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Abstract

This study evaluated the performance of the Ordinary Least Squares Estimator

(OLSE) method of estimating regression parameters and some robust regression

methods. The Least-Trimmed Squares Estimator (LTSE), Huber Maximum like-

lihood Estimator (HME), S-Estimator (SE) and Modified Maximum likelihood

Estimator (MME) were considered in this study. Criteria for the comparison were:

coefficients and their standard errors, relative efficiencies, Root Mean Square Er-

rors, coefficients of determination and the power of the test. The sensitivity of

these robust methods were considered using Anthropometric data from Komfo

Anokye Teaching Hospital. The dataset was on Total Body fat and Body Mass

Index, Triceps skin-fold, Arm Fat as percent composition of the body and Height

as predictors. Leverages were introduced first into two variables, and into all

predictors. The percentages were 5%, 10% and 15 % leverages. Also, 10%, 20%

and 30% outliers were introduced in addition to 20% error contamination and

contamination with data from non-normal distribution were considered. Results

showed that robust methods are as efficient as the OLSE if the assumptions of

OLSE are met. OLSE was affected by leverages, outliers, contaminants and non-

normality. HME broke-down with leverages in data, and was slightly affected by

outliers, contaminants and non-normality; whilst SE and MME were robust to

all aberrations. LTSE was affected by contaminants, non-normality, high outliers

perturbation and was slightly affected by leverages and low outliers perturbation.
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Chapter 1

Introduction

A linear regression analysis is an important statistical tool that helps to model a

relationship between response variable and the predictors, and it is often applied

in all fields of study. Applying Ordinary Least Squares (OLSE) in simple or mul-

tiple linear regression always calls for some assumptions: normality of the error

terms; equal variance of the error terms; and absence of outliers, leverage points

and multicollinearity. According to Hampel (2001) and Huber (1972), normality

of the error distributions finds its basis from the central limit theorem; which

is a limit theorem based on approximations. Some ground-breakers of statistics

including Hampel and Huber defeated the belief that the OLSE would still be ap-

proximately optimal under approximate normal, a belief that many statisticians

stick up for. This is because, it had been shown that typical error distributions

of high-quality datasets usually deviate slightly from the normality and in most

cases clearly longer-tailed. Additionally, outliers in the dependent variable, lead

to large residual values which further results in the failure of the normality as-

sumption of the error terms. Therefore, in regression analysis, the ordinary Least

Squares estimation is the best method if the assumptions are met. However, if

these assumptions are not satisfied, the results can easily be affected, Alma (2011).

According to Tiku and Akkaya (2004), an estimator is considered robust if the

estimator is efficient for normal errors and do not breakdown completely for non-

normal errors. And it should be robust to outliers, inliers, leverage points, as

well as contaminations. Also robust methods are used in heteroscesdastic mod-

els, where variances depend on the independent variables (X), and datasets full

of outliers. Robust statistics have been in use for hundreds of years but not se-

1



riously studied by mathematical statisticians until quite recently (Stigler, 1973).

We only note that while statisticians have been long aware of the sensitivity of

some statistics to slight changes in the basic assumptions, it is only recently that

they have had the tools to describe these problems mathematically. As a result,

many cook book statistical tools now have their robust counterparts.

1.1 Background of the Study

Linear regression analysis as a statistical tool has been in use for centuries to

establish a linear relationship between variables. And it is applicable in all fields

of study, including; social science, health science, engineering, physical science

and many more. For example, banks use regression analysis to determine profit

and as a result, they know variables that positively and negatively affect their

profits. Medical doctors also use regression to determine total fat in the body

of their patients by considering variables that can affect or cause the increase or

decrease in the amount of fats in the body. Regression analysis is also applied

by statisticians in the hospitals to check types of life styles that could be causal

factors for certain diseases; for example, blood pressure. Therefore, regression

analysis is an important statistical tool. In this study, we look at the various

methods of estimating regression parameters that are resistant to small devia-

tions and also being distributional robust. According to Maronna et al. (2006),

robust methods of regression analysis have been under study as far back as in

the nineteenth century. And they went on to explain that even though much

knowledge about robust estimation was realized in the nineteenth century, the

first great steps forward occurred in the 1960s, and the early 1970s with the fun-

damental work of John Tukey (1960, 1962), Peter Huber (1964, 1967) and Frank

Hampel (1971, 1974). Many studies have been carried out and many influential

books have been written by Huber (1981), Hampel, Ronchetti, Rousseeuw and

Stahel (1986), Rousseeuw and Leroy (1987) and Staudte and Sheather (1990).
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1.2 Problem Statement

In regression analysis, the application of ordinary least squares method works

well if the assumptions of the regression model, variables and the error terms are

met. However, in the presence of outliers and leverage points, or failure of the

assumptions renders the ordinary least squares method of estimation unreliable.

This is because bad leverage points, vertical outliers and good leverage points

can influence the coefficients in the model, the residuals, as well as the standard

errors of the model and the coefficients.

As a result, this study seeks to evaluate the performances of some robust methods

that counteract the influences of the drawbacks in a dataset.

1.3 Objectives of the study

The objective of this study is to compare robust regression estimators to the

ordinary least squares estimator, checking how resistant they are to aberrations

in a dataset. The various estimators will be compared for different datasets to

check their consistency in resisting the drawbacks in the datasets.

1.3.1 Specific objectives

1. To determine and compare the Ordinary least squares estimator to the ro-

bust estimators using their coefficients and standard errors, the Root Mean

Square Error (RMSE), relative efficiencies, coefficients of determination and

the Power of the test.

2. Also, to be able to compare these estimators using four different datasets.

The datasets to be considered are:

(a) Dataset with normally distributed errors

(b) Dataset contaminated with outliers and leverages
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(c) An error contaminated dataset

(d) Data from non-normal distribution

3. Finally, to be able to show the estimators that perform well generally among

the estimators: Least Trimmed Squares Estimator (LTSE), Huber Esti-

mator (HME), S-Estimator (SE), Modified Maximum likelihood Estimator

(MME) and Ordinary Least Square Estimator (OLSE); in estimating re-

gression parameters.

The overall performances will be scrutinized based on the following criteria:

(a) The coefficients and their standard errors

(b) The Root Mean Square Error (RMSE) of the estimators

(c) Their relative efficiencies

(d) The coefficients of determination (R-Square)

(e) The Power of the test

1.4 Methodology

This study looked at the effects of outliers, leverage points, non-normality, and

contaminations on classical least squares estimation in linear regression analysis.

Robust methods: MM-estimator, Huber M-estimator, Least trimmed squares

estimator, and the S-estimator were compared with the ordinary least squares

estimator. And the performances of the robust estimators were examined based

on standard error, relative efficiency, regression coefficients and the coefficient of

determination.

A secondary data was collected from Komfo Anokye Teaching Hospital in Kumasi

municipality on variables; Body Mass Index, Arm Fat as percent composition

of the body, Height, Triceps skin-fold, and Total fats in patients’ body. Some

of these variables are measured and others derived from an OMRON machine.

In contaminating and analyzing the data, we used the R statistical package.
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Information for this study was gathered from the Internet and the published

articles and books that are related to the study.

1.5 Justification of Work

In statistical analyses, especially linear regression, we state some assumptions

about the dependent variable; the explanatory variables and the error terms.

However, in actual situations or applications, these assumptions are rarely met.

Therefore robust estimation is very paramount when it comes to linear regression

analysis. And this study is concerned with showing the merits of the robust

estimation in linear regression analysis.

1.6 Organization of Thesis

The Chapter one of this study will contain Background of study, Problem state-

ment, Objectives of study, Methodology, Justification of the study, and Organi-

zation of thesis. Chapter two will contain the review of literature, where studies

already carried out and are related to our study, methods and application of

robust estimation will be looked at. Some robust methods of interest for regres-

sion analysis will be considered under chapter three. Chapter four will contain

results of the data analysis, where the four datasets will be analyzed using the

methods outlined chapter three. Finally, various findings from the analysis will

be discussed in Chapter five to check if the goals of this study are achieved. Rec-

ommendations will be given with respect to the results obtained that are based

on the methods used in the analysis.
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Chapter 2

Literature Review

In this section of our study, we review studies which had been conducted and

are valid to our work. The review will be done in the areas of robust regres-

sion estimation with special attention to the estimators such as: least trimmed

squares estimator (LTSE), Huber M-Estimator (HME), S-Estimator (SE) and

Modified Maximum likelihood Estimator (MME), and in relation to Ordinary

Least Squares Estimator (OLSE).

2.1 Robust Regression

In multiple linear regression, if the assumptions hold, the ordinary least squares

method of estimation is used in estimating the parameters. The assumptions of

the ordinary least squares are that: response variable should be continuous; resid-

ual errors should be normally distributed, and have equal variance at all levels

of the independent variables (homoscedasticity), and be uncorrelated with both

the independent variables and with each other. According to Ho and Naughter

(cited by Schumacker,et al., 2002), if the data contain outliers; non-normality;

or multicollinearity existing between variables, then the sample estimates can be

misleading. In addition, aberrations and contaminants in the dependent variable

and leverage points in the predictor variables can also lead to the break down of

the ordinary least squares method of estimation. These unusual observations in

the data can have adverse effects on the sample estimates of the ordinary least

squares method and still remain unnoticed.

To rectify the problem pose by the influence of the aberrations in data, is to

use regression techniques which can resist the effects of outliers, leverage points,
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non-normality and contaminations. Some of these robust regression techniques

are Huber maximum likelihood Estimator (HME), Modified Maximum likelihood

Estimator (MME), S-Estimator (SE), and Least Trimmed Squares Estimator

(LTSE).

2.2 High Breakdown point estimators

Due to the drawbacks of the ordinary least squares estimator (OLSE), there are

estimators that possess the property of a high breakdown point. The OLSE

minimizes the variances of the residuals and as a result, the estimates respond

to outliers and influential observations. To solve this problem, Rousseeuw and

Yohai (1987) propose to minimize a measure of dispersion of the residuals that

is less sensitive to extreme values than the variance (Verardi and Croux, 2009).

This estimator is referred to as the S-estimator. Since the OLS gives a huge

importance to large residuals, the S-estimator method replaces the square func-

tion by a loss function that gives less weights to large residuals. The loss function

is carefully chosen to enable the estimator possess good robustness properties and

a high Gaussian efficiency. However, there exists a trade-off between the break-

down point and the asymptotic efficiency of the S-estimator.

The 50% high breakdown point S-estimator has efficiency of 28.8% with a tuning

constant of 1.547. And it also has a breakdown point of 10% and asymptotic effi-

ciency of 96.6% with a tuning constant of 5.182. As a result of these lapses of the

S-estimator, it is usually used as initial value for Modified maximum likelihood

estimator. This is done with the sense that MM-estimator can inherit high break-

down property of the S-estimator. Since MM-estimator is highly efficient, using

S-estimator as initial values, gives it the high breakdown property. Therefore,

MM-estimator is recognized as the estimator with both high breakdown point

and efficiency, for both normal and non-normal errors.
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2.3 Studies on Robust Estimators

Regression analysis is mostly used in all areas of study, and the most handy

method normally used is the ordinary least squares. However, due to the draw-

backs of this traditional method, many statisticians have come out with solutions

to these lapses of the ordinary least square.

In a study by Bhar (2014), the study looked at the Huber M-estimator as an

improvement of the ordinary least squares estimator. In his study, robust M-

estimator was compared with the ordinary least squares estimator. He discussed

robust regression methods such as; M-estimator, W-estimators, R-estimators,

Least median of squares estimator, Least trimmed of squares estimator, and Re-

weighted least squares estimator. The most common method of robust regression

is M-estimation, introduced by Huber (1973, 1981) that is nearly as efficient as

least squares estimator. Rather than minimize the sum of squared residuals as

the objective, the M-estimator minimizes a function ρ of the standardized resid-

uals. As a result, this method gives smaller weights to observations that are

unusual, and hence performs better than the ordinary least squares estimator in

the presence of vertical outliers. W-estimators are alternatives to the M-estimator

which has a characteristic weight function. And this weight function shows the

importance of each observation to the estimator. R-estimators are the estimators

computed based on ranks of the data. His study also highlighted L-estimators,

which are the estimators computed from a linear combination of order statistics.

And they include: least trimmed squares and least median squares. The results

from the analysis shows that the Huber M-estimator performs better than the

ordinary least squares estimator using both standard error and the coefficient of

determination.

Fox and Weisberg (2010) did a study on Robust regression and considered esti-
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mators such as: the M-estimators, bounded-influence estimators, MM-estimator,

Least median squares estimator. Applying all these methods on Duncan’s

occupational-prestige data, revealed that the least squares estimator broke down

as a result of vertical outliers. But the various robust methods were able to

bound the influence of these unusual observations. The robust methods serve

as formidable statistical tools for identifying unusual observations in the data.

In their study, the main criterion for the comparison of the estimators was the

coefficients, but using the standard errors - Least trimmed squares perform bet-

ter than the others. However, ordinary least squares estimator performed very

poorly, when no outliers are removed.

