
 

 

SCHOOL OF GRADUATE STUDIES  

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND  

TECHNOLOGY, KUMASI, GHANA  

  

GEOSTATISTICAL METHODS FOR ESTIMATING IRON,  

SILICA AND ALUMINIUM WITHIN IRON ORE DEPOSITS:  

-A CASE STUDY OF THE MOUNT TOKADEH STUDY AREA, YEKEPA,  

YARMEIN DISTRICT, NIMBA COUNTY, REPUBLIC OF LIBERIA  

  

BY  

EMMANUEL ALLEN DONSEAH  

 (BSC. CIVIL ENGINEERING)  

  

THE THESIS SUBMITTED TO THE DEPARTMENT OF GEOMATIC  

ENGINEERING,  

COLLEGE OF ENGINEERING  

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE  

OF  

  

MASTER OF SCIENCE  

  

  

 OCTOBER 2016    



 

ii  

DECLARATION  

I best of my knowledge, it contains no material previously published by another person, 

nor material which has been accepted for the award of any other degree of the 

University except hereby declare that this submission is my own work towards the 

award of MSc and that, to the where due acknowledgement has been made in the text.  

EMMANUEL A. DONSEAH  ……………….………  ………………….  

(Student & ID)    

(PG2233414)  Certified 

by:  

    Signature      Date  

Prof. ALFRED A. DUKER    
……………….………  ………………….  

(Supervisor)          Signature      Date  

REV. JOHN AYER     ……………….………  ………………….  

(Supervisor)      

Certified by:  

    Signature      Date  

Dr. Isaac Dadzie      
……………….………  ………………….  

(Head of Department)       Signature      Date  

    



 

iii  

 

 

 

 

 

 

DISCLAIMER  

This document describes work undertaken as part of a program of study at Kwame  

Nkrumah University of Science and Technology (KNUST), Kumasi; Department of 

Geomatic Engineering. All views and opinions expressed therein remain the sole 

responsibility of the author, and do not necessarily represent those of the institution.   

     



 

iv  

ABSTRACT  

Mining history in Liberia is often plagued with difficulties of uncertainty of commercial 

quality and quantity of mineral existence in a particular region. Previous studies 

conducted at Mount Tokadeh, study area which lies between latitude 7o15’N and 

7o45’N and longitude 8o15’W and 8o45’W was distributed in three ore zones; the Oxide 

Ore, Transitional Ore and Primary Ore. It was also proven that there is some 

considerable amount of silica and alumina in this ore deposit but the extent of these 

impurities within this ore deposit were unknown.  

The main aim of this research was to investigate the use of information gain from 

kriging interpolation techniques (Ordinary Kriging, Indicator Kriging and Universal  

Kriging) to estimate iron ore resources and categorize selective mining unit as High 

Grade Ore (HGO) or Direct Shipping Ore (DSO).  

Field data were processed in excel template and exported into shapefile format inputted 

into ArcGIS/Arcmap 10.2.1 for interpolation using three main kriging interpolators. 

Four classes of creative colors were used to delineate the relative quality of mineral 

distribution within mining site. The final output maps (Prediction map, Probability map 

and Error of Prediction map) were obtained. Voxler was used to model borehole data 

in 3D format and was overlayed on the output kriged map for validation.  The results 

showed that Indicator Kriging which uses threshold was the best interpolation method 

that categorizes the various mining units. Integrated method using Kriging in GIS was 

introduced and implemented in this work to determine the prospect of using this 

approach in mapping the spatial division of iron, silica and  

aluminum content and tonnage of iron ore.     
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CHAPTER 1  

INTRODUCTION  

1.1 BACKGROUND  

Before 1989, Liberia was the world’s sixth largest exporter of iron ore which was 

contributing to as much as 64% of total exports and 25% Gross Domestic Product 

(GDP). However, there has been no production until 2003, making the iron ore sector 

a prime mover for economic growth (Chadwick, 2011).  

Liberia’s mineral development policy and mining code envisaged that exploitation 

would be balanced appropriately with sustainable environmental preservation (MLME 

, 2010). Other laws governing the mining sector in Liberia, particularly the National  

Environmental Protection Agency of Liberia’s Environmental Protection and 

Management Law, (2002) required a mandatory environmental impact assessment prior 

to exploitation (MFA, 2003), and the facilitation of conservation of the biological 

diversity of Liberia. These require the use of knowledge driven exploitation of minerals 

in order not to degrade the land in search of such, at places without a high probability 

of ore finds.  

Geostatistical methods and Geographic Information Systems can provide the necessary 

tools for ensuring knowledge-based and targeted exploitation.  

Geostatistics uses spatial and temporal patterning to exploit the relationships that help 

to model potential values of a variable at unsampled points, and these analyzed in GIS, 

would limit the search of minerals to areas with high probability of mineral ore 

occurrences.  
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1.2 Problem statement   

The mining industry is often plagued with difficulties mainly due to uncertain existence 

of the prospected mineral of interest in commercial quantities, the grade and tonnage 

available and the exact location within a region where minerals are likely to be found. 

Previous studies conducted in the study area show that ore deposits are distributed in 

three ore zones (Oxide, Transition and Primary ore zones) (Amikiya, 2014). It was also 

established that iron concentration increases with decreased silica content in all the ore 

zones. However, the distribution of iron, silica and alumina in the three ore zones is not 

known. The applications of geostatistics method can provide a means of estimating both 

the grade and tonnage of the various grades at unsampled points together with estimated 

errors. This would reduce the uncertainty or investment risk and helps control the 

number of exploration drilling requirement as well as establishing decisions to mine 

based on grade and tonnage.   

1.3 Aim and Objectives  

1.3.1 Main Aim  

The main aim is to investigate the use of information gained from Indicator Kriging 

(IK), ordinary Kriging (OK) and Universal Kriging (UK) in estimating Iron Ore 

resources and apply the best method to categorize selective mining unit as High Grade 

(HG) or Direct Shipping Ore (DSO).   

    

1.3.2 Specific Objectives  

The specific objectives are to:  

1. Use an integrated methodology of Kriging in GIS to demonstrate the  

possibility of mapping the spatial distribution of iron, silica and alumina in the 

ore deposit of the Tokadeh Study area.   
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2. Delineate the relative magnitudes (tonnages) using creative colors to each 

mineral type at various locations of the study area.  

3. Prepare Prediction maps, Error of Prediction maps, Quantile maps, Probability 

maps and sampling point map for these mineral deposits using GIS.  

1.4 Scope of current work  

This work is limited to Mt. Tokadeh concession area of Liberia. The integration of 

geostatistics and GIS is used to predict the mineral distribution of Tokadeh ore deposits 

using sampled data collected from 110 drilled bore holes. There are several 

geostatistical interpolation methods, but in this research, the kriging procedures of 

interpolations (indicator kriging, ordinary kriging and universal kriging) were used 

based on the phenomena being studied. Variography is first done to determine which 

mathematical method is best.  

1.5 Relevance of research  

The unavailability of estimated ore reserve grades and quantities prior to mining have 

led to the failure of mining projects and unnecessary degradation of biodiversity even 

where no ore exist (Dimitrakopoule, 2012). The results of this effort would facilitate 

decisions on deposit viabilities at different locations in terms of quality and quantity.   

    

1.6 Structure of Thesis  

This research is compiled into 5 chapters.  

An introduction presented in chapter one includes background, problem statement, 

objectives, scope of current work, and relevance of research.  

