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ABSTRACT 

 

The prediction of transient stability status and instability scenarios such as coherent generator 

groups has become extremely important for the improvement of power system performance in 

the event of large disturbances. This research workis aimed at developing various schemes for 

providing advance information on the stability status of power systems following a transient 

disturbance. The work also focuses on predicting coherent generator groups that are likely to be 

formed when a system is predicted to become transient unstable. Power System Simulator for 

Engineers (PSSE) software is employed to model a test system and carry out simulations. 

MATLAB
®
 software is used for the analysis and development of the prediction schemes. Three 

schemes for predicting transient stability status and one scheme for predicting coherent generator 

groups have been developed. Rotor speed deviation following a disturbance was found to be an 

excellent input parameter for the schemes. The first proposed method for predicting transient 

stability status employs the Daubechies 4 mother wavelet to decompose rotor speed deviation 

data obtained for three consecutive cycles after the tripping of a line or bus. The wavelet 

entropies subsequently obtained are then used as input to an algorithm which predicts the 

transient stability status of a power system. The prediction accuracy of this method was found to 

be 91.2%. The second transient stability status prediction schemeuses the sum of the maximum 

rotor speed deviations of system generators obtained within the first cycle after the tripping of a 

bus or line following a transient disturbance for its prediction. The obtained sum is then used as 

input data to a trained multilayer perceptron neural network (MLPNN) which is used for the 

prediction. This method was found to be 100% accurate. The third scheme developed is anchored 

onstability status prediction of each generator based the maximum rotor speed deviation (MSD) 

of that generator, obtained within the first cycle after the tripping of a line or bus.  The MSD of 
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each generator has also been used as input to a trained MLPNN assigned to that generator forits 

transient stability prediction. The method has been found to return 98.05% accuracy in generator 

transient stability predictions.The final scheme developed is aimed at identifying coherent 

generator groups only after successful prediction of system transient instability. This final 

scheme has been realized via two MLPNNs each of which is equipped with three input neurons. 

Herein, the input data to the three input neurons are: (1) MSD of a reference generator in a 

predicted coherent group, (2) MSD of a generator to be placed in a group, and (3) the difference 

between the two MSDs. The proposed coherency prediction scheme has been tested exhaustively 

and found to be90.43% accurate. The proposed schemes which rely principally on MSD are 

computationally fast and efficient in their respective predictive capabilities; and can therefore be 

easily implemented on-line in real systems with the availability of phasor measurement units. 
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  Chapter 1 

INTRODUCTION 

 

1.1 Overview 

The rapid growth in industrialization, modernization, and population all over the world has 

increased the demand for electric power. The high cost of building new transmission lines to 

handle the increased demand, coupled with the difficulty in securing right-of-ways has resulted 

in larger power being transmitted through existing lines. This reduces stability margins and 

endangers power system stability, especially under large disturbance conditions [1].  

 

Due to the complexity and geographical vastness of a practical power network, instability of 

power systems has been divided into various categories. The first stage of the categorisation, 

partitions power system instability into two categories: load driven and generator driven 

instabilities. Load driven instabilities mainly include voltage instability and voltage collapse 

problems. Generator driven instability is also known as rotor angle instability. Rotor angle 

stability is mainly due to synchronism of generators, that is, ability of generating units to work 

together at prescribed synchronous frequency. The angle stability is divided into short-term and 

long-term periods. The short-term angle stability is known as transient stability; an important 

subset of power system stability. The long-term angle stability consists of small signal and 

frequency stability [2]. This work is in the area of transient stability which is defined as the 

ability of synchronous machines to remain in synchronism after being subjected to severe 

disturbances. 
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Power systems are subjected to wide range of abnormal conditions such as faults, generator 

tripping, line switching, loss of excitation, or load shedding. These severe disturbances may 

cause large separation of generator rotor angles, large swings of power flows, large fluctuations 

of voltages, and currents at generator or transmission line terminals. The occurrence of any of 

these may eventually lead to loss of synchronism or what is called out-of-step (OS) operation 

between a generator and the rest of the power system, or between interconnected power systems. 

Loss of synchronism leads to blackouts [3]. For example, 2003 saw separate blackouts in Italy, 

Sweden/Denmark, and USA/Canada, affecting millions of customers. Also, the wide area 

disturbance in 2006 to the Union for the Co-ordination of Transmission of Electricity (UCTE) 

system caused the system to split in an uncontrollable way, forming three islands 

[4].Furthermore, the Ghana power system suffered one system collapse in 2011 and three system 

collapses in 2012 [5]. The system collapse in 2011 was due to the explosion of a circuit breaker 

leading to the loss of a generating unit. The first system collapse in 2012 was due to the tripping 

of two generating units as a result of a bus fault. The second collapse was a result of the tripping 

of the inter tie line between Ghana and Cote d’Ivoire owing to the loss of a generator in the Cote 

d’Ivoire power system. The third system failure occurred because of the tripping of a generator 

due to transformer in-rush current. 

 

Indeed, an OS condition may result in torsional resonance and pulsating torques that are severely 

harmful to the generator-turbine shaft. If such OS condition occurs, it is imperative that the 

asynchronous generator(s) is/are isolated to avoid widespread outages, flashovers and equipment 

damage[3]. 
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A solution to OS problems is the use of schemes that analyse transient disturbances to determine 

critical clearing times, predict possible transient instability and offer techniques for improvement 

of transient stability [1, 6].To this end, research is on-going and a number of schemes for 

evaluating (that is determining critical clearing times) [7-13], detecting transient instability [3, 

14-18], predicting transient stability or otherwise [6, 19-32], and improving transient stability [1, 

33-35] have been developed. These proposed methods have addressed the problem of transient 

instability with varying levels of successby using different power system inputs such as rotor 

angle, mechanical input power, generator kinetic energy deviation, average acceleration during 

fault, angular velocity, bus voltage, line current, and rotor speed. Signal processing tools such as 

discrete Fourier transforms, wavelet transform, and k-means clustering have been used. Decision 

making tools such as neural networks, fuzzy logic, and decision trees have been employed. A 

detailed review of the schemes is presented in Chapter 2 of this thesis.  

 

An OS scheme must operate on-line, act speedily and accurately. It must also be robust and 

simple to implement. All these desired features are yet to be found in a single scheme. For 

example, rotor angles which are the most widely used input parameter for OS studies have 

implementation challenges. The practical use of rotor angles in algorithm require centre of inertia 

reference values which also require continuous updates using real time measurements [19]. This 

introduces extra pre-processing and significant errors. Hence, an input parameter which does not 

need to be expressed with reference to any other and which can be easily captured is required 

[19]. 
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A transient instability issue that needs to be addressed is islanding in power systems [2].When 

system islanding becomes inevitable, it has to be controlled. Controlled or intelligent islanding is 

a critical way of preventing large disturbances from adversely affecting system stability and 

hence reliability. Successful intelligent islanding results in the maintenance of suitable island 

frequency and voltage, both transiently and in post disturbance steady state. This allows faster 

system recovery [37].  An important requirement for successful controlled islanding is the 

determination of the island boundaries. The criterion for determining these boundaries is largely 

dependent on generator coherency[38]. In order to achieve the foregoing, a number of off-line 

[39,40] and on-line [41-51] generator coherency identification methods have been proposed. The 

off-line schemes generally put system generators into fixed coherent groups whereas most of the 

on-line schemes are adaptive in their coherent grouping. This makes the on-line schemes a 

preferred choice in coherency identification. However, the existing online schemes are either 

complex, have reduced accuracy or slow in identifying coherent groups. 

 

1.2 Aim of Study 

This study focused on improving the control of power systems during transient instability. The 

specific objectives were to develop on-line schemesto: 

(i) predict transient stability status, and 

(ii) identify coherent generator groups. 

 

1.3 Work Done 

Three schemes for predicting transient stability status and one method for predicting coherent 

generator groups have been developed. The schemes are: 
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(a) Speed deviation and wavelet analysis based generator out-of-step prediction scheme 

(b) Speed deviation and multilayer perceptron neural network (MLPNN) based generator 

out-of-step prediction scheme 

(c) Speed deviation and MLPNN based system transient stability status prediction scheme 

(d) Speed deviation and MLPNN based coherent generator groups prediction scheme 

 

This research has made use of rotor speed deviation as the key power system input data. Rotor 

speed deviations of generators unlike rotor angles do not need to be referenced to any value. 

Thus there is no computational burden and practical implementation difficulties. Rotor speed 

deviation of each generating unit can be obtained with the help of phasor measurement units 

(PMUs)[52,53]. 

 

The signal processing tool employed in the study was the discrete wavelet transform (DWT). 

DWT is a mathematical technique and has a special feature of variable time-frequency 

localization, which is different from the windowed Fourier transform [54]. It processes data at 

different scales so that they may provide multiple resolutions in frequency and time [54].  

Wavelet analysis is capable of revealing aspects of data that other signal analysis techniques 

miss; aspects such as trends, breakdown points, discontinuities in higher derivatives, and self–

similarity. Wavelet is able to compress and de–noise a signal without appreciable degradation 

[55]. 

 

The multilayer perceptron artificial neural network (MLPNN) was employed as a decision 

making tool. MLPNN is apopular neural network architecture [56-58].  Artificial Neural 
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Networks (ANNs) represent a modern and sophisticated approach to problem solving widely 

explored also for power system protection and control applications. The ANNs perform actions 

similar to human reasoning, which relies upon experience gathered during a training process. 

Advantages of ANNs computing methodologies over conventional approaches include faster 

computation, learning ability, adaptive features, robustness, and noise rejection [30]. The MLP 

can be trained by a back- propagation algorithm. Typically, the MLP is organized as a set of 

interconnected layers of artificial neurons; input, hidden, and output layers [59]. 

 

The Daubechies 4 (db4) mother wavelet was employed to develop a generator out-of-step 

prediction scheme. The scheme uses rotor speed deviations as power system input data. The 

speed deviations wereobtained withinthe first 3 cycles after the tripping of a line or bus. The 

rotor speed deviations were processed using wavelet analysis. Wavelet entropies of level 8 

detailed coefficients obtained in three successive cycles were used to predict the generators that 

go out of step, with the help of a decision logic. Test results of the scheme show 100% prediction 

accuracy for out of step conditions involving one or two generators. 91.2% prediction accuracy 

was recorded for the prediction of stable generator conditions. 

 

An improved generator out-of-step prediction scheme was further developed using rotor speed 

deviations and a multilayer perceptron neural network (MLPNN). The input data fed into the 

MLPNN was the maximum rotor speed deviation (MSD) obtained within the first cycle after the 

tripping of a line or bus. Prediction accuracy of the MLPNN-MSD based generator out of step 

prediction scheme was 100% accurate for all out-of-step cases. The prediction accuracy for 

stable generator conditions was 98.05%. 
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Also, a scheme for predicting the transient stability status of a system was developed. The 

scheme uses the sum of the maximum rotor speed deviations of the generators of the system as 

input data. Here too, a multilayer perceptron neural network was employed as a decision making 

tool. Test results of the scheme show 100% prediction accuracy for both transient stable and 

transient unstable conditions. 

 

A method for predicting coherent generator groups was also developed. The coherency 

prediction scheme uses the maximum rotor speed deviation obtained in the fifth cycle after the 

tripping of a line or bus following a disturbance. A multilayer perceptron neural network was 

again trained for the group prediction. Test results of the scheme show 90.43% prediction 

accuracy. 

 

1.5 Thesis Outline 

A review of pertinent literature is presented in chapter 2. In this chapter, anumber of methods for 

detecting and predicting out-of-step conditions are reviewed. Also, schemes for identifying 

coherent generator groups are reviewed. The review discusses the input data used, and the signal 

processing and or decision making toolsemployed. The strengths and weaknesses of the schemes 

are also pointed out. 

 

Chapter 3 discusses the concept of power system stability and data acquisition for transient 

stability studies. The theory of wavelet analysis; a signal processing tool used in this work is also 
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presented in this chapter. The chapter also discusses the theory of artificial neural networks; the 

decision making tool utilised in this work. 

 

Chapter 4describes the methodologies developed for predicting transient stability status and 

coherent generator groups. The input data to the schemes and the operational algorithms are also 

presented. The test systems used and the simulations carried are also described in the chapter. 

 

Chapter 5 presents results of simulations done as well as test results of the proposed schemes. 

Chapter 6 presents the conclusion and provides discussion for future work. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction 

Under normal operating conditions, an electrical power system is near equilibrium, with only 

minor deviations from true steady-state conditions caused by small, nearly continuous, changes 

in load. When a large disturbance such as a three-phase short circuit occurs in a power network, 

there are significant, nearly instantaneous rise in power requirement from some generators. 

Instead of the power system returning to a steady-state condition after the disturbance one or 

more generators may encounter sufficient variations in rotational speed that they could lose 

synchronism and as a result must be taken off-line to avoid catastrophic failures. Strictly 

speaking, sudden removal of such generators will decrease the available capacity on-line, thereby 

increasing transient energy imbalance in the system. The hypothesized system transient scenario, 

in the absence of emergence control action, could lead to cascaded unit shutdowns, culminating 

ultimately in system-wide blackouts [60, 61]. Consequently, emergency control strategiessuch as 

out-of-step blocking and tripping, fast-valve control of turbines, dynamic braking, 

superconducting magnetic energy storage system, system switching, modulation of high voltage 

direct current (HVDC) link power flow and load shedding are employed to mitigate the effect of 

cascading system failures [6].   The effectiveness of the aforementioned control actions are 

improved with the detection or prediction of transient instability [6]. As a corollary, researchers 

have come up with a number of transient instability detectionand prediction schemes. Some of 

these methods are reviewed in this chapter. 
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When a system becomes transient unstable, the major step taken is to split the system into 

various islands [62]. Subsequently, the generation and load of these islands are controlled. The 

primary motive of controlled islanding is to limit the source of the disturbance and the affected 

areas to a minimum region, as soon as possible [62]. A reasonable approach to islanding can 

result in significant benefits to the corrective control actions that follow the islanding procedure 

[39, 63]. The criteria for determining the boundaries of the islands are stability within individual 

islands and minimum load-generation unbalance [62]. In determining the islands, the inherent 

structural characteristics of the system should be considered and the choice of these islands 

should not be disturbance dependent [39, 63]. Subsequently, the boundaries of the islands may 

be decided on the basis of coherency of generators [63]. This study has also reviewed a number 

of methods for identifying the coherency of generators 

 

2.2 Methods for  Detecting Transient Stability Status  

Researchers have come up with a number of methods for detecting out of step conditions in 

power systems. Some of these methods have been reviewed in sub-sections 2.2.1 to 2.2.5. The 

strengths and weaknesses of the various methods have been pointed out. Generally,the detection 

schemes have a common disadvantage of detecting out of step conditions when they have 

alreadyoccurred and this does not augur well for improved system performance.   

 

2.2.1 Adaptive Out of Step Detection using Artificial Neural Network 

An out-of step detection scheme based on five inputs and an artificial neural network has been 

proposed in [14]. The scheme detects the out-of-step status of a particular machine with respect 

to other machines in the power system. The scheme was developed and validated using a 3-
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generator, 9-bus test system. The inputs used are: mechanical input power (or pre-fault loading 

on generator), generator kinetic energy deviation, average acceleration during fault, and power 

flow on two adjacent lines. The inputs are fed into a feed forward neural network trained with the 

stochastic backpropagation algorithm. 

 

The scheme of [14] can only be employed in a system with the same topology. Thus its 

adaptability to a system of different topology will face serious challenges. Also, a long 

processing time will be required in a system with several generators since each generator has to 

be compared with the remaining others to predict whether or not that generator goes out of step. 

Additionally, the time frame when the input data are captured was not specified. 

 

2.2.2 Transient Instability Detection by Identifying the Characteristics of a Surface on which 

a Post-Fault System Trajectory Lies 

A method for detecting transient instability based on generator rotor angles, angular velocities, 

and their rates of change has been presented in [15].An index is calculated by solving the 

intersectionpoint between a tangent plane and a straight line. The developed index detects system 

instability or out-of-step condition by identifying the characteristics-concave or convex-of a 

surface on which the post-fault system trajectorylies. An index value less than 1 or being 

discontinuous implies that the surface is convex, which implies system instability.The developed 

scheme was validated using the IEEE 39-bus test system.This scheme is computationally simple 

and reliable.  
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2.2.3 Impedance and Prony Analysis-Based OS Detection  

In [3], an OS detection method using an impedance-based relay and prony analysis is presented. 