AL-Noor and Mohammad (2013) researched on Model of Robust Regression with

Parametric and Nonparametric Methods. A simulation study was performed to

compare Ordinary Least Squares Method; Least Absolute Deviations method; M-

Estimators; Trimmed Least Squares estimators and Nonparametric Regression.

In their study, these estimators were compared for vertical outliers, horizontal

outliers and both vertical and horizontal outliers based on their mean square

error and relative efficiency. The results for the analysis with no contamina-

tion showed that Ordinary least squares estimator performed better than the

other estimators. However, when outliers were introduced in the dependent vari-

able, the Ordinary least squares method broke down. And when outliers were

introduced in dependent and the independent variables, Ordinary least squares

method; M-estimators; Least absolute deviation broke down. The nonparametric

methods perform better when outliers were present in both X-dimension and the

Y-dimension. Considering the overall performance, the Least trimmed squares

estimators performed better than all other estimators. AL-Noor and Mohammad

recommended that future studies should take into consideration the following:

i. The poor performance of OLSE estimators with the presence of outliers con-

firms our need for alternative methods. Therefore, before analyzing the data,
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we should first check the presence of outliers and then construct the necessary

tests whether to see the underlying assumptions are satisfied. After that, we

should conduct the appropriate estimation techniques.

ii. Choose a nonparametric method, especially to estimate slope and model, or

choose a LTS method when the outliers are in X-direction or XY-direction.

iii. Choose M-estimator and LAD method, or choose a LTS method when the

outliers are appearing in Y-direction.

iv. When the outliers appear in X-direction or XY-direction, choose RMSE or

mean absolute error (MAE) as criteria for comparing the estimators to avoid

dealing with the large values of MSE.

Therefore, it is necessary to find out the aberrations in the dataset and the basic

assumptions of the linear regression model before deciding on the type of method

to use.

Muthukrishnan and Radha did a study on comparison of robust regression es-

timators by assessing their coefficient of determination. The study considered

the estimators such as Least trimmed squares, Least median squares, Trimmed

mean square, Huber M-estimator, Least absolute deviation, all in relation to the

Ordinary least squares estimator. Their study looked at the fact that practi-

cal applications of linear regression rarely satisfy the basic assumptions imposed

on data sets by the regression model. As a result of this, robust methods are

very important when applying the linear regression in practice. They used the

R-software to analyze two real life data sets. The results of the study showed

that, Huber M-estimator is analogous to the ordinary least squares estimator.

On the other hand, Huber M-estimator performs better than the least squares

estimator if there are only vertical outliers in the data. Robust estimators such

as Least trimmed squares, Least median squares, Least absolute deviation also

appear to be similar and are different from the least squares estimator and the
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Huber M-estimator. The study therefore concluded on the note that all robust

methods are modification of the traditional methods.

Alma researched on Comparison of Robust Regression Methods by considering

estimators such as: Least Trimmed Squares estimator, Huber M-estimator, Yohai

MM-estimator, S-estimator. These estimators were compared in relation to the

least squares estimator. In his study, the comparison of the estimators was done in

the presence of outliers and leverage points - by varying the percentage of outliers

and leverage points in the data. The study concluded that, S-estimator performed

better than the others in efficiencies and was able to bound the influence of out-

liers and leverage points. Also, the study had shown that MM-estimator breaks

down when dealing with high leverage points in small dimensional data.

Our study will look at this four robust estimators in a presence of outliers, lever-

age points, non-normality and contaminants.

Schumacker et al. (2002) did a study on Comparison of Ordinary least squares and

robust regression using the S-PLUS statistical package. The violation of basic as-

sumptions such as: outliers in datasets, non-normality, or multicollinearity among

variables leads to estimates not reflecting the actual parameters. In their study,

robust estimators such as Least trimmed squares and Modified maximum likeli-

hood estimators were compared to the ordinary least squares estimator. By using

a dataset in S-PLUS statistical package, it was shown that the MM-estimator

performed better than LTS-estimator and the OLS-estimator. Therefore, it was

concluded in their analysis that, the best method is the MM-estimator. Their

study also considered the fact that a few statistical packages have the robust

methods and as a result, statisticians find it difficult to compare these estimators

to check the effect of outliers and the other drawbacks of real life data.

Yohai (1987) developed the MM-estimator, which is by far the most efficient
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with a high breakdown point. MM-estimator makes use of other estimators, but

for the MM-estimator to possess the high breakdown point property, it was pro-

posed to use the S-estimator as initial estimates to compute the MM-estimator.

Yohai’s study highlights the properties of the MM-estimator such as; high break-

down point, efficiency, Exact fit property and scale equivariance. The robust

estimators were compared with the Ordinary least squares using asymptotic bi-

ases under contamination. In his study, it was concluded that the MM-estimator

was not influenced by outliers as they did to the ordinary least squares.

Jacoby did a study on robust estimators that can be used when there are unusual

observations in a data set and when the data set is from a skewed distribution.

Many robust estimators were considered with much emphasis on M-estimators

and the estimators that bound the influence of unusual observations in a data.

Estimators such as; Huber estimator, Bisquare estimator, Least-Trimmed Squares

in addition to others were compared. In his study, M-Estimator was analogous

to OLSE when outliers are removed. Bisquare estimator was not affected by the

influential cases like the Huber estimator. The robust estimators such as LTSE

and LMSE did not perform well, this was as a result of the fact that the sample

size was small and deleting about half of the data changed the actual information

in the data. Robust estimators which have a breaking point as high as 50%,

often work very well when the sample size is large. The study concluded on the

fact that no single robust estimator is best for all data sets. It was noted that,

M-Estimators however perform better for small datasets, but provide unreliable

standard errors.

A study by Jann (2012), did look at robust estimators such as; MM, HM, S,

LTS, and LMS estimators in relation to the ordinary least squares estimator.

Fat tail distributions resulting from non normal errors lead to the breakdown of

the ordinary least squares estimators. For example, the t-distribution with few
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degrees of freedom. Also, the properties of the LS estimator only hold if the

assumptions imposed on the data by the least square method of the regression

model is satisfied. By applying STATA statistical package on a set of data, the

study concluded on the results that even though the robust methods appear to

perform better than the OLSE, it should be used with the robust methods serving

as model diagnostic tools.

Cetin and Toka (2011) compared some robust methods of estimation to the

Ordinary least squares estimation. In their investigation, S-estimator; Huber

M-estimator; Least trimmed squares estimator were examined relative to the

OLSE. A dataset with no outliers but with weak multi-collinearity was used for

the comparison. OLSE was discovered to have been affected when outliers were

later introduced into the dataset. The S-estimator performed extremely better

than the remaining estimators, followed by the HME. Simulation study was also

conducted with non-normal data, and it was found that the OLSE is inefficient

when the dataset is contaminated with outliers.

According to a study by Rousseeuw et al. (2001), it was discussed that there

are some factors that hinder the use of robust regression methods. It was made

clear that the belief that the OLSE is efficient for large sample data is not true

and small portion of outliers in a large sample data can distort the performance of

the OLSE. This is because, in large sample datasets, data points cluster around

each other making it easy for the data points to mask each other without being

noticed by simple eyeballing. Some people also find it difficult interpreting the

results of robust methods as a result they do not know the advantages of the

robust methods. In their study, Rousseeuw et al. emphasized the advantages

of using the LTSE as a robust method. The study concluded on the note that

deleting few outlying points brings about drastic changes in regression results.

And this sometimes leads to a significant fit of the regression model.
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In a study by Ruppert et al. (1988), much attention was paid to Iteratively

Reweighted Least Squares method of estimation. As a result, estimators such as

Huber estimator, Tukey biweight estimator and Hampel estimator were compared

with the ordinary least squares estimator. The results from the study showed that

the Huber estimator has problem with leverage points but OLSE performed badly

overall among the methods.

2.4 Properties of Estimators

A researcher performing an inference about a population parameter needs an

information on a sample statistic of that population parameter. Moreover, an

estimator is a value of a sample statistic that gives information on the population

parameter of interest. According to Glass and Hopkins (cited by Schumacker et

al., 2002), when performing parametric statistical tests one should be mindful

of the properties of estimators. The properties of estimators are unbiasedness,

consistency, efficiency and sufficiency.

1. An estimator is considered unbiased if the mean of the sampling distribution

of the statistic equals the population parameter being estimated.

2. An estimator is considered consistent if the sample statistic approaches the

population parameter as the sample size increases.

3. An estimator is considered efficient if it is the only one among all other

unbiased estimators with the smallest variance.

4. An estimator is considered sufficient if the sample (n) from which it is

computed contains all the information contained in the population (N).

A method is considered robust if it is efficient when compared to the ordinary

least squares estimator, when the errors are independent normal. Moreover, it
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is substantially efficient than least squares estimator when there are outlying

observations in either the response variable or predictor variables or both.

2.5 Outliers in Multiple Linear Regression

Outliers in a dataset are unusual observations that occur in a data and do not

follow the general pattern of the majority of the data points. In a study by Bhar,

it was discussed that outliers come by as a result of a simple operational mis-

take whereby small sample is included in the data from a different distribution,

and they do have serious effects on statistical inference. We have three types

of outliers in regression analysis that influence the performance of ordinary least

squares according to Rousseeuw and Leroy (1987). These are: vertical outliers,

bad leverage points and good leverage points.

According to Verardi and Croux (2009), vertical outliers are those observations

that have outlying values for the corresponding error term (the y-dimension) but

are not outlying in the space of predictor variables (the x-dimension). Their pres-

ence affects the ordinary least squares estimation and in particular the estimated

intercept.

Good Leverage points are data points that are outlying in the dimension of predic-

tor variables but are close to the regression line. They do not affect the coefficients

of the ordinary least squares estimator, but affect the standard errors and hence

influence the statistical inference.

Finally, bad Leverage points are observations that are both outlying in the di-

mension of explanatory variables and are far from the true regression line. These

bad leverage points affect both the intercept and the slope of the ordinary least

squares estimation. Some of these data points are very influential and can bring

drastic changes in the fitted model.
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Therefore, since these types of outliers do affect the traditional method of es-

timation, many studies were carried out on outliers. Some of these studies are

discussed as follows: Outliers in a dataset go along way to violate the basic as-

sumptions of the error terms in regression analysis. A study by Jacoby looked at

the various types of outliers including leverage points and their influence on the

ordinary least squares estimates.

In his study, OLSE method of estimation was applied on a dataset from R

statistical-package car, with and without outliers to see the effects of the out-

liers. The study also discussed the various methods of identifying outliers in the

dependent variable and the leverage points in the independent variables.

It was shown that small samples are more vulnerable to outliers than large sample

cases. Unusual observations are only influential when they are both unusual in

the dependent variable and the independent variables. This makes it clear that

observations that are unusual only in either y-axis or the x-axis do not influence

the estimates much as does by the regression outliers, since the regression outliers

are the outliers that are unusual in the dependent variable given that they are

unusual in the independent variables as well.

In testing for data points that are outliers, methods such as studentized residuals

and quantile-comparison plots do help in discovering these points. Leverage is

assessed by exploring the hat-values and Influence is assessed by using Cook’s

Distance. Since outliers can come about as a result of a lot errors in the data

collection processes, unusual data points may reflect miscoding, and therefore

can be rectified by deleting the observation(s) entirely. But if there are no strong

reasons to discard the outliers, then they must be included in the analysis and

hence the ordinary least squares method ceases to be effective. Therefore, more

robust methods could be used to analyze that kind of data as they produce same

results as the OLSE when there are no deviations in the data, but down weight
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the effects of influential observations when they exist.

2.5.1 Effects of Outliers on a Statistic

According to Jacoby (2014), outliers have substantial influence on regression mod-

els generally, and these effects can be seen in these areas:

1. Outliers lead to misinterpretation of general pattern in regression plots.

2. Also, unusual observations can have a strong influence on statistical mod-

els, and removing outliers from a regression model can sometimes give com-

pletely different results.

3. This unusual points can also substantially influence the fit of the Ordinary

least squares model.

4. Both the slopes and intercept of the model are substantially influenced by

data points that are both outliers and high leverage.

5. Furthermore, Outliers in data show that our models derived cannot capture

important characteristics of the data.

An inlier is an observation that lies close to the mean. In a univariate setting, a

value close to the mean would not raise any eyebrows. However, as Evans (2001)

pointed out, it would be unlikely for an observation to lie near the mean for a

large number of variables. So while outliers may be problematic, inliers may be

more likely to represent observations that are too good to be true or too good

to be real. Of course, a Mahalanobis distance of zero would represent a subject

that lies on the mean for every variable.
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2.5.2 Effects of Non-normality on a Statistic

The observations in a sample may actually come from the same population, but

not from a normal one. Errors in a form of outliers and inliers in the response

variable usually leads to the non-normality of the error terms, which results in

the failure of some model assumptions. Outliers occurring far away from the

majority of the data points makes the distribution of the response variable to

deviate from the normal. Skewed and Heavy tailed distributions come about as

a result of these unusual data points. Therefore, skewness or light-tailedness or

heavy-tailedness are signs of non-normality. Non-normality due to outliers affects

the intercept of the regression model and renders the regression model inefficient

and seriously biased standard errors.

