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Abstract

Mathematical morphology is the theory and technique for the analysis and

processing of geometrical structures, based on set theory, lattice theory,

topology, and random functions. Mathematical Morphology is most com-

monly applied to digital images, but it can be employed as well on graphs,

surface meshes, solids, and many other spatial structures. Mathematical

Morphology has a lots of operators but the most basic and important ones

are Dilation and Erosion. Since it development, Morphological operators

have been governed by algebraic properties, which we seek to improve in

this study. Mathematical proofs are outlined for propositions which were

discovered during the investigation of what happens to Dilation and Erosion

when the set or structural element in a morphological operation is parti-

tioned before the operation is taken. It turns out that some of the operators

distribute over union and intersection with a few exceptions and it is also

possible to partitioned the set or structural element before carrying out the

morphological operation.
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Chapter 1

GENERAL INTRODUCTION

1.1 Introduction

The objective of this chapter is to give the reader an introduction of Mathe-

matical Morphology, and also to provide some useful background information

about Mathematical Morphology in order to give the reader a full under-

standing of the subject this thesis will explore. Furthermore, this chapter

includes a problem discussion, the research questions and the aim of the

study. Finally, the delimitations, targeted audience and the disposition of

the thesis are presented.

1.2 Background of Study

Mathematical morphology is the theory and technique for the analysis and

processing of geometrical structures, based on set theory, lattice theory,

topology, and random functions. Mathematical Morphology is most com-
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monly applied to digital images, but it can be employed as well on graphs,

surface meshes, solids, and many other spatial structures. Topological and

geometrical continuous-space concepts such as size, shape, convexity, connec-

tivity, and geodesic distance, were introduced by Mathematical Morphology

on both continuous and discrete spaces. Mathematical Morphology is also

the foundation of morphological image processing, which consists of a set of

operators that transform images according to the above characterizations.

Mathematical morphology mostly deals with the mathematical theory of

describing shapes using sets. In image processing, mathematical morphology

is used to investigate the interaction between an image and a certain cho-

sen structuring element using the basic operations of erosion and dilation.

Mathematical morphology can also be described as the science of transform-

ing images. Perhaps one could say that it serves for images as Fourier analysis

serves for sounds. Using Fourier analysis one can analyze and manipulate

sounds, e.g., remove noise. Using mathematical morphology one can in a sim-

ilar way analyze and manipulate images. Mathematical morphology stands

somewhat apart from traditional linear image processing, since the basic op-

erations of morphology are non-linear in nature, and thus make use of a

totally different type of algebra than the linear algebra.

Mathematical morphology is a collection of algorithmic tools that can

be executed by a digital computer and, when applied to an image, yield a

transformed image. Transforming images is referred to as image process-

ing. The goal of applying such algorithms to images might be improving

the appearance of these images, creating art, performing measurements, or

understanding what is imaged. In these last two cases we speak of image
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analysis. Mathematical morphology was born in the mid 1960s from work

by Georges Matheron and Jean Serra. At that time they heavily stressed the

mathematical formalism’s (probably because computers took a long time to

compute the complex transforms they were describing, and they recognized

the importance of a strong mathematical base). Many authors since have

extended this set of tools, mostly working on the mathematical base (defi-

nitions, propositions and theorems). Nonetheless, mathematical morphology

is a relatively simple and powerful tool to solve a wide variety of problems

in image processing and analysis. Mathematical morphology can also be

applied to other things besides images.

Looking at all this uses and importance of mathematical morphology, it

prudent that one understand the basic theories and operators of mathemat-

ical morphology and hence the topic at hand.

1.3 Statement of Problem

The field that has become known as mathematical morphology is quite old in

a sense. It is about operations on sets and functions that have been around for

a long time, but which are now being systematized and studied under a new

angle, precisely because it is possible to actually perform operations on the

computer and see on the screen what happens. Morphology can be viewed as

having its origin in our trying to understand a complicated world. The world

is so complex that the human mind and the human eye cannot perceive all

its minute details, but needs a simplified image, a simplified structure. The

need to simplify a complicated object is, in this view of things, the basic

impulse behind mathematical morphology, and this is what mathematical
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morphology does. Related to this is the fact that an image may contain a

lot of disturbances, or rather, it almost always does. Therefore, most images

need to be tidied up. Hence another need to process images. However, this

research will be purely concern with the operations used in simplifying the

images.

1.4 Research Questions

• What are the two basic Mathematical Morphology Operators?

• What is a structuring element in Mathematical Morphology?

• What are the operators in Mathematical Morphology?

• What are the algebraic structures of Morphological Operators?

• Can the intersection or union of 2 morphological operators be found if

they have the same structural element but different sets and vice versa?

1.5 Objectives of Study

• The main aim of this thesis is to analyze in details the mathemati-

cal morphology operators and their algebraic structure when they are

linked with union or intersection.

• We will also investigate what happens to Dilation, Erosion, Opening

and closing when the set or structural element in a morphological op-

eration is partitioned before the operation is taken.

4



• Furthermore, we will also investigate the distributive property of mor-

phological operators over set union and intersection.

1.6 Justification of Study

Mathematical Morphology is a theory which provides a number of useful

tools for image analysis. Tools such as a way to shrink or dilate, a way to

make blur images clearer and so on. It is also seen by some as a self-contained

approach to handling images and by others as complementary to the other

methods. Hence it is of importance to know the operators of mathematical

morphology which goes into these tools.

Mathematical morphology mostly deals with the mathematical theory of

describing shapes using sets. In image processing, mathematical morphology

is used to investigate the interaction between an image and a certain chosen

structuring element using the basic operations of erosion and dilation. Math-

ematical morphology stands somewhat apart from traditional linear image

processing, since the basic operations of morphology are non-linear in na-

ture, and thus make use of a totally different type of algebra than the linear

algebra.

Mathematical Morphology is also a well-founded non-linear theory for

Image Processing. Its geometry-oriented nature provides a strong framework

for addressing shape characteristics such as size, connectivity, and others,

which are not easily accessed by the traditional linear approach. Morphol-

ogy has been used in applications such as nonlinear filtering, sharpening,

compression, shape analysis, segmentation, and others.

In modern society, huge amounts of images are collected and stored in
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computers so that useful information can be later extracted. In a concrete

example, the online image hosting Flickr reported in August 2011, that it

was hosting more than 6 billion images and 80 million unique visitors. The

growing complexity and volume of digitized sensor measurements, the re-

quirements for their sophisticated real time exploitation, the limitations of

human attention, and increasing reliance on automated adaptive systems all

drive a trend towards heavily automated computational processing in order

to refine out essential information and permit effective exploitation.

The science of extracting useful information from images is usually re-

ferred to as image processing. From the mathematical point of view, image

processing is any form of signal processing for which the input is an image

and the output may be either an image or a set of characteristics or fea-

tures related to the input image. In essence, image processing is concerned

with efficient algorithms for acquiring and extracting information from im-

ages. In order to design such algorithms for a particular problem, we must

have realistic models for the images of interest. In general, models are useful

for incorporating a priori knowledge to help to distinguish interesting images,

from uninteresting, which can help us to improve the methods for acquisition,

analysis, and transmission. Therefore the need to research into mathematical

morphology keeps growing everyday.

1.7 Limitations of Study

The research area of mathematical morphology is immense. The study of

mathematical morphology in the present dissertation will concentrate on a

particular discipline to obtain a focused result, namely the mathematical
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aspect only especially the set theory aspect of the operators. Therefore ap-

plications of mathematical morphology and specific application of the mor-

phological operators would not be a focus of this thesis.

1.8 Organization of Study

This thesis is divided into five chapters each with a number of subcategories.

The first chapter covers seven subcategories, the first one aims at defining

the key concepts and terms, which will be employed throughout the thesis.

It also deals with the introduction, which encompasses a short preview of the

thesis. Furthermore, chapter 1 addresses the rationale and motivation which

led the author to choose the presented topic. The problem formulation and

specifically the core questions intended to be answered throughout the thesis

will also be dealt with in the first chapter. Finally, attention will be focused

on objective, justification, scope of the study and limitations.

Chapter two is the theoretical approach, discussing and describing the

theories employed throughout the thesis, and the rationale for choosing them.

The birth of mathematical morphology and the developments in morphologi-

cal operators will be comprehensively analyzed in this section along with the

views and the definition of mathematical morphology and its applications.

Chapter three describes the research methodology, how images are trans-

formed using morphological operators. It also defines key operations of math-

ematical morphology such as dilation, erosion, opening and closing in binary

and gray scale morphology. An analysis of the morphological operators and

their algebraic structure when linked with union or intersection is covered in

chapter four. The last part is the conclusion of the thesis, and is intended to
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sum up the analysis undertaken throughout this paper, and its implications.
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Chapter 2

Literature Review

2.1 Introduction

This chapter deals with the introduction of mathematical morphology, the

birth of this branch of mathematics and its history. It also gives the de-

velopment of mathematical morphology over the past years and it related

research areas. Furthermore, the basic principles and fundamental proper-

ties of mathematical morphology would be considered in this section.

2.2 Introduction of Mathematical Morphol-

ogy

Mathematical Morphology is the analysis of signals in terms of shape. This

simply means that morphology works by changing the shape of objects con-

tained within the signal. In the processing and analysis of images it is impor-

tant to be able to extract features, describe shapes and recognize patterns.
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Such tasks refer to geometrical concepts such as size, shape, and orienta-

tion. Mathematical morphology uses concepts from set theory, geometry

and topology to analyze geometrical structures in an image.

Mathematical morphology is about operations on sets and functions. It is

systematized and studied under a new angle, precisely because it is possible

to actually perform operations on the computer and see on the screen what

happens. The need to simplify a complicated object is the basic impulse

behind mathematical morphology. Related to this is the fact that an image

may contain a lot of disturbances. Therefore, most images need to be tidied

up. Hence another need to process images; it is related to the first, for the

border line between dirt and of other kind disturbances is not too clear.

Consider Euclidean geometry, and consider cardinalities. The set Z+ of

non-negative integers is infinite, and its cardinality is denoted by card(Z+) =

ℵ0 (Aleph null). The set of real numbers R has the same cardinality as the

set of all subsets of N, thus card(R) = 2ℵ0 . The points in the Euclidean plane

have the same cardinality:

card(R2) = card(R).

