reveal that both VECTRI surface hydrology schemes were able to reproduce 

seasonal and intraseasonal variability in pond water fraction (NS E > 0.85), with the 

modified scheme able to produce a closer match to the explicit benchmark model, 

HYDREMATS. However, the default VECTRI model tended to overestimate and 

underestimate the HYDREMATS water fraction in 2005 and 2006, respectively, and 

overestimate water fraction early in the rainy season. Accounting for run-off processes in 

a revised scheme improved this bias, and lead to more accurate predictions of the ponding 

onset at the start of the rainy season, although it is likely further improvement could be 

made by representing soil moisture in the model. The results indicate that, with knowledge 

of local soil parameters and terrain, VECTRI parameters can be adjusted to simulate malaria 

transmission on a local scale. 
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Numerous malaria endemic regions are characterized by inadequate ground observations 

of rainfall and thus the impact of replacing the local ground-based station measurements 

with remotely sensed retrievals of rainfall from FEWS RFE2 and TRMM 3B42 was assessed. 

Despite the contrasting scales of the measurements and the uncertainties related to the 

retrieval algorithms, the study showed that satellite data could nevertheless produce a 

reasonable simulation of the sub-seasonal evolution of the pond fraction for this area. 

In areas like Banizoumbou village, without permanent water bodies, rainfall controls 

seasonal and sub-seasonal variability in surface water and to some extent malaria vector 

abundance. Such places stand to gain more in malaria control from early warning 

information which dynamical models like the VECTRI model can provide if they can 

incorporate reliable representations of the surface hydrology driven by accurate climate 

observations or forecasts Tompkins and Di Giuseppe (2015). While the modified VECTRI 

hydrology parametrization presented here showed an improved agreement relative to the 

default scheme, further work is underway to incorporate topography and soil 

characteristics to the scheme. 

CHAPTER 5 

Evaluating an energy balance pond water temperature scheme 

suitable for vector-borne disease transmission models with in 

situ measurements in Ghana  
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Abstract 

An energy budget model is developed to predict water temperature of typical mosquito 

developmental habitats. It assumes a homogeneous mixed water column driven by 

empirically derived fluxes. The model shows good agreement at both diurnal and daily time 

scales with 10-minute temporal resolution observed water temperatures monitored 

between June and November 2013 within a peri-urban area of Kumasi, Ghana. In addition, 

there was a close match between larvae development times calculated using either the 

model-derived or observed water temperatures, with the modelled water temperature 

providing a significant improvement over simply assuming the water temperature to be 

equal to the 2-metre air temperature. Furthermore, our results show that diurnal variations 

in water temperature are important for simulation of aquatic-stage development times, 

however, effect of sub-diurnal variations on larval development are similar to that of the 

diurnal. Modeling results suggest that in addition to water temperature, the degree days 

parameter is extremely important to accurately predict the larvae development time. Our 

results highlight the potential of the model to predict water temperature of temporary 

surface water, which can thus be implemented in dynamical malaria models to predict 

larvae development times, especially in regions without observations of the input energy 

fluxes. 

5.1 Introduction 

Temperature is one important abiotic factor that influences the life-cycle of the malaria 

parasite and its Anopheles mosquito vectors (Detinova, 1962; Garrett-Jones and Grab, 
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1964; Kirby and Lindsay, 2004). Aquatic stage developmental rate is highly temperature 

dependent. At low water temperatures adults fail to emerge while high water 

temperatures are associated with high larvae mortality rates. Many experiments have been 

conducted in laboratories to understand how water temperature influences the aquatic life 

cycle of mosquitoes. For example, Bayoh and Lindsay (2003) showed that Anopheles 

gambiae sensu stricto emerge as adults only when water temperatures ranged between 18 

and 34◦C. Most adults emerge between 22 and 26◦C. The optimum temperature in which 

development of larvae is favoured was found to be 27◦C by Lyimo et al. (1992) when larvae 

were reared at constant temperatures (24, 27 and 30◦C) in the laboratory. In a related study 

by Bayoh and Lindsay (2004), when larvae were reared at constant temperatures from 10-

40◦C, they survived less than 7 days at temperatures of 10-12◦C and 38-40◦C and no adult 

mosquito was able to emerge. Adult mosquitoes could only be produced between water 

temperature of 18 and 32◦C. 

Water temperature also controls larval longevity and survival. For instance, Bayoh and 

Lindsay (2004), observed larval survival ranged between 10 and 38 days at constant 

temperature of 18◦C whereas at 32◦C longevity varied between 5 and 13 days. Similarly, 

Kirby and Lindsay (2009) observed rapid development rates but decreases in survival rates 

with an increase in water temperature when larvae were reared at constant temperatures 

of 

25, 30 and 35◦C. At the upper temperature threshold where development time is short, it 

is associated with a high larval mortality rate (Bayoh and Lindsay, 2004; Kirby and Lindsay, 

2009). The variation in development time of the larvae within these range of temperatures 

have additional impacts on the survival probability of adult mosquitoes in natural settings. 
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At the lower temperatures, larvae are subjected to predation over longer periods and there 

is also the possibility of the habitat drying out. 

It is therefore clear that including a realistic representation of the vector immature stage 

and its water temperature sensitivity could potentially improve the accuracy of malaria 

transmission models. Lunde et al. (2013a) argue that including water temperature effects 

in transmission models significantly reduces the temperature range at which peak 

transmission takes place, which is often estimated for adult vector mortality rates 

combined with the temperature-dependency of the sporogonic cycle (Craig et al., 1999; 

e.g.). 

Presently, many spatial, dynamical mathematical-biological malaria models lack a precise 

simulation of water temperatures. For instance, the Liverpool Malaria Model (LMM) 

(Hoshen and Morse, 2004; Ermert et al., 2011b;a) completely neglects the influence of 

water temperatures on the larval development since the aquatic stage duration is constant 

in the model. Tompkins and Ermert (2013) in their grid-point distributed dynamical model 

(VECTRI), which runs on a regional scale, simply equate mean air temperature to water 

temperature to drive the aquatic stage component of the model, which uses development 

times and mortality rates derived from Craig et al. (1999) and Bayoh and Lindsay (2003), as 

detailed in Tompkins and Di Giuseppe (2015). 

Simply equating water temperature with 2 metre air temperature is likely to lead to 

significant inaccuracies, however, Paaijmans et al. (2008a) demonstrated that mean water 

temperature was higher than that of ambient air temperature and therefore models using 
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air temperature may underestimate the aquatic stage life cycle duration. Paaijmans and 

Thomas (2013) found for Kenya that mean water temperatures of potential breeding 

habitats were 4-6◦C higher than corresponding mean air temperatures. In western Kenya, 

Paaijmans and Thomas (2013) detected daily mean temperature differences of 4.6 and 

5.6◦C between air and water for Kisian (lowland) and Fort Ternan (highland), respectively. 

The implication of this result is that using air temperature to predict aquatic life span of 

mosquito is inaccurate and therefore a water temperature parametrization scheme would 

improve dynamical malaria models. 

Some attempts have been made to develop more complex representations of water 

temperature. Lunde et al. (2013b) in their model equated the mean breeding water 

temperature to top soil temperature obtained from the NOAH land surface model. Depinay 

et al. (2004) also introduced a simple water temperature scheme, using relative humidity 

to estimate cloud cover and then applied both the cloud cover and maximum air 

temperature to predict maximum water temperatures, whereas the minimum water 

temperature was equated to the minimum air temperature. Neither the Lunde et al. 

(2013b) nor Depinay et al. (2004) schemes were evaluated using in situ data. 

Energy balance models have also been used to predict water temperature. Losordo and 

Piedrahita (1991) developed an energy balance model to predict temperature of stratified 

aquaculture ponds. The model accurately predicted the occurrence time of stratification, 

maximum stratification and completely mixed conditions in the ponds. Paaijmans et al. 

(2008a) developed a model that predicts the diurnal water temperature based on radiation 

and energy fluxes at the air-water and soil-water interfaces of small artificially created 
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ponds of varying dimensions. Predicted temperatures agreed with in situ observations to 

within 

2.5◦C between the simulated and observed water temperature using three consecutive 

days of different weather conditions. Despite good model performance, the application of 

these models regionally over Africa is hindered by a lack of the appropriate in situ 

observations required to define some of the energy fluxes. This model was further 

simplified by Paaijmans et al. (2008b) to use only easily obtained weather data as input, 

but even this modified scheme still required cloud cover observations to compute incoming 

shortwave radiation, a parameter not readily available from most meteorological stations. 