2.5.3 Effects of Contaminants on Statistic

In a simulation study by Stuart (2011), it was observed that contaminants in a

dataset do cause estimators to breakdown completely. In this simulation study,

the MM-estimator was slightly affected when the dataset was contaminated with

data points from Cauchy distribution, but the Ordinary least squares estimator

broke down completely. Therefore, a dataset that is believed to have come from

two probability distributions basically does not follow the rules of the classical

regression method.

2.6 Comparison of Robust Estimators

Robustness of linear regression parameter estimation originated from the theories

of Huber and Hampel and these have laid the foundation for finding practical solu-

tions to many problems. Many researchers have worked in this field and described

the methods of robust estimators. Those researchers who did comparative study

on these estimators did compare these estimators using many criteria. Some of

these are Mean square error, coefficient of determination, standard errors, rela-
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tive efficiencies, coefficients, bias, breakdown point, wald-statistic and etc. In our

study we will consider some of these criteria in our work.

2.6.1 Studies on Criteria for comparing Estimators

A study by Muthukrishnan and Radha compared M, L and R-estimators with

the ordinary least squares estimator by using the coefficient of determination.

Schumacker et al. (2002), also did a study on robust regression by comparing

estimators such as: OLSE, LTSE and MME using coefficient of determination as

the criterion.

Yohai (1987) compared robust estimators using bias of the estimators under con-

tamination and Stuart (2011) investigated on robust estimators using the coeffi-

cients, relative efficiency and the standard errors as the criteria for the compari-

son.

AL-Noor and Asmaa, and Gschwandtner and Filzmoser (2012) in their study,

used mean square error as the criterion for comparing their estimators.

2.6.2 Merits of Robust estimators over the Ordinary Least

Squares Estimator (OLSE)

Robust methods in estimating parameters for the linear regression models serve

a lot of purposes, among these are:

1. Robust estimators are applicable when there are no evidences against the

unusual observations in a dataset, since the OLSE is likely to breakdown.

2. Also, robust estimators help in identifying unusual observations in a dataset

that could undermine the least squares estimator’s performance.

3. Again, robust estimators are able to bound the influence of unusual obser-

vations in a dataset.
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4. Moreover, robust methods do not need the assumptions of the classical

regression model to be satisfied before its applications.

5. Furthermore, large sample theories undermine the applicability of robust

techniques, which is a myth.

6. Last but not the least, they help in detecting outliers due to Masking and

Swamping, which nullifies the belief that outliers can be detected simply by

looking for unusual OLS residuals, box-plot of residuals or test of normality.
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Chapter 3

Methodology

In this chapter, the various robust regression estimators are outlined and dis-

cussed. Attention will be on the robust methods considered in this study and

their properties. The aim of linear regression analysis is to study how a depen-

dent variable is linearly related to a set of predictors. We start with the classical

methods of linear regression.

3.1 Regression Analysis Model

The multiple linear regression model can be written in matrices notation as

y = Xβ + e

where y is an n×1 vector of observed response values, X is the n×p matrix of the

predictor variables, β is the p × 1 vector contains the unknown parameters and

needs to be estimated, and e is the n×1 vector of random error terms. Therefore

to fit this model to the data, we have to use a regression estimator to estimate

the unknown parameters in β, to have β̂ where β̂ =


β̂1
...

β̂p

.

The expected value of yi, that is the fitted value, E(yi) is given by ŷi = XT
i β̂. As

a result the residuals can be computed by using ri = yi− ŷi, where i = 1, 2, ..., n;

and n is the sample size. According to Stuart (2011), if the assumptions of the

error terms are met, that is the ei ∼ N(0, σ2), then the least squares regression
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estimator is the maximum likelihood estimator for β, maximizing

n∏
i=1

1√
2πσ2

exp

(
− e2

2σ2

)
=

n∏
i=1

1√
2πσ2

exp

(
−(yi − ŷi)2

2σ2

)
(3.1)

over β. Which is analogous to maximizing the logarithm of 3.1 over β:∑n
i=1

(
−1

2
ln(2σ2)− e2i

2σ2

)
, which corresponds to

∑n
i=1 e

2
i since σ is a constant.

Therefore the minimization of the residual sum of squares
∑n

i=1 e
2
i is the least

squares estimate β̂, (Stuart, 2011). She went on to explain that this will have

much effect on the way in which different types of observations affect the regres-

sion estimate, β̂. Rice (1995) explained that finding β̂ in simple linear regression

corresponds to fitting the regression line by minimizing the sum of the squared

vertical distances of observed points from the line.

3.2 The Ordinary Least Squares Estimator

We define the design matrix X, and the vectors Y and e as,

X =


x11 ..... x1p
...

...

xn1 ...... xnp

 =


xT1
...

xTn



Y =


y1
...

yn

 , and e =


e1
...

en

. And the regression linear model is given by

Y = Xβ + e.

The least squares estimator aims to minimize the sum of the square residuals as:

n∑
i=1

e2i = eT e

= (Y −Xβ)T (Y −Xβ)

= Y TY − Y TXβ − βTXTY + βTXTXβ
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By minimizing the errors:

∂

∂β

n∑
i=1

e2i =
∂

∂β
(Y TY − Y TXβ − βTXTY + βTXTXβ)

⇒ 0− 2XTY + 2XTXβ = 0

Therefore one can compute the least squares estimates directly from the dataset

when XTX is non-singular by,

β̂ = (XTX)−1XTY (3.2)

3.2.1 The limitations of the Ordinary Least Squares Esti-

mator (OLSE)

The least squares estimator performs well when the error terms are well-behaved

or the underlying assumptions hold (Adebanji, 2013). However, failure of these

assumptions leads to high sensitivity of the OLSE. Outliers and leverage points

do affect the performance of the classic method of estimation. Identifying outliers

in the data set can be very difficult without careful investigations. This is because

there are good leverage points for example that can be very difficult to discover

as they fall on the regression line and can result in inflated standard error which

will hence affect the possible inferences. Also, masking and swamping can also

make it difficult for outliers to be discovered in the dataset by mere observation.

Using Scatter plot to detect outliers in a data for simple linear regression is usually

easy, however, when it comes to multiple linear regression it is limited. As a result

many robust methods have been formulated to take care of these limitations of

the OLSE.
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3.3 Robust Estimators

Let zi = {(yi, xi)}ni=1, be a random sample that follows the linear model

Y = Xβ + e, where the ei are i.i.d. random variables independent of the xi,

with unknown distribution F0. Assuming G0(x) is the distribution of xi, then the

distribution of zi is given by:

H0(z) = G0(x)F0(e) (3.3)

Robust estimators should be resistant to a certain degree of data contamination.

The general types of departures considered for robustness are ε-contamination

models with zi ∼ Gε, where Gε = (1 − ε)G0 + εG a mixture distribution, where

G is a secondary distribution that contaminates the data. Thus the distribution

Gε produces a fraction, ε, of outliers coming from G. According to Bondell and

Stefanski (2013), the idea is to estimate β, in the presence of the contamination.

3.3.1 Least-Trimmed-Squares Estimator (LTSE)

Rousseeuw (1984) developed the least trimmed squares estimator (LTSE) given

by,

β̂ = min
h∑
i=1

(e2i ) (3.4)

where e21 ≤ e22 ≤, ...,≤ e2n are the ordered squared residuals, from smallest to

largest. LTSE is computed by minimizing the h ordered squared residuals, where

h =
([n

2

]
+ 1
)

, where n and h are the sample size and the trimming constant,

respectively, (AL-Noor & Mohammad, 2013). Using the h trimmed dataset en-

sures that estimates have a high breakdown point of 50% but a low efficiency of

7.13%, (Matias and Yohai, 2006) .

In a study conducted by Rousseeuw and Leroy (1987), they suggested a trimming

constant of h = [n[1 − α] + 1] where α is the trimmed percentage. The largest

squared residuals are deleted and the least squares method is applied on the
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trimmed dataset. Moreover, this helps to discard outliers and their influence on

the regression estimators. LTSE can be fairly efficient if the trimmed percentage

is chosen carefully to discard only the outliers in the data. It can be very efficient

based on the size of the trimmed dataset (h) and the level of outliers in the data.

Similarly, when the data trimming is done well, this method is computationally

equivalent to OLSE. However, in situations where there are more outliers and

only some are trimmed this method can also perform as poorly as the ordinary

least squares method of estimation. On the contrary, if more observations are

deleted where there are only few outliers, good data points will be discarded

from the dataset. Least-trimmed-squares has a break-down point of 50%, hence

makes the LTSE a high break-down method of estimation. This implies that

half of the data has to be influential points before estimates of the least trimmed

estimator be affected when the method of the ordinary least squares is applied.

LTSE essentially proceeds with OLSE after the deletion of the most extreme pos-

itive or negative residuals. LTSE on the other hand, can misrepresent the trend

in the data if it is characterized by clusters of extreme cases or if the data set is

relatively small. The breakdown value is
n− h
n

for the LTSE estimate.

Maximum likelihood type estimators

The Ordinary least squares estimator is derived by minimizing a function of the

residuals. Whilst this is obtained from the maximum likelihood function of the

assumed normal distribution of the errors, M-estimators are the estimators that

result from the maximum likelihood function of a distribution of the errors which

might not be normal. The distribution of the errors might be represented by

a different, heavier-tailed, distribution. Assuming this probability distribution

function is f(ei), then the maximum likelihood estimator for β is that which

maximizes the likelihood function

n∏
i=1

f(ei) =
n∏
i=1

f(yi − xTβ)
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And this implies it also minimizes the function

−
n∑
i=1

ln f(ei) =
n∑
i=1

− ln f(yi − xTβ)

If the errors terms are well-behaved or normally distributed, then it is just the

minimization of the function
∑n

i=1 e
2
i =

∑n
i=1(yi − xTβ)2. So if we assume that

the errors terms are not well-behaved or distributed differently, then it is now

maximum likelihood estimator minimizing a different function. As determined

by Bhar and Garner, let ρ = − ln f , then an M-estimator, β̂, minimizes

n∑
i=1

ρ(ei) =
n∑
i=1

ρ(yi − xTβ) =
n∑
i=1

ρ(u) (3.5)

where ρ(u) is called an objective function, which is continuous, symmetric, positive-

definite function with a unique minimum at 0. On the whole, the least squares

estimator is in fact a special less robust case of M-estimators. Since getting the

actual distribution of the errors for real life quality datasets are normally not

easy, the choice of ρ(u) depends on the robustness that is required. In robust

estimation, these objective functions are carefully chosen so that the resulting

estimator will not be affected by outliers, by down-weighting very large residu-

als. A robust M-estimator achieves this by minimizing the sum of a less rapidly

increasing objective function than that of the least squares estimator ρ(u) = u2,

(Andersen, 2008). However the solution to 3.5 is not scale equivariant, and thus

the residuals must be standardized by a robust M-estimate of scale, s.

Desirable property of Robust regression estimates

The desirable property of an estimate is that the estimate be equivariant with

respect to affine, regression, and scale transformations, (Matias and Yohai, 2006).

This property implies that the estimate transforms properly when the dataset

undergo some transformations. Rousseeuw and Leroy discussed this property is

explicitly as follows:
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1. Regression equivariance

An estimator T is considered regression equivariant if:

T ({(xTi , yi + xTi v); i = 1, ..., n}) = T ({(xTi , yi); i = 1, ..., n}) + v

This implies that any additional linear dependence y → y+Xv is reflected

in the coefficients accordingly β̂ → β + βv. When considering the var-

ious estimators in regression, this property is used routinely; in proofs of

asymptotic properties it allows the fixing of β = 0 without loss of generality.

2. Affine equivariance

An estimator is affine equivariant if:

T ({(xTi A, yi); i = 1, ..., n}) = A−1T ({(xTi , yi); i = 1, ..., n}), so when the

predictor variables, Xi, are linearly transformed, X → XA, the estimator

is also transformed accordingly, β̂ → A−1β̂. This is useful because it means

that contaminating the explanatory variables will not affect the estimate:

ŷ = Xβ̂ = (XA)(A−1β̂)

3. Scale equivariance

An estimator is scale equivariant if the fit produced by it is independent of

whether the response variable is contaminated or not. Hence an estimator

is scale equivariant if:

T ({(xTi , cyi); i = 1, ..., n}) = cT ({(xTi , yi); i = 1, ..., n})

This implies if y → cy then β̂ → cβ̂

The scale equivariant estimator

An estimator is scale equivariant if the estimate from a data do not change even

after the error terms are contaminated and hence deviate from the normality as-

sumption. Therefore a scale equivariant estimator is not affected by outliers in a

dataset. Moreover, the problem of non scale equivariance is solved by standard-

izing the error terms by the scale of the residuals. As a result the M-estimators
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minimize the function:
n∑
i=1

ρ
(ei
s

)
(3.6)

The scale or the standard deviation of the residuals is affected by outliers, there-

fore the scale of the residuals cannot be used here. Andersen (2008) (cited by

Stuart, 2011) gave this estimator as the Median Absolute Deviation (MAD),

which is given by:

s =
MAD

0.6745
⇒ s = 1.4826×MAD, where MAD is computed as

MAD = median |ei −median(ei)|

This estimator for s is highly robust to outliers since it uses the median instead

of the mean and has a breakdown point of 50%.

