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Abstract 
The possible dominance of basic assumption about underlying models on the 

analysis of data is of much concern to some statisticians (Anscombe (1967);Hogg 

(1974); Bu¨ning (1996)). The advocacy of distribution-free (nonparametric) tests 

for differences in location problems between samples has been emphasized over 

the past seven decades (Hao and Houser, 2011). This study develops a robust 

fitting procedure for one-way ANOVA models. Further investigation on 

Asymptotic Relative Efficiency (ARE) of this procedure and parametric F-test 

under class of distributions was carried out. In line with these objectives, 10,000 

simulations were carried out for a one-way ANOVA model with three levels for 

size 5, 10, 15, and 20. Intralevel correlation coefficient ρ = 0 was considered in 

these simulations. The findings revealed that the parametric F-test for Oneway 

ANOVA model performed better than the non-parametric Adaptive test proposed 

for symmetric and moderate tailed distributions and then in symmetric and light 

tailed distributions with ARE between 2% and 55%. However, the Adaptive test 

outperformed the F-test in symmetric and asymmetric with varying tail weights 

distributions with ARE between 5% and 70%. Although, the F-test displayed 

superiority in efficiency in symmetric medium and light tailed distributions, the 

Adaptive test was more efficient in more broader class of continuous distribution. 
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Chapter 1 

Introduction 

1.1 Introduction 

In our world of industrialization, competition for supremacy is the order of the 

day. Conjecturing has become a common playground and to establish the 

fanaticism or otherwise of these claims is a subject of global interest. Customers 

want to make a choice of the best products; companies are interested in, how 

effective are our products compared to others?; pharmaceuticals companies are 

interested in, which combinations of chemicals achieve the best results?; medical 

officer wants the results of clinical trials to certify a life and death procedures; the 

engineer wants to measure the efficiency of equipments; the agriculturist is 

interested in which fertilizer will give the maximum yield etc. Central in resolving 

these dilemmas is the statistician. Various techniques are employed in his quest 

to address these matters of global interest; notable among these techniques is the 

Analysis of Variance (ANOVA, hereafter) models. 

ANOVA, is perhaps the most powerful statistical tool (Botton and Bon, 2009). It is 

a general method of analyzing data from designed experiments, whose objective 

is to test appropriate hypotheses about treatment means and to estimate them. 

The model for the data is represented as follows; 

  (1.1) 

where i = 1,2,··· ,a, is the number of treatments considered for the experiment and 

j = 1,2,··· ,n, is the number of replications. The model (1.1) has µ as a parameter 

common to all treatments called the overall mean, τi is the parameter unique to 

the ith treatment called the ith treatment effect and ij is the random error 



 

2 

component that incorporates all other sources of variability in the experiment 

including measurement, variability arising from uncontrolled factors, differences 

between the experimental units to which the treatments are applied, and the 

general background in the process (such as variability over time, effects of the 

environment variables, and so forth). In testing hypothesis with this model, the 

errors are assumed to be normally and independently distributed with mean zero 

and variance σ2, with constant variance for all levels of factor. This implies that 

the observations, 

yij ∼ N(µ + τi,σ2) 

and that the observations are mutually independent. The model describes two 

different situations with respect to the treatment effects. The choice of the 

treatments for the experiment could be specifically chosen or randomly selected 

from a population. If treatments are specifically chosen the resultant model is a 

fixed effect model otherwise random effect model (or components of variance 

model) (Montgomery, 2001). We are interested in testing the equality of the a 

treatment means, that is, E(yij) = µ + τi = µi,i = 1,2,··· ,a. The appropriate hypothesis 

are; 

H0 : µ1 = µ2 = ··· = µa 

H1 : µi 6= µj 

for at least one pair (i,j). 

The statistical significance of the experiment is determined by the ratio of two 

variances which are independent of constant bias and scaling errors as well as the 

units used in expressing observation. The name ANOVA is derived from a 

partitioning of total variability into its component parts. ANOVA estimates 

three(3) sample variances: a total variance based on all the observation 

deviations from the grand mean, that is, sum of square total, SSTotal, an error 
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variance based on all the observation deviations from their corresponding 

treatment means, that is, sum of square error, SSError and a treatment variance 

based on the deviations of treatment means from the grand mean, the result being 

multiplied by the number of observations in each treatment, that is, sum of square 

treatment, SSTreatment. 

Therefore, we have SSTotal = SSError + SSTreatment. Mathematically, 

 a n a n a 

 XX XX X 

 (yij − y¯..) = (yij − y¯i.) + n ( ¯yi. − y¯..) (1.2) 
 i=1 j=1 i=1 j=1 i=1 

There are an = N total observations, thus SSTotal has N −1 degrees of freedom. 

There are a levels of the factors (and a treatment means), so SST reatment has a − 

1 degrees of freedom. Finally, within any treatment there are n replicates 

providing n − 1 degrees of freedom with which to estimate the experimental 

error. Because there are a treatments, we have a(n − 1) = an − a = N − a 

degrees of freedom for error. In performing statistical analysis, we investigate a 

formal test of the hypothesis of no difference in treatment means. It is worthy to 

note that, because of the assumption of normality of the errors, ij and its implied 

effect on the observations, yij (because yij is a linear combination of ij), the SSTotal is 

a sum of squares is a normally distributed random variable; consequently 

SSTotal/σ2 is distributed as chi-square with N−1 degrees of freedom; 

SSError/σ2 is chi-square with N − a degrees of freedom and that SSTreatment/σ2 is also 

chi-square with a−1 degrees of freedom if the null hypothesis H0 : µi = 0 is true. 

The SSTreatment/σ2 and SSError/σ2 are independently distributed chisquare random 

variables are implied by Cochran’s theorem, as the degrees of freedom for 

SSTreatment and SSError add to N − 1, the total number of freedom. Therefore, if the 

null hypothesis of no difference in treatment means is true, the 

ratio, 
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  (1.3) 

is distributed as F with a − 1 and N − a degrees of freedom. 

1.2 Background of study 

According to O’Gorman (2004), simulated studies have confirmed that most 

traditional tests like the F test and their confidence intervals are robust, at least 

as far as validity is concerned. That is, the traditional tests maintain their actual 

significance level close to their nominal significance level, and their confidence 

intervals maintain their coverage probabilities close to their nominal coverage 

probabilities and thus are relatively unaffected by violations of assumptions . 

Nevertheless, the traditional tests have a serious defect, if the distribution of the 

errors is non-normal, thus not robust for efficiency (O’Gorman, 2004). There is no 

doubt about the important role of the normal distribution in model formulation 

in the realms of statistics. The standard normal theory is good, provided the 

normal distribution is reasonably close to the real model for the problem at hand 

(Hogg, 1974). However, if the normal distribution is extreme with reference to 

the data at hand, the model formulated would be a poor one, a typical example 

was the poor performance of the least square estimator, X¯, in the Princeton study 

of robust estimates of location in which 68 estimates were compared (Andrews 

et al., 1972), because the normal distribution was an extreme one in the broad 

class of models which were studied. The efficiency of the parametric version of 

hypothesis testing mostly depend on the assumption of the underlying 

distribution of the data, for instance, the assumption of normality will require the 

use of optimal test for one-, two- and k-sample location or scale problem such as 

t-test, F-test and Chi-square tests. Notably, there seems to be over-reliance on the 

normal distribution and its implied assumptions by the practising statistician in 

model formulation especially in ANOVA applications, as several works on the data 

at hand are swept under the carpet, because of the assumption of normality, 

which is often violated in practice (Bu¨ning, 1996). 
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Models are generally believed to be simplified representation of reality, they are 

abstract in nature and may be deterministic or probabilistic. Statistical models 

are made up with probabilistic component. Thus, much effort should be devoted 

into reducing to the bearest minimum the level of uncertainty associated with the 

model. Although, there does not exist a perfect model, yet the onus falls on us to 

formulate near perfect models. It is a well known fact that, in practice most 

models will seldomly fit exactly real situations. Thus, for the sake of applications, 

it seems ridiculous to try to get the last ounce of mathematical efficiency out of 

some assumed situation. According to Hogg (1974) a more realistic approach 

would be to seek statistical procedures good for a broad class of underlying 

models, but which are not necessarily best for any one of them. Such procedures 

are robust (that is, exhibit strength). 

1.3 Statement of the Problem 

Some statisticians, according to Hogg (1974), are now concerned that basic 

assumptions about underlying models might very well dominate the analysis of 

the data in many cases. The advocacy for distribution-free (nonparametric) tests 

for differences in locations problems between samples has been emphasized over 

the past seven decades (Hao and Houser, 2011). Anscombe (1967) stated 

emphatically that the disposition of the present-day statistician theorists to 

suppose that all error distributions are exactly normal can be ascribed to their 

ontological perception that normality is too good not to be true. Huber (1972) 

remarked that the dogma that measurement errors should be distributed 

according to the normal law is still widespread among the users of least squares 

and suggests that a more rational action would be to check whether they were 

compatible with a normal distribution and, if not, to develop a different theory of 

estimation. The reliability of models should be questioned, because no model in 

the realms of statistical analysis is sacred (Hogg, 1974). 
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1.4 Objective of the study 

The thesis aims to develop a robust adaptive procedure for hypothesis testing of 

Oneway ANOVA models with uncorrelated errors and compare the asymptotic 

relative efficiency of the traditional parametric approach (F-test) to the adaptive 

(non-parametric) method. 

1.5 Methodology 

In this thesis, the data generated are assumed to have been derived from 

unknown continuous distributions. The data will be used to reveal the underlying 

distribution by assessing the associated values for skewness and tail weight 

proposed by (Hogg et al., 1975). This initial classifications will determine the 

specific scores functions on which inferences will be based. Simple adaptive 

procedures established by (Hogg et al., 1975) will be used in the estimation of the 

scores and will be classified according to the family of winsorised wilcoxons. 

These procedures will classify the data as; skewed left and light-tailed (LL), left 

skewed and moderate-tailed (LM), left skewed and heavy-tailed (LH), symmetric 

and light-tailed (SL), symmetric and moderate-tailed (SM), symmetric and 

heavytailed (SH), right skewed and light-tailed (RL), right skewed and moderate-

tailed (RM) and right skewed and Heavy-tailed (RH). Four procedures are 

considered in this research. Three adaptive procedures and one parametric 

procedure. The adaptive procedures are the Pure-Hogg where adaption is done 

on the samples. We also considered adaption on residuals from the ordinary least 

square (OLS) and Wilcoxon fit. The F-test is the parametric procedure considered. 

Simulation studies will be performed to prove the dominance or otherwise of the 

adaptive procedures over the parametric approaches over a wide range of 

continuous dis- 

tributions. 
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1.6 Justification of work 

The asymptotic properties of statistical estimates and tests solely rely on the 

Central Limit Theorem (CLT), however, in practice sample sizes are not often 

large. One notable area of application of ANOVA models is in Medical Statistics. 

Clinical trials are conducted in the medical fields to compare the efficacy of 

methods and drugs. The high sensitivity of such process has often resulted in low 

sample sizes usage. This is just one of the important areas of application, thus, one 

could argue that, could the use of the F-test, which employs the assumption of 

normality of the data, be the optimal test to be conducted in such situations? 

Researchers do not readily know the underlying distribution of the data at hand 

by mere observation to apply the most powerful rank tests. This thesis employs 

adaptive procedures which first reveals differences in the underlying 

distributions of the data, which its parametric counterparts do not, and further 

gives the appropriate rank test to be used in making inferences about the data. 

Hogg et al. (1975) and Bu¨ning (1996) have confirmed adaptive procedures 

displaying significant power over the parametric t-test with non-normal error 

distributions with large or moderate sample sizes and considerably about the 

same power as the most appropriate parametric test for even normal error 

distributions in their works. Further work in this direction will hopefully bring to 

light more useful tools that will help the statistician to be more efficient in data 

analysis. 

1.7 Organisation of the research 

This thesis is composed of five chapters, references and appendix. 

Chapter 1 introduces the research problem, research objectives and the 

significance of the research. 
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Chapter 2 reviews literature on adaptive procedures in the analysis of one-

sample, k-sample and other forms of data. 

Chapter 3 covers the methodology of the thesis. 

Chapter 4 covers data generation, simulations and discussion. 

Chapter 5 presents the summary, and conclusions of the study.  
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter presents a review of literature on adaptive procedures for statistical 

methods of hypothesis testing. 

2.2 Adaptive Statistical Methods 

Adaptive procedures use the data to ascertain which statistical method or 

technique is most conducive and efficient. Generally, it is conducted in two 

phases. In the first phase, a selection statistic is computed from the estimate of 

skewness and tail-weight, that is, the shape of the error distribution of the data. 

In the second phase, the selector statistic is used to determine the appropriate 

statistical procedure for the analysis. This procedure has been proven to have 

several advantages. Notably, it can increase the power of the test if the error 

distribution is skewed and makes narrow confidence internals, are robust for 

both validity and efficiency and automatically downweight outliers, which has the 

effect of making the results less sensitive to observations that do not agree with 

the model (O’Gorman, 2004). 

2.2.1 Single Location Adaptive Procedure 

Bandyopadhyay and Dutta (2007) proposed two adaptive tests for a single 

location problem without making assumptions about the symmetry of the 

continuous distribution of the data. Whereas one is based on a measure of 

symmetry, used as a standard of deciding between the Wilcoxon signed rank 

test(W+) and the signed test(S+) (the deterministic approach), the other (the 

probabilistic approach) is a combination of the signed test and the Wilcoxon 
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signed rank test based on evidence of asymmetry provided by the p-value from 

the triples test defined as 

 ) (2.1) 

and 

 

where sign(x) = 1,0,−1 according as x >,=,< 0 based on equation 2.1 proposed by 

(?). 

For the probabilistic approach, Bandyopadhyay and Dutta (2007) used p to 

denote the p-value associated with the observed value of ˆη in equation 2.1, using 

the p-value to denote the amount of symmetry of the distribution present in the 

data. 

For any value of p, a Bernoulli trial with probability of success p is performed. If a 

success was realized, the Wilcoxon signed rank test was used otherwise, the sign 

test was used. The adaptive test rule was: Reject H0 with probability p if W+ > w+ 

and with probability (1−p) if S+ > s+ are the upper α-critical values of W+ and S+ 

However with the deterministic approach, a sample measure of symmetry on 

which a preliminary test was based was used. The proposed measure of 

symmetry was given as; 

 

where −1 ≤ Q ≤ 1, X˜ is the median of the data and X(i) is the order statistics of the 

data. The median was equidistant from both extremes if the distribution of the 
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data was symmetric, closer to the minimum value for a positively skewed 

distribution and closer to a maximum value for a negatively skewed distribution. 

The test statistic was then proposed as; 

T = S+I(|Q| > c) + W+(|Q| ≤ c) 

where I(y) is an indicator function assuming value 1 or 0 depending on whether y 

is true or false. For all values of c considered, c = 0.075 was regarded the best in 

terms of robustness of the test (Bandyopadhyay and Dutta, 2007). 

Consequently, from simulation studies, when the two adaptive methods were 

compared, Bandyopadhyay and Dutta (2007) concluded that the probabilistic 

approach was in general found to be very robust and had high power over the 

deterministic approach, thus concluding that when nothing was known about the 

skewness of the distribution, the probabilistic approach should be used. 

2.2.2 Two-Sample Rank Test Statistics 

Hao and Houser (2011) presented a seven decade advances of adaptive 

procedures for non-parametric test and extensively narrated the progress made 

in this area. This section employs their material as useful reference for this 

review. For a given f(.), as the probability function of the cumulative distribution 

function function F(.). Let Rj represent the rank of observation Yj (j = 1,2,...,n2) in 

the order statistics of the combined sample N = n1 + n2 observations with 1 ≤ Rj ≤ 

N. Ha´jek and Sidak, (1967) as found in Hao and Houser (2011) showed that, in 

general the asymptotically most powerful rank test statistic S depends on the 

inverse c.d.f F −1; 

 ) (2.2) 
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and 

  (2.3) 

where  is the  rank normalised in the combined sample particularly u 

∈ (0,1) and a(Rj) defined as the scores or the ranks, since it maps the observation 

Yj to the rank of Yj in the combined sample. As N → ∞, F −1(u) shows the 

corresponding observation using its rank Rj and the inverse c.d.f of the data, that 

is a(u) provides the information in the ranks. 

