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Abstract 

The behavior of dynamical system has become an interesting field of endeavor. 

Periodicity, fixed points and importantly chaos of systems have evolved as an integral 

part of mathematics and especially in dynamical system. We tend to consider 

asymptotic behavior of systems especially in the area of chaos. No universally 

accepted definition exist for chaos but we consider the various routes to chaos 

including transitivity, expansivity, topological entropy, Lyapunov exponent, dense 

orbits, period doubling , period three point and sensitive dependence to initial 

conditions. A combination of each of these guarantees a type of chaos. We study the 

various distinct routes to chaos and how various kinds of chaos are interrelated. 

Properties of an unknown map can be associated with that of the known via 

topological conjugacy, hence properties of unknown maps can always be studied in 

terms of the unknown. The tent map and logistic maps are two known chaotic maps. 

We explore how numerical values are used to determine chaos especially in terms of 

Lyapunov exponents with respect to known maps like the tent map and logistic maps. 

’Chaos is when the present determines the future but the approximate 

present does not approximately determine the future.‘Edward Lorenz’. 
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Chapter 1 

Introduction 

This chapter offers a background of the study, which includes a history of chaos 

theory, the main contributors to chaos over the years and the various phases during 

which these contributions were made. Also included is the objective of study as well 

as the general structure of the entire the thesis. 

1.1 Background Of The Study 

Mathematics generally is considered under two main areas namely Pure mathematics 

and Applied mathematics. To the mathematician it’s either you are dealing with the 

abstract nature or applying the knowledge to solve a problem in real life. Topology is 

considered as one of the main areas of Pure mathematics together with algebra and 

analysis. The areas in topology has received some great attention in recent years and 

this perhaps has led to the many contributions made in this area over the past few 

years. Topology in itself is believed to have been born out of geometry. 

Science and Mathematics have always been interrelated. Perhaps this could be due 

the fact that almost every idea in science can actually be presented by mathematical 

expressions. Science helps to interpret nature whereas mathematics enables us to 

solve real life problems which are usually difficult to solve or deal with directly. 

These expressions normally comes in the form equations and more often differential 

equations. This is usually done using the concept of modeling. In models, real life 

science are describe with purely mathematical language. 

Most often, these are considered to be adequate and accurate such that solutions to 

the mathematics model implies the problem in science is solved. 
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Topology is basically the study of shapes and their corresponding properties. It was 

born out of a real life challenge some years ago somewhere in the eighteenth century. 

Once in Russia, a city called Koenigsberg, the river Pregel had overflown its banks and 

run through the city. There existed some seven bridges that connected the regions in 

this city. People wanted to find out the possibility of going through the city but 

crossing each bridge only once. Even Euler believed , it was impossible to walk across 

the bridges given their 

position. 

 

Figure 1.1: The Koenigsberg bridges(Adapted from an illustration in 
Newman,1983) 

Mathematicians believed that, what is now being defined as chaos is not really 

anything new. It has been with us all these years and we only renaming it to make it 

look more mathematical. Perhaps they would agree with Henry Poncaire’s quote that 

"Mathematics is the art of giving new names to old 

thing" 

The first experience with what is now called chaos was with Henry Poincaire, the 

famous French mathematician in the early 1900’s. Poncaire is considered as the last 

of the universalist (people who made major contributions to all major and known 

areas in mathematics) in mathematics. He studied what was called the three body 

problem (motion of the solar system) by Newton. In Poncaire’s view, there is always 
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a small cause (infinitesimally small) which we are normally not aware of, and 

irrespective of the fact that we overlook it ,has a big and noticeable effect which we 

cannot afford to overlook. Often times we attribute this cause to chance. 

Most Mathematicians and Physicist like Newton and Laplace made indirect 

contribution to the field of chaos theory. The pair believed in same cause being equal 

to same effect. They pointed out the fact that there are always clear rules of life 

(cause and effect) and that brought about predictability and hence could always be 

controlled. They believed systems behaved nicely once we keep doing the same thing 

over and again expecting the same results. A great lesson from their perspective was 

that once systems could be controlled , then from the mathematical point of view the 

world is safe. Though Newton and his colleague believed in predictability, it had 

challenges in predicting systems like the weather. The orbits of the weather or solar 

system created a gap in what they believed. Basically, all they meant was that, given 

two bodies in motion from similar points, we should be able to trace on orbit using 

the other. In the height of all this, his desire was to see the three body problem solved. 

He discovered in his study that there are orbits of systems which in themselves are 

not periodic and yet never move closer or converges to any fixed point. Though 

Poncaire never gave out a solution to Newton’s three body problem, he made a great 

contribution and remarks in that direction. His solution was considered as a partial 

solution to the problem and was still awarded for it perhaps because other legendary 

Mathematicians like Euler, Laplace, Lagrange and others could not help out. In 

Poincare’s solution, he did approximate orbits in the form of series. He later realized, 

he had made a mistake and it was the genuineness of mind in admitting this error 

that gave rise to what will now be termed as chaos. He realized that little changes had 

more than just a little effect over time. His idea on chaos almost never fell through 

because people had lived with Newtonian science for long and maybe because other 

mathematics like Laplace, Libniz and others still believed in Newtonian science. For 
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them, almost every system is linear and could be predicted to a point unknown and 

perhaps unseen. 

Edward Lorenz from MIT is known and acknowledged as the father (modern) of chaos 

theory. He was a meteorologist and had so much interest in long term predictions of 

the weather. This happened during one of his routine computations trying to predict 

the weather. He did the same computations but with different input values. This was 

because he continued one of his after break sessions using input values from his 

computer. The difference in the values was small such that he thought was negligible 

and insignificant. Edward Lorenz describes chaos in these words "Chaos is when the 

present determines the future but the approximate present does not approximately 

determine the future. 

He further explained that the unpredictability nature of the weather is because we 

can only measure the weather approximately 

He only realized from his work graphically that though they have almost same starting 

points, the difference in their final points given the same number of iterations was so 

wide and unimaginable. 

Edward Lorenz after careful consideration and scrutiny realized that the two initial 

input values differ by decimal points. The output from his machine had three decimal 

places compare to the six decimals of his original inputs. This small numerical 

difference has contributed to great difference in his computations. If his computer is 

not faulty then perhaps, there is something mathematicians are failing to 

acknowledge; a small change in input produces a very great difference in the end. 

And what happens next? Chaos has been born and the rest followed. 

Chaos theory was discovered in 1963 though Lorenz had observed the phenomenon 

two years earlier. Quite a number of things could contribute to this irregularity which 

would later become a giant concept of study years on. Lorenz is believed to owe the 
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idea but he is certainly not the first to associate the term chaos with the 

phenomenom under study. Alexander Lyapunov also made some contribution in the 

early stages. His was in the study of the instability of fluids and turbulence in fluids or 

gases.He tried to measure the transition from order to chaos. Other accademicians 

who made useful contributions to the course are: G.D Birkhoff, A.N Kolmogorov, M.L 

Cartwright, J.E Little and Stephen Smale among others. Stephen Smale is the only 

Mathematician and specifically Pure mathematician to have studied chaos. The 

others studied it in relation to Physics.  
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1.2 Useful Definitions and Theorems 

1.2.1 Topological Spaces 

Definition 1.2.1 A topology T on a set X is the collection T of subsets of X having 

the following properties 

1. ∅ and X are in T. 

2. The arbitrary union of the elements of any subcollection of T is in T. 

3. The finite intersection of the elements of any finite subcollection of T is in T 

Then (X, T) is a topological space 

Note 1.2.1 The empty set (∅) is always a subset of any collection of subset even if not 

mention.It is usually the first set when considering any power set(a set of all subsets 

a given set) of a set. 

Definition 1.2.2 Trivial Topology 

Let X = {a, b, c} and Define T = {∅, (a, b, c)} 

1. ∅ ∈ T 

2. ∅ ∩ (a, b, c) = ∅ ∈ T 

3. ∅ ∪ (a, b, c) = ∅ ∈ T 

Now this is a topology and the least or minimal topology we can define on this set T , 

hence it is a trivial topology on T. This topology sometimes is referred to as indiscrete 

topology. 

Definition 1.2.3 Discrete topology 

Let X = {a, b, c} and Define T = {∅, a, b, c, (a, b)(a, c), (b, c), (a, b, c)} 
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(X, T) is a topology since it satisfies all three needed conditions. 

The empty set is contained in T. Also the intersection and union of any subset of T is 

a member of T. This is the largest topology that can be defined on the given set X and 

is called the discrete topology 

Remark 1 The set T is the power set of X which contains all possible subsets of X. Given 

two topologies T1 and T2 , both defined on X , if T1 contains T2 then , T1 is a finer topology 

than T2. Also if T2 contains T1 then , T2 is a finer topology than T1. 