Proof 3.3.1 Assuming the sample is large and the error terms εi are normally

distributed with mean 0 and σ2, then

P (|ei| < MAD) ≈ 0.5

P (

∣∣∣∣ei − 0

σ

∣∣∣∣ < MAD

σ
) ≈ 0.5

P (|Z| < MAD

σ
) ≈ 0.5

MAD

σ
≈ φ−1(0.75)

MAD

φ−1(0.75)
≈ σ

σ ≈ 1.4826×MAD

Therefore when the sample is large and the error terms ei are normally distributed

with mean 0 and σ2, s estimates the population standard deviation (Stuart, 2011).

3.3.2 The Huber Maximum likelihood Estimator (HME)

The class of M-estimator models contains all models that are derived to be max-

imum likelihood models. The most common method of robust regression is M-
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estimation, developed by Huber (1973) that is almost as efficient as OLSE. In

estimating this, instead of minimize the sum of squared errors as the objective,

the M-estimate minimizes a function ρ of the errors. The M-estimate objective

function is,
n∑
i=1

ρ
(ei
s

)
=

n∑
i=1

ρ

(
yi − xTβ

s

)
, (3.7)

where ”s” is an estimate of scale from a linear combination of the residuals.

The function ρ gives the contribution of each residual to the objective function.

According to Alma (2011), a reasonable ρ should have the following properties:

ρ(e) ≥ 0

ρ(0) = 0

ρ(e) = ρ(−e)

ρ(ei) ≥ ρ(e
′

i) for |ei| ≥
∣∣∣e′i∣∣∣ , and ρ is continuous

(3.8)

An example is given for least squares estimation, ρ(ei) = e2i . And the system of

normal equations to solve this minimization problem is found by taking partial

derivatives with respect to β and setting them equal to 0. So we minimize equa-

tions 3.7 with respect to each of the p parameters, β1, .., βp and this resulted in a

system of p equations:

n∑
i=1

xijψ
(ei
s

)
=

n∑
i=1

xijψ

(
yi − xTi β

s

)
= 0; j = 1, 2, .....p

and i = 1, 2, .....n

(3.9)

where ψ(u) = ∂ρ
∂u

is the score function. We define a weight function as

w(u) =
ψ(u)

u

wi =

ψ

(
yi − xTi

s

)
(
yi − xTi

s

)
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which results in wi = w
(ei
s

)
for i = 1, 2, ....n with wi = 1 if ei = 0. Substituting

this into 3.9 results in:

n∑
i=1

xijwi

(ei
s

)
=

n∑
i=1

xijwi

(
yi − xTi β

s

)
= 0, j = 1, 2, .....p

⇒
n∑
i=1

xijwi(yi − xTi β) = 0, j = 1, 2, .....p

⇒
n∑
i=1

xijwiyi =
n∑
i=1

xijwix
T
i β = 0, j = 1, 2, .....p

(3.10)

Since s 6= 0, we define the weight matrix W = dig(wi : i = 1........n) as:

W =



w1 0

w2

. . .

0 wn


. This results in the matrix form of the 3.10 as,

⇒XTWXβ = XTWY

⇒ β̂ = (XTWX)−1XTWY

(3.11)

In selecting the type of the ψ function to use, one does this based on how much

weight to assign to outliers. As a result the ψ function does not weight large

outliers as much as least squares method does. A redescending ψ function in-

creases the weight assigned to an outlier until a specified distance (e.g.3σ) and

then decreases the weight to 0 as the outlying distance gets larger. The equa-

tion above is similar to that of the ordinary least squares estimator but with a

weight matrix that down-weight the influence of outliers in the data. Unlike least

squares, the least squares method cannot be used to calculate an M-estimate di-

rectly from data. According to Alma (2011), the weights however depend on the

residuals, the residuals depend on the estimated coefficients, and the estimated

coefficients depend on the weights. As a result initial estimates and iterations

are required, to eventually converge on W and an M-estimate for β. Accord-

ing to Draper and Smith (1998), M-estimates of regression are found using the
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iteratively re-weighted least squares procedure (IRLS), and it is given as:

1. With the iteration counter I set to 0, the least squares method is used to fit

an initial model to the data, yielding the initial estimates of the coeffcients

ˆβ(0)

2. Initial residuals e
(0)
i are found using ˆβ(0) and used to calculate s(0).

3. A weight function w(u) is chosen and applied to
e
(0)
i

s(0)
to obtain preliminary

weights w
(0)
i . These give the value of W (0) for ˆβ(0)

4. Set I = 1. Using W (0) in 3.11, one obtains the estimate

β̂(1) = (XTW (0)X)−1XTW (0)Y

5. Using β̂(1) new residuals, e
(1)
i can be found, which, through calculation of

s(1) and application of the weight function yield W (1).

6. Set I = 2. A new estimate for β is found using W (1). This is β̂(2), e
(2)
i and

s(2) , and in turn next weight, W (2) are then computed.

7. This process is now iterated such that at I = q

β̂ = (XTW (q−1)X)−1XTW (q−1)Y

until the estimates of β converge, at the point the final M-estimate has

been found. The procedure is usually stopped if the criterion is reached.

The criterion can be set as an estimate changes by less than a selected per-

centage between iterations, or after a fixed number of iterations have been

carried out. When iterating until a set convergence criterion has been met,

the criterion should be of the form

‖β̂(q+1) − β̂(q)‖
β̂(q+1)

< ε

where ε is a small positive number, usually fixed at 0.0001. Another way

of setting the convergence criterion is given by iterating until the percent-

age change in the size of the residuals between iterations is smaller than

ε. Moreover, this is the convergence criterion being used in R statistical
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software:
‖e(q+1) − e(q)‖

e(q+1)
< ε, where e =


e1
...

en

.

For all M-estimators (including MM-estimators), when the errors are really nor-

mally distributed, then the asymptotic variance is given by:

V (ψ,Φ) = σ̂2 A(ψ,Φ)

B2(ψ,Φ)
(3.12)

and the variance-covariance matrix of the estimated regression coefficients as:

V (β̂) = σ̂2 A(ψ,Φ)

B2(ψ,Φ)
(XTX)−1 (3.13)

from the final IWLS fit. Where A(ψ,Φ) = E(ψ2,Φ) and B2(ψ,Φ) = (E(ψ
′
,Φ))2

Winsor’s Principle

This principle states that all probability distributions are normal in the middle.

This implies that the ψ- function of m-estimators should be like the one that is

optimal for Gaussian data in the middle. According to Bhar, a ψ-function that

is linear in the middle is better efficient at the Gaussian distribution.

Implications of Weight Functions

In robust regression, making a choice of a weight function to apply to the scaled

residuals is analogous to choosing a probability distribution function for the er-

rors. In selecting functions that result in robust estimators, it is not necessary

to assume distribution for the error terms. Hence in practice, weight functions

are just chosen to apply without considering the associated probability of the

errors, f(e). Some statisticians suggested several weight functions, with their

corresponding score function and objective function. For every function there is

a tuning constant which helps to alter the shape of the function slightly, (Draper

& Smith, 1998)(cited by Stuart, 2011).
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Properties of M-estimators

The weight functions assign weights to the scaled residuals depending on the size

of the scaled residuals. M-estimators assign reduced weights to unusual observa-

tions but the OLSE assigns weight one to all observations. As a result, OLSE

is highly influenced by observations with large residuals than they affect the M-

estimators. Because of this, M-estimators are more resistant to heavy-tailed error

distributions and non-constant error variance. The type of weight function cho-

sen determines how robust an estimator will be to outliers, and many studies

were carried out on finding functions that make the associated M-estimator as

robust as possible and still remains fairly efficient (Rousseeuw & Leroy 1987). An

increase in tuning constants leads to an improvement in relative efficiency but re-

duces breakdown point of an estimator. Studies have come out with standard

values for tuning constants, resulting in estimators with 95% asymptotic relative

efficiency. The table below shows the three weight functions that will be used in

this study, with their corresponding score functions and objective functions. The

weight function of the OLSE, assigns weight of one (1) to every observation.

The Huber function is analogous to a probability distribution for the errors which

is normal in the centre but appears like a double exponential distribution in the

tails (Hogg, 1979). This function assigns weight of one (1) to those observations

whose scaled residuals are within the central bound, whilst scaled residuals out-

side that region are given smaller weights. The Huber weight function considers

every data point, as a result it does not give weight of zero to any scaled residuals.

An estimator is referred to as ”Redescending M-estimator” if it assigns weight

zero (0) to scaled residuals, such that ψ(u) = 0 if |u| > a.
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An example of redescending function is the Tukey bisquare weight function, also

known as biweight function. It is used to compute an M-estimator that is more

resistant to regression outliers than the Huber M-estimator and OLSE (Andersen,

2008). The figure 3.1 illustrates how the estimator assigns a smaller proportion

of the scaled residuals weight of one (1) than the Huber M-estimator. The M-

estimators are more resistant to vertical outliers than the least squares estimator,

even though they have varying level of resistance to outliers.

Moreover, when the assumptions of the errors are met, M-estimators are 95%

highly efficient as OLSE. On the Other hand, M-estimators are sensitive to lever-

age points like the least squares estimator. Therefore, M-estimators can break-

down completely in the presence of one bad leverage point, with a breakdown

point of 0%. In solving the problem of low breakdown point, Rousseeuw and

Yohai (1984) developed the S-estimator, which has a breakdown point of 50%.
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Table 3.1: Some Popular functions for M-estimators
Objective Function ρ(u) Score Function ψ(u) Weight Function w(u)

Least squares
1

2
u2 −∞ ≤ u ≤ ∞ u 1

Huber


1

2
u2 if |u| < a

a |u| − 1

2
u2 if |u| ≥ a

{
u if |u| < a

a(sign u) if |u| ≥ a

1 if |u| < a
a

|u|
if |u| ≥ a

Tukey bisquare


a2

6
(1− (1− (

u

a
)2)2) if |u| ≤ a

1

6
a2 if |u| > a

{
u(1− (

u

a
)2)2 if |u| ≤ a

0 if |u| > a

{
(1− (

u

a
)2)2 if |u| ≤ a

0 if |u| > a

Figure 3.1: Objective, Influence and Weight Functions for Various Estimators
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3.3.3 The S-Estimator (SE)

The S-estimation is a high breakdown method introduced by Rousseeuw and

Yohai (1984) that minimizes the dispersion of the residuals. The S-estimator was

introduced to take care of the low breakdown point of the M-estimators. The high

breakdown S-estimator possesses a desirable property, that is it is affine, scale and

regression equivariant, (Matias and Yohai, 2006). As the least squares estimator

minimizes the variance of the residuals, S-estimator minimizes the dispersion of

the scaled residuals or S-estimates are the solution that finds the smallest possible

dispersion of the residuals s(r(β1), .....r(βn). The robust S-estimation minimizes

a robust M-estimate of the residual scale

1

n

n∑
i=1

ρ
(ei
s

)
= k (3.14)

Differentiating 3.14 we obtain the estimating equations for S-estimator:

1

n

n∑
i=1

xiψ
(ei
s

)
= 0 (3.15)

Therefore the value of β that minimizes s is the S-estimator. where ψ is replaced

with an appropriate weight function. Huber weight function or the biweight func-

tion is usually used as with most M-estimation procedures. Although S-estimates

have a breakdown point of Break Down Point (BDP)=0.5, it comes at the cost

of a very low relative efficiency (Verardi and Croux, 2009).

The choice of the tuning constant is a=1.548 and k=0.1995 for 50% breakdown

and about 29% asymptotic efficiency. To increase the efficiency of the S-estimator,

if a = 5.182, the Gaussian efficiency rises to 96.6% and unfortunately the break-

down point drops to 10%. Tradeoffs breakdown and efficiency are based on the

selection of tuning constant a, and k. The final scale estimate, s, is the standard

deviation of the residuals from the fit that minimized the dispersion of the resid-
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uals. where k is a constant and the objective function ρ satisfies the following

conditions:

1. ρ is symmetric, continuously differentiable and ρ(0) = 0.

2. There exists a > 0 such that ρ is strictly increasing on [0, a] and constant

on [a,∞).

3.
k

ρ(a)
=

1

2

Therefore an S-estimator is the estimator β̂ that is the solution of 3.14, with s

being the smallest. The second condition on the objective function means that

the associated score function will be redescending. The Tukey bisquare weight

function in Table 3.1 is usually used to achieve optimal weights assignments. To

obtain a breakdown point of 50%, the third condition is required even though

it is not strictly necessary, (Stuart, 2011). The choice of k is done so that the

resulting s is can estimate the σ when the errors are normally distributed. To do

this, we set k such that k = Eφ(ρ(u)), which is the expected value of the objective

function if it is assumed that u has a standard normal distribution (Rousseeuw &

Leroy, 1987). To use the Tukey bisquare objective function, Rousseeuw and Yohai

(1984) stated that if we set the tuning constant a = 1.547, the third condition

is satisfied, and hence makes the S-estimator has 50% BDP. The Tukey bisquare

objective function is given by:

ρ(u) =


u2

2
− u4

2a2
+

u6

6a4
if |u| ≤ a

a6

6
if |u| > a

For u ∼ N(0, 1) the probability density function is

f(u) =
1√
2π

exp

(
−u

2

2

)
.