But the set of all subsets of the line or the plane has the larger cardinality.

There are too many sets in the plane. Consider a large subclass of this huge

class, a subclass consisting of nice sets. For instance, the set of all disks

has a much smaller cardinality, because three numbers suffice to determine

a disk in the plane: its radius and the two coordinates of its center. Simi-

larly, four numbers suffice to specify a rectangle [a1, b1] × [a2, b2] with sides

parallel to the axes; a fifth is needed to rotate it. This leads to the idea of

simplifying a general, all too wild set, to some reasonable, better-behaved
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set. Euclidean line containing denumerably many points. Consider a line as

the set of solutions in Q2 of an equation a1x1 + a2x2 + a3 = 0 with integer

coefficients. Then two lines which are not parallel intersect in a point with

rational coordinates. The cardinality of the set of all subsets of Q2 is 2ℵ0 , so

there are fewer sets to keep track of than in the real case. So there are too

many subsets in the plane. Consider digital geometry. On a computer screen

with, say, 1, 024 pixels in a horizontal row and 768 pixels in a vertical column

there are 1, 024 × 768 = 786, 432 pixels. On such a screen a rectangle with

sides parallel to the axes is the Cartesian product R(a, b) = [a1, b1]Z× [a2, b2]Z

of two intervals.

There are only finitely many binary images. But the number of binary

images must be compared with other finite numbers. Thus, although the

number of binary images on a computer screen is finite, it is so huge that

the conclusion must be the same as in the case of the infinite cardinal: there

are too many and it is not possible to search through the whole set and

hence must be simplified. This leads to image processing and mathematical

morphology, with subsets of Z2, or, generally, of Zn, the set of all n-tuples of

integers.

Mathematical Morphology was first introduced by Matheron and Serra

in 1967. Serra (1982) lists ”the four principles of quantification”, which are

ways to gather information about the external world. They apply also, but

not exclusively, to image analysis.

Serra’s first principle is ”compatibility under translation”. For a mapping,

this means that f(A + b) = f(A) + b, which is expressed as f ◦ Tb = Tb ◦ f ,

where ◦ denotes composition of mappings defined by (f ◦ Tb)(x) = f(Tb(x)),
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thus a kind of commutativity, writing Tb for the translation Tb(A) = A + b.

It means that f commutes with translations. On a finite screen like {x ∈

Z2; 0 < x1 < 1, 024, 0 < x2 < 768}, almost nothing can commute with

translations. Therefore consider the ideal, infinite, computer screen with

sets of addresses equal to Z2. The principle is equally useful in Rn and Zn.

Serra’s second principle is ”compatibility under change of scale”. For a

mapping this means that it commutes with homotheties (or dilatations).

The third principle is that of ”local knowledge”. This principle says that

in order to know some bounded part of f(A), there is no need to know all of A,

only some bounded part of A. Mathematically speaking: for every bounded

set Y , there exists a bounded set Z such that f(A ∩ Z) ∩ Y = f(A) ∩ Y .

Serra’s fourth principle of quantification is that of ”semi continuity”. It

means that if a decreasing sequence (Aj) of closed sets tends to a limit A,

thus A = ∩Aj, then f(Aj) tends to f(A). Thus if Aj is close to A in some

sense and Aj contains A, then f(Aj) must be close to f(A). To express

this property as semi continuity, one must define a topology. In this thesis

an attempt is made to derive some meaningful results by introducing some

topological properties to the theory of morphological operators.

Over the last 10-15 years, the tools of mathematical morphology have

become part of the mainstream of image analysis and image processing tech-

nologies. The growth of popularity is due to the development of powerful

techniques, like granulometries and the pattern spectrum analysis, that pro-

vide insights into shapes, and tools like the watershed or connected operators

that segment an image. But part of the acceptance in industrial applications

is also due to the discovery of fast algorithms that make mathematical mor-
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phology competitive with linear operations in terms of computational speed.

A breakthrough in the use of mathematical morphology was reached, in 1995,

when morphological operators were adopted for the production of segmenta-

tion maps in MPEG-4.

J.Serra and George Matheron worked on image analysis. Their work lead

to the development of the theory of Mathematical Morphology. Later Petros

Maragos contributed to enrich the theory by introducing theory of lattices.

Firstly the theory is purely based on set theory and operators are defined

for binary cases only. Later, the theory extended to Gray scale images also.

He also gave a representation theory for image processing. Heink J.Heijmans

gave an algebraic basis for the theory. Heink J.Heijmans extended the theory

to Signal processing also.

He also defined the operators for convex structuring elements. Rein Van

Den Boomgaard introduced Morphological Scale space operators. In this

thesis, an attempt to link some topological concepts to operators is made.

2.3 Birth of Mathematical Morphology

Mathematical morphology (MM) originates from the study of the geometry

of binary porous media such as sandstones. It can be considered as binary in

the sense it is made up of two phases: the pores embedded in a matrix. This

led Matheron and Serra to introduce in 1967 a set formalism for analyzing

binary images.

Mathematical morphology is a non-linear theory of image processing. Its

geometry oriented nature provides an efficient method for analyzing object

shape characteristics such as size and connectivity, which are not easily ac-
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cessed by linear approaches. Mathematical Morphology (MM) is associated

with the names of Georges Matheron and Jean Serra, who developed its main

concepts and tools. (Matheron, 1975; Serra, 1982; Serra, 1988).

They created a team at the Paris School of Mines. Mathematical Mor-

phology is heavily mathematized. In this respect, it contrasts with differ-

ent experimental approaches to image processing . MM stands also as an

alternative to another strongly mathematized branch of image processing,

the one that bases itself on signal processing and information theory. Main

contributors in this area are Wiener, Shannon, Gabor, etc. These classical

approaches has a lot of applications in telecommunications. Analysis of the

information of an image is not similar to transmitting a signal on a channel.

An image should not be considered as a combination of sinusoidal frequen-

cies, nor as the result of a Markov process on individual points .The purpose

of image analysis is to find spatial objects. Hence images consist of geomet-

rical shapes with luminance (or colour) profiles. This can be analyzed by

their interactions with other shapes and luminance profiles. In this sense the

morphological approach is more relevant.

MM has taken concepts and tools from different branches of mathematics

like algebra (lattice theory), topology, discrete geometry, integral geometry,

geometrical probability, partial differential equations, etc.
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2.4 Overview of Developments in Morpho-

logical Operators and Related Areas

Before we outline our scope of coverage on morphological operators, we

provide a brief historic tour of developments in the corresponding field of

morphological image analysis. Classic mathematical morphology, as a field

of nonlinear geometric image analysis, was developed initially by Matheron

(1975), Serra (1982) and their collaborators and was applied successfully to

geological and biomedical problems of image analysis. In this first period,

i.e. the late 1960s and throughout the 1970s, the basic morphological oper-

ators were developed first for binary images based on set theory (Matheron,

1975; Serra, 1982) inspired by the work of Minkowski (1903) and Hadwiger

(1957), second for graylevel images based on local min/max operators and

level sets (Meyer, 1978; Serra, 1982) or on fuzzy sets (Nakagawa and Rosen-

feld, 1978; Goetcherian, 1980), and third for gray level images but with

weighted min/max operators using a geometric interpretation based on the

umbra approach of Sternberg (1980, 1986) which is algebraically equivalent

to maxplus convolutions. All these operators were translation-invariant and

their set generators were Minkowski set addition and subtraction; thus, we

shall refer to them either as Minkowski operators or as Euclidean morpholog-

ical operators since their most common domain is the Euclidean plane (R2)

or its discretized version (Z2) and they commute with Euclidean translations.

In the 1980s, extensions of classic mathematical morphology and connec-

tions to other fields were developed by several research groups worldwide

along various directions including: applications to pattern recognition and
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computer vision problems; unified analysis and representation of large classes

of nonlinear filters, including morphological, rank and stack filters (Maragos

and Schafer, 1987a,b); multiscale image processing and shape and texture

analysis; statistical analysis and optimal design of morphological filters. Ac-

counts and references at varying degrees of detail can be found in books by

(Serra, 1982, 1988; Heijmans, 1994; Haralick and Shapiro, 1992; Dougherty

and Astola, 1994) or tutorial chapters and papers by (Sternberg, 1986; Har-

alick et al., 1987; Maragos and Schafer, 1990; Serra and Vincent, 1992; Gout-

sias, 1992; Maragos, 1998, 2005a) that deal with mathematical morphology.

Overall, during the first two decades (late 1960s until late 1980s), this whole

methodology was essentially a Euclidean morphology where the basic oper-

ators could be understood geometrically as translation-invariant set opera-

tions based on Minkowski-type set operations and implemented algebraically

as nonlinear signal operations, i.e. Boolean or min/max superpositions and

max-plus convolutions. Its image analysis applications were mainly in denois-

ing, nonlinear multiscale filtering, feature extraction, simple object detection,

shape and texture analysis, and watershed-based segmentation.

In the late 1980s and early 1990s a new and more general formalization of

morphological operators was introduced: Lattice morphology. Specifically,

the need to unify its analysis tools for both binary and gray images as well as

to use it for more abstract data types such as graphs led researchers in math-

ematical morphology to extend its theory by generalizing the image space to

a complete lattice and viewing all image transformations as lattice opera-

tors. The theoretical foundations of morphology on complete lattices were

developed by Serra and Matheron, presented as chapters in Serra (1988),
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and further extended by Heijmans and Ronse (1990); Ronse and Heijmans

(1991), Heijmans (1994), and Roerdink (1993). Later another algebraic ap-

proach to morphology was developed by Keshet (Keshet, 2000) based not on

complete lattices but on a related weaker algebraic structure, inf-semilattices.

The basic advance of lattice morphology was to develop more general oper-

ators that shared with the standard dilation, erosion, opening and closing

only a few algebraic properties. One such fundamental algebraic structure

is a pair of erosion and dilation operators that form an adjunction. This

guarantees the formation of openings and closings via composition of the

adjunction constituents. Other new concepts include the group invariant op-

erators (Heijmans and Ronse, 1990; Roerdink, 2000); connected operators

(Serra and Salembier, 1993; Salembier and Serra, 1995) and connectivity-

based segmentation (Serra, 2000), graph morphology (Vincent, 1989; Heij-

mans et al., 1992); and the slope transform (Dorst and van den Boomgaard,

1994; Maragos, 1994) defined and studied in Maragos (1994, 1995, 1996)

and Heijmans and Maragos (1997) from the viewpoint of lattice morphology.