The study was done using a system which comprises a single transmission line with a generator 

each at both ends. The input data required by the scheme is the voltage and current signals at the 

relaying point. Prony analysis is used to track the actual system frequencies by decomposing the 

measured voltage and current signals into their modal components: amplitude, frequency, 

damping factor, and phase angle. Once the actual system modes are determined, the 

instantaneous apparent impedance seen by the relay is calculated. The instantaneous apparent 

impedance loci are then used to qualitatively describe the power system behaviour during the OS 

operation. 

 

The method is not based on any developed indices. A qualitative description, unlike an index-

based one, makes the implementation of the scheme complex, especially for a large system. 

Also, the scheme is unable to tell the specific generator that goes out of step. 

 

2.2.4 Transient Instability Detection based on Wide Area Measurement System 

The method for detecting power system transient instability presented in [16,17]employs 

techniques of the generalized one machine infinite bus (OMIB) transform. The detection of a 

loss of synchronism is made based on the geometrical characteristics of the post-fault trajectory 

(GCPT) of the generalized one-machine equivalent system at each time step. The study system 

used was the IEEE 145-bus test system. Simulations were also carried out on a real power 

system to verify the method. The scheme uses rotor angle, speed, and prime mover power input 

signals. For a given disturbance, the salient steps of the instability detection algorithm 
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aredescribed as follows: The instability detection process involves ranking the machines 

according to their angles and calculating the equivalent trajectory of a candidate pattern by an 

OMIB transform. The algorithm then evaluates whether the trajectory is stable at the current 

instant using a geometric characteristic index of the post-fault trajectory and the discrete form of 

a uniform criteria. If the geometric characteristic index of the post-fault trajectory is less than 

zero or the discrete form of the uniform criteria is less than zero, then the system is stable.  When 

the geometric characteristic index of the post-fault trajectory and the discrete form of the uniform 

criteria are greater than zero then the algorithm uses the least squares approximation method to 

estimate parameters of equivalent system. The algorithm evaluates whether the parameter 

variation of the candidate OMIB increases or decreases the stability margin of the OMIB at 

current instants. If the change in unbalance power corresponding to OMIB parameters is larger 

than zero for positive speed or less than zero for negative speed, instability is indicated. In some 

peculiar cases, although the parameter variation is increasing the stability margin of OMIB 

system, the system could still be unstable if the discrete form of the uniform criterion is greater 

than zero. To avoid this peculiar instance, a condition is prescribed where if the conventional 

equal area criterion condition is less than zero, a new set of measurement is obtained at the next 

sampling instant and the procedure starts all over again. 

 

The foregoing method requires complex computation and its practical implementation will be 

difficult.  
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2.2.5 Transient Instability Detection based on Partial Centre of Inertia 

A method for detecting instability of multi-machine power systems using partial centre of inertia 

information has been proposed in [18]. The scheme is premised on the fact that a system’s ability 

to maintain transient stability is based on its ability to convert its kinetic energy during a 

disturbance into another form of energy. Consequently, the method first determines the kinetic 

energy of each system generator at an arbitrary time. Subsequently, the obtained kinetic energies 

are summed to give the kinetic energy of the system at that arbitrary time.The maximum kinetic 

energy of the individual kinetic energies of the generators is obtained. The generator with the 

maximum kinetic energy is then noted. The disturbed state of each generator is then obtained. A 

generator is classified as being disturbed if the ratio of its kinetic energy to the maximum kinetic 

energy is greater than 0.03.A stability index is then computed for all severely disturbed 

generators. A system is classified as transient unstable when the stability index obtained for all 

severely disturbed generators is greater than zero for four continuous samplings.  

 

The proposed method is reliable in its ability to distinguish between stable and unstable 

swings.However, it is computationally demanding and also takes a long time to detect unstable 

swings. 

 

2.3 Methods for Predicting Transient Stability Status 

Control measures employed during transient instability will be more effective if they are 

implemented before instability sets in [6]. In pursuance of this, a number of schemes for 

predicting transient instability have been proposed [6, 19-32]. In the sub-sections that follow, a 

number of these schemes are reviewed. 
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2.3.1 Transient Stability Prediction by a Hybrid Intelligent System 

The scheme presented in [6] uses three input quantities obtained from each generating unit. The 

input quantities measured from each generator are: rotor angle measured 3 cycles after fault 

clearance, rotor angle measured 6 cycles after fault clearance, and angular velocity. The inputs 

are fed into a proposed hybrid intelligent system. The hybrid intelligent system comprises a pre-

processor, an array of neural networks (NN), and an interpreter. The scheme was developed and 

validated using the PSB4 and IEEE 39-bus test systems. 

 

Each NN has a multilayer perceptron (MLP) structure andLevenberg-Marquardt learning 

algorithm, which is one of themost efficient training mechanisms for estimation tasks.The 

instability criterion is based on the difference between any two generator angles. The scheme 

divides the whole set of synchronous machines into smaller groups, each group having only two 

machines. This task is performed by a pre-processor. The pre-processorconsiders all twosome 

combinations of the machines so that all asynchronous possibilities can be evaluated.The pre-

processorassigns each couple to one subnet (NN). All NNs have the same number of input 

features. An interpreter gathers outputs of all NNs. If all the outputs are 1, then all generators are 

in the synchronous state, that is, transient stability is saved. Otherwise, transient stability is lost. 

 

The technique reduces computational burden of the training phase, covers unknown and 

incorrect responses of the NNs, and determines tripped generators and islanded parts.Although 

the hybrid intelligent system requires short training times for the considered test systems, this 

time can rapidly grow for large power systems. This is a result of the large input data 
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requirement of the scheme. Rotor angles used as inputs need to be expressed relative to a 

common reference. This reference cannot be based on a single generator, since any instability in 

the reference generator makes the relative angles meaningless. In order to overcome this 

difficulty, the concept of system centre of inertia (COI) angle is used to derive a reference angle 

[19]. However, COI values in practice require continuous updates using real time measurements. 

This requires extra pre-processing and has significant errors. Also, the authors did not 

demonstrate how tripped generators and islanded parts are identified by the proposed method.  

 

2.3.2 Transient Stability Prediction by Committee Neural Networks 

A method for predicting the transient stability status of a power system has been proposed in [20-

22]. The study systems used werethe IEEE 9-bus and IEEE 14-bus test systems. This schemeuses 

the following input data: relative rotor angles of generators, generator speed, real and reactive 

power flows of generators, real and reactive power flows on transmission line, real and reactive 

power flows in transformers, and bus voltages. The inputs are fed into a trained dynamic 

structure of artificial neural networks called mixture of experts[20], multilayer perceptron neural 

network[21] or probabilistic neural network[22]. 

 

The proposed technique is reported to be 100% accurate in its predictions. However, its 

implementation does not seem to be feasible. This is because of the diverse and excessive 

number of input data required. For example, the input data set required for making any 

prediction in the IEEE14-bus test system that was used for the study is 107. The volume of data 

that has to be handled in a real system with hundreds and even thousands of busbarswill be 

prohibitive and will require an unacceptably long processing time. 
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2.3.3 Out-of-Step Prediction based on Autoregressive Model 

An autoregressive (AR)model based out-of-step prediction scheme has been presented in [23]. 

The test system used the 10-generator western Japan 60Hz power system model. This scheme 

uses as input data, the phase difference of the voltage between buses, and rotor angle relative to 

the phase of the terminal voltage in each generator. Prediction of out-of-step between 

interconnected systems is made in three steps. The first step involves the identification of the AR 

model that represents the oscillations of phase difference of the voltage between substations and 

assessment of the stability of the power system from the sign of the real part of the characteristic 

roots. A positive real part of the characteristic root represents stable status and a negative real 

part of the characteristic root represents unstable status. The second stage involves the 

identification of the AR model that represents the oscillation of the rotor angle relative to the 

phase of the terminal voltage in each generator if it is predicted in the first stage that the 

interconnected power systems will fall into instability. The last stage is the decision stage. Here, 

the system falls out-of-step on the condition that the frequency calculated from the characteristic 

root with a negative sign in the first stage is identical to that calculated in the second stage. 

 

The period of occurrence of out of step after a fault was assumed to be 14s. The time frame of 

interest in transient stability studies is usually 3 to 5 seconds following a disturbance. It may 

extend to 10–20 seconds for very large systems with dominant inter-area swings [24]. Thus the 

period of 14s appears to be too long for the 10-generator test system used. It is not likely that this 

scheme when implemented in practical systems will yield good results. The authors indicated 
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that the scheme is able to tell the specific generators which go out of step. This is however not 

demonstrated in the paper. 

2.3.4 Transient Instability Prediction using Post-Disturbance Voltage Trajectories 

A rotor angle stability prediction scheme based on voltage trajectories following a disturbance 

has been presented in [19]. The IEEE 39-bus test system was used for the study. The proposed 

transient stability prediction system uses as inputs voltage magnitudes at key buses in the system. 

When a fault is detected, the system starts evaluating the proximity of the evolving voltage to 

pre-identified templates. These proximity values are then fed into a support vector machine 

classifier, which predicts the stability status of the power system. 

 

The scheme has over 90.91% accuracy and is faster and simpler to implement compared with 

rotor angle-based schemes. However, the scheme uses predetermined voltage templates which 

depend on system loading and fault conditions. Therefore, the scheme may not respond 

appropriately to disturbances occurring during loading and fault conditions different from the 

conditions for which the voltage templates were obtained. The scheme is also unable to identify 

the specific generators which will go out of step. 

 

2.3.5 Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status 

Prediction 

The work presented in[25] demonstrates that the transient stabilitystatus of a power system 

following a large disturbance can be predicted on the basis of themeasured post-fault values of 

the generator voltages, speeds, or rotor angles.  This method is an improvement over the one 

presented in [19].Synchronously sampled values provided by phasor measurement units of the 
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generator voltages, frequencies, or rotor angles collected immediately after clearing a fault are 

used as inputs to a support vector machine classifier which predicts the transient stability status. 

The use of bus voltage magnitudes produced the most accurate andthe fastest predictions. Studies 

with the New England 39-bus test system and the Venezuelan power network indicated that the 

method is fast and accurate. Here too, the specific machines which will go out of step are not 

predicted. 

 

2.3.6 Neuro-Fuzzy approach to Transient Stability Prediction 

Atwo-layer fuzzy hyperrectangular composite neural network for real-time transient stability 

prediction using synchronized phasor measurements has been proposed in [26]. The study 

system employed was the IEEE 39-bus test system. Stability prediction is based on an eight cycle 

window of phasor measurements which begins at fault clearing time. Three consecutive 

measurements of rotor angles, four cycles apart, are taken for each of the generators. 

Additionally, two velocities and one acceleration are computed from the generator angles. Thus a 

total of six input data is taken for each generator. Theneuro-fuzzy network is trained off-line and 

then used to make on-line predictions.  

 

The technique is able to make fast predictions.The large volume of input data required for the 

off-line training of the proposed neuro-fuzzy network makesit difficult for the scheme to be 

implementedon-line in a practical power system with a large number of generators.  The method 

will also suffer practical implementation challenges since it is based on rotor angles.  

 

2.3.7 Decision Tree Method for Transient Stability Prediction 
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A method for predicting transient stability using decision trees has been presented in [27]. The 

method was tested using the IEEE 39-bus test system. The input data employed for stability 

prediction is the rotor angles of the 10 generators of the system. Stability prediction is based on 

an eight cycle window of phasor measurements which begins at fault clearing time. Three 

consecutive measurements, four cycles apart, are taken from each of the ten generator angles. 

The generator angles, measured in radians and in the centre of angle coordinates, are first written 

to a file in FORTRAN format. The written data is truncated to three digits after the decimal. In 

addition to the measured rotor angles, two velocities and one acceleration are computed from the 

truncated generator angles. Thus a total of six input data is obtained for each generator.The input 

data taken from the 10 generators of the system are then used as inputs to a decision tree which 

has already been trained off-line using various generated fault cases. 

 

This scheme has high accuracy, in excess of 95%.  However, a large volume of training data is 

required for developing a single decision tree. For a system with large number of generators, 

building a single decision tree will be extremely difficult. Decision trees are only applicable for 

transient stability prediction in very small power systems due to the exponential growth of 

possible states with the number of generators and system buses [2]. This method also suffers 

from the setbacks associated with the use of rotor angles as input data.   

 

2.3.8 Transient Stability Prediction using Fuzzy Neural Network 

The scheme in [2] predicts transient stability status using generator rotor angles as inputs, and a 

fuzzy neural network as decision making tool. The prediction technique was tested using 

simulations carried out on the PSB4, IEEE 14-bus and IEEE 39-bus test systems. This scheme 
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uses a six-cycle window of generator rotor angles. The window begins at the fault clearing time 

and contains three consecutive measurements. These measurements are taken three cycles 

apartfor each generator rotor angle. The generator rotor angles are measured in radians and in 

centre of angle coordinates. Two velocities and one acceleration are then derived from the three 

angle measurements to provide a total of six predictors per generator. 

 

Only test results for the PSB4 test system are shown in [2].No results were presented for the 

IEEE 14-bus and IEEE 39-bus test systems, which are relatively large systems compared with 

the PSB4. Results presented for the PSB4 system show high accuracy. This method, like others 

which use generator rotor angles will suffer implementation challenges due to difficulties in 

obtaining the centre of inertia angle in real time. 

 

2.3.9 Out-of-Step Prediction using Angular Velocity 

An OS prediction scheme using angular velocity data measured directly from power system 

generators has been designed and implemented in [28]. The angular velocities are measured by 

electromagnetic sensors and gears fastened to rotors of the generators. The angular velocity data 

of each generator is used to determine the generator's phase-angle shift after a system 

disturbance. This is done by integrating the angular velocity data. The phase angle calculation is 

initiated by detecting sudden changes of output power in each generator, which may have been 

triggered by a power system disturbance.An out-of-step between two generators is predicted by 

the phase angle difference between them using the following criteria: 

i. The predicted phase angle difference between the two generators exceeds a 

predetermined threshold value which is 180 electrical degrees. 
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ii. The predicted phase angle difference is still increasing. 

An out-of-step between two generator groups is predicted using a matrix.Field tests of this 

scheme were carried out using the Kansai Electric Power Co., Inc.hydroelectric power station. 

The station has four-generators coupled to a single bus. Test results showed that the developed 

scheme is accurate and can be practically implemented. 

 

Measurement error gives limitations in applyingthe developed scheme. Angular-velocity 

measurement errors, especially, are enlarged by the integrating calculation process, and it limits 

the time length that the control is effective after initiating the calculation. Also having to 

compute the phase angle difference between the various generators of a large system will be 

complicated and time consuming. These limitations will make the use of this scheme in large 

systems difficult. 

 

2.3.10 Out-of-Step Protection with AI Methods 

An OS prediction method which utilizes a multilayer perceptron artificial neural network(ANN) 

has been presented in [29, 30]. Additionally, a fuzzy inference system (FIS) was employed in 

[29]. The schemes were developed using a simple three-generator power systemconnected to an 

infinite bus. All the generators were coupled to a single bus. The schemes employ the following 

power input signals: machine angular frequency deviation, impedance angle, active power, 

reactive power as well as resistance and reactance measured at the generator terminals from 

machine phase currents and voltages.The six inputs are further pre-processed by a Fuzzy 

Inference System (FIS) module in [29]yielding nine input features which are fed into the ANN. 

In [30], different input data combinations and artificial neural network architectures were 
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experimented. The developed hybrid OS detector [29] is able to recognize OS conditions 100-

1000ms before they actually occur. 

 

Reference [29]did notprovide details of the nine outputs of the FIS module. The digital 

processing of phase voltages and currents to obtain input signals such as components of 

generator power and  impedance vector (seen from machine terminals) increases the overall 

processing time of the scheme especially for a large system. Additionally, nine input features 

employed for a single-bus system will mean excessively large number of input data for a large 

system.  