Hence with a = 1.547, and k = Eφ(ρ(u)), we demonstrate the third condition as

follows:
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Proof 3.3.2

k = Eφ(ρ(u))

=

∫ ∞
−∞

ρ(u)f(u)dx

= 2

∫ ∞
0

ρ(u)f(u)dx

= 2

∫ ∞
0

ρ(u)
1√
2π

exp

(
−u

2

2

)
dx

= 2

∫ 1.547

0

(
u2

2
− u4

2(1.547)2
+

u6

6(1.547)4
)

1√
2π

exp

(
−u

2

2

)
dx

+ 2

∫ ∞
1.547

1.5472

6

1√
2π

exp

(
−u

2

2

)
dx

=

√
2

π

∫ 1.547

0

(
u2

2
− u4

4.786
+

u6

34.365
) exp

(
−u

2

2

)
dx

+

∫ ∞
1.547

1.5472

3

1√
2π

exp

(
−u

2

2

)
dx

=

√
2

π

∫ 1.547

0

(
u2

2
− u4

4.786
+

u6

34.365
) exp

(
−u

2

2

)
dx+ 0.798× (1− φ(1.547))

=

√
2

π
× 0.189 + 0.798× (1− 0.939)

= 0.199

(3.16)

The ρ(1.547) =
1.5472

6
= 0.399. This implies that

k

ρ(a)
=

Eφ(ρ(u))

ρ(1.547)
=

1

2
.

Rousseeuw and Leroy (1987), elaborated more on the breakdown point (BDP) of

S-estimator. Consequently, if the objective function of S-estimator satisfies the

three conditions, then the S-estimator has BDP of:

n

2
− p+ 2

n

which only tends to 0.5 as n → ∞. According to Rousseeuw and Leroy (1987),

if the third condition is rewritten as

k

ρ(a)
= α
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where 0 < α ≤ 0.5, then the S-estimator would have a breakdown point approach-

ing α as n → ∞. Since the asymptotic efficiency of the S-estimator depends on

the objective function, the tuning constants of this function cannot be chosen to

give the estimator high breakdown point and high asymptotic efficiency simulta-

neously.

Table 3.2: Tradeoff between BDP and Efficiency as a result of Choice of Tuning
constant for the S-Estimator

Tuning Constant (a) k = Eφ(ρ(u)) Breakdown point Efficiency

1.547 0.1995 50% 28.7%
1.756 0.2312 45% 37.0%
1.988 0.2634 40% 46.2%
2.251 0.2957 35% 56.0%
2.560 0.3278 30% 66.1%
2.973 0.3593 25% 75.9%
3.420 0.3899 20% 84.7%
4.096 0.4194 15% 91.7%
5.182 0.4475 10% 96.6%

Table 3.2 shows a summary of the effect of the choice of tuning constant on the

BDP and efficiency of an S-estimator defined using the Tukey bisquare weight

function, (Stuart, 2011). The low efficiency of the S-estimator when it achieves

a high breakdown point makes it unfit for robust regression estimator. How-

ever, the high breakdown estimator is needed as an initial estimate for more

robust regression estimation processes, since the resulting estimators inherit its

high breakdown point (Rousseeuw & Leroy, 1987). Since the S-estimator is less

efficient as compared to many other estimators, the use of S-estimator as a stand-

alone estimator is limited. However, because it is highly resistant to outliers, the

S-estimator plays a key role in computing the MM-estimator, which is far more

efficient. A study by Pena and Yohai (1996) showed that this estimator has a very

high computational complexity and therefore there are algorithms that compute

only approximate solutions.
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3.3.4 The Modified Maximum likelihood Estimator (MME)

The MM estimation is a special type of M-estimation developed by Yohai (1987).

MM-estimation is a combination of high breakdown value estimation and efficient

estimation. Yohai’s MM estimator was the first estimator with a high breakdown

point and high efficiency under normal error. MM-estimator has three stage

procedures. Yohai (1987) describes the three stages that define an MM-estimator:

1. A high breakdown estimator is used to find an initial estimate, which we

denote β̃. The estimator need not be efficient. Using this estimate the

residuals, ri(β̃) = yi − xTi β̃, are computed.

2. Using these residuals from the robust fit and 3.14, an M-estimate of scale

with 50% BDP is computed. This s(r1(β̃)...rn(β̃)) is denoted sn. The

objective function used in this stage is labeled ρ0.

3. The MM-estimator is now defined as an M-estimator of β using a redescend-

ing score function, ψ1(u) =
∂ρ1(u)

∂u
, and the scale estimate sn obtained from

Stage 2. So an MM-estimator β̂ is defined as a solution to

n∑
i=1

xijψ1

(
yi − xTi β

sn

)
= 0, where j = 1, ..., p (3.17)

The objective function ρ1 associated with this score function does not have

to be the same as ρ0 but it must satisfy the following conditions:

(a) ρ is symmetric and continuously differentiable, and ρ(0) = 0.

(b) There exists a > 0 such that ρ is strictly increasing on [0, a] and

constant on [a,∞).

(c) ρ1(u) ≤ ρ0(u)

A final condition that must be satisfied by the solution to 3.17 is that

n∑
i=1

xijψ1

(
yi − xTi β̂

sn

)
≤

n∑
i=1

xijψ1

(
yi − xTi β̃

sn

)
(3.18)
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Properties of MM-estimators

The first two stages of the MM-estimation process are responsible for the estima-

tor having high breakdown point, whilst the third stage aims for high asymptotic

relative efficiency. This is why ρ0 and ρ1 need not be the same, and why the

estimator chosen in stage 2 can be inefficient. Yohai (1987) showed that when es-

timating MM-estimator, using an estimator with 50% BDP at the first stage will

result in the final MM-estimator has 50% BDP. The MM-estimator is very resis-

tant to multiple leverage points and vertical outliers. The MME is also equivariant

and hence it transforms ’properly’ in some sense (Rousseeuw & Leroy, 1987).

Finite sample breakdown point of an estimator

The Breakdown point (BDP) of an estimator is a measure of how much an estima-

tor is able to withstand the presence of outliers or errors in a dataset, Andersen

(2008) (cited by Stuart, 2011) . Moreover, the BDP of a regression estimator is

the smallest proportion of contamination that results in an estimator no longer

depicts the general trend in the bulk of the data. An estimator that breaks down

due to contamination produces estimates that differ highly from the estimates

from the uncontaminated data. Let T be a regression estimator, Z as a sample

of size n, and T (Z) = β̂. Also, let Z
′

be a contaminated sample where m of the

original data points are replaced with arbitrary values. The maximum effect that

could be caused by such contamination is

effect(m;T, Z) = supZ′ ‖ T (Z
′
)− T (Z) ‖ (3.19)

When 3.19 is infinite, m outliers can have an arbitrarily large effect on T. Then

the breakdown point of T at Z is defined as:

BDP(T, Z) = min{m
n

: effect(m;T, Z) =∞} (3.20)
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Therefore, it is the maximum fraction of contamination that is allowed before θ̂

can take on any value depending on G (Jann, 2012).

Exact fit property (EFP)

One important robustness property of MM-estimator used by Rousseeuw(1984)

is called exact fit property(EFP). An estimator Tn has EFP if given any sample of

size n, (y1, x1, ....yn, xn) for which there exist β such that #{i : yi = βTxi} >
n

2
,

then #{i : yi = T Tn xi} >
n

2
too. According to Yohai (1985), the following theorem

shows MME inherits the EFP from the initial estimate.

Theorem 3.3.1 Assume ρ0 and ρ1 satisfy all their assumptions. Suppose T0 has

the EFP and let T1 be any estimate satisfying 3.18. Then T1 has EFP too.

Remark

The S-estimates has the EFP and therefore if S-estimates are chosen to be T0,

the MM-estimates T1 will also have the EFP.

Consistency

Theorems 3.2 and 3.3 establish the consistency of the scale estimate sn defined in

stage 2 and of the MM-sequence of estimates T1 of θ0. In order to prove consistency

of MM-estimator we need the following assumptions.

The function g(a) = EF0(ρ1((u− a)/σ)), where σ0 is defined

EF0(ρ1((u)/σ)) = K, has a unique minimum at a = 0

(3.21)

PG0(θ
′
x = 0) < 0.5 for all θεRp (3.22)

The error distribution F0 has density f0 with the following properties:

(i) f0 is even, (ii) f0(u) is monotone non-increasing in |u| , and

(iii) f0(u) is strictly decreasing in |u| in the neighborhood 0.

(3.23)

k

b
= 0.5,where k = Eφ(ρ(u)) and b = max ρ0(u) (3.24)
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Theorem 3.3.2 Let (y1, x1), ...., (y1, x1) be i.i.d. observations with distribution

F given by 3.3. Assume that ρ0 satisfies 3.8, T0 is a sequence of estimates which

is strongly consistent for θ0. Then sn is strongly consistent for σ0 defined by

EF (ρ(u/σ0)) = b (3.25)

ρ1(u) ≤ ρ0(u) (3.26)

sup ρ1(u) = sup ρ0(u) (3.27)

Theorem 3.3.3 Let (y1, x1), ...., (y1, x1) be i.i.d. observations with distribution

F given by 3.3. Assume that ρ0 and ρ1 satisfies 3.8, that 3.24, 3.26, 3.27 hold,

and F has satisfies 3.23 and G0 3.22. Assume also that a sequence T0 is strongly

consistent for θ0, then any other sequence {T1} which satisfies 3.18 is strongly

consistent too.

ρ1 is odd, twice continuously differentiable and there exists m such that

|u| ≥ m implies that ρ1 = b

(3.28)

G0 has second moments and V = EG0(xix
′

i) is non singular. (3.29)

The following theorem gives the asymptotic normality of M-estimates with scale

estimated separately, which include MM-estimates.

Theorem 3.3.4 Let (y1, x1), ...., (y1, x1) be i.i.d. observations with distribution

F given by 3.3. Assume that ρ1 satisfies 3.28 and G satisfies 3.29. Let sn be an

estimate of the error scale which converges strongly to σ0, let {Tn} be the sequence

which satisfies 3.17 and which is strongly consistent to the true value σ0. Then

n1/2(Tn − θ0)→d N

(
0, σ2

0

[
A(ψ1, F0)

[B2(ψ1, F0)

]
V −1

)
, (3.30)

where →d denotes convergence in distribution,
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A(ψ1, F0) = EF (ψ2(u)) (3.31)

B(ψ1, F0) = EF (ψ
′
(u)) (3.32)

Relative efficiency of an estimator

The efficiency of an estimator is its minimum possible variance to its actual vari-

ance, and this estimator is efficient when the ratio gives one (1). An estimator

of a parameter is said to be efficient if it has the minimum variance among other

estimators. And an estimator that reaches an acceptable level of efficiency with

larger samples is called asymptotically efficient (Andersen, 2008). Moreover, it is

important for an estimator to be highly efficient if the idea is to use the estimator

to make an inferences about the whole population. Relative efficiency compares

the efficiency of an estimator to that of a well known method. Given two esti-

mators T1 and T2 for the parameter β where T1 is the most efficient and T2 the

less efficient then the relative efficiency of T2 is computed as the ratio of its mean

squared error to the mean squared error of T1, (Andersen, 2008). It is given as:

Efficiency(T1, T2) =
E(T1 − β)2

E(T2 − β)2
.

Usually, estimators are compared to the OLSE since it provides the minimum

variance estimate, when its assumptions are met, hence it is the most efficient

estimator known. According to Andersen (2008), relative efficiency is usually cal-

culated in terms of asymptotic efficiency, so for small samples it is not necessarily

a relevant property to consider. Indeed, the relative efficiency of a regression

estimator is given as the ratio between its mean squared error and that of the

least squares estimator, for an infinite sample with normally distributed errors.