In Chapter 2, a review of ore deposit classifications in terms of mineral burden, 

geostatistical techniques and use in mineral prediction and exploration are made. This 
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chapter further includes challenges of interpolation methods and their relative strengths 

and weakness.  

The material and methodology employed in the current study is presented in chapter 3. 

The results of current effort are in chapter 4. The chapter also includes a discussion of 

these results and deduction made from these analyses.  

The conclusions drawn from the study are presented in chapter 5 together with some 

recommendations for further studies  

    

CHAPTER 2 ORE DEPOSIT CLASSIFICATIONS AND 

GEOSTATISTICAL  

INTERPOLATION TECHNIQUES  

2.1 Ore Deposit Classifications  

Iron constitutes 2 to 3% of the earth crust in sedimentary rock and up to 8.5% in basalt 

and gabbro. For an iron ore to be considered economically worthwhile, it should contain 

at least 25% of iron concentration (Amikiya, 2014).   

There are over 300 iron bearing minerals that contain some percentage of iron but only 

the following five are key economic sources of iron ore:  

1. Hematite (Fe2O3)  

2. Goethite (Fe2O3H2O)  

3. Pyrite (FeS2)  

4. Magnetite (Fe3O4)  

5. Siderite (FeCO3)  

Among these, magnetite and goethite are the chief sources due to their high 

concentrations of iron (U.S EPA, 1994). Mineral resources are made up of three main 
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classifications, namely; indicated or inferred resources, measured, and reflecting 

diminishing levels of geological confidence.   

Mineral resource classification ought to take into account applied consideration such as 

drill-hole spacing, geological control and continuity, drilling, sampling and assay 

integrity, grade continuity, block size, estimation method and potential mining method 

and reporting epoch. Major reflection is also drawn to metallurgical factors, cut-off 

grades, mining and or assumption, cost and revenue factors, market assessment and risk 

factors such as environmental, social or political (Everett, 2013).  

 Iron ore classifications may be based on geological formation. Iron ore consist of a 

wide range of rock history and the physical earth’s crust as well as the wide range of 

land-area-based distribution. Iron ore originated in primitive rock of the earth’s layer 

with ages over 2.5 billion years. Rock unit are molded in different land and rockbased 

ages (Poveromo et al., 2000). Table2.1 Exhibits the selected geologic age of iron 

deposits in geologic history.  

Table 2.1: Selected Geologic Ages of Iron Ore Deposits  

Geologic Age  Deposit  Location  

 Paleozoic Era   

PERMIAN PERIOD  Damuda Sandstone (Hematite)  India  

Pre-Cambrian Era  Nimba Range Hematite  

Minas Gerais Serra dos Carajas Hematite  

Krivoi Rog Hematite  

Bihar, Orissa and Mahya-Pradesh Hematite  

Labrador Hematite  

Lake Superior Taconite and Jaspilite, Hematite and 

Magnetite  

Kirunavaara Magnetite  

Cerro Bolivar and El Pao Hematite  

Hamersley Range Hematite  

Liberia  

Brazil  

Ukraine, Russia  

India  

Quebec and Labrador  

Michigan,  Wisconsin,  

Minnesota, Ontario  

Sweden  

Venezuela  

Western Australia  

Oligocene Epoch  Cheikh-ab-Charg Hematite  Iran  

 Mesozoic Era   
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Cretaceous Period  Salzgitter Limonite and Hematite  

Algeria and Moroccan Hematite and Magnetite 

Bilbao Hematite  

Germany  

North Africa  

Spain  

Jurassic Period  Iron Spring Magnetite  

Minette, Limonite and Hematite  

Utah  

Germany, France  

Triassic Period  Kasmir Calcareous Iron Ore (Hematite)  India  

 Cenozoic Era   

Tertiary Period  

Pliocene Epoch  

  

El Tofo Magnetite  

Kerch Oolitic Limonite  

  

South America, Chile  

Russia, Crimea  

Oligocene Epoch  Cheikh-ab-Charg Hematite  Iran  

Eocene Epoch  Bahariya Hematite  

Upper Assam Clay Ironstones  

Egypt 

India  

(Source: Poveromo et al. 2000, “Iron Ores”, Chapter 8,  pp.3)  

The geological surrounding of iron ore mostly originated in igneous rock (created in a 

volcano), metamorphic, or sedimentary (coming from material sink in liquid) rock, or 

as a weathering product of other most important iron bearing materials. According to 

Poveromo et al. (2000), iron ore are classified according to their geological structure, 

occurrences, arrangement and similarity into igneous ore, metamorphic ore formation 

and sedimentary ores.    

2.1.1 Igneous Ore   

These originated from crystallization of moisture materials containing rock strata of 

huge iron percentage settlement as they become clear and real to form iron-rich 

concentrates. Igneous ores are often high in iron content but may also contain high 

phosphorus or titanium content. (Poveromo et al., 2000)  

2.1.2 Metamorphosed Iron ore formations  

These are transmuted bedded rusty rocks sedated typically of sporadic thin layers of 

ferric oxides and chert or fine-grained quart. This type of iron is characteristically 

exhibited in the mineral form of hematite or magnetite, in addition to lesser quantity of 

silicate and carbonates irons. All of the Pre-Cambrian sedimentary iron structures are 
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of this type. They contain the magnetite and nonmagnetic taconites of Minnesota. 

Metamorphosed iron ore also consist of ones in which the primary structure of the ore 

had been concealed by wide-ranging recrystallization.(Poveromo et al., 2000)  

2.1.3 Sedimentary Ore   

These can be made up of siderite, silicate, Oolites of hematite, iron and limonite among 

others in the mold of calcite, silicate or siderite and usually has large range of locational 

arrangement concordant with other sedimentary rocks. Sedimentary ore normally 

accommodate phosphorus content and may be self-fluxing.(Poveromo et al.,  

2000)  

2.2 Iron Bearing Minerals  

There are over 300 minerals which accommodate some percentage of iron, though, 

entirely a small number contain a marketable content of iron. Those minerals 

comprising commercial quantities of iron are arranged into their chemical  

composition, carbonate, oxides, silicate and sulfides.   

In table 2.2, the carbonate and oxide classes are shown and specified those mineral 

species that are generally considered commercial iron bearing mineral.  

Table 2.2 Chief Iron Bearing Mineral   

Class and Mineralogical 

name  

Chemical Composition of 

Pure Mineral  

Common Designation  

Oxide  

Iimenite  

  

FeTiO3  

  

Iron-titanium Oxide  

Hematite  Fe2O3  Ferric Oxide  

Magnetite  Fe3O4  Ferrous-Ferric Oxide  

Limonite  

Carbonate  

FeO2  

FeO(OH)  
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Siderite  FeCO3  Iron Carbonate  

(Source: Poveromo, J.J. et al., 2000. “Iron Ores”. Chapter 8 , pp.547–642).  

2.2.1 Magnetite   

This has a structure Fe3O4, with iron content of 72.36%. It contain of dark gray to black 

color. Strongly magnetic, it sometimes maintains polarization to act as a natural magnet. 

Magnetite is normally formed in metamorphic, igneous and sedimentary rocks 

(Hussain, 1985; Podolosky and Keller, 1994).  

2.2.2 Hematite   

This has a chemical arrangement of Fe2O3, with iron content ranging from 65- 69.94%. 

It contains colors that range from dull red to bright red and steel gray. Its diversities are 

known as martite (pseudomorphic after magnetite), reflective, crystalline, maghemite 

(magnetic ferric oxide), ocherous, earthy and compact. According to Hussain (1985), 

Podolosky and Keller (1994) hematite has wide occurrences in many types of rocks and 

is of changeable origin. Hematite can also be found with trace deposits in sedimentary 

and metamorphic, as well as an output of the natural disintegration of magnetite.  