 

2.3.11 Transient Instability Prediction using Decision Tree Technique 

Reference [31] has presented a decision tree based method for out-of-step prediction of 

synchronous generators. The method was developed using a 9-bus dynamic network. The 

proposed OS scheme uses five inputs for prediction. The inputs are: mechanical input power, 

kinetic energy deviation, average acceleration, electrical output power at the moment of fault 

clearing, and fault duration. These inputs are fed into a decision tree which indicates system 

stability or instability.  

 

The proposed method is essentially a detection scheme rather than a prediction scheme.  The 

method indicates transient instability whenit has already occurred. Also, it is computationally 

demanding.  Additionally, the method does not indicate specific machines that go out of step in 

relation to others. Again, decision trees are not suitable for large systems due to the exponential 

growth of possible states with the dimension of the system [2]. 
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2.3.12 Fuzzy rule-based transient stability prediction 

The schemein [32] builds compact and transparent fuzzy rule-based classifiers for rapid stability 

assessment; the classifiers are initialized by large accurate decision trees. The approach starts by 

selecting strategic monitoring buses where phasor measurement units are placed to capture wide-

area response signals in real-time operation. These measurements are processed in the time and 

frequency domains for extracting selected decision features such as the peak spectral density of 

angle, frequency, and their dot product evaluated over the grid areas. Large-size decision trees 

are used to generate initial accurate classification boundaries for decision making. From the 

decision classification boundaries, fuzzy membership functions are developed and the 

corresponding fuzzy rule base is formulated parsimoniously by eliminating redundant 

membership functions and rules using a similarity measure.  

 

Test results on a large database of detailed simulations of the Hydro-Quebec grid and actual 

measurements recorded with existing wide-area measurements show good results. The method 

requires1–2 s after fault clearance to make accurate predictions. This time taken to make 

prediction is rather long [36]. Some instability conditions can easily occur before this time. 

 

2.4 Generator Coherency Identification 

Generator coherency identification is establishing itself as an important task to circumvent 

cascading failures within wide-area power systems and as a necessary pre-processing stage in 

real-time control for transient stability [47].To achieve this, a number of off-line schemes have 

been developed to identify coherent groups of generators [39,40].Studies have shown that the use 

of predetermined boundaries may not always indicate the optimum islanding configuration for 
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some disturbances[62]. Coherent generator groups may differ in response to various disturbances 

at different system operating conditions [41]. For instance, an event happening near a coherent 

group may cause its member generators to lose coherency during oscillation. Thus, for effective 

damping control for online operation of power systems, it is essential to have an online adaptive 

coherency grouping approach [41, 50]. Such a scheme will set the boundaries of islands based on 

the nature of the disturbance. In pursuance of this, a number of methods for detecting coherent 

generators online to facilitate system separation have been proposed. Some of these schemes [41-

51] are reviewed in sub-sections 2.4.1 to 2.4.10. 

 

2.4.1 K-harmonic Means Clustering Approach for Coherency Grouping 

The proposed coherency grouping scheme in [41] uses the inertia constant and speed deviation 

data of each generator as input data. The test system used for the study was the IEEE 68-bus 16-

machine test system. The K-harmonic means clusteringwhich is a global optimization technique 

is applied to the input data for the coherency grouping. The algorithm first receives all generator 

data and then initializes group centres. The distances between each generator and the group 

centres are obtained. The group centres are then updated in order to minimise a cost function. 

The group centres are updated until a metric used is satisfied or the maximum number of 

iterations is reached. Coherency grouping is achieved when the group centres become stable. 

 

Test results of the scheme were not presented in the paper [41].Also, the algorithm is 

computationally time consuming. 
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2.4.2 Coherency Identification using Hilbert-Haung Transform 

An online scheme for identifying coherent generator groups using Hilbert-Haung transform has 

been proposed in [42]. The Hilbert–Huang transform is an empirical mode decomposition along 

with Hilbert transform. Coherency between generators is tracked by examining the instantaneous 

phase differences among inter-area oscillations and swing curves in disturbed multi-area power 

systems.Huang’s empirical mode decomposition is applied to extractdominant oscillatory modes 

from inter-area oscillations and swingcurves. Hilbert transform on these modes yields their 

instantaneousphase values. The instantaneous phase information is furtherutilized to identify the 

degree of coherency between inter-areaoscillations or disturbed machine pairs. Two generators 

are said to be coherent if the differencebetween the instantaneous phases of their swing curvesis 

zero at any instant in time.In order to compute the instantaneous phase difference, the proposed 

algorithm first extracts the mono-component intrinsic mode functions (IMFs) from the swing 

curves/inter-area oscillations and then computes the instantaneous frequency of the extracted 

IMFs. An IMF is a waveform obtained by repeatedly shifting a distorted signal until no further 

baseline signals can be detected. The IMFs whose instantaneous frequencies match each other 

are then selected for computing the instantaneous phase difference. The instantaneous phase 

difference is obtained by taking the difference between the instantaneous phase angles of two 

generators.  

 

Graphical analysis of swing curves show that the scheme is capable of identifying coherent 

generators. However, no quantitative result was provided to validate the algorithm.  
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2.4.3 Coherency Identification using Fourier Analysis 

The proposed coherency identification scheme [43] applied Fourier analysis to wide area 

generator speed measurements.The study utilized the 68 bus Northeast Power Coordinating 

Council (NPCC) system. The discrete Fourier transform of generator speed is first obtained and 

thenumber of equally spaced spectral components is then calculated. A vector foreach time value 

which contains the Fourier coefficientsseparated by the spectral frequency resolution are then 

determined. The coefficients are complex and denote both the magnitude and phase of each 

oscillation mode.In order to determine the dominant inter-area mode, the Fourier coefficient with 

the largest amplitude is determined. The final establishment of a dominant inter-area mode is 

then carried out. Once a dominant inter-area mode has been identified, the phase of that mode is 

determined for the involved system generators and a vector is organized including all these 

phases. Finally, a phase comparison is performed where the phase angle of one of the generators 

is used as the reference angle. Generator coherency is then defined by a given function where 

generators having (approximately) the same phase difference with respect to the reference angle 

represent a coherent group. 

 

Test results presented indicate that the method is accurate.The scheme places generators with the 

same phase angle with respect to the reference angle, in the same coherent group, and places 

generators with different phase angles with respect to the reference angle, in another coherent 

group. This essentially means that the method classifies generators into two fixed coherent 

groups. Variations in system conditions during disturbance will reduce the accuracy of the 

scheme since not only two coherent groups will be formed all the time. Additionally, the 

proposed method is computationally complex and is also not fast.  Furthermore, identifying the 
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dominant inter-area mode from the Fourier transform coefficient amplitudes, in the presence of 

damped oscillations, may be error-prone especially when studying ‘ringdown’ signals [44]. 

 

2.4.4 Coherency Identification using K-means Clustering 

The coherency identification scheme proposed in [45] made use of real-time information 

obtained from wide area measurement systems. The scheme was tested using the IEEE 39-bus 

test system. Generator angle, angular velocity, and unbalanced power constitute the input data 

used by the proposed algorithm. The scheme first formulates a matrix using the input data. The 

formulated matrix is then normalized and the K-means clustering algorithm applied to divide the 

normalized matrix into two groups. A coherency index is subsequently calculated to evaluate the 

clustering result.   

 

The proposed coherency identification scheme requires little computation, has fast identification 

and high accuracy. However, the scheme has a disadvantage of dividing the generators into two 

coherent groups at all times. The number of coherent groups may differ in response to various 

events at different operating conditions. 

 

2.4.5 Coherency Identification based on Correlation Characteristics of Generator Rotor 

Angles 

The method proposed in [44] recognizes coherent groups of generators based on the correlation 

characteristics of generator rotor angle oscillations. The study system used was the IEEE 39-bus 

test system. The algorithm starts by measuring generator rotor angle oscillations in a time 

window and then calculating correlation coefficients for all pairs of units. Negative correlation 
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coefficients are discarded. The average correlation coefficient is then calculated from the 

remaining coefficients. The calculated average correlation coefficient serves as a reference value. 

The calculated correlation coefficients are then compared with the reference value. All generator 

pairs with correlation coefficients greater than the reference value are placed in one coherent 

group. For generators pairs with correlation coefficients less than the average value, a new 

average correlation coefficient is calculated. This new average correlation coefficient serves as a 

new reference value to classify the generators. The procedure is repeated until all generators are 

placed in coherent groups.  

 

The proposed method is adaptive in the number of coherent groups classified. The classification 

is based on the system conditions during the disturbance. The method is also computationally 

simple and accurate. However, it is time consuming. 

 

2.4.6 A Wide Area Information based Online Recognition of Coherent Generators 

By using the power-angle information of generators measured by wide area measurement 

systems, anew method that enables online recognition of coherent generators in power system is 

proposed in [46]. Firstly, power-angle values are sampled. The sampled values are then fitted by 

trigonometric function to attain the primaryresult of coherency identification. The final result 

ofcoherency identification is achieved by calculating the discreteFréchet distance.  

 

The proposed method is simple and not computationally demanding. It can also be applied to 

complex interconnected power grids. However, the proposed method is not fast. 
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2.4.7 Coherency Identification using Multiflock-based Technique 

A novel multiflock-based technique to identify generator coherence within a short observation 

window has been presented in [47]. The measurement based approach transforms generator data 

from the observation space to an information space, whereby the generator frequencies and 

phases characterize the movement and dynamics of boids within multiple flocks. Analysis of the 

boids’ trajectories enables the discrimination of multiple flocks corresponding to coherent 

generator clusters. The effectiveness of the proposed method was demonstrated using the 39-bus 

New England test system and a modified IEEE 118-Bus test system. 

 

Although the proposed method is claimed to be fast and accurate, the authors did not state its 

practical implementation in respect of large power systems. 

 

2.4.8 CoherencyIdentification based on Nonlinear Koopman Modes  

The proposed coherency identification scheme in [48,49] employs Koopman modes derived 

through spectral analysis of the Koopman operator. The Koopman operator is a linear, infinite-

dimensional operatorthat is defined for any nonlinear dynamic system and capturesfull 

information of the system.Koopman modes analysis is applied on generator frequency data to 

characterize nonlinearoscillatory modes for coherency identification. 

 

The method is computationally demanding and does not offer fast coherency identification. 
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2.4.9 Generator Coherency Identification using the Continuation Method 

 The paper [50], presents a generator coherency indices tracing approach using the continuation 

method. The tracing method involves modelling of appropriate power system dynamics and 

network representation to obtain aJacobian matrix, and a globally convergent technique to make 

the continuation method applicable. Using this approach, it is then possible to trace the loci of 

the generator coherency indices over a range of system operating conditions. The loci provide 

information about the grouping associated with the slow modes.  The approach was appliedto the 

10-generator 39-bus New England system, and the 29-generator179-bus model of the Western 

Electricity Coordinating Council (WECC) system.  

 

This method essentially uses the notion of slow coherency arising from inter-area oscillations. It 

uses singular perturbation to assess time-scale separation of the inter-area and local modes, and 

implements an eigenvector-based method to identify coherent generator groups. This method is 

computationally inefficient when the inter-area oscillation is not sufficiently reduced [47]. 

 

2.4.10 Coherency Identification based on Independent Component Analysis 

The proposed approach presented in [51] is able to identify the cluster of generators and buses 

following a disturbance in a system. Coherency properties are extracted from wide-area 

generator speed and bus voltage angle signals. The mixing ratio of independent components 

extracted using the proposed independent component analysis method is used to cluster the 

generators and buses displaying the common features in the measured signals into their coherent 

areas. The coherency identification method was tested on a 16-machine 68-bus test system.  
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The method accurately identifies the coherent groups of generators even with the presence of 

noise in the measured data. However, the scheme is not fast. 
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Chapter 3 

THEORITICAL BACKGROUND 

 

3.1 Power System Stability 

Power systems are subjected to wide range of disturbances; small and large. Small disturbances 

in the form of load changes occur continually.Under such conditions, the system must be able to 

adjust to the changing conditions and operate satisfactorily. It must also be able to survive 

numerous disturbances of a severe nature, such as a short circuit on a transmission line or loss of 

a large generator. A large disturbance may lead to structural changes due to the isolation of the 

faulted elements [24]. 

 

Power system stability is the ability of an electric power system, for a given initial operating 

condition, to regain a state of operating equilibrium after being subjected to a physical 

disturbance, with most system variables bounded so that practically, the entire system remains 

intact. Power system stability may be classified as rotor angle stability or voltage stability [24, 

64]. 

 

 

Voltage stability is the ability of a power system to maintain steady acceptable voltage at all the 

busses in the system under normal operating conditions and after the system has been subjected 

to disturbances. The system enters into a state of voltage instability when a change in system 

condition such as an increase in load causes progressive decrease in voltage. The main cause of 

voltage instability is the inability of the power system to meet the demand for reactive power 

[64, 65].  
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Rotor angle stability in a power system is the ability of interconnected synchronous machines to 

remain in step with each other following a disturbance in the power system. Rotor angle stability 

may be classified as small signal stability and transient stability.  Small signal stability relates to 

small disturbances whereas transient stability relates to large disturbances [64, 65]. The focus of 

this research is in the area of transient stability. 

 

3.1.1 Transient Stability 

Transient stability is the ability of synchronous machines to remain in synchronism after being 

subjected to a severe disturbance. A severe disturbance may be a sudden application of load, loss 

of generation, loss of large load, or a fault on the system [65,66]. During normal operations of a 

generator, the output electric power from the generator produces an electric torque that balances 

the mechanical torque applied to the generator rotor shaft. The generator rotor therefore runs at a 

constant speed. When a fault reduces the amount of power transmitted, the electric torque that 

counters the mechanical torque is also decreased. If the mechanical power is not reduced during 

the period of the fault, the generator rotor will accelerate with a net surplus of torque input. 

When an unstable condition exists in apower system, one or more generators rotate at speeds 

different from the othergenerators of the system. Such an event is referred to as a loss of 

synchronism or an out-of-stepcondition. OS conditions may result in torsional resonance and 

pulsating torques that are severely harmful to generator-turbine shaft. When OS conditions 

occur, it is imperative that all asynchronous generators be isolated to avoid widespread outages, 

flashovers and equipment damage [3]. 
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3.1.2 Islanding in Power Systems 

Presently, power systems are being operated closer to stability limits than before in order to meet 

the requirements of a rapidly growing electricity market. Therefore, there is a higher probability 

that unexpected tripping of system elements may cause cascading outages or inter-area out of 

step in a power system which may in turn lead to unintentional system separation. When system 

separation is unavoidable, the control centrecan separate the system into electric islands in a 

controlled manner. The islands will have a better chance of surviving if in each island formed, 

generation and load imbalance as well as generator frequency swings are keptwithin acceptable 

limits [67]. 

 

Three issues are important for controlled separation in power systems [67].  These are:  

(a) Determination of separation interfaces to form the islands 

To determine separation interfaces, coherent generation groups, load/generation balance, and 

other security criteria such as avoiding overloading of any transmission line within islands, need 

to be considered. In addition, consideration should be given to whether the separation interfaces 

are topologically fixed or adaptive to changes in power-flow profiles or coherent generation 

groups.  

 

Due to topological characteristics of the system, generators tend to form coherent groups 

oscillating with each other under disturbances. These coherent generation groups can be studied 

offline using techniques such as slow coherency analysis technology. However, actual out-of-

step groupsin real time may be different from those obtained offline. Therefore, the separation 

interfaces should be able to separate only actual out-of-step groups [67]. 
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(b) Determination of conditions/criteria for which action is required 

With regards to identifying the conditions/criteria for determining the need to take actions and 

what actions or what interface locations require separation, the control action will primarily be 

the result of differential synchrophasor measurements taken at two or more points in the system. 

The measurements will reflect the emerging instability (“out of step’) of coherent generation 

groups with regard to each other. The controlled separation criteria may involve rapid processing 

of differential angle rates or even accelerations of differential angles. As such, the approach may 

require dedicated distributed processing power at key locations [67].  