Overall, the lattice framework allows us to unify the concepts and analy-

sis of large classes of operators that share a few fundamental properties,

independently of whether they are defined for sets (shapes), binary signals

(binary images), multilevel signals (gray level images), or even more abstract

image data types such as graphs. The lattice operators have found many

applications in important image analysis computer vision tasks, such as seg-

mentation, shape analysis, motion analysis, and object detection.

During the 1990s, in parallel to the development of lattice morphology, an-

other new development was that of differential morphology (Maragos, 1996).

17



This term contains two subareas, both related to nonlinear dynamical sys-

tems:

• The first subarea combined ideas from linear (Gaussian) scale-space

analysis in computer vision based on the linear isotropic heat dif-

fusion partial differential equation (PDE) and from multiscale mor-

phology (Maragos, 1989b) to develop nonlinear PDEs that generate

continuous-scale morphological filters (mainly Minkowski-type dilation

and erosion). The main three independent contributions in morpholog-

ical PDEs are (Alvarez et al., 1993), Brockett and Maragos (1994) and

van den Boomgaard and Smeulders (1994). For overviews, we refer the

interested reader to two tutorial chapters of Guichard et al. (2005) and

Maragos (2005c). Connections between the morphological PDEs and

the slope transform were developed in Dorst and van den Boomgaard

(1994) and Heijmans and Maragos (1997).

• The second subarea deals with 2D difference equations modeling dis-

tance transforms and their analysis using slope transforms.

In this Thesis we shall not pursue the analysis of these aspects of morpho-

logical operators.

The scientific field of convex analysis and optimization (Rockafellar, 1970;

Lucet, 2010), was initially unrelated to mathematical morphology, but it has

been using extensively some of the main mathematical tools that morphol-

ogy has also been using such as max-plus convolution and its dual, called

supremal and infimal convolution respectively in convex analysis (Bellman

and Karush, 1963; Rockafellar, 1970), and the hypograph of a function which

is called umbra in morphology. At the end of 1990s the strong connections
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between convex analysis and lattice morphology were realized and studied in

(Heijmans and Maragos, 1997). Examples include

• The distance transform, which is expressed via infimal convolution in

convex analysis and via max-plus difference equations in digital image

analysis Borgefors (1986).

• The Legendre-Fenchel conjugate (transform) of convex analysis, which

is very closely related to the lattice-based slope transform (Maragos,

1995, 1996; Heijmans and Maragos, 1997).

Felzenszwalb and Huttenlocher (2004a) used the connection between distance

transform and slope transform to develop a fast distance transform that has

found application in computer vision problems such as distance computa-

tion and optimization in belief networks (Felzenszwalb and Huttenlocher,

2004b). There is a recent detailed review by Lucet (2010) of convex analysis,

slope transforms and related optimization where the cross fertilization be-

tween these areas and mathematical morphology was explained from many

different aspects. Returning to the area of differential morphology (Mara-

gos, 1996, 2001), this refers to the intersection between image processing

with max-plus convolutions, differential calculus, max/min dynamical sys-

tems and convex analysis (distance and slope transforms). Another field

that combines ideas from mathematical morphology and convex analysis is

digital geometry (Kiselman, 2003). In this Thesis we shall not consider the

analysis of these aspects of morphological operators.

In the 1980s an effort started to unify all digital image operations under

a common image algebra amenable to computation. The term image algebra
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was first coined by Sternberg (1980) but it referred only to the algebraic struc-

ture of mathematical morphology. Obviously, classic (Minkowski) erosions

and dilations by finite structuring elements are insufficient by themselves to

represent all possible image operations. In parallel to the development of

mathematical morphology, there has been another independent effort in the

1980s by Ritter and his collaborators (Ritter and Gader, 1987; Ritter and

Wilson, 1987) to develop a more complete image algebra that represents all

digital finite-extent image-to-image operations as a finite composition of a

few basic operations, which include Minkowski-type erosions and dilations; a

subalgebra of their full image algebra covers the classic part of mathematical

morphology. The goal of the image algebra by Ritter and his coworkers was

to unify all digital image operations (linear and nonlinear) using traditional

algebraic structures, e.g. groups, rings, fields, vector spaces, monoids, semir-

ings. A fusion of image algebra and lattice structures was done in Davidson

(1993). The culmination of all these efforts can be found in the book by

Ritter and Wilson (2001).

For problems in fields totally separate from image processing, e.g. schedul-

ing and operations research, Cuninghame-Green (1979, 1994) has developed

a nonlinear matrix algebra called minimax algebra, also known as max-plus

algebra, where he has exploited the interaction of the max/min idempo-

tent algebraic structure with the group structure of real addition + and has

developed analogies with the product-of-sums structure of linear algebra.

Minimax algebra was not originally developed for image analysis. Its tradi-

tional applications areas were and still are in scheduling (e.g. material flow

in automated manufacturing, traffic flow in transportation or communication
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networks) and operations research (Cuninghame-Green, 1979), shortest path

problems in graphs (Peteanu, 1967), as well as in algebraic modeling of dis-

crete event control systems (DEDS) (Cohen et al., 1989). Minimax algebra is

a nonlinear matrix oriented algebra, where the underlying archetypal struc-

ture for scalars is the set R = R ∪ {−∞,+∞} of extended reals equipped

with max or min operations and addition. Its basic operators are max-plus

or dual min-plus generalized products of matrices with vectors where the

standard multiplication of a row vector with a column vector is done via a

max-of-additions instead of the standard sum of products of linear algebra.

Thus, in addition to mathematical morphology (i.e. its Euclidean and

lattice-based versions), we have mentioned so far two other related algebraic

systems, image algebra and minimax algebra. All three systems have had

some theoretical missing parts for completion. Both the image algebra and

the minimax algebra use min-max superpositions, max-plus arithmetic and

some concepts from lattice theory. A fusion of concepts from image algebra

and minimax algebra was also done by Davidson (1993). However, the above

efforts have not exploited the complete lattice structure to the level that

mathematical morphology has done and have not focused on the concept of

lattice operators and especially adjunctions (Galois connections). Further-

more, both have remained in the finite-dimensional case. Minimax algebra

is a matrix algebra over finite-dimensional vector spaces. Similarly, image

algebra (Ritter and Wilson, 2001) deals with finite-extent digital images ei-

ther by processing them with finite templates in the spatial domain or via

finite discrete transforms (e.g. the discrete Fourier transform) in the fre-

quency domain. From both approaches there seems to be missing the case of
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working over infinite-dimensional spaces; e.g. morphological transformations

with infinite-extent structuring functions either on a continuous or a discrete

domain. Missing also is the complete lattice structure which allows infinite

signal superpositions based on supremum and infimum operations. From

the other side, of importance for the weighted lattice operators discussed in

this chapter is to note that, both Euclidean and lattice-based mathemati-

cal morphology have focused on and exploited mainly the standard lattice

structure, i.e. supremum and infimum superpositions which become max-

imum and minimum in the finite case. Although some useful operations

in mathematical morphology combine the sup/inf with max-plus arithmetic

(e.g., Minkowski operations with gray structuring elements, chamfer distance

transforms), such cases have always remained a minority in mainstream mor-

phological image analysis.

Maragos (2005a) bridged the above gaps and fused lattice-based math-

ematical morphology with minimax algebra, by allowing for both finite as

well as infinite-dimensional spaces and for sup/inf superpositions over infi-

nite signal collections. Toward this goal, a more general algebraic structure

was introduced, called clodum (complete lattice-ordered double monoid),

that combines the sup/inf lattice structure with a scalar semi-ring arith-

metic that possesses generalized additions and multiplications. This clodum

structure enabled him to develop a unified analysis for:

(i) representations of translation-invariant operators compatible with these

generalized algebraic structures as nonlinear (sup/inf) convolutions,

and

(ii) representations of all increasing translation-invariant operators as suprema
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of such nonlinear convolutions with functions from a special collection

that characterizes the operator.

Special cases of this unification include generalized Minkowski operators and

lattice fuzzy image operators. Applications of this nonlinear signal algebra

have appeared in (Maragos and Tzafestas, 1999; Maragos et al., 2000) for

max-plus nonlinear control and in (Maragos et al., 2001, 2003) for image

analysis based on fuzzy logic.

2.5 Image Processing using Mathematical Mor-

phology

Mathematical morphology is theoretically based on set theory. It contributes

a wide range of operators to image processing, based on a few simple mathe-

matical concepts. MM started by considering binary images and usually re-

ferred to as standard mathematical morphology. It also used set-theoretical

operations like the relation of inclusion and the operations of union and inter-

section. In order to apply it to other types of images, for example grey-level

ones (numerical functions), it was necessary to generalize set-theoretical no-

tions.

Using the lattice-theory it is generalized. The notions are, the partial

order relation between images, for which the operations of supremum (least

upper bound) and infimum (greatest lower bound) are defined. Therefore

the main structure in MM is that of a complete lattice. All the basic mor-

phological operators are defined by using this framework. Nowadays, most

morphological techniques combine lattice-theoretical and topological meth-
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ods.

The computer processing of pictures led to digital models of geometry.

Azriel Rosenfeld has contributed in this field after having contributed to dig-

ital geometry and image processing for 40 years. Mathematical morphology

is perfectly adapted to the digital framework.

The operators are particularly useful for the analysis of binary images,

boundary detection ,noise removal, image enhancement, shape extraction,

skeleton transforms and image segmentation. The advantages of morpholog-

ical approaches over linear approaches are

1. Direct geometric interpretation

2. Simplicity and

3. Efficiency in hardware implementation.

An image can be represented by a set of pixels. A morphological operation

uses two sets of pixels, i.e., two images: the original data image to be analyzed

and a structuring element which is a set of pixels constituting a specific shape

such as a line, a disk, or a square. A structuring element is characterized

by a well-defined shape (such as line, segment, or ball), size, and origin. Its

shape can be regarded as a parameter to a morphological operation.