In later development, Ha´jek et. al.(1999) established that for any particular 

distribution of interest equations (2.2) and (2.3) provides the most powerful rank 

test. Thus as 1). Hence they provided three exam- 

ples: 

1. The normal score test denoted Snor was considered to be the most powerful 

rank test when the distribution of the data was normal with the test defined 

by; 

 ) (2.4) 

where Φ is the c.d.f of the standard normal distribution with mean and 

variance of the normal score test defined as E(Snor) = 0 and V ar(Snor) = 

. 

2. The Mann-Whitney-Wilcoxon (MWW, hereafter) test was selected as 

themost powerful rank test once the data was known to have been drawn 

from a logistic distribution, with the test statistic given by; 

  (2.5) 
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with the linear transformation of equation (2.5) given by

. The mean and variance are respectively given as 

and  

3. The median test which was adjourned the most powerful test when the 

datawas from a Laplace (double exponential) distribution, with the test 

statistic defined as; 

 ) (2.6) 

−1, if x < 0 

Equation (2.6) is practically the same as the test that counts the number of

above the median of the combined sample and increases by  when the 

median falls in the sample of . 

Therefore, 

 

and the mean and variance of the median test given as  and 

 is even, and  is odd. 

To ascertain the comparative strength of efficiency of these statistics to their 

parametric counterparts, the Asymptotic Relative Efficiencies (ARE) (that is, for 

two consistent test statistics, A and B under H0, ARE is the reciprocal of the ratio 

of sample sizes needed to derive similar power against the same alternative 

hypothesis H1, taking the limit as the sample size N → ∞ as H1 → Ho). For instance, 

Edwin J.G Pitman in 1949 computed the asymptotic relative efficiency (A.R.E) of 

the MWW test relative to the t-test as;. 

where  

1, if x > 0 

sign(x) = 0, if x = 0 
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where σ is the standard deviation of the underlying distribution of f(x). 

2.3 Gastwirth’s Modification of the Two Sample Rank 

Test 

A much simpler approach to increasing the efficiency of the MWW test with 

respect to relatively easy-to-discover features of the underlying distribution of 

the data at hand is discussed. His suggestion ensured that the flaws and 

difficulties that would have evolved in the evaluation of the score function, 

 was dealt with. The test was modified by only including the top p and 

the bottom r fraction of the combined sample (0 < p, r < 1) where the optimal 

values of p and r depend on the underlying distribution. 

Let Z1,Z2,...,ZN be the combined sample and Z1 < Z2 < ... < ZN as the order statistics of 

the combined sample, where N = n1 + n2. Tp defined as the total scores of the top t 

fraction and Br defined as the total scores of the bottom b fraction. The test 

statistic was given as Tp −Br, which begins with the median of the Zj0s and scores 

with increasing positive integers for bigger ranks, and symmetric negative 

integers for smaller ranks. If N is odd, let , and Tp and Br respectively 

defined as; 

 k N 

 Br = X(k − j)δj;Tp = X(j − k)δj (2.7) 
 j=1 j=k 

However, if N is even, let , then Br and Tp are also respectively defined as; 

 , (2.8) 

where 
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 belongs to  

0 otherwise . 

Thus, the test statistic Tp − Br with p = r = 50% is similar to the WMW test for the 

change in location parameter. After deciding the values of p and r to be used, the 

data that fall outside the top p and bottom r were given zero weights. 

Hence, if N is odd then, 

 R N 

Br = X(R − j + 1)δj;Tp = X (i − (N − P))δj. 
 j=1 j=N−P+1 

If N is even, then 

(2.9) 

 , (2.10) 

where R = [Nr] + 1 and P = [Np] + 1 with [x] defined as the nearest integer of x. 

The A.R.E of the two sample rank tests, as N → ∞ under certain regularity 

conditions, the standardised limiting efficacy (S.L.E) of Tp − Br is; 

  (2.11) 

and that S.L.E of the t-test is . Thus, the asymptotic relative efficiency of the 

Gastwirth’s test statistic denoted G with respect to the t-test t is; 

  (2.12) 

where p = 1 − F(u) and r = F(l), and F(·) is the c.d.f of the combined sample’s 

underlying distribution. 
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The A.R.E of the rank test depends on the distribution function of equation (2.7) 

and the values of p and r. Below is a summary of the A.R.E of the test statistic Tp − 

Br to the t-test for the double exponential, the standard normal and the uniform 

distributions. 

Table 2.1: Formulae for the A.R.EG,t of Tp−Br to the t-test for some Distributions 

Distribution Density A.R.E formula 

Double Exponential  3p 

Standard normal 

Uniform 
 

1 if x ∈ [0,1]  

Clearly indicating that for light-tailed models, the A.R.EG,t for the uniform 

distribution is higher for small values of p and for heavy-tailed distributions like 

the exponential distribution, the A.R.EG,t is higher when p is large based on the 

A.R.E formulae in Table 2.1. 

2.3.1 Two-Sample Adaptive Procedure for Location 

Hogg et al. (1975) proposed a two-sample adaptive test that did not require 

symmetric error distributions. This two-sample test, which will be called the HFR 

test, used selection statistics that were measures of asymmetry and tailweight to 

select one of several rank tests. If the selection statistics fell into one of the regions 

defined by the adaptive procedure, then a certain set of rank scores was selected, 

whereas if the selection statistic fell into a different region, then a different set of 

rank scores would be used in the test. The HFR test played an important role in 

the development of rank-based adaptive tests because it was easy to compute and 

was the first practical two-sample test that was robust for validity and efficiency. 

Hogg et al. (1975) extensively advocated for an adaptive testing procedures in 

performing two-sample statistical analysis. The reason for their advocacy was 

that the adaptive procedures are robust and even maintains the level of 

significance than the parametric procedures used in analysing the two sample 

data. Hogg et al. (1975) proposed formulae for skewness and tail weight denoted 
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Q1 and Q2 respectively as selector statistics. HFR’s measure of skewness (Q1) is the 

ratio of the distance between the mean of the upper 5% of the data and the mid-

mean of the data to the distance between the mid-mean of the data and the mean 

of the lower 5% of the data. Mathematically, 

50% 
. 

5% 

HFR’s Measure of Tail weight (Q2) is the ratio of the distance between the mean 

of the upper 5% and the mean of the lower 5% of the data to the distance between 

the averages of the upper and lower halves of the data. Mathematically, 

U5% − L5% 

Q2 =. 

U50% − L50% 

Q1 and Q2 were defined such that when Q1 ≤ 2 and 2 ≤ Q2 ≤ 7, indicate a distribution 

with heavier-tailed and so the WMW scores were used as a test statistic, when Q1 

> 7, there was an indication of the distribution of the data being very heavy-tailed, 

thus proposing the use of the median test as a test statistic, when Q1 < 2 and 1 ≤ 

Q2 < 2 then the distribution is light-tailed, and finally when Q1 > 2 and Q2 ≤ 7, then 

the distribution is right-skewed and scores for distributions skewed right were 

used (Hogg et al., 1975) . 

Hogg et al. (1975) known as HFR, hereafter, however worked with the 

assumption that the data could not be skewed to the left, but proposed methods 

to be used should there be evidence that the data was skewed left. That was 

precisely when  and Q2 > 7. Through Monte Carlo simulations, they 

concluded that the adaptive test performs powerfully over a broad class of 

distributions and is to be preferred over some popular non-adaptive tests 

including parametric ones (Hogg et al., 1975). 

Q 1 = 
U 5 % − M 

M 50 % − L 
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2.3.2 Bu¨ning’s Adaptive Tests 

Bu¨ning (1996) proposed an adaptive tests for the one-way layout. In this test, he 

first ordered the observations of the k−samples, that N = n1 +n2 +·+nk. Then, 

choose a test statistic based on a vector of selector statistics, Q = (QS,QT ), where 

QS is a measure of skewness and QT is a measure of tailweight were given 

as 

 

and 

 

with the k-quantile ˆxk given by; 

 

where X(1),X(2),··· ,X(N) are the order statistics of the combined k-samples and j = 

[nk + 0.5]; λ = nk + 0.5 − j. Clearly, QS < 1, if F, the distribution function is skewed 

to the left, QS = 1, if F is symmetric and QS > 1, if F is skewed to 

the right. 

The adaptive test proposed and used based on the distribution from which the 

data was deemed to have been drawn denoted was A and defined as; 

 

 G if 0 ≤ Qˆ
1 ≤ 2;1 ≤ Qˆ

2 ≤ 1.5 

  if 0 ≤ Qˆ1 ≤ 2; 1.5 ≤ Qˆ2 ≤ 2 
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 LT if Qˆ1 ≥ 0; Qˆ2 > 2 

 HFR if Qˆ
1 ≥ 2; 1 ≤ Qˆ

2 ≤ 2, 

where G, KW, LT and HFR are the Gastwirth, Kruskal Wallis, Light-tailed and the 

HFR scores respectively used to make inferences. A Monte Carlo simulation study 

by Bu¨ning (1996) revealed no significant difference between results based on 

Bu¨ning’s measure of skewness and tailweight and that of HFR, and performed 

significantly better than their parametric counters in asymmetric distributions. 

2.3.3 Other Adaptive Tests 

This section discusses adaptive procedures based on subsets of regression 

coefficients, one-way layout and paired data. Hill et al. (1988) agreed that the 

formulae proposed by (Hogg et al., 1975) as measures of skewness and tail weight 

through 

Monte Carlo studies have proved to be good indicators when the shift parameter 

∆ is close to zero but then may indicate wrong statistics when the shift parameter 

is large. Thus for statistical hypothesis testing the measures proposed by Hogg et 

al. (1975) does not pose serious implications as it is only a test of location, 

however from the point of view of estimation, it poses serious problems as wrong 

or unsuitable test statistic may lead to wide confidence intervals. Subsequently 

two adaptive schemes were proposed: one that was similar to that of Hogg et al. 

 
(1975), but with the measures of skewness and tail weight denoted Q1 and Q2 and 

defined respectively as 

 

and 
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where Q1,1 and Q1,2 are obtained from HFR measure of skewness for sample 1 and 

2 respectively, and Q2,1 and Q2,2 are obtained from HFR measure of tailweight for 

sample 1 and 2 respectively. This was apparently to cater for the challenges of 

large shift parameter. The second one addressed the situation where there were 

ties in the order statistics of observations in a two sample problem. The same 

average score was assigned to each of the observations in this tie. Consequently, 

Hill et al. (1988) the use of both procedures on lung cancer data demonstrates the 

dominance of the adaptive procedures over the parametric and rank based 

procedures when the size of each sample was at least 20. 

O’ Gorman (1997) proposed an adaptive test for the one-way layout. The 

procedure proposed, used the order statistics of the combined sample to derive 

“selector statistics” this time not through the measures of skewness and tail 

weight but through the use of percentiles which served as a basis to choose 

suitable sets of rank scores for the one-way test statistic. This procedure served 

as a generalization for the already existing two-sample adaptive procedure. The 

power and significance level of the adaptive procedure proposed were evaluated 

and compared with procedures such as the F-test, Kruskal-Wallis test and the 

normal scores test through Monte Carlo simulations. The results revealed that all 

the tests maintained their level of significance for datasets with at least 24 

observations, but the adaptive tests proved to be more powerful for distributions 

that were skewed when the total number of observations were at least 24. This 

procedure also proved to be even more powerful than the F-test in particular for 

some symmetric distributions when the data set was at least 60 (O’ Gorman, 

1997). 

Freidlin et al. (2003) introduced the concept of a two-stage adaptive procedure 

using the p-value of the Shapiro-Wilk test as the “selector statistics” in the first 

stage and then using the p-value to select the second stage test, denoted AD3. The 

power of AD3 was compared with the approach of the United States 
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Environmental Protection Agency (EPA) and a natural adaptive test AD4. The EPA 

was faced with data from heavy tails and thus used the sign test and t-test for 

paired differences and recommended that both tests yielded non-significant 

results when applied to the differences in order for the null hypothesis to be 

accepted and the AD4 procedure however tested for normality and the use of a 

distribution-free method when normality is rejected. One such procedure is to 

apply the Shapiro-Wilk (SW) test for the differences, if normality is accepted, the 

t-test is used, otherwise the Wilcoxon test is used (Freidlin et al., 2003). 

The adaptive procedure AD3 however chose to use the Wilcoxon test in the second 

stage if at the first stage the data revealed moderate tails and then used an 

appropriate nonparametric test that has high power for the data where the 

distribution indicates heavy tails at the first stage (Freidlin et al., 2003). This 

procedure as is common with most nonparametric test proposed the use of the 

linear signed rank test given by 

 

with ), where Rj+ is the absolute rank of the paired difference, I(u) is a 

normalised score function defined on (0,1) and satisfying = 0 and 

= 1 with δ(Yj) an indicator function of value 1 if y is positive and 0 

otherwise (Freidlin et al., 2003). AD3 used the linear rank tests with three score 

functions denoted I1(u), I2(u) and I3(u) for selection and testing. As stated, the 

choice of the second stage test depends on the p-value of the Shapiro-Wilk test 

denoted PSW . Thus, the Wilcoxon test was used with score function I1(u) when PSW 

> 0.01, the t-distribution scores with two degrees of freedom and score function 

I2(u) used when 0.0001 < PSW ≤ 0.01 and the Cauchy scores with score function 

I3(u) used when PSW ≤ 0.0001 (Freidlin et al., 2003). 
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Consequently in comparing the power robustness of the three approaches via 

simulations; AD3’s, AD4’s and the EPA’s, results showed that AD3 had power 

robustness than the other methods over a set of distributions with sample sizes 

at most 50, but less power than the others using a contaminated normal 

distribution with a sample size of 300 paired differences which is unrealistic in 

practice. In addition, in almost all other cases, the new adaptive scheme AD3 had 

power robustness inside some small percentage points of the optimal test for 

each distribution, and for heavier-tailed distributions, the power of AD3 exceeds 

the AD4’s and the EPA test by about 15% (Freidlin et al., 2003). 

A new adaptive procedure for analysing paired data was proposed by Miao and 

Gastwirth (2009). As with most adaptive procedures, the new adaptive procedure 

used a function of the ordered absolute values of the differences as a measure of 

tail heaviness (“selector statistics”) of the underlying distribution denoted sM and 

given by; 

 
where ˜s is the sample standard deviation and M is the median absolute deviation. 

The test statistic subsequently adopted in this new adaptive procedure was the 

signed rank test given by; 

) with  

where Rj+ is the rank of |Xj| among |X1|,|X2|,...,|Xn| and 

 

1 if Xj > 0 δ(Xj) 

= 

0 otherwise 

and I defined as the score function suitable for the data (Miao and Gastwirth, 

2009). 
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Four score functions were further used for purposes of testing. These were the 

normal scores, wilcoxon scores, t2 scores and the Cauchy scores, some of which 

are extreme members of the family of t distributions (Miao and Gastwirth, 2009). 

The choice of the scores however depended on the distribution of the data. Miao 

and 

Gastwirth (2009) found that when sM ≥ 2.7, the appropriate scores test was the 

Cauchy, when 1.2 ≤ sM < 2.7, the t2 scores were suitable, when 1.02 ≤ sM < 1.2, 

then the Wilcoxon scores were appropriate and when sM < 1.02, the normal 

scores were the best scores to be used. Results from simulation studies proved 

that the new adaptive procedure maintained its nominal level of significance for 

all continuous distributions even for sample sizes as small as 10 and has almost 

the same power as the best signed rank test for a broad class of distribution 

functions (Miao and Gastwirth, 2009). 