 

(c) Determination of when in the out of step cycle the separation needs to occur 

Generally, controlled separation could be implemented when out-of-step of coherent generation 

groups is credibly predicted. Synchrophasors can help monitor oscillations between coherent 

generation groups and predict the time when out of step may occur. Based on that information, 

the separation timing should be reasonably proactive in order to minimize adverse transient 

reactions and the chance for equipment damage. In the event that out of step conditions cannot 

be predicted ahead of time, the best time for separation during the out of step cycle needs to be 

determined[67].  

 

3.2 Data Acquisition for Power System Studies 

Using Phasor Measurement Units (PMUs) to measurephasors across a power system at a point in 

time has the potential to solve power system problems[52]. PMUs rely on a global positioning 

satellite (GPS) time signal for extremely accurate time-stamping of power system information. 

The GPS satellite receiver provides a precise timing pulse, which is correlated with the sampled 
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data. Modern PMUs use one pulse per second signals provided by the GPS receivers. The 

accuracy of the GPS timing pulse is better than 1μs, which for a 50 Hz system corresponds to 

about 0.018 degrees. This accuracy is more than enough to ensure that the measurements 

obtained by such clocks will be simultaneous for the purpose of estimation and analysis of the 

power system state [53]. 

With the advent of phasor measurement units (PMUs) capable of tracking the dynamics of an 

electric power system, and with modern telecommunication abilities, utilities are able to respond 

intelligently to an event in progress. By synchronising sampling of microprocessor-based 

systems, phasor calculations can be placed on a common reference. The magnitudes and angles 

of these phasors comprise the state of the power system and are used in state estimation and 

transient stability analysis. By communicating time-tagged phasor measurements to a central 

location, the dynamic state of a system can be tracked in real time. An emerging application of 

this technology is to track the state of the system immediately following a transient event to 

select an appropriate remedial control action [68].  

 

3.2.1 CommonPower System data for Transient Stability Studies 

Researchers have utilized various power system data for transient stability studies [3-14, 19-35, 

41-50]. The data include rotor angle,mechanical input power, generator kinetic energy deviation, 

average acceleration during fault, angular velocity, bus voltage, line current, and rotor speed. 

Others are real and reactive power flows of generators, real and reactive power flows on lines, 

real and reactive power flows in transformers, phase difference of the voltage between buses, 

rotor angle relative to the phase of generator terminal voltage, angular velocity deviation, 
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impedance angle measured at generator terminals, and resistance and reactancemeasured at 

generator terminals. 

 

Rotor angles are the most widely used power system data for transient stability studies. Rotor 

angle is a key parameter in the fundamental equation governing generator rotor dynamics. 

Equation (3.1)shows the fundamental equation governing rotor dynamics.  

em PP
dt

d
M 

2

2
     (3.1) 

Where: M is the inertia coefficient,  is the rotor angle, mP is the mechanical power and eP  is the 

electrical power. 

 

This equation is commonly referred to as the swing equation [69]. Rotor angles need to be 

expressed relative to a common reference. This reference cannot be based on a single generator, 

since any instability in the reference generator makes the relative angles meaningless. In order to 

overcome this difficulty, the concept of system centre of inertia (COI) angle, co  is used to 

obtain a reference angle [19]. COI is given as: 
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      (3.2) 

Where:δi and Hi are the rotor angle and inertia constant of the ith generator, respectively. The 

angle, δi is usually approximated by the phase angle of the respective generator bus voltage 

[19,70]. Many researchers however discourage the use of rotor angles in algorithms [19]. This is 
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because the COI values, in practice require continuous updates using real time measurements. 

This requires extra pre-processing and has significant errors [19]. Rotor angles, thus best serve as 

the reference parameter for telling stability status of a system in a simulation. Other electrical 

parameters whose use in algorithms, do not have practical constraints may then be employed for 

algorithm development. 

 

The time derivative of rotor angle is the rotor speed deviation in electrical radians per second 

[66]. Mathematically,  

s
dt

d



     (3.3) 

Where  is the rotor speed deviation,  is the rotor speed at a particular time, and s is the 

synchronous speed. 

 

Equation (3.3) shows that rotor speed deviation has the potential to assist in determining 

transient stability conditions following a large disturbance. Unlike rotor angles, rotor speed and 

for that matter rotor speed deviation of a particular generator need not be referenced to any 

particular machine.   

 

3.3 Wavelet Analysis 

Wavelet transform (WT)is a mathematical technique which has a special feature of variable 

time-frequency localization, different from the windowed Fourier transform. Wavelet algorithms 

process data at different scales so that they may provide multiple resolutions in frequency and 

time [54]. Wavelet analysis is capable of revealing aspects of data that other signal analysis 

techniques miss; aspects such as trends, breakdown points, discontinuities in higher derivatives, 
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and self-similarity. Wavelet is able to compress and de-noise a signal without appreciable 

degradation [55]. Wavelets have been used for several years in such areas as seismic, image 

compression, acoustics, and mechanical vibrations. Several papers have also been presented 

proposing the use of wavelets for power system studies [71,72]. The most popular wavelet 

transform applications in power systems are in the following areas: power system protection, 

power quality, power system transients, partial discharges, load forecasting, and power system 

measurement [72]. 

 

Wavelet analysis is done using mother wavelets. The process of breaking up a signal into scaled 

and shifted versions of the mother wavelet is called decomposition.  The ‘mother wavelet’ 

determines the shape of the components of the decomposed signals. There are essentially two 

types of wavelet decomposition: Continuous Wavelet Transform (CWT) and Discrete Wavelet 

Transform (DWT). CWT is mainly used for theory research, but DWT is more popular in the 

field of engineering, because the observed time series are discrete in real world [55, 73]. DWT is 

a digitally implementable version of wavelet transforms[74]. There are many types of mother 

wavelets. They includeHaar, Meyer, Morlet, Daubechies 4, Daubechies 8, Coiflet3 and 

Symmlet[73, 75,76].  Haar is a square-wave wavelet.Daubechies 4 wavelet is a compactly 

supported orthonormal wavelet family. Coiflet3 is an orthonormal wavelet system where both 

father and mother have special vanishing moment properties. Symmlet8 is a nearly-symmetric 

orthogonal wavelet of compact support with 8 vanishing moments [73, 76].  

 

The necessary and sufficient condition for wavelets is: it must be oscillatory, must decay quickly 

to zero, and must have an average value of zero[71, 75]. A particular type of wavelet is selected 
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depending on the particular type of application [75].The Daubechies wavelet family are the most 

widely used wavelets in power system studies [77].Among the Daubechies mother wavelets, 

Daubechies 4 and Daubechies 8 are found to be the most suitable for the analysis of power 

system transients [75, 78]. They are very effective in reconstructing power system transient 

signals. Daubechies 8 wavelet has the following advantages over Daubechies 4: It closely 

matches the signal to be processed, which is of utmost importance in wavelet applications. 

Moreover, Daubechies 8 wavelet is more localized,that is, it is compactly supported in time and 

hence is good for short and fast transient analysis as compared to Daubechies4 wavelet and 

provides almost perfect reconstruction. Also, Daubechies8 wavelet is found to be more suitable 

as compared to Daubechies4 wavelet in representing transient signals because it is smoother and 

more oscillatory in nature which is also the nature of the transient signals[77, 78]. 

 

 However, Daubechies 4 has given more satisfactory results than Daubechies 8 mother wavelet 

in several other power system applications [77]. 

 

3.3.1 Discrete Wavelet Transform 

A discrete wavelet transform (DWT) expands a signal not in terms of a trigonometric polynomial 

but by wavelet, generated using the translation and dilation of a fixed wavelet function. The 

wavelet function is localized in time and frequency yielding wavelet coefficients at different 

scales. This gives the wavelet transform much greater compact support for the analysis of signals 

with localized transient components[79]. The DWT output can be represented in a two-

dimensional grid but with very different divisions in time and frequency so that the windows are 

narrow at high frequencies and wide at low frequencies. The efficiency of wavelet analysis stems 
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from its fast pyramid algorithm. The algorithm has two phases: The forward algorithm which is 

used to decompose the signal into component wavelets (DWT) and the backward algorithm 

which is used to reconstruct the original signal from the component wavelets; inverse discrete 

wavelet transform (IDWT). The forward algorithm uses linear filters (low and high pass 

analogue devices) to decompose the signal into low- and high-frequency components, and 

combines these filters with downsampling operations (whichaccounts for the algorithm’s speed). 

The backward algorithm simply inverts the process by combining an upsampling process with 

linear filtering operations [79].  

 

The original signal passes through two complementary filters and emerges as two signals 

(lowpass and highpass components). The decomposition process can be iterated, with successive 

low-frequency components being decomposed, in turn, so that one signal is broken down 

intomany lower-resolution components. The low and highpassdecomposition filters (LD, HD), 

together with their associatedreconstruction filters (LR, HR), form a system of what is knownas 

quadrature mirror filters[79].  

 

The wavelet filter,W, which is called the scaling filter (non-normalized), is of a finite impulse 

response (FIR) of length 2N, of sum 1, of norm 1/ sqrt(2), and is a lowpass filter. From filter W, 

fourFIR filters, of length 2N and of norm 1 are defined and organized as follows: 

(a) Decomposition process: the low-frequencyLD = rev(LR) and the high-frequency HD = 

rev(HR) 

(b) Reconstruction process: the low-frequencyLR = W/norm(W) and high-frequency HR = 

qmf(LR) 
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Where:qmf represents quadrature mirror filters, and rev representsreversing the vector.The 

decomposition and reconstruction processes are illustratedschematically in Figure 3.1 [79]. 

 

Figure 3.1: Discrete wavelet decomposition and reconstruction 

 

The results of wavelet transform are called wavelet coefficients and this can be grouped into two: 

approximate and detailed coefficients. The approximations are the high-scale, low-frequency 

components of the signal and the details are the low-scale, high-frequency components [55].  

 

The wavelet expansion of a signal,  xf , is given as [59,80]: 

   
j,i

j,ij,i xaxf      (3.4) 

Where:i and j are integers, the functions  xji,  are the wavelet expansion functions and the 

two-parameter expansion coefficients jia , are called the DWT coefficients of  xf . The 

coefficients are given by: 
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 xxfa jiji ,,      (3.5) 

The coefficients can be computed from a function  xji,  called the generating or mother 

wavelet given by (3.6) through translation and scaling (dilation) parameters. 

   jxx i
ji

i

 
22 2

,      (3.6) 

Where:j is the translational parameter and i is the scaling parameter.  Mother wavelet function is 

not unique and must satisfy a small set of conditions. One of them is multiresolution condition 

which is related to the two-scale difference equation 

     kxkhx
k

 22      (3.7) 

Where  x is a scaling function and  kh must satisfy several conditions to make basis wavelet 

functions unique, orthonormal and have a certain degree of regularity. The mother wavelet is 

related to the scaling function as follows: 

     kxkgx
k

 22      (3.8)  

Where      khkg
k

 11 . At this point, if valid  xh is available, one can obtain  xg . h and g 

can be viewed as filter coefficients of half band low-pass and high-pass filters respectively. Al-

level wavelet decomposition can be computed as follows: 
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Where coefficients ka ,0 , nla ,1 , and nld ,1 at scale 1l are given and they can be obtained if 

coefficient at scale l is available: 
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  (3.10) 

Where a set of wavelet approximation coefficients, nla ,1 and detailed coefficients nld ,1  at 

scale l +1 are given. 

   

3.3.2 Dilation Equation 

The dilation equation links a scaling function  x and its translates  x2  [75]. The dilation 

equation is uniquely specified for each mother wavelet. For the Daubechies 4 wavelet, the 

dilation equation has theform [81]: 

         3222122 3210  xcxcxcxcx 

  

(3.11) 

Where:   4/310 c ,   4/331 c ,   4/332 c   and   4/313 c   

 

Except for very few simple cases, it is not possible to solve directly for  x ; the obvious 

approach is to solve for  x iteratively until  xj is very nearly equal to  xj 1 . 

         3222122 13121110   xcxcxcxcx jjjjj 

  

(3.12) 

 

The function  x  is called the scaling function and the corresponding wavelet function is 

constructed from it. From the four-coefficient scaling functions, the dilation wavelet function is 

[81]: 
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         3222122 0123  xcxcxcxcxW    (3.13) 

The same coefficients are used for  xW as for the definition of  x , but in reverse order and 

with alternate terms having their signs changed from plus to minus. 

 

3.4 Artificial  Neural Networks 

Artificial Neural Networks (ANNs) represent a modern and sophisticated approach to 

problemsolving widely explored also for power system protection and control applications. 

ANNsperform actions similar to human reasoning, which relies upon experience gathered during 

a training process. Advantages of ANNs computing methodologies over conventional 

approachesinclude faster computation, learning ability, adaptive features, robustness and noise 

rejection [30]. 

 

ANNs are constructed to make use of some organizational principles resembling those of the 

human brain [80]. They represent a promising new generation of information processing 

systems. Neural networks are good at tasks such as pattern-matching and classification, function 

approximation, optimization and data clustering. Traditional computers, because of their 

architecture, are inefficient at these tasks, especially pattern-matching tasks [80]. 

 

ANNs are made up of a number of simple and highly interconnected processing elements, called 

neurons [59]. An artificial neuron is a computational model comparable to the natural neurons. 

Natural neurons receive signals through synapses located on the dendrites or membrane of the 

neuron. When the signals received are strong enough (surpass a certain threshold), the neuron is 

activated and emits a signal through the axon. This signal might be sent to another synapse, and 
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might activate other neurons [82]. Figure 3.2 shows an artist’s conception of a natural 

neuron[82]. 

 
Figure3.2: A natural neuron 

 

The complexity of real neurons is highly abstract when modelling artificial neurons. These 

basically consist of inputs (like synapses), which are multiplied by weights (strength of the 

respective signals), and then computed by a mathematical function which determines the 

activation of the neuron. Another function (which may be the identity) computes the output of 

the artificial neuron (sometimes based on a certain threshold). ANNs combine artificial neurons 

in order to process information [82].Figure 3.3 shows a mathematical model of an artificial 

neuron [83]. 

 
Figure 3.3: Mathematical model of an artificial neuron 
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The mathematical model of a neuron as shown in Figure 3.3 is expressed in (3.14)[59]: 

 







N

k
kjkjj xwfO      (3.14) 

Where: jO is the output of a neuron, jf is a transfer (activation) function which is differentiable 

and non-decreasing, jkw is an adjustable weight that represents the connection strength, and kx is 

the input of a neuron. 

 

3.4.1 Types of Artificial Neural Networks 

Various types of neural networks exist. These include multi-layer perceptrons, radial basis 

networks, Kohonen networks and recurrent networks [56]. Two commonly used neural networks 

areradial basis function (RBF) and multilayer perceptron (MLP) neural networks [56,57]. The 

main difference between the two architectures lies in the nature of the input–output relations of 

their nodes. RBF networks are three-layered networks, whose output nodes form a linear 

combination of the basis functions (usually of the Gaussian type) computed by the hidden layer 

nodes. Each node provides a significant non-zero response only when the input falls within a 

small localized region of the input space. MLP networks are basedon nonlinear sigmoid 

functions which give significant non-zero response in a wide region of the input space. Their 

approximations are smooth and continuous, far more accurate for increasing number of nodes in 

the hidden layers [83]. 

 

(a) Radial basis function neural network 

Radial basis function neural network is an extremely powerful neural network [57]. A radial 

basis function neural network has a hidden layer of radial units and a linear-output layer unit. 



49 
 

The input nodes pass the inputs to the hidden nodes directly and the first layer connections are 

not weighted. The transfer functions in the hidden nodes are similar to the multivariate Gaussian 

density function [84]. Similar to biological receptor fields, an RBF neural network employs local 

receptor fields to perform function mappings [85]. Figure 3.4 shows a radial basis function 

neural network [85].  

 

Figure 3.4: A RBF neural network 

 

In an RBF neural network, a radial unit (that is, local receptor field) is defined by its centre point 

and a radius. The activation function of the ith radial unit is [85]: 

   iiiii uxRxRh        (3.15) 

Where:xis the input vector, uiis a vector with the same dimension as xdenoting the centre, σiis the 

width of the function and Riis the i-th radial basis function. Typically Riis a Gaussian function: 
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The i-th component of the final output yiof an RBF neural network can be computed as the 

weighted sum of the outputs of the radial units as: 

     
i

iii xRwy       (3.17) 

Where: iw  is the connection weight between radial uniti and the output unit. 