2.6 Mathematical Morphology

From a general scientific perspective, the word morphology refers to the study

of forms and structures. In image processing, morphology is the name of a

specific methodology for analyzing the geometric structure inherent within
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an image. The morphological filter, which can be constructed on the ba-

sis of the underlying morphological operations, are more suitable for shape

analysis than the standard linear filters since the latter sometimes distort the

underlying geometric form of the image. Some of the salient points regarding

the morphological approach are as follows:

1. Morphological operations provide for the systematic alteration of the

geometric content of an image while maintaining the stability of the

important geometric characteristics.

2. There exists a well-developed morphological algebra that can be em-

ployed for representation and optimization.

3. It is possible to express digital algorithms in terms of a very small class

of primitive morphological operations.

4. There exist rigorous representations theorems by means of which one

can obtain the expression of morphological filters in terms of the prim-

itive morphological operations.

Generally speaking, the morphological operators transform the original

image into another image through the interaction with the other image of

certain shape and size, which is known as the structure element. Geometric

feature of the image that are similar in shape and size to the structure element

are preserved, while other features are suppressed. Therefore, morphological

operations can simplify the image data, preserving their shape characteristics

and eliminate irrelevancies. In view of applications, morphological operations

can be employed for many purposes including edge detection, segmentation,

and enhancement of images and so on.
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The next chapter begins with binary morphology that is based on set the-

ory. The following grayscale morphology can be regarded as the extension of

binary morphology to the three-dimensional space since a grayscale image can

be considered as a set of points in 3D space. While binary morphology and

grayscale morphology are well-developed and widely used, it is not straight-

forward to extend mathematical morphology to color images. The part of

color morphology in our study comes mainly from and simply introduces the

approaches for extension of mathematical morphology to color images. The

basic geometric characteristics of the primitive morphology operators and the

detail of morphological algebra are introduced in the next chapter. A system-

atic introduction of the theoretical foundations of mathematical morphology,

its main image operations, and their applications. Mathematical morphology

defined on Euclidean setting is called Euclidean morphology and that defined

on digital setting is called digital morphology. In general, their relationship

is akin to that between continuous signal processing and digital signal pro-

cessing. Although the actual implementation of morphological operators will

be in the digital setting, the Euclidean model is essential to the development

of an understanding of and intuitive feel of how the operators function in

theory and application.

2.6.1 Fundamental Properties of Mathematical Mor-

phology

In mathematical morphology images are represented by mathematical sets

in a Euclidean space E. The Euclidean space can be either the continuous

space R2 or the discrete space Z2. A binary image is consequently a subset of
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Z2, where the image pixels are represented by integer pairs of Z2. This set of

integer pairs can be viewed as coordinates of a set of corresponding vectors

with respect to two basis unit vectors. The basis unit vectors both have a

length of one pixel width, and, using a rectangular coordinate system, have an

angle of 90% between them. Each image is assumed to contain its boundary,

and is therefore represented by a closed subset of Z2. Furthermore, the

structuring element is represented by a compact subset of Z2. This implies

that morphological transformations are upper semi-continuous. The four

simplest transformations are dilation, erosion, opening and closing. Through

combination of these transforms more advanced morphological operations

can be realized, such as the skeleton transformation.

2.6.2 Fundamental Definitions

Definition (Translation) 2.6.1 Let X be a closed subset of the discrete

space Z2: X ⊂ Z2, and let a be a vector belonging to X: a ∈ X. The

translate of X by a is defined as

Xa = {x + a ∈ Z2 : ∀(x ∈ X)}.

Definition (Complement) 2.6.2 Let the closed set X be a subset of the

discrete space Z2: X ⊂ Z2. The complement of X, denoted by Xc is the set

of all element not in X i.e

Xc = {x ∈ Z2 : x /∈ X)}.

The complement Xc of a set X represents the image background of X.

Definition (Reflection) 2.6.3 Let the closed set X be a subset of the dis-

crete space Z2: X ⊂ Z2. The Reflection X̆, is the symmetrical set of X with

27



respect to the origin i.e

X̆ = {−x ∈ Z2 : x ∈ X)}.

Definition (Duality) 2.6.4 An operation is the dual of another operation

if it can be written in terms of the other operation.

Definition (Identity) 2.6.5 Let the identity set I be a subset of the discrete

space Z2: I ⊂ Z2, consisting of the element in the origin (0, 0) of I i.e

I = {(0, 0)}.

Definition (Idempotence) 2.6.6 An operation is said to be idempotent if

applying the operation more than once does not further alter the image.
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Chapter 3

Mathematical Morphological

Concepts

3.1 Introduction

This chapter outlines the morphological concepts adopted in this study. The

chapter begins with an introduction to the basic methods of mathematical

morphology, that is erosion and dilation. The chapter continues with binary

morphology, gray scale morphology and color morphology. Finally, the chap-

ter also gives details of all the morphology operators that will be considered

throughout the study and their algebraic structure.

3.2 Binary Morphology

The theoretical foundation of binary mathematical morphology is set theory.

In binary images, those points in the set are called the foreground and those

in the complement set are called the background. Besides dealing with the
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usual set-theoretic operations of union and intersection, morphology depends

extensively on the translation operation. For convenience, ∪ denotes the set-

union, ∩ denotes set-intersection and + inside the set notation refers to vector

addition.

3.2.1 Binary Dilation

The set which is formed by adding all the vectors of two sets is denoted the

dilated set. Let the closed set X be that of the image, and set B that of

the structuring element. If vectors x and b belong to the sets X and B,

respectively, then the dilated set will consist of all vectors c = x + b ∈ Z2.

Definition (Dilation) 3.2.1 Let X and B be subsets of the discrete space

Z2: X ⊂ Z2, B ⊂ Z2. The dilation of X by B is defined as

X ⊕B = {c = x + b ∈ Z2 : x ∈ X; b ∈ B}. (3.1)

OR

Dilation of a binary image A by structure element B, denoted by A ⊕ B, is

defined as

A⊕B = {a + b | for a ∈ A and b ∈ B}. (3.2)

The dilation transform generally causes image objects to grow in size, or

dilate - hence the name.

This is best illustrated with an example. In Fig 2.1 vectors (1, 3) and

(2, 1) are part of set X, and vector (1, 0) is part of set B. The dilation of X

by B is formed by adding the vectors of the two sets as shown in Fig. 2.1(c).
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Figure 3.1: Dilation By Vector Addition

From equation (2.2) above, dilation is equivalent to a union of translates

of the original image with respect to the structure element:

A⊕B =
⋃
b∈B

Ab. (3.3)

Intuitively, the structure element plays the role of the template. Dilation

is found by placing the center of the template over each of the foreground

pixels of the original image and then taking the union of all the resulting

copies of the structure element, produced by using the translation operation.

In general, dilation has the effect of ”expanding” an image, and hence, the

small hole can be eliminated.

Dilation applied to an image is illustrated in Fig. 2.2. X is the image

to be dilated, and B is the structuring element. The two small arrows in

B mark the origin of the structuring element, pointing in the x and y-axis

directions, respectively.

As can be seen in Fig. 2.2(c), the dilated image X ⊕B has grown down-

wards compared to image X. It is the structuring element B that has dic-
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Figure 3.2: Dilation of X by the structuring element B

tated the downwards direction of the growth, because the lower pixel of the

structuring element has been set. The center pixel of the structuring element

results in a copy of the original image X at the same location. Had not the

center pixel of B been set, the dilated image would X ⊕ B only have been

shifted one step downwards, i.e. no growth would have occurred.

3.2.2 Binary Erosion

Erosion is the morphological dual to dilation. Whereas the dilated set is

formed by vector addition of two sets, the eroded set is formed by vector

subtraction. As before the closed set X denotes the image, and set B the

structuring element. The eroded set is the set of vectors c = x− b ∈ Z2, for

which all of the vectors b ∈ B there exists an x ∈ X

Definition (Erosion) 3.2.1 Let X and B be subsets of the discrete space

Z2: X ⊂ Z2, B ⊂ Z2. The erosion of X by B is defined as

X 	B = {c ∈ Z2 : ∀(b ∈ B) ∃(x ∈ X) c = x− b}.
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OR

Erosion of a binary image A by structure element B, denoted by A 	 B, is

defined as

A	B = {p | p + b ∈ A ∀b ∈ B}.

Or to put it in other words: the eroded set is the set of vectors c for which

c + b ∈ X for all of the vectors b ∈ B. Thus for a vector c to be part of the

eroded set, all the vectors c+ b (where b ∈ B) must be part of the image set

X.

The erosion transform generally causes image objects to shrink in size, or

erode - hence the name.

This is best illustrated with an example. In Fig. 2.3 vectors (2, 3) and

(3, 2) are part of set X, and vectors (0, 1) and (1, 0) are part of set B. The

erosion of X by B is formed by subtracting vectors b ∈ B from each vector

x ∈ X, and selecting only those vectors c+b which can be found in image X.

By subtracting the structuring element B from each vector of the image X,

three different vectors are obtained: (1, 3), (2, 2), and (3, 1). (Fig. 2.3(e).)

However, as can be seen in Fig. 2.4(f) only vector (2, 2) becomes part of

the eroded image X 	 B, whereas vectors (1, 3) and (3, 1) do not. This is

because after adding set B (i.e. vectors (0, 1) and (1, 0)) to each of these

three vectors, only the result from vector (2, 2) will be inside image X.

Whereas dilation can be represented as a union translates, erosion can be

represented as an intersection of the negative translates:

A	B =
⋂
b∈B

A−b.

where −b is the scalar multiple of the vector b by −1.
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Figure 3.3: Erosion by vector subtraction

Like dilation, the erosion of the original image by the structure element

can be described intuitively by template translation. The template is moved

across the original image. For a given foreground pixel, put the center of the

template onto it, i.e. translate the template to that pixel. If the translation

of the template is a sub-image of the original image, that pixel is activated in

erosion; otherwise, it is not activated. Figure 2.3 shows that erosion ”shrinks”

the original image and the small peak is eliminated.
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Figure 3.4: Erosion of X by the structuring element B

Erosion applied to an image is illustrated in Fig. 2.4. As usual X is the

image to be eroded, and B is the structuring element. In the eroded image

X 	B only elements which are at least two pixels wide have been kept from

image X. This selection has been dictated by the structuring element B.

With the center and right pixels of B set, a pixel will exist in X 	 B only

if both the center and right pixels of X also exist. Had not the center pixel

of B been set, the eroded image would have been shifted one step to the left

instead of being reduced. Would only the center pixel have been set, there

would be no difference from the original image.