Hausdorff Space 

Definition 1.2.4 (Adams and Franzosa,2009) A topological space X is Hausdorff if for 

every pair of distinct points x and y in X, there exist disjoint neighborhoods U and V of 

x and y respectively. 

This implies that each point in a pair of points or cluster of points can be kept in its 

own circle once two points are not the same. Disjointed points ought to have 

disjointed neighborhoods. 

Let a ∈ U , b ∈ V , U ∩ V = ∅ 

 

Figure 1.2: Hausdorff space 

The real line R with the standard topology is Hausdorff. Give two distinct 

points a and b, there are disjoint open intervals containing them.It is called normal if 

it is Hausdorff and for any two closed X1, X2 ⊂ X there exist 
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O1,O2 ∈ T such that Xi ⊂ Oi and O1 ∩ O2 
= ∅ 

An example is, if a < b, then the intervals 

U  and V = (a+
2

b, b + 1) are disjoint and contain a and b, 

respectively 

1.2.2 Dynamical Systems 

A dynamical system on X is defined to be a mapping 

π : X × T → X 

where T is a topological group subject to the conditions 

1. π(X, 0) = X – identity 

2. π(π(x, t), s) = π(x, t + s) – Group property 

3. π is continuous. 

The triplet (X, T, π), where π : X × T −→ X continuous mapping 

satisfying the following conditions: 

π(0; x) = x (x ∈ X, 0 ∈ T) , 

π(T, π(t, x)) = π(t + τ, x) (x ∈ X, τ ∈ T) 

are called a dynamical system. In that case if T = RR + (RR) or Z + (Z) then the system 

(X, T, π) is called a semigroup (group) dynamical system. If T = R + (R) , the dynamical 

system is called flow and if T ∈ Z then (X, T, π) 

is called cascade. (Cheban, 2009). 

When we talk of a topological dynamical system (X, T) , we mean a compact metric 

space X together with a continuous map T : X −→ X 
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Definition 1.2.5 Let X be a compact metric space and T a continuous map. A dynamical 

system (X, T) has sensitivity dependence on initial conditions if ∃δ > 0 such that for x 

∈ X, and each e > 0, there is a y ∈ X with d(x, y) < e and n ∈ N such that d(Tnx, Tny) > 

δ 

Definition 1.2.6 A dynamical system (X, T) is called Li-Yorke sensitive if ∃ some δ > 0 

such that for any x ∈ X and ∈> 0, there is y ∈ X, satisfying d(x, y) < ε such 

that 

lim infd(Tnx, Tny) = 0 and lim supd(Tnx, Tny) > δ n→∞

 n→∞ 

Definition 1.2.7 Let (X, T) be a dynamical system. A pair (x, y) ∈ X × X is called 

scrambled if 

lim infd(Tnx, Tny) = 0 and lim supd(Tnx, Tny) > 0 n→∞
 n→∞ 

Definition 1.2.8 Let (X, T) be a dynamical system. For a given positive number δ > 0, 

a pair (x, y) ∈ X × X is called δ-scrambled if 

lim infd(Tnx, Tny) = 0 and lim supd(Tnx, Tny) > δ n→∞

 n→∞ 

A subset C of X is called δ - scrambled if any two distinct points x and y in C form a δ -

scrambled pair. 

Definition 1.2.9 Given a dynamical system (X, T), a pair of points (x, y) in X is 

1. Asymptotic if 

lim d(Tnx, Tny) = 0 n→∞ 

2. Proximal if 

lim infd(Tnx, Tny) = 0 n→∞ 

3. Distal if 
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lim infd(Tnx, Tny) > 0 n→∞ 

Note 1.2.2 There exists a difference between transitive systems and minimal systems. 

Definition 1.2.10 For a given dynamical system f : S → S, S ⊆ R, the iterations of the 

function f is the composition of a function with itself. 

If f1(x) , f2(x) represent the composition of the function with itself once and twice 

respectively. The kth iteration of f at a point x represents the k times composition of f 

with itself. It’s written as f k(x) 

Definition 1.2.11 Periodic Points : Assume m ∈ Z+ , x is a periodic point or a period m-

orbit if f m(x) = x. 

Under the circumstance the porbit of x is called a periodic orbit or a period-m orbit. 

The set of all iterations of iterations of a periodic forms a periodic orbit. x is an 

eventual periodic point if x is not a periodic point but the f n(x) is a periodic point for 

some n ∈ Z+ 

Definition 1.2.12 The orbit of a point x in X is the set Orb(X, T) = 

{x, Tx, T2x, . . . }. 

The individual elements of the set Orb(X, T) represent the path of the iteration for a 

given function. These represent the trajectory of the function or system 

Lyapunov Exponent 

Let f be a smooth map of the real line. The Lyapunov number L(x) of the orbit {x1, x2, 

x3, x4, ...} is defined as follows: 

L(x1) = lim→∞(|f 0(x1)|.......|f 0(xn|)1/n n 

if this limit exist. 
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The Lyapunov exponent h(x1) is defined as 

 L(x |f 0(xn)|] 

 1 ∑n 0 | 

= lim ln |f (xi) n−→∞ n i=1 

1 ∏n 0 |], 

= lim∞ [ln f (x1) n−→ n i=1 

if the limit exist. 

1.2.3 Metric Spaces and Functions 

Definition 1.2.13 Given p, q ∈ X, X is a metric space if there exists a distance from p to 

q given as d(p, q) such that the following conditions are satisfied. 

i. d(p, q) ≥ 0 is p 6= q, d(p, p) = 0 ii. d(p, q) 

= d(q, p) iii. d(p, q) ≤ d(p, r) + d(r, q) for any 

r ∈ X 

The metric is sometimes called the distance function. A metric is usually denoted d, 

and the set together with the metric is the metric space. It is usually written as (X, d) 

where X is the set and d is the metric. 

In R2, X = R × R, the metric is defined as d(x1, y1), (x2, y2) = 

 

p(x2 − x1)2 + (y2 − y1)2 where x1, x2, y1 and y2 are all points on the real line. 

Definition 1.2.14 A funtion f : X −→ Y is defined to be injective if for each pair of distinct 

points of X, the image of X under Y are distinct. 

This implies that to every point in the domain there exist a distinct point in the domain 

there exist a distinct point int the range. The function is said to be one-to-one. 
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Definition 1.2.15 A function f : X −→ Y is said to be surjective if for every element in 

the image set has a corresponding element in the domain. 

Here, two distinct points could map to the same image. These maps are called the 

onto map. A map which is both one-to-one and onto is called a bijective map. In 

bijective maps, every distinct point in the domain maps unto an image in the range 

and every image in the image is mapped unto. 

Definition 1.2.16 Given functions f : A −→ B and g : C −→ D we define the composite 

function g of f and g as the function gof : A −→ D and by the equation gof(a) = g(f(a)). 

Example 1.2.1 Given the function f : R −→ R defined by 2x2 + 1 and g : R −→ R defined 

by g(x) = 5x + 20. The composite function 

i. fog is given by 

fog(x) = f(5x + 20) 

= 

ii. gof is given by 

2(5x + 20)2 + 1 

gof(x) = g(2x2 + 1) 

= 5(2x2 + 1) + 20 

The composite function fog 6= gof 

Definition 1.2.17 Let D be a set and T a function that maps D unto another set If 

T(D) = D ,then D is an invariant set under T. 

We note that the set D is its own image and remains unchanged even after the 

function is applied to it. Now , any point in T(D) is the image of at least a 

point 
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1.2.4 Set Theory 

Definition 1.2.18 A cantor set is a set of points lying on a single line segment that has 

remarkable and deep properties. It is usually built by removing the thirds of a given 

line segment. 

Example 1.2.2 Given the line segment [0, 1], find the cantor set. [0, 

1] 20 = 1 segment 

  segment 

  segment 

 segment 

It is generated by 2n or the number of intervals at each point. The length of 

the interval (difference between any two points) is given by 3−n. All cantor sets and 

intervals are closed and bounded (compact). It is sometimes called the middle-third 

or ternary cantor set. One property of the set could be that, it is totally disconnected. 

Definition 1.2.19 A limit point of a given set A is a number, l such that every deleted 

δ-neighbourhood of l contains elements of the set A. That is every neighbourhood of 

the point contains a point either than/apart from P. For every δ > 0, ∃ x ∈ A s.t 0 < |x 

− l| < δ. 

Example 1.2.3 Given the set interval (0, 1), we want to verify if 0 and 1 are limit 

points . 

let δ = 0.2 
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for 0 ⇒ a = 0 a − 

δ < x < a + δ 

−0.2 < x < 0.2 

x ∈ (0, 1) s.t x can be 0.1, 0.15 and x 6= 0 

 for 1 

a − δ < x < a + δ 

1 − 0.2 < x < 1 + 0.2 0.8 < 

x < 1.2 

x ∈ (0, 1) and x 6= 1. x can be 0.9 

Example 1.2.4 Given the set (1, 2, 3, 4, 5). In finding any limit point we choose 

a = 2 

let δ = 0.2 

2 − 0.2 < x < 2 + 0.2 ⇒ 1.8 

< x < 2.2 

If x 6= a → x = 2 then x ∈/ (1, 2, 3, 4, 5). 