 

(b) Multilayer perceptron neural network 

Multi-Layer Perceptron is a popular neural network architecture[56-58]. They are a class of 

nonlinear models. The nonlinearity comes from the hidden layers of the neural network which 

can model very complex functions [86]. Typically, the MLP is organized as a set of 

interconnected layers of artificial neurons, input, hidden and output layers. When a neural group 

is provided with data through the input layer, the neurons in this first layer propagate the 

weighted data and randomly selected bias, through the hidden layers. Once the net sum at a 

hidden node is determined, an output response is provided at the node using a transfer function. 

MLPs like any other neural network, has to be trained [86].  

 

Two important characteristics of the MLP are its non-linear processing elements which have a 

non-linear activation function that must be smooth (the logistic function and the hyperbolic 

tangent are the most widely used), and its massive interconnectivity (that isany element of a 

given layer feeds all the elements of the next layer)[87]. In the multilayer perceptron, every 

hidden layer cantransfer its output to another hidden layer in an orderlymanner [86]. For example 

a two layer perceptron function couldbe expressed as follows: 

   i ikk jkj xwgwfO
)1()2(

   (3.18) 
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Where: j is the number of outputs or elements in outputvector, f is the output function,g is the 

activation (transfer) functionin hidden layer, andw
(1)

 andw
(2)

 are the weight vectors for the first 

and the second hidden layers respectively. 

 

Commonly used transfer functions are: linear (purelin), log-sigmoid (logsig), hyperbolic tangent 

sigmoid (tansig) transfer function [87, 88]. The output, O, of a purelin transfer function for a 

given input x is given in (3.19) [88]: 

xO           (3.19)  

A plot of the linear transfer function is shown inFigure 3.5.  
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Figure 3.5: Linear transfer function 

 

The output, O, of a log-sigmoid transfer function for a given input x is given as: 

xe
O




1

1
        (3.20) 

A plot of the log-sigmoid transfer function is shown inFigure 3.6. 
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Figure 3.6:  Log-sigmoid transfer function 
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The output, O, of a hyperbolic tangent sigmoid transfer function for a given input x is given as: 

1

1
2

2






x

x

e

e
O        (3.21) 

A plot of the hyperbolic tangent sigmoid transfer function is shown in Figure 3.7. 
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Figure 3.7:  Tangent sigmoid transfer function 

 

MLPs are mostly trained by the Levenberg-Marquardt back- propagation algorithm [87, 88].  

The Levenberg–Marquardt algorithm, independently developed by Kenneth Levenberg and 

Donald Marquardt, provides a numerical solution to the problem of minimizing a nonlinear 

function. It is fast, and has stable convergence. This algorithm is suitable for training small and 

medium-sized networks. The update rule of the Levenberg-Marquardt algorithm is given in 

(3.22) [89]: 

  kkk
T
kkk eJIJJww
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        (3.22) 

Where: w is the weight vector, k is the index of iteration, J  is the Jacobian matrix,  is the 

combination coefficient which is always positive, I is the identity matrix and e is the error 

vector. 

 

The output jO  of a neuron j is calculated using 

)net(fO jjj         (3.23) 



53 
 

Where: jf is the activation function of neuron j, andnet value jnet is the sum of weighted input 

nodes of neuron j. The net value is given by: 
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       (3.24) 

Where: i,jO is the ith input node of neuron j, weighted by ijw , . 

 

The training of a neural network using the Levenberg–Marquardt algorithm is organised into 

forward computation and backward computation. The forward computation for a three-layered 

multilayer perceptron neural network is as follows [89]: 

Step 1: Calculate net value(net), output(O), and slope(s) for the neuron in the first layer: 
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Where: ix  are the network inputs, superscript ‘1’ denotes first layer and subscript ‘j’ is the 

index of neurons in the first layer. 

Step 2: Use the output of the first layer neuron as the inputs of all neurons in the second layer, do 

a similar calculation for net values, slopes, and outputs: 
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Where: superscript ‘2’ denotes second layer and subscript ‘j’ denotes jth neuron. 

Step 3: Use the outputs of the second layer neurons as the inputs of the neuron in the output layer 

(third layer), do a similar calculation for net values, slopes, and outputs: 

3
0

3
2

1

23
,ji,j

n

i
jj wwOnet 



      (3.31) 

)net(fo jjj
33        (3.32) 

3

3

3

j

j

j
net

f
s




        (3.33) 

Where: superscript ‘3’ denotes third layer. 

With the results from the forward computation, for a given output j, the backward 

computation can be organized as: 

Step 4: Calculate error, je , at the output and  initial ,  , as the slope of output : 

jjj Ode          (3.34) 

33
jj,j s      (3.35) 

03 k,j         (3.36) 

Where: jd is the desired output at output j, jO is the actual output at output neuron 

obtained in the forward computation, 3
j,j  is the self-backpropagation and 3

k,j  is the 

backpropagation from other neurons in the same layer (output layer). 
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Step 5: Backpropagate from the input of the third layer to the outputs of the second layer 

     332
j,jk,jk,j w       (3.37) 

Where:kis the index of neurons in the second layer from 1 to n2. 

Step 6: Backpropagate from the outputs of the second layer to the inputs of the second layer 

222
kk,jk,j s       (3.38) 

Where:kis the index of neurons in the second layer. 

Step 7: Backpropagate from the inputs of the second layer to the outputs of the first layer 
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       (3.39) 

Where:kis the index of neurons in the first layer, from 1 to n1. 

Step 8: Backpropagate from the outputs of the first layer to the input of the first layer 

111
kk,jk,j s          (3.40) 

Where:kis the index of neurons in the second layer, from 1 to n1. 

 

For the backpropagation process of other outputs, the steps 4 – 7 are repeated. By performing the 

forward computation and backward computation, the whole 𝛅 array and O array canbe obtained 

for the given pattern. Then related row elements of a Jacobian matrix are calculated by using 

(3.41). 
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Where:p is the desired pattern, j is the index of neurons, i is the index of neuron inputs, and m is 

index of neuron outputs. 
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Chapter 4 

PREDICTION SCHEMES FOR TRANSIENT STABILITY STATUS AND COHERENCY 

GROUPING  

 

4.1 Input Data Selection 

From the second order model equation of a synchronous machine given by(3.3), the time 

derivative of rotor angle is the rotor speed deviation in electrical radians per second (that is,

s
dt

d



 ).It can also be shown that [65],     
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a      (4.1) 

Where:H is the inertia constant and aP  is the difference between input mechanical power and 

output electromagnetic power. For stability to be attained after a disturbance,it is expected that 

dt

d
will be zero in the first swing [66]. Thiscondition gives rise to the equal area criterion which 

is a well-known classical transient stability criterion. 

 

From the above equations, it can also be deduced that 

2
1

0

0












 


 dP
H

a    (4.2) 

Equation (4.2) suggests speed deviation as a good input parameter for the prediction of transient 

stability status.  
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The higher the rotor speed deviation following a disturbance, the more unstable the system 

becomes or the less likely the equal area criterion can be met [90].Thus, the maximum speed 

deviation at some time during a disturbance can be used to predict transient stability or 

otherwise. The best time is within the first swing, as indicated by the equal area criterion.This 

work proposes an algorithm for transient stability prediction using rotor speed deviation as 

power system input data. 

 

Speed deviations of individual machines do not need to be expressed with reference to other 

machines; hence their use in algorithms eliminates the difficulties associated with the practical 

implementation of algorithms which use rotor angles as input. In a real power system, rotor 

speed deviation measurement of each generator can be provided by the phasor measurement unit 

(PMU), located on the EHV or HV bus of the generating plant [52, 53]. 

 

In this work, rotor speed deviation following a disturbance has been used in different ways for 

stability and coherency predictions. 

 

4.2 Use of Rotor Speed Deviation for Generator Out-of-Step Prediction 

The maximum rotor speed deviation of a generator, in the first swing following a transient 

disturbance, will be much lower if it maintains synchronism with the other generators than if it 

goes out of step with the others. Consequently, the maximum rotor speed deviation of each 

generator within the first swing is used as an input parameter to predict the synchronism status of 

each generator of a power system following a transient disturbance. Mathematically,  

 iji Maxx 
 j = 1, 2, …, m   (4.3) 
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Where: ix  is the input data of algorithm to predict the synchronism status of generator i, 

ij arethe several rotor speed deviations of generator i sampled within the 1
st
cycle after 

the tripping of a line or bus, and 

mis the number of samples. 

 

4.3 Use of Rotor Speed Deviation for the Prediction of Transient stability Status of 

Systems 

The sum of the maximum speed deviations of system generators for an unstable swing is much 

greater than the sum of the maximum speed deviations for a stable swing. Thus, the sum of the 

maximum speed deviations of the individual generators of a system following a disturbance is 

employed as input data for predicting the transient stability status of a system. The sum of 

maximum rotor speed deviation, x, is obtained as follows: 

  m...,,,j,n,...,,,i,Maxx
n

i
ij 21321

1

 


    (4.4) 

Where: ij is the jth sample of the rotor speed deviation of the ith generator captured in the 1
st
 

cycle after the tripping of a line or bus, 

Max( ij ) is the maximum rotor speed deviation of the m samples captured for 

generator i, 

n is the number of generators of the system, and 

m is the number of samples. 
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4.4 Use of Rotor Speed Deviation for the Prediction of Coherent Generator Groups 

Very often, individual generators or groups of generators tend to oscillate together for a 

particular fault. Their rotor angle swings are dependent on each other and they evolve together 

with time [91]. This can be expressed by: 

    max0 ttKtt ijji   (4.5) 

Where:i and j are pairs of generators, ijK is a constant whose value may change with time.  

The value of ijK will be small and nearly constant within a synchronous group. For a pair of 

generators which go out of step, the value of ijK will be large and may also largely vary with 

time. It follows from (4.5) that 

   
ij

ji K
dt

td

dt

td
2


     (4.6)  

From which     ijji K2           (4.7) 

ijK2 is another constant whose value may also change with time.  

  

Equation (4.7) shows that following a disturbance, the difference in speed deviation of coherent 

generators will be small and nearly constant while the difference in speed deviation of pairs or 

group of generators that go out of step will be large and also vary. Also, generators that remain 

stable after a disturbance, keep their coherency. 

 

In the light of the above discussions and also with reference to (4.3), the proposed algorithm for 

the prediction of coherent generator groups uses data sets each containing three input data 

namely, 
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     )(1 iMaxx       (4.8) 

     )(Maxx j2     (4.9) 

)()(3 ji MaxMaxx      (4.10) 

Where:i is a reference generator in a coherent group and  

 j is a generator to be placed in a coherent group. 

The reference generator is an unstable generator with the highest of )(Max  values. 

 

4.5 Case  Study 

Various power systems have been used as test systems for transient stability studies. These 

include a 3-generator, 9-bus test system [14], IEEE 145-bus[16, 17], PSB4 [2, 5], IEEE 39-bus 

[2, 6, 19, 26, 27], IEEE 9-bus [20-22], IEEE 14-bus [2, 20-22] and the 10-generator western 

Japan 60Hz power system model [23].  

 

In this work, the IEEE 39-bus test system, also known as the New-England test system was used 

as a case study. This test system is widely used for steady state and transient stability studies. 

This is because data on this system is readily available. It represents a real system and can be 

handled by free versions of commercial power system software packages.  The test system is 

shown inFigure 4.1. 
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Figure 4.1: IEEE 39-bus test system 

 

The system consists of 10 generators, one of which is a generator (G1) representing a large 

system.  The system was modelled using the Power System Simulator for Engineers (PSSE) 

Software [92]. All the 10 generators were modelled using the GENROU (Round rotor 

synchronous machine with quadratic saturation in d-q axis) generator model. Each generator had 

IEEE Type 1 exciter, TGOV 1 (Steam Turbine Governor with reheat) turbine governor and 

PSS2A stabilizer. Data for the modelling of the test system isgiven in Appendix A [93].  
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The equations of the GENROU generator model and the IEEE type 1 exciter are also provided in 

Appendix A[94]. 

 

4.6 Generation of Transient Stable and Transient Unstable Cases for Algorithm 

Development and Testing 

The modelling and simulation of the test system to generate transient stable and transient 

unstable datawere carried out using the Power System Simulator for Engineers (PSSE) software. 

The data was generated at different loading levels. The levels are: base load, base load increased 

by 5%, base load increased by 7%, and base load increased by 10%. The load flow study was 

performed using the classical Newton-Raphson iterative method. The generators of the system, 

after the load flow study, were convertedusing the complex machine impedance (ZSORCE) 

option in the PSSE software.  

 

The loads for the simulations were modelled as static loads with dependence on only bus voltage 

magnitude. The voltage dependency of load characteristics isrepresented by the exponential 

model[66]: 











0

0
V

V
PP      (4.11) 

2

0

0 











V

V
QQ      (4.12) 

Where: P and Q are active and reactive components of the load when the bus voltage is V. The 

subscript‘0’ identifies the values of the respective variables at the initial operating condition.   In 

the static load model, active power wasrepresented as 100% constant current and reactive power 

as 100% constant admittance.  
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The network was initialized and run in steady state mode for 0.1 seconds after which various 

three-phase line and bus faults were separately applied. For each fault scenario, the fault was 

made to persist for some time (fault durations ranged from 0.1 to 1.5 seconds)after which the 

faulted line or bus was tripped. Simulations continued for some time with the line or bus tripped. 

The sampling frequency used was 6kHz.A summary of the simulation steps and processes are 

described in Figure 4.2. 

Carry out load flow analysis of system

Convert loads and generators

Run system in steady state for 0.1s

Apply a disturbance (line or bus)

Run system for a stated period

Trip line or bus

Run system until end of simulation time

Plot rotor angles of generators 

Apply criteria using rotor angle plots to sort 

simulations into stable and unstable cases

Obtain rotor speed deviation data of  

stable and unstable cases
 

 

Figure 4.2: Flow chart of simulation process 
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The output data generated from the simulations were the rotor angles and rotor speed deviations 

of the various generators. The rotor angles were plotted to determine the simulations which 

resulted in transient stability and those which resulted in transient instability. The criteria used in 

this work for categorizing rotor angles was that a generator is unstable if the rotor angle 

difference between it and any other generator is more than 180
o
, 1 second after the tripping of a 

line or bus following the application of a fault. Also the system is transient unstable if at least 

one of the generators is unstable [19, 27]. 

 

4.7 Generator Out-of-Step Prediction using  Wavelet Analysis 

Two stable and seven unstable fault conditions were simulated for the development of the 

wavelet-based generator OS prediction scheme. The analysis of the speed deviation data 

obtained from the simulations in PSSE software was done using the MATLAB
®
 software [95]. 

In MATLAB, the speed deviations were further sampled every 20ms. Each sample represented a 

data cycle. Each data cycle was decomposed using the Daubechies 4 mother wavelet into 9 levels 

resulting in 1 approximate coefficient ( 9a ) and 9 detailed coefficients ( 1d , 2d , 3d , 4d , 5d , 6d , 7d ,

8d , and 9d ). Figure 4.3 shows the 9-level decomposition of speed deviation signal. The 9-level 

decomposition of the rotor speed deviation signal,x, can be mathematically written as follows: 

  11 adx   

]ad[d 221   

...]ad[dd  3321  

9987654321 addddddddd       (4.13) 

Where (dj: j=1,2...9) are detailed coefficients and (aj: j=1, 2...9) are approximate coefficients. 
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Figure 4.3: A 9-level decomposition of speed deviation 

 

The frequency bands for the nine detailed coefficients corresponding to the 6000Hz sampling 

frequency are given in Table 4.1 

 

Table 4.1: Frequency bands of detailed coefficients 

Detailed coefficient Frequency band (Hz) 

d1 6000 – 3000  

d2 3000 – 1500  

d3 1500 – 750  

d4 750 – 375  

d5 375 – 187.5  

d6 187.5 – 93.75 

d7 93.75 – 46.875 

d8 46.875 – 23.4375 

d9 23.4375 – 11.71875 

 

The wavelet entropy(WE) of each of the detailed coefficients was subsequently obtained. The 

WE is a measure of the degree of disorder of a signal. Therefore, it can provide useful 

information about the underlying dynamical process associated with a signal [96, 97]. The WE, 

Ej of a detailed coefficient, dj, is given by [96-98] as follows: 
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2

jj dE          (4.14) 

 

Analysis of the wavelet entropies of the detailed coefficients for each level revealed that the 

wavelet entropies (WEs) of detailed coefficient 8 (d8) offered good characteristics for predicting 

generator OS conditions.  A study of the extracted WEs revealed that in the first three cycles, 

generators which went out of step had their WEs decreasing throughout the data cycles while the 

stable ones had their WEs either remaining the same or increasing. 