3.2.3 Algebraic structure of Dilation and Erosion

The Dilation transform has the following properties:

1. Commutative - Dilation is commutative, since addition is commuta-

tive

A⊕B = B ⊕ A.
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2. Associative - Dilation is associative, since addition is associative

(A⊕B)⊕ C = A⊕ (B ⊕ C).

The Erosion transform has the following properties:

1. Non-Commutative - Erosion is non-commutative, since subtraction

is non-commutative

A	B 6= B 	 A.

2. Non-Associative - Erosion is non-associative, since subtraction is

non-associative

(A	B)	 C 6= A	 (B 	 C).

Furthermore, the Dilation and Erosion transforms also have the following

common properties:

1. Translation In-variance - Let x be a vector belonging to A and B:

x ∈ A, x ∈ B. Both Dilation and Erosion are translation invariant by

x

A⊕Bx = Ax ⊕B = (A⊕B)x

A	Bx = Ax 	B = (A	B)x

2. Increasing in A - If an image set A1 is a subset of A2, A1 ⊂ A2, both

Dilation and Erosion are increasing in A

A1 ⊕B ⊂ A2 ⊕B

A1 	B ⊂ A2 	B
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3. Decreasing in B - If a structuring element B1 is a subset of B2,

B1 ⊂ B2, Erosion is decreasing in B

A	B1 ⊃ A	B2

4. Duality - The Dilation and Erosion transforms are duals

(A⊕B)c = Ac 	 B̆

(A	B)c = Ac ⊕ B̆

5. Non-Inverse - Dilation and Erosion are not the inverse of each other

(A⊕B)	B 6= A

(A	B)⊕B 6= A

Both dilation and erosion are nonlinear operations, and are generally

non-invertible.

6. Identity Set - Both the dilation and erosion transforms have an iden-

tity set I

A⊕ I = A

A	 I = A

7. Empty Set - The Dilation transform has an empty set

A⊕ ∅ = ∅
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3.2.4 Binary Opening

By repeatedly dilating and eroding an image, it is possible to eliminate spe-

cific details, while at the same time preserving the structure and shape of the

objects contained within the image. Two such morphological operations are

Opening and Closing. These operators play an important part in mathemat-

ical morphology, as they are often used as building blocks for other, more

complicated morphological operators.

Opening is formed by first eroding a set X, after which this eroded set,

X 	B, is dilated. Note that the structuring element B used is the same for

the two operations.

Definition (Opening) 3.2.1 Let X and B be subsets of the discrete space

Z2: X ⊂ Z2, B ⊂ Z2. The Opening of X by B is defined as

X ◦B = (X 	B)⊕B.

OR

Opening of a binary image A by structure element B, denoted by A ◦ B, is

defined as

A ◦B = (A	B)⊕B.

With the opening of an image, contours of objects are smoothed, narrow

isthmuses are cut, and small islands and sharp peaks are removed. From

the definition, the original image is eroded first and then dilated. Therefore,

it can intuitively be thought as ”rolling the structure element about the

inside boundary of the image”. The following definition gives a rigorous

set-theoretic characterization of this ”fitting” property. It states that the
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Figure 3.5: Opening of X by the structuring element B

opening of A by B is obtained by taking the union of all the translates of B

which fit into A.

An example of the opening transformation can be seen in Fig. 2.5. Here

image X is opened using a structuring element B the shape of rhomboid. In

Fig. 2.5(a) two protruding peaks are marked, as well as an isthmus connect-

ing the two major bodies, and a small island in the upper right corner. In

Fig. 2.5(d) is shown the result from the opening of X. Note how the narrow

isthmus has been cut, and both the small island and the two sharp peaks

have been removed. Note also how the contours have been smoothed around

the original object.
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Definition (Opening(2)) 3.2.4.1

A ◦B =
⋃
{B + x | B + x ⊂ A}.

Figure 2.4 shows how this original image is smoothed and the spot-like

noise is removed because the disk can’t fit into them. It is worth noticing

that smoothing effect of the object boundary highly depends on the shape

of the structure element.

3.2.5 Binary Closing

Analogous to relationship between dilation and erosion, closing is the mor-

phological dual to opening. The difference between opening and closing lies

in the order in which the erosion and dilation transforms are applied. Closing

is formed by first dilating a set X, after which this dilated set, X ⊕ B, is

eroded.

Definition (Closing) 3.2.1 Let X and B be subsets of the discrete space

Z2: X ⊂ Z2, B ⊂ Z2. The Closing of X by B is defined as

X •B = (X ⊕B)	B.

OR

Closing of a binary image A by structure element B, denoted by A • B, is

defined as

A •B = (A⊕B)	B.

By closing an image, contour of objects are smoothed (just as with open-

ing), narrow channels are blocked up, and small holes and gaps on the con-

tours are filled up.
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Figure 3.6: Closing of X by the structuring element B

Though closing does remove various specific image details, just as opening

does, it does not remove any image objects. Rather, the closing transforma-

tion expands the image objects, thereby eliminating image details. This is in

contrast to opening, where reduction of detail is achieved through reduction

of objects. The closing of the original image includes all points satisfying the

condition that anytime the point can be covered by a translation of the struc-

ture element, there must be some point in common between the translated

structure element and the original image.

An example of closing can be seen in Fig. 2.6. The image and the

structuring element are the same as used for opening (Fig. 2.5). In Fig.
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2.6(a) two channels of different width are marked, as well as a small hole and

a gap in the contour. In Fig. 2.6(d) is shown the result from the opening of

X. Note here how the two narrow channels have been blocked up, and both

the small hole and the gap have been filled up. Note also how the contours

have been smoothed along the isthmus.

Definition (Closing(2)) 3.2.5.1 z is the element of A • B if and only if

(B + y) ∩ A 6= ∅, for any translate (B + y) containing z.

As stated in Eqn. (2.8), closing is done by first dilating the image and

then eroding it. Hence, instead of eliminating the small peaks, it will ”fill” the

holes, as shown in Fig. 2.5. In other words, it has the effect of ”clustering”

each spatial point to a connected set.

3.2.6 Algebraic structure of opening and closing

The opening and closing transforms have the following common properties:

1. Duality - The opening and closing transforms are duals

(A ◦B)c = Ac • B̆

(A •B)c = Ac ◦ B̆

2. Non-Inverse - Opening and Closing are not the inverse of each other

(A ◦B) •B 6= A

(A •B) ◦B 6= A
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3. Translation In-variance - Let x be a vector belonging to A and B:

x ∈ A, x ∈ B. Both Opening and Closing are translation invariant by

x

A ◦Bx = Ax ◦B = (A ◦B)x

A •Bx = Ax •B = (A •B)x

4. Anti-Extensivity - The opening transform is anti-extensive, i.e. the

Opening of A by a structuring element B is always contained in A,

regardless of B

A ◦B ⊆ A

5. Extensivity - The Closing transform is extensive, i.e. the Closing of

A by a structuring element B always contains A, regardless of B

A ⊆ A •B

6. Increasing Monotonicity - If an image set A1 is a subset of or equal

to A2, A1 ⊆ A2, both Opening and Closing are increasing

A1 ◦B ⊆ A2 ◦B

A1 •B ⊆ A2 •B

7. Decreasing in B - If a structuring element B1 is a subset of B2,

B1 ⊂ B2, Opening is decreasing in B

A ◦B1 ⊃ A ◦B2

8. Idempotence - The opening and closing transforms are idempotent

A ◦B ◦B = A ◦B

A •B •B = A •B
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If X is unchanged by opening with B, X is said to be open, whereas if X is

unchanged by closing with B, X is said to be closed.

3.3 Gray-Scale Morphology

In intuition, a 2D grayscale image can be thought of a set of points in 3D

space, p = (x; y; f(x; y)); (f(x, y) is the function to represent the gray-scale

image). By applying the umbra transform U, a 2D gray-scale image can

be transformed as a 3D binary image. Therefore, gray-scale morphological

operators may be regarded as the extension of binary morphological operators

to three-dimensional space.

Definition (Umbra Transform) 3.3.1 Given a signal f , the umbra trans-

form of f , denoted as U[f ], is defined as:

U[f ] = {(x, y) : x ∈ Df and y ≤ f(x)}.

Definition (Top Surface) 3.3.2 Given an umbra A, we define the top sur-

face of A, denoted as S[A], to be the set of all points (x, y) such that x is in

the domain of A and y = sup{y : (x; y) ∈ A}.

Theoretically, given two signals f and g, dilation of f by g can be com-

puted as S[U [f ]⊕ U [g]] where ⊕ is the binary dilation operator.

However, although the umbra transform tells us conceptually how to com-

pute gray-scale morphology from binary morphology, the mathematical ex-

pression is still necessary for implementation. Two operators are employed

for defining the gray-scale mathematical morphology operators, EXTSUP

and INF.
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Definition (EXTSUP) 3.3.3 Given a collection of signals {fk}, we define

[EXTSUP (fk)](t) =



sup[fk(t)] if there exists at least one k such that

fk is defined at t, and where the

supremum is over all such k

undefined if fk(t) is undefined for all k.

Definition (INF) 3.3.4 Given a collection of signals {fk}, we define

[INF (fk)](t) =

 inf [fk(t)] if fk(t) is defined for all k

undefined otherwise.

For any signal f , with domain Df , and one point x, we define the translation

fx by fx(t) = f(t−x). That is, fx is f translated x units to the right. Hence,

Dfx = Df +x. In addition, f(t)+y translates f up y units and possesses the

same domain. Furthermore, given two signals f and g, f � g means that

Df is the subset of Dg, and for any t in Df , f(t) ≤ g(t).

3.3.1 Grayscale Dilation

Definition (Grayscale Dilation) 3.3.5 For signals f and g, with respec-

tive domain Df and Dg, we define the dilation of f by g as

D(f, g) = EXTSUPx∈Df
[gx + f(x)]

Geometrically, the dilation is obtained by taking an extended supremum of

all copies of g that have been translated over x units and up f(x) units. As

binary dilation, g plays the role of template. In gray-scale dilation, for each

point of f , shift g so that its center coincides with (x, f(x)) and EXTSUP

is applied to the resulting copies of g.