O’ Gorman (2002) developed an adaptive test for a subset of regression 

coefficients and compared the power of this adaptive test with that of an F-test 

for a subset of regression coefficients which is often used in order to compare two 

nested linear models. This comparison was made when the distribution of 

residual terms are not normally distributed. The adaptive test here used the 

studentized deleted residuals for calculating the weight for each observation and 

permutation procedure used so that the appropriate test maintained its level of 

significance near the nominal value. Results from simulation studies of two 

independent samples n1 and n2 indicate that, at a level of significance of 0.05, only 

the F-test and the proposed adaptive test maintained their size near the nominal 

value (O’ Gorman, 2002). 

An adaptive test that used the adaptive weighting scheme but not the permutation 

approach had a size of between 3.0 per cent and 7.1 per cent, and the proposed 

adaptive test (the adaptive scheme that used both the weighted scheme and the 
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permutation test) had its size between 4.5 per cent and 5.4 per cent for a sample 

size of n1 + n2 = 60. Results for power also proved that the proposed test in general 

had greater power than the F-test for distributions that are not normal (O’ 

Gorman, 2002). 

O’ Gorman (2006) suggested an adaptive multivariate test for a subset of 

regression coefficients in a linear model that was compared to the non-adaptive 

tests such as the likelihood ratio test. This procedure was based on the use of 

studentized deleted residuals to evaluate an appropriate weight for each 

observation as was the case in O’ Gorman (2002). The weight were subsequently 

used to compute Wilk’s lambda for the weighted model. The adaptive test was 

then conducted through the permutation of independent variables representing 

the parameters that are assumed to be equal zero under the null hypothesis. The 

permuted variables are then weighted to find a permutation test used to calculate 

the p-value that served as a basis for the rejection or acceptance of the null 

hypothesis, i.e if p-value < α- the level of significance, the null hypothesis is 

rejected. Results from simulation studies showed that the multivariate adaptive 

test maintains its level of significance for the three multivariate error 

distributions used, including normal, log-normal and sinh−1-normal error 

distributions, and the power of the adaptive test was almost about the same as 

the non-adaptive test where the models used normal errors whereas it exhibited 

substantially more power than the non-adaptive test when the error terms were 

non-normal (O’ Gorman, 2006).  
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Chapter 3 

Methodology 

3.1 Introduction 

The present study involves a simulation study and details of the relevant theories 

and techniques are presented in the subsequent sections in this chapter. 

3.2 Hypothesis Testing 

A hypothesis is generally believed to be an “educational guess”, which acceptance 

or otherwise is based on empirical evidence. Hypothesis is generated via a 

number of means, but is usually the result of a process of inductive reasoning 

where observations lead to the formation of a theory. Scientists then use a large 

battery of deductive methods to arrive at a hypothesis that is testable, falsifiable 

and realistic. Suppose that a researcher wants to compare the time of relief from 

using different pain relief agents produced by k companies. Let x11,x12,··· ,x1n1 

represent n1 observations from usage of product from company 1, x21,x22,··· ,x1n2 

represent that from company 2, and xk1,xk2,··· ,xknk representing the observations 

noted to have used company k product. A model describing the data from such 

experiment, with the assumptions that the samples are drawn at random from k 

independent normal populations is given by; 

  (3.1) 

where xij is the jth observation from company i, µi is the time of relief from using 

the product of the ith company, and εij is the error margin associated with the jth 

observation. The assumption made regarding the  is that they are normally 
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and independently distributed with mean 0 and variance σi2, i = 1,2,··· ,k. Since 

µ1,µ2,··· ,µk are constants it implies that xij ∼ N(µi,σi2), i = 1,2,··· ,k (Montgomery, 

2001). 

3.2.1 Test of k-sample Means 

Example-Balanced One-way ANOVA 1 This example was extracted from (?) for 

purposes of illustration. The data in Table 3.1 come from an agricultural 

experiment. We wish to test for different mean yields for the different fertilisers. Test 

at α = 0.05 level of significance if the mean yield of the fertilizers are 

significantly different. 

Table 3.1: Type of fertilizer and amount of yield data. 

Fertilizer Yield 

A 14.5,12.0,9.0,6.5 

B 13.5,10.0,9.0,8.5 

C 11.5,11.0,9.0,8.5 

D 13.0,13.0,13.5,7.5 

E 15.0,12.0,8.0,7.0 

F 12.5,13.5,14.0,8.0 

Assumptions 

1. The samples from the k-populations are independent and normally dis- 

tributed. 

2. The populations have equal variances. 

We are testing; 

H0 : µA = µB = µC = µD = µE = µF vrs H1 : µi =6 µj, at least for some i 6= j We have six 

treatments so 6-1 = 5 degrees of freedom (df) for treatments. The total number 

of degrees of freedom is the number of observations minus one, hence 23. This 

leaves 18 degrees of freedom for the within-treatments sum of squares. The total 

sum of squares can be calculated routinely as 
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 X 2 X 2 2 

 (xij − x¯) = xi − x¯ 

, which is often most efficiently calculated as 

 

. This calculation gives 

 

The easiest next step is to calculate SST, which means we can then obtain SSE by 

subtraction as above. The formula for SST is relatively simple and reads 

 

where Ti denotes the sum of the observations corresponding to the ith treatment 

and T = Pij xij. Here this gives 

 

Table 3.2 below gives the summary estimates for the test statistic: 

Table 3.2: One-way ANOVA table for fertilizer yield 

Source df Sum of Squares Mean Square F 

Between Fertilizers 5 11.802 2.360 0.287 

Residual 18 148.188 8.233  

Total 23 159.990   

The following were obtained as follows; 

 

 

and 
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This gives a non-significant p-value compared with F3,16(0.95) = 3.239. R 

calculates the p-value to be 0.914. In conclusion, we have no evidence for 

difference between the various types of fertiliser. 

This test is carried out on the assumption that the data is normally distributed. 

However, the practicality and applicability of this assumption is questionable, 

especially when sample sizes are small, as the data analyst or the researcher has 

no clear knowledge of the distribution from which the data was derived. The 

adaptive tests proposed and performed in this thesis studies the data properties 

before deciding the test to run. 

3.3 Model specification for Two Sample Location Test 

Let x1,x2,...,xn1 be an independent and identically distributed (iid) random sample 

with cumulative distribution function F(x) and density function f(x). Also, let 

y1,y2,...,yn2 be another random sample, independent and identically distributed 

from the cumulative distribution function F(X −δ) and density function f(X − δ), 

where δ = µy − µx represents a shift in location between the two distributions, µy 

and µx are the means of F(X−δ) and F(X) respectively, and F is unknown. The 

objective is to test the hypothesis H0 : δ = 0 versus H1 : δ 6= 0. 

Hence let n = n1 + n2 represent the combined sample of both Xi0s and Yi0s. Let Z0 = 

(X1,X2,...,Xn1,Y1,Y2,...,Yn2) denote the vector of observations. Then the location model 

can be written as; 

 Zi = viδ + ei,1 ≤ i ≤ n (3.2) 

where e1,e2,...,en are iid with distribution function F(x), 

 

 0 if 1 ≤ i ≤ n1 

 vi = (3.3) 

 1 if n1 + 1 ≤ i ≤ n 
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and 

 

 Xi for 1 ≤ i ≤ n1 

 Z(j) = (3.4) 

 Yi−n1 for n1 + 1 ≤ i ≤ n1 + n2 = n, 

where Z(j) is the order statistics for Zj. Then under the null hypothesis H0, for Z(j), 

the conditional distribution of Z(j) is discrete with probability  for all 

permutations of the vector Zj (Okyere, 2011). This implies that the conditional 

distribution does not depend on F(x), hence the order statistics are sufficient for 

F. 

3.4 Order Statistics 

The smallest, largest or middle observation can be a useful summary for a random 

variable. For example, the highest flood waters or lowest winter temperature 

recorded during last year might be useful for planning for future emergencies. 

These are examples of order statistics. The order statistics of a random sample 

x1,x2,...,xn are the sample values places in ascending order. They are denoted by 

x(1),x(2),...,x(n) and satisfy x(1) ≤ x(2) ≤ ... ≤ x(n) 

X(1) = min1≤i≤nXi 

X(2)= second smallest Xi 

... 

X(n) = max1≤i≤nXi 

If X(1),··· ,X(n) are random samples from continuous population, the probability 

density function (pdf, hereafter) of the order statistics is derived by Theorem 

3.3.1. 
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Theorem 3.4.1 (PDF of Order Statistics) Let X(1),··· ,X(n) denote the order 

statistics of a random sample X1,··· ,Xn from continuous population with cumulative 

density function (cdf) FX(x) and pdf fX(x). Then the pdf of X(j) is; 

 

see (Casella and Berger, 2002) for proof. 

3.5 Properties of Order Statistics 

3.5.1 Sufficiency 

Let T = t(X) where X is a random sample defined as X1,X2,...,Xn be a statistic taking 

values in a set T. Basically, T is a sufficient statistic for θ if T contains all the 

information about θ that is available in the entire data variable X. 

Let X1,X2,...,Xn denote a random sample of size n from a distribution that has a 

probability density function(pdf) f(x;θ), θ ∈ Ω. Let T = t(X1,X2,...,Xn) be a statistic 

whose pdf is fT (t;θ). Then T is a sufficient statistic for θ if and only if the ratio 

 

where H(x1,x2,...,xn) does not depend upon θ ∈ Ω. see chapter 5 of (Casella and 

Berger, 2002). 

3.5.2 Completeness 

Let f(t|θ) be a family of pdfs and probability mass functions (pmfs) for a statistic 

T(X). The family of probability distributions is called complete if Eθg(T) = 0 for all 

θ implies Pθ(g(T) = 0)=1 for all θ. Equivalently, T(X) is called a complete statistic 

(Casella and Berger, 2002). 
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Theorem 3.5.1 Let F be the class of continuous distributions for a real or vector of 

random variables Z and let V = g(Z) be a measurable function with FV denoting the 

class of continuous distributions of V . If Z is complete with respect to the class F, 

then V is complete with respect to FV . 

Hence under the null hypothesis H0, the order statistics for the combined sample 

X(1) < X(2) < ... < X(n) are sufficient and complete. 

3.6 Ancillary Statistic 

Suppose S = s(X) is a statistic taking values in the set T. If the distribution of S does 

not depend on θ for every Pθ(θ ∈ Θ), then S is said to be an ancillary statistic for 

θ. These are statistics with distributions free of the parameters and seemingly 

contains no information about those parameters. For example the variance S2 of 

a random sample from N(θ,1) has a distribution that does not depend upon θ and 

so it is an ancillary statistic. 

Theorem 3.6.1 (Basu) If T is a boundedly complete sufficient statistic for P and S 

is ancillary, then T and S are independently distributed on every θ ∈ Θ or any 

boundedly complete sufficient statistic is independent of an ancillary statistic. 

3.7 Adaptation and Gauss Markov Model 

We developed an adaptive procedure for GMM under exchangeable errors. We 

consider the model, 

  (3.5) 

The usual normality restriction on the  is unwind however we assumed 

exchangeability of . Under H0, we consider a vector of distribution function, F, 
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which is centered. We are investigating centered designs whose distributions are 

unknown 

or which may vary from center (level) to center (level) 

  

F(1) 

   

(2)  

F  

 F =   (3.6) 

 ...  

  

  F(n) 

We are developing an adaptive procedure that adapt within the centers (levels), 

because consequentially the assumption of exchangeability is applicable with 

centers (levels) (Okyere, 2011). Now consider the i − th block of the GMM with m 

levels and ni sample sizes for the development of our scheme, 

  (3.7) 

for j = 1,...,ni, and i = 1,...,m. where yij is the combined response samples, cij are 

elements of the design matrix Ci which are 0’s and 1’s and ∆ fixed effect 

parameters, ij are independent and identically distributed with distribution F. 

3.8 Adaptive Scheme 

Let X11,X12,...,X1n1,X21,X22,...,X2n2,···Xn1,Xn2,...,Xnnk be random samples from continuous 

distribution function f(t) with some amount of variations denoted by δ among the 

samples, that is, f(t−δ). This thesis would want to test the hypothesis that there is 

no difference in the sample means. 
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H0 : δ = 0 vrs H1 : δ 6= 0 

Two assumptions are thus implied; 

1. The distributions have equal variances under both the null and 

alternativehypothesis. 

2. The  are assumed to be independent of each other. 

The adaptive test is distribution free based on linear rank statistics or the scores 

of the ranks of the combined samples of the treatment groups. In this thesis the 

aim of the adaptive test is to identify the distribution function from which the data 

was drawn and to provide scores based on the Winsorised Wilcoxons to be used 

for the hypothesis testing among the treatment means. 

3.9 Selector Statistics and Scores Function 

The distribution of data is readily unknown and to avoid presumptuous 

assertions, data is examined and classified by considering skewness and tail 

weight from a class of continuous distribution. In this work, nine classification 

categories known as the Winsorised scores are used. For all class of continuous 

distribution functions, F, there could exist heavy, moderate or light tail weight and 

could be right skewed, left skewed or symmetric. 

3.9.1 The Selector Statistic 

Hogg et al. (1975) proposed a statistic for determining the skewness of a data 

which is defined by Hao and Houser (2011) as the ratio of the distance between 

the upper end and the mid mean to the distance between the lower end and the 

mid mean of the data. Denoted by Q1, it is mathematically written as: 

50% 
 , (3.8) 

5% 

Q 1 = 
U 5 % − M 

M 50 % − L 
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where U5%, M50% and L5% are the averages for the upper 5%, middle 50% and the 

lower 5% of the  the ordered combined samples respectively 

The measure of tail weight proposed by Hogg et al. (1975) and defined by Hao 

and Houser (2011) as the ratio of the distance between the averages of the upper 

end and the lower end to the distance between the averages of the upper half and 

the lower half of the data. Denoted by Q2, it is mathematically written as: 

U5% − L5% 

 Q2 =, (3.9) 

U50% − L50% 

 
where U50%, and L50% are the averages of the upper 50% and lower 50% of the 

observations of the combined samples. 

These two statistics are together called selector statistic, S = (Q1,Q2). 

3.9.2 HFR Model Selection Scheme 

Based on the selector statistic, the HFR method classified the data as belonging to 

one of four models. These were: 

• Light-tailed symmetric model 

• Heavier-tailed model 

• Very heavy-tailed model 

• Right-skewed model 

The classification scheme is as specified in Table 3.3. 

Table 3.3: HFR Model Selection Scheme 

Q1 value Q2 value Remarks 

≥2 [2,7] Heavier-tail model 
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>2 >7 Very heavy tail model 

≤2 ≤7 Right-skewed model 

≤2 ≤2 Light-tailed symmetric distribution 

3.9.3 Scores functions associated with HFR Model Selection 

Scheme 

For heavier-tailed models, (Q1 ≤ 2 and 2 ≤ Q2 ≤ 7), Hogg et al. (1975) proposed the 

Mann-Whitney-Wilcoxon scores denoted W to be used to compute the linear rank 

statistics; 

 , (3.10) 

where  

aW (Rj) = Rj for j = 1,2,...,N (3.11) 

and RjN denotes the rank of the jth observation in the second sample of the 

combined sample. 

It is asymptotically most powerful when the data follow a logistic distribution 

defined by; 

 

where −∞ < x < ∞, −∞ < a < ∞ and b > 0 

For very heavy-tailed models Q2 > 7, the scores for the median test denoted M 

were used and defined as; 
n 

 S = XaM(Rj) (3.12) 
j=1 

where 

 

 1 if  

aM(Rj) =(3.13) 
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 0 otherwise 

These scores are asymptotically most powerful when data follow Laplace or 

double exponential distribution with its probability density function defined as; 

 )) if x < µ 

 )) if x ≥ µ 

with µ defined as the location parameter and α defined as the scale parameter. 