 

For example, Tables 4.2(a) – (c) provide the wavelet entropies of d8 for a three-phase fault on 

the line between bus 16 and bus 19 under base load, 105% base load, and 110% base load 

conditions respectively. For each of these fault conditions, generator 4 (G4) and generator 5 (G5) 

became unstable. 

Table 4.2a: Wavelet entropies of d8 for a line 16-19 fault for base load condition 

Cycle G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 0.0004 0 0.0001 0.0022 0.0038 0.0002 0.0001 0 0 0.0001 

2 0.0005 0 0.0001 0.0019 0.0026 0.0004 0.0001 0 0 0 

3 0.0005 0 0.0002 0.0016 0.002 0.0005 0.0001 0.0001 0 0 

 

Table 4.2b: Wavelet entropies of d8 for a line 16-19 fault for 105% base load condition 

Cycle G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 0.0001 0 0 0.0019 0.0035 0 0.0001 0 0 0.0003 

2 0 0.0001 0 0.0017 0.0024 0 0.0001 0 0 0.0002 

3 0 0.0001 0 0.0014 0.0018 0 0.0001 0 0 0.0002 

 

Table 4.2c: Wavelet entropies of d8 for a line 16-19 fault for 110% base load condition 

Cycle G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 

1 0.0002 0.002 0 0.0017 0.0033 0.0002 0.0001 0 0 0.0002 

2 0.0002 0.0032 0.0001 0.0015 0.0022 0.0003 0.0001 0 0 0.0001 

3 0.0003 0.0049 0.0001 0.0013 0.0017 0.0004 0.0001 0 0 0.0001 
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The WEs of G4 and G5 which went out of step are noted to be reducing throughout the three 

cycles while those of the other generators which were stable either increase or remain the same.  

 

Contrary to the above observations, the WEs of a few stable generators somewhat decreased 

throughout the data cycles. However, for such generators, the WEs of the 3
rd

 cycle were found to 

be less than or equal to 0.001. This value came about following a comparison made between the 

3
rd

 cycle WEs of stable and unstable generators. 

 

Based on the above findings, an algorithmic framework for predicting generator OS conditions 

was developed. Figure 4.4depicts a flowchart of the proposed wavelet analysis-based generator 

OS prediction scheme. 

Sample rotor speed deviation of each 

generator every 20ms for 3 cycles

Start upon tripping 

of line or bus

Perform a 9-level wavelet decomposition of  

each sample 

Obtain  the wavelet energy of detailed coefficient 8 for each 

sample (WE1, WE2 and WE3)

Is WE1 > WE2 > WE3?

Yes

No

Is WE3 > 0.001?

Yes

Generator will be stable

Machine will go out of step

No

 

Figure 4.4: Flowchart of wavelet analysis-based out-of-step prediction scheme 
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The algorithm is initialized upon the tripping of a line or bus. The rotor speed deviation of each 

generator is sampled every cycle (20ms) for three consecutive cycles. The samples are then 

decomposed to 9-levels using the Daubechies 4 mother wavelet.  The wavelet entropies (WEs) of 

detail coefficient 8 are then obtained for each sample. The stability status of each generator is 

predicted by comparing the WEs obtained for the three consecutive cycles. A generator is 

predicted to be stable if the WEs do not decrease progressively or decrease progressively but the 

WE of the 3
rd

 cycle is not greater than 0.001. A generator is predicted to go out of step if the WE 

decreases progressively and the WE of the 3
rd

 cycle is also greater than 0.001. 

 

4.8 Predicting the Transient Stability Status of Individual Generators using an Artificial 

Neural Network 

The input data required for the proposed scheme is the maximum rotor speed deviation of each 

generator in accordance with (4.3). A three-layered MLPNN with biaseswas used in this scheme. 

The MLPNN was implemented in MATLAB. The choice was informed by the fast decision 

making capability of multi-layer perceptrons (MLPs). The input layer had one neuron with a 

linear transfer function (purelin). The hidden layer had two neurons with hyperbolic tangent 

sigmoid transfer functions (tansig).  The output had one neuron with a purelin transfer function.  

Linear transfer functions are frequently used for input and output layer neurons while non-linear 

transfer functions are employed for hidden layer neurons [99, 100]. Non-linearity in the hidden 

layer makes MLPs more effective [101]. Sigmoidal transfer functions are the most commonly 

used non-linear transfer function [100,101].  
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Figure 4.5 shows the architecture of the MLPNN.In Figure 4.5, the maximum rotor speed 

deviation (MSD) is the input xto an MPLNN where ijw  is the weight between neurons i and j, 

0iw is the weight of the bias of neuron i, and O is the output of the neural network. The output O 

is expected to be either 1 or 0. An output of 0 indicates that the generator will be stable while an 

output of 1 indicates that the generator will go out of step.The biases have a constant input of 1. 

The values of the weights are obtained from the training of the MLPNN. 
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1  
Figure 4.5: Architecture of MLPNN for generator OS prediction 

 

 

The output, O, of the MLPNN can be determined as follows: 

The output, 1y , of neuron 1 is given by: 

      101110111 wxwwxwfy        (4.15) 

The output, 2y , of neuron 2 is given by: 
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The output, 3y , of neuron 3 is given by: 
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The output,O , of MLPNN is thus given by: 
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      4034324240343242 wwywywwywyfO      (4.18) 

Hence, 
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(4.19) 

 

The MLPNN was trained with 10 input data consisting of 5 maximum speed deviation data for 

OS conditions and 5 maximum speed deviation data for stable conditions. The maximum speed 

deviation data for generators that went out of step were distinct from those of stable generators; 

this permitted the use of such minimal training data.  

 

For example, Table 4.3presents the maximum rotor speed deviation (MSD) of each generator 

within the 1
st
 cycle after the tripping of bus 28 following a three-phase fault on it. For this fault 

condition, generator 9 went out of step. It can be observed that generator 9 has distinctively 

higher maximum speed deviation than the others which remained in synchronism. Table 4.4 also 

summarizes the maximum rotor speed deviation of each generator withinthe 1
st
 cycle after the 

tripping of the line between bus 6 and bus 11. Generators 2 and 3 which went out of step had 

distinctively higher MSDs than the generators that remained in synchronism.  

Table 4.3: Maximum rotor speed deviations for a fault on bus 28 

Gen. 1 2 3 4 5 6 7 8 9 10 

MSD 0.0001 0.0003 0.0007 0.0009 0.0009 0.0008 0.001 0.0014 0.0074 0.001 

 

Table 4.4: Maximum rotor speed deviations for a line fault between buses 6 and 11 

Gen. 1 2 3 4 5 6 7 8 9 10 

MSD 0.0002 0.0094 0.0106 0.0023 0.0023 0.0022 0.0026 0.002 0.002 0.0022 
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The MLPNN was trained to give an output of ‘1’ if a generator will pull out of step and ‘0’ if it 

will be stable. The training was done using the Levenberg-Marquardt back-propagation 

technique. Figure 4.6 shows a flowchart of the proposed OS prediction scheme. Each generator 

is assigned one MLPNN to predict its stability status. 

Obtain sampled rotor speed deviations of 

each generator within the 1st cycle after 

the tripping of a bus or line

Obtain the maximum speed deviation of 

each generator

Feed maximum speed deviation data into 

trained neural networks

Display the predicted 

stability status of each 

generator  

Figure 4.6: Flowchart of ANN-based OS prediction scheme 

 

The algorithm is initialized after the tripping of a line or bus following a disturbance. The rotor 

speed deviation of each generator is sampled within the first cycle and the maximum speed 

deviation is obtained. The maximum speed deviation of each generator is then used as inputsto 

assigned MLPNNs which predict the stability status of each generator. 

 

4.9 Prediction of Transient Stability Status using an Artificial Neural Network 
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The input data requiredforthe proposed scheme is the sum of the maximum rotor speed 

deviations (SMSDs) of the generators of the system in accordance with (4.4). A feed forward 

multilayer perceptron neural network (MLPNN) with three-layers and biases was again used as 

the decision making tool to predict the transient stability status of the system. The input layer had 

one neuron with a linear transfer function (purelin). The hidden layer had two neurons with 

hyperbolic tangent sigmoid transfer functions (tansig). The output had one neuron with a purelin 

transfer function. The architecture of the MLPNN is shown in Figure 4.7.In Figure 4.7, the sum 

of maximum rotor speed deviations (SMSD) of the generators is the input x to an MPLNN where 

ijw  is the weight between neurons i and j, 0iw is the weight of the bias of neuron i, and O is the 

output of the neural network. The output O is expected to be either 1 or 0. An output of 1 shows 

that the system will be transient unstable while an output of 0 indicates that the system will 

maintain transient stability. The value of O can be determined using (4.19). 
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Input layer (IL)
Output layer (OL)

Hidden layer (HL)  
Figure 4.7: Architecture of MLPNN for predicting transient stability status of system 

 

The sum of maximum rotor speed deviation data from five transient stable cases and five 

transient unstable cases were used to train the MLPNN. The clear distinction between the 

transient stable data as against the transient unstable data permitted the use of such small volume 

of training data.  
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For example, Table 4.5presentsSMSD dataobtained within the 1
st
cycle after the tripping of 

various lines following three-phase faults. These fault conditions led to system instability. Table 

4.6presents SMSDs for stable conditions obtained within one cycle after the tripping of various 

lines following three-phase faults.  A study of the SMSDs for the various cases shows that cases 

which led to transient instability have a much higher SMSD value compared to cases which did 

not result in transient instability.   

Table 4.5: Sum of maximum speed deviations for various line faults (unstable cases) 

Bus-Bus 11-6 10-13 13-10 13-14 22-21 

SMSDs  0.0324 0.0326 0.0313 0.0312 0.0283 

 

Table 4.6: Sum of maximum speed deviations for various line faults (stable cases) 

Bus-Bus 11-6 10-13 13-10 13-14 22-21 

SMSDs  0.0047 0.0047 0.0045 0.0045 0.0041 

 

The MLPNN was trained to give an output of ‘1’ if the system will become transient unstable 

and ‘0’ if the system will maintain stable operation. The MLPNN was trained using the 

Levenberg-Marquardt back-propagation technique. A flowchart of the transient stability status 

prediction scheme is shown inFigure 4.8. 

 

The algorithm is initialized after the tripping of a line or bus following a disturbance. The rotor 

speed deviation of each generator is sampled within the first cycle and the maximum speed 

deviations are obtained. The obtained maximum speed deviations are then summed and used as 

input to a trained MLPNN which predicts the stability status of the system. 
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Obtain sampled rotor speed deviation of 

each generator within the 1st cycle after 

the tripping of a bus or line

Obtain the maximum speed deviation of 

each generator

Feed obtained sum into trained MLPNN

Display the predicted 

stability status of the 

system

Sum the maximum speed deviations

 

Figure 4.8: Flow chart of proposed transient stability status prediction scheme 

 

4.10 Prediction of Generator Coherency Groupings for Controlled Islanding 

Three rotor speed deviation related data as specified by (4.8), (4.9), and (4.10) are used as input 

data by the scheme. The proposed prediction scheme for coherent generator groupsutilises the 

output of the scheme proposed in Section 4.8 that predicts the stability status of each generator 

following a disturbance.The coherent generator groups prediction scheme places all generators 

predicted to be transient stable in one coherent group called group ‘S’. The scheme then focuses 

on only generators which are predicted to go out of step and determines whether they will belong 

to the same out of step group or different groups.Two multilayer perceptron neural networks 

namely MLPNN1 and MLPNN2 were trained for the prediction of coherent generator groups.  

The prediction is done in three stages. MLPNN1 is responsible for the prediction of coherent 

groups in the first stage while MLPNN2 is responsible for the second and third stages. Both 
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MLPNN1 and MLPNN 2 have the same architecture. The architecture of the neural networks is 

shown in Figure 4.9.Each MLPNN had 3 neurons in the input layer, 4 neurons in the hidden 

layer, and 1 neuron in the output layer. The input and output neurons had ‘purelin’ transfer 

functions while the neurons in the hidden layer had ‘tansig’ transfer functions.In Figure 4.9, x1 is 

the maximum speed deviation of the reference generator in a coherent group, x2 is the of 

maximum speed deviation of a generator which is to be placed in a coherent group, and x3 is the 

absolute value of the difference between x1 andx2.O is the output of the neural network, which is 

expected to be either 1 or 0. An output of 1 means that the generators will be in different 

coherent groups, while an output of 0 means that the generators will be in the same coherent 

group. 
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Figure 4.9: Neural network architecture of coherency prediction scheme 

 

The output, O, of the neural network can be determined as follows: 

The output, 1y  of neuron 1 is given by: 

   
  10111101111 wwxwwxfy 

       (4.20) 

The output, 2y  of neuron 2 is given by: 

   
  20222202222 wwxwwxfy 

       (4.21) 

The output, 3y  of neuron 3 is given by: 
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  30333303333 wwxwwxfy 

       (4.22)
 

The output, 4y  of neuron 4 is given by: 
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The output, 5y  of neuron 5 is given by: 
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The output, 6y  of neuron 6 is given by: 
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The output, 7y  of neuron 7 is given by: 
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(4.26) 

The output of the neural network, O which is the output of neuron 8 is given by: 

  8078768658548480787686585484 wwywywywywwywywywyfO 
  

(4.27) 

 

MLPNN1 and MLPNN2 were each trained using the Levenberg-Marquet training algorithm. 

MLPNN1 was trained to give an output of ‘0’ if the generator to be classified will be coherent 

with reference generator ‘ref 1’. Reference generator ‘ref 1’ is the generator with the highest 

MSD value in the second stage. MLPNN1 gives an output of ‘1’ if the generator to be classified 

will not be coherent with ‘ref 1’. MLPNN 2 was trained to give an output of ‘0’ if the generator 

to be classified will be coherent with reference generator ‘ref 2’. Reference generator ‘ref 2’ is 

the generator with the highest MSD value in the third stage. MLPNN 2 gives an output of ‘1’ if 
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the generator to be classified will not be coherent with ‘ref 2’. MLPNN1 was trained using data 

from two transient unstable conditions. MLPNN2 was trained with data from one transient 

unstable condition. 

 

A flowchart of the proposed coherency prediction scheme is shown in Figure 4.10. The 

coherency prediction scheme is activated when a generator or system is predicted to be transient 

unstable following a disturbance. The scheme obtains the predicted stability status of each 

generator and sorts the generators into generators predicted to be stable and those predicted to be 

unstable. The generators predicted to be stable are all placed in a classified coherent group ‘S’, 

while the generators predicted to be unstable are placed in an unclassified coherent group ‘U’. 

The scheme stops when only one generator is found in U. That generator is put in coherent group 

C0. When more than one generator is found in U, the scheme sets a variable j to zero and obtains 

the maximum speed deviation (MSD) of each generator in U, in the 5
th

 cycle after the tripping of 

a line or bus following a disturbance. j is a positive integerwhich indicates various coherent 

groups. The generator with the highest MSD value is placed in a classified coherent group ‘Cj’ 

and made the reference generator‘ref(jmod2+1)’ in the group, The MSD of ‘ref(jmod2+1)’is used 

as input 1x of MLPNN(jmod2+1) for the placement of all other generators found in unclassified 

group U. For each of the other generators in U, its MSD is used as input 2x of 

MLPNN(jmod2+1) for the placement of that generator in classified group‘Cj’. 