The aim here is to develop an energy balance parametrization scheme using 

approximations for some of the flux terms such that the model can be driven using readily 

available meteorological variables. In addition, rather than evaluating the model with 

measurements at artificial sites, the goal is to predict the actual mosquito habitat water 

temperatures which are monitored using high temporal resolution field observations. After 

assessing the performance of the model to predict water temperature, the resulting 

predicted larvae development times are assessed using a dynamical malaria model and are 

compared to those obtained using observed temperatures in order to assess how water 

temperature errors might potentially translate into malaria transmission intensity 

differences. 
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5.2 Method and model description 

5.2.1 Study area and data 

The study was conducted at the Kwame Nkrumah University of Science and Technology 

(KNUST) campus, within the Kumasi Metropolis of Ghana (0.85342◦W, 5.95248◦N). Between 

01 June (day of the year (DOY) 152) and 26 November 2013 (DOY 330), a 

10-minute water temperature of three mosquito developmental habitats were observed 

using CR1000 data logger (Campbell Scientific Inc., UK) with PT-100 temperature sensors. 

The probes of the temperature sensor were placed within 1 cm of each water column. 

These three observed ponds are made up of trenches between raised beds for vegetable 

cultivation, specifically lettuce (see Fig. 5.1). In addition, these observed ponds are 

completely exposed to sunlight. It is recalled that An. Gambiae the key vector in Kumasi 

(De Souza et al., 

2010) and An. Arabiensis prefer sunlit pools (Minakawa et al., 1999; Gimnig et al., 2001; 

Koenraadt et al., 2004) and thus modeling such habitats is considered key. 

During the same period, various climatic input parameters (temperature, wind speed, 

relative humidity and pressure) were obtained from the KNUST Energy Centre Automatic 

Weather Station (AWS), which is located about 300 metres away from the pond sites 

(0.85230◦W, 5.9524◦N). These variables are also recorded by the AWS logger at 10-minute 

temporal resolution. The 10-minutely water temperature and climatic input datasets were 
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averaged into hourly and daily time scales for this study. In addition, the water depth was 

set to the average of four measurements taken at fixed locations within each pond. 

 

Figure 5.1: Picture of study site showing the temperature logger. 

5.2.2 Energy balance model for water temperature 

Solar radiation, longwave radiation, latent, sensible and ground heat fluxes are the main 

components that control the amount of heat that is stored in or released from a water 

column (Fig. 5.2). The water column in this model is assumed to be well mixed at all times, 

such that temperature is independent of depth and diffusive and convective transports are 

ignored. 
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The rate of change in the heat storage (Q) is given by Eq. 5.1. 

dQ 

  = Rnet − LH − S H − Go (5.1) 

dt 

where Rnet is the net radiative flux (that is sum of net solar and longwave radiation), LH 

represents the latent heat flux, S H the sensible heat flux and Go is the soil heat flux. For 

simplicity, it is assumed that the pond water is sufficiently turbid such that all solar radiative 

flux is absorbed in the water column and no transmission occurs. Thus the only transfer of 

energy to the sediment layer is Go. In addition, the sensible heat flux associated with the 

temperature of raindrops being lower than the water temperature is also neglected. 

Gosnell et al. (1995) estimated this to be of the order of 2.5 Wm−2 over tropical oceans and 

thus small compared to other terms. Nevertheless, in periods of intense rainfall, this flux 

can exceed 200 Wm−2 and thus its neglect may lead to overestimation of water 

temperatures at these times. Fluxes are positive when directed towards the water surface. 
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Figure 5.2: Schematic representation of the energy balance model. 

Due to poor spatial coverage of both solar and longwave radiation observations across 

most malaria endemic regions, estimates are therefore required. Hargreaves and Samani 

(1982) estimated daily solar radiation (Rs) based on daily maximum and minimum 

temperature difference given by Eq. 5.2: 

p 

 Rs = RaK (Tmax − Tmin) (5.2) 

where Ra is extraterrestrial radiation (Wm−2), Tmax and Tmin are daily maximum and minimum 

temperatures (◦C), respectively and K empirical coefficient (◦C −0.5). Hargreaves 

(1994) suggested K values of 0.16 and 0.19 ◦C −0.5 for interior and coastal regions, 

respectively. In this study the location is assumed to be interior. 
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The extraterrestrial radiation Ra was computed following Iqbal (1983): 

 Ro = IscEo(sinδsinφ + cosδcosφcosωi) (5.3) 

where Isc is the solar constant (1353 W m−2), Eo is the eccentricity correction, δ is the solar 

declination, φ is the latitude and ωi is the hour angle at the middle of an hour. 

The incoming and outgoing longwave radiations are estimated following Losordo and 

Piedrahita (1991) and Hodges (1998) which are expressed as the second and third terms 

on the right-hand side of Eq. 5.4a, respectively. The first term on the right-hand side of Eq. 

5.4a represents net solar radiation. 

Rnet = (1 − α)(1 − S F)Rs + (1 − r)εaσTa
4 − εwσTw

4 (5.4a) 

εa = 0.398 × 10−5Ta2.148 (5.4b) 

where α stands for the shortwave reflectivity, S F is the shade factor; Rs represents the 

shortwave solar radiation; r is the albedo of water surface to longwave radiation; εa 

emissivity of the atmosphere (Eq. 5.4b) computed following after (Swinbank, 1963); σ (W 

m−2) is the Stefan-Boltzmann constant; εw is the water surface emissivity; Tw and Ta 

represent the water and air temperatures (in K), respectively. 

The shade factor S F ranges from 0 (completely shaded) to 1 (fully sun-lit) to account for 

influence of tall vegetation on water temperature (Sinokrot and Stefan, 1993; Younus et 

al., 2000). Although the model allows for vegetation effects to be included through this 

simple shade factor, in practise it would be difficult to set a reasonable value for such a 
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factor in regional simulations. The S F is set to zero in the simulations conducted here for 

sunlit ponds. 

For non-radiative components, we used bulk parametrizations for the turbulent fluxes 

according to Fischer et al. (1979): 

S H = ρaCpCDHUa(Tw − Ta) (5.5a) 

LH = ρaLvCDEUa(qw − qa) (5.5b) 

where ρa (kg m−3) stands for the air density, Cp (J kg−1 K−1) is the specific heat of air, Ua (m 

s−1) is the wind speed at 10 m height, Tw and Ta are the water surface and 2 m air 

temperature respectively, qw and qa are the water surface specific humidity and 2 m specific 

humidity respectively, Lv represents the latent heat of vaporisation. CDH and CDE are bulk 

aerodynamic coefficients (Pond et al., 1971; Hicks, 1972). In this study, a constant value of 

1.3×10−3 is assigned to these constants (Paulson et al., 1972). 

The soil heat flux Go (see Eq. 5.1), which is relatively small compared to the other fluxes, is 

parametrized as a fraction of Rnet following Liebethal and Foken (2007): 

 Go = pRnet (5.6) 

where p is a fractional constant. As there are no observations of Go in the field experiment, 

this term represents one of the key sources of error in the energy balance model. In this 

study, p was set to 0.15 after (Paaijmans et al., 2008b); which is also close to 0.14 used by 
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Liebethal and Foken (2007). The latter found good agreement of the p value with 

observations. 

As diffusive and convective transport is neglected and temperature is considered uniform 

in each water body, the prognostic temperature is integrated forward in time using a simple 

explicit solution (Caissie et al., 2005; Larnier et al., 2010). Paaijmans et al. (2008a) used a 

similar equation to predict water temperature of artificially created ponds: 

1 dQ! 

Tw(t + ∆t) = Tw(t) +  ∆t (5.7) ρCwd dt 

where Tw (◦C) is water temperature, ρ (kg m−3) is density of water, Cw (W kg−1 ◦C−1) is specific 

heat of the water at constant pressure, d (m) is the water depth and t the time and ∆t the 

time step used to integrate the equation which is set to one hour. The water depth (d) was 

assigned a constant mean value (Torgersen et al., 2001; Dupont and Mestayer, 2006). 

Furthermore, larvae of the prolific malaria vector Anopheles gambiae remain close to the 

water surface and diving increases its mortality (Tuno et al., 2004). Eq. 5.7 was integrated 

using the observed pond temperature measurement as the initial temperature. 

5.2.3 VECTRI simulated larval density 

Tompkins and Ermert (2013) introduced the vector-borne disease community model of the 

International Centre for Theoretical Physics, Trieste (VECTRI). VECTRI is an open source 

model for malaria that can simulate transmission at a single location, or for a grid of points 
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over a region or even continental scale (Caminade et al., 2014; Pointek et al., 2014; 

Tompkins and Di Giuseppe, 2015). 

