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Abstract

The Ghana Universities Staff Superannuation Scheme (GUSSS) like any other

pension scheme has income and expenditure patterns. However, whether inflows

Granger-cause outflows or outflows Granger-cause inflows is unknown. This study

investigates the state of the scheme, stability and long-term behaviors of the

scheme, analyze the Granger-causality of inflows and outflows of funds and struc-

ture of the scheme. In line with this objectives, secondary data of monthly inflows

and outflows of funds for the period 2003 to 2009 were collected. The data was

fitted to vector autoregressive (VAR) model of order one(1) and the model param-

eters were estimated by ordinary least squares(OLS) methods. It was found that

the model variables were stationary after first differencing. The system matrix

was also found the be stable. The Granger-causality test showed that outflows

Granger-cause inflows which means that outflows of funds in the previous month

has influence on the inflows of funds in the current month. Again, the impulse

response analysis showed that when one standard deviation shock was put to

the error term, the model variables initially fluctuated around the zero mean

but remained steady and positive in the long-run. We therefore recommend that

optimal investment portfolios must be adopted.
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Chapter 1

Introduction

1.1 Background to the study

Everyone needs money to use and save some for retirement or when they can no

longer work. Pensioners just as active workers need the following: food, shelter,

clothing, and other family and social commitments. Unfortunately, the tradi-

tional and customary ways of helping the aged to meet the above needs have

broken down due social change resulting from rural-urban migration and interna-

tional migration. Support from children and relatives are less reliable or totally

neglected.

Looking at how sad retirement without adequate income can be, there is the need,

all over the world and particularly Ghana, for private and public institutions to

put in place an appropriate pension schemes that will ensure brighter and better

life for their workers during retirement. It is for this reason that Governments

around the world have instituted pension schemes to better the lives of workers

after retirement.

In Ghana, several pension schemes have been instituted to cater for the plight

of Ghanaian workers after retirement. These include The Social Security and

National Insurance Trust(SSNIT), The Ghana Universities Superannuation Staff

Scheme (GUSSS),Provident Funds and other Life Insurance Schemes.

The Social Security and National Insurance Trust (SSNIT) was established in

1972 under NRCD 127 to administer the National Social Security Scheme. Prior

to 1972, the scheme was administered jointly by the then Department of Pen-

sions and the State Insurance Corporation. Until 1991, the Trust administered

a Provident Fund Scheme, which was converted into a Social Insurance Pension
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Scheme which was reformed in January 2010 by an Act of Parliament, Act 766.

The Act was first enacted on December 12, 2008 to replace the precious-Cap 30

and the SSNIT pension schemes.