2.2.3 Hydrous Iron Oxide   

This is mineralogically called Limonite and is making up of several combinations of 

several minerals lepidocrocite or goethite. The chemical formula for goethite is HFeO2, 

containing 62.85% iron. However, Lepidocrocite with a chemical composition of 

FeO(OH) is extraordinarily brown or yellow to approximately black in color, 

additionally condensed to earthy and ocherous. The word limonite signifies unfamiliar 

oxides with inconsistent water percentage as a result of water vein or high 

concentration. It is a less important mineral, made customarily by natural disintegration 
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of mineral due to erosion among others, likewise develops in combination alongside 

other sedimentary and oxide rocks.  

2.2.4 Ilmenite   

This is of a natural configuration of FeTiO3, with a conforming 36.80% iron. It is also 

considered as iron titanate. Generally ilmenite which is correlated with magnetite is 

customarily mined as titanium source rather than iron with iron being recovered as a 

by-product.  

2.2.5 Siderite   

This is composed of a chemical formation of FeCO3 with 48.20% iron as well as color 

ranging from white to brown and greenish gray. This mineral constitutes only a limited 

portion of the total world reserves. Siderite has variable aggregate of calcium, 

magnesium or manganese. It differs from heavy, fine grained and compressed to 

crystalline. Siderite ore is sometime characterized as black band ore or spathic ore.  

Siderite is one of the valuable adsorbent of natural raw materials (Drolq et al., 2015)  

2.3 Deleterious Elements in iron ore   

The chemical parts of iron minerals are either compounds such as oxides-silica, 

alumina, lime, and magnesia; or as elements such as sulfur, phosphorus, manganese, 

titanium, chromium, and nickel. Most of these elements which are largely called 

impurities have deleterious effects though others are advantageous. The main 

deleterious elements are phosphorus and sulfur. They are to be reduced to acceptable 

amounts in smelting processes to determine the marketability of ores (Carr & Dutton, 

1959).   

Silica (SiO2) is continuously existent in iron ore. However, large amount of silica are 

slagged off in the course of the extraction of silica from ore body (smelting). At 
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temperatures above 1300 degree Celsius few will be condensed and form an alloy with 

the iron. Silicon presence will increase in the ore body when the furnace is 

hotter.(Kiptarus et al., 2015)  

Phosphorus (P) is one of the major impurities which at high levels in steel reduce the 

strength of steel making it brittle and easily crack. Due to these factors, in steel making, 

chemical and biological procedures are used to remove phosphorus from iron ore. 

Phosphorus is either integrated into the crystal lattice of iron oxides or into the gauge 

mineral. It has a harmful outcome on the viability of steel. So many Phosphorus 

enriched ores are unmarketable around the world leaving many iron ore mines 

abandoned. Acceptable phosphorus concentration in iron ore should be less than 

0.08%.(Carr & Dutton, 1959)  

Sulphur is one of the major impurities that mostly increase cost of ironmaking. Sulphur 

mostly enters the ironmaking process from coke used as fuel, even though; some iron 

has high Sulphur content. Pretreatment is usually carried out to remove or reduced the 

level of sulfur content present in an iron ore body. When refining iron to steel, it is 

necessary to remove or reduce the level of sulfur in the iron (Hussain, 1985).  

Aluminium is one of the major harmful metallic elements found within iron oxide. It 

affects the strength of steel making. According to Shakhashiri (2008), alumina is the 

predominant metal and the third bountiful element in the earth’s crust and due to its 

chemical reactiveness it combines with over 270 different minerals with its chief ore 

being bauxite and iron oxide.    

2.4 Geostatistics   

Geostatistics is a subdivision of statistical science that analyzes temporal and spatial 

phenomena and exploits on the spatial relationship that form credible values of 
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variable(s) at an un-sample location. In simple term, geostatistics studies phenomena or 

occurrences that vary in space and time (Bohling, 2005a). Geostatistics is used to select, 

and block map underground ore bodies for mining decisions (Ver Hoef, 2002).  

Everything on the surfaces of the earth or underneath the surface including the 

distribution of minerals has a definite spatial location. The distribution of such natural 

phenomena may form spatial patterns which are explainable in Tobler’s law that 

“everything is related to every other thing but near things are more closely related”. 

Tobler’s law shows that objects in a particular location can influence their 

neighborhood in term of distributions and patterning.  

Estimation of ore reserves had used different predictable interpolation methods in 

different areas such as the Triangulated Irregular Network (TIN), Inverse Distance 

Weighting (IDW) and Polygon methods, etc., in addition to contemporary procedures 

like Multiquadratic techniques, natural neighbor interpolation and kriging.  

These interpolation techniques are mathematical approaches employed to a dataset of 

inconsistent distribution, and help obtain values for the variable of interest at unsampled 

locations established on neighboring computation (Bohling, 2007). This idea is mainly 

based on the usage of appropriate functions that ties the spatially distributed data to 

determine a normal calculation function. Contingent on the precision of interpolated 

estimate gave significant saving in time and costs which could be realized by limiting 

search to only places of probability of occurrences. The method may also integrate some 

attenuation functionality so that it ought to be conceivable to know how far from the 

source location a particular find can go.  

George Matheron (1971) industrialized Geostatistics at the Centre de Moropholopie 

Mathematicque ai Frontainebleau, France. The principal focus of geostatistic was 
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evaluating ore grade in reach in a mine. This principle is nowadays applicable to various 

areas in geology and other scientific disciplines as well as in medicine.  

The kriging method has been used in the mining industries as the most precise and 

dependable method for prediction and reserve estimation. However experience was 

needed to choose the most applicable kriging method for application (Saleem, 2007).  

The usage of integrated methods such as IK, OK, and UK techniques in GIS help aid 

mining resolution to control and strategized ore production.  

The most unique quality feature of geostatistics is to employ regionalized variables, that 

are variables that lies between deterministic and random variables. Regionalized 

occurrences may display spatial continuousness. Nevertheless, since it is not at all times 

feasible to sample the entire area of interest, values of unsampled points have to be 

calculated from data taken at definite locations with known X and Y coordinates that 

can be sampled and then used in kriging. The unidentified sampled region prediction is 

strongly influenced by the location of samples, shape, spatial structure size and 

orientation. Regionalized variable evaluation and sampling are done to establish a 

standard of variation in the phenomenon under scrutiny that can be mapped as a 

“contour” for the geographical locality.  

Geostatistics is analyzed subsequently as follows:  

i. Parameters of spatial autocorrelation modelling.  

ii. Estimation of  spatial autocorrelation between samples iii. Block kriging 

estimation using mean values. iv. Surface estimation using Kriging (ordinary kriging, 

indicator kriging and universal kriging) techniques  
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Spatial correlation is explored using covariance function, correlograms and variogram 

or semivariograms.  

To understand and apply the principle of geostatistics, one must understand statistical 

concept of random variables, means and variances.  

Geostatistics compiles a set of patterns and tools established for statistical analysis of 

uninterrupted data. These data can be evaluated at any region in space, but are 

obtainable in a limited number of sampled points and value for unsampled points are 

estimated using geostatistics. Predictions made by Geostatistical Analysis are 

accompanied by information on uncertainties due to input data that are sometime 

polluted by errors and structure that are only  approximation of the reality (Krivoruchko, 

2004). The geostatistics method provides a means of interpolation based on several 

models.  