For light-tailed symmetric model denoted L, (Q1 ≤ 2 and 1 ≤ Q2 < 2), the scores 

used to compute the test statistic was given as; 

 ) (3.14) 

where 

  if  

  if  (3.15) 

 0 otherwise 

with mean and variance of L under the null hypothesis H0 given as µL = 0 and 

. 

For right-skewed distribution Q1 > 2 and Q2 ≤ 7, the scores denoted S corre- 

sponding to the test statistic was used;  

n 

S = XaS(Rj) 
j=1 

were used with aS(Rj) defined as; 

(3.16) 
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1 if  

(3.17) 

 0 otherwise 

with the mean and variance of the test statistics of S under the null hypothesis 

defined as  and . 

HFR adaptive test could be summarised as; 

 

 Median test(M)

 if Q2 > 7 

The figure below 

gives a concise explanation of which scores to be used based on the values of Q1 

and Q2. 

 

Figure 3.1: HFR model selection Criteria: Skewness Q1 and Tailweight Q2 

This method assumed that data could not have been skewed to the left. However, 

an additional category of scores were created for left skewed models,  and 

Q2 < 7, with test statistic defined as; 

 ) (3.18) 

  

WMW(W) if Q1 ≤ 2 and 2 ≤ Q2 ≤ 7 

Light-

tailed scores (L)Right 

skewed scores (S) 

if Q1 ≤ 2 and 1 ≤ Q2 < 2 if 

Q1 > 2 and Q2 ≤ 7. 
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where 

(3.19) 

. 

The scores selected are ancillary since they provide no information about the 

unknown distribution F. 

3.9.4 HFR Adaptive Test and the Level of Significance 

This section presents the theorem and proof that the adaptive test maintains its 

level of significance for data of the order statistics of the combined sample 

 

Theorem 3.9.1 (Lemma) 1. Let F denote the class of continuous distribution 

functions under consideration. Suppose that each of m tests based on the 

statistics T1,T2,··· ,Tm is distribution free over the class F, i.e PH0(Th ∈ Ch/F) = α 

for each F ∈ F and h = 1,··· ,m. 

2. Let S be some statistic that independent of T1,T2,...,Tm under H0; for each F ∈ F. 

Suppose that S is used to decide which test Th to conduct (S is called a selector 

statistic). Let Us denotes the set of all values of S with the following 

decomposition; Us = D1 ∪ D2 ∪ ... ∪ Dm,Dh ∩ Dk = ∅ for h 6= k, so that S ∈ Dh 

corresponds to the decision to use the test Th. The overall testing procedure is 

then defined by: If S ∈ Dh then reject H0 if Th ∈ Ch This two-stage adaptive test 

is, under H0, distribution-free over the class of 

F ∈ F. 

Proof 3.9.1 

! 

PH0(reject 
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= α · 1 

= α 

3.10 Winsorization 

In the process of winsorization, a fixed number of extreme scores are replaced 

with the closest score in the tail of the distribution. The rational is that outliers 

may provide some useful information concerning the magnitude of scores in the 

distribution, but at the same time may unduly influence the results of the analysis 

unless some adjustment is made (Sheskin, 2011). For illustration, consider the 

following observation; 

0,1,18,19,23,26,26,28,33,35,98,654 

has a mean score of 80.08, which is not representative of the data set.Let us 

substitute a score of 18, for both 0 and 1 (the 2 least observed scores) and a score 

of 35 for 98 and 654 (the 2 highest scores). Thus the winsorized distribution 

scores becomes; 

18,18,18,19,23,26,26,28,33,35,35,35 

with a mean score of 26.17, which is a far better representation of the data 

compared to the previous score of 80.08. A winsorized distribution may be 

symmetric or asymmetric. Let r represents the number of scores that are trimmed 

or winsorized in the right tail and l represents the number of scores trimmed in 
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the left tail. If r = l, then the winsorization process is is said to be symmetric 

otherwise asymmetric (?). 

3.10.1 The Winsorised Scores 

Hogg et al. (1975) measures of skewness and tail weight depict the ratio of the 

 
difference in averages of the combined sample, that is, of the form Uα1 − V α2, where 

α1 and α2 are some fractions to be trimmed from the combined ordered 

data. 

Now, let 

  (3.20) 

where  are the ordered statistic of the combined sample, b1 = [nα1], b2 = [nα2], 

[x] denotes the smallest integer greater than x and l = n − b1 − b2. This redefines 

the measures of skewness and tail weight proposed by Hogg et al. (1975). Thus, 

the measure of skewness and tail weight are now denoted as  and  

respectively and defined as; 

 

and 

 

Therefore, to adapt on the error measurements of model (3.2), under H0 the 

combined error measurements are used to obtain the measures of skewness and 

tail weight. This thesis makes use of benchmarks proposed by Al-shomrani 

(2003). The cutoff values for measures of skewness and tail weight depend on the 

sample size n, but as n → ∞, the measures converges to that proposed by Hogg et 

al. 

(1975). 
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For , the 

lower cutoff = 0.  

upper cutoff = 2.  

and for , when the sample size is less than 25 

lower cutoff = 2.  

upper cutoff = 2.  

but when the sample size is at least 25, then the lower and upper cutoff are 

respectively defined as; 

lower cutoff = 2.  

and 

upper cutoff = 2. . 

These cutoff points are used in the selection of a rank score associated with the 

unknown distribution. In this thesis, the rank test used is given by; 

 ) (3.21) 

where ) are scores and ϕ satisfies the 

following conditions: 

• ϕ is a non-decreasing function and square integrable on (0,1). 

• ϕ is differentiable on (0,1) and since ϕ is square integrable, then

 

0 and  

Thus from the model given by (3.2), then under H0, ei has density f and distribution 

F, with the optimal score ϕf(u) given by 
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This thesis employs nine winsorised scores. Hettmansperger (1984) classified 

these scores under four generic cases and they include; 

1. 

otherwise. 

2. 

otherwise. 

3. 

otherwise. 

4. 

otherwise. 

where s1, s2, s3, s4 and s5 are parameters and . 

Figure 3.2 represents the plot of the scores of the adaptation (Okyere, 2011). 
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Figure 3.2: Plots of the Nine Winsorised Scores 

Table 3.4 below provides the benchmarks needed for the nine winsorised 

wilcoxon scores proposed by (Hettmansperger, 1984). 

Table 3.4: Benchmarks for Winsorised Scores 

Skewness Tail weight Score function 

Left Light ϕ1 = ϕIII with parameters (s1 = 0.1,s2 = −1 and s3 = 2.0) 
Left Medium ϕ2 = ϕIII with parameters (s1 = 0.3,s2 = −1 and s3 = 2.0) 
Left Heavy ϕ3 = ϕIII with parameters (s1 = 0.5,s2 = −1 and s3 = 2.0) 
Symmetric Light ϕ4 = ϕII with parameters (s1 = 0.25,s2 = 0.75, s3 = −1, s4 = 

1.0 and s5 = 0.0) 
Symmetric Medium Wilcoxon scores  
Symmetric Heavy ϕ6 = ϕIV with parameters (s1 = 0.25,s2 = 0.75, s3 = −1 and s4 

= 1.0) 
Right Light ϕ7 = ϕII with parameters (s1 = 0.9,s2 = −2 and s3 = 1.0 s4 = 1, 

and s5 = 0) 
Right Medium ϕ8 = ϕI with parameters (s1 = 0.7,s2 = −2 and s3 = 1.0) 
Right Heavy ϕ9 = ϕI with parameters (s1 = 0.5,s2 = −2 and s3 = 1.0) 
. 

The summary of the adaptive test is thus based on the selector statistics S = 

 corresponding to the regions Ak, for k = 1,2,...,9. That is; 

n ∗ ˆ∗ , Q∗2 > Qˆ∗2uo A1 = Q1 < Q1l n 

∗ ∗ ˆ∗ , Q∗2 > Qˆ∗2uo 
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 A2 = Qˆ1l < Q1 < Q1u 

A3 = nQ∗1 > Qˆ∗1u, Q∗2 > Qˆ∗2uo n ∗

 ˆ∗ , Qˆ∗2l < Q∗2 < Qˆ∗2uo 

A4 = Q1 < Q1l n ∗ ∗ ˆ∗ , Qˆ∗2l < 

Q∗2 > Qˆ∗2uo A5 = Qˆ1l < Q1 < Q1u n ∗ ˆ∗ , 

Qˆ∗2l < Q∗2 < Qˆ∗2uo A6 = Q1 > Q1u 

n ∗ ˆ∗ , Q∗2 < Qˆ∗2lo A7 = Q1 < 

Q1l 

A8 = nQˆ∗1l < Q∗1 < Qˆ∗1u, Q∗2 < Qˆ∗2lo 

A9 = nQ∗1 > Qˆ∗1u, Q∗2 < Qˆ∗2lo 

where  and  are the benchmarks from the ordered samples or 

residuals (Al-shomrani, 2003). The regions are however identified from the 

corresponding parameters associated with the scores as shown in Table 3.4. An 

example of the scores are shown on Figure 3.3 based on a sample size of 50 with 

the regions displayed. 

Supposing Ak and ϕk are the regions and scores selected respectively, then the 

adaptive test, AD(S, ϕ) is AD(S, ϕ) = Tϕk, S ∈ Ak, where 

n2 

 Tϕk(∆) = Xaϕk(R(xj − ∆)) (3.22) 
j=1 

is the test statistic on the ranks and score ϕk, associated with region Ak and hence 

distribution free. Under the null hypothesis H0, E[Tϕk(∆)] is zero (Okyere, 2011). 
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Figure 3.3: Plot of benchmarks with n=50 

Hence, 

 

= 0 

since the ranks of the are uniform on the integers 1,2,...,n and To 

evaluate the variance, since E0(Tϕk) = 0, then 
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n since Sa = P aϕk(R(xj)). for a detailed proof see 

(Hettmansperger, 1984). 
j=1 

The adaptive test is thus distribution free since the selector statistics S is obtained 

from only the order statistic and the test statistic Tϕk is based on the ranks. Hence 

for a region Ak, the corresponding decision rule at α is to reject H0 

if: 

 . (3.23) 

√  

For example the wilcoxon scores defined by ϕ(u) = 12[u − 0.5] is regarded the 

optimal rank scores for the logistic distribution and the sign scores which is 

defined as ϕ(u) = sgn[u − 0.5] as the optimal score for a double exponential 

distribution. 

3.11 Exchangeability of Random Variables 

Error measurements or observations are said to be exchangeable if they are 

considered independent, identically distributed (i.i.d), or if they are jointly 

normal with identical covariances (Good, 2002). Considering the two-sample 

location problem where Xi0s are random sample, i.i.d with continuous distribution 

function F(x) and  also being random sample, i.i.d with distribution function 

F(x − ∆) with the hypothesis defined as H0 : ∆ = 0 against H1 : ∆ 6= 0, then the exact 
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test for H can be obtained by transforming the variable by subtracting 0 from each 

of the  and ∆ from each of the . Thus, “a set of observations 

(random variables) X will be said to be transformably exchangeable if there exists 

a transformation(measurable transformation) T, such that TX is exchangeable 

”(Good, 2002). 

Theorem 3.11.1 An infinite sequence of random variables (Y1,Y2,...,Yn,...) is said to 

be infinitely exchangeable under probability measure P, if the joint proba- 

d 

bility of every finite subsequence (Yn1,Yn2,...,Ynk) satisfies (Yn1,Yn2,...,Ynk) = 

(Yτ(n1),Yτ(n2),...,Yτ(nk)) for all permutations τ defined on the set {1,2,3,...,k} 

An infinite sequence of random variables is said to be infinitely exchangeable, if 

every finite sequence of its variables (events) is exchangeable (Mahmoud, 2008). 

Mahmoud (2008) explained exchangeability of random variables with this 

illustration. Consider the white-blue p´olya-eggenberger urn scheme in which 

balls are sampled with replacements, and whenever a ball colour appears in the 

sample, an extra ball of the same colour is added. Now supposing two balls were 

used initially, each of a different colour. Let Wˆ i be an indicator of picking a white 

ball in the ith draw for all i ≥ 1. That is; 

 

 1 if the ball in the ith draw is white 

Wˆ i = 

 0 otherwise 

Thus, the probabilities of all sequences with only 1 blue colour is given by; 

 

Likewise, 
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and 

 
Also, the probabilities of all sequences of obtaining only one white ball in the first 

three picks is given by; 

P(Wˆ 
1 = 1,Wˆ 

2 = 0,Wˆ 
3 = 0) = P(Wˆ 

1 = 0,Wˆ 
2 = 1,Wˆ 

3 = 0) 

= P(Wˆ 
1 = 0,Wˆ 

2 = 0,Wˆ 
3 = 1) 

 

and finally the probabilities of all sequences of the same colour in all three picks 

is; 

P(Wˆ 
1 = 1,Wˆ 

2 = 1,Wˆ 
3 = 1) = P(Wˆ 

1 = 0,Wˆ 
2 = 0,Wˆ 

3 = 0) 

 

Generally, for Wˆ 
1, Wˆ 

2, ..., Wˆ 
n being an arbitrarily large but fixed n ≥ 2 and 

suppose that there is a total of k among the indicators that are 1,and the rest 0 

occurring at at positions 1 ≤ τ1 < τ2 < ...,τk ≤ n. Then, the probability of this event is 

P[Wˆ 1 = 0,···Wˆ τ1−1 = 0,Wˆ τ1 = 1,Wˆ τ1 = 1,Wˆ τ1+1 = 0,··· ,Wˆ τk−1 = 0,Wˆ τk = 1,Wˆ n = 0] 

 

(3.24) 

Conversely 

P[Wˆ 
1 = 1,Wˆ 

2 = 1,···Wˆ 
k = 1,Wˆ 

k+1 = 0,Wˆ 
k+2 = 0,··· ,Wˆ 

n = 0] 
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(3.25) 

Comparing equations (3.24) and (3.25), the probability of drawing k white balls 

in n draws is independent of where in the sequence the white balls were drawn 

(Mahmoud, 2008). The characteristics of interest is that there are k white balls 

and that all the sequences with the same number of balls have the same proba- 

bility. 

Theorem 3.11.2 (De Finetti’s Theorem) Let X1,X2,...,Xn,... be an infinite sequence 

of random variables. Suppose that, for any n, X1,X2,...,Xn is exchangeable: P(x1,x2,...,xn) 

= P(xτ1,xτ2,...,xτn) for all permutations τ of 

{1,2,...,n}. Then 

 

for some parameter θ, some prior distribution of θ and some sampling model 

P(x/θ). The prior and sampling model depend on the form of the belief model 

P(x1,x2,...,xn). θ is the parameter that describes the conditions under which the 

random variables are generated. 

The implication here is that any probability measure describing an exchangeable 

sequence that is infinite can be expressed as a mixture of independent and 

identically distributed (iid) probability measures. 

Theorem 3.11.3 (Lemma) Independent and identically distributed random 

variables are exchangeable, conversely, exchangeability does not imply that random 

variables are independent and identically distributed. 

Thus, for the k-sample data, under H0, the error terms ei for 1 ≤ i ≤ n of equation 

(3.2) are exchangeable. That is, the random variables e1,e2,...,en are exchangeable 
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iff for every permutation τ ∈ En, the joint distribution of (eτ1,eτ2,...,eτn) is identical 

to the joint distribution of e1,e2,...,en. 

Proof 3.11.1 Suppose E1,E2,...,En are conditionally i.i.d given some unknown 

parameter θ. Then for any permutation τ of {1,2,...,n} and any set of values 

(e1,e2,...,en) ∈ En.Then 

Z 

 P(e1,e2,...,en) = (e1,e2,...,en/θ)P(θ)dθ 

Z 

 = [P(e1/θ) × P(e2/θ)...P(en/θ)]P(θ)dθ 

Z 

 = {Πni=1P(ei/θ)}P(θ)dθ 

Z 

= {Πni=1P(eτi/θ)}P(θ)dθ = 

P(eτ1,eτ2,...,eτn). 