VECTRI incorporates larvae growth rate schemes based on degree day approach expressed 

as: 

Tw − TL,min 

 RL =  (5.8) 

KL 

where RL (day−1) is the growth rate, TL,min is the threshold temperature below which larval 

development ceases and KL is the degree days required for adult emergence. The value of 

KL has been estimated from laboratory studies to be 90.9 degree days (Jepson 

approximation 

(JA); Jepson et al. (1947)) and 200 degree days (Bayoh approximation (BA); Bayoh and 

Lindsay (2003)). These two schemes are used to evaluate the difference in VECTRI 

simulated larvae abundance using simulated water and observed water and air 

temperatures. For details on VECTRI model see Tompkins and Ermert (2013). 

Generally, aquatic stage development rate simulations are based on daily average 

temperature calculated from daily minimum and maximum temperatures (Tmin+
2

Tmax ). 

However, recent studies showed that diurnal temperature fluctuations significantly 

influence the duration of larvae development (Carrington et al., 2013; Paaijmans et al., 

2013). 
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Furthermore, the difference between daily, diurnal and sub-diurnal timescales water and 

air temperatures driven larvae development times were assessed. For sub-daily timescales, 

the developmental rate was estimated following Gu and Novak (2006): 

N 

P (Tw,i − TL,min) i=1 

 RL =  (5.9) 

N × KL 

where N is 24 for hourly observations and 144 for 10-minute measurements. 

5.2.4 Model evaluation 
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The performance of the model was evaluated using 

the coefficient of determination (R2), the Nash-Sutcliffe efficiency (NSE; Nash and Sutcliffe 

(1970)) and mean bias error (MBE) defined by Eq. 5.10: 

of observed data and N is the total number of observations. The NSE performance 

ratings (Nash and Sutcliffe, 1970; Moriasi et al., 2007) could be considered very good if (NSE 

> 0.75), good if (0.75 ≥ NSE > 0.65), satisfactory if (0.65 ≥ NSE > 0.5), unsatisfactory if (0 > 

NSE ≤ 0.5) and unacceptable performance if (NSE ≤ 0). 

N P i − 

Oi)2 

(S 
i=1 

NS E = 1 − 
N 

 P − O∗)2 

(Oi 
i=1 

N 
1 X 

 MBE = Oi − S i 

N 
i=1 

  (5.10) 

where S i refers to the ith simulated value, Oi is the ith observation, O∗ is the mean 
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5.3 Results 

5.3.1 Observed water temperature variability 

Figs. 5.3a − c shows water temperature variability of the three monitored mosquito 

developmental habitats. The mean 10-minute maximum and minimum water 

temperatures were 34.17◦C (range: 26.20 to 39.26) and 23.98◦C (range: 21.59 to 25.50) 

respectively. On a daily timescale, the mean, maximum and minimum water temperatures 

were 27.21, 29.22 and 23.96◦C, respectively. 
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Figure 5.3: Left panel: Observed 10-minute (Tw10m), maximum (Twmax), minimum (Twmin), 

daily average (TwAvg) water temperature and daily average air (TaAvg) temperature. Right 

panel: Diurnal temperature difference (water minus air). 

During the same period, the average mean, maximum and minimum air temperatures 

measured from the AWS were 29.72◦C (range: 23.53 to 33.01) and 21.91◦C (range: 19.47 to 
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23.52) respectively. The daily average mean, maximum and minimum air temperatures 

were 24.89, 27.54 and 22.38◦C, respectively. The differences between the diurnal water 

and air temperatures are shown in Figs. 5.3d − f for the three observed sites. Generally, as 

expected, water temperatures were higher relative to air temperatures, although there 

were some observations where air temperatures exceeded water temperatures. The 

average mean, maximum and minimum differences between water and air temperatures 

were 2.40, 11.80 and 0.01◦C, respectively. However, for the period where air temperatures 

were higher than water temperatures, the average mean, maximum and minimum 

temperature differences were 0.54, 1.95 and 0.01◦C, respectively. 

Furthermore, Figs. 5.3a − c reveal that rainfall variability controls temporary surface water 

stability. The gaps in the time series are dry periods. The average water depths are 14.36, 

10.46 and 5.32 cm for sites 1, 2 and 3, respectively. 

Fig. 5.4 shows time series of diurnal water temperature range (DTR: daily maximum minus 

daily minimum) and the daily average water and air temperature difference. Contrary to 

the diurnal difference in water and air temperatures (Figs. 5.3d − f), the daily average water 

temperatures were consistently higher than the air temperatures. The daily average, 

maximum and minimum differences are 2.32, 4.30 and 0.90◦C, respectively. In addition, the 

ponds exhibit high DTR, implying that mosquito larvae are exposed to highly variable 

temperatures. The mean, maximum and minimum DTR are 10.09, 14.91 and 4.16◦C, 

respectively. Paaijmans et al. (2008a) observed similar DTR values of 14.4 and 7.1◦C for 

smaller and larger sized artificially created ponds in Kenya. 
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Figure 5.4: Comparison of DTR and daily average temperature difference (water minus air). 

The maximum number of hours per day with water temperature higher than or equal to 

35◦C was 5 hours, with average of about 1.68 hours (Fig. 5.5). Interestingly, larvae were 

observed (visual inspection) in the habitats throughout the observational period despite 

maximum temperature of excess of 35◦C encountered. 



 

141 

 0 

 160 180 200 220 240 260 280 300 320 Julian Day 

Figure 5.5: Daily number of hours with water temperature ≥ 35◦C. 

5.3.2 Model output 

Figs. 5.6a − c show the diurnal observed and simulated temperature differences (observed 

minus simulated), and the scatter plots of the diurnal simulated versus observed 

temperatures are shown in Figs. 5.6g − i. The resulting daily average time series of 

simulated, observed and air temperatures are shown in Figs. 5.6d − f. The diurnal pattern 

of bias (Figs. 5.6a − c) demonstrates a relatively good agreement between model and 

observations. The average NSE, R2 and MBE are 0.768, 0.888 and -0.191◦C (Table 5.1), 

respectively. However, in most cases, the model overestimates the observed water 

temperature in the late evening and early morning before sunrise (see Figs. 5.6a − c) but 

slightly underestimates it outside this time range. Due to this under-/overestimation on 
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diurnal scale, the daily average model and observed water temperature show good 

agreement (Figs. 5.6d − f). The average NSE, R2 and MBE are 0.587, 0.814 and -0.187◦C (see 

Table. 5.1), respectively. 

 

Figure 5.6: Comparison of (left panel)the diurnal observed and model temperature 

differences (observed minus model) and (middle panel) daily average time series of air, 

observed and model water temperatures. Also shown is correlation between observed and 

simulated diurnal water temperatures (right panel). 

Table 5.1: Summary of the computed statistics for model evaluation. LD(Tobs/Tsim) 

represents larvae development time between observed and simulated water 

temperatures, LD(Tobs/Tair) represents larvae development time between observed water 

and air temperatures. 

 Diurnal Temp Daily Temp LD(Tobs/Tsim) LD(Tobs/Tair) 
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 site 1 site 2 site 3 site 1 site 2 site 3 JA BA JA BA 

R2 0.902 0.889 0.872 0.852 0.790 0.801 0.905 0.905 0.900 0.900 

NSE 0.802 0.771 0.733 0.706 0.545 0.508 0.766 0.766 -5.094 -5.095 

MBE -0.003 -0.102 -0.468 -0.026 -0.119 -0.417 -0.142 -0.313 -2.445 -5.379 

5.3.3 Larvae development time 

The JA and BA schemes predicted mosquito larvae development time using observed water 

(site 1), simulated water and observed air temperatures between the period 152 and 217 

DOY are compared. Site 1 was selected because it contained water throughout this period. 

To assess the importance of sub-daily temperature variability in larvae development, 10-

minute, hourly and daily average observed water and air temperatures driven aquatic 

development duration are compared (see Fig. 5.7). There was a remarkably close match 

between predicted larvae development time at 10-minute and hourly timescales for both 

water and air temperatures. However, using daily average temperatures (both water and 

air) consistently predicted a faster aquatic stage lifespan relative to both the 10-minute 

and hourly observations. The average difference of simulated larvae lifespan between daily 

and 10-minute timescales are about 8.8% (air temperature) and 13.6% (water 

temperature) for both schemes. These differences resulted in MBE of about (JA: 1 day; BA: 

2 days) for both water and air temperatures. Similar developmental times were observed 

at daily and hourly timescales. 
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Figure 5.7: Comparison of BA and JA schemes estimated mosquito larvae development time 

using observed 10-minute, hourly and daily average water and air temperatures. JA10−munite, 

JAhourly and JAdaily represents Jepson approximation and BA10−minute, BAhourly and BAdaily the 

results using Bayoh approximation. 