Random Variable –geostatistics predicts the value of any property z(x) where x is a 

point along a line, in a plane, or in 3D space, is the realization of the random variable 

z(x). Random variable is one that takes certain probabilities.   

The Mean – the mean for random variable is the expected value. The mean is calculated 

from (Dubrule, 2003):  

     m=E(x)   

The Variance ( 2) is the expectation of E ⌈(𝑥 − 𝑢)2⌉.  

 

𝒎)𝟐 𝒇(𝒙)𝒅𝒙   
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The covariance defines how two random variables change together (Honerkamp, 

2012). It is thus the basic tool to measure the relationship between two random 

variables.   

The choice of the applicable interpolation method in geostatistics is determined by 

multiple factors. Several methods are applied to compare interpolated results or an 

appropriate choice may be made based on prior knowledge. For instance, if it is known 

that if some objects from the surface exceed the z-value it would be better to choose the 

Spline method. The IDW method will give a good surface when using a known z-value. 

IDW calculates values of grid cell locations using weights based on distances to 

neighboring cells. The closest point to the central one will be estimated and its weight 

will have greater influence in the interpolation process. IDW and Spline refer to definite 

interpolation methods since they are based on the neighboring measured values and the 

use of mathematical formulae that define the smoothness of the acquired surface.   

The similarity of Kriging and IDW is that, the weights of the surrounding measured 

values are used for gaining prediction of un-sampled locations (Valev & Kastreva, 

2010). However, in the case of kriging, it is used when there is spatial correlation or 

directional bias in the data.  

Considering geotechnical and geological state of affairs, such as the soil strata or rock 

layers at a project site and drilling boreholes at some selected locations of interest, 

known X and Y coordinates with accurate depth recording are paramount. Many times, 

as anticipated, one finds that samples from boreholes closer to each other tend to be 

more equipotential than those from extensively distance boreholes. This observation 

forms the basis of the assumption in geostatistics that location has a relationship to 

measured properties (Hammah & Curran, 2006).  
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One of the fundamental practices of geostatistics has long been the prediction of the 

spatial structure of orebodies and the evaluation of resources and/or reserves  for 

planning of the mining (Tolosana-delgado et al., 2015)  

The relationship between the feature of interest and physical environment often is so 

complex that it cannot be modeled exactly (Hengl, 2009) because we only estimate a 

model by using the actual field measurements of the target variable.  

 Geostatistical methods are widely applied in spatial interpolation from point 

measurement to continuous surfaces (Ly et al., 2011). Geostatistics involves the 

analysis of the spatial dependence, creation of map processed through computer and 

finding probabilities that either exceed or fall below a value.  

2.4 Interpolation Methods  

There are several interpolation methods which include:  

(a) Inverse Distance Weighted (IDW) Method,  

(b) Triangulated Irregular Network (TIN) method,  

(c) Polygon method,  

(d) Multiquadratic Technique,  

(e) Natural Neighbor, and  

(f) Kriging  

Choosing Kriging among these interpolation methods above is based on the phenomena 

being studied. According to Childs, C., (2004), Kriging is powerful method of 

interpolation used for diverse application. He also explained that kriging assumes that 

the distance or direction between sample points reflect a spatial correlation that can be 

used to explain variation in surfaces. It was further explained that kriging is the most 

appropriate among these interpolation methods when a spatially correlated distance or 
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directional bias (which can be obtained by error inherent in the instrument or caused by 

human error) in the data is known. It is often used for application geology and soil 

science.     

  

2.4.1 Inverse Distance Weighting (IDW) Method  

Inverse distance weighting models work on the premise that observations further away 

should have their contributions diminished according to how far away they are (Smith 

et al., 2015). They evaluate the relationship between interpolation accuracy and two 

critical parameters of IDW: power (a value), and a radius of influence (search radius) 

(Chen & Liu, 2012). The Inverse Distance Weighting (IDW) interpolator within the 

geographic information systems (GIS) operates on the assumption that entities in close 

proximity to one another are more alike than those farther away. IDW uses the values 

of surrounding measured locations to predict the value of unmeasured locations.  

2.4.2 Triangulated Irregular Network (TIN) method  

The TIN model represents a surface as a set of contiguous non overlapping triangles. 

The triangles themselves are made of sampled points as nodes. Once a surface is created 

by delauney triangulation, values are obtained for unsampled points on the surface.  

2.4.3 Polygon method  

The catchment area is divided into polygons such that each polygon has a single point 

of sampling (Ly et al., 2011). Each interpolated point takes the value of the closest 

sampled point. The advantage of this method is its simplicity. Its estimation is based on 

only one measurement and the information on neighboring points is ignored which is a 

disadvantage.  
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2.4.4 Multiquadratic Technique  

The multiquadratic method of interpolation and prediction has attained prominence 

among radial basis functions because of its accuracy and simplicity. The method was 

named "multiquadratic" because it was originally understood, in only geometric terms, 

as a linear combination of quadric surfaces (Hardy, 1992).   

The Multiquadratic method is considered by many to be the best in terms of its ability 

to fit data and produce a smooth surface (Kao & Hung, 2004). The technique minimizes 

the total curvature of surfaces in order to enable a variety of operations such as data 

visualization (Carlson & Natarajan, 1994). It has been proven that the  

Multiquadratic interpolation method is the best method for interpolating scattered data 

(Rap et al., 2009).   

2.4.5 Natural Neighbor  

The Natural Neighbor interpolation algorithm uses a weighted average of the 

neighboring observations, where the weights are proportional to the "borrowed area". 

The Natural Neighbor method does not extrapolate contours beyond the convex hull of 

the data locations, as does Thiessen polygons (Kao & Hung, 2004). However, for 

irregularly spaced samples and complex terrains, natural neighbor interpolations are 

known to perform well.   

2.5 Kriging Methods of Geostatistical Interpolation  

Kriging offers an optimal interpolation based on regression against observed z-values 

of surrounding data points. There are many kriging variants but three used in this work 

are, OK, IK and UK.   

Kriging interpolation methods uses observations z(xi ) at location xi to estimate the 

values z(x0) at a point xo where observations are not applicable. The random variable z 
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at any location can be written as the sum of a deterministic component called the trend 

(x), and a stochastic error component, r(x) (Huang et al., 2015). Assay obtained from 

wider-spaced drill hole can be used to calculate grade values for each block on a 

rectangular grid by the process of “kriging”(Everett, 2013). It gives estimates of the 

expected (mean) grade for each block and takes into account both nearest drill hole 

assays but and widely distant values. A three-dimensional “variogram” in kriging is 

used to estimate the variability across the distance coordinates. Variogram is used to 

estimate block grades. The actual grade values have a variance around the kriged values, 

so the kriged values will be the expected or mean for each block location, but might 

underestimate the variance. The variance around the kriged values is zero at the drill 

hole locations, and tends to increase the further a block is from a drill hole. Total grade 

variance is the spatial variance plus a further variance corresponding to the variability 

around the kriged value at each block.  

2.5.1 Variography in Kriging   

Kriging is built on the assumption that things that are close to one another are more 

alike than those that are farther apart or away, quantified as spatial correlation.  

The principle of semi-variogram states that the pairs that close in distance should have 

smaller measurement difference than those farther away from one another.  