In Bernardo (1996), it is stated that it is of great importance and sufficient to 

assess for any n, the form of the joint probability density of P(y1,y2,...,yn) in order 

to predict a future observable quantity given a sequence of‘similar’ observations. 

Furthermore, in probability theory if the observations or measurement errors are 

regarded as exchangeable, then they are deemed as being drawn from a random 

sample from the same model and there exist a prior probability distribution over 

the parameter of that model, hence requiring a Bayesian approach, however the 

representation theorem does not specify the model nor the required prior 

distribution. 

3.12 Estimation of the Scale parameter 

“For a specific distribution, the optimum scores is selected such that the 

asymptotic efficacy Cϕ is as large as possible or equivalently such that the 
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asymptotic variance of ∆ˆ 
ϕ is small as possible ”(Hettmansperger and McKean, 

2011). 

The scale parameter τϕ is defined as; 

 

ϕf(u) is referred to as the optimal score function. 

If ∆ is an estimator whose variance achieves the Cramer-Rao lower bound (ˆ

 ∀∆), it is called efficient. That is, 

 . (3.26) 

Thus, for the jth observation in the k − th sample, select scores with efficacy as 

large as possible or with asymptotic variance τϕ as small as possible. The proof is 

as shown below; Proof 3.12.1 
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where ρ is the correlation coefficient and  is the Fisher information 

denoted by I(f). Hence, by the Cram´er-Rao lower bound, the smallest asymptotic 

variance obtainable is asymptotically efficient. Thus, to maximise τϕ the score 

function is chosen such that ρ = 1 and ϕ(u) = ϕf(u) (Hettmansperger and McKean, 

2011). 

Since ∆ˆ 
ϕ is location and scale equivariant, only the form f(x) is needed. Therefore 

. The resulting estimate ∆ˆ 
ϕ is asymptotically efficient, implying that τt 

is a consistent estimator for τ. Hence for an estimator τ, the average of these 

estimators of the data is evaluated resulting in; 

 

which is consistent for τ (Rashid et al., 2012). 

3.12.1 Overall Test Statistic of Adaptation on Sample 

In this subsection, the overall test statistic on a sample from j observed data is 

developed. Since the distribution of the errors or residuals are unknown, the 

”selector statistic” are used. Under H0, it has been established that at observed 

data point, by definition 3.11.1, the error terms are exchangeable, thus the order 

statistics of the combined sample are sufficient and complete (Okyere, 2011). 

Denoted by ϕkj, the score that is selected at the jth observed data that falls in region 

k, then the test statistic is 

, 

where Tϕkj is asymptotically standard normal and distribution free. Thus, a pooled 

test statistic is used to obtain the overall test. Under H0, the overall test statistic, 

T is 
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q 

T = XTϕkj 
t=1 

 q n 

= XXaj(Rj(Xi(j))) 

t=1 i=1 

which is also an asymptotic distribution N(0,q) (Okyere, 2011). Hence, for the test 

H0 : ∆ = 0 vrs H1 : ∆ 6= 0, we fail to reject H0 if; 

, 

since the asymptotic test is distribution free at each time point, the overall test 

statistic is also distribution free (Okyere, 2011). 

3.13 Rank Based Estimation 

Consider the function, 
n 

kvk = Xa(R(vi))vi, 
j=1 

where a(j)’s are the scores, such that, a(1) ≤ a(2) ≤ ... ≤ a(n) and Pa(j) = 0. Assume 

also that, a(j) = −a(n + 1 − j). The rank-based procedures are used due to the fact 

that they are robust and also because the overall dispersion function denoted 

D(∆) is convex. Thus, it is worth noting that the adaptation is performed at each 

observed data points, since it has been established that at each observed data 

point, under H0 for the model (3.2), the error measurements are exchangeable. 

Theorem 3.13.1 Suppose aj(1) ≤ aj(2) ≤ ... ≤ aj(n), and a(j) = −a(n+1−j), then the 

function k · kϕ is a pseudo-norm. 

Next we define a pseudo-norm. 
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Theorem 3.13.2 (Pseudo-norm) An operation k · kϕ is called a pseudo-norm 

if it satisfies the following four conditions: 

(i) ku + vkϕ ≤ kukϕ + kvkϕ ∀ u,v ∈ Rn. 

(ii) kαukϕ = |α|kukϕ ∀ α ∈ R, u ∈ Rn. 

(iii) kukϕ ≥ 0 ∀ u ∈ Rn. 

(iv) kukϕ = 0 if and only if u1 = u2 = u3 = ... = un. 

The shift parameter ∆ is estimated using the following pseudo-norm, 

 , (3.27) 

where R(vi) denotes the rank of vi among the v1,v2,...,vn and the scores at each 

observed data point generated as 

 

for ϕj(u) a non-decreasing bounded square-integrable function defined on (0,1) 

such that standardizing the square-integrable function yields = 0 and 

) is the score such that a(1) ≤ ... ≤ a(n) and Pa(i) = 0. 

For example, the Wilcoxon pseudo-norm is generated by the linear score function 

 and the sign score is generated by . 

3.13.1 Jaeckel Dispersion Function 

The geometry of rank-based estimation is similar to that is similar to that of least 

squares. In rank based regression however, we replace euclidean distance with 

another measure of distance, the Jaeckel’s dispersion function defined by the rank 

based estimator of the shift parameter ∆ denoted by ∆ is given by;ˆ 

 ∆ˆ 
ϕ = ArgminkZ − C∆kϕ (3.28) 

Denoting the negative of the gradient of kZ − C∆k by Sϕ(∆), then based on 
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equation (3.27), 
n2 

 Sϕ(∆) = Xaϕ(R(Xj − ∆)) (3.29) 
j=1 

where ∆ˆ 
ϕ approximately solves the equation Sϕ(∆ˆ 

ϕ) = 0 (· Hettmansperger and 

McKean, 2011). Thus, for each observed data, under the null hypothesis, the 

gradient of the rank test statistic is 

n2 

 Sϕ = Xaϕ(R(Xj)). (3.30) 
j=1 

Since the test statistic only depends on the ranks of the combined sample it is 

distribution free under the null hypothesis. Thus 

 E0(Sϕ) = 0 (3.31) 

and 

 , (3.32) 

where the variance can also be expressed as 

, 

and the approximation is due to the fact that the term in braces is a Riemann sum 

of R ϕ2(u)du = 1 and hence, converges to 1 (Hettmansperger and McKean, 2011). 

Note that Tϕ and Sϕ are used interchangeably, in this work. Kloke and McKean 

(2013) however used equation (3.28) termed the dispersion function proposed 

by (Jaeckel, 1972) to find an estimate of ∆ based on ranks, and subsequently 

showed 

that; 
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kZ − C∆kϕ = (Z − C∆)T a(R(Z − C∆)) 

  (3.33) 

where ), the gradient defined as 

Sϕ(∆) = −∇kZ − C∆k = CT a(R(Z − C∆)) 

and the estimator ∆ˆ 
ϕ solves Sϕ(∆) = 0.· 

3.13.2 Ordinary Least Squares Estimation 

Assume the linear model; 

 Y = α1n + Xβ + e (3.34) 

  xT1 

  

where Y = [Y1,Y2,...,Yn]T is an n × 1 response vector, X =  .
..  is an n × p 

  

  xTn 

design matrix centred and of full rank, 1n is an n × 1 error vector of ones, e = 

[e1,e2,...,en]T is an n × 1 vector of i.i.d errors. Then under the hypothesis H0 : β = 0 

against H1 : β 6= 0, the ordinary least squares(OLS) estimator for β is βˆ
OLS and is 

given by; 

 βˆ = Argmin  (3.35) 

where ). Hence, Yˆ 
OLS = XβOLS is the closest vector in the 

euclidean distance to Y. Since X is of full rank, the solution of the estimator is given 

as 

βˆOLS = (XT X)−1XT Y, 

and βˆ
OLS is asymptotically distributed as 
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βˆOLS ∼· Np(β,σ2(XT X)−1). 

The estimator βˆ
OLS is not robust enough since an outlier can have significant affect 

on the estimator (Hettmansperger and McKean, 2011). 

Another form of the parametric case in the ordinary least squares(OLS) approach 

of estimating βˆ of β is to minimize the length 

 

of the vector of residuals defined by ε = Y − Xβˆ (Staudte and Sheather, 1990). In 

addition, for an n × p matrix X, the column space is defined as R(X) = {θ : θ = Xβ,β 

∈ Rp} which is a subspace of Rn (Rao et al., 2008). Now, since 

XT (Y − Xβˆ) = 0, 

that is, XT Xβˆ = XT Y , the equation 

XT Xβ = XT Y 

provides a solution and Xβ is unique for all solutions of β. This satisfies the notion 

that θˆ exist (Rao et al., 2008). Then by the independence of the residuals, the 

estimator 

 βˆ ∼ N[β, σ2(XT X)−1] 

and 

Cov(βˆ) = σ2(XT X)−1, 



 

58 

which reaches the Cram´er-Rao bound for the model and thus optimal for all 

unbiased estimators. 

3.13.3 Pitman Regular 

Theorem 3.13.3 An estimating function Sϕ(∆) is pitman regular if the following 

conditions hold: 

1. Sϕ(∆) is non increasing in ∆. 

2. , for some γ > 0 there exists a function µ(∆) such that 

 
µ(0) = 0, µ0(∆) is continuous at 0, µ0(0) > 0 and either Sϕ(0) →pθ µ(∆) or E∆[Sϕ(0)] 

= µ(∆). 

3.  for any B > 0. 

4. There is a constant σ(0) such that  and  called 

the efficacy of Sϕ(∆). 

3.13.4 Asymptotic Distribution and Efficacy of ∆ˆ
ϕ 

To develop the asymptotic null distribution of Sϕ, using equation (3.30), it follows 

then that from equations (3.2) and (3.3) the linear rank statistic is 

 , (3.36) 

where Fn is the empirical distribution function of Z1,...,Zn. The score function is 

monotonic and square integrable. Now, let Tϕ be the random variable defined by 

 . (3.37) 

Hence, comparing equations (3.36) and (3.37), it implies that Tϕ is an 

approximation of Sϕ (Hettmansperger and McKean, 2011). Consequently, under 

H0 the distribution of Tϕ is approximately normal and has the same distribution 
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as Sϕ on condition that the second moment of their difference goes to 0 

(Hettmansperger and McKean, 2011). That is, 

. 

A proof of this is found in the appendix of Hettmansperger and McKean (2011). 

Also, assume that f(x) has a finite Fisher information. This means that f is 

absolutely continuous, non decreasing and square integrable ϕ(u) such that 0 ≤ 

 and lim(  2 and λ1 + λ2 = 1 

(Hettmansperger and McKean, 2011). 

The square integrable function is defined as 

 

where f is uniformly bounded. 

Defining the scale parameter τϕ as 

  (3.38) 

Since the error measurements are independently distributed, then for the 

asymptotic representation of ∆ˆ 
ϕ, the gradient Sϕ(∆) should satisfy the four 

conditions under 3.13.3 for the observed data (Hettmansperger and McKean, 

2011). Hence 

Sϕ(∆) is non-increasing which satisfies the first condition. 

Thus, from equation (3.29), 

  (3.39) 
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where Fn1 and Fn2 are the empirical distribution functions of X1,X2,...,Xn1 and 

Y1,Y2,...,Yn2 respectively (Hettmansperger and McKean, 2011). The second 

condition of 3.13.3 is satisfied if (∆) and the µ0 > 0. Now from 

equation (3.39), 

 
Differentiating µϕ(∆) and evaluating at ∆ = 0, to obtain an asymptotic efficacy 

results. This is illustrated below; 

 

 

For proper evaluation and proof of  see Hettmansperger and McKean 

(2011). The second condition of Pitman regular is thus satisfied. 

For the third condition, a rigorous proof is obtained from Theorem A.2.8 and the 

general rank regression statistics developed in section A.2.2 of the appendix in 

Hettmansperger and McKean (2011). Thus, the asymptotic linearity of Sϕ(∆) is 

given by; 

 (1) (3.40) 

uniformly for |δ| ≤ B, where B > 0 and τϕ is as defined in equation (3.38). 

Finally, from condition 4 of 3.13.3, 

. 
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Thus, the efficacy of the test based on Sϕ found in Hettmansperger and McKean 

(2011) is given by; 

 . (3.41) 

since the asymptotic efficacy is given by . 

√  

Theorem 3.13.4 Suppose Sϕ(∆) is pitman regular with efficacy cϕ, then n(∆ˆ− 

∆) converges in distribution to . 

Thus, since the estimate ∆ˆ 
ϕ solves the equation Sϕ(∆ˆ 

ϕ) = 0· , then, based on the 

Pitman regularity and theorem 3.13.4, the asymptotic distribution of ∆ˆ 
ϕ is given 

by 

 

. 

3.13.5 Asymptotic Relative Efficiency 

For any two consistent test statistics P and Q, of any hypothesis H0, the asymptotic 

relative efficiency is the ratio of sample sizes required to obtain identical power 

against the same alternative H1, taking the limit as the sample size n tends to 

infinity and as H1 tends to H0 (Hao and Houser, 2011). This implies that the 

asymptotic relative efficiency (ARE) lies in the interval (0,∞) when the tests are 

positive ie AREP,Q ∈ (0,∞). Also, when AREP,Q ∈ (0,1) then the test statistic P is 

regarded less efficient than Q, the test P is however considered efficient as the test 

Q when the AREP,Q = 1, lastly the test P is more efficient than the test Q when the 

AREP,Q ∈ (1,+∞). 
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Alternatively, let Tp and TQ be two linear rank statistics based on the score 

generating functions P and Q. Then the asymptotic relative efficiency (ARE) is 

given by; 

  (3.42) 

where AE(TP /f) and AE(TQ/f) are the asymptotic efficacies of P and Q respec- 

tively (Ko¨ssler, 2010). 

In this thesis the asymptotic relative efficiency is based on the mean squared 

errors of the score functions. 

Theorem 3.13.5 The asymptotic relative efficiency between two estimates or two 

tests based on the score functions ϕ1(u) and ϕ2(u) of one score function relative to 

other is defined by; 

 

where c1 and c2 are respectively the efficacies of the two estimates and τϕi, i = 1,2 are 

the scale parameters of the two score functions.  
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Chapter 4 

Analysis, Results and Discussion 

4.1 Introduction 

This chapter presents results from the simulation studies from some known 

continuous distribution and an application of proposed procedure on a real data 

to ascertain the relative efficiency of the adaptive test proposed in this thesis to 

the parametric counterpart. The chapter includes four section; simulation under 

Pure Hogg (run under H0), fitting models to residuals from an Ordinary Least 

Square (OLS), fitting models to residuals from Wilcoxon Scores, and application 

on real data. The R-package, Rfit by Kloke and McKean (2012) is used for the 

study. Some other functions were written and implemented in R for the study. 

Table 4.1 presents the score functions associated with the nine Wilcoxon 

winsorized scores categorization of continuous distributions. 

Table 4.1: Score functions for the Nine Wilcoxon Winsorized Scores categories 

Skewness Tail weight Score Score function 

Left Light LL afriscores3 

Left Medium LM afriscores4 

Left Heavy LH bentscores3 

Symmetric Light SL bentscores2 

Symmetric Medium SM wscores 

Symmetric Heavy SH bentscores4 

Right Light RL afriscores2 

Right Medium RM afriscores1 

Right Heavy RH bentscores1 

The score functions wscores, bentscores1, bentscores2, bentscores3 and bent− 

scores4 are functions in the Rfit package. However, afriscores1, afriscores2, 

afriscores3 and afriscores4 were self-written and implemented in Rfit. The 

functions are as proposed by Hettmansperger (1984). The continuous 

distributions considered in this work include the normal distribution, 

contaminated normal distribution (5%, 10%, 15% and 20%), laplace distribution, 
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truncated logistic distribution and mixture of distributions for balanced ANOVA 

models. 