The Power of a test

The Power of the test is the probability or the chance of correctly rejecting the

Null hypothesis. According to Cohen (1992) the Power analysis for simple or

multiple linear regression requires parameters such as Probability of making type
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I error (α), the numerator and the denominator degrees of freedom, and the effect

size, f 2 =
R2

1−R2
as inputs. Where the coefficient of determination (R2) is given

by;

R2 =
Regression Sum of Squares (SSR)

Total Sum of Squares (TSS)
(3.33)

for the ordinary least squares estimator and according to Aelst (2014),

R2 = 1− Median(residual2)

MAD2(y)
(3.34)

for the robust methods. The effect size is defined as the extent to which the Null

hypothesis is false (Cohen, 1992). Post hoc Power analysis is very important and

helpful when we fail to reject the Null hypothesis. This is helpful because, it is

done to evaluate or to check if failing to reject Null hypothesis could result in a

type II error. The Power of the test is affected by: type I error, type II error,

sample size and the effect size. Moreover, type I error, sample size and effect size

are positively associated to Power, whilst type II error has an inverse relationship

with Power of the test.
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Chapter 4

Analysis

4.1 Introduction

This chapter contains the results of our study on comparison of robust regression

estimators. Estimators such as Least trimmed squares Estimator (LTSE), Huber

Maximum likelihood Estimator (HME), S-Estimator (SE)and Modified Maximum

likelihood Estimator (MME) were compared with the Ordinary Least Squares

Estimator(OLSE). The analysis was carried out with Total Body fat (bodyfat) as

the response variable and four independent variables: Body Mass Index (BMI),

Triceps skin-fold (TS), Arm Fat as percent composition of the body (parmfat)

and Height of the respondents. Leverages were introduced first into two variables,

and finally into all predictors. The percentages were 5%, 10% and 15 % leverages

to observe the robustness of the various estimators. Also, 10%, 20% and 30%

outliers were introduced in addition to 20% error contamination and data from

non-normal distribution were considered to examine how the robust methods

would perform when exposed to these aberrations. On Comparing the estimators,

coefficients and their standard errors, Residual standard errors (The Root Mean

Square Error (RMSE)), Relative efficiencies, Coefficients of determination and

the Power of the test for the estimators were used as criteria. The results were

presented in a series of tables, for the coefficients and their standard errors were

reported as one set of tables, and Residual standard errors (The Root Mean

Square Error (RMSE)), Relative efficiencies, Coefficients of determination and

the Power of the test of the estimators were also reported as another set of tables.

We begin with the results for the dataset with normal errors.
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4.2 Original dataset with normal Errors

Table 4.1 below contains the estimate of the model parameters and standard

errors when the errors are normally distributed. The Residual standard errors,

Relative efficiencies, Coefficients of determination and the Power of the tests are

presented in Table 4.2 for the normally distributed residuals.

Table 4.1: The coefficients (standard errors) of the estimators for original dataset
with normal errors

Methods Intercept BMI parmfat height TS

OLSE 7.3615(0.9448) 0.8452(0.0555) 0.1452(0.0824) 0.0040(0.0104) 0.2880(0.0184)

LTSE 7.5438(0.8715) 0.8298(0.0514) 0.2038(0.0763) 0.0021(0.0095) 0.2811(0.0171)

HME 7.4065(1.0123) 0.8395(0.0594) 0.1633(0.0883) 0.0036(0.0111) 0.2870(0.0198)

SE 7.4543(1.0070) 0.8322(0.0591) 0.1726(0.0878) 0.0045(0.0110) 0.2865(0.0197)

MME 7.4192(1.0084) 0.8360(0.0592) 0.1652(0.0879) 0.0043(0.0111) 0.2869(0.0197)

Table 4.2: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and the Power of the test for original dataset with normal errors

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 1.0650 1.0000 0.9696 1.0000
LTSE 0.9641 1.2203 0.9641 1.0000
HME 1.2050 0.7811 0.9574 1.0000
SE 1.0720 0.9870 0.9586 1.0000
MME 1.0670 0.9963 0.9577 1.0000

From Table 4.1 it is observed that all the estimators perform well, since the errors

are normally distributed. This confirmed the saying that, all estimators perform

well under normal errors. The The Root Mean Square Error, Relative efficiencies

and the coefficients of determination from Table 4.2, also showed that when the

errors are normal, all the estimators do well.
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4.3 5% leverages in BMI and parmfat

Perturbing the Body Mass Index (BMI) and Arm Fat as percent composition of

the body (parmfat) reported the following values in Tables 4.3 and 4.4.

Table 4.3: The coefficients (Standard error) of the estimators for 5% leverages in
BMI and parmfat

Methods Intercept BMI parmfat height TS

OLSE 4.0169(2.5430) -0.0413(0.0379) 0.1041(0.0296) 0.1433(0.0233) 0.4918(0.0440)

LTSE 7.8980(1.4995) 0.8173(0.0660) 0.1654(0.0881) 0.2948(0.0200) 0.2948(0.0200)

HME -3.3689(2.2848) -0.0108(0.0341) 0.0719(0.0266) 0.2501(0.0210) 0.4222(0.0396)

SE 6.3643(1.0817) 0.9199(0.0161) 0.0031(0.0126) 0.0035(0.0099) 0.2879(0.0187)

MME 6.2232(1.0822) 0.9165(0.0161) 0.0055(0.0126) 0.0034(0.0099) 0.2880(0.0187)

Table 4.4: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 5% leverages in BMI and parmfat

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 2.8030 1.0000 0.7893 1.0000
LTSE 1.0770 6.7735 0.9669 1.0000
HME 2.1810 1.6517 0.8611 1.0000
SE 1.2860 4.7508 0.9458 1.0000
MME 1.2860 4.7508 0.9466 1.0000

When we perturbed BMI and parmfat with 5% leverages, Tables 4.3 and 4.4

showed that some of the estimators broke-down. Estimators like OLSE and HME

assumed values which are quite different from when the errors were normal. Con-

sidering all the criteria for the comparison, OLSE and HME were affected with

5% leverages. The residual standard errors of these two estimators were inflated,

which led to small relative efficiency of these methods. Also, OLSE and HME

assumed negative values for some coefficients.
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4.4 5% leverages in height and TS

The Tables 4.5 and 4.6 below contain the reported statistics from 5% leverages

in height and triceps skin-fold (TS) for comparing the regression estimators.

Table 4.5: The coefficients (Standard error) of the estimators for 5% leverages in
height and TS

Methods Intercept BMI parmfat height TS

OLSE 10.0350(1.4123) 1.0915(0.0800) 0.1476(0.1283) -0.0544(0.0134) 0.1194(0.0207)

LTSE 13.4912(1.2982) 1.1018(0.0617) 0.1346(0.0983) -0.1068(0.0150) 0.2126(0.0210)

HME 12.3368(1.2395) 1.0939(0.0702) 0.1594(0.1126) -0.0888(0.0117) 0.1749(0.0181)

SE 7.3397(1.0005) 0.8457(0.0567) 0.1515(0.0909) 0.0042(0.0095) 0.2854(0.0146)

MME 7.3242(1.0006) 0.8472(0.0567) 0.1489(0.0909) 0.0040(0.0095) 0.2858(0.0146)

Table 4.6: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test 5% leverages in height and TS

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 1.6570 1.0000 0.9238 1.0000
LTSE 1.2610 1.7267 0.9533 1.0000
HME 1.6620 0.9940 0.9195 1.0000
SE 1.2210 1.8417 0.9519 1.0000
MME 1.2210 1.8417 0.9520 1.0000

In this section, we examined the effects of 5% leverages in height and TS on

the estimators. Leverages in height and TS made some estimators to breakdown

slightly. The coefficients of height for these estimators have negative relationship

with total body fat. OLSE and HME are the estimators that were really affected,

since they had low relative efficiencies and coefficients of determination. The

intercepts of OLSE, HME and LTSE were inflated, and the coefficients of height

for these estimators have negative signs.
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4.5 5% leverages in BMI, parmfat, height and

TS

The results of perturbing all predictors with 5% leverages are shown in Tables

4.7 and 4.8.

Table 4.7: The coefficients (Standard error) of the estimators for 5% leverages in
all predictors

Methods Intercept BMI parmfat height TS

OLSE 11.6368(4.1695) -0.4314(0.1059) 0.2459(0.0465) 0.0849(0.0429) 0.2541(0.0845)

LTSE 11.9490(3.5366) -0.4201(0.0921) 0.2430(0.0392) 0.0669(0.0363) 0.3187(0.0737)

HME 11.4088(3.9933) -0.3654(0.1014) 0.2300(0.0445) 0.0789(0.0410) 0.2802(0.0809)

SE 6.4193(1.0667) 0.9207(0.0271) 0.0023(0.0119) 0.0037(0.0110) 0.2877(0.0216)

MME 6.2231(1.0672) 0.9165(0.0271) 0.0055(0.0119) 0.0034(0.0110) 0.2880(0.0216)

Table 4.8: The Root Mean Square Error (RMSE), Relative Efficiency Coefficient
of Determination and Power of the test for 5% leverages in all predictors

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 4.6600 1.0000 0.4176 1.0000
LTSE 3.9020 1.4263 0.5603 1.0000
HME 4.6860 0.9889 0.3597 1.0000
SE 1.2860 13.1308 0.9458 1.0000
MME 1.2860 13.1308 0.9466 1.0000

With 5% leverages in all the independent variables, we can see that, MME and

SE resisted the influence of the leverages. However, OLSE and HME performed

badly. This is as a result of the fact that HME and OLSE lack the resistance to

leverages. The intercepts of OLSE, LTSE and HME were affected as well as their

standard errors. These estimators also have the coefficients of BMI to be negative

which were positive for normal errors. Again, these estimators have large residual

standard errors which had affected their relative efficiencies and the coefficients

of determination.
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4.6 10% leverages in BMI, parmfat

The results in Tables 4.9 and 4.10 below are the estimates of the regression

parameters computed for 10% leverages in BMI and parmfat.

Table 4.9: The coefficients (Standard error) of the estimators for 10% leverages
in BMI, parmfat

Methods Intercept BMI parmfat height TS

OLSE 4.0121(2.6451) -0.0619(0.0370) 0.0996(0.0317) 0.1502(0.0236) 0.5066(0.0445)

LTSE -4.2087(2.5373) -0.0262(0.0287) 0.0591(0.0250) 0.2746(0.0302) 0.4138(0.0353)

HME -4.2540(2.3720) -0.0250(0.0332) 0.0582(0.0284) 0.2736(0.0212) 0.4302(0.0399)

SE 6.6831(1.1291) 0.9361(0.0158) -0.0049(0.0135) 0.0033(0.0101) 0.2904(0.0190)

MME 6.3714(1.6287) 0.9260(0.0589) 0.0012(0.0207) 0.0028(0.0258) 0.2909(0.0243)

Table 4.10: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 10% leverages in BMI, parmfat

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 2.8610 1.0000 0.7805 1.0000
LTSE 2.0250 1.9961 0.8749 1.0000
HME 2.2940 1.5554 0.8466 1.0000
SE 1.3930 4.2183 0.9435 1.0000
MME 1.3640 4.3995 0.9457 1.0000

10% leverages in BMI and parmfat reduced the efficiency of some estimators.

However, the MME and SE were not affected like other estimators. The leverages

have affected the intercepts and the coefficients of BMI for OLSE, LTSE and

HME. Also, they had high residual standard errors making fitted models provided

by these methods unreliable.
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4.7 10% leverages in height, TS

Tables 4.11 and 4.12 show the results of comparison of estimators when 10%

leverages are introduced into height and triceps skin-fold (TS).

Table 4.11: The coefficients (Standard error) of the estimators for 10% leverages
in height, TS

Methods Intercept BMI parmfat height TS

OLSE 10.1343(1.4558) 1.1135(0.0816) 0.1498(0.1320) -0.05813(0.0136) 0.1028(0.0202)

LTSE 10.4124(1.4373) 1.0648(0.0809) 0.2377(0.1292) -0.0543(0.0134) 0.0947(0.0199)

HME 12.7850(1.3399) 1.1197(0.0751) 0.1781(0.1214) -0.0978(0.0125) 0.1554(0.0186)

SE 7.2947(1.0260) 0.8443(0.0575) 0.1578(0.0930) 0.0038(0.0096) 0.2878(0.0142)

MME 7.2565(1.0136) 0.8494(0.0601) 0.1464(0.0898) 0.0034(0.0110) 0.2891(0.0209)

Table 4.12: The Root Mean Square Error (RMSE), Relative Efficiency Coefficient
of Determination and Power of the test for 10% leverages in height, TS

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 1.7010 1.0000 0.9224 1.0000
LTSE 1.6150 1.1093 0.9284 1.0000
HME 1.7840 0.9091 0.9072 1.0000
SE 1.3590 1.5666 0.9432 1.0000
MME 1.3460 1.5970 0.9422 1.0000

The S-estimator and the modified maximum likelihood estimator have been con-

sistent in being robust to the effects of the leverages in the dataset. Moreover,

their results have not differed from when the errors were normal. However, Or-

dinary least squares estimator and Huber Maximum likelihood Estimator have

since been affected by the leverages. Least Trimmed Squares Estimator assumes

different values some times because of the trimming.
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4.8 10% leverages in BMI, parmfat, height and

TS

Tables 4.13 and 4.14 display the results for 10% leverages in all predictors.