Due to similar developmental times predicted from both 10-minute and hourly timescales, 

the model is run with hourly timestep. The potential of the model to accurately reproduce 

mosquito aquatic lifespan were assessed. Generally, there were good agreement between 

larvae developmental time predictions from observed and simulated water temperatures 

from both schemes (Fig. 5.8). The NSE (JA: 0.766; BA: 0.766), R2 (JA; 0.905; BA: 0.905) and 

MBE (JA: -0.142 days; BA: -0.313 days) values were observed between observed and 

simulated water driven larvae developmental time simulations. However, as expected, the 

schemes driven by air temperature constantly predicted longer development time relative 

to both the observed and simulated water temperatures (Fig. 5.8). This resulted in NSE (JA: 

-5.094 ; BA: -5.094) and large MBE (JA: -2.445 days; BA: -5.379 days) values between 

observed water and air temperatures simulated larvae duration time. On the other hand, 

a high R2 value 0.900 was observed between predicted larvae development time using air 

and observed water temperatures indicating that these two variables have a similar trend. 
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Figure 5.8: Comparison of BA and JA schemes estimated mosquito larvae development time 

using observed water, simulated water and air temperatures. Jobs, Jsim and Jair represents 

Jepson approximation and Bobs, Bsim and Bair the results using Bayoh approximation. 

5.3.4 VECTRI simulated larvae density 

The 7-day moving average time series of the VECTRI simulated larvae density from the two 

schemes and water fraction are shown in Fig. 5.9. The mean modeled water temperature 

is 27.22◦C about 9% more than mean observed air temperature of 24.88◦C. This difference 

in temperature also impacts VECTRI simulated larvae density. As expected mean larvae 

density from modelled water temperature driven simulations were higher relative to the 

air temperature driven simulations. In addition, a significant difference in the simulated 
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larvae density between water and air temperatures were observed for the two schemes. 

For example, while JA scheme (Fig. 5.9) predicted mean larvae density difference of about 

18% between modelled water and observed air temperatures as input for VECTRI, BA 

scheme predicted difference of about 71% (see Fig. 5.9). 

In addition, VECTRI simulated water fraction limits larval density. For instance, between 

218 and 252 DOY the ponds dried out, however minimum simulated water fraction 

occurred between 230 and 250 DOY. Interestingly, this coincides with the period with a 

close match between the simulated larval densities. This explains the link between water 

fraction and larvae density, as water fraction reduces, the larvae density also reduces as 

larvae are instantaneously killed once the pond dries out (Tompkins and Ermert, 2013). 

 

Figure 5.9: Comparison of 7-day moving average time series of VECTRI simulated larvae 

density driven by air and simulated water temperatures using JA and BA schemes. 
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5.3.5 Discussion 

This study has revealed that water temperatures of temporary surface water are highly 

variable and if colonized by larvae, they would be exposed to temperatures ranging from 

about 21.59 up to 39.26◦C with daily average of 27.21◦C. Interestingly, this observed mean 

temperature is within the optimal temperature range for aquatic stage development based 

on laboratory studies (Bayoh and Lindsay, 2003; Bayoh, 2001; Lyimo et al., 1992). A similar 

range of puddle temperatures have been reported elsewhere. For instance, in western 

Kenya, Koenraadt et al. (2004) observed maximum and minimum temperatures of about 

37.4 and 

14.6◦C respectively with mean temperature of about 28◦C from field measurements. In 

Gambia, Bayoh (2001) observed temperature range between 20.7 and 36.9◦C with mean of 

27.1◦C from artificially created puddle measurements. Similarly, with three artificially 

created puddles of different dimensions and depths in western Kenya, Paaijmans et al. 

(2008a) observed mean water temperature between 27.4 and 28.1◦C. Furthermore, these 

observed temperatures are likely to support larvae development as a similar range found 

elsewhere supported full larvae development (Gouagna et al., 2012; Mwangangi et al., 

2007). 

The observed minimum water temperature from these three potential mosquito 

developmental habitats were higher than the minimum threshold temperature of 16◦C that 

supports larvae development under constant temperature in laboratory experiment 

(Bayoh and Lindsay, 2003). On the other hand, despite the water temperature exceeding 
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the upper temperature limit of 35◦C that has been reported from laboratory studies (Bayoh 

and Lindsay, 2003), the water temperature threshold of 41◦C that kills larvae at a short 

period exposure (Haddow, 1943) was never encountered. In addition, larvae are likely to 

survive the maximum number of 5 hours per day with water above or equal to 35◦C. For 

instance Kirby and Lindsay (2009) observed larvae to adult development at 35◦C when 

larvae were reared at fixed temperatures. 

The results from the evaluation of the energy balance scheme reveal that despite the 

simplified assumptions made to derive estimates of energy fluxes, the model reproduces 

the observed diurnal water temperature quite well. However, it mostly overestimates the 

observed water temperature during early morning before sunrise and late evening during 

the period of lower observed water temperatures (Figs. 5.6g − i). This could be due to the 

presences of nocturnal clouds observed during monsoon period over West Africa including 

Kumasi (Knippertz et al., 2011; Schrage et al., 2007). These low clouds increase the surface 

temperature at night and since surface temperature was used instead of top of the 

atmosphere temperature to estimate the downward longwave radiation, this could lead to 

a slight overestimation of the downward longwave radiation. 

Furthermore, the low performance of the model for site 3 could be due to its shallow water 

depth, which results in a high water temperature variability. For instance, the diurnal water 

temperature model of Paaijmans et al. (2008a) underperformed in predicting water 

temperature of the shallow pond of depth 4 cm relative to ponds with depths of 16 and 32 

cm. Despite this, on the average the model underestimates the observed water 

temperatures slightly as given by the MBE values are shown in Table 5.1. In addition, based 
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on NSE and R2 evaluation metrics, the model performed well in representing observed 

temperature. 

In addition, aquatic stage lifespan simulations at various timescales reveals the importance 

of sub-daily variability which is in agreement with other studies (Carrington et al., 2013; 

Paaijmans et al., 2013). Our results, however, indicate that temperature fluctuations below 

diurnal timescale has little or no effect on larvae development rate (see Fig. 5.7). As a result, 

hourly timestep model could accurately predict aquatic stage development time. 

Interestingly, there was good agreement between observed and simulated water 

temperature predicted larvae developmental time (see Fig. 5.8) with mean difference of 

about 1.72%. Furthermore, the mean estimated larvae development time (8.22 days: 

observed water; 8.37 days: simulated water) from the JA scheme are approximately close 

to the mean value of 8.4 days observed by Gimnig et al. (2002) when 20 larvae were reared 

in artificial habitats without nutrient in western Kenya. In addition to this, the range of JA 

scheme estimated development times (6.73-10.84 days: observed water; 6.80-12.33 days: 

simulated water) are within their observed range of days when different number of larvae 

were reared. This agreement may be due to the almost similar range of temperatures they 

observed (24.6◦C: average minimum; 36.0◦C: average maximum). In the laboratory, when 

larvae were reared at constant temperatures of 24, 27 and 30◦C, Lyimo et al. (1992) 

observed age to pupation range between 6 to 17 days with an average of 9.79 days. 

Although longer development times have been reported elsewhere (Minakawa et al., 2006; 

Munga et al., 2006), their observed temperature ranges were lower relative to what we 
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observed. This clearly demonstrates the potential of this simplified easy to implement 

scheme to accurately predict aquatic stage development time of mosquito. 

As expected, air temperature predicted longer larvae duration time with mean difference 

of about 29.67% relative to the observed water temperature. In western Kenya town of 

Kisian, Paaijmans and Thomas (2013) observed similar high difference in larvae 

development time of 25-28% using air and water temperatures. Their observed mean air 

temperature of 

23.4◦C is close to the 24.89◦C we observed. However, in the same study, they observed 

higher difference ranging between 39-45% for two highland towns of Lyanaginga and Fort 

Ternan in western Kenya. As expected, they observed a lower mean air temperature of 

about 19◦C for these two towns. These results reveal that models using air temperature to 

simulate larvae development are overestimating larvae development time. In addition, 

though the high R2 indicates similar trends between observed water and air temperatures, 

the negative NSE values indicate unacceptable performance using air temperature to 

predict larvae development. 