4.2 Simulation under Pure Hogg 

In this section, a simulation study of adaptive test were performed. Under Pure 

Hogg, adaptation is directly performed on the simulated data (the observed 

samples). The adaptive test is compared with the F-statistics. Simulation results 

for normal, double exponential (laplace), contaminated normal, the truncated 

logistic and a mixture of distributions for a balanced ANOVA models are 

presented. 10,000 simulations were carried out for 5, 10, 15, and 20 observations 

each, assigned to three (3) levels with inter and intra-level correlation coefficient 

ρ = 0. These distributions were used owing to their properties and the adaptive 

scheme proposed. For example, the normal distribution is symmetric and has 

moderate tails and the double exponential distribution may be symmetric but 

heavy tailed. 

4.2.1 Normal distribution 

Simulation results are presented in Table 4.2 for Normal distribution with µ = 0 

and σ = 1; 

Table 4.2: Simulation Results of Adaptive Test and Parametric Test for Normal 

distribution 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 8.919 0.00423 1.102 SM 1.36112 0.29325 2.3005 

(10,10,10) 37.36 1.67e-08 0.600 SM 6.4436 0.00515 2.1062 

(15,15,15) 9.354 0.00437 0.898 SM 14.82175 1e-05 1.8637 

(20,20,20) 25.12 51e-08 0.894 SM 31.24179 0.0000 1.6138 

The selector statistics for the adaptive test identified the normal distribution with 

µ = 0 and σ = 1 as a symmetric skewed and medium tailed distribution. From the 

variance returned in 4.2, it is obvious that the parametric F-test outperforms the 
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adaptive test at all the level sample sizes considered. However, with exception of 

sample size (5,5,5), the two tests suggested a rejection to null hypothesis of no 

difference in level means. The ARE of the F-test over the adaptive test if the data 

under consideration is from a normal distribution is between 25% and 55%. 

It was observed that the ARE increased as sample sizes of the levels increased. 

4.2.2 Laplace Distribution 

The laplace distribution also known as double exponential distribution. This 

distribution is characterized by location θ (any real number) and scale λ (has to 

be greater than a 0) parameters. The probability density function of Laplace(θ,λ) 

is: 

 . 

The cumulative density function looks even more impressive, yet rather easy to 

integrate because of the absolute value in the formula: 

. 

and 

. 

Unlike the exponential, the laplace is defined −∞ < x < ∞. If θ = 0, then the 

probability density function for Laplace on x > 0 is equal to 1/2 of the probability 

of the exponential. The expected value of a Laplace distribution is 

E(x) = θ 

As in the case of other symmetrical distributions, such as the Normal and the 

logistic distributions, Laplace’s location is the same as its mean, median, and 

mode. The variance is: 
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V ar(x) = 2λ2. 

Using the Laplace distribution with rate = 1, 10,000 simulations were carried out. 

Simulation results are presented in Table 4.2; 

Table 4.3: Simulation Results of Adaptive Test and Parametric Test for Laplace 

Distribution 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 2.167 0.157 1.1912 SH 0.66953 0.53007 0.962598 

(10,10,10) 0.368 0.696 1.3730 SH 2.99766 0.06673 1.202722 

(15,15,15) 0.929 0.403 1.4426 SH 1.35735 0.2684 1.040336 

(20,20,20) 0.783 0.462 1.3142 SH 1.35488 0.26616 1.265793 

The Laplace distribution with rate=2 was identified by the adaptive test as a 

symmetric skewed and heavy tailed distribution. From Table 4.3, the variance 

returned suggest that the adaptive test performed better at all the level sample 

sizes considered than the F-test. However, the two tests failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the adaptive test over the F-test if the data under consideration is from a 

Laplace distribution is between 4% and 20%. It was observed that the ARE 

decreased as sample sizes of the levels increased. 

4.2.3 Truncated Logistic Distribution 

The Logistic distribution is characterized by location µ and scale = σ has 

distribution function, 

 

and density 

 

It is a long-tailed distribution with mean=µ and variance=π2/3σ2. 

Using the Truncated Logistic distribution, 10,000 simulations were carried out. 

Simulation results are presented in Table 4.2; 
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Table 4.4: Simulation Results of Adaptive Test and Parametric Test for Truncated 

Logistic Distribution 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 2.728 0.106 0.0690 SL 8.78345 0.00447 0.145689 

(10,10,10) 2.379 0.112 0.0765 SL 0.58683 0.56303 0.234015

4 

(15,15,15) 0.735 0.486 0.06937 SL 5.57869 0.0071 0.2100686 

(20,20,20) 2.403 0.0995 0.08595 SL 0.40197 0.67088 0.283032

8 

The truncated logistic distribution with µ = 0 and σ = 1 was identified by the 

adaptive test as a symmetric skewed and light tailed distribution. From Table 4.4, 

the variance returned suggest that the adaptive test underperformed at all the 

level sample sizes considered than the F-test. However, the two tests failed to 

reject the null hypothesis of no difference in level means at all sample sizes 

considered except at sample size 5, where the Adaptive test rejected H0 whereas 

the F-test resulted otherwise. The ARE of the adaptive test over the F-test if the 

data under consideration is from a truncated logistic distribution is between 30% 

and 48%. It was observed that the ARE decreased as sample sizes of the 

levels increased. 

4.2.4 Contaminated Normal Distribution 

Let Z be random samples drawn from normal distributions,  be a discrete 

random variable defined by; 

1 with prob. 1 0 
with prob  , 

and assume that Z and  are independent (Hogg et al., 2005). 

Let ), then by the independence of Z and , the cdf of Q 

is given by; 
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where σc is the standard deviation of contamination,  is the characteristics 

function,  is the percentage of contamination. Thus, the pdf of the contaminated 

distribution is given by; 

d 

 Q q Q . 

dq σc σc 

Simulation results are presented in Table 4.5; 

Table 4.5: Simulation Results of Adaptive Test and Parametric Test for 

Contaminated Normal Distribution 

Sample 

size 
Level  F-test   Adaptive Test  

(n1, n2, n3) % Value p-value σ Score Value p-value τ 

(5,5,5) 5% 1.002 0.396 9.672 SH 2.20517 0.15289 6.111384 

 10% 1.764 0.213 4.797 SH 4.96343 0.02687 3.038976 

 15% 0.579 0.575 6.145 SH 1.18599 0.33884 4.818696 

 20% 3.317 0.0713 11.40 SH 0.95542 0.41207 6.154036 

(10,10,10) 5% 2.246 0.125 7.171 SM 1.76329 0.19066 8.800966 

 10% 1.472 0.247 7.79 SM 2.22532 0.12747 8.875872 

 15% 1.281 0.294 7.279 SM 0.05517 0.94643 7.649184 

 20% 3.133 0.0597 6.277 SH 0.82296 0.44985 5.836568 

(15,15,15) 5% 0.044 0.957 8.097 SH 0.46592 0.63076 4.821166 

 10% 1.09 0.345 8.359 SH 1.19274 0.31345 5.927768 

 15% 0.266 0.768 7.116 SH 0.56405 0.57315 5.865964 

 20% 0.939 0.399 6.808 SH 1.96386 0.15299 5.401612 

(20,20,20) 5% 2.783 0.0703 7.374 SH 1.0307 0.36331 5.998714 



 

69 

 10% 2.053 0.138 5.791 SH 0.10909 0.89684 4.705272 

 15% 0.095 0.91 6.211 SH 0.68746 0.50697 4.953914 

 20% 0.809 0.45 5.694 SH 2.84496 0.06642 5.708576 

The Normal distribution at 5% contamination was identified by the adaptive test 

as a symmetric skewed and heavy tailed distribution. From Table 4.5, the 

variability in the model fit suggest that the adaptive test outperformed at all the 

sample sizes considered than the F-test. However, the two tests failed to reject 

the null hypothesis of no difference in level means at all sample sizes considered. 

The ARE of the Adaptive test over the F-test if the data under consideration is 

from a 5% contaminated normal distribution is between 20% and 40%. It was 

observed that the ARE decreased as sample sizes of the levels increased. 

At 10% contamination, sample size of 5 was identified as symmetric skewed and 

heavy tailed distribution whereas that for the other sample sizes were identified 

as symmetric skewed and heavy tailed distribution. From Table 4.5, the variance 

returned by the models suggest that the Adaptive Test performed better than the 

F-test. The ARE of the Adaptive test over the F-test is between 20% to 50%. 

At 15% contamination, sample size of 5 was identified as symmetric skewed and 

heavy tailed distribution whereas that for the other sample sizes were identified 

as symmetric skewed and heavy tailed distribution. From Table 4.5, the variance 

returned by the models suggest that the Adaptive Test performed better than the 

F-test at sample sizes 5, 10 and 15. The ARE of the Adaptive test over the F-test is 

between 17% to 25%. 

At 20% contamination, the distribution was identified as symmetric skewed and 

heavy tailed distribution. From Table 4.5, the variance returned by the models 

suggest that the Adaptive Test performed better than the F-test at sample sizes 
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5, 10 and 15. The ARE of the Adaptive test over the F-test is between 7% to 48%. 

However, at sample size 20, the F-test performed better than the Adaptive test 

with ARE of 2%. 

4.2.5 Mixture of Distributions 

We considered the situation where the data for the various levels are from 

different distributions. 10,000 simulations were performed where data for level 

one samples were simulated from weibull distribution (shape = 2 and scale = 1), 

data for level two samples were from truncated logistic distribution (location = 0 

and scale = 1) and data for level three samples were from laplace distribution 

(rate = 1). Table 4.6 presents the results from the simulated studies. 

Table 4.6: Simulation Results of Adaptive Test and Parametric Test for Mixture of 

Distributions 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 2.94 0.0914 0.9452 SH 6.27413 0.01364 0.4236017 

(10,10,10) 1.88 0.172 1.217 SH 2.22578 0.12742 0.6232764 

(15,15,15) 4.973 0.0115 0.7351 SH 5.26962 0.00908 0.6460359 

(20,20,20) 0.867 0.426 1.0393 SH 10.00631 0.00019 0.9048917 

The Adaptive test identified the data as a symmetric skewed and heavy tailed 

distribution. The test decision on rejection or otherwise of H0 at sample sizes 

(5,5,5) and (20,20,20) differs among the two tests at 5% level of significance. The 

Adaptive test identified significance difference in means whiles the F-test 

concluded otherwise. However, at sample sizes (10,10,10) and (15,15,15), both 

test yielded same decision results. The variances for the two tests suggest that the 

Adaptive test performs better than the F-test. The ARE of the Adaptive test over 

the F-test is between 40% and 64%. There seems to be a decline in efficiency of 

the Adaptive test over F-test as the sample sizes increase. 

4.3 Fitting Models to Least Squares Residuals 

This section presents simulated results from adapting and performing F-test on 

least squares residuals. 
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4.3.1 Normal distribution 

10,000 simulation results are presented in Table 4.7; 

Table 4.7: Simulation Results of Adaptive Test and Parametric Test of Least 

Squares Residuals for data from the Normal distribution 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0 1 3.499 SM 0.00797 0.99207 6.330272 

(10,10,10) 0 1 3.126 SM 0.01473 0.98531 4.772586 

(15,15,15) 0 1 3.357 SM 0.04802 0.95317 4.772586 

(20,20,20) 0 1 3.138 SM 0.04556 0.9555 4.115804 

The adaptive test identified the least squares residuals of the data from the 

normal distribution with µ = 0 and σ = 1 as a symmetric skewed and medium 

tailed 

distribution. From Table 4.7, the parametric F-test outperforms the adaptive test 

at all the level sample sizes considered by returning small variances compared to 

those for the adaptive test. However, the decision from the two tests are similar 

for all sample sizes considered. The ARE of the F-test over the adaptive test if the 

data under consideration is from a normal distribution is between 23% and 55%. 

It was observed that the ARE decreased as sample sizes of the levels increased. 

4.3.2 Laplace Distribution 

Simulation results are presented in Table 4.8. The Laplace distribution with 

rate=1 was identified by the adaptive test as a symmetric skewed and heavy tailed 

distribution. From Table 4.8, the variance returned suggest that the adaptive test 

performed better at all the level sample sizes considered than the F-test. 

However, the two models failed to reject the null hypothesis of no difference in 

level means at all sample sizes considered. The ARE of the adaptive test over the 

F-test if the Table 4.8: Simulation Results of Adaptive Test and Parametric Test 

for Laplace Distribution 
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Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0 1 0.5199 SH 0.17005 0.845620.4820709 

(10,10,10) 0 1 0.5405 SH 0.40064 0.673810.4326355 

(15,15,15) 0 1 0.5903 SH 0.26173 0.77096 0.387311 

(20,20,20) 0 1 0.6081 SH 2.05907 0.136960.4558181 

data under consideration is from a Laplace distribution is between 8% and 34%. 

It was observed that the ARE increased as sample sizes of the levels increased. 

4.3.3 Truncated Logistic Distribution 

Simulation results are presented in Table 4.9. 

Table 4.9: Simulation Results of Adaptive Test and Parametric Test for Truncated 

Logistic Distribution 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0 1 0.2445 SM 0.10068 0.90497 0.3207393 

(10,10,10) 0 1 0.3298 SL 0.10387 0.9017 0.4851264 

(15,15,15) 0 1 0.2346 SL 0.05094 0.9504 0.5292146 

(20,20,20) 0 1 0.3163 SL 0.06224 0.93973 0.5813575 

The Truncated Logistic distribution with µ = 0 and σ = 1 was identified by the 

adaptive test as a symmetric skewed and light tailed distribution for sample sizes 

10, 15 and 20 and as a symmetric skewed and medium tailed distribution for 

sample size 5. From Table 4.9, the variance returned suggest that the adaptive 

test underperformed at all the level sample sizes considered than the F-test. The 

ARE of the F-test over the Adaptive test if the data under consideration is from a 

truncated logistic distribution is between 24% and 57%. It was observed that the 

ARE increased as sample sizes of the levels increased. 
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4.3.4 Contaminated Normal Distribution 

Simulation results are presented in Table 4.10. The Normal distribution at 5% 

contamination was identified by the adaptive test as a symmetric skewed and 

Table 4.10: Simulation Results of Adaptive Test and Parametric Test for 

Contaminated Normal Distribution medium tailed distribution for sample sizes 

10, 15 and 20. However, at sample size 5, it was identified as symmetric skewed 

and heavy tailed distribution. From Table 4.10, the variance returned suggest that 

the adaptive test outperformed the F-test at sample size 5. However, the two 

models failed to reject the null hypothesis of no difference in level means at all 

sample sizes considered. The ARE of the adaptive test over the F-test at sample 

size 5 is 18%. But at sample sizes 10, 15 and 20, the F-test performed better than 

Sample 

size 
Level  F-

test 
  Adaptive Test  

(n1, n2, n3) % Value p-

value 
σ Score Value p-value τ 

(5,5,5) 5% 0 1 4.161 SH 0.09876 0.90669 3.420167 

 10% 0 1 2.4866 SH 0.22523 0.80163 2.078935 

 15% 0 1 2.65198 SH 0.55388 0.58873 2.604724 

 20% 0 1 2.5589 SH 0.2209 0.80499 1.993167 

(10,10,10) 5% 0 1 2.48837 SM 0.01711 0.98305 3.712071 

 10% 0 1 2.7761 SM 0.04056 0.96031 4.040014 

 15% 0 1 2.6079 SM 0.23305 0.79369 2.615836 

 20% 0 1 2.9339 SM 0.02253 0.97774 2.97184 

(15,15,15) 5% 0 1 2.83143 SM 0.13192 0.87677 3.116345 

 10% 0 1 2.89603 SM 0.02491 0.97541 3.129687 

 15% 0 1 2.2261 SM 0.13855 0.87102 2.32268 

 20% 0 1 3.12250 SM 0.04162 0.95927 3.49266 

(20,20,20) 5% 0 1 2.92147 SM 0.16957 0.84445 3.113383 

 10% 0 1 2.92147 SM 0.01925 0.98094 3.298762 

 15% 0 1 2.73203 SM 0.27948 0.75721 2.861447 

 20% 0 1 3.04729 SM 0.02595 0.9744 3.176907 
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the Adaptive test, with an ARE of between 6% and 33%. It is worthy of note that 

the ARE decreases as 

the sample sizes increase. 