Table 4.13: The coefficients (Standard error) of the estimators for 10% leverages
in BMI, parmfat, height and TS

Methods Intercept BMI parmfat height TS

OLSE 13.0788(4.5332) -0.4754(0.1087) 0.2703(0.0518) 0.0685(0.0450) 0.2114(0.0902)

LTSE 9.9738(5.1715) -0.4688(0.1166) 0.3190(0.0653) 0.0590(0.0460) 0.1630(0.0940)

HME 12.8249(4.5043) -0.4736(0.1080) 0.2638(0.0515) 0.0703(0.0447) 0.2407(0.0897)

SE 6.7512(1.1076) 0.9377(0.0266) -0.0063(0.0127) 0.0036(0.0110) 0.2903(0.0220)

MME 6.3714(1.6287) 0.9260(0.0589) 0.0012(0.0207) 0.0028(0.0258) 0.2909(0.0243)

Table 4.14: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 10% leverages in BMI, parmfat, height
and TS
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 4.9930 1.0000 0.3314 0.9900
LTSE 4.9760 1.0068 0.3209 1.0000
HME 5.3110 0.8838 0.1776 0.9900
SE 1.4050 12.6290 0.9432 1.0000
MME 1.3640 13.3997 0.9457 1.0000

The intercept was largely affected by leverages in all the independent variables and

the values of coefficients of some estimators have also changed significantly. HME

performed like the OLSE because, HME does not bound the effect of leverages.

These estimators report results which are the average of good and bad data

points. According to a study by Alma (2011), the SE performed better than the

MME because, MME has problems with high leverages in small sample datasets.

However, in this study, MME counteracts the effects of leverages.
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4.9 5% leverages in BMI, parmfat and 10% out-

liers

The results presented in the Tables 4.15 and 4.16 below show the performances

of the estimators when there are 5% leverages in BMI and parmfat, and 10%

vertical outliers.

Table 4.15: The coefficients (Standard error) of the estimators for 5% leverages
in BMI, parmfat and 10% outliers

Methods Intercept BMI parmfat height TS

OLSE 1.4201(9.8870) 0.5970(0.1474) 0.2169(0.1151) -0.0217(0.0907) 0.1670(0.1712)

LTSE 6.4701(1.2791) 0.8403(0.0194) 0.0191(0.0153) 0.0084(0.0116) 0.2855(0.0219)

HME 5.9785(1.2898) 0.8588(0.0192) 0.0224(0.0150) 0.0066(0.0118) 0.2831(0.0223)

SE 6.7819(1.1152) 0.9005(0.0166) -0.0005(0.0130) 0.0066(0.0102) 0.2955(0.0193)

MME 6.3948(1.3226) 0.8999(0.0233) 0.0047(0.0181) 0.0056(0.0112) 0.2939(0.0213)

Table 4.16: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 5% leverages in BMI, parmfat and
10% outliers
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 10.9000 1.0000 0.5432 1.0000
LTSE 1.3780 62.5683 0.9882 1.0000
HME 1.3440 65.7740 0.9643 1.0000
SE 1.3180 68.3947 0.9668 1.0000
MME 1.3030 69.9784 0.9668 1.0000

5 % leverages and 10% outliers affected the OLSE more than the other estimators.

Methods such SE and MME were able to bound the effects of both leverages and

outliers. HME was also able to resist the influence of outliers but was not able

to withstand the effects of leverages. Using coefficient of determination for the

comparison, the LTSE performed better than other estimators. MME reported

the most reliable RMSE and relative efficiency.
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4.10 5% leverages in height, TS and 10% out-

liers

The various numerical measures computed for estimators when there are 5 %

leverages in height and TS, and 10% outliers are presented in the tables 4.17 and

4.18

Table 4.17: The coefficients (Standard error) of the estimators for 5% leverages
in height, TS and 10% outliers

Methods Intercept BMI parmfat height TS

OLSE 0.1911(9.7234) 0.6262(0.5506) -0.4570(0.8836) 0.1469(0.0921) 0.6012(0.1423)

LTSE 0.3861(2.4603) 0.2944(0.1396) 0.0532(0.2242) 0.1512(0.0232) 0.6636(0.0360)

HME -7.6135(2.3185) 0.3118(0.1313) -0.0205(0.2107) 0.2585(0.0220) 0.5246(0.0339)

SE 7.2946(1.0218) 0.8443(0.0579) 0.1578(0.0929) 0.0038(0.0097) 0.2878(0.0150)

MME 7.2565(1.0136) 0.8494(0.0601) 0.1464(0.0898) 0.0034(0.0110) 0.2891(0.0209)

Table 4.18: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 5% leverages in height, TS and 10%
outliers
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 11.4100 1.0000 0.4992 1.0000
LTSE 2.8710 15.7945 0.9486 1.0000
HME 2.5370 20.2269 0.8729 1.0000
SE 1.3590 70.4908 0.9616 1.0000
MME 1.3460 71.8590 0.9609 1.0000

MME and SE are still resistant to both outliers and leverages. These robust

methods try to get models that fit the majority of the data, whilst OLSE provides

models that fit the average of the data. As a result, OLSE is always affected

by few unusual observations. The coefficients of OLSE and HME were largely

influenced by the aberrations in the data at this level, whilst LTSE was slightly

affected. Also, the standard error of the intercept revealed that the fitted model

of the OLSE differed a lot from when the residuals were normal.
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4.11 5% leverages in BMI, parmfat, height and

TS and 10% outliers

The tables 4.19 and 4.20 below display how the estimators fair in the presence of

5% perturbations in all predictor variables and also 10% vertical outliers.

Table 4.19: The coefficients (Standard error) of the estimators for 5% leverages
in BMI, parmfat, height and TS and 10% outliers

Methods Intercept BMI parmfat height TS

OLSE 0.9480(9.7595) 0.4336(0.2479) 0.2387(0.1087) 0.0047(0.1003) 0.1697(0.1978)

LTSE 6.8715(1.5254) 0.5081 (0.0385) 0.0717 (0.0174) 0.0406 (0.0154) 0.2939(0.0307)

HME 6.3526(1.7249) 0.5091(0.0438) 0.0848(0.0192) 0.0365(0.0177) 0.2821(0.0350)

SE 6.5114(1.0915) 0.9337(0.0277) -0.0026(0.0122) 0.0029(0.0112) 0.2918(0.0221)

MME 6.3714(1.6287) 0.9260(0.0589) 0.0012(0.0207) 0.0028(0.0258) 0.2909(0.0243)

Table 4.20: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 5% leverages in BMI, parmfat, height
and TS and 10% outliers
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 10.9100 1.0000 0.5423 1.0000
LTSE 1.6660 42.8844 0.9827 1.0000
HME 1.8690 34.0746 0.9310 1.0000
SE 1.4080 60.0405 0.9619 1.0000
MME 1.3640 63.9765 0.9632 1.0000

From tables 4.19 and 4.20, LTSE in addition to other robust methods performed

better. LTSE does perform well when the trimming is done properly. The robust

methods also performed well using; relative efficiencies, coefficients of determina-

tion, residual standard errors and power of the tests. On the contrary, the OLSE

only did well in post hoc power of the test. The intercepts of all robust methods

are similar and are close to that of the original data with normal errors. However,

the intercept and its standard error for OLSE was largely affected to extent that

the standard error assumed a very large value.
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4.12 5% leverages in BMI and parmfat and 15%

outliers

The numerical measures computed for the estimators with percentage of verti-

cal outliers increased to 15% and 5% leverages in predictor variables; BMI and

parmfat.

Table 4.21: The coefficients (Standard error) of the estimators for 5% leverages
in BMI and parmfat and 15% outliers

Methods Intercept BMI parmfat height TS

OLSE 1.7657(14.1125) 0.7450(0.2104) 0.2843(0.1643) -0.1055(0.1294) 0.1750(0.2443)

LTSE 10.3727(1.6828) 1.2738(0.0229) -0.0026(0.0174) -0.1070(0.0198) 0.2131(0.0237)

HME 8.0821(1.6947) 1.1794(0.0253) -0.0031(0.0197) -0.0637(0.0155) 0.2417(0.0293)

SE 6.7893(1.1339) 0.9031(0.0169) -0.0032(0.0132) 0.0077(0.0104) 0.3008(0.0196)

MME 6.3755(1.6066) 0.8955(0.0271) 0.0041(0.0220) 0.0065(0.0202) 0.3008(0.0241)

Table 4.22: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test 5% leverages in BMI and parmfat and
15% outliers
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 15.5600 1.0000 0.4699 1.0000
LTSE 1.3880 125.6725 0.9909 1.0000
HME 1.6410 89.9088 0.9572 1.0000
SE 1.4510 114.9964 0.9670 1.0000
MME 1.3930 124.7719 0.9674 1.0000

When the percentage of outliers increased, only OLSE is very much affected

by using Coefficient of determination from Table 4.22. Moreover, using other

criteria, the other estimators are also affected but not as compared to the OLSE.

The coefficient of parmfat for LTSE, HME and SE were assumed negative values.

Also, the coefficient of height for OLSE, LTSE and HME assumed different values

due to the perturbations in the dataset. By comparing the estimators using

coefficients of determination, relative efficiencies, standard error and power of

the tests, LTSE performed better than the other estimators.
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4.13 5% leverages in height and TS and 15%

outliers

Tables 4.23 and 4.24 below showed the results for the comparison of the estima-

tors, when there are 5% leverages in height and TS and 15% outliers.

Table 4.23: The coefficients (Standard error) of the estimators for leverages in
height and TS and 15% outliers

Methods Intercept BMI parmfat height TS

OLSE 1.6230(13.9801) 0.7005(0.7916) -0.4677(1.2705) 0.0912(0.1324) 0.8494(0.2046)

LTSE -2.6700(3.1505) 0.6442(0.1890) -0.5709(0.3047) 0.1188(0.0317) 0.7916(0.0525)

HME -6.5925(2.8160) 0.3711(0.1595) -0.0761(0.2559) 0.2299(0.0267) 0.5803(0.0412)

SE 7.4203(1.0439) 0.8350(0.0591) 0.1896(0.0949) 0.0024(0.0099) 0.2883(0.0153)

MME 7.4208(1.0234) 0.8388(0.0601) 0.1810(0.0912) 0.0019(0.0110) 0.2896(0.0210)

Table 4.24: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for leverages in height and TS and 15%
outliers
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 16.4100 1.0000 0.4103 1.0000
LTSE 3.6240 20.5041 0.9206 1.0000
HME 2.8310 33.5999 0.8726 1.0000
SE 1.4790 123.1065 0.9643 1.0000
MME 1.4620 125.9860 0.9637 1.0000

By using R2, OLSE was affected from Table 4.24. In addition, by using coef-

ficients, only MME and SE were not affected. The coefficients of parmfat for

OLSE, LTSE and HME differed a lot from that of the normal errors. Also, ver-

tical outliers in the data has influenced the standard error of the OLSE. MME

and SE perform better than the remaining estimators.
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4.14 5% leverages in BMI, parmfat, height and

TS and 15% outliers

The numerical measures (criteria) for comparing the Ordinary least squares esti-

mator to the robust methods, when all predictors contain 5% leverages and the

response variable contains 15% vertical outliers are listed in Tables 4.25 and 4.26.

Table 4.25: The coefficients (Standard error) of the estimators for 5% leverages
in BMI, parmfat, height and TS and 15% outliers

Methods Intercept BMI parmfat height TS

OLSE 4.2019(13.8930) 0.8002(0.3529) 0.2962(0.1548) -0.1496(0.1428) 0.1464(0.2816)

LTSE 7.5769(1.5162) 1.0886(0.0321) -0.0069(0.0136) -0.0422(0.0218) 0.2864(0.0214)

HME 6.3722(1.4537) 1.0238(0.0369) 0.0017(0.0162) -0.0193(0.0149) 0.2841(0.0295)

SE 6.6606(1.1539) 1.0724(0.0293) -0.0290(0.0129) -0.0093(0.0119) 0.2901(0.0234)

MME 6.3643(1.2301) 1.0690 (0.0305) -0.0224(0.0148) -0.0114 (0.0118) 0.2878(0.0233)

Table 4.26: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 5% leverages in BMI, parmfat, height
and TS; and 15% outliers

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 15.5300 1.0000 0.4717 1.0000
LTSE 1.1450 183.9636 0.9938 1.0000
HME 1.6450 89.1274 0.9570 1.0000
SE 1.4540 114.0812 0.9642 1.0000
MME 1.4480 115.0286 0.9647 1.0000

From Tables 4.25 and 4.26, the LTSE performed better than all estimators when

all independent variables are perturbed with 5% leverages and 15% outliers. The

LTSE reported the highest coefficient of determination and the lowest RMSE.

It also performed better using the relative efficiency and the coefficients. This

is because, some of its coefficients have not differed from when the errors were

normally distributed.
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4.15 10% outliers Perturbation

Presented below are Tables 4.27 and 4.28 which contain the measures for com-

paring the estimators for 10% outliers in the response variable and no leverages.