MLPNN(jmod2+1) determines whether a generator in U has to be added to group Cj or belongs 

to a different group. j is incremented when U still has a generator or generators. The scheme ends 

when no generator is found in U.  
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Obtain the predicted stability 

status of all generators

Sort generators into stable and unstable

Put stable generator identifiers in set S 

and those of unstable generators into U

Is n(U) > 1 ?Empty U into C0
N

Y

End
Set j = 0

Obtain MSDs of all generators in U

Select the generator with the highest 

MSD and transfer into set Cj and set 

MSD as ref(jmod2+1)

Feed MSD of each of the remaining 

genertors in U into MLPNN(jmod2+1)

Transfer generator(s) whose MSDs 

resulted in an output of 0 into Cj

Is U empty?

End

Y

Increment j
N

 

Figure 4.10: Flowchart of proposed prediction scheme for coherency grouping  
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Chapter 5 

RESULTS AND ANALYSIS 

 

5.1 Wavelet Transform-based Generator Out-of-Step Prediction Scheme 

Data from 54 fault cases were used to test the proposed wavelet transform-based generator out-

of-step (OS) prediction scheme. Forty four of the 54 cases resulted in generator OS conditions 

while the remaining 10 cases had all generators remaining stable. 

 

Figure 5.1 shows machine rotor angles for a three-phase fault at bus 26 for a base load case. The 

fault was applied at time st 1.0  and the line was tripped after 5 cycles ( st 2.0 ). From the 

rotor angle plots, generator 9 became unstable. The corresponding plot of rotor speed deviations 

is shown in Figure 5.2. 

Figure 5.1: Rotors angels for a three-phase fault at bus 26 
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Figure 5.2: Rotor speed deviations for a three-phase fault at bus 26 

 

The time window for the capture of rotor speed deviation data for the wavelet analysis-based 

transient stability status prediction scheme is the first 3 cycles after the tripping of a bus or line 

following a disturbance. It is observed from Figure 5.2 that the speed deviations of generator 9 

which went out of step are much higher than those of the generators which remained in 

synchronism. Also, Figure 5.3 shows rotor angles for a three-phase fault on the line between bus 

16 and bus 19 for a base load case. Here, generators 4 and 5 went out of step. The corresponding 

plot of rotor speed deviations is shown in Figure 5.4. 

Figure 5.3: Rotors angles for a three-phase fault on the line between bus 16 and 19 
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Figure 5.4: Rotor speed deviations for a three-phase fault between line 16 and 19 

 

Similar rotor angle and rotor speed deviation plots were observed for the other system conditions 

that were simulated. The above speed deviation plots show that even before out of step 

conditions arise, speed deviations of generators that go out of step are higher than those that 

remain stable. 

 

Table 5.1 presents the number of generators that went out of step in each of the 44 fault 

conditions that led to some generators going out of step. For 36 of the 44 unstableconditions, 

only 1 generator went out of step in each case. In 4 of the 44 unstable conditions, 2 generators 

each went out of step. In the remaining 4 of the fault cases, 4 generators each went out of step. 

Thus a total of 60 individual generator OS cases arose from the 44 transient unstable conditions. 

Table 5.1: Number of OS generators for various simulated faults 

No. Number of fault 

cases 

Number of generators that went out of step in 

each case 

Total number of OS 

cases 

1 36 1 36 

2 4 2 8 

3 4 4 16 
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For each fault condition, the proposed scheme predicts the stability status of each of the 10 

generators. Thus for the 44fault conditions which resulted in some generatorsgoing out of step, a 

total of 440 (that is 44 fault conditions multiplied by 10 generators)individual generator states 

had to be predicted. The 440 generator states comprised 60 generator OSstates and 380 stable 

generatorstates. Table 5.2 presents details of the predictions made by the proposed scheme for 

the 60 generator OS states. Table 5.3 also presents details of the predictions made by the 

proposed scheme for the 380 stable generator states. 

Table 5.2: Test results of proposed scheme for various generator OS conditions 

No. No. of 

faults 

No. OS predictions 

required 

No. of Correct 

predictions 

No. of Wrong 

predictions 

Error(%) 

1 36 36 36 0 0 

2 4 8 8 0 0 

3 4 16 8 8 50 

 

Table 5.3: Test results of proposed scheme for various stable generator states 

No. No. of 

faults 

No. stable  predictions 

required 

No. of Correct 

predictions 

No. of Wrong 

predictions 

Error(%) 

1 36 324 324 22 6.8 

2 4 32 32 0 0 

3 4 24 24 0 0 

 

For each of the 36 fault simulations which resulted in one generator each becoming unstable, the 

proposed scheme predicted all 36 unstable generator states with 100% accuracy.  Also, the 

proposed scheme predicted all unstable generator conditions with 100% prediction accuracy for 

each of the 4 fault conditions which resulted in 2 generators each becoming unstable. However, 

for each of the 4 simulations which had 4 generatorseach becoming unstable, only two out of the 

four unstable generators states were predicted correctly in each case. Thus the algorithm is 

limited in predictions involving four unstable generators. However, in terms of predicting the 

transient stability status of a system, the prediction accuracy will be 100%.Also, the prediction 
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accuracy of the proposed scheme for the 380 stable generator states with 44 faults that resulted in 

some generators going out of step was found to be 94.2%. 

 

For the 10 fault conditions which resulted in all generators becoming stable, the algorithm had to 

make a total of 100 predictions, all indicating stable generator states. 3 out of the 100 generator 

states were predicted wrongly. Thus the prediction accuracy of theproposed scheme for faults 

which resulted in all generators remaining stable was found to be 97%. 

 

5.2 Generator Out-of-Step Prediction using Rotor Speed Deviation and Multilayer 

Perceptron Neural Network 

Ninety five three-phase faults were simulated to test the proposed rotor speed deviation and 

MLPNN-based generator OS prediction scheme. Sixty one of the 95 faults resulted in various 

generator OS conditions while the remaining 34 faults resulted in all generators remaining stable. 

All stable cases had fault durations of 0.1s (5 cycles) while OS conditions were obtained for 

faults lasting between 0.7s(35 cycles) and 0.9s (45 cycles).Figure 5.5 shows a plot of machine 

rotor angles for a three-phase fault on bus 28, for a base load condition. The fault was applied at 

0.1s and lasted for 0.7s after which the bus was disconnected resulting in generator 9 going out 

of step. All other machines remained in synchronism for the aforementioned fault condition.  The 

corresponding plot of rotor speed deviation is shown in Figure 5.6. 
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Figure 5.5: Rotor angles for a three-phase fault on bus 28 

 

 
Figure 5.6: Rotor speed deviations for a three-phase fault on bus 28 

 

Also, Figure 5.7 shows rotor angles for a three-phase fault between buses 6 and 11 for 105% of 

base load condition. The fault was applied at 0.1s and lasted for 1s. This resulted in generators 2 

and 3 going out of step. All other generators remained in synchronism. Figure 5.8 shows the 

corresponding plot of rotor speed deviations. 
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Figure 5.7: Rotor angles for a three-phase fault on the line between bus 6 and bus11 

 

Figure 5.8: Rotor speed deviations for a fault on line between buses 6 and 11 

 

It can be observed from Figure 5.6 and Figure 5.8 that within the first cycle after the tripping of a 

line or bus, the maximum speed deviations of the generators that went out of step are higher than 

those of the generators that remained stable. Similar waveforms were observed for the other fault 

conditions simulated.  

 

The training performance of the MLPNN used is shown in Figure 5.9. 
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Figure 5.9: Training performance of MLPNN for out-of-step prediction 

 

Table 5.4: Weights and Biases of MLPNN for generator OS prediction 

Weight values Bias values 

x – Input layer Input layer  – 

Hidden layer 

Hidden layer-  

Output layer 

Input layer  Hidden Layer Output layer 

979712011 .w 

 

05
12 65817  e.w

039412113 .w   

2658224 .w 

500034 .w   

7135010 .b 

 

0592020 .b 

0738320 .b   

6340040 .b 

 

 

Table 5.4 presents the weights and biases obtained after the training of the MLPNN.Table 5.5 

presents sample calculation of how the output of the trained MLPNN is obtained using (4.15) – 

(4.19) for a given input MSD. 

Table 5.5: Sample calculation of output of MLPNN for generator OS prediction 

Input (MSD) State 
1y  2y  3y  O  

0.0014 stable -0.59254 -0.0591 -1 0.000273 

0.0009 stable -.060464 -0.0591 -1 0.000275 

0.0094 unstable 0.0423687 -0.0592 1 2.000097 

0.0106 unstable 0.568862 -0.0592 1 2.000072 

 

From Table 5.5, it can be observed that for the stable generator states where the output of the 

MLPNN was expected to be 0 for both cases, the MLPNN gave outputs of 0.000273 and 

0.000275. Also whereas the outputs for the unstable generator states were each expected to be 1, 
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the MLPNN gave outputs of 2.000097 and 2.000072.  A similar situation is observed in digital 

communication networks, where the received bits have some deviation with respect to the sent 

bits. In these networks, the Transistor-Transistor Logic (TTL) standard is usually used in the 

receiving equipment to detect the received bits. This standard is also used to determine the output 

status of the MLPNN [5].  

180  jj O.O  (Out of step)            (5.1) 

02.0  jj OO (Stable)                            (5.2) 

Where: jO  is the output of the MLPNN. 

In the digital communication networks, if the value of a received bit is in the range of 0.2 to 0.8, 

it is considered as a missing bit. Besides, if a “1” bit is received in the range of 0 to 0.2 or a “0” 

bit is received in the range of 0.8 to 1 it is considered an error bit, which is a worse incorrect case 

than the missing bit. This interpretation for the error and missing bits is also used for the output 

of the MLPNN. 

Thus from (5.1) and (5.2), the outputs of the MLPNN in Table 5.5 can be interpreted as 0 for the 

stable states and 1 for the unstable states. 

  

Each generator was assigned one MLPNN to predict its stability status. Thus for every fault 

condition simulated, 10 MLPNN independent predictions were made. Therefore for the 61 fault 

conditions that resulted in OS conditions, there were a total of 610 MLPNN predictions.  Table 

5.6presents details of the number of out of step predictions that were expected in the 61 fault 

conditions. A total of 88 individual generator OS predictions were expected out of the 610 
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predictions. The remaining 512 predictions were expected to be predictions indicating stable 

generator states.  

Table 5.6: Number of generators involved in OS cases 

No. No. of system 

OOS cases 

No.of OS generators 

per case 

No. of OS 

predictions required 

1 38 1 38 

2 21 2 42 

3 2 4 8 

Total 61  88 

  

 

The trained MLPNN responded to the 88 OS cases with 100% accuracy while the response to the 

512 stable generator cases was found to be 98.05% accurate. The 340 MLPNN predictions made 

for the 34 fault conditions which had all 10 generators remaining in synchronism were 100% 

accurate. 

 

5.3 Prediction of System Transient Instability using Rotor Speed Deviations and Multilayer 

Perceptron Neural Network 

This scheme was also tested with data from the 95 fault conditions used to test the rotor speed 

deviation and MLPNN-based generator OS prediction scheme. Figure 5.10 shows the training 

performance of the MLPNN used. 

 

The trained MLPNN predicted the 61 system transient instability cases presented to it with 100% 

accuracy. The responses to the 34 system transient stability cases were also 100% accurate. 
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Figure 5.10: Training performance of MLPNN for transient stability status prediction 

 

 

5.4 Prediction of Coherent Generator Groupings 

Data from 117 transient unstable fault conditions was used to test the proposed scheme that 

predicts coherent generator groups that will be formed following transient instability. Figure5.11 

shows the rotor angles of the ten generators for a three-phase fault between lines 5 and 8 which 

lasted for 1s (50 cycles). The loading was a base load condition.  
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Figure5.11:  Rotor angles of generators for a three-phase fault between lines 5 and 8 

 

Three coherent groups resulted from this simulation. It can be observed from Figure 5.11 that 

generators 2 and 3 form one coherent group. Generators 4, 5, 6, 7, 8, 9, and 10 form another 

coherent group. Generator 1 stands alone. The corresponding plot of rotor speed deviations is 

shown in Figure 5.12. It can be seen from Figure 5.12 that the rotor speed deviations of the 

generators in each coherent group, immediately following the tripping of the line (at 1.1 

seconds), are quiet close to each other. However, the speed deviations for different machines 

belonging to different coherent groups are clearly distinct.  For example, whereas the speed 
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deviations of generators 2 and 3 which form the first coherent group are much greater than 0.005, 

those in the second coherent group which comprises generators 4, 5, 6, 7, 8, 9 and 10 are lower 

than 0.005. Also, the speed deviation of generator 1 which forms the third group is much lower 

than 0.001. Additionally, the difference between the speed deviations of generators in a coherent 

group is much lower than that between generators belonging to different coherent groups. 

Similar trends were observed for the other simulations that were carried out. Thus, the plots from 

the simulations corroborate what has been demonstrated theoretically that the speed deviations of 

the various generators in a system can be used to predict coherent generator groups following a 

disturbance.  

 
Figure5.12:  Rotor speed deviations of generators for a three-phase fault between lines 5 and 8 
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Table 5.7presents the number of coherent groups that were formed in the 117 fault conditions 

simulated.  

Table 5.7: Number of coherent groups formed for various fault conditions 

No. Number of fault conditions Number of coherent groups for each condition 

1 83 2 

2 31 3 

3 3 4 

 

Figure 5.13 and Figure 5.14 show training performance curves for MLPNN1 and 

MLPNN2respectively. 

 
Figure 5.13:Training performance of MLPNN 1 
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Figure 5.14:Training performance of MLPNN 2 

 

Table 5.8 presents the coherent groups formed for a three-phase fault on the line between 

buses 5 and 8. The rotor angle and speed deviation plots are shown in figures 5.12 and 5.13 

respectively. 

Table 5.8: Formed coherent groups for a fault on the line between buses 5 and 8 

Group name Generators 

A 1 

B 2 and 3 

C 4, 5, 6, 7, 8, 9 and 10 

 

In the first stage of the proposed grouping algorithm, generators in group C were placed in 

coherent group S. The generators in groups A and B were placed in unclassified group U1.In 

the second stage of the algorithm, generator 3 which had the highest MSD(that is 0.0088) 

was made the reference generator, ‘ref1’. Generator 3 was thus placed in classified unstable 

group C1. The scheme then determined whether or not generators 1 and 2 were in group C1. 

Generator 1 did not belong to group C1 so MLPNN1 was required to give an output of ‘1’, 

which it did. Generator 2 belonged to group C1 and as expected,MLPNN1 gave an output of 
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‘0’.The algorithm ended at the second stage after placing generator 1 in group C2. Table 

5.9presents the responses of MLPNN1. 

Table 5.9: MPLNN1 responses to a fault on the line between bus 5 and bus 8 

Generator no. MSD Desired MLPNN1 output Actual MLPNN1 output 

1 0.0005 1 1 

2 0.0085 0 0 

 

Table 5.10presentsthe coherent groups formed for a three-phase fault on bus 4 for 80% base 

load condition. For this condition, four coherent groups were formed.  

  Table 5.10: Formed coherent groups for a three-phase fault on bus 4 

Group  name Generators 

A 1 

B 2 

C 4, 5, 6 and 7 

D 3, 8, 9 and 10 

 

In the first stage of the proposed algorithm, the generators in D were placed in stable 

coherent group S. The generators in A, B and C were placed in unclassified unstable group 

U1. In stage two, generator 7 was made ref1 and placed in group C1. Table 5.11presents the 

responses of MLPNN1. MLPNN1 gave outputs of ‘0’ each when fed with MSD data of 

generators 4, 5 and 6, indicating that they belonged to the same coherent group as generator 

7. MLPNN1 gave outputs of ‘1’ when fed with MSD data for generators 1 and 2, indicating 

that they do not belong to the same coherent group as 7. Generators 1 and 2 were 

subsequently placed in unclassified unstable group U2. In stage three, generator 2 was made 

‘ref 2’ and placed in classified group C2. MLPNN2 was then employed to determine whether 

or not generator 1 belonged to the same group as 2. MPLNN2 gave an output of ‘1’ as 

required showing that the two generators belonged to different coherent groups. 