We conclude that every finite set has no limit point. 

1.3 Objective Of Stdy 

The objective of this study is to bring out the basics and fundamentals of chaos theory 

as a concept in mathematics. I intend to achieve these after everything: 

1. To demonstrate the routes to chaos in a dynamical system 
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2. To asses the different kinds of chaos and their interrelationships 

3. To study chaos in dynamical systems in terms of some well known maps 

4. Contribute to a few open question on chaos theory in dynamical system 

1.4 Scope And Limitation Of Study 

1.4.1 Scope Of Study 

This research will cover a selected collection of available ideas and works in the field 

under study. Seasoned textbooks on the subject matter was beneficial as well as the 

importance of valuable human resource currently working in the field on topology, 

dynamical systems and chaos theory. The knowledge and use of computer software, 

MATLAB, is relevant and cannot be overstated. 

This work was produced using LATEX. 

1.4.2 Limitation Of Study 

The major setback and limitation so far as this work is concern is the unavailability of 

much needed resources in the form of useful textbooks. There is also the challenge 

of in-depth information on the subject matter and most importantly very few 

resource persons. There is the lack of motivation to further expand knowledge of the 

subject matter and so the work is only limited to the various works of researchers and 

academicians in the field. 

1.5 Organization Of The Thesis 

The content of this study is divided into the following chapters: 

• Introduction 

• Literature Review 
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• Exposition on Dynamical Systems 

• Chaos Theory 

• Contribution to open questions, Conclusion and Recommendation 

Chapter 2 

Literature Review 

2.1 Overview 

We consider various available literature on field of study. This was achieved through 

a summary of abstracts on topological dynamics and chaos theory which are of 

interest in this thesis. 

2.2 Topological Dynamics And Dynamical Systems 

Mallat defines a dynamical system as a concept in the field of mathematics where a 

fixed rule is used to describe the time dependence of a point in a geometrical space 

in (2009). Thompson(2013) describes how Dynamical systems can be studied from a 

distinct point of view of which one dominant area is topological dynamics. Topological 

dynamics deals with a space, a topology and a function acts on it. Such functions are 

usually continuous 

For every dynamical system, there is a state space that represent the set of values for 

which iterations of the system is generated. At any given time the state space is given 

by a set of real numbers or possibly a vector. Every point or vector used can or should 

be possible to be represented by a point in an appropriate state space (Nguyen et al, 

1989). 

(Lin et al, 2011)The pair (X, f) can be used describes a dynamical system. Usually X 

contains many points possibly of infinite number. Sequences of continuous maps 
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converge uniformly implying the limit map is continuous. Uniform limits exhibit 

topological transitivity and sensitivity dependence to initial conditons . Sensitive 

dependence is a global feature of a typical topological system 

At a given point in time,it is always possible to predict at least one future state.This 

makes these rules in dynamical systems deterministic. The rule is deterministic (Ren 

and Zhang, 2009). The fixed reule that describes the the trajectory of future states 

from current state.(Ohtsuki et al, 2006) 

Time considered in any dynamical system is either discrete or continuous. Dynamical 

systems is defined as deterministic model for evolving the state of a system 

forwarded in time. Usually systems are represented by maps which shows vividly 

variables changes over time. (Wang et al, 2011) 

In Sharipov, (2001), he states the fact that Newtonian mechanics is the basis for. 

Detailed mechanisms of protein folding are not biased for dynamical systems. This 

the idea of the possibility of predictability from existing rule of evolution. Topological 

dynamics can be applied to a number of real life systems and more practically and 

importantly biological sytems((Hofbauar and Sigmund, 1988). 

As soon as the system can be solved, given an preliminary point, it’s viable to examine 

all its future point, The entire collection of the path of the iteration is referred to as a 

trajectory or orbit 

Complex techniques in mathematica (Powell, 2007) which only were available to be 

used for quite a small class of dynamical systems were the option for solving 

dynamical system before the option of high speed computers were introduced. 

(Zimmermann et al, 2005 ). 

The path of a dynamical system (trajectory or orbit) is relevant if only , that of 

individual systems could be obtained and comprehended. Its often difficult due to the 

nature of complexity of many dynamical systems. 
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Trajectories may be periodic whiles they move through different states of the 

system.(Sanz and Miret-Artes, 2008).The difficulties arise on account that the systems 

studied could handiest be known approximately, the parameters of the system is 

probably not identified exactly or terms may be missing from the equations. The 

approximations when used brings about questions of the validity or relevance of 

numerical solutions. 

One significant thing that is needful for application is how trajectories which are 

functions of a parameter behaves. (Di et al, 2006) Bifurcation , the process where the 

system exhibits changes in qualitative behavior as a parameter is varied. It obtains 

bifurcation points. In a typical example, such systems could change from periodic 

behavior to a more unsteady or random behavior. The orbit of the system , as if 

random could display erratic nature. 

Dynamical systems have different aspects which are all useful in various sciences. The 

probabilistic aspect of systems served as one the basis and foundation for statistical 

mechanics. It is also regarded in chaos theory. Poincare did a lot of work through 

which these dynamical systems themes developed (Araujo et al, 2008). 

Yaacov (2008), defined a dynamical system as a continuous self map of a compact 

metric space. It was introduced that topological dynamics studies the iterations of the 

sort of periodic map. Its also considered to study equivalently the orbits of the points 

of the state. Basic properties and concepts in terms of dynamical systems include 

expansivity, equicontinuity, sensitivity. Most of these forms the foundation and 

backbone of the various concepts studied under topological dynamical systems 

In Ruette (2015) she says Topological transitivity for transitive maps is quite similar to 

topological mixing. In the case of interval maps, weakly mixing , transitivity and 

topological mixing are equivalent. Transitivity guarentees sensitivity dependence and 

for interval maps, the converse is true. Maps with horseshoe have positive topological 
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entropy . Positive entropy and homoclinic points are equivalent properties. (Wang et 

al, 2011) An existence of uncountable number of scrambled sets is chaotic as by Li-

Yorke’s definition. One necessary condition though not sufficient for ergodicity is 

topological 

transitivity. 

2.3 Chaos 

Small variations in preliminary conditions yield largely diverging results for dynamical 

system are considered as chaotic,making long-term prediction not possible on many 

occasions. This behaviour is often called deterministic chaos, or without difficulty 

chaos. 

Edward Lorenz (Danforth, C.M, 2013) simplifies chaos in these short words. "When 

the present determines the future, but the approximate present does not 

approximately determine the future." 

(Valle Jnr., 2000) Chaos theory was developed from the works of Edward Lorenz 

around 1960’s. Sensitive dependence to initial condition is a core condition and 

feature of the theory of chaos in systems. Experimentally, minute and insignificant 

difference or perturbation has high and real great significance on future predictions. 

Chaos theory as an idea in non-linear mathematics is applicable in both social sciences 

and natural science. 

Chaos is far from randomness but highly deterministic and predictable to a point. 

Complexities of systems are synonymous with chaotic behavior as well as non-

linearity which gives rise to sensitive dependence to initial conditions. Chaos as an 

property is observed after a period of time which implies a system could possibly 

display non-chaos as usual in the initial stages of iteration though highly and easily 

chaotic after a few iteration 
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(Davis et al,1992) Chaos is defined for a continuous map on the same metric space 

which is usually not finite. Three distinquished properties are considered as 

components of chaos. Dense periodic orbits has an element of regularity, Transitivity 

, sensitive dependence to initial conditions deals with how negligible and insignificant 

errors in expeiremental values leads to larger and significant divergence. Systems 

with transitivity and dense orbits can be considered as being sensitive dependent to 

initial conditions. 

(Aulbach et all, 2000) Distinct and several definitions describing chaos theory are 

designed for specific purpose. Usually, these definitions are based on different 

backgrounds and levels of complexity in mathematics. Though until now, there is no 

universally accepted definition to chaos, there is a possibility of one evolving it the 

near future. 

(Bisiwas , 2013) Lyapunov exponent places a measure on the sensitivity dependence. 

Maps with positive Lyapuov exponents are usually considered chaotic. Typical 

examples include the tent map, logistic function and doubling map. These maps are 

usually topologically transitive. The box dimension , Hausdorrf dimension and 

entropy are also means for determining chaos in systems. One of the simplest maps 

that is chaotic is the logistic map. Variations of parameters in both the tent map and 

logistic function allows the maps to behave in several ways including predictability 

and chaos. 

Predictable maps are usually stable while chaos describe on unpredictability. 