Table 4.27: The coefficients (Standard error) of the estimators for 10% outliers
Perturbation

Methods Intercept BMI parmfat height TS

OLSE 5.6421(13.0350) 1.5801(0.7652) -0.5968(1.1366) -0.0480(0.1429) 0.1941(0.2545)

LTSE 7.2565(0.9772) 0.8494(0.0579) 0.1464(0.0865) 0.0034(0.0106) 0.2891(0.0201)

HME 6.9244(1.3156) 0.8952(0.0772) 0.1247(0.1147) 0.0003(0.0144) 0.2791(0.0257)

SE 7.2947(1.0641) 0.8443(0.0625) 0.1578(0.0928) 0.0038(0.0117) 0.2878(0.0208)

MME 7.2565(1.0136) 0.8494(0.0601) 0.1464(0.0898) 0.0034(0.0110) 0.2891(0.0209)

Table 4.28: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 10% outliers Perturbation
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 14.6900 1.0000 0.1702 0.9850
LTSE 1.0810 184.6682 0.9681 1.0000
HME 1.2850 130.6885 0.9674 1.0000
SE 1.3590 116.8435 0.9616 1.0000
MME 1.3460 119.1114 0.9609 1.0000

From Tables 4.27 and 4.28, it is evident that only OLSE was affected when the

dependent variable has 10% unusual observations. The coefficients of the OLSE

have values which differ much from when the errors were normally distributed. It

also has the least coefficient of determination among all the estimators. Moreover,

OLSE reporting large value for residual standard error and small value for relative

efficiency makes it unreliable.
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4.16 20% outliers Perturbation

The 20% outliers perturbation reported the following results in Tables 4.29 and

4.30 on all criteria for comparing the robust methods with the OLSE.

Table 4.29: The coefficients (Standard error) of the estimators for 20% outliers
Perturbation

Methods Intercept BMI parmfat height TS

OLSE -3.6776(19.7251) 2.2783(1.1579) -1.2675(1.7199) -0.0091(0.2162) 0.0859(0.3851)

LTSE 5.9006(3.0205) 0.8777(0.1837) 0.2281(0.2663) 0.0074(0.0306) 0.2750(0.0606)

HME 6.2893(1.7319) 0.9272(0.1017) 0.1368(0.1510) -0.0001(0.0190) 0.2804(0.0338)

SE 7.4357(1.1137) 0.8363(0.0654) 0.1878(0.0971) 0.0008(0.0122) 0.2932(0.0217)

MME 7.4591(1.0328) 0.8383(0.0609) 0.1822(0.0912) 0.0004(0.0109) 0.2941(0.0210)

Table 4.30: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for 20% outliers Perturbation
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 22.2300 1.0000 0.1186 0.9000
LTSE 3.0940 51.6224 0.8083 1.0000
HME 1.5520 205.1613 0.9638 1.0000
SE 1.6270 186.6826 0.9621 1.0000
MME 1.6130 189.9373 0.9618 1.0000

20% outliers had rendered the OLSE limited according to tables 4.29 and 4.30.

The fit provided by the OLSE is unreliable in the sense that, it has failed by the

use of almost all the criteria. It has large residual standard error, low relative ef-

ficiency and low coefficient of determination, which has undermine the usefulness

of the OLSE for this perturbed dataset. On the contrary, robust methods such

as MME and SE perform well, this is because, they reported estimates which are

similar to estimates for the normal error dataset.
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4.17 30% outliers Perturbation

The Tables 4.31 and 4.32 below present the numerical measures (criteria) for

comparing the regression estimators when there are 30% vertical outliers with no

leverages.

Table 4.31: The coefficients (Standard error) of the estimators for 30% outliers
Perturbation

Methods Intercept BMI parmfat height TS

OLSE -18.3096(19.2388) 3.1934(1.1293) -2.6911(1.6775) 0.1408(0.2108) -0.4080(0.3756)

LTSE -16.8367(8.3929) 2.6412(0.5020) -1.3608(0.7256) 0.0340(0.0848) -0.2171(0.1763)

HME -13.1413(13.9522) 2.6703(0.8190) -1.8427(1.2165) 0.0621(0.1529) -0.1995(0.2724)

SE 7.6760(1.2056) 0.8365(0.0708) 0.1801(0.1051) -0.0012(0.0132) 0.2958(0.0235)

MME 7.6827(1.2112) 0.8385(0.0736) 0.1762(0.1067) -0.0015(0.0120) 0.2960(0.0241)

Table 4.32: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test 30% outliers Perturbation
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 21.6800 1.0000 0.1132 0.9800
LTSE 8.4150 6.6376 0.5075 1.0000
HME 13.3400 2.6412 0.4934 1.0000
SE 2.0980 106.7843 0.9690 1.0000
MME 2.0470 112.1716 0.9682 1.0000

From Tables 4.31 and 4.32, 30% outliers perturbation led to the breakdown of

the OLSE with some robust methods slightly affected. Introducing 30% outliers

resulted in some of the estimators having very large standard errors and small

coefficients of determination with unreliable coefficients. Tables 4.31 and 4.32

show that the modified maximum likelihood estimator and the S-estimator were

robust to the influence of the outliers.
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4.18 20% error contamination

The Tables 4.33 and 4.34 present the estimates for regression parameters from a

dataset with contaminated response variable. The 20% of the observations of the

response variable were replaced with observations from the Cauchy distribution.

Table 4.33: The coefficients (Standard error) of the estimators for 20% error
contamination

Methods Intercept BMI parmfat height TS

OLSE -10.3260(122.1340) 11.7430(7.1690) -10.7740(10.6490) -1.3130(1.3380) -1.0680(2.3840)

LTSE 1.7149(23.4060) 5.4468(1.1992) -4.5888(1.5097) -0.5307(0.3338) -0.4099(0.3215)

HME 7.5333(1.5790) 0.9287(0.0927) -0.0271(0.1377) 0.0022(0.0173) 0.2728(0.0308)

SE 7.4882(0.9944) 0.8452(0.0584) 0.1359(0.0867) 0.0021(0.0109) 0.2918(0.0194)

MME 7.4272(0.9460) 0.8528(0.0568) 0.1231(0.0857) 0.0016(0.0099) 0.2923(0.0198)

Table 4.34: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test 20% error contamination
Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 137.6000 1.0000 0.0261 0.2500
LTSE 15.6700 77.1079 0.2376 0.9960
HME 1.4140 9469.7399 0.9683 1.0000
SE 1.4160 9443.0081 0.9695 1.0000
MME 1.4030 9618.8140 0.9695 1.0000

In this section, 20% error contamination from Cauchy distribution rendered some

estimators limited. The OLSE and LTSE performed poorly. However, estimators

such as, MME, SE and HME performed well. The performances of the MME

and SE are very impressive in this study. The coefficients of MME and SE are

very similar to that of the normal errors. In addition, the residual standard

error, coefficients of determination and power of the test are also analogous to

the estimates of the original data with normal errors. Moreover, because the

residual standard error of OLSE was inflated, it the relative efficiencies of MME

and SE have also inflated.

63



4.19 Non-normal distribution(lognormal)

Distributional robustness of the robust methods was assessed by simulating dataset

from log-normal distribution. The coefficients of the model for the original data

with normal errors were used as the parameters and in conjunction with simu-

lated predictors from log-normal distribution to simulate the response variable.

Tables 4.35 and 4.36 below presented the results for the simulated dataset above.

Table 4.35: The coefficients (Standard errors) of the estimators for Non-normal
distribution(lognormal)

Methods Intercept BMI parmfat height TS

OLSE 207.5770(429.4370) 10.677(10.6690) -3.8540(21.1100) -2.8590(1.9820) -1.1140(6.2380)

LTSE 47.6217(26.1914) 0.4520(0.6718) -0.4530(1.2742) -0.1289(0.1249) 0.4783(0.3787)

HME 11.2693(3.3728) 0.8039(0.0838) 0.2134(0.1658) -0.0051(0.0156) 0.3203(0.0490)

SE 8.5576(1.3716) 0.8371(0.0341) 0.1335(0.0674) 0.0068(0.0063) 0.2828(0.0199)

MME 7.9685(1.7403) 0.8431(0.0405) 0.1519(0.0749) 0.0075(0.0073) 0.2883(0.0237)

Table 4.36: The Root Mean Square Error (RMSE), Relative Efficiency, Coefficient
of Determination and Power of the test for Non-normal distribution(lognormal)

Method of
estimation RMSE

Relative
efficiency

Coefficient of
determination

Power of
the test

OLSE 582.8000 1.0000 0.0273 0.2600
LTSE 35.1200 275.3785 0.0235 0.2200
HME 4.2420 18875.4693 0.5737 1.0000
SE 1.7270 113881.8231 0.9394 1.0000
MME 1.6550 124006.1117 0.9469 1.0000

From the Tables 4.35 and 4.36, by using R2, we see that OLSE and LTSE broke

down with HME slightly affected. Moreover, using the coefficients and the relative

efficiency, it is also clear that OLSE and LTSE did not do well. This is because the

data was simulated from a heavy tailed distribution. On the other hand, MME

and SE were still robust to the aberrations in the data. Moreover, robust methods

like MME and SE are robust to data from fat tailed distributions, therefore the

results in this section have illustrated the distributional robustness of MME and

SE.
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Chapter 5

Conclusion and Recommendations

5.1 Introduction

In this study, we compared the Ordinary least squares estimator (OLSE) of multi-

ple linear regression to the following robust regression estimators: Least Trimmed

Squares Estimator (LTSE), Huber Maximum Likelihood Estimator (HME), S-

estimator and the Modified Maximum Likelihood Estimator (MME). This com-

parison was carried out to evaluate the robustness of some robust methods in

estimating regression parameters. In assessing the performances of these estima-

tors the following datasets were considered: normal error dataset, datasets per-

turbed with leverages, datasets perturbed with both outliers and leverage, only

outliers perturbed datasets, error contaminated dataset, and simulated dataset

from log-normal distribution using the fitted model of data with normal errors.

To evaluate the overall performances of the robust methods, we used the fol-

lowing criteria: the coefficients and their standard errors, the residual standard

errors, relative efficiencies, coefficients of determination and the power of the test.

Studies by Alma (2011), Muthukrishnan and Radha (2014) and others compared

robust estimators to the Ordinary Least Squares Estimator using coefficient of

determination. Also, some studies compared some of these estimators and others

using coefficients and their standard errors, the residual standard errors, relative

efficiencies as bases for their comparisons. The chapter three of this study dis-

cussed the methods listed above. The discussions on these methods included their

robustness properties and weaknesses. Above all, applying these methods on the

above datasets reported results in chapter four which confirmed the theories of

these methods as discussed in chapters two and three above.
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5.2 Findings and Conclusions

The results reported in chapter four showed that robust methods are as efficient

as the OLSE if the basic assumptions are satisfied. In addition, small devia-

tions from normality did not substantially impair robust methods like, LTSE,

HME, SE. Moreover, the robust methods such as MME and SE did not break-

down completely even when the errors largely deviate from normality. Perturbing

the independent variables with leverages, caused Ordinary least squares estima-

tor and Huber Maximum likelihood estimator to breakdown, whilst the Least

trimmed squares estimator was slightly affected. However, the S-estimator and

the Modified Maximum Likelihood Estimator did very well. This was as a result

of the fact that, these methods were developed as modifications to the OLSE and

other robust methods, therefore, they are able to resist the influences of aberra-

tions that limit the performances of OLSE and other methods.

Also, when we perturbed the dependent variable with outliers and independent

variables with leverages, OLSE broke down completely but HME and LTSE were

slightly affected. This substantiates the claim that, HME performs well if there

are only vertical outliers, whilst other robust methods are able to resist both

leverages and vertical outliers.

In addition, when we introduced only vertical outliers, HME, SE and MME did

very well. This reiterate the point that, when a dataset has only outliers in the

space of the response variable, HME can be used to analyze such a dataset.

Also, when we contaminated the data with some data points from Cauchy dis-

tribution, it was observed that OLSE and LTSE were affected, but HME was

slightly affected. The total breakdown of the OLSE explained the concept that

OLSE performs well only when the errors are normal and satisfies the basic rudi-

ment of the classical regression method.
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Finally, when the simulated dataset from log-normal distribution was analyzed,

the results showed the robustness of MME and SE. Other estimators like, OLSE,

LTSE broke-down completely.

Therefore, from the discussion above, the first objective of this study which is to

determine all the criteria for comparing the estimators has been achieved, since

all the estimators were compared using these standards (criteria) of the compari-

son. Also, the second objective which is to compare OLSE to the robust methods

using four datasets was also achieved, since the study compared the OLSE suc-

cessfully with the robust methods for the four datasets by using all the stated

criteria for the comparison. Moreover, with respect to the last objective of this

study which is to come out with some robust methods which perform well for

all datasets using the criteria of comparison has been achieved. This is because,

robust methods such as MME and SE were able to perform well using all the

bases of the comparison. Therefore, we conclude that robust methods are very

paramount in estimating regression parameters.

5.3 Recommendations

In respect of our findings, the following recommendations are given on the use

and application of robust methods in linear regression analysis.

1. We recommend the use of robust methods because of the effects of masking

and swamping. Robust methods help to uncover observations which may be

outliers but are behaving as usual observations, or the observations which

are not outliers but because of other data points they appear as one.

2. The central limit theorem is based on large sample theory and it is not

in all situations that this law holds, therefore it is advisable to use robust

methods, since they do not impose strict distributional assumptions on the
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datasets.

3. Again, robust methods can be used concurrently with the Ordinary Least

Squares method of Estimation as diagnostic tools.

4. Finally, many statisticians do not use robust methods because, they believe

these methods are computationally complex with less information on how

they are used. However, we recommend the use of these methods because,

there are statistical packages which now have functions for the application

of robust methods.
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