Comparing the larvae duration time predicted from these two schemes reveals the 

importance of the KL parameter. Interestingly, JA scheme driven by air temperature 

predicted faster larvae development relative to the BA scheme driven by both observed 

and simulated water temperatures (see Fig. 5.8). This results suggest that water 

temperature and KL are two key important variables for the accurate simulation of the 

larvae development time. 
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The VECTRI simulation results highlight the nonlinearity of the relationship between 

temperature and larvae development rate. The percentage difference between modelled 

water and observed air temperatures did not produce the same percentage change in the 

VECTRI simulated larvae density. Pascual et al. (2006) and Bayoh and Lindsay (2003) also 

found nonlinear relation between change in climate variables and mosquito population 

dynamics. In addition, the large disparity between the schemes simulated larval density 

clearly shows the importance of the KL term. This highlights the fact that the challenge of 

modeling the aquatic stage life cycle of mosquito arises not only from the water 

temperature but also the 

KL term introduces another uncertainty. 

5.4 Summary 

Water temperature is key for the life-cycle of mosquito larvae, and is therefore a required 

parameter for the latest generation of dynamical disease models. The presented energy 

balance model performed well (NSE > 0.7) in predicting the diurnal observed temperature 

variability and larvae development times (NSE = 0.76), despite driving the model by 

estimated fluxes instead of real observations. In addition, the results show that diurnal 

variations in water temperature are important for simulation of aquatic-stage 

development times, however, effect of sub-diurnal variations on larval development are 

similar to that of the diurnal. 

Furthermore, the model predicted water temperature was used to drive the VECTRI model 

aquatic stage development time. The VECTRI simulated results suggest that in addition to 

the water temperature, the degree days parameter KL is extremely important to accurately 
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predict the larvae development time. Our results highlight the potential of the model to 

predict water temperature of temporary surface water, which can thus be implemented in 

dynamical malaria models to predict larvae development times, especially in regions 

without observations of the input energy fluxes. 

CHAPTER 6 

Assessing climate driven malaria variability in Ghana using a 

regional scale dynamical model  
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Abstract 

The regional-scale dynamical malaria model VECTRI is used to assess the influence of 

climate forcing on the spatio-temporal variability in malaria transmission over the four 

agro-ecological zones in Ghana. The model is run simply under the same conditions with 

the exception of the driving temperature and rainfall datasets obtained from Ghana 

Meteorological Agency (Gmet) synoptic stations between 1980 and 2010. In addition, the 

potential of the VECTRI model to simulate seasonal pattern of local scale malaria incidence 

is assessed. The model results reveal that the simulated malaria transmission follows 

rainfall peaks with a one month time lag. Furthermore, malaria transmission ranges from 

six to twelve months, with minimum transmission occurring between February and April. 

The correlation between mean annual model predicted entomological inoculation rate 

(EIR) and the national recorded malaria cases from public health facilities was more than 

0.5. On a local scale evaluation, the correlation between monthly predicted and hospital 

recorded malaria cases was greater than 0.4. Interestingly, this correlation (R2 = 0.4) was 

higher than the best obtained using rainfall. This result demonstrate the potential of the 

VECTRI model to predict malaria transmission dynamics at both local and national scales. 

6.1 Introduction 

Malaria is hyperendemic and poses a significant public health challenge in Ghana. Despite 

recent scale up malaria treatment and control intervention strategies, malaria still remains 

the leading cause of morbidity and mortality among the entire population. For example, 

between 2000 and 2011, malaria alone accounted for an average of about 40% of all out-
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patient attendance (OPD) in public health facilities (Adams et al., 2004; NMCP, 2008; GHS, 

2011). Similarly, in 2011, GHS (2011) report indicates that suspected malaria cases account 

for about 40.2% outpatient morbidity, 35.2% hospital admissions and 18.1% of all recorded 

death at public hospitals. Most importantly, actual malaria cases are likely to be higher than 

the reported cases since private health facilities are not taken into account, in addition to 

home treatment (self medication) of the disease using both orthodox and traditional 

medicine. 

In addition to health implications, malaria also presents a substantial economic and 

developmental challenges in Ghana. Asante and Asenso-Okyere (2003) found a negative 

association between malaria cases and GDP. In a related model study, Sicuri et al. (2013) 

estimated annual total cost of malaria treatment and prevention for children under-five 

years to be US$ 37.8 million in 2009. In addition, they estimated the expenditure for 

treating a single malaria episode to range between US$ 2.89 and US$ 123 depending on 

disease severity. Furthermore, large fraction of Ghana’s health budget goes to treatment 

and prevention of malaria. For instance, the estimated budget for National Malaria Control 

Programme (NMCP) strategy plan for effective malaria prevention and treatment between 

2008 and 2015 is US$ 880 million (GHS, 2009). In addition, the disease is adversely 

affecting sustainability of the National Health Insurance Scheme (NHIS) due to high 

reported cases at the various hospitals across the country (Dontwi et al., 2013). 

On the household level, Akazili et al. (2008) found the cost of treatment of malaria to be 

about 34% and 1% of the household’s income for the poor and the wealthy respectively in 

the Kassena-Nankana district of northern Ghana. More recently, Sicuri et al. (2013) 
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estimated that about 55% of the total cost of malaria treatment in 2009 which ranges 

between US$ 7.99 and US$ 229.24 per malaria episode are borne by the patient. These 

clearly show that successful implementation of effective malaria control program will have 

a huge socio-economic and public health impact on the country. 

Similar to sub-Saharan African countries, Anopheles gambiae sanso lato complex and 

Anopheles funestus are the main malaria vectors in Ghana (Appawu et al., 1994; 2004; 

Yawson et al., 2004; De Souza et al., 2010; Kasasa et al., 2013; Dadzie et al., 2013). The 

distribution of these vectors is heterogeneous and somehow follows climate and ecological 

conditions (Appawu et al., 1994). An. gambiae s.s., An. arabiensis and An. melas are the 

three species within the Anopheles gambiae sanso lato complex found in Ghana (Appawu 

et al., 2004; Yawson et al., 2004). The An. gambiae s.s. vector predominates the complex 

and distributed throughout the country (De Souza et al., 2010). However, the other two 

vectors have limited distribution within the country, An. arabiensis predominates in 

savanna region while An. melas are confined along the coast (Yawson et al., 2004; De Souza 

et al., 2010). Regarding An. funestus, Dadzie et al. (2013) found An. funestus sensu stricto 

as the only malaria transmission vector in the sub group found in the country. Although An. 

funestus sensu stricto are found all over the country, they are the predominant and 

important vectors in the savanna ecological zone (Dadzie et al., 2013). 

Three out of four main species of human malaria parasites are present in Ghana. 

Plasmodium falciparum the most severe and life threatening is predominant in the country 

accounting for about 80 to 90% of all malaria infections. This is followed by Plasmodium 

malariae responsible for between 20 and 36% of malaria cases while Plasmodium ovale is 
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less prevalent accounting for less than a percent (about 0.15%) of all malaria parasitemia 

(Afari et al., 1995; Asante and Asenso-Okyere, 2003). Moreover, mixed infections of 

Plasmodium falciparum and Plasmodium malariae are also common. For instance, in Accra, 

Klinkenberg et al. (2005) detected a single case of mixed infection of Plasmodium 

falciparum and Plasmodium malariae for a three month study period among children 

between 6 and 60 months of age. However, 258 out of the 261 infections detected were 

due to Plasmodium falciparum with 2 cases of Plasmodium malariae. Similarly, in the 

Kassena-Nankana District located within the savanna zone, Koram et al. (2003) identified 

963, 63 and 36 cases of Plasmodium falciparum, Plasmodium malariae and mixed 

infections of the two, respectively. In addition, Dinko et al. (2013) found all the three 

species in the Ahafo Ano South District of the Ashanti region which is within the forest 

ecological zone. 

Heterogeneities in malaria transmission dynamics across the four agro-ecological zones 

have been reported. These variations are to a large extent due to a complex interplay 

between climatic variability, parasite and vector distribution, behavior of human host as 

well as other non-climatic factors. For instance, within the coastal, forest and transition 

zones with bimodal rainfall regime, malaria transmission tends to be perennial and intense 

but with slightly higher cases during the wet season (Owusu-Agyei et al., 2009; Dery et al., 

2010; Donovan et al., 2012). In the savanna zone with unimodal rainfall regime with long 

dry season, malaria transmission although intense shows more pronounced seasonality 

relative to the other zones. For example, Appawu et al. (2004) observed transmission peaks 

between June and October in the Kassena-Nankana District in northern Ghana. Similarly, 

in the same district, Baird et al. (2002) found malaria incidence density of five which 
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increased to seven infections/person/year in the dry and wet seasons, respectively among 

children under two years. Despite this, non-climatic factors such as urban agriculture and 

irrigation among others introduce local hot spots transmission within the various ecological 

zones which modify local disease dynamics. 

Rainfall, temperature, wind speed and relative humidity are the key climate drivers that 

influence the spatio-temporal malaria transmission. Areas like Ghana where mean 

temperatures are within the range that supports malaria transmission, variations in rainfall 

play a key role in understanding disease dynamics. Consequently most studies attempt to 

associate malaria incidence with rainfall. However, contrasting results have been observed. 