Thompson(2013) says the chaotic nature of functions on the circle can be deduced 

through topological mixing. Chaos represents one of the interesting behavior of 

dynamical system and it shows movement of sets from their 

existing position or location. 
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(Lin et al, 2011) There exist a direct relationship between Li-Yorke chaos and partial 

weak mixing such that, the latter implies the former but the converse does not hold. 

(Lim et al, 2008), There is always a convoluted structure produced during the chaotic 

mixing of fluids. This is produced by the interface that separates the fluids. Viscosity 

is a means that cuts off chaos in the interface.  
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Chapter 3 

Dynamical System 

3.1 Brief History 

The interest in the be field of dynamical systems and particularly nonlinear dynamical 

systems over the last few decades has been very massive and significant so far as pure 

mathematics is concerned. Scientist in other areas had been able to apply approaches 

and techniques in this field to a number of relevant nonlinear problems starting from 

physics, chemistry, biology ,economics among others. In terms of modern dynamical 

systems and its ideas, there exist a relatively brief historical past. Considered as the 

main founding father of the field of dynamical systems,the French mathematician 

Henri Poincaré (1854-1912) revolutionized the be study of nonlinear differential 

equations by means of introducing the qualitative approaches of geometry and 

topology instead of analytic methods to discuss the general properties of solutions of 

these systems. For him as a mathematician, a world and international appreciation 

and acceptance of of the behavior of all solutions of the system was equally more 

important than just the solved analytically-precise solutions. Birkhorf continued the 

exploits of Poncaire in the first part of the twentieth century.Birkhorf came to realize 

the significance of the study of mappings and placed emphasis on discrete dynamics 

as a method of figuring out the more difficult continuous dynamics arising from 

differential equations. As times progressed, the subject of dynamical systems has 

benefited from a combination of interest and techniques as well as methods and 

applications from all sort of fields. Remarkable breakthroughs in fields mathematical 

biology and economics have motivated various scientists to this area of study 
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Computer images and graphics have proven that the dynamics of simple systems can 

be at once wonderful, appealing and an exciting adventure to embark on. 

Contemporary development have made the theory dynamical systems an appealing 

and predominant branch of mathematics to scientists in many disciplines. The idea 

have passed through different phases in time until this point. This ranges from the 

time of Newtonian mechanics to date. Quite a number of people have contributed to 

the field of dynamics beyond that which is mentioned here. 

3.2 General Overview 

A dynamical system is a way of describing the passage of time of all points of a given 

space. Simply it can be thought of as the repetition of events once and again. That is, 

You know exactly what you will be doing next. We consider anything that evolves over 

time (changes over time) as a dynamical system. Since life is full of changing events 

(non-constant events), life could be considered a dynamical system. In dynamical 

systems, the starting point, the journey along the line as well as the finishing points 

are all relevant and hence we pay attention to each of them as such. 

One of the ways of describing the passage in time of points in a given space S is a 

dynamical system. The space S varies depending on the area of dynamics. Dynamical 

systems helps appreciate the relationships between mathematics and various aspect 

of science. 

Example 3.2.1 A man throws up an orange into air or space. This scene can be 

described as a system. Here we require to know the height to which it is thrown and 

the velocity of its movement. Let h be the height of the throw and let v be its velocity, 

then the vector (h, v) describes the system. 

Given an initial position x ∈ Rn, a dynamical system of R indicates where X is located 

1unit of time later or before, 2 units of time later or before, etc. We can choose to 
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represent our new position X1 and X2 etc for their corresponding time units. The 

trajectory of X is given by Xt. For a given dynamical system, the function that takes t 

to Xt results in either a sequence of points or a curve in Rn. This therefore shows the 

entire movement of X as t varies from zero to 

infinity(0, ∞), as t spans the positive real line. 

Though in dynamical systems , various functions depends on time, the branches of 

dynamical systems present this in entirely different ways. These branches are Egordic 

theory, Topological dynamics , Differentiable dynamics, Hamiltonian dynamics. 

Basically in egordic theory, we assume that they preserve the measure on Rn. In 

topological dynamics, we assume the say Xt varies only continuously and for 

Differentiable systems, we assume the given system will be continuously 

differentiable. Every dynamical system can be considered or classified into two : 

discrete time dynamical system or continuous dynamical system. 

A dynamical system is best describe in terms of these three words 

Phase space 

Time 

Law of evolution 

Phase space : it’s a set whose elements ( called ’points’ ) present possible states of 

the systems at any moment of time. The phase space captures the various structures 

of dynamical system . The various aspect of dynamical systems are obtained based 

on these structures. They could either be differentiable, topological or considered 

measure preserving (ergodic). 

Time : Time is expressed either as discrete when the values are integers whereas its 

considered continuous when the set of values are real numbers. Time considered 

here is either reversible or irreversible depending on its domain. 

Law of Evolution : This is the rule that allows us to determine the state of a system at 

any moment given its current state. 
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3.3 Types Of Dynamical Systems 

3.3.1 Discrete Dynamical System 

Given the present current or present state of a system, we expect to be able to know 

the state of the system given a change in time. A Discrete Dynamical 

System is defined as as a sequence Xn with 

Xn + 1 = f(Xn) for some f : R −→ R 

It’s called iterative because there is always the possibility of obtaining a recurrence 

or pattern as we keep changing the values of the time used. The final formula then 

represents Xn and that describes the state of the system at the nth time. 

We have a discrete dynamical system when time is a sequence of separate chucks, 

each of the next like beads on a string. In such cases one can really distinquish 

between the position of the bead infront from the bead behind without confusion or 

ambiguity. In discrete dynamical systems, usually preceeding states can be obtained 

depending on computations of the current state. It is always important to know 

where a system will be in the next instant. Also in discrete dynamical systems, there 

are intervals(big) between two distinct time intervals , hence we say discrete 

dynamical systems changes in cycles after the expected time periods. 

3.3.2 Continuous Dynamical System 

Basically they describe systems that changes over time with the understanding of 

discrete being its exact opposite. They can also be described as systems where time 

progresses smoothly. It usually involves the analysis of differential equation. In 

continuous systems, it is usually very difficult if not impossible to describe where the 

system would in a moment. Continuous systems are therefore mostly represented by 

differential equations. It is usually represented as X0 = f(x) which describes the rate 

at which the system changes with time. Such systems have almost absolute 
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dependency on time hence the derivative X0. Here our interest is how quickly the 

system changes with time. 

Example 3.3.1 An orange is thrown up in the air. It will be unfortunate to ask where 

the mango will be at the next instant, though we have every reason to know how the 

height and velocity of the mango changes with time. 

We can describe such system by a vector representation of its height or 

position and velocity or speed. Velocity here is simply the rate of change of position 

relative to time. As the mango falls back from up there (return to its starting point), it 

obtains a velocity against gravity. 

Mathematically , 

X = [h, v] dh
dv = v and g 

The solution of this system indicates the height and velocity of the mango at any time 

(t) One area or type of system where continuous systems really appears most is in 

chemical reactions. It is because it deals with reaction of several components and can 

normally be modeled as differential equation. We note that both discrete and 

continuous dynamical systems can appear beyond the one dimensional form. As 

stated earlier, there are various aspects of dynamical system as a result of the nature 

of their state space. 

3.4 Principal Aspects Of Dynamical Systems 

3.4.1 Ergodic Theory 

Ergodic theory is a branch of mathematics which studies dynamical systems with 

invariant measures as well as related problems. Ergodic theory is defined as the study 

of group actions on measure spaces. The principles and foundation of this idea was 

founded on contributions from Boltzman and French Mathematician Poncaire. 

Boltzman was into statistical mechanics whereas Poncaire worked on celestial 

mechanics. Poncaire developed ways and methods to analyze solutions for a given 
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differential equation. Most underlying concepts in ergodic theory has to do with 

actions that preserve a probability measure. The concept of ergodic theory helps 

determining if two measure preserving transformation are isomorphic. The phase 

space under consideration in ergodic theory are usually Lebesgue measurable spaces 

with a finite measure. Ergodic theory provides an appropriate tool for the studying of 

asymptotic distribution as well as behavior of orbits for differentiable dynamical 

systems. 

It usually describe the behavior of a function as n becomes infinitely 

large. 

Tn as n −→ ∞. 

In Ergodic theory, we consider two basic preseving transformations ; the 

measure preserving transformation that works on measure spaces and the 

probability preserving transformation that works on the probability space. 

Examples of Ergodic maps include the Bernoulli Shift 

3.4.2 Topological Dynamics 

Topological dynamics is considered as a branch of dynamical system which studies 

qualitative as well as asymptotic properties of dynamical systems. It’s called 

topological dynamics because it is studied from the view point of topological spaces 

or topology. The phase space of a topological dynamics is a metric space. This metric 

space is usually compact 
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3.5 Other Concepts In Dynamical Systems 

In a dynamical system, the nature of its orbit is always important and worth noting. 