 



97 
 

Table 5.11: MLPNN1 responses to a three-phase fault on bus 4 

Generator no. MSD Desired MLPNN1 output Actual MLPNN1 output 

1 0.0004 1 1 

2 0.0034 1 1 

4 0.0062 0 0 

5 0.0072 0 0 

6 0.0079 0 0 

 

 

Similar responses were obtained for the other fault conditions. There were however, some 

grouping errors. Table 5.12 presents the generator placement prediction accuracy of the 

proposed scheme for the 117 fault conditions simulated. 

Table 5.12: Prediction accuracy of proposed coherent grouping scheme 

No. No. of faults No. of coherent groups per fault Prediction accuracy 

1 83 2 92.77% 

2 31 3 89.03% 

3 3 4 53.33% 
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Chapter 6 

CONCLUSIONS 

 

6.1 Overview 

In this work,comprehensive predictive schemes for improving power system operation following 

a large disturbance have been developed. The schemes make use of rotor speed deviation as the 

only power system input parameter. Wavelet transform and multilayer perceptron neural 

networks were used for signal processing and decision making respectively. The schemes predict 

the transient stability status of a system following a disturbance and also indicate specific 

generators that will go out of step.For a system that will be transient unstable, the coherent 

generator groups that will be formed are also predicted. 

 

6.2 Contributions 

Firstly, a wavelet transform-based generator out-of-step prediction scheme has been developed. 

In this scheme, the wavelet entropies contained in detail 8 coefficients obtained three consecutive 

cycles after the tripping of a bus or line are used. Test results of the scheme show 8.8% 

prediction error. 

 

Secondly, a multilayer perceptron neural network-based scheme that predicts the transient 

stability status of a power system has been developed. The scheme responded to 61 transient 

unstable cases with 100% accuracy. Also, the response to 34 transient stable cases was 100% 

accurate. 
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Thirdly, a scheme that predicts generators that will go out of step following a transient 

disturbance has been developed. The scheme was tested using 95 fault conditions. The prediction 

accuracy for the proposed scheme was 98.05%. 

 

Lastly, a scheme that predicts coherent generator groups that may be formed after a disturbance 

has been proposed. This scheme uses two multilayer perceptron neural networks. The prediction 

accuracy ofthis scheme for 117 fault conditions which resulted in the formation of coherent 

generator groups was 90.43%. 

 

All the four schemes use rotor speed deviation as inputs thus demonstrating also the potential of 

speed deviation as a power system input signal for the prediction of transient instability 

conditions. The use of speed deviation which can be measured in the field makes the schemes 

easy to implement. The use of only one input parameter also makes the schemes simple to 

implement. The schemes are also accurate in their predictions.Finally, given the early period of 

data capture, quick data processing, and the speedy response of decision making tools used, the 

schemes are expected to give fast responses. 

 

6.3 Future Work 

The following additional studies are recommended: 

(a) Improving the prediction accuracy of the coherent generator prediction scheme. Such a study 

may vary the data window for extracting the rotor speed deviations or explore other power 

system input parameters. Other decision making tools such as decision trees may also be 

investigated. 
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(b) Development of an adaptive islanding scheme based on the proposed coherent generator 

group prediction scheme. This study will determine the splitting boundaries for various 

islands taking inputs from the proposed coherency prediction scheme. 

(c) Development of a scheme to predict when actual out-of-step begins during disturbances. 

Such a scheme will provide advance information on when system splitting should take place. 
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Appendix A – IEEE 39-BUS TEST SYSTEM INFORMATION 

 

A1- General Information and Snapshot of the IEEE 39-bus Test System 

The IEEE 39-bus test system also known as the New England test system is a widely used test 

system for transient stability studies. It is a 10-machine system with 39 buses. The generators 

and loads in the system represent the aggregation of many generators and load feeders connected 

to the same node.  Generator 1 represents a large system.  The system parameters adopted in the 

simulations carried out in this study were obtained from a dissertation written by Song [90]. 

 
Figure A1: Snapshot of IEEE 39-bus test system 
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A2 - Steady-state Modelling Information of the IEEE 39-bus System 

 

I – Lines and Transformers 

The line data for this system is shown in the Table A1. Table A2 also presents transformer tap 

data. All values are given on the same system base MVA of 100MVA. 

Table A1: Transmission line data for IEEE 39-bus test system 

From bus To bus R X B 

1 2 0.003500 0.041100 0.698700 

1 39 0.001000 0.025000 0.750000 

2 3 0.001300 0.015100 0.257200 

2 25 0.007000 0.008600 0.146000 

3 4 0.001300 0.021300 0.221400 

3 18 0.001100 0.013300 0.213800 

4 5 0.000800 0.012800 0.134200 

4 14 0.000800 0.012900 0.138200 

5 6 0.000200 0.002600 0.043400 

5 8 0.000800 0.011200 0.147600 

6 7 0.000600 0.009200 0.113000 

6 11 0.000700 0.008200 0.138900 

7 8 0.000400 0.004600 0.078000 

8 9 0.002300 0.036300 0.380400 

9 39 0.001000 0.025000 1.200000 

10 11 0.000400 0.004300 0.072900 

10 13 0.000400 0.004300 0.072900 

13 14 0.000900 0.010100 0.172300 

14 15 0.001800 0.021700 0.366000 

15 16 0.000900 0.009400 0.171000 

16 17 0.000700 0.008890 0.134200 

16 19 0.001600 0.019500 0.304000 

16 21 0.000800 0.013500 0.254800 

16 24 0.000300 0.005900 0.068000 

17 18 0.000700 0.008200 0.131900 

17 27 0.001300 0.017300 0.321600 

21 22 0.000800 0.014000 0.256500 

22 23 0.000600 0.009600 0.184600 

23 24 0.002200 0.035000 0.361000 

25 26 0.003200 0.032300 0.513000 

26 27 0.001400 0.014700 0.239600 

26 28 0.004300 0.047400 0.780200 

26 29 0.005700 0.062500 1.029000 

28 29 0.000000 0.015100 0.249000 
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Table A2: Transform tap data for IEEE 39-bus test system 

From bus To bus Magnitude Angle 

2 30 1.0250 0.00 

6 31 1.0700 0.00 

10 32 1.0700 0.00 

11 12 1.0060 0.00 

12 13 1.0060 0.00 

19 20 1.0600 0.00 

19 33 1.0700 0.00 

20 34 1.0090 0.00 

22 35 1.0250 0.00 

23 36 1.0000 0.00 

25 37 1.0250 0.00 

29 38 1.0250 0.00 

 

 

II – Loads and Generators 

Table A3 presents bus load data. This data served as the base load. Table A4 presents generator 

steady state data for base case. 

 

Table A3: Steady state load data for base case 

Bus Active power(MW) Reactive power(MVAr) 

3 322.0000 2.4000 

4 500.0000 184.0000 

7 233.8000 84.0000 

8 522.0000 176.0000 

12 7.5000 88.0000 

15 320.0000 153.0000 

16 329.0000 32.3000 

18 158.0000 30.0000 

20 628.0000 103.0000 

21 274.0000 115.0000 

23 247.5000 84.6000 

24 308.6000 -92.2000 

25 224.0000 47.2000 

26 139.0000 17.0000 

27 281.0000 75.5000 

28 206.0000 27.6000 

29 283.5000 26.9000 

31 9.2000 4.6000 

39 1104.0000 250.0000 
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Table A4: Steady state generator data for base case 

Bus Voltage (pu) Active power(MW) Reactive power(MVAr) 

30 1.0475 250.0000 145.0375 

31 0.9820 0.0000 206.3611 

32 0.9831 650.0001 206.0271 

33 0.9972 632.0002 109.1180 

34 1.0123 508.0001 167.0703 

35 1.0493 650.0001 211.3163 

36 1.0635 560.0001 100.5535 

37 1.0278 539.9999 0.7260 

38 1.0265 830.0000 22.7317 

39 1.0300 1000.0000 87.6621 

 

 

 

A3 – Dynamic Modelling of the IEEE 39-bus Test System 

 

 

I–GENROU model equations 

 

The modelling equations of the GENROU generator model are: 
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(A6) 

 

II - IEEE type 1 exciter equations 

The model equations of IEEE type 1 exciter are: 

   RfdfdEEfdE VEESKET         (A7) 

fdFffF EKRRT          (A8) 

   TrefAfdFf

F

A
RRA VVKEKR

T

K
VVT       (A9) 

 

III – Generator data 

 

The GENROU generator model in PSSE was adopted for the study. The parameters for the two-

axis model of the synchronous machines are shown in Table A5. All values are given on the 

same system base of 100MVA. 

 

Table A5: Dynamic data of generator models for IEEE 39-bus test system 

Bus  30 31 32 33 34 35 36 37 38 39 

T'do 10.200 4.7900 6.7000 5.6600 7.3000 5.400 5.6700 5.7000 6.5600 7.0000 

T''do 0.0600 0.0600 0.0600 0.0600 0.0600 0.060 0.0600 0.0600 0.0600 0.0600 

T'qo 0.2000 1.5000 0.4100 1.5000 0.4000 0.440 1.5000 1.5000 1.5000 0.7000 

T''qo 0.0500 0.0500 0.0500 0.0500 0.0500 0.050 0.0500 0.0500 0.0500 0.0500 

H 42.000 34.500 24.300 26.400 34.800 26.00 28.600 35.800 30.300 500.00 

D 2.0000 2.0000 2.0000 2.0000 2.0000 2.000 2.0000 2.0000 2.0000 2.0000 

Xd 0.1000 0.2106 0.2900 0.2950 0.2540 0.670 0.2620 0.2495 0.2950 0.0200 

Xq 0.0690 0.2050 0.2800 0.2920 0.2410 0.620 0.2580 0.2370 0.2820 0.0190 

X'd 0.0310 0.0570 0.0570 0.0490 0.0500 0.132 0.0436 0.0531 0.0697 0.0060 

X'q 0.0800 0.0587 0.0911 0.1860 0.0814 0.166 0.1660 0.0876 0.1700 0.0080 

X''d 0.0200 0.0420 0.0300 0.0380 0.0300 0.080 0.0320 0.0400 0.0430 0.0040 

Xl 0.0125 0.0298 0.0280 0.0322 0.0224 0.054 0.0295 0.0304 0.0350 0.0030 
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IV – Exciter data 

The IEEET1 exciter model in PSSE was used for the study. Table A6 presents the exciter data. 

 

Table A6: IEEET1 exciter data for IEEE 39-bus test system 

Bus 30 31 32 33 34 35 36 37 38 39 
TR  0.000 0.000 0.000 0.0000 0.000 0.0000 0.000 0.0000 0.000 0.0000 

KA 40.000 40.00 5.000 40.000 5.000 40.000 5.000 5.0000 6.200 5.0000 

TA  0.0200 0.020 0.020 0.0200 0.020 0.0200 0.060 0.0600 0.050 0.0600 

VRMAX  10.000 10.50 1.000 6.5000 1.000 10.000 1.000 1.0000 1.000 1.0000 

VRMIN -10.00 -10.5 -1.000 -6.500 -1.00 -10.000 -1.00 -1.000 -1.00 -1.000 

KE 1.000 1.00 -0.047 1.000 -0.0419 1.000 -0.525 -0.0198 -0.633 -0.0485 

TE 0.785 1.40 0.5280 0.730 0.4710 0.785 0.500 0.5000 0.405 0.2500 

KF 0.030 0.03 0.0845 0.030 0.0754 0.030 0.080 0.0800 0.057 0.0400 

TF 1.000 1.00 1.2600 1.000 1.2460 1.000 1.000 1.0000 0.500 1.0000 

Switch 0.000 0.00 0.0000 0.000 0.0000 0.000 0.000 0.0000 0.000 0.0000 

E1 0.750 0.75 0.7500 0.750 0.7500 0.750 0.750 0.7500 0.750 0.7500 

SE(E1) 0.670 0.62 0.0720 0.530 0.0640 0.670 0.080 0.1300 0.660 0.0800 

E2 1.100 1.10 1.1000 1.100 1.1000 1.100 1.100 1.1000 1.100 1.1000 

SE(E2) 0.910 0.85 0.2820 0.740 0.2510 0.910 0.314 0.3400 0.880 0.2600 

 

 

V – Stabilizer data 

The PSS2A stabilizer model in PSSE was used for the study. Table A7 presents the definitions of 

the various parameters can be found in the PSSE library. 

 

Table A7: Data for PSS2A stabilizer for IEEE 39-bus test system 
Bus  30 31 32 33 34 35 36 37 38 39 

TW1 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 

TW2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T6   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

TW3 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

TW4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T7   0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KS2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

KS3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

T8   0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

T9  0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 

KS1 1.00 0.50 0.50 2.00 1.00 4.00 7.50 2.00 2.00 1.00 

T1   1.00 5.00 3.00 1.00 1.50 0.50 0.20 1.00 1.00 5.00 

T2   0.05 0.40 0.20 0.10 0.20 0.10 0.02 0.20 0.50 0.60 

T3   3.00 1.00 2.00 1.00 1.00 0.50 0.50 1.00 2.00 3.00 

T4   0.50 0.10 0.20 0.30 0.10 0.05 0.10 0.10 0.10 0.50 

VSTMAX  0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 

VSTMIN  -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 -0.20 
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VI – Turbine governor data 

The turbine governor model in PSSE used for the study was TGOV1. Table A8 presents data for 

the TGOV1 

 

Table A8: TGOV1 turbine governor data for IEEE 39-bus test system 

Bus 30 31 32 33 34 35 36 37 38 39 

R 0.05 0.05 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.100 

T1  0.40 0.40 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.800 

VMAX 1.00 1.00 1.000 1.000 1.000 1.000 1.000 1.000 1.200 1.500 

 MIN 0.00 -0.05 -0.05 -0.05 -0.050 -0.05 -0.05 -0.05 -0.05 -0.05 

T2  1.50 1.50 1.500 1.500 1.500 1.500 1.500 1.500 1.500 1.500 

T3  5.00 5.00 5.000 5.000 5.000 5.000 5.000 5.000 5.000 5.000 

Dt 0.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Appendix B – MATLAB M-FILES FOR NEURAL NETWORK TRAINING 

 

M-files written in MATLAB for the execution of various tasks have been presented below. The 

definition of the various terms can be found in the neural network toolbox for MATLAB. 

 

I – M-file for training of multilayer perceptron artificial neural network (MLPNN) for 

generator out of step prediction scheme 

P=[0.0118 0.0141 0.0072 0.0072 0.0059 0.0055 0.0035 -0.0001 0.0030 0.004]; 

net=newff([-1 1],[1 2 1],{'purelin' 'tansig' 'purelin'}); 

T=[1 1 1 1 1 0 0 0 0 0]; 

net.trainParam.epochs=600; 

net.trainParam.goal=1e-5; 

net.trainParam.min_grad=0; 

net.trainParam.max_fail=10; 

net.trainParam.mu=0.001; 

net.trainParam.mu_max=1e10; 

net=train(net,P,T); 

 

II – M-file for training of MLPNN for prediction of transient stability status of a power 

system 

P=[0.0324 0.0326 0.0155 0.0165 0.0047 0.0019]; 

net=newff([-1 1],[1 2 1],{'purelin' 'tansig' 'purelin'}); 

T=[1 1 1 1 0 0]; 

net.trainParam.epochs=600; 

net.trainParam.goal=1e-5; 

net.trainParam.min_grad=0; 

net.trainParam.max_fail=10; 

net.trainParam.mu=0.001; 

net.trainParam.mu_max=1e10; 

net=train(net,P,T); 

 

III – M-file for training of MLPNN 1 for the prediction of coherent generator groups 

P=[x1c1 x1c2 x1c3 x1c4 x1c5 x1c7 x20c1 x20c3]; 

net=newff([0 0.1;0 0.1;0 0.1],[3 4 1],{'purelin' 'tansig' 'purelin'}); 

T=[1 1 0 0 0 1 1 1]; 

net.trainParam.epochs=600; 

net.trainParam.goal=0.01; 

net.trainParam.min_grad=0; 

net.trainParam.max_fail=10; 
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net.trainParam.mu=0.001; 

net.trainParam.mu_max=1e10; 

net=train(net,P,T); 

 

 