45



In implementation, the ”supremum” operation in Eqn. (2.10) is replaced

by ”maximum”, and furthermore, Eqn. (2.10) can be re-written as follows.

Definition (Grayscale Dilation (2)) 3.3.6 Dilation of a gray-scale im-

age f(r, c) by a gray-scale structure element g(r, c) is defined as

D(f, g)(r, c) = max(i,j)[f(r − i, c− j) + g(i, j)]

3.3.2 Grayscale Erosion

Definition (Grayscale Erosion) 3.3.7 For signals f and g, with respec-

tive domain Df and Dg, we define the erosion of f by g as

[E(f, g)](x) = Sup{y : gx + y �}

To find the value of the erosion of f by g at the point x, we shift g so

that it is centered at x and then find out the largest vertical translation y

that will leave gx + y beneath f . It is analogous to the ”fitting” property in

binary erosion. Eqn.(2.12) can be expressed in terms of INF operation as:

E(f, g) = INFx∈Dg [f−x − g(x)]

As gray-scale dilation, by replacing ”infimum” with ”minimum”, Eqn.

(2.13) can be re-written as follows:

Definition (Grayscale Erosion (2)) 3.3.8 Erosion of a gray-scale image

f(r, c) by a gray-scale structure element g(r, c) is defined as

E(f, g)(r, c) = min(i,j)[f(r + i, c + j)− g(i, j)]
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3.3.3 Grayscale Opening

Definition (Grayscale Opening) 3.3.9 For signals f and g, we define

the opening of f by g as

O(f, g) = D[E(f, g), g]

3.3.4 Grayscale Closing

Definition (Grayscale Closing) 3.3.10 For signals f and g, we define

the closing of f by g as

C(f, g) = E[D(f, g), g]

3.4 Color Morphology

After introducing binary and gray-scale morphology, the task turns on deal-

ing with the color image morphology. However, the extension of mathemat-

ical morphology to color images is not straightforward. Two approaches for

color morphology would be investigated: a vector approach and a component-

wise approach.

In component-wise approach, the gray-scale morphological operator is ap-

plied to each channel of the color image. For example, component-wise color

dilation of f(x; y) = [fR(x; y); fG(x; y); fB(x; y)]T by the structure element

h(x; y) = [hR(x; y);hG(x; y);hB(x; y)]T in RGB color space is defined as:

(f ⊕c h)(x, y) = [(fR ⊕ hR)(x, y), (fG ⊕ hG)(x, y); (fB ⊕ hB)(x, y)]T

where the symbol ⊕c represents component-wise dilation and oplus on the

right-hand side is gray-scale dilation. Component-wise color erosion, opening,
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and closing can be defined in the same way. Because the component images

are filtered separately with the component-wise filter, there is a possibility

of altering the spectral composition of the image, e.g., the color balance and

object boundary.

A different way to examining the color morphology is to treat the color at

each pixel as a vector. Furthermore, vector-based color morphology makes

use of the multivariate ranking concept. First, reduced ordering is performed.

Each multivariate sample is mapped to a scalar value based on reduced or-

dering function and then the samples are ordered according to the mapped

scalar value. Given the reduced ordering function d and the set H, the value

of vector color dilation of f by H at the point (x, y) is defined as:

(f ⊕v h)(x, y) = a (⊕v denotes vector dilation)

where

a ∈ {f(r, s) : (r, s) ∈ H}

and

d(a) ≥ d(f(r, s)) ∀(r, s) ∈ H(x; y)

Similarly, the vector erosion of f by H at the point (x, y) is defined as:

(f 	v h)(x, y) = a (	v denotes vector dilation)

where

a ∈ {f(r, s) : (r, s) ∈ H}

and

d(a) ≤ d(f(r, s)) ∀(r, s) ∈ H(x; y)
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Chapter 4

Analysis of Morphological

Operators

4.1 Introduction

This chapter mainly involves the analysis of morphological operators in con-

nection with set union and intersection. We would consider the morpholog-

ical results of two sets in connection with a single structural element and

vice versa. This is to make inference about partitioning sets before using

morphological operators on them.

Furthermore, we would also look at the distribution properties of morpho-

logical operators over set union and intersection.

49



4.2 The Morphological Operators with 2 dis-

tinct sets

Proposition (The Union of Dilation with 2 different sets) 4.2.1

(A1 ⊕B) ∪ (A2 ⊕B) = (A1 ∪ A2)⊕B (4.1)

Proof:

(A1 ⊕B) ∪ (A2 ⊕B) =
⋃

b∈B A1b

⋃ ⋃
b∈B A2b

=
⋃

b∈B {A1b ∪ A2b}

=
⋃

b∈B(A1 ∪ A2)b

= (A1 ∪ A2)⊕B

From equation 4.1 above, it implies that when you have to take the dilation

of 2 different sets with the same structural element and take the union of

the results after, then it is the same as taking the union of the sets (images)

and dilating it with the structural element. This also leads to an implication

that if you have to take the dilation of any set with a certain structural

element, you can always partition the set into 2 sets and take the union of

their respective dilations. We can also make a generalized implication from

the above analyses. This leads to the proposition below:

If any set can be partition into n distinct parts then the union of the each of

the partitions dilation with the structural element is equal to the set’s (the

one which was partitioned) dilation with the structural element.
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Proposition 4.2.2

If A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An for n ≥ 2

Then A⊕B = (A1 ⊕B) ∪ (A2 ⊕B) ∪ (A3 ⊕B) ∪ · · · ∪ (An ⊕B)

Proof:

If A = A1 ∪ A2

Then (A1 ∪ A2)⊕B = (A1 ⊕B) ∪ (A2 ⊕B)

Let assume that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak for k ≥ 2

Then A⊕B = (A1 ⊕B) ∪ (A2 ⊕B) ∪ (A3 ⊕B) ∪ · · · ∪ (Ak ⊕B)

Now we show that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1

Then

A⊕B = (A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1)⊕B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) ∪ Ak+1]⊕B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak)⊕B] ∪ (Ak+1 ⊕B)

= (A1 ⊕B) ∪ (A2 ⊕B) ∪ (A3 ⊕B) ∪ · · ·

∪ (Ak ⊕B) ∪ (Ak+1 ⊕B)

Proposition (The Intersection of Dilation with 2 different sets) 4.2.3

(A1 ⊕B) ∩ (A2 ⊕B) = (A1 ∩ A2)⊕B (4.2)
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Proof:

(A1 ⊕B) ∩ (A2 ⊕B) =
⋃

b∈B A1b

⋂ ⋃
b∈B A2b

=
⋃

b∈B {A1b ∩ A2b}

=
⋃

b∈B(A1 ∩ A2)b

= (A1 ∩ A2)⊕B

It can be analyzed from the above that when you have to take the dilation

of 2 different sets with the same structural element and take the intersection

of the results after, then it is the same as taking the intersection of the sets

(images) and dilating it with the structural element. This also leads to an

implication that if you have to take the dilation of any set with a certain

structural element, you can always find 2 sets containing the set you wish

to dilate and take the intersection of their respective dilations. We can also

make a generalized implication from the above analyses. This leads to the

proposition below:

If any set can be found in n distinct sets then the intersection of the each of

the n distinct set’s dilation with the structural element is equal to the set’s

(the one that can be found in the n distinct sets) dilation with the structural

element.

Proposition 4.2.4

If A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An for n ≥ 2

Then A⊕B = (A1 ⊕B) ∩ (A2 ⊕B) ∩ (A3 ⊕B) ∩ · · · ∩ (An ⊕B)
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Proof:

If A = A1 ∩ A2

Then (A1 ∩ A2)⊕B = (A1 ⊕B) ∩ (A2 ⊕B)

Let assume that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak for k ≥ 2

Then A⊕B = (A1 ⊕B) ∩ (A2 ⊕B) ∩ (A3 ⊕B) ∩ · · · ∩ (Ak ⊕B)

Now we show that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1

Then

A⊕B = (A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1)⊕B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) ∩ Ak+1]⊕B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak)⊕B] ∩ (Ak+1 ⊕B)

= (A1 ⊕B) ∩ (A2 ⊕B) ∩ (A3 ⊕B) ∩ · · ·

∩ (Ak ⊕B) ∩ (Ak+1 ⊕B)

Proposition (The Union of Erosion with 2 different sets) 4.2.5

(A1 	B) ∪ (A2 	B) = (A1 ∪ A2)	B (4.3)

Proof:

(A1 	B) ∪ (A2 	B) =
⋂

b∈B A1−b

⋃ ⋂
b∈B A2−b

=
⋂

b∈B
{
A1−b

∪ A2−b

}
=

⋂
b∈B(A1 ∪ A2)−b

= (A1 ∪ A2)	B
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When you have to take the erosion of 2 different sets with the same

structural element and take the union of the results after, then it is the same

as taking the union of the sets (images) and taking the erosion of the result

with the structural element. This assertion is as a result of the proof above.

It is clear from these that morphological erosion behaves the same way as it

morphological dual with respect to union. Therefore, we can generalized the

same way we did with dilation which leads to the proposition below:

Provided a set can be partition into n distinct parts then the union of the

each of the partitions erosion with the structural element is equal to the set’s

erosion with the structural element.

Proposition 4.2.6

If A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An for n ≥ 2

Then A	B = (A1 	B) ∪ (A2 	B) ∪ (A3 	B) ∪ · · · ∪ (An 	B)

54



Proof:

If A = A1 ∪ A2

Then (A1 ∪ A2)	B = (A1 	B) ∪ (A2 	B)

Let assume that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak for k ≥ 2

Then A	B = (A1 	B) ∪ (A2 	B) ∪ (A3 	B) ∪ · · · ∪ (Ak 	B)

Now we show that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1

Then

A	B = (A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1)	B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) ∪ Ak+1]	B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak)	B] ∪ (Ak+1 	B)

= (A1 	B) ∪ (A2 	B) ∪ (A3 	B) ∪ · · ·

∪ (Ak 	B) ∪ (Ak+1 	B)

Proposition (The Intersection of Erosion with 2 different sets) 4.2.7

(A1 	B) ∩ (A2 	B) = (A1 ∩ A2)	B (4.4)

Proof:

(A1 	B) ∩ (A2 	B) =
⋂

b∈B A1−b

⋂ ⋂
b∈B A2−b

=
⋂

b∈B
{
A1−b

∩ A2−b

}
=

⋂
b∈B(A1 ∩ A2)−b

= (A1 ∪ A2)	B
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As it can be seen, from the above proof, morphological erosion and in-

tersection behaves the same way as it dual, dilation and union, does. The

implication is that assuming you want to take the erosion of 2 different sets

with the same structural element and take the intersection of the results af-

ter, then it is the same as taking the intersection of the sets(images) and

taking the erosion with the structural element. Hence it can be generalized

from the above analyses that:

Whenever any set can be found in n distinct sets then the intersection of

each of the n distinct sets erosion with the structural element is equal to the

set’s erosion with the structural element.