For instance, across Atonsu (urban), Emena (peri-urban) and Akropong (rural) towns within 

Ashanti region of Ghana, Tay et al. (2012) observed weak but variable R2 between rainfall 

and hospital morbidity data at various time lags. Klutse et al. (2014) found a poor 

correlation between rainfall and malaria at Winneba (coastal) and Ejura (transition) zones. 

Interestingly, a strong but negative correlation was observed for these two locations with 

two month lag time between malaria and rainfall. In the forest zone, Danuor et al. (2010) 

observed a strong negative correlation between rainfall and malaria incidence. Similarly, in 

the forest zone, Krefis et al. (2011) using a regression model found about two month time 

lag between rainfall and malaria incidence. This nonlinearity between rainfall and malaria 

intensity has been observed elsewhere (Kelly-Hope et al., 2009; Lowe et al., 2013). 

Due to this strong nonlinear relationship between malaria incidence and rainfall, a model 

that incorporates surface hydrology (e.g. the International Centre for Theoretical Physics, 

Trieste (VECTRI); Tompkins and Ermert, 2013) is likely to perform better in predicting 
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malaria incidence relative to those that use rainfall as proxy for aquatic habitats. For 

instance, rainfall in addition to local scale hydrological conditions control mosquito 

developmental habitat dynamics and to some extent its productivity (Smith et al., 2013; 

Asare et al., 2015a). More importantly, in Ghana, studies linking climate fluctuations and 

malaria transmission across the various agro-ecological zones are limited, the few available 

studies are based on a single or at most two ecological zones and over a short time period 

(Danuor et al., 2010; Tay et al., 2012; Klutse et al., 2014). Thus, it becomes clearly difficult 

to understand malaria transmission dynamics over the entire country. 

The aim of the study is to address some of the challenges above by modeling malaria 

transmission dynamics over the various agro-ecological zones from 1980 to 2010 using 

VECTRI model (Tompkins and Ermert, 2013) driven by data from the 22 synoptic stations 

operated by the Ghana Meteorological Agency (hereafter GMet). Furthermore, the average 

model simulated entomological inoculation rate (EIR) is compared with national malaria 

recorded malaria cases. In addition, the potential of the model to predict seasonal 

variability of local scale malaria transmission is assessed using a monthly hospital data from 

Emena. Results evaluation demonstrates the ability of VECTRI model to provide malaria 

early warning information over Ghana and in addition the model possesses the potential 

to predict malaria seasonality at a local scale. 
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6.2 Method 

6.2.1 Study area and data 

In this study, daily rainfall and maximum and minimum temperatures from 22 Gmet 

synoptic stations data over the country between 1980 and 2010 were considered. The 

names and locations of the station over the four agro-ecological zones are shown in Fig. 

6.1. In addition to these, daily observations of the same variables were obtained from Gmet 

agro-meteorological station (Agromet) located at Kwame Nkrumah University of Science 

and Technology (KNUST) campus at Kumasi (see Fig. 6.1). These data were used as inputs 

to drive the VECTRI model to simulate malaria transmission dynamics.  
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 North  Transition  Forest  
Coast 

 Hospital  
Agromet 

Figure 6.1: Map showing the 22 synoptic Gmet stations grouped into the four agro-

ecological zones. The Emena hospital and Agromet station are also shown. 

Rainfall is highly variable in Ghana in terms of its onset and cessation times across different 

zones but exhibits less variability within the zones. These spatio-temporal variability in 

rainfall is mainly controlled by the north- and south-ward movement of the Inter-Tropical 

Discontinuity (ITD) (Owusu and Waylen, 2013; Manzanas et al., 2014; Amekudzi et al., 

2015). 

6.2.2 Malaria morbidity data 

Annual malaria morbidity data were compiled from annual Facts and Figures bulletin 

obtained from Ghana Ministry of Health GHS (2013) between 2000 and 2008. These 
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morbidity data come from only public health facilities. In addition, monthly records of 

confirmed malaria data were obtained from Emena hospital (see Fig. 6.1) from January 

2010 to July 2013. These two datasets are used to evaluate the VECTRI model on national 

and 

local scales respectively. 

6.2.3 VECTRI model 

Tompkins and Ermert (2013) introduced VECTRI, a grid-point distributed open source 

dynamical model that simulates malaria transmission dynamics running with a daily 

integration timestep and flexible spatial resolution that ranges from a single location to a 

regional scale (10-100 km) depending on the resolution of the driving climate data. The 

VECTRI model explicitly resolves important temperature-dependent stages such as egg-

larvae-pupa, gonotrophic and sporogonic cycles. The growth stages within these cycles are 

presented in arrays of bins and the process continues to advance once temperatures are 

within the range for growth. For complete description of the model we refer reader to 

Tompkins and Ermert (2013). 

One novel aspect of the VECTRI model is that it incorporates human population which 

influences vector-host interaction dynamics in estimating biting rates. Consequently, the 

model explicitly reproduces the reduction of EIR with increasing population density (Robert 

et al., 2003). As a result, the model is able to differentiate heterogeneities in transmission 

intensity between rural, peri-urban and urban areas. 
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VECTRI includes a simple surface hydrology scheme that estimates at each time step the 

fractional water coverage area in each grid cell. Fractional water coverage area is a sum of 

both temporary and permanent developmental habitats, however, at present, spatial 

parametrization of permanent water bodies is not available, but incorporated as user 

defined parameter which can be tuned with knowledge of the area hydrology. Importantly, 

this scheme also indirectly controls habitat productivity and adult density as larvae are 

killed once the habitat dries out. Furthermore, although simple, the surface hydrology 

scheme is able to account for negative effect of high intensity rainfall on larvae habitat 

productivity through flushing effect (Paaijmans et al., 2007). 

Recently, modifications to the default hydrology scheme Eq. 6.1a to incorporate pond 

geometry and nonlinearities of infiltration and runoff (Eq. 6.1b) have been introduced by 

Asare et al. (2015b) which is available from VECTRI Version V1.3.1. In the present work, 

VECTRI is run with constant population over the entire period using these two schemes. 

 dwpond   

  = Kw P(wmax − wpond) − wpond(E + I) (6.1a) 

dt 

 dwpond 2  wref p/2   wpond !  

= [Pwpond + Q(wmax − wpond)] 1 −  − wpond(E + fImax) dt phref wpond wmax 

(6.1b) 

where wpond is the net aggregated fractional water coverage in a grid cell, wmax is the 

maximum fractional coverage of temporary ponds, p is the pond geometry power factor, 

href is the aggregated reference pond water depth, wref is the reference fractional coverage, 
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P is the precipitation rate, E and I which were set to a fixed constant are evaporation rate 

and infiltration rate respectively and Kw is a linear constant, Imax is the maximum infiltration 

rate from ponds, Q is the runoff calculated from SCS formula (USDA, 1972) and f is the 

proportion of maximum pond area factor. 

6.3 Results and Discussion 

6.3.1 Rainfall and temperature variability 

The temperature observations from various synoptic stations range from 22 to 34◦C which 

are within the range that supports malaria transmission (Fig. 6.2a). The high temperatures 

occur regularly between February and May, while low temperatures generally occur 

between June and October across all the various zones. The mean daily rain rates at the 

stations vary between 0 to 16 mm day−1 (see Fig. 6.2b). In the coastal agro-ecological zone, 

the major and minor rainfall peaks occurred in June and October, respectively. Similar 

peaks in major and minor seasons were observed over the forest agro-ecological zone with 

the exception of Abetifi where the minor season peaked in September. In the transitional 

zone, the peaks occurred in June and September for Suyani and Kete-Krachi. However, early 

peak in the major season occurred in April for Wenchi but minor season peaked was in 

September. Over the savanna zone, rainfall peaked in September for Bole, Tamale and 

Yendi. However, rainfall onset is one month earlier at Navrongo and Wa. 
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6.3.2 Model results 

 

Figure 6.2: The monthly daily (a) temperature, (b) rainfall, (c) water fraction (d) EIR over the 

31 year period (1980 to 2010) for various Gmet synoptic stations. 

Fig. 6.2 shows daily monthly average rainfall, temperature, VECTRI (V1.3.0 hydrology 

scheme) simulated water fraction and EIR. The results clearly show that malaria 

transmission generally follows rainfall pattern. The timing of peaks in the simulated EIR 

follows peaks in rainfall but with a lag time of approximately a month (see Figs. 6.2 b,d). 