There is always the tendency to have repetitions in the orbit. This is what is 

considered as periodicity. 

3.5.1 Fixed Point 

Consider the theorem below though without proof. Suppose F : [a, b] −→ [a, b] is 

continuous. Then ∃ a fixed point for F in [a, b]. 

The continuity of F and the fact that [a,b] is mapped unto itself must be kept as such. 

This theorem is obtained or generated or extracted from the intermediate value 

theorem which says: Once a function maps an interval [a,b] to the set of real 

numbers,∃y0 which is an image found between the images F(a) and F(b). Then the 

image y0 has its domain in the interval under consideration such that 

F(x0) = y0. 

In using the fixed point theorem, there is always the guarantee of at least a 

fixed point for the function within the said interval. 

It is usually worth noting that a closed interval for such functions is advisable. 

Let F(x) = x2 (a, b) = (0, ) then there are no fixed points since the two points or 

extremes are not part of the set. Meanwhile F(0) = 0 which implies 0 would have 

been a fixed point if the interval were [0, ]. Even when there are fixed points, there 

is a way they behave and we take a look at that. 

In analyzing attracting fixed point, we realize the orbits move closer to the 

attracting fixed point as the iterations are furthered. Irrespective of where you start, 

as you keep iterating, there is a point where the difference between the iterated or 

iterative value and the fixed point will be marginal. In the case of the repelling fixed 

points, the iterations continue. The points or orbits moves away and possibly very far 
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from the said fixed point. The divergence or nature of growth of the orbit could be 

exponential or considered very fast. 

3.5.2 Linear Map 

They usually are the easiest and basic dynamical system for modeling especially in the 

context of population. It is quite easier to deal with and to have a clear long term view 

or perspective. 

Let Pn represent the size of a population at a given time t. 

 Define Pn+1 as Pn+1 = aPn for a > 0 

We observe the difference in the behaviour of such models given a ’positive’ 

initial population. 

Pn+1 = aPn 

P1 = aP0 

P2 = aP1 = a2P0 

 ... ... 

 Pn = anP0 and n ≥ 0 

The long term behavior of the population is observed as follows: 

Let 

a > 1, Pn −→ ∞ as n −→ ∞ 

0 < a < 1, Pn −→ 0 as n −→ ∞ 

 a = 1, Pn remains unchanged  
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Chapter 4 

Chaos Theory 

4.1 The Route To Chaos 

4.1.1 Sensitivity Dependence To Initial conditions 

Definition 4.1.1 Let X be a compact metric space and T a continuous map. A dynamical 

system (X, T) has sensitivity dependence on initial conditions if ∃δ > 0 such that for x 

∈ X, and each e > 0, there is a y ∈ X with d(x, y) < e and n ∈ N such that d(Tnx, Tny) > 

δ 

The characteristics of sensitivity is usually observed during the iterations.At the start 

of the iterations,(i.e f0x and f0y) , the points x and y are a distance close. The idea of 

sensitivity dependence allows the orbits to be far apart as the number of iterations 

increases. 

Let P1 and P2 be the two points just a distance apart. If we denote the orbits as X(P1) 

and X(P2) for P1 and P2 respectively. Continuing the iteration, the orbits move farther 

apart from each other, and the distance between the initial points. Usually, sensitivity 

dependence holds for large time value. The point is, you observe this phenomenon 

over time but at best over a large time limit. The respective trajectories diverge and 

this implies that the distance of the orbit increases compared to the preceding points. 

This idea of sensitivity dependence is otherwise called butterfly effect. This is perhaps 

due to any of these reasons or even more ; lost patterns and the great effects from 

marginal or negligible inputs like the flap of the butterfly wings. Generally this is 

experienced in non-linear science. The butterfly effect is one of the few ideas in 

mathematics that are referred to in the non-scientific world indirectly. Sensitivity to 

initial conditions is referred to as butterfly effect after a presentation by Edward 
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Lorenz, a mathematician and meteorologist from MIT in 1972 which hAd the title : 

Does the flap of a butterfly wings in Brazil set a Tornado in Texas ? 

This looks like the same idea Poncaire was trying to bring across years earlier on. 

These were some words by Lorenz which says : "i started the computer again and 

went out for a cup of coffee. When i returned about an hour , after the computer had 

generated about two months of data, i found out that the new solution did not agree 

with the original one. I realized if the real atmosphere behaved in the same manner 

as the model, long range weather predictions would be impossible since most real 

weather elements were not measured accurately to three decimals places."(Lorenz 

1991) Over the years , definitions of chaos or better still the basis of chaos has been 

built around this particular element of sensitive dependence. Practically and 

genuinely for the scientist , rounding off numbers shouldn’t be a problem but you 

realize that over quite a long period, it’s significance is great. Of course, for most 

systems (discrete) dynamical system, a final iteration say f(Xn) could serve as the 

initial point for f(Xn+1). So for nearby iterations , the significance could be negligible 

sine the distance between their trajectories is small. 

One thing worthy of noting is that if a system is sensitive dependence on initial 

conditions, our observation is does not necessarily start from the first iterate or better 

still we are not only interested and expecting a change in trajectory due to initial 

condition but that the slightest perturbation causes preceding values to differ from 

the expected. 

The smallest error in change in initial condition grows to become as large as the true 

and actual value of the state. This makes prediction of future behavior impossible but 

this does not mean the system is not deterministic. 
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4.1.2 Topological Entropy 

Andrei Nickolaevich Kolmogorov is believed to have introduced the idea of 

topological entropy.He is considered on of the main contributors to the concept of 

Dynamical systems after French Mathematician Poncaire. 

Topological entropy is defined as the exponential growth rate of the nunber of 

different orbits(periodic orbits as n tends to infinity). 

Entropy is one of the most important quantities in dynamical systems so far as 

numerical values are concern. It basically measures the rate of complexity of the 

dynamical system as time varies largely and towards 

infinity. 

Definition 4.1.2 Let f : X → X be contoinuos map of a compact metric space X. For e > 

0 and n ∈ Z+, we say E ⊂ X is an (n, e) - separated set if for every x, y ∈ E , there exist 

i, 0 ≤ i ≤ n such that d(f i(x), f i(y) > e. The entropy of f is given by 

1 

   htop(f) =
e 

and N(n, e) represents the maximum cardinality of all (n, e) - separated sets. We 

define a set as (n, e) - separated if for any x 6= y in E, dn(x, y) > e 

Topological entropy can also be defined and determined in terms of fixed points of f 

n and expressed as 

 1 n) 

H(f) = lim ln(number of fixed points under the mapf n→∞ n 
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4.1.3 Lyapunov Exponents 

In understanding chaos, one tool that is relevant in the is concept of Lyapunov 

exponents. Positive Lyapunov exponent implies sensitivity dependence to initial 

conditions. Lyapunov exponents measures the the rate of divergence of orbits away 

from each other(i.e it gives a means of quantifying the expansion or contraction of 

nearby trajectories). Generally, two orbits experience different routes and move 

further away from each other because there is a small change in one which could 

cause it to behave as such and thats due to sensitivity to initial conditions. Once a 

system has sensitive dependence to initial conditions, it must have a positive 

Lyapunov exponents. 

Theorem 4.1.1 (Fotiou A.,2005) Let f : R −→ R be continuous and differentiable map. 

If f has a positive Lyapunov exponents, then f has also sensitivity to initial 

conditions. 

Proof 

Choose a point x0 ∈ R. Consider another point x00 close to x0. Let x0 be δ away from 

x00 

let 

f n  and f n(x0) = f n(x0) be the respective iterations 

for the initial points. 

 

= δx0enλ(x0) = δ........................(1) 

δx0 is the distnce between the two initial points given as  and x0 + δ 

en  
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n  

For some δ for a given x0 , then 

 such that ∀e > 0 after a number of iterations, m > n 

 

This implies sensitivity dependence to initial conditions 

4.1.4 Dense Orbits 

Definition 4.1.3 A dynamical system (X, f) has a dense orbit if and only if 

∃x ∈ X : ∀y ∈ X, ∀e > 0, ∃n ∈ N : d(f n(x), y) < e 

x and y represent the distinct initial points for the iteration. f n(x) represents a specific 

iteration. The orbits of x(f n(x) moves arbitrary close to another orbit at a given in 

time such that the metric between them is significantly small. As the iteration 

continues(n → ∞) , the possibility of every other point experincing this is high.This 

implies that respective points as well as orbits of orther points are crowded within a 

given space such that the distance between points and iterations are less than e. 

i.e(d(f n(x), y) < e). At this point , the movement of orbits and points are difficult to 

distinquish between. Dense orbit for a map is always seen as the equivalent of 

Topological transitive. 