Proposition 4.2.8

If A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An for n ≥ 2

Then A	B = (A1 	B) ∩ (A2 	B) ∩ (A3 	B) ∩ · · · ∩ (An 	B)
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Proof:

If A = A1 ∩ A2

Then (A1 ∩ A2)	B = (A1 	B) ∩ (A2 	B)

Let assume that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak for k ≥ 2

Then A	B = (A1 	B) ∩ (A2 	B) ∩ (A3 	B) ∩ · · · ∩ (Ak 	B)

Now we show that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1

Then

A	B = (A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1)	B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) ∩ Ak+1]	B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak)	B] ∩ (Ak+1 	B)

= (A1 	B) ∩ (A2 	B) ∩ (A3 	B) ∩ · · ·

∩ (Ak 	B) ∩ (Ak+1 	B)

Proposition (The Union of Opening with 2 different sets) 4.2.9

(A1 ◦B) ∪ (A2 ◦B) = (A1 ∪ A2) ◦B (4.5)

Proof:

(A1 ◦B) ∪ (A2 ◦B) = (A1 	B)⊕B ∪ (A2 	B)⊕B

= [(A1 	B) ∪ (A2 	B)]⊕B

= [(A1 ∪ A2)	B]⊕B

= (A1 ∪ A2) ◦B
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From equation 4.5 above, it implies that when you have to take the opening

of 2 different sets with the same structural element and take the union of the

results after, then it is the same as taking the union of the sets (images) and

then opening it with the structural element. This also leads to an implication

that if you have to take the opening of any set with a certain structural

element, you can always partition the set into 2 sets and take the union of

their respective openings. We can also make a generalized implication from

the above analyses. This leads to the proposition below:

If any set can be partition into n distinct parts then the union of the each of

the partitions opening with the structural element is equal to the set’s (the

one which was partitioned) opening with the structural element.

Proposition 4.2.10

If A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An for n ≥ 2

Then A ◦B = (A1 ◦B) ∪ (A2 ◦B) ∪ (A3 ◦B) ∪ · · · ∪ (An ◦B)
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Proof:

If A = A1 ∪ A2

Then (A1 ∪ A2) ◦B = (A1 ◦B) ∪ (A2 ◦B)

Let assume that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak for k ≥ 2

Then A ◦B = (A1 ◦B) ∪ (A2 ◦B) ∪ (A3 ◦B) ∪ · · · ∪ (Ak ◦B)

Now we show that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1

Then

A ◦B = (A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1) ◦B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) ∪ Ak+1] ◦B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) ◦B] ∪ (Ak+1 ◦B)

= (A1 ◦B) ∪ (A2 ◦B) ∪ (A3 ◦B) ∪ · · ·

∪ (Ak ◦B) ∪ (Ak+1 ◦B)

Proposition (The Intersection of Opening with 2 different sets) 4.2.11

(A1 ◦B) ∩ (A2 ◦B) = (A1 ∩ A2) ◦B (4.6)

Proof:

(A1 ◦B) ∩ (A2 ◦B) = (A1 	B)⊕B ∩ (A2 	B)⊕B

= [(A1 	B) ∩ (A2 	B)]⊕B

= [(A1 ∩ A2)	B]⊕B

= (A1 ∩ A2) ◦B
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Taking the opening of 2 different sets with the same structural element

before taking the intersection of the results after can be done by first taking

the intersection of the sets (images) and then opening it with the structural

element. This leads to an implication that if you have to take the opening

of any set with a certain structural element, you can always find 2 sets con-

taining the set you wish to open and take the intersection of their respective

openings. We can also make a generalized implication from the above anal-

yses which leads to the proposition below:

If any set can be found in n distinct sets then the intersection of the each of

the n distinct set’s opening with the structural element is equal to the set’s

(the one that can be found in the n distinct sets) opening with the structural

element.

Proposition 4.2.12

If A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An for n ≥ 2

Then A ◦B = (A1 ◦B) ∩ (A2 ◦B) ∩ (A3 ◦B) ∩ · · · ∩ (An ◦B)
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Proof:

If A = A1 ∩ A2

Then (A1 ∩ A2) ◦B = (A1 ◦B) ∩ (A2 ◦B)

Let assume that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak for k ≥ 2

Then A ◦B = (A1 ◦B) ∩ (A2 ◦B) ∩ (A3 ◦B) ∩ · · · ∩ (Ak ◦B)

Now we show that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1

Then

A ◦B = (A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1) ◦B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) ∩ Ak+1] ◦B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) ◦B] ∩ (Ak+1 ◦B)

= (A1 ◦B) ∩ (A2 ◦B) ∩ (A3 ◦B) ∩ · · ·

∩ (Ak ◦B) ∩ (Ak+1 ◦B)

Proposition (The Union of Closing with 2 different sets) 4.2.13

(A1 •B) ∪ (A2 •B) = (A1 ∪ A2) •B (4.7)

Proof:

(A1 •B) ∪ (A2 •B) = (A1 ⊕B)	B ∪ (A2 ⊕B)	B

= [(A1 ⊕B) ∪ (A2 ⊕B)]	B

= [(A1 ∪ A2)⊕B]	B

= (A1 ∪ A2) •B
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It can be analyzed from the above that when you have to take the closing

of 2 different sets with the same structural element and take the union of

the results after, then it is the same as taking the union of the sets (images)

and then closing it with the structural element. This assertion also leads to

an implication that if you have to take the closing of any set with a certain

structural element, you can always partition the set into 2 sets and take the

union of their respective closings. Hence the generalization that:

Provided any set can be partition into n distinct parts then the union of the

each of the partitions closing with the structural element is equal to the set’s

(the one which was partitioned) closing with the structural element.

Proposition 4.2.14

If A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ An for n ≥ 2

Then A •B = (A1 •B) ∪ (A2 •B) ∪ (A3 •B) ∪ · · · ∪ (An •B)
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Proof:

If A = A1 ∪ A2

Then (A1 ∪ A2) •B = (A1 •B) ∪ (A2 •B)

Let assume that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak for k ≥ 2

Then A •B = (A1 •B) ∪ (A2 •B) ∪ (A3 •B) ∪ · · · ∪ (Ak •B)

Now we show that if A = A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1

Then

A •B = (A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak ∪ Ak+1) •B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) ∪ Ak+1] •B

= [(A1 ∪ A2 ∪ A3 ∪ · · · ∪ Ak) •B] ∪ (Ak+1 •B)

= (A1 •B) ∪ (A2 •B) ∪ (A3 •B) ∪ · · ·

∪ (Ak •B) ∪ (Ak+1 •B)

It is quiet clear from the proof below that, the morphological dual of

opening and union, behaves the same way as it counterpart, closing and in-

tersection. It therefore implies that when you have to take the closing of 2

different sets with the same structural element and take the intersection of

the results after, then it is the same as taking the intersection of the sets

(images) and then closing it with the structural element.
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Proposition (The Intersection of Closing with 2 different sets) 4.2.15

(A1 •B) ∩ (A2 •B) = (A1 ∩ A2) •B (4.8)

Proof:

(A1 •B) ∩ (A2 •B) = (A1 ⊕B)	B ∩ (A2 ⊕B)	B

= [(A1 ⊕B) ∩ (A2 ⊕B)]	B

= [(A1 ∩ A2)⊕B]	B

= (A1 ∩ A2) •B

We can also make a generalized implication from the above analyses which

leads to the proposition below:

Whenever any set can be found in n distinct sets then the intersection of the

each of the n distinct set’s closing with the structural element is equal to

the set’s (the one that can be found in the n distinct sets) closing with the

structural element.

Proposition 4.2.16

If A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ An for n ≥ 2

Then A •B = (A1 •B) ∩ (A2 •B) ∩ (A3 •B) ∩ · · · ∩ (An •B)
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Proof:

If A = A1 ∩ A2

Then (A1 ∩ A2) •B = (A1 •B) ∩ (A2 •B)

Let assume that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak for k ≥ 2

Then A •B = (A1 •B) ∩ (A2 •B) ∩ (A3 •B) ∩ · · · ∩ (Ak •B)

Now we show that if A = A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1

Then

A •B = (A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak ∩ Ak+1) •B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) ∩ Ak+1] •B

= [(A1 ∩ A2 ∩ A3 ∩ · · · ∩ Ak) •B] ∩ (Ak+1 •B)

= (A1 •B) ∩ (A2 •B) ∩ (A3 •B) ∩ · · ·

∩ (Ak •B) ∩ (Ak+1 •B)

4.3 The Distribution of Morphological Oper-

ators over Set Union and Intersection

Proposition (The Distribution of Dilation over Union) 4.3.1

(A⊕B1) ∪ (A⊕B2) = A⊕ (B1 ∪B2) (4.9)
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Proof:

(A⊕B1) ∪ (A⊕B2) =
⋃

b1∈B1
Ab1

⋃ ⋃
b2∈B2

Ab2

=
⋃

b∈B1∪B2
{Ab ∩ Ab1}

⋃ ⋃
b∈B1∪B2

{Ab ∩ Ab2}

=
⋃

b∈B1∪B2
{Ab ∩ Ab1 ∪ Ab ∩ Ab2}

=
⋃

b∈B1∪B2
Ab

= A⊕ (B1 ∪B2)

From equation 4.9 above, it implies that when you want to take the

dilation of a set with 2 different structural elements and take the union of

the results after, then it is the same as taking the union of the structural

elements and dilating with the set. This shows that morphological dilation

distribute over set union and it also leads to the implication that if you have

to take the dilation of any set with a certain structural element, you can

always partition the structural elements into 2 sets and take the union of

their respective dilations. We can also make a generalized implication from

the above analyses. This leads to the proposition below:

If any structural element can be partitioned into n distinct parts then the

union of the each of the partitions dilation with the set is equal to the set’s

dilation with the structural element.