For instance, in the savanna zone with unimodal rainfall, model simulated a single peak in 
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malaria transmission. On the contrary, in the remaining zones with bimodal rainfall 

regimes, simulated malaria dynamics exhibit two peaks. For example in Asutifi, a town 

located about 56 km from Sunyani, Asante et al. (2011) observed the highest EIR values 

between June and July. This agrees with the highest simulated EIR value at Sunyani, which 

occurs in July followed by June. Interestingly, the major rainfall peak is in June at Sunyani. 

However, in the Kassena Nankana district, of which Navrongo is the capital, Appawu et al. 

(2004) and Kasasa et al. 

(2013) observed EIR peak in September, but our results showed a peak in October for 

Navrongo, despite peak in rainfall in August for this station. Although a possible explanation 

is not apparent, it maybe due to the prolonged dry season in the area. Consequently, the 

model simulates no incidence of malaria (EIR <= 0.01, Tompkins and Ermert, 2013) from 

January to June which could result in the two month lag time between rainfall and malaria 

peaks. 

Furthermore, Fig. 6.2 d shows that transmission length corresponds to the variability in 

rainfall onset and cessation times. For example, Amekudzi et al. (2015) found rainfall onset 

is from second to third dekad of March for coastal and forest zones, between second dekad 

of March and third dekad of April for transition zone and middle of April to first week in 

May for savanna zone. Based on VECTRI model EIR threshold for malaria transmission (EIR 

> 0.01, Tompkins and Ermert, 2013), the length of malaria season varies across the various 

agro-ecological zones. In the coastal zone, transmission is eleven to twelve months, all year 

transmission in the forest and transition zones and between six and ten months in the 

savanna zone. In addition transmission is remarkably seasonal in the savanna zone 

although all year round transmission has been reported for some areas within this zone. 
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For example, Koram et al. (2000) reported all year round malaria transmission but with 

lower cases in the dry relative to the wet seasons in the Kassena-Nankana district in 

northern Ghana for children under two years. To some extent, this results fall within the 

range reported from field observations (GSS, 2011). 

Temperature was also found to play a significant role in malaria transmission variability in 

Ghana. For instance, despite Abetifi and Oda having almost similar rainfall pattern (see Fig. 

6.2 b) and simulated water fraction (Fig. 6.2 c), the VECTRI simulated EIR shows a consistent 

lower values at Abetifi relative to Oda (see Fig. 6.2 d). This observation is significantly due 

to the lower temperatures recorded at Abetifi relative to Oda (see Fig. 6.2 a). 

The most interesting aspect of Fig. 6.2 d is that the model tends to agree with some field 

observed studies at some locations. For instance in Accra in the coastal zone, Klinkenberg 

et al. (2008) found EIR values of 19.2 and 6.6 infective bites/person/year (ib/p/y) (0.052 

and 0.018 infective bites/person/night (ib/p/n)) respectively for areas located near to and 

far from agricultural sites. These were consistent with model values for Accra ranging 

between 

0.011 and 0.133 with average of 0.051 ib/p/n. Similarly, the model predicted EIR values 

(see Fig. 6.2 a) are in good agreement with the range (0.1 and 0.7 ib/p/n) estimated by 

Dadzie et al. (2013) from mosquitoes captured by human landing method at some locations 

within the country. In addition, the mean annual EIR value of 0.02 ib/p/n reported by 

Robert et al. (2003) for urban city centers across sub-Saharan Africa is within the range of 

simulated EIR values. However, in Navrongo, monthly VECTRI predicted EIR values (0 to 
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0.18 ib/p/n) were lower comparable to the range observed by Kasasa et al. (2013) (0 to 

1.06 ib/p/n). 

Averaging simulated EIR values within the various agro-ecological zones reveals malaria 

prevalence ranging from forest, transition, savanna and to the coast. Despite these 

observations, it is likely that real transmission intensity may deviate from the model 

predicted values due to other local effects such as contribution from permanent water 

bodies, uneven distribution Gmet stations and different population densities at the various 

cities where the synoptic stations are located. Although VECTRI takes into account the 

population and vector interaction in estimating EIR, in the present study, the same 

population density was used to run the model. This is in line with our objective, which is to 

assess the effects of climate alone on malaria transmission dynamics. 

6.3.3 VECTRI simulated EIR and annual malaria cases 

The average annual malaria cases from various public health facilities and average VECTRI 

simulated EIR over the 22 synoptic stations between 2000 and 2008 are compared (Fig. 

6.3). The results reveal that despite using only 22 stations to represent the entire country, 

there is relatively good agreement between VECTRI EIR and hospital morbidity data with 

R2 (V1.3.0: 0.52; V1.2.6: 0.51). Furthermore, although there has been an increase in 

intervention programs, malaria transmission is still intense and high. In addition, the 

VECTRI simulated EIR also showed less interannual variability in transmission. The annual 

simulated EIR values range from 16 to 28 and 32 to 52 ib/p/y for V1.2.6 and V1.3.0, 
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respectively. These are within the range from 2.6 to 44.7 estimated by Klinkenberg et al. 

(2008) using human landing catches in Accra, Ghana. However, these values are higher than 

annual EIR value of 7.1 reported for urban centers in sub-Saharan Africa (Robert et al., 

2003). 

 

Figure 6.3: Comparison of average VECTRI simulated EIR and annual malaria morbidity from 

public health facilities. 

6.3.4 Local scale malaria transmission 

The output from a single location VECTRI runs is compared to the Emena monthly recorded 

malaria cases (Fig. 6.4). Reported cases from the hospital indicate that transmission is 

slightly stable and exhibits a small intraannual variability. 
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Figure 6.4: Comparison of monthly VECTRI simulated single location EIR and Emena hospital 

morbidity data. 

The two VECTRI hydrology schemes reproduce a realistic trend in the reported cases, 

however VECTRI V1.3.0 performed relatively well (R2 = 0.48) relative to VECTRI V1.2.6 (R2 = 

0.44). Interestingly, these correlations are higher than the best correlation (R2 = 0.23) 

obtained using rainfall directly. This value was obtained at one month time lag. A similar 

small correlation (R2 = 0.297 at two month lag time) between rainfall and monthly malaria 

cases was observed by Tay et al. (2012) at this same study location. This further confirms 

the potential of VECTRI model to simulate local scale malaria transmission dynamics (Asare 

et al., 2015b). 
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6.4 Summary 

In this study, we explored the potential of regional scale dynamical model VECTRI to 

simulate spatio-temporal malaria transmission dynamics over the four agro-ecological 

zones in Ghana. The simulated results reveal intra- and inter-agro-ecological variability in 

terms of intensity and duration of malaria transmission which are predominantly controlled 

by rainfall. However, temperature was found to suppress transmission only at Abetifi, a 

town located on the Kwahu plateau. The correlation between annual model predicted 

malaria incidence (EIR) and national recorded malaria cases from public health facilities 

was more than 0.5. On a local scale evaluation, the correlation between monthly predicted 

and hospital recorded malaria cases was greater than 0.4. Interestingly, this correlation (R2 

= 0.4) was higher than the best obtained between rainfall and malaria cases. This indicates 

the VECTRI model superior predictive ability relative to using rainfall directly. 

These results demonstrate useful application of the VECTRI model to simulate malaria 

transmission dynamics at both national and local scales. Nevertheless, improved VECTRI 

model performance could likely be achieved by including parametrization for permanent 

water bodies, topography, soil characteristics, habitat water temperature and immunity. 

CHAPTER 7 
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Conclusions and Recommendations 

7.1 Conclusions 

Surface hydrology and water temperature of mosquito developmental habitats are two key 

climatic factors that control the aquatic stage life cycle and thus adult abundance by 

influencing the stability of habitat and larvae growth rates, respectively. However, the small 

spatial scale of breeding habitats of important malaria vectors confound modeling efforts 

due to the lack of data from both field observations and remote sensing techniques to 

evaluate model parametrization assumptions. Consequently, available spatial, dynamical 

mathematical-biological malaria models lack a precise simulation of mosquito 

developmental habitat water temperature with majority of them simply equating water 

temperature with 2 metre mean air temperature. Similarly, some of these malaria 

transmission models have no representation of or incorporate schemes that vary in their 

complexity for surface hydrology. To address this challenge, new energy balance and 

surface hydrology parametrization schemes are developed and validated using in situ 

observations. Furthermore, the new developed surface hydrology scheme is implemented 

in the VECTRI model and in addition to model default scheme, their potential to simulate 

spatio-temporal malaria transmission variability at both local and regional scales are 

assessed. 