In a semivariogram, half the difference square between the pairs of locations (the yaxis) 

is plotted relative to the distance that separates them (the x-axis). In creating the 

empirical semivariogram, the first step is to calculate the distance and squared the 

difference between each pair of locations. These distances can be calculated by using 

the Euclidean distance:  
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𝒅𝒊𝒋 = √(𝒙𝒊 − 𝒙𝒋)𝟐 + (𝒚𝒊 − 𝒚𝒋)𝟐  

The empirical semivariogram is 0.5 times the difference squared  

0.5*average[(𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑖 − 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗)2]  

2.5.2 Ordinary kriging  

Ordinary Kriging is based on mathematical equation:  

Z(S) = 𝝁 + 𝜺(𝒔)  

Where; Z(S) is the value at a particular location or variable of interest, µ is a constant 

or deterministic trend, Ɛ(s) is the random error with spatial dependence or the 

autocorrelated error, and S represents the location.  

Assuming that the Ɛ(s) is intrinsically stationary, the predictor is formed as a weighted 

sum of the data.  

 Z(So)=   

Where; Z(S) is the measured value at the ith location, 𝝎𝒊 is an unknown weight for 

measured value at the ith location, So is the prediction location, and N is the number of 

measured value.  

Ordinary kriging uses either the semivariograms or covariance for prediction. Figure 

2.1 shows the principle of ordinary kriging.  
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Figure 2.1: Principle of ordinary kriging   

(Source: Arcgis/Arcmap 10.2.1 Manual)  

Ordinary kriging along with other kriging method such as simple kriging to estimate 

direct solar radiation on a geographical domain characterized by orographic variability 

in Italy (Bezzi & Vitti, 2005). For ordinary kriging, rather than assuming that the mean 

is constant over the entire domain, assumed that it is constant in the local neighborhood 

of each estimation point(Bohling, 2005b). Given a point x0, the ordinary kriging 

estimator at x0 based on the data Z(xi) i = 1, · · · ,N is defined as the linear unbiased 

estimator (Bonaventura et al., 2005).  

Ordinary kriging is the most commonly used technique. It assumes a constant but 

unknown mean. Instead of weighting nearby data points by some power of their 

inverted distance, ordinary Kriging relies on the spatial correlation structure of the data 

to determine the weighting values (Ruiqing & Jin, 2012). It is widely used because it is 

statistically the best linear unbiased estimator (Srinivasan et al., 2008). Ordinary kriging 

is linear because its estimates are linear combination of the available data. It is unbiased 

because it attempts to keep the mean residual to be zero. Finally, it also tries to minimize 

the residual variance.  
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2.5.3 Indicator kriging  

A variable that is continuous can be made into a binary (0 or 1) variable by choosing a 

threshold. Values above the threshold become a 1, while values below the threshold 

become a 0 in Geostatistical Analyst. Figure 2.2 shows the threshold of variable in 

space.  

 
  

Figure 2.2: Threshold of a variable in space  

(Source: Arcgis/Arcmap 10.2.1 manual) Indicator 

Kriging model assumes that:  

I(S)= 𝝁 + 𝜺(𝒔)  
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Figure 2.3: Principle of indicator kriging  

(Source: Arcgis/Arcmap 10.2.1 manual)  

Where 𝝁 the unknown constant, I (S) is is the binary value and 𝜺(𝒔) is the autocorrelated 

error.  

Binary data is created by representing threshold as continuous data, and assumes values 

of 0 or 1. Indicator kriging follows as ordinary kriging using binary variable. The 

dashed line in the Figure 2.3 shows the unknown mean (𝝁) that is comparable to 

ordinary kriging. 𝜺(𝒔) autocorrelated in ordinary kriging, because the indicator 

variables are 0 or 1, indicator interpolation will be between 0 and 1.  

Indicator kriging method depends on data transformation from continuous values to 

binary values or begins with categorical data. Probability of viral hazards from 

categorical data on landscape features have been produced using Indicator Kriging. It 

was also used on a combined variable to produce the probability map of plant disease 

epidemiology (Tolosana-Delgado et al., 2008). Indicator kriging (IK) has been used  to 

categorize several lithological units of an iron ore deposit (Kameshwara Rao & 
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Narayana, 2015) as well as to estimate the pollution in waterways associated with 

agricultural use (Lyon et al., 2006), and also to generate coastal sediment type map  

(Fu-cheng et al., 2012)  

2.4.3 Universal kriging (UK)  

Universal Kriging assumes model:  

Z(s)=µ(s)+Ɛ(s),  

Where; µ(s) is some deterministic function. The principle of universal kriging is shown 

in figure 2.4.  

  

Figure 2.4: Principle of Universal Kriging  

(source: Arcgis/Arcmap 10.2.1 Manual)  

A second-order polynomial is the trend which is µ(s) and when subtracted from the 

original data, results in the errors, ε(s), which are assumed to be random. The average 

of all ε(s) is 0. The random errors ε(s) are used to model the autocorrelation. Universal 

kriging is similar to regression with the spatial coordinates as the explanatory variables. 

The errors are modeled to be autocorrelated assuming they are independent.   



 

24  

The United States army used Universal kriging for closely monitoring the changing 

depths of navigation channels throughout the U. S. A. and Western Europe. The method 

uses local or global polynomial functions to detrend data (Sterling, 2003).  Investigation 

of the practical and methodological use of universal kriging of functional data to predict 

unconventional shale production in undrilled locations from known production data was 

conducted using two estimation procedures, using estimation by means of cokriging of 

functional components (Universal Cokriging,  

UCok), requiring cross-variography and estimation by means of trace-variography  

(Universal Trace-Kriging, UTrK), which avoids cross- variogram modeling 

(Menafoglio et al., 2016). Universal Kriging has also been used to interpolate water 

table elevation from their measurement at random locations in New Mexico, USA. In 

this instance, Statistical analysis performed on the estimated contours revealed that  

the  decrease  in  water  table  was  between  0.6  and  4.5  m  at  90%  

confidence(Kambhammettu et al., 2011). In the case where there is considerable 

correlation between analyzed variable and certain other spatial variable such as altitude, 

east-west coordinate or others, universal kriging is preferred (Agency, 2010).  

Universal kriging is mostly used when trend is present. A nonstationary regionalized 

variable is composed of drift, or the expected value of the variable in a neighborhood, 

and the residual which is the difference between the drift and the actual value (Grant, 

1990). It was proven that universal kriging based on a universal method of variogram 

estimation is more flexible and more intuitive than kriging of intrinsic random 

functions(Boogaart & Brenning, 2001). Universal Kriging matrix (M), which includes 

in it the values of the polynomials at data locations (matrix F), in some cases may have 

a too large condition number and can even be nearly singular due to the fact that some 

columns are close to be linearly dependent(Lopez & Samper, 2007). Universal kriging 
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was applied to the command area of a set of canal irrigation projects in north- western 

India to show its applicability for optimal contour mapping of groundwater 

levels(Kumar, 2007). Universal kriging incorporates trend estimation error as well as 

spatial interpolation error minimized to produce quality maps by the interpolation of 

observation of a target environmental variable at a restricted number of locations(Brus 

& Heuvelink, 2007). Using a spherical variogram model on the basis of crossvalidation, 

the universal kriging results were comparable with the subjectively obtained map 

(Kastelec & Košmelj, 2002).  

2.6 Geographic Information Systems (GIS)  

Geographic Information Systems (GIS) is a Geographic Information Systems system of 

software, hardware and efficient data that facilitates the enhancement, modeling, 

development and display capabilities and enables the user to analyze and interpret the 

data. Configured properly, GIS can model features or existences as a function of the 

other features or phenomena that may be interrelated where all features are  

categorized by spatial and attribute data.   