At 10% contamination, the distribution was identified by the adaptive test as a 

symmetric skewed and medium tailed distribution at sample sizes 10, 15 and 20. 

However, at sample size 5, it was identified as symmetric skewed and heavy tailed 

distribution. From Table 4.10, the variance returned suggest that the adaptive 

test outperformed the F-test at sample size 5. However, the two models failed to 

reject the null hypothesis of no difference in level means at all sample sizes 

considered. The ARE of the adaptive test over the F-test at sample size 5 is 16%. 

But at sample sizes 10, 15 and 20, the F-test performed better than the Adaptive 

test, with an ARE of between 6% and 33%. The ARE decreases as the sample 

sizes increase. 

At 15% contamination, the distribution was identified as a symmetric skewed and 

medium tailed distribution at sample sizes 10, 15 and 20. However, at sample size 

5, it was identified as symmetric skewed and heavy tailed distribution. From 

Table 4.10, the variance returned suggest that the adaptive test outperformed the 

F-test at sample size 5. However, the two models failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the adaptive test over the F-test at sample size 5 is 8%. Meanwhile, at sample 

sizes 10, 15 and 20, the F-test performed better than the Adaptive test, with an 

ARE of between 4% and 8%. The ARE decreases as the sample sizes 

increase. 

At 20% contamination, the distribution was identified as a symmetric skewed and 

medium tailed distribution at sample sizes 10, 15 and 20. However, at sample size 

5, it was identified as symmetric skewed and heavy tailed distribution. From 

Table 4.10, the variance returned suggest that the adaptive test outperformed the 
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F-test at sample size 5. However, the two models failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the adaptive test over the F-test at sample size 5 is 22%. Meanwhile, at sample 

sizes 10, 15 and 20, the F-test performed better than the Adaptive test, with an 

ARE of between 1% and 11%. 

4.3.5 Mixture of Distributions 

10,000 simulations were performed where data for level one samples were 

simulated from the Weibull distribution (shape = 2 and scale = 1), data for level 

two samples were from the Truncated Logistic distribution (location = 0 and scale 

= 1) and data for level three samples were from the Laplace distribution (rate = 

1). Table 4.11 presents the results from the simulated studies. 

Table 4.11: Simulation Results of Adaptive Test and Parametric Test for Mixture 

of Distributions 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0 1 0.79347 SH 2.0458 0.17199 0.343997

2 

(10,10,10) 0 1 1.2284 SH 0.05751 0.94423 0.361993

5 

(15,15,15) 0 1 0.8486 SH 0.22933 0.79606 0.583473

7 

(20,20,20) 0 1 1.0733 SH 1.19387 0.31051 0.427850

1 

The adaptive test identified the data as a symmetric skewed and heavy tailed 

distribution. The variances for the two tests from Table 4.11 suggest that the 

Adaptive test performs better than the F-test. The ARE of the adaptive test over 

the F-test is between 32% and 70%. 

4.4 Fitting Models to Wilcoxon Winsorised Scores 
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Residuals 

This section presents simulated results from adapting and performing F-test on 

Wilcoxon Winsorised Scores residuals. 

4.4.1 Normal distribution 

10,000 simulation results are presented in Table 4.12. The adaptive test identified 

Table 4.12: Simulation Results of Adaptive Test and Parametric Test of the 

Wilcoxon Winsorised Scores Residuals for data from the Normal distribution the 

Wilcoxon Winsorised scores residuals of the data from the Normal distribution 

with µ = 0 and σ = 2 as a symmetric skewed and medium tailed distribution for 

sample sizes 10, 15, and 20. However, at sample size 5, it was identified as a 

symmetric skewed and heavy tailed distribution. From Table 4.12, the parametric 

F-test performs quiet better than the Adaptive test at sample sizes 10, 15 and 20, 

by returning small variances. The ARE of the F-test over the Adaptive test if the 

data under consideration is from a normal distribution is between 17% and 

36%. However, at sample size 5, the Adaptive test performed better than the F-

test, with an ARE of 8%. 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0.022 0.978 2.15267 SH 0.05218 0.94938 2.004418 

(10,10,10) 0.002 0.998 1.47513 SM  0 1 2.007322 

(15,15,15) 0.03 0.971 1.7506 SM  0 1 2.112924 

(20,20,20) 0.196 0.822 1.8105 SM  0 1 2.279802 
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4.4.2 Laplace Distribution 

Simulation results are presented in Table 4.13. 

Table 4.13: Simulation Results of Adaptive Test and Parametric Test of the 

Wilcoxon Winsorised Scores Residuals for Laplace Distribution 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0.315 0.736 0.89549 SH 0 1 0.7514154 

(10,10,10) 0.167 0.847 0.7075 SH 0 1 0.3416036 

(15,15,15) 0.84 0.439 0.99207 SH 0 1 0.6948067 

(20,20,20) 0.279 0.758 0.73287 SH 0 1 0.5607453 

The Laplace distribution with rate = 1 was identified by the adaptive test as a 

symmetric skewed and heavy tailed distribution for all the sample sizes 

considered. From Table 4.13, the variance returned suggest that the Adaptive test 

performed better at all the level sample sizes considered than the F-test. 

However, the two models failed to reject the null hypothesis of no difference in 

level means at all sample sizes considered. The ARE of the Adaptive test over the 

F-test if the data under consideration is from a Laplace distribution is between 

16% and 52%. 

4.4.3 Truncated Logistic Distribution 

Simulation results are presented in Table 4.14. 

The Truncated Logistic distribution with µ = 0 and σ = 1 was identified by the 

adaptive test as a symmetric skewed and light tailed distribution for sample Table 

4.14: Simulation Results of Adaptive Test and Parametric Test of the Wilcoxon 

Winsorised Scores Residuals for Truncated Logistic Distribution 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0.325 0.729 0.8666 SH  0 1 0.5888089 

(10,10,10) 0.129 0.88 0.7385 SL 0.49609 0.61435 0.648069

7 

(15,15,15) 0.238 0.789 0.82885 SM 0.36055 0.69943 0.951580

3 
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(20,20,20) 0.128 0.88 0.80436 SM 0.30459 0.73862 0.818545

5 

sizes 10, as a symmetric skewed and medium tailed distribution for sample size 

15 and 20 and as a symmetric skewed and heavy tailed distribution for sample 

size 5. From Table 4.14, the variance returned suggest that the Adaptive test 

underperformed than the F-test at level sample sizes 15 and 20. The ARE of the 

F-test over the Adaptive test is between 2% and 13%. However, at sample sizes 

5 and 10, the Adaptive test performed better than the F-test, with an ARE of 32% 

and 12% respectively. 

4.4.4 Contaminated Normal Distribution 

Simulation results are presented in Table 4.15. The Normal distribution at 5% 

Table 4.15: Simulation Results of Adaptive Test and Parametric Test of the 

Wilcoxon Winsorised Scores Residuals for Contaminated Normal Distribution 

Sample 

size 
Level  F-

test 
  Adaptive Test 

(n1, n2, n3) % Value p-value σ Score Value p-

value 
τ 

(5,5,5) 5% 0.49 0.624 2.2280 SH 0 1 2.077739 

 10% 0.179 0.839 2.40583 SH 0 1 2.22602 

 15% 0.082 0.921 2.82913 SH 0 1 2.208968 

 20% 0.61 0.559 2.60576 SH 0 1 2.92846 

(10,10,10) 5% 0.052 0.949 2.91719 SM 0 1 2.93733 

 10% 0.028 0.972 2.3394 SM 0 1 2.363568 

 15% 0.016 0.984 3.01380 SM 0 1 3.378316 

 20% 0.001 0.999 2.11447 SM 0 1 2.34367 

(15,15,15) 5% 0.063 0.939 3.5523 SM 0 1 4.03708 

 10% 0.027 0.973 3.00366 SM 0 1 3.254252 

 15% 0.082 0.921 2.315599 SM 0 1 2.505954 

 20% 0.003 0.89 3.202187 SM 0 1 3.693798 

(20,20,20) 5% 0.023 0.977 2.7344 SM 0 1 2.836659 

 10% 0.003 0.997 2.78998 SM 0 1 2.844048 
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 15% 0.013 0.987 2.60576 SM 0 1 2.909152 

 20% 0.117 0.89 2.45438 SM 0 1 2.539937 

contamination was identified by the adaptive test as a symmetric skewed and 

medium tailed distribution for sample sizes 10, 15 and 20. However, at sample 

size 5, it was identified as symmetric skewed and heavy tailed distribution. From 

Table 4.15, the variance returned suggest that the adaptive test outperformed the 

F-test at sample size 5 . However, the two models failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the Adaptive test over the F-test at sample size 5 is about 7%. But at sample 

sizes 10, 15 and 20, the F-test performed better than the Adaptive test, with an 

ARE of between 1% and 12%. 

At 10% contamination, the distribution was identified by the adaptive test as a 

symmetric skewed and medium tailed distribution at sample sizes 10, 15 and 20. 

However, at sample size 5, it was identified as symmetric skewed and heavy tailed 

distribution. From Table 4.15, the variance returned suggest that the adaptive 

test outperformed the F-test at sample size 5. Again, the two models failed to 

reject the null hypothesis of no difference in level means at all sample sizes 

considered. The ARE of the Adaptive test over the F-test at sample size 5 is 8%. 

But at sample sizes 10, 15 and 20, the F-test performed better than the Adaptive 

test, with an ARE of between 1% and 8%. 

At 15% contamination, the distribution was identified as a symmetric skewed and 

medium tailed distribution at sample sizes 10, 15 and 20. However, at sample size 

5, it was identified as symmetric skewed and heavy tailed distribution. From 

Table 4.15, the variance returned suggest that the adaptive test outperformed the 

F-test at sample size 5 . However, the two models failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the Adaptive test over the F-test at sample size 5 is 22%. Meanwhile, at sample 
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sizes 10, 15 and 20, the F-test performed better than the Adaptive test, with an 

ARE of between 8% and 11%. 

At 20% contamination, the distribution was identified as a symmetric skewed and 

medium tailed distribution at sample sizes 10, 15 and 20. However, at sample size 

5, it was identified as symmetric skewed and heavy tailed distribution. From 

Table 4.15, the variance returned suggest that the adaptive test performed better 

than the F-test at sample size 5 . However, the two models failed to reject the null 

hypothesis of no difference in level means at all sample sizes considered. The ARE 

of the Adaptive test over the F-test at sample size 5 is 13%. Meanwhile, at sample 

sizes 10, 15 and 20, the F-test performed better than the Adaptive test, with an 

ARE of between 3% and 13%. 

4.4.5 Mixture of Distributions 

10,000 simulations were performed where data for level one samples were 

simulated from weibull distribution (shape = 2 and scale = 1), data for level two 

samples were from truncated logistic distribution (location = 0 and scale = 1) and 

data for level three samples were from Laplace distribution (rate = 1). Table 4.16 

presents the results from the simulated studies. 

Table 4.16: Simulation Results of Adaptive Test and Parametric Test of the 

Wilcoxon Winsorised Scores Residuals for Mixture of Distributions 

Sample 

size 
 F-test   Adaptive Test 

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 0.738 0.498 1.104355 LH 4.50916 0.03463 0.724758

8 

(10,10,10) 0.092 0.912 0.481363 LM 0.01351 0.98658 0.360249

7 

(15,15,15) 0.334 0.718 0.87647 SH  0 1 0.5245058 

(20,20,20) 0.04 0.961 0.73702 SH 3e-05 0.9997 0.4968895 

From Table 4.16, the adaptive test identified the data at sample size 5 as a left 

skewed and heavy tailed distribution, at sample size 10 as left skewed and 

medium tailed distribution and at sample sizes 15 and 20 as symmetric skewed 

and heavy tailed distributions. The variances for the two tests from Table 4.16 
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suggest that the Adaptive test performs better than the F-test at all sample sizes. 

The ARE of the Adaptive test over the F-test is between 33% and 40%. 

4.5 Application 

4.5.1 Apple Orchard Grafting Experiment 

Pearce (1992) conducted an experiment to investigate five types of root-stock in 

apple orchard grafting. The following data represent the extension growth (cm) 

after four years. 

X1 = extension growth for type I 

X2 = extension growth for type II 

X3 = extension growth for type III X4 = 

extension growth for type IV 

X5 = extension growth for type V 

Table 4.17: Output from the Apple Orchard Grafting Experiment 

Type   Extension growth (cm)   

X1 2569 2928 2865 3844 3027 2336 3211 3037 

X2 2074 2885 3378 3906 2782 3018 3383 3447 

X3 2505 2315 2667 2390 3021 3085 3308 3231 

X4 2838 2351 3001 2439 2199 3318 3601 3291 

X5 1532 2252 3083 2330 2079 3366 2416 3100 

The analysis performed is presented in Table (4.18); 

Table 4.18: Results of Adaptive Test and Parametric Test for Apple Orchard 

Grafting Experiment 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(8,8,8) 1.49 0.226 510.2362 SM 1.08381 0.37948 618.4604 

From Table 4.18, the Adaptive test identified the data as symmetric skewed and 

medium tailed distribution. The F-test reported the least variance depicting it as 

the most efficient for the data. The ARE of F-test over the Adaptive test is 17.5%. 

However, both test conclusions favour the null hypothesis, H0. This results agree 
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with the findings from the simulation studies, where F-test performed better than 

the Adaptive Test for data from symmetric skewed and moderate tailed 

distribution. 

4.5.2 Automatic Valve Shutoff Mechanism Experiment 

This example was extracted from Montgomery (2001). The response time in 

milliseconds was determined for three different types of circuits that could be 

used in an automatic valve mechanism. The results are shown in the Table 4.19 

Table 4.19: Output from the Automatic Valve Shutoff Mechanism Experiment 

Circuit Type Response Time 

1 9 12 10 8 15 

2 20 21 23 17 30 

3 6 5 8 16 7 

The analysis performed is presented in Table (4.19); 

Table 4.20: Results of Adaptive Test and Parametric Test for Automatic Valve 

Shutoff Mechanism Experiment 

Sample 

size 
 F-test   Adaptive Test  

(n1, n2, n3) Value p-value σ Score Value p-value τ 

(5,5,5) 16.08 0.000402 4.11096 RL 16.08075 4e-04 3.325721 

From Table 4.19, the Adaptive test identified the data as right skewed and light 

tailed distribution. Although, both test at 1% and 5% level of significance 

concluded against the null hypothesis, H0, the Adaptive test reported the least 

variance depicting it as the most efficient for the data. The ARE of Adaptive test 

over the F-test is 19.1%. This results agree with the findings from the simulation 

studies, where Adaptive test performed better than the F-Test for data from non-

symmetric skewed and varying tailed distribution. 

Chapter 5 

Summary and Conclusion 
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5.1 Introduction 

This chapter presents the summary of the findings, discussions and conclusion of 

the study. 