The results between June 6 and August 25 in 2011 field observations show that small-sized 

breeding habitats, which are difficult to model should not be ignored in malaria models 

because they have sufficient life time during the rainy season to allow larvae to fully 
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develop into adult mosquitoes. The observed variability in the puddles stability ranged 

between 11 and 81 days was strongly tied with rainfall, location and size of the puddles. In 

addition, results from a 10-minute temporal resolution observed water temperatures 

monitored between June and November 2013 revealed that water temperatures of 

temporary surface water are highly variable. Consequently, if colonized by larvae, they 

would be exposed to temperatures ranging from about 21.59 up to 39.26◦C with daily 

average of 27.21◦C. These in situ observations are used to evaluate the performance of the 

developed surface hydrology and habitat water temperature schemes. 

A simple prognostic model was developed based on the diagnostic geometrical model of 

Hayashi, with sources and sinks due to precipitation, run off, evaporation and infiltration. 

The model accounts for pond geometry more realistically and also incorporates the 

nonlinearities of the surface runoff term and the infiltration term to represent the clogged 

inner regions of puddles. This model was able to reproduce the daily observed variability 

in pond water surface area and depth under different hydrological conditions. Based on 

general performance rating of NSE, the model results for all the individual sites were within 

acceptable level of model performance ranging between satisfactory and very good for 

depth and area simulations. However, during the later dry phase of the study period, the 

model tends to overestimate and underestimate the pond area and depth for the sites 

located far away from permanent streams (sites 6 to 8) and within waterlogged areas (sites 

9 and 10), respectively. This indicates that the model could be improved by incorporating 

a treatment of soil moisture, which would increase infiltration in the drier periods as the 

soil dries out. More importantly, the key advantage of the scheme is that it can be 
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implemented in dynamical models that run at different scales; a single location, or for a 

grid of points over a region or even a global scale. 

This single element prognostic model developed was further generalized to simulate the 

total fractional coverage of ponds within a grid-cell to assess the model application in 

gridded dynamical models. The model results show good agreement (NSE = 0.84) with the 

estimated fractional coverage of the ponds. This result highlights the useful application of 

this prognostic geometrical model in spatially distributed dynamical disease models and 

thus could improve representation of surface hydrology in vector borne disease models. 

Furthermore, the developed prognostic model is implemented in the regional-scale 

dynamical malaria model VECTRI, and in addition to the VECTRI default surface hydrology 

scheme, are evaluated using output from HYDREMATS, a 10 metre resolution village-scale 

model that explicitly simulates individual ponds. Based on multi-member ensemble Monte 

Carlo technique, the VECTRI model parameter setting that minimizes water fraction 

differences was identified. Despite the simplicity of the two VECTRI surface hydrology 

parametrization schemes, they perform relatively well (NS E > 0.85) at reproducing the 

seasonal and intraseasonal variability in pond water fraction, with the prognostic scheme 

able to produce a closer match to the explicit benchmark model, HYDREMATS. However, 

the default VECTRI scheme tends to overestimate water fraction in 2005 and 

underestimate it in 2006, and also relatively overestimates water fraction during the 

monsoon onset period. This systematic error was reduced by nonlinear treatment of run-

off and infiltration terms in the prognostic scheme, and lead to more accurate predictions 

of the ponding onset at the start of the rainy season. However, it is likely that further 
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improvement could be made by representing soil moisture in the prognostic scheme. 

Simulations of vector densities with the prognostic VECTRI model were also close, both in 

terms of season length and magnitude to the detailed agent based model contained in 

HYDREMATS. The results indicate that, with knowledge of local soil parameters and terrain, 

VECTRI parameters can be adjusted to simulate malaria transmission on a local scale. 

In addition, VECTRI driven by satellites rainfall estimates (FEWS RFE2 and TRMM 3B42) over 

the Banizoumbou village produces a reasonable simulation of the sub-seasonal evolution 

of the pond fraction for the study area, thus indicating the possibility of driving the malaria 

model with satellite rainfall estimates in the absence of ground observations. Such areas 

without permanent water bodies stand to gain more in malaria control from early warning 

information which dynamical models like the VECTRI model can provide if they can 

incorporate reliable representations of the surface hydrology driven by accurate climate 

observations or forecasts (Tompkins and Di Giuseppe, 2015). In addition, these results also 

demonstrate that VECTRI model can be driven with satellite-based rainfall data, and thus 

the model is applicable in areas where ground observation is not available. 

To improve representation of water temperature of mosquito developmental habitats in 

dynamical models, an energy budget scheme that assumes a homogeneous mixed water 

column driven by empirically derived fluxes is developed. The model shows good 

agreement at both diurnal and daily time scales with the observed water temperatures. In 

addition, there was a close match between larvae development times calculated using 

either the model-derived or observed water temperatures, with the modelled water 
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temperature providing a significant improvement over simply assuming the water 

temperature to be equal to the 2-metre air temperature. 

The results from the temperature scheme suggest that diurnal variations in water 

temperature are important for simulation of aquatic-stage development times, however, 

effects of sub-diurnal variations on larval development are similar to those of the diurnal. 

Modeling results further show that in addition to water temperature, the degree days 

parameter KL is extremely important to accurately predict the larvae development time. 

The findings highlight the potential of the model to predict water temperature of 

temporary surface water, which can thus be implemented in dynamical malaria models to 

predict larvae development 

times. 

An important aspect of the presented scheme is that it uses approximations for some of 

the flux terms derived from readily available meteorological variables. In addition, the 

model can be run at different temporal scales depending on the resolution of the input 

data. Thus, this simple scheme could be useful for dynamical vector-borne disease models 

to improve aquatic life-cycle simulation especially in regions without observations of the 

input energy 

fluxes. 

Finally, VECTRI runs over Ghana reveal malaria transmission ranging from six to twelve 

months, with minimum intensity occurring between February and April. The simulated 

results reveal intra- and inter-agro-ecological variability in terms of intensity and duration 

of malaria transmission which are predominantly controlled by rainfall. However, 
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temperature was found to suppress transmission only at Abetifi, a town located on the 

Kwahu plateau. The correlation between mean annual model predicted malaria incidence 

(EIR) and recorded national malaria cases from public health facilities was more than 0.5. 

On a local scale, the agreement between hospital recorded monthly malaria cases and 

VECTRI simulated EIR values was better relative to using only rainfall. This result 

demonstrates the potential ability of the VECTRI model to predict malaria transmission 

dynamics at both local and national 

scales. 

The results from this study provide useful information for policy and decision makers 

responsible for planning malaria control strategies. Firstly, the VECTRI model possesses the 

potential to be adopted as malaria early warning tool for Ghana. This is due to the fact that 

the model simulated EIR tends to agree with the recorded morbidity data at both national 

and local scales to some extent. Consequently, other VECTRI output variables such as larvae 

and adult spatial and temporal densities would provide reliable information about the 

appropriate timing to carry out effective interventions targeting these stages. 

7.2 Recommendations 

Although the developed prognostic scheme already addresses many shortcomings of 

existing schemes and improved surface hydrology representation, some potential 

refinements are still necessary. For instance, incorporating soil moisture treatment in the 
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prognostic scheme would moderate infiltration effects during wet and dry periods. 

Furthermore, the current VECTRI hydrological scheme does not account for topographical 

effect that plays an important role in controlling spatial distribution of potential habitats 

especially over a regional scale. As a result future development should consider defining 

the VECTRI wmax parameter as a function of topography. As is evident that permanent water 

bodies sustain all year round transmission, including a detailed parametrization for their 

contribution would likely improve the performance of the VECTRI model. 

Another important factor neglected in the VECTRI model is the treatment of human 

immunity. The level of host immunity plays a significant role in controlling transmission 

intensity especially in the endemic relative to epidemic regions. Consequently, a regional-

scale model such as the VECTRI model, effects of human immunity must be 

considered. 

As it stands now, the application of the temperature scheme, although extremely useful for 

aquatic stage simulations, is limited to areas with ground observations of meteorological 

variables used to derive the estimated fluxes. The future research direction regarding this 

scheme is to assess the potential of using satellite-based meteorological variables to drive 

this scheme. Thus could make the scheme when implemented in dynamical models 

applicable even over regions without ground meteorological observations. Nevertheless, 

this temperature scheme is going to be implemented fully in the next release of the VECTRI 

model. 

Notwithstanding the limitations of the VECTRI model, it can still be adopted by policy 

makers especially the NMCP to improve malaria control programs. Further studies are 
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required to assess the potential of VECTRI to provide early warning information about 

malaria incidence especially in the savanna region where transmission is seasonal. In 

addition, future VECTRI runs should specifically examine the sensitivity of timing of 

initiating control intervention targeting aquatic and adult mosquito stages in reducing 

transmission intensity. Lastly, the NMCP should make compiled morbidity data from 

individual hospitals accessible to aid model evaluation at local scale. 
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