Integrated methodology using various Kriging methods such as OK, IK and UK in GIS 

was used to display the possibility of using these methods in mapping the spatial 

distribution of iron, silica and alumina content in the iron ore deposits of the mount 

Tokaden, in Liberia. GIS software (ArcGis 10.2.1) was used to post the location and 

geological map of the study area.  

This integrated method simplified the determination of the mining production parameter 

as well as mapping out at any time the current status of the mining area in terms of ore 

thickness, silica content, and alumina content, over burden and other metal content 

within the ore deposit.  
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Dynamic software and strong databases are needed to improve update, implement, and 

always give a true picture of circumstances on the ground.   

    

CHAPTER THREE  

MATERIALS AND METHODS  

3.1 The Study Area  

Liberia has about 43,000 square miles (11137.011 km2) of land area and lies between 

latitude 9o33’N and 3o31’N and longitude 11o18’W and 7o17’W. It is bordered on the  

North by the Republic of Guinea, west by the Republic of Sierra Leone, East by the 

Republic of Cote D'Ivoire, and South by the Atlantic Ocean (Hadden, 2006).  

The Tokadeh region of Nimba County lies between latitude 7o15’N and 7o45’N and 

longitude 8o15’W and 8o45’W. Figure 3.1 shows the map of the study area.  
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Figure 3.1: Map of Tokadeh (Study Area)  

    

  

Figure 3.2: Google earth image of Tokadeh Mining Site  

3.1.1 Geology  

Liberia is perched on the West African Shield, a rock formation from 2.7 to 3.4 billion 

years old, which is made of granite, schist, and gneiss. This shield has been intensely 

folded and faulted and is interspersed with iron-bearing formations known as itabirites 

in Liberia.  

Nimba County lies between latitude 7o45’N and 5o45’N and longitude 9°15’W and 

8o15’W with the population of 462,026 (Liberty, 2008). It has a tropical climate with 

alternating wet and dry seasons. Annual rainfall is as little as 200 cm. Temperatures are 

moderate all year in the highest parts of the county. Rain forest dominates except for a 

few savannahs at higher altitudes, most of which have formed on iron-formationpebble 

conglomerate (canga). The county seat of government is Sanniquellie. Much of the 
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population is dispersed in small tribal villages with high farming activities mainly in 

rubber, cafe, cocoa, palm, rice, cassava, plantain and other vegetables.  

Valuable iron ore reserves are found primarily in four areas: the Bomi Hills (Bomi 

county), the Bong Range (Bong county), the Mano Hills (Grand Cape Mount County), 

and Mount Nimba (Nimba county), where the largest deposits occur. Other minerals 

such as diamonds, gold, lead, manganese, graphite, cyanite, and barite are also found in 

these areas (Hadden, 2006). The Mt. Tokadeh region, study area, has large known ore 

deposits. Currently a concession has been given to ArcelorMittal  

Liberia. The deposit at Tokadeh is situated in the Western Area of the Mt. Nimba  

Range. This deposit is in part of Mount Nimba strands Liberia, Guinea, and the Cote 

D’Ivoire.  

The iron deposit at Tokadeh is associated with schist and gneiss of probable 

sedimentary origin of the Archean age Iron formation, resting predominantly gneissic 

basement complex. The metamorphic grade increases from lower epidote-amphibolite 

faces to amphibolite lower-granulite faces in the Tokadeh ridge (Yves Buro, 2009)  

Four (4) horizons of iron formations separated by schist-gneiss bands were recognized 

from drilling and mapping by LAMCO. Two (2) Iron Formations separated by one 

schist- gneiss unit were interpreted by Met-Chem from the deeper boreholes. The three 

(3) bands of interfingering schist-gneiss predominantly found in the western portion of 

Tokadeh appear to grade in a single unit toward the east.(Yves Buro, 2009)  

The iron formation is mainly a metamorphosed, oxide-type banded iron formation made 

up of an assemblage of quartz and magnetite, with ubiquitous, locally abundant iron 

silicates (amphibole, pyroxene). The Tokadeh basement gneiss is described by LAMCO 

as a medium-grained, light grey but generally reddish potassic rock. The gneiss between 
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the iron formations is a light- grey, medium-grained quartz-feldspar rock, with 

occasional amphibole-rich zones. The basement gneiss and the upper gneiss were found 

by Met-Chem to include both potassic (granitic) or more mafic (grano-dioritic) 

varieties. (Yves Buro, 2009).  

3.1.2 Climate  

Liberia is known for its sustained heat and heavy rainfall, it climate is tropical and 

humid, with little changes in temperature throughout the year. The log mean 

temperature is 27oC (81oF), with temperature exceeding 36oC (97oF) or falling below 

20oC (68oF). The annual temperature in the region is 24.4oc, with a minimum of 10.8oc 

in January and a maximum of 34.7oc and 34.4oc in the month of February and March. 

The Yekepa area has a sub-equatorial climate subject to the southwesterly monsoon 

from the ocean and the north end dry north-easterly harmattan winds from the desert. 

Average annual precipitation is recorded at about 1,750 mm between April and October 

with a peak in September with about 3,000 mm rainfall at the highest altitudes.  

3.1.3 Local Population  

There is no village in the operational area of Mt. Tokadeh, however, there are several 

little villages that consist of tens of thousands inhabitants who are mostly farmers 

scattered around the project area. The Major crops grown in this area are rubber, coffe 

and cocoa for commercial purpose and rice, cassava, plantain and other vegetables 

mainly for consumption.  

3.2 Materials  

3.2.1 Sampled Data  

ArcelorMittal Liberia Limited provided the facilities and equipment used to drill 110 

boreholes. The X and Y coordinates as well as ore thickness in each ore zone and the  



 

30  

Z coordinates were recorded.  

Diamond drill rig equipped with line wire system to retrieve samples while drilling was 

used to drill through the earth at varying depths. The minimum and maximum drill hole 

depth was 21.35m and 550.55m correspondingly. Cylindrical core samples were 

collected at 1m and 2m respectively due to the layout of the land surface. Samples 

collected were placed in long plastic sack marked with drill-hole sample ID.  

The physical properties of these samples such as rock type, core recovery, hardness, 

color, weathering, structure data, mineralogical assemblage, grain size, and texture 

profile were tested at the ArcelorMittal laboratory equipped to testing soil sample for 

minerals.  

The drill holes were branded one after the other and locations coordinates were 

measured in Universal Transverse Mercator (UTM) system, while all distances were 

measured in metre. The Azimuth, angle showing reference direction (North) and line 

from the observer to a point of interest projected on the sample plane.  

The interval of each ore zone, i.e., oxide ore, transition ore, and primary ore were 

identified and recorded for each drill hole. Table 3.1 shows 20 samples out of the 110 

samples collected, while Table 3.2 gives a summary of data extracted.  
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Table 3.1: Drill hole data  

  

Table 3.2: Summary of Data Extracted from drill hole database use in model for 

interpolation  

Collar  Drill hole ID, UTM_X, UTM_Y, Z (Total Depth)  

  

Assay  

Drill hole ID, From(m), To(m), Interval, Fe%, Fe2O3%, Al2O3%,  

SiO2%, CaO%, Mgo%, K2O%, Na2O, Mno%, TiO2%, Cr2O3%,  

P2O5%,Lol%, S%, Davis tube, Satmag%  

Oxidation  Drill Hole ID, From(m), To(m), Interval(m)  

(Source: Author’s construct)  

3.2.2 Other Materials  

Software used for processing includes ArcGIS, Voxler, Microsoft Excel and  

Microsoft Word used for report compilation  
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3.3 Methodology  

The coordinate of the drill site were verified for integrity by using RTK GPS on some 

randomly selected bore holes. The integrity of the drill holes data were protected by the 

team at various stages. These data were entered by logging geologists into excel 

templates, and was checked by peer review team on the field. The collars for all the 

holes were picked using differential GPS or Total Station (RTK). Errors were checked 

by comparing the results with the fix from the hand-held GPS over the casing of the 

borehole. Data in excel template from drill hole were exported into a shapefile format 

and inputted into Arcgis/Arcmap 10.2.1 for interpolation using various kriging 

interpolation techniques (ordinary kriging, indicator kriging and universal kriging).  