In that the set of orbits moves close to every point 

4.1.5 Transitivity 

Definition 4.1.4 A dynamical system (X, f) is topologically transitive if and only if for 

all non-empty subsets U and V of X, there exist n ∈ N such that Fn(U)∩ V 6= ∅. 
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Transitivity usually implies the existence of dense orbit. Topological transitivity 

guarantees that there always exist a point which results form the intersection of open 

sets under iterative process of map. 

4.1.6 Expansivity 

Definition 4.1.5 Let f : X → X. X is a metric space with a metric d defined on it. The 

map f is considered to be expansive if there exist a positive number e > 0 such that , 

for distinct x, y ∈ X, then ∃n > 0 such that d(f n(x), f n(y)) ≥ e . 

e is called the expansive constant for the map. 

There exist an obvious and more direct link between expansivity and sensitivity 

dependence on initial conditions. Every expansive map exhibits sensitivity 

dependence to initial conditions. The converse does not hold and the two conditions 

are never equivalent. Expansivity implies sensitive dependence because expansivity 

deals with the distance between between two nearby points and how their orbits 

separate continuously. In expansivity, the separation is observed between two 

nearby points by at least the constant e . In sensitive dependence the requirement is 

that, at least there there should be one point whose orbit moves away from the orbit 

of another close point after the same number of iteration. 

Theorem 4.1.2 Every expanding map, f : R −→ R has sensitive dependence to 

initial conditions. 

Proof 

A map is expanding if |f 0(x)| > 1 ∀x ∈ R. 

At any given point x ∈ R, the Lyapunov exponent is defined as 

λ(x) = lim 1 n∑−1 ln |f 0x| (4.1) n→∞ n i=0 
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 |f 0(xi)| > 1 ∀xi ∈ R 

Taking the ln of both sides 

ln |f 0(xi)| > ln |1| = 0 n−1 

 ∑ ln |f 0(x)| > 0 (4.2) 

i=0 

Comparing equations (1) and (2),we divide the L. H. S. and R. H. S. of equation (2) by 

n. Evaluate the new equation as n −→ ∞ and that gives the Lyapunov 

exponent and is positive, hence f is sensitive to initial conditions. 

4.1.7 Period Three 

Definition 4.1.6 Let (X,f) be a dynamical system and be defined by the map. 

The map f is said to have a periodic point if for n > 0, f n(x) = x. 

For a given map, since n is a natural number. The map is said to have periodic point 

of period three when f3(x) = x . Period three is normally associated with chaos of 

dynamical systems and was first proved by Tien-Yien Li and James A. York in 1975.The 

theorem below is relevant to the relation of period three and chaos. 

Example 4.1.1 (Fotiou A.,2005) ) 

f : [−1, 1] → [−1, 1], f(x) = 2|x| − 1 Let x  

f  

x  

x  

Since 
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f3(x0) = (x0) 

then the map has period three point. 

Example 4.1.2 (Kulkarni P.R.,Borkar V.C,2015) 

Given 

x T 

The given map is defined on the interval [0,1] 

We want to show that the tent function has period three cycles 

Let x0 =  

4 

 T2(x0) = T( ) =  , x1 = 

7 

T22(x0) = T2(x1) = T( ) = 67 , x2 =  

T23(x0) = T2(x2) = T( ) = 27 , x3 =  

Since 

T2
3(x0) = (x0) 

then the tent function has a period three cycle 

Theorem 4.1.3 Period three theorem 

Let f : R → R be a continuous function . If f has periodic points of period three then f 

has periodic point of all other periods. 

Sarkovski generalizes this theorem and brings out which period directly implies other 

periods. Its important to understand his way of ordering of the number system so as 

to appreciate his contribution. 

3, 5, 7, 9, ...(List of all odd numbers except 1) 

2.3, 2.5, 2.7, ...(two times the odd naturals) 
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Continuing the process will yield multiples of two times the odd naturals and this 

exhaust all the natural numbers. 

Theorem 4.1.4 (Sarkovskii theorem)(Kulkarni P.R.,Borkar V.C,(2015)) If a continuous 

function has f : R → R has a point of period n. Where n preceeds k in the Sarkovskii 

ordering of natural numbers, then f has a periodic point of period k 

From the Sarkovskii ordering, three comes before all the odd listing. Hence a system 

with period three will have all other periods. 

 

Figure 4.1: Period three window and chaos 

We observe the period three window just at the point r = 3.828. From the figure, 

before that space no patterns could be detected form the diagram. The function is 

chaotic. Hence the conclusion period three implies chaos. 

4.1.8 Bifurcation And Period Doubling 

Bifurcation is defined as the changes in the structure of a dynamical system as a result 

of the changes in the parameter value. This changes is usually sudden and could be 

topological or qualitative. In such cases , we expect the dynamical system to be a 

function of of both the dependent variable as well as as the parameter in context. An 

example is x0 f(x, µ) 
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The idea of bifurcation can be grouped into two , which are global bifurcation and 

local bifurcation.In local bifurcation , the interest is is the changes that happens in the 

system near the fixed point.It is usually analysed through changes in stability 

properties, periodic orbits. Global bifurcation occurs when larger invariant sets of the 

system collide with each other. 

 

Figure 4.2: Diagram of Period Doubling 

From the figure, Period doubling occurs at the point r = 3, r = 3.45, r = 3.57, though 

some are more visible than others. Period doubling is the splitting of a trajectory into 

two during iteration. This unusual scene is influenced by the parameter value most of 

the time. Chaos is observed as the period doubling increases. This is because , the 

path of trajectory at certain points are mixed up and inseparable making the system 

chaotic. 

4.1.9 Topological Mixing 

Definition 4.1.7 A dynamical systems is topologically mixing if for each pair of open 

sets A, B ⊂ I, there exists N0 > 0 such that n > N0 implies fn(A) ∩ B 6= ∅. 
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A mixing map is obviously topologically transitive but the converse is not true. The 

mixing property is a strong topological property and can be considered in relation to 

chaos as a route. 

4.2 Types Of Chaos 

4.2.1 Li Yorke Chaos 

Definition 4.2.1 (Li,2015) Let x, y ∈ X. The pair (x, y) ∈ (X, X) is a Li-Yorke 

scrambled pair if 

lim sup d(f n(x), f n(y)) > 0 
n→∞ 

and 

lim inf d(f n(x), f n(y)) = 0 n→∞ 

A map is Li - Yorke chaotic if it has uncountable scrambled set in X. 

(x, y) is proximal but not assymptotic and that implies its Li-Yorke sensitive. Since d is 

a metric imposed on the iterates as n varies through to infinity, we could simply 

consider the distance between the iterate at some n. 

d(f n(x), f n(y)) = |(f n(x) − f n(y)| 

Ideally and generally, x 6= y(since they are two distinct points in X) are distinct 

points.The path of the trajectory for the two points irrespective of how close they 

may to each other at the beginning grows to a positive non-zero value.The closest 

distance at any point in the iteration is very small and equivalent to 

zero. 

A map with points of discontinuity are usually not Li-Yorke chaotic. Also this type of 

chaos is seen on subset of the real line(intervals) 
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4.2.2 Devaney Chaos 

Definition 4.2.2 (J. Banks ,J. Brooks, G Cairns, G. Davis and P. Stacey, 1992) Let X be a 

metric space. A continuos map f : X −→ X is said to chaostic if 

1. f is transitive 

2. the periodic orbit of f are dense in X 

3. f has sensitivity dependence on initial conditions. 

This definition of chaos is one of the widely known and accepted definitions in chaos 

theory. The foundation and basis of the definition is in the systems dependence on 

initial conditions. Later it was discovered that , once a system is transitive and has 

periodic orbit being dense, then sensitivity is assured. This makes the foundation of 

the defintion redundant. 

The property of transitivity and periodic orbits being dense in the set X, are invariant 

under topological conjugation. It points out the fact that the two are topological 

properties. A property is considered topological and preserved under topological 

conjugarion only if the space X is defined in terms of topology and as a compact space. 

Sensitivity to initial conditions is usually defined in terms of metric spaces and is 

therefore non-invariant under topological conjugation. 

4.2.3 Wiggins Chaos 

Definition 4.2.3 (Fotiou A.,2005) Let f : X −→ X be continuos map and X a 

metric space. 

The map is considered to be choatic if 

1. f is topologically transitive 

2. f has sensitivity dependence on initial conditions. 
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4.2.4 Lyapunov Definition Of Chaos 

Definition 4.2.4 (Fotiou A.,2005) Let f : R −→ R be a continuous differentiable map. 

The map f is said to be chaotic if 

1. f is topological transitive 

2. f has positive Lyapunov exponent. 

4.2.5 Knudsen Chaotic System 

Definition 4.2.5 Let F : X −→ X be a continuous map on a metric space (x, d), then the 

dynamical system < X, F > is chaotic according to Knudsen’s definition iff 

1. F has dense orbits 

2. F is sensitive to initial conditions 

4.2.6 Positive Expansive Chaotic System 

Definition 4.2.6 Let F : X −→ X be a continuous map on a perfect metric space 

(x, d). 