5.2 Summary 

The asymptotic properties of statistical estimators greatly rely on the central limit 

theorem, however, in practice sample sizes are not often large. The F-test employs 

the assumption of normality of the data, and could this test be the optimal test to 

conduct in all situations? In this thesis, an adaptive testing procedure is 

developed for hypothesis testing of one-way ANOVA models and the efficiency 

compared to the traditional F-test. The adaptive procedure proposed used the 

linear rank test, and thus, non-parametric. The procedure uses the data to 

ascertain which statistical test is most efficient. It is conducted in two phases. In 

the first phase, a selection statistic is computed from the estimate of skewness 

and tail-weight. In the second phase, the selector statistic is used to determine the 

appropriate score function for the analysis. This procedure has been proven to 

have several advantages. Notably, it can increase the power of the test if the error 

distribution is skewed and makes narrow confidence internals, are robust for 

both validity and efficiency and automatically downweight outliers, which has the 

effect of making the results less sensitive to observations that do not agree with 

the model (O’Gorman, 2004). 

The procedure for the adaptive test is as follows; 

• Let X11,X12,...,X1n1,X21,X22,...,X2n2,···Xn1,Xn2,...,Xnnk be the ordered combined 

random samples from continuous distribution function f(t) with some 

amount of variations denoted by δ among the samples, that is, f(t − δ). The 

hypothesis that there is no difference in the sample means, that is, H0 : δ = 0 

is tested against H1 : δ 6= 0 
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• Data is examined and classified by considering skewness and tail weight 

from a class of continuous distribution. The measure of skewness (Q1) 

according to Hogg et al. (1975) is define as; 

50% 
 , (5.1) 

5% 

 
where U5%, M50% and L5% are the averages for the upper 5%, middle 50% 

and the lower 5% of the  the ordered combined samples respectively. 

The measure of tailweight, Q2, according to Hogg et al. (1975) defined as; 

U5% − L5% 

 Q2 =, (5.2) 

U50% − L50% 

 
where U50%, and L50% are the averages of the upper 50% and lower 50% of 

the  observations of the combined samples. 

These two statistics are together called selector statistic, S = (Q1,Q2). 

• Then specify cutoff points for the measures of skewness and tailweight. The 

benchmarks proposed by Al-shomrani (2003) is used. The cutoff values 

depend on the sample size n, but as n → ∞, the measures converges to that 

proposed by Hogg et al. (1975). 

For , the 

lower cutoff (  

upper cutoff (  

and for , when the sample size is less than 25 

lower cutoff(  

upper cutoff(  

Q 1 = 
U 5 % − M 

M 50 % − L 
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but when the sample size is at least 25, then the lower and upper cutoff are 

respectively defined as; 

lower cutoff(  

and 

upper cutoff( . 

• The distributional categorization is evaluated as displayed in Table 5.1 

Table 5.1: The Nine distributional categorization of data 

Skewness Tailweight Distribution 

Q1 ≤ clq1 Q2 ≤ clq2 Left skewed light tailed 

Q1 ≤ clq1 Q2 > clq2 and Q2 ≤ cuq2 Left skewed medium tailed 

Q1 ≤ clq1 Q2 > cuq2 Left skewed heavy tailed 

Q1 ≤ clq2 Q2 ≤ clq2 Symmetric skewed light tailed 

Q1 ≤ clq2 Q2 > clq2 and Q2 ≤ cuq2 Symmetric skewed medium 

tailed 

Q1 ≤ clq2 Q2 > cuq2 Symmetric skewed heavy tailed 

Q1 ≤ clq2 Q2 ≤ clq2 Right skewed light tailed 

Q1 ≤ clq2 Q2 > clq2 and Q2 ≤ cuq2 Right skewed medium tailed 

Q1 ≤ clq2 Q2 > cuq2 Right skewed heavy tailed 

• The cutoff points are used in the selection of a rank score associated with 

the unknown distribution.The rank test used is given by; 

  (5.3) 

where ) are scores. 

• Nine winsorised scores classified by Hettmansperger (1984) under four 

generic cases are used.They include; 

1. 

otherwise. 

2. 
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otherwise. 

3. 

otherwise. 

4. 

otherwise. 

where s1, s2, s3, s4 and s5 are parameters and . 

• The associated score functions and parameters are presented in Table 5.2 

Table 5.2: Benchmarks for Winsorised Scores 
Skewness Tail weight Score function 
Left Light ϕ1 = ϕIII with parameters (s1 = 0.1,s2 = −1 and s3 = 2.0) 
Left Medium ϕ2 = ϕIII with parameters (s1 = 0.3,s2 = −1 and s3 = 2.0) 
Left Heavy ϕ3 = ϕIII with parameters (s1 = 0.5,s2 = −1 and s3 = 2.0) 
Symmetric Light ϕ4 = ϕII with parameters (s1 = 0.25,s2 = 0.75, s3 = −1, s4 = 

1.0 and s5 = 0.0) 
Symmetric Medium Wilcoxon scores  
Symmetric Heavy ϕ6 = ϕIV with parameters (s1 = 0.25,s2 = 0.75, s3 = −1 and s4 

= 1.0) 
Right Light ϕ7 = ϕII with parameters (s1 = 0.9,s2 = −2 and s3 = 1.0 s4 = 1, 

and s5 = 0) 
Right Medium ϕ8 = ϕI with parameters (s1 = 0.7,s2 = −2 and s3 = 1.0) 
Right Heavy ϕ9 = ϕI with parameters (s1 = 0.5,s2 = −2 and s3 = 1.0) 

The thesis employed the above procedure in a simulation study. Simulation under 

Pure Hogg (run under H0), fitting models to residuals from an Ordinary Least 

Square (OLS), fitting models to residuals from Wilcoxon Scores, and application 

on real data were conducted to ascertain the set objectives. The R-package, Rfit 

by (Kloke and McKean, 2012) was used for the study. Some other functions were 
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written and implemented in R for the study. Simulation results for normal, double 

exponential, contaminated normal, the truncated logistic and a mixture of 

distributions for a balanced ANOVA models are presented. 10,000 simulations 

were carried out for 5, 10, 15, and 20 observations each, assigned to three (3) 

levels with intralevel correlation coefficient ρ = 0. These distributions were used 

owing to their properties and the adaptive scheme proposed. For example, the 

normal distribution is symmetric and has moderate tails and the double 

exponential distribution may be symmetric but heavy tailed. 

The findings from the simulation studies revealed that the parametric F-test for 

oneway ANOVA model performed better than the non-parametric adaptive test 

proposed for symmetric skewed and moderate tailed distributions and then for 

symmetric skewed and light tailed distributions with ARE between 2% and 55%. 

The normal distribution and the truncated logistic distribution were identified to 

these distributional characterization. However, the adaptive test outperformed 

the F-test in symmetric and non-symmetric skewed with varying tail weights 

distribution with ARE between 5% and 70%. Simulations from the Laplace 

distribution, the contaminated normal distribution and mixture of distribution 

confirmed the superiority of the Adaptive test over the F-test. At small sample 

sizes, the Adaptive test exhibited its robustness in cases where there were 

outliers in the data, however, the F-test displayed some weakness in 

performance. This results is in agreement with Hill et al. (1988) when they used 

lung cancer data to demonstrate the dominance of their adaptive procedures over 

the parametric and rank based procedures when the size of each sample was at 

least 20. Also, O’ Gorman (1997) in his evaluation of the power and significance 

level of the adaptive procedure, conducted Monte Carlo simulations to compare 

with procedures such as the F-test, Kruskal-Wallis test and the normal scores. He 

concluded that all the tests maintained their level of significance for dataset with 

at least 24 observations, but the adaptive tests proved to be more powerful for 
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distributions that were skewed when the total number of observations were at 

least 24. This study also revealed that, even for symmetric skewed and moderate 

tailed distribution and symmetric skewed and light tailed distribution, at very 

small sample sizes, the adaptive test performed appreciable well compared to the 

performance of the F-test in symmetric and non-symmetric skewed with varying 

tail weights distributions. Miao and Gastwirth (2009) reported results from 

simulation studies proved that their adaptive procedure maintained its nominal 

level of significance for all continuous distributions even for sample sizes as small 

as 10 and has almost the same power as the best signed rank test for a broad class 

of distribution functions. There are several advantages the researcher enjoys 

from using the Adaptive test (Hogg et al. (1975); Bu¨ning (1996)). The 

distributional characterization of the data at hand is adequately specified and the 

assurance of high breakdown point of the Winsorised mean is confirmed. 

5.3 Conclusion 

The findings of the study reveal the several advantages of the use of the adaptive 

test. The distributional characterization of the data at hand is known to the 

researcher. This information is very crucial in data analysis. The robustness of the 

adaptive test implies higher reliability of results from use. Hogg et al. (1975) 

through monte carlo simulation confirmed that the adaptive test performs 

powerfully over a broad class of distributions and is to be preferred over some 

popular non-adaptive tests including parametric ones. Although, the F-test 

displayed superiority in efficiency in symmetric skewed, medium and light tailed 

distributions, the adaptive test was more efficient in more broader class of 

continuous distribution. The performance of these test at small sample sizes was 

of much importance in this thesis because most sensitive areas of the application 

of oneway ANOVA models often has very low sample size usage. The adaptive test 

was more efficient at very small sample sizes compared to the F-test. It is 

important to also note that the F-test also performed appreciably well as the 
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sample sizes increased. Based on the findings of this study, the adaptive test 

should be incorporated in statistical analysis of oneway ANOVA models. It should 

be performed alongside the parametric F-test and comparative efficiency will 

inform the sort of results presented for an analysis.  
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Appendix A 

ASYMPTOTIC RESULTS 

A.1 Simple Linear Rank Statistics 

Consider the sequence of random variables Y1,Y2,...,Yn be iid with common density 

function f(y) which follows the assumption that f(t) is absolutely con- 

tinuous and has finite information, i.e 0 . Let 

c1,c2,...,cn denote a sequence of centred (c = 0), regression coefficients and assume 

that;n−1CT C → P > 0 as n → ∞ and limn→∞ sup1≤i<n = 0. Thus 

 0 (A.1.1) 

and 

 0 (A.1.2) 

for some constant . 

Assuming the score function ϕ(u) is defined on the interval (0,1) satisfying; 

 )being non decreasing square integrable and bounded function 

(A.1.3) 

. 

Then the linear rank statistics is defined by; 

 )) (A.1.4) 

where the scores are generated as  

A.1.1 Asymptotic Distribution Theory 

Following the assumptions of section A.1 then the mean and variance of the linear 

rank statistics S are given by E(S) = 0 and 
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 respectively. The approximation of the variance is due to the fact that the 

quantity in the braces is the Riemann sum of  

Now following (A.1.4), S can also be written as; 

  (A.1.5) 

where Fn is the empirical distribution of Y1,Y2,...,Yn. Hence the approximation of S 

denoted T is given by; 

n 

 T = Xciϕ(F(Yi)) (A.1.6) 
i=1 

with the mean and variance of T following A.1.3 given as E(T) = 0 and V ar(T) = 

 respectively. 

Thus based on the central limit theorem and the law of large numbers  is 

asymptotically distributed as  

Since the means of S and T are the same, then it follows that S has the same 

asymptotic distribution as T provided the second moment of their difference is 

zero. 

Proof A.1.1 

 

This follows a derivation from pages 422 to 425 of (Hettmansperger and McKean, 

2011). 

Theorem A.1.1 From the above stated assumptions, , and 

. 

This establishes the asymptotic distribution of the simple linear rank statistics.  
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Appendix B 

B.1 R-codes 

B.1.1 Selector Statistics 

selstat = function( xs){ n = 

length(asp) 

This calculates the benchmarks / cut−off clq1 = 0.36 + 

(0.68/n) cuq1 = 2.73 − (3.72/n) if (n < 25){ clq2 = 

2.17 − (3.01/n) cuq2 = 2.63 − (3.94/n) 

} else { clq2 = 2.24 − (4.68/n) 

cuq2 = 2.95 − (9.37/n) 

} cus = c( clq1 , cuq1 , clq2 , cuq2) 

Datapoints are ordered . 

iord = order(asp) xs = 

asp [ iord ] 

proposed by Ali (2003) 

This calculated the attributes in the formular 

for the measure of skewness and tailweight a=xs 

[(0.95∗n ):( n+1)] b=xs [(0.25∗n):(0.75∗n )] c=xs 

[1:(0.05∗n )] d=xs [(0.5∗n ):( n+1)] e=xs [1:(0.5∗n )] 

um1 = mean(a) lm1 = mean(c) mm1 = 

mean(b) um2 = mean(d) lm2 = mean(e) 

ulmeans = c(um1, lm1 ,mm1,um2, lm2) 
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The two selector s t a t i s t i c s are calculated q1 = (um1 − 

mm1)/(mm1 − lm1) q2 = (um1 − lm1)/(um2 − lm2) qs 

= c(q1 , q2) 

Statement for selecting distributional characteristics associated with (q1 

and q2) if (q1 <= clq1 ){ if (q2 <= clq2 ){ score = ’LL ’} if (( q2 > clq2 ) && 

(q2 <= cuq2 )){ score = ’LM’} if (q2 > cuq2){ score = ’LH’} 

} else if (q1 <= clq2 ){ if (q2 <= clq2 ){ score = ’SL ’} if (( q2 > 

clq2 ) && (q2 <= cuq2 )){ score =’SM’} if (q2 > cuq2){ score 

= ’SH’} 

} else { if (q2 <= clq2 ){ score = ’RL’} if (( q2 > clq2 ) && (q2 <= 

cuq2 )){ score = ’RM’} if (q2 > cuq2){ score = ’RH’} 

} 

score = score list ( score=score , qs = qs , cus=cus , ulmeans=ulmeans) 

} 

B.1.2 Score Functions 

afri4 . phi = function (u, param){ s1=param [1] 

s2=param [2] s3=param [3] k1=s2−s3 k2=s1−1 

i f e l s e (u < s1 , s2 , s3+(k1/k2)∗(u−1)) 

} 

afri4 . Dphi = function (u, param){ s1=param 

[1] s2=param [2] s3=param [3] k1=s2−s3 

k2=s1−1 i f e l s e (u < s2 ,0 , k1/k2) 

} afriscores4 <−new(” scores ” , phi=afri4 . phi , Dphi=afri4 . Dphi , param=c 

(0.3 , −1 ,2)) 
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afri3 . phi = function (u, param){ s1=param [1] 

s2=param [2] s3=param [3] k1=s2−s3 k2=s1−1 

i f e l s e (u < s1 , s2 , s3+(k1/k2)∗(u−1)) 

} 

afri3 . Dphi = function (u, param){ s1=param 

[1] s2=param [2] s3=param [3] k1=s2−s3 

k2=s1−1 i f e l s e (u < s2 ,0 , k1/k2) 

} afriscores3 <−new(” scores ” , phi=afri3 . phi , Dphi=afri3 . Dphi , param=c 

(0.1 , −1 ,2)) 

afri1 . phi = function (u, param){ s1=param [1] 

s2=param [2] s3=param [3] k=s3−s2 i f e l s e (u 

> s1 , s3 , s3+(k/s1 )∗(u−s1 )) 

} 

afri1 . Dphi = function (u, param){ s1=param 

[1] s2=param [2] s3=param [3] k=s3−s2 i 

f e l s e (u > s1 ,0 ,k/s1 ) 

} afriscores1 <−new(” scores ” , phi=afri1 . phi , Dphi=afri1 . Dphi , param=c 

(0.7 , −2 ,1)) 

afri2 . phi <− function (u, param) 

{ 

s1 = param [1] s2 = param [2] s3 = param [3] s4 = param [4] i f e l s e (u < s1 , −s3/s1 

∗ (u + s1 ) , i f e l s e (u > s2 , −s4 /(s2−1) 

 ∗ (u − 1) + s4 , 0)) 

} 

afri2 . Dphi <− function (u, param) 

{ 
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s1 = param [1] s2 = param [2] s3 = param [3] s4 = param [4] i f e l s e (u < 

s1 , − s3/s1 , i f e l s e (u > s2 , −s4 /(s2 −1), 0)) 

} afriscores2=new(” scores ” , phi=afri2 . phi , Dphi=afri2 . Dphi , param=c 

(0.9 , −2 ,1 ,0)) 