These three interpolation methods (ordinary, indicator, and universal) in kriging were 

used to analyze and predict grade and concentration at unsampled locations at Mt. 

Tokadeh mining site. Creative colours were used in these three kriging interpolation 

techniques to delineate the relative quality of ore at various locations. To better 

appreciate the colour combinations that delineate various types of minerals within the 

mining site, four classes of colour were used for delineation. To better distinguish the 

quality of prediction, the four curves were drawn; predicted curve, error curve, standard 

error curve, and normal QQPlot curve. The detailed methodology is shown in Figure 

3.3  
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Figure 3.3: Design of work flow  
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3.3.1 Geostatistical data analysis  

Various types of kriging (OK, IK, and UK) were used and the one that best suit this 

interpolation was selected and used base on careful analysis of their result. Results of 

each interpolation are presented, compared and results were analyzed in chapter 4 to 

select the best kriging method for this work.   

The processes in the kriging were outline in following steps:  

Steps 1 and 2: Selection of the kriging type. (Indicator, universal, ordinary)  

By default, Ordinary (kriging) and Prediction (map) are selected in the dialog box. 

However, it is required to visualize which method gave the best results. These default 

values are changed appropriately.   

Step 3: Semivariogram/Covariance modelling ( Variography)  

The semivariogram/covariance model is displayed, allowing one to examine spatial 

relationships between measured points. It allowed one to explore and select the best 

fitting semivariogram model that captured the spatial relationship in the data.  

Step 4: Searching Neighborhood  

The crosshairs showed a location that had no measured value. To predict a value at the 

crosshairs, the values at the measured locations are used. Using the surrounding points 

and the semivariogram/covariance model fitted previously, values were then predicted 

for the unmeasured locations. (Figure 3.4)  
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Figure 3.4: Searching neighborhood   

Step 5: Cross validation  

The cross-validation diagram gives one an idea of how well the model predicts the 

values at the unknown locations. It is used to assess how accurate the selected 

interpolation model is. Using Cross validation, a point is taken out of the dataset leaving 

the remaining point within the dataset and uses the rest to predict that location. The 

point taken out is then replaced to the dataset and different point is taken out. This 

procedure is implemented on all the points within the dataset to provide pairs of 

prediction and known values that feasibly compared to exploit model’s performance. 

The results of these procedures are then summarized as a means and root mean square 

error. In the cross validation, the various curves are displayed for prediction analysis. 

These curves are, error curve, standard error curve, predicted curve, and the normal 

quantile-quantile (QQ) plot curve.   
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Figure 3.5: Cross validation  

By default, the Method Report dialog box (Figure 3.6) summarizes the results and it 

associated parameters that are used to actualize the output surface map.  

  

Figure 3.6: Method Report  
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The final output maps are shown as either Prediction map or other output maps within 

the model in chapter 4. Three interpolation surfaces were drawn to allow the user 

analyze the data in variety of ways. The three interpolation surfaces are as follow:  

a. Prediction map; produced from interpolation values (Figures 4.6, 4.7 and 4.8)  

b. Probability map specifies  threshold and produces probabilities map which 

allow one to know  the predicted values exceed or do not exceed the specific 

threshold (Figures 4.9, 4.10 and 4.11)  

c. The Error of Prediction map is produced from standard error interpolated values. 

It is also called standard error of interpolated indicator values (Figures  

4.12, 4.13 and 4.14)  

3.3.2 Voxler  

Voxler is a three-dimensional scientific visualization program primarily used for 

volumetric rendering and three-dimensional data display and analysis. Voxler was used 

to generate a 3D rendering of the bore hole data. The result was overlaid on the final 

kriged map to validate the prediction made whether or not they are in conformity with 

the drilled data. It also possesses built-in computational modules such as 

threedimensional resampling, image processing gridding, and numerous lattice 

operations. It is designed for displaying XYZC data, where C is a variable at each X, 

Y, and Z location.  
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CHAPTER 4  

RESULTS AND ANALYSIS  

4.1 Results  

The results of the kriging in Tables 4.1, 4.2, and 4.3 show that the indicator kriging 

which uses the threshold, was the best suited for this work. These values are obtained 

from the variogram modeling as a first step in Figures 4.1, 4.2 and 4.3. The exponential 

empirical model was found to be the best because this removes the nugget effect from 

the data. The semivariogram of all the three interpolation surfaces in kriging (OK, IK, 

and UK) proved that the iron content was normally distributed within the study site. 

The binned, or point in the red in the semivariogram below were grouped by default 

based on their distances from one another and the average distance for each bin were 

plotted.   

  

Figure 4.1: Semivariogram of Iron (Fe) distribution (OK)  

    



 

39  

 
  

Figure 4.2: Semivariogram of Iron (Fe) distribution (UK)  

 
  

Figure 4.3: Semivariogram of Iron (Fe) distribution (IK)  

Secondly, the histogram which examines the distribution and summarized statistics of 

the dataset prove also that iron (Fe) content using the three interpolations were all 

normally distributed. Analyzing statistics provided by histogram for all three 

interpolations, the mean (39.921) and median (40.294) were all similar, the skewness 

were all near zero and the kurtosis was near 3. Below are the general statistical results 

of the various histograms. Table 4.1 summarizes the statistical analysis result of Iron, 

Silica and Alumina gain from the total of 5444 samples from 110 bore holes and  

Figure 4.4 showing the histogram analysis.   
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Figure 4.4: Histogram showing statistical result of iron (Fe) distribution in kriging  

Table 4.1: Statistical concentration analysis result of Iron, Silica and Alumina  

Statistical concentration analysis of 5444 samples from 110 bore holes  

Iron  Silica  Alumina  

Number  Concentration Number  Concentration Number  Concentration  

of  (%)  of  (%)  of  (%)  

Samples  Samples  Samples  

267  0.72-13.93  429  0.02-18.34  5228  0.015-15.15  

186  13.93-27.13  1027  18.34-6.65  194  15.15-30.29  

2791  27.13-40.34  3732  36.65-54.97  9  30.29-45.43  

1912  40.34-53.55  233  54.97-73.28  6  45.43-60.56  

288  53.55-66.76  23  73.28-91.60  7  60.56-75.7  

 

(Source: Author’s construct)  

Selection of the best among the three interpolation techniques depends on the cross 

validation process. The result summarized as means and root mean square errors are 

compared. The interpolation with the closest predicted value and least average standard 

error is considered the best.   

Cross validation result shows that OK Table 4.1 and UK Table 4.2 predicted values 

were too far from the measured values, with average standard error of ±5.7 as compared 
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to IK whose predicted values were close to the measured value and with an average 

standard error of ±0.2. IK also gave the opportunity of setting a threshold unlike OK 

and UK which interpolated using deterministic means.  