The dynamical system is positively expansive chaotic (E-chaotic) iff 

1. F is topologically transitive. 

2. F has dense periodic orbits. 

3. F is positively expansive. 

Example of E-chaotic maps include the one-sided shift dynamical system on 

the finite alphabet. 

The two-sided shift dynamical system is one of the scenarios when a map is 

Devaney chaotic but not Expansive chaotic. 



 

43 

4.3 Interelation Of The Various Types Of Chaos 

Most characteristics and properties can be inherited in the dynamical systems. Some 

of these properties are ; the existence of periodic orbits and transitivity. It is inherited 

via topological conjugacy. This helps in the study of unknown maps such that 

properties of the known maps can be associated with that of the unknown.Most 

topological properties are invariant under topological conjugacy in that these 

properties are preserved. Examples include topological transitivity, dense periodic 

orbit,Positive Lyapunov exponents. We note that , if via a given mapping say h, g and 

f are topologically conjugates, then if q is a fixed point of g , then h(q) shall be a fixed 

point of f 

Definition 4.3.1 Let p : X → X and q : Y → Y be two mappings. p is topologically 

conjugate to q if there exist a homeomorphism r : Y → Y such that r ◦ p = q ◦ r. 

Now, because of the homeomorphism r, we say that if is topologically conjugate to q, 

then the converse is true. We describe the homeomorphism r as a topological 

conjugacy between p and q. In other words, p and q are conjugate via the given 

mapping r. Below are examples of conjugacy 

Example 4.3.1 (Goodson, G. R. , 2015) Define fa : R −→ R by fa(x) = ax, for a ∈ R. 

If h(x) = x , h(f8(x)) = h(8x) = (8x)

 = 2x f2(h(x)) = f2(x ) = 2x 

h(f8(x)) = f2(h(x)) 

f2 and f8 are conjugates since h is a homeomorphism. 

Since the mappings in all two examples are conjugates topologically, they 

share same topological properties. Hence if any of the mappings is identified with any 

topological propety, we can as well associate the other mapping with that same 

property and vice versa. 
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Note 4.3.1 The tent function and the logistic function are topological conjugates via 

the homeomorphism 

h(x) = sin2( πx) 

2 

Now we have a look at the direct implications and equivalence in the various types of 

chaos: 

Expansive chaotic systems implies Lyapunov chaos. Expansivity implies positive 

Lyapunov exponents and hence sensitive dependence to initial conditions. In 

expansivity, there is a constant moving apart of nearby orbits as the number of 

iterations increases. For a system to have positive Lyapunov exponent , there should 

exist at least just a point where nearby orbits move apart. Since the converse is not 

true , then positive Lyapunov exponent does not guarentee expansivity. Of course , 

they share a common component of 

transitivity. 

Devaney chaos implies Wiggins chaos and Knudsen chaos and Lyapunov chaos. 

Sensitivity to initial conditions is a common component in all three chaos mentioned 

above whiles its equivalent of positve Lyapunov is used in Lyapunov’s definition. 

Now,Devaney chaos combines both topological transitivity and the existence of 

dense orbits . Since both Wiggins chaos, Lyapunov and Knudsen chaos depends on 

either of the two topological conditions , then Devaney chaos implies them all. A 

system that is Devaney chaotic has to be Wiggens chaotic, Lyapunov chaotic and 

knudsen chaotic. 

Positive expansive implies Wiggins chaos, Knudsen chaos and Lyapunov chaos. 

Wiggin’s definition, Knudsen chaos and Lyapunov’s definitions satisfies either the 

condition of transitivity or dense orbits. 
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In relation to Wiggins chaos, their distinct conditions are positive expansiveness and 

sensitive dependence to initial conditions. Expansivity implies sensitive dependence 

hence Positive expansive chaos implies Wiggin’s chaos. 

In the case of Knudsen chaos,Beyond the existence of dense orbit, the distinct 

condition is also sensitivity. Similarly, since expansivity implies sensitive dependence 

, expansive chaos implies Knudsen chaos. Also for positive Lyapunov exponents , the 

distinct condition is expansivity and positive Lyapunov exponents. Every expansive 

map has a positive Lyapunov exponent but the converse is not true.As said earlier, if 

just two orbits separate apart at a point in the iteration , the Lyapunov will be positive 

but the map might not necessarily be expansive. 

Wiggins chaos and Knudsen chaos imply each another and are quite 

similar or equivalent. They share a common property of transitivity. They also share 

an equivalent property of sensitivity and positive Lyapunov exponents. The difference 

in the two definitions is the space on which it is defined. Wiggins considers a a 

continuous map on a metric whiles Lyapunov deals with differentiable maps 

Knudsen chaos shares an equivalent property of sensitivity dependence to initial 

condition and positive Lyapunov exponents with Wiggins definition and Lyapunovs 

definition. In some systems, transitivity is equivalent to dense orbits though not 

always. In such systems , all three chaos are the same apart from the space on which 

each is defined. 

Devaney chaos and Li York chaos are interrelated via topological entropy. 

Deveney chaos implies positive topological entropy and the converse is not true. 

Positve toplogical entropy implies Li Yorke chaos and here too the converse does not 

hold. According to the law of transitvity in analysis Deveney chaos implis Li Yorke 

chaos. On the interval map Deveney chaos is the strongest whereas Li Yorkes chaos 

is the weakest. 
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Maps with discontinuity are usually not chaotic. 

From above , Devaney chaos implies Wiggins chaos, Lyapunov chaos and Knudsen 

chaos. Positive Expansive chaos iplies Wiggins chaos, Lyapunov chaos and Knudsen 

chaos. Possibly then, there should be a link between the two.The two defintions share 

two common property of topological transitivity and dense periodic orbit. Positive 

expansivity is a stronger property than sensitive dependence to initial conditions. 

since positive expansivity implies sensitive dependence, the Positve expansive chaos 

implies Deveney chaos. 

4.4 Chaos Of Some Maps 

Here and at this point we try to understand chaos in terms of a few known maps using 

the various routes like transitivity and positve Lyapunov exponent for sensitive 

dependence. Perhaps the idea of conjugacy would be relevant and graphical 

illustration where possible. 

4.4.1 The Tent map 

Given 

x T 

The given map is defined on the interval [0,1] 

h(x) = lim 1 ∑k ln |f 0(x1 | 

) 

x→∞ k i=1 

On the interval is the piece continuous function between 0 and , T0(x) = 

2 

Likewise on the interval between  and 1, T0(x) = −2 
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Now |T0(x)| = 2 in both cases. 

Since 

1 

∑n 0 | h(x) = lim∞ n 

i=1 ln |T (xi) n→ 

 1 n 

= lim ∑ ln 2 n→∞ n i=1 

= ln 2 

The tent map has positve Lyapunov exponent.(Hena Rani Biswas, 2013) 

Consider the tent map T : [0, 1] −→ [0, 1] given by 

 

2x 

T(x) = x 

0 ≤ x ≤ 0.5 

0.5 ≤ x ≤ 1 

First I will prove that T(x) is transitive. So we choose a positive number d such 

that 0  and the compact interval I . Then ∃ k ∈ N such that 2k

kd. The k-th iteration of T(x) gives Tk d, 2kd 

and the k+1-th iteration gives Tk  

T kd, 1]  

Continuing in the same way the k+2-th iteration of T is Tk+2(I) = [0, 2(1 − 

 m > 0 such that 

 
So ∃ k ∈ N for every subinterval J of [0, 1] at which Tk(I) ∩ J 6= ∅ ⇒ T is transitive and 

has dense periodic points. We can conclude that the tent map is chaotic at least under 

Devaney chaos since its also sensitive to initial conditions. 
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At this point we try to illustrate the idea of chaos in some well known maps(the tent 

map) using graphical analysis.This will be done using different iterates of the tent 

function. consider the iterations of the tent function as n gets larger (approaches 

infinity), the pattern in the diagram is lost gradually and it gets worse and worse.This 

is observed very clearly up to the seventh iteration. We notice the interval in the 

diagram reducing as the iteration furthered on. In iteration eight and nine, the 

behavior of the orbits seems to have changed entirely from the one we could predict 

as the half of the the previous iteration. At this point the regular periodicity is getting 

lost and chaos is eminent. Chaos just like its routes are experienced over time.  