Proposition 4.3.2

If B = B1 ∪B2 ∪B3 ∪ · · · ∪Bn for n ≥ 2

Then A⊕B = (A⊕B1) ∪ (A⊕B2) ∪ (A⊕B3) ∪ · · · ∪ (A⊕Bn)
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Proof:

If B = B1 ∪B2

Then A⊕B = (A⊕B1) ∪ (A⊕B2)

Let assume that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk for k ≥ 2

Then A⊕B = (A⊕B1) ∪ (A⊕B2) ∪ (A⊕B3) ∪ · · · ∪ (A⊕Bk)

Now we show that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1

Then

A⊕B = A⊕ (B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1)

= A⊕ [(B1 ∪B2 ∪B3 ∪ · · · ∪Bk) ∪Bk+1]

= [A⊕ (B1 ∪B2 ∪B3 ∪ · · · ∪Bk)] ∪ (A⊕Bk+1)

= (A⊕B1) ∪ (A⊕B2) ∪ (A⊕B3) ∪ · · ·

∪ (A⊕Bk) ∪ (A⊕Bk+1)

From the proof below, it implies that when you want to take the erosion

of a set with 2 different structural elements and take the union of the results

after, then it is the same as taking the union of the structural elements and

taking the erosion with the resulting structural element which indicate the

distribution of morphological erosion over set union. This also leads to an

implication that if you have to take the erosion of any set with a certain

structural element, you can always partition the structural element into 2

sets and take the union of their respective erosions.

67



Proposition (The Distribution of Erosion over Union) 4.3.3

(A	B1) ∪ (A	B2) = A	 (B1 ∪B2) (4.10)

Proof:

(A	B1) ∪ (A	B2) =
⋂

b1∈B1
A−b1

⋃ ⋂
b2∈B2

A−b2

=
⋂

b∈B1∪B2
{A−b ∩ A−b1}

⋃ ⋂
b∈B1∪B2

{A−b ∩ A−b2}

=
⋂

b∈B1∪B2
{A−b ∩ A−b1 ∪ A−b ∩ A−b2}

=
⋂

b∈B1∪B2
A−b

= A	 (B1 ∪B2)

We can also make a generalized implication from the above analyses which

leads to the proposition below:

Provided any structural element can be partitioned into n distinct parts then

the union of the each of the partitions’ erosion with the set is equal to the

set’s erosion with the structural element.

Proposition 4.3.4

If B = B1 ∪B2 ∪B3 ∪ · · · ∪Bn for n ≥ 2

Then A	B = (A	B1) ∪ (A	B2) ∪ (A	B3) ∪ · · · ∪ (A	Bn)
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Proof:

If B = B1 ∪B2

Then A	B = (A	B1) ∪ (A	B2)

Let assume that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk for k ≥ 2

Then A	B = (A	B1) ∪ (A	B2) ∪ (A	B3) ∪ · · · ∪ (A	Bk)

Now we show that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1

Then

A	B = A	 (B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1)

= A	 [(B1 ∪B2 ∪B3 ∪ · · · ∪Bk) ∪Bk+1]

= [A	 (B1 ∪B2 ∪B3 ∪ · · · ∪Bk)] ∪ (A	Bk+1)

= (A	B1) ∪ (A	B2) ∪ (A	B3) ∪ · · ·

∪ (A	Bk) ∪ (A	Bk+1)

Proposition (The Non Distribution of Erosion over intersection) 4.3.5

(A	B1) ∩ (A	B2) = A	 (B1 ∪B2) (4.11)
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Proof:

[(A	B1) ∩ (A	B2)]
c = (A	B1)

c ∪ (A	B2)
c

= (Ac ⊕ B̆1) ∪ (Ac ⊕ B̆2)

= Ac ⊕ (B̆1 ∪ B̆2)

=⇒ (A	B1) ∩ (A	B2) = [Ac ⊕ (B̆1 ∪ B̆2)]
c

= A	 (B1 ∪B2)

Taking the erosion of a set with 2 different structural elements and tak-

ing the intersection of the results after is the same as taking the union of

the structural elements and taking the erosion of the set with the resulting

structural element. Since we are suppose to take the union instead of the

intersection shows that morphological erosion is non distributive over set in-

tersection. We can analyze that if you have to take the erosion of any set

with a certain structural element, you can always partition the structural

element into 2 sets and take the intersection of their respective erosions. We

can also make a generalized implication from the above analyses. This leads

to the proposition below:

Whenever any structural element can be partitioned into n distinct parts

then the intersection of the each of the partitions’ erosion with the set is

equal to the set’s erosion with the structural element.

Proposition 4.3.6

If B = B1 ∪B2 ∪B3 ∪ · · · ∪Bn for n ≥ 2

Then A	B = (A	B1) ∩ (A	B2) ∩ (A	B3) ∩ · · · ∩ (A	Bn)

70



Proof:

If B = B1 ∪B2

Then A	B = (A	B1) ∩ (A	B2)

Let assume that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk for k ≥ 2

Then A	B = (A	B1) ∩ (A	B2) ∩ (A	B3) ∩ · · · ∩ (A	Bk)

Now we show that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1

Then

A	B = A	 (B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1)

= A	 [(B1 ∪B2 ∪B3 ∪ · · · ∪Bk) ∪Bk+1]

= [A	 (B1 ∪B2 ∪B3 ∪ · · · ∪Bk)] ∩ (A	Bk+1)

= (A	B1) ∩ (A	B2) ∩ (A	B3) ∩ · · ·

∩ (A	Bk) ∩ (A	Bk+1)

Proposition (The Non Distributive Property of Dilation over Intersection) 4.3.7

(A⊕B1) ∩ (A⊕B2) = A⊕ (B1 ∪B2) (4.12)
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Proof:

[(A⊕B1) ∩ (A⊕B2)]
c = (A⊕B1)

c ∪ (A⊕B2)
c

= (Ac 	 B̆1) ∪ (Ac 	 B̆2)

= Ac 	 (B̆1 ∪ B̆2)

=⇒ (A⊕B1) ∩ (A⊕B2) = [Ac 	 (B̆1 ∪ B̆2)]
c

= A⊕ (B1 ∪B2)

It can be analyzed from the above that when taking the dilation of a

set with 2 different structural elements before taking the intersection of the

results after, then it is the same as taking the union of the structural elements

and dilating with the set. However, since we took the union instead of the

intersection shows the non distributive property of erosion over intersection.

This leads to the implication that if you have to take the dilation of any set

with a certain structural element, you can always partition the structural

elements into 2 sets and take the intersection of their respective dilations. It

can be generalized from the above that:

If any structural element can be partitioned into n distinct parts then the

intersection of the each of the partitions’ dilation with the set is equal to the

set’s dilation with the structural element.

Proposition 4.3.8

If B = B1 ∪B2 ∪B3 ∪ · · · ∪Bn for n ≥ 2

Then A⊕B = (A⊕B1) ∩ (A⊕B2) ∩ (A⊕B3) ∩ · · · ∩ (A⊕Bn)
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Proof:

If B = B1 ∪B2

Then A⊕B = (A⊕B1) ∩ (A⊕B2)

Let assume that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk for k ≥ 2

Then A⊕B = (A⊕B1) ∩ (A⊕B2) ∩ (A⊕B3) ∩ · · · ∩ (A⊕Bk)

Now we show that if B = B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1

Then

A⊕B = A⊕ (B1 ∪B2 ∪B3 ∪ · · · ∪Bk ∪Bk+1)

= A⊕ [(B1 ∪B2 ∪B3 ∪ · · · ∪Bk) ∪Bk+1]

= [A⊕ (B1 ∪B2 ∪B3 ∪ · · · ∪Bk)] ∩ (A⊕Bk+1)

= (A⊕B1) ∩ (A⊕B2) ∩ (A⊕B3) ∩ · · ·

∩ (A⊕Bk) ∩ (A⊕Bk+1)
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Chapter 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Introduction

In this chapter, the author brings to bear the summary of the findings made in

the preceding chapter, followed by the conclusions and possible implications

to mathematical morphology and recommendations for improvements and

further studies in mathematical morphology.

5.2 Summary of findings

In trying to find what happens if the image or structural element in a mor-

phological operation is partitioned, we find the following results:

1

(A1 ⊕B) ∪ (A2 ⊕B) = (A1 ∪ A2)⊕B (5.1)

74



2

(A1 ⊕B) ∩ (A2 ⊕B) = (A1 ∩ A2)⊕B (5.2)

3

(A1 	B) ∪ (A2 	B) = (A1 ∪ A2)	B (5.3)

4

(A1 	B) ∩ (A2 	B) = (A1 ∩ A2)	B (5.4)

5

(A⊕B1) ∪ (A⊕B2) = A⊕ (B1 ∪B2) (5.5)

6

(A	B1) ∪ (A	B2) = A	 (B1 ∪B2) (5.6)

7

(A	B1) ∩ (A	B2) = A	 (B1 ∪B2) (5.7)

8

(A⊕B1) ∩ (A⊕B2) = A⊕ (B1 ∪B2) (5.8)

9

(A1 ◦B) ∪ (A2 ◦B) = (A1 ∪ A2) ◦B (5.9)

10

(A1 ◦B) ∩ (A2 ◦B) = (A1 ∩ A2) ◦B (5.10)

11

(A1 •B) ∪ (A2 •B) = (A1 ∪ A2) •B (5.11)

10

(A1 •B) ∩ (A2 •B) = (A1 ∩ A2) •B (5.12)
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5.3 Conclusion

We conclude our research with the fact that, the results above gives us a

simplification of morphological operations when dealing with lots of set with

the same structural element and vice versa. It also gives us ways of partition-

ing the structural element in order to carry out the morphological operation

with ease and vice versa.

Furthermore, dilation and erosion distribute over set union but does not

distribute over set intersection.

5.4 Recommendations

We recommend the following to readers and those in the field of mathematical

morphology:

• To test out each of the results with specific examples since the results

here were derived with mathematical implications only and no examples

carried out.

• Also further research using other morphological operators should be

carried out in order to find out the outcome if they behave the same

way as the morphological operators used in this research.
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