Table 4.2: Prediction Errors OK Kriged result    

 
Prediction Errors OK  

Samples  110 of 110  

Mean  -0.0303  

Root-Mean-Square  5.8622  

Mean Standardized  -0.0098  

Root-Mean-Square Standardized  1.0248  

Average Standard Error  5.7407  

(Source: Author’s construct)  

Table 4.3: Prediction Error IK Kriged result  

 Prediction Errors IK  

Samples  110 of 110  

Mean  -0.0066  

Root-Mean-Square  0.2537  

Mean Standardized  0.0008  

Root-Mean-Square Standardized  1.3065  

Average Standard Error  0.1755  

  

    

Table 4.4: Prediction Error UK Kriged result  

 Prediction Errors UK  

Samples   110 of 110  

Mean  -0.03027815  

Root-Mean-Square  5.862229  

Mean Standardized  -0.009811931  

Root-Mean-Square Standardized  1.02479  

Average Standard Error  5.740704  
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(Source: Author’s construct)  

The IK posted Mean Prediction Error and the Mean Standardized Prediction Error of (-

0.0065 and 0.0008) respectively which are close to zero indicating that the prediction 

values were unbiased. The Root-Mean-Square (1.3064) prediction error is very close to 

one, which also showed that it is a suitable and best fit between the point estimates of 

Fe%. But the Average Standard Error of OK and UK (±5.7) and RootMean-Square 

prediction error (±5.8) were nearly similar, showing that these models overestimated 

the variability of Fe% as compared to IK which was ±0.2. The average standard error 

display by OK and UK proved that these models were unsuitable for  

this dataset.  

Finally, the normal QQPlot curve (Figure 4.5) showed the Fe distribution trend  

  

Figure 4.5: Normal QQPlot    

These points along the 45 degree line show that the Fe% was slightly normally  

distributed.   

Output maps  

Figures 4.6, 4.7 and 4.8 show the output prediction map from the interpolation of the 

three kriging techniques (OK, IK and UK) used in this work. An examination of the 

three maps show that the OK and UK kriged maps show a concentrated iron region in 
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the northern and south western corner which do not truly represent the clear 

concentration as compared to IK kriged map which shows conformity with field data.  

Validating IK Kriged map, twenty samples data were randomly selected and reserved. 

These data were processed and overlayed on the IK Kriged output map (Figure 4.7) 

which validates the conformity of the output map. Areas with high Fe concentrations 

from the reserved result confirmed locations of high concentration of Fe in areas of the 

IK Kriged map after an overlay was performed. Validation was also performed to 

further verify IK Kriged result using the 3D output projected from Voxler (Figure 4.17). 

These 3D Voxler results also confirmed with IK Kriged results when overlayed.   

Finally, the Silica and Alumina distribution maps (Figures 4.15 and 4.16) were 

overlayed on the Fe distribution map to validate the areas of concentrations of both 

impurities. The blue colours on the Alumina and Silica distribution maps signified low 

concentration in Silica and Alumina whereas the red colour signified high concentration 

in Silica and Alumina.  Similarly, areas that show blue on the Fe distribution map 

signifies low Fe content, and the colour red signified high Fe content. These results 

proved that areas that show low content of impurities, the Fe content is high and areas 

that show high content of impurities, the Fe content is low (Amikiya, 2014).  

Figure 4.7 is an IK kriged map at 25% threshold. This result shows that there are 

commercial quantities of Fe within the study area. The color delineation shows northern 

and southern portion in red, which indicate 25% of Fe concentration in these locations, 

thus making the study area commercially viable, while the central region of the map 

shows high concentration of Alumina and Silica content.  

To further delineate the Fe concentration at the study area, threshold was set at 40% in 

Figure 4.10. The result shows a high Fe contraction at the northern, south western and 
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south eastern corners of the map shown in red, making these areas highly concentrated 

with iron ore and considered as DSO. If processed, the quality of these areas will 

improve up to 65% Fe concentration.  
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Figure 4.6: Ordinary Kriged Prediction  

    

 
  

Figure 4.7: Indicator Kriged Prediction  
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Figure 4.8: Universal Kriged Prediction Map    

These probability maps shown in Figures 4.9, 4.10 and 4.11 proved from visual analysis 

that IK prediction map (Figure 4.10) predicts well because it shows the mineral 

distribution and specified concentrated area within the study area as compared to OK 

kriged and UK kriged probability maps using 40% threshold for all the interpolation 
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techniques. Figures 4.12, 4.13 and 4.14, show the standard error map. From visual 

analysis, the IK kriged standard error map (Figure 4.13) shows more normal distribution 

as compare to OK kriged and UK kriged standard error  

maps.     
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Figure 4.9: Ordinary Kriged Probability Map  

    



 

49  

 
  

Figure 4.10: Indicator Kriged Probability Map  
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Figure 4.11: Universal Kriged Probability Map  
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Figure 4.12: Ordinary Kriged Standard Error  
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Figure 4.13: Indicator Kriged Standard Error  
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Figure 4.14: Universal Kriged Standard Error  

Figure 4.15 and 4.16 show the Alumina and Silica distribution maps. From the color 

delineation, in which the red shows the alumina and silica concentrations in both  

maps.    
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Figures 4.15 Alumina distribution map  
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Figure 4.16: Silica Distribution Map    

Figure 4.17 shows the 3D view of the bore holes and the linear distribution of the dataset 

generated from the Voxler software. These results when overlayed with the kriged maps 

validate the output surface maps generated from kriging interpolations.  
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Figure 4.17: 3D view of the bore holes  

    

CHAPTER 5  

CONCLUSION AND RECOMMENDATION  

5.1 Conclusion  

Integrated method using Kriging in GIS is introduced and implemented in this work to 

establish the prospect of using this procedure in mapping the spatial distribution of iron, 

silica and aluminum content of iron ore at Mt. Tokadeh mining area. IK, OK, and UK 

were examined to select the most suitable technique for interpolating data obtained from 

the study site. Economical mining grades of iron ore were selected among poor areas. 

Application of GIS was used to support the visualization of the results and was also 

found to add more valuable information to the kriged result. Such integration enhances 

and reveals the mineral distribution and enables better mining decision, management 

and planning in the study area.  



 

57  

The following are the conclusion drawn from this work:  

1. Geostatistical interpolation technique, mostly kriging is effective and efficient 

when integrated with GIS. After examining and validating the three 

interpolation techniques in kriging, IK was the best suited for the dataset and 

gives better prediction than OK and UK.   

2. To better understand the magnitude of each mineral type, four classes of colors 

were used to delineate the mineral distributions, which show the iron, silica and 

alumina concentrations.  

3. Indicator kriging was suitable in selecting mining site as High Grade or direct 

Shipping Ore (DSO). Setting the threshold at 25%, it shows that the northern 

and southern part of the study area were economically viable, while the center 

of the study area was concentrated with impurity as shown in Figure 4.7.  

However it also shows that some portion of the northern corner and south 

western corner of the study area were High Grade or Direct Shipping Ore at 

40% threshold and if processed further its quality may increase to 65% iron.   

4. The spatial distribution was generated in three output maps ( Prediction map,  

Prediction Error map and Probability map)  

5. Exponential semivariogram was proven to be the best suited. It removes the 

nugget effect making the prediction unbiased.  

5.2 Recommendation  

The followings are recommendation for future research:  

1. Further research should focus on using this methodology to generate a database 

that can be updated and is capable of generating mineral distribution map.  

2. The volume of minerals in selected mining site (High Grade or DSO) should 

also be calculated  
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3. This procedure should be examined on other ore reserves such as Bauxite, Gold 

and Manganese, etc.  
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