 

49 

Figure 4.3: The Tent function 

From the iterations below there is an observed pattern. The preceding figure for the 

iteration is obtained by dividing the existing figure into two. This implies the number 

of fixed points increases as well. The fixed point are the points of intersection of the 

line y = x with the orbits of the diagram 
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Figure 4.4: Second iteration of the tent function 

 

Figure 4.5: Third iteration of the tent function 

This behavior continues clearly through from iteration one to seven 
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Figure 4.6: Sixth iteration of the tent function 

 

Figure 4.7: Seventh iteration of the tent function 

Both iteration eight and nine behave in a same pattern. The movement of their orbits 

has changed . The regular periodicity is lost. The routes to chaos at this point is 

becoming obvious and visible. 
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Figure 4.8: Eighth iteration of the tent function 

 

Figure 4.9: Ninth iteration of the tent function 

Graphically , the Tent map is observed to be chaotic as the iterations increases. This 

is typical of almost every chaotic map such that the phenomenon is observed for 

considerably long iterations depending on the nature of the map. Here we observed 

lost patterns . The various trajectories or orbits cannot be distinguished. Periodic 



 

53 

orbits have become so dense. Hence chaos is in motion and the tent map is therefore 

considered chaotic. 

 

Figure 4.10: Chaos of The Tent Map 

Chapter 5 

Conclusion and Recommendation 

5.1 Contribution To Open Question 

Here I intend to contribute to one of the questions in one of the papers I came across 

in my work. 

Are all Li Yorke sensitive systems Li-Yorke chaotic ?(Li, 2015) 

Sensitivity is considered a strong route to chaos. It is usually considered as an 

equivalence of positive Lyapunov exponents such that a system ought to be sensitve 
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dependent on initial conditions once it has a positive Lyapunov exponent. Of course , 

the converse is always true and holds for all systems. Li-Yorke chaos is a type of chaos 

defined by James A. Yorke and T. Y. Li. Their definition of chaos was based on the 

existence of scrambled pairs in a dynamical system. 

Definition 5.1.1 Let X be a compact metric space and T a continuous map. A dynamical 

system (X, T) has sensitivity dependence on initial conditions if ∃δ > 0 such that for x 

∈ X, and each e > 0, there is a y ∈ X with d(x, y) < e and n ∈ N such that d(Tnx, Tny) > 

δ 

Definition 5.1.2 A dynamical system (X, T) is called Li-Yorke sensitive if ∃ some δ > 0 

such that for any x ∈ X and ∈> 0, there is y ∈ X, satisfying d(x, y) < ε such 

that 

lim infd(Tnx, Tny) = 0 and lim supd(Tnx, Tny) > δ n→∞

 n→∞ 

Now Li Yorke sensitivity is a form of the general sensitivity dependence to initial 

condition which is a route to chaos. Its a specialized or improved from of sensitivity 

such that the conditions 

lim infd(Tnx, Tny) = 0 and lim supd(Tnx, Tny) > δ n→∞

 n→∞ 

must be satisfied. 

Definition 5.1.3 Let x, y ∈ X. The pair (x, y) ∈ (X, X) is a Li-Yorke scrambled pair 

if 

lim sup d(f n(x), f n(y)) > 0 
n→∞ 

and 

lim inf d(f n(x), f n(y)) = 0 n→∞ 

A system is considered Li-Yorke chaotic if it has uncountable scramble pair. 
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Li yorke chaos deals with the existence of uncountable scrambled pairs. For 

both Li Yorke sensitivity and Li Yorke chaos, 

lim infd(Tnx, Tny) = 0 
n→∞ 

In Li Yorke chaos 

lim sup d(f n(x), f n(y)) > 0 
n→∞ 

whiles for a Li Yorke sensitive system, ∃ some δ > 0 such that for any x ∈ X and ∈> 0, 

there is y ∈ X, satisfying d(x, y) < ε such that 

lim supd(Tnx, Tny) > δ 
n→∞ 

In Li-Yorke sensitivity, the metric d(x, y) < e must be met which implies that 

the two arbitrary starting points should be a distance less than e close. 

Next a positive δ is essential in Li-Yorke sensitivity in the sense that ∃δ > 0 such that x ∈ 

X, e > 0, there exists y ∈ X that satisfies the metric condition and 

lim sup d(f n(x), f n(y)) > 0 (5.1) 

lim sup d(Tn(x), Tn(y)) > δ (5.2) 

but δ > 0 and 

Tn(x) = f n(x) 

Tn(y) = f n(y) 

The combined equation from both (5.1) and (5.2) can be written as 

lim sup d(Tn(x), Tn(y)) > δ > 0 
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Equation (5.1) is captured in (5.2) and for a δ > 0, the right hand side of the equation 

below does not exist 

lim sup d(Tn(x), Tn(y)) > δ > 0 6= lim sup d(Tn(x), Tn(y)) > 0 > δ 

We conclude as follows : 

Li-Yorke sensitivity guarantees the existence of scrambled sets. 

Li-Yorke sensitivity is a special case of Li-Yorke chaos in that it satisfies all conditions 

of Li-Yorke chaos and certain extra restrictions. 

Hence All Li-Yorke sensitive system are Li-Yorke. 

I give a personal definition of chaos in the form of an inference. 

Every expanding map is chaotic. 

Expansivity implies topological mixing which implies transitivity. This is to include 

transitivity which is considered as one of the strongest and essential condition for 

chaos. 

I strongly think there should always be a way to calculate chaos or numerically 

determine chaos. Entropy usually is quite difficult to obtain numerically compared to 

Lyapunov exponent. Since every expansive map has positive Lyapunov , then by 

obtaining that , chaos is guarenteed. 

Lastly i think that gives a more stronger form of chaos in that the existence of sensitive 

dependence alone in itself would not and cannot guarentee chaos in dynamical 

systems. 
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5.2 Summary And Conclusion 

Dynamical systems is about the result trends as well changes observed over time 

concerning a particular real life scenerio and practice. Time is an important factor in 

the study of dynamical systems. The different behavior of various systems has 

become relevant to study and understand. The idea of dynamical systems has gone 

through phases and has even been accorded different names until now. Chaos 

gradually has become a part of our dairly lives. We still dont have one principled 

definition for chaos, but its defined based on the set of conditions it satisfies in terms 

of topology or metric. Different routes leads to the conclusion of systems being 

chaotic. The routes in terms of metric are usually measurable whiles the topological 

routes are usually analytical. The topological routes of a known map can be 

interelated to the properties of an unknown map such that the conclusion for the two 

maps are same. This is done through topological conjugation. Toplogical conjugation 

preserves topological properties but the same cannot be said for all metric properties 

of chaos. 

Devaney defintion of chaos is considered as a general and strong definition of chaos. 

Its is based on the strength of topological transitivity in the discovery of chaos. For a 

given map or dynamical system, a particular form of chaos may imply the other. It 

was observed that the tent map exhibits either non-periodicity at higher iterations or 

a different kind of periodicity. The tent has shown some properties of chaoticity. 

The mathematical language expressed by chaotic systems(especially sensitve 

dependence , transitivity and dense orbits) guarentees that a chaotic system passes 

the element of regularity, unpridictability abd indecomposability. The chaos of a map 

cannot be soley based on sensitive dependence or its equivalent relation of positive 

Lyapunov exponent. Transitivity is about the strongest property amongs all the 

conditions. Perhaps its the reason most definition has an aspect of transitivity. For 
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most maps, when transitivity fails, its likely if not obvious that the condition of dense 

orbits might fail. Of course, positve Lyapunov does not depend on transitivity. 

5.3 Recommendation 

1. It is recommended that extra attention and effort should be given to the study 

of chaos of other maps especially the lesser known maps like the horseshoe, 

bernoulli shift and others 

2. It is recommended that we explore other numerical mechanisms for 

determining chaos beyond the known Lyapunov exponents and 

topological entropy 

3. It is recommended that we develop other areas of dynamical in terms of their 

characteristics beyond chaos, the nature of their orbits and fixed points 
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Appendix A 

5.3.1 The Logistic Map 

Given the logistic map f(x) = 4x(1 − x) Let {x1, x2, x3, x4, ··· , xk} be a 

periodic orbit of the logistic map f. 

The stability of the given map is obtained by the derivative of f k 

The chain rule along a cycle, we have 

(f k)0(x1) = f 0(x1) · f 0(x2)··· f 0(xk) 

If f(x) = 4x(1 − x) f(x) 

= 4x − 4x2 f 0(x) = 4 

− 8x 

On the interval [0,1] 

 |f 0(x)| is between 0 and 4 

h(x1) = xlim→∞ 1k i∑=k1 ln |f 0(x1)| 

= ln 2 > 0 

Since h(x1) is true, the map is sensitive to initial conditions on the interval [0,1] (Hena 

Rani Biswas, 2013) 

Also in terms of topological properties, the logistic function has a conjugacy 

with the tent map via a homeomorphism, 
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h(x) = sin2( πx) 

2 

This allows us to conclude that, the logistic map and tent map share common 

topological properties. hence the logistic map is transitive and has dense periodic 

orbits. 

We conclude that the logistic map is chaotic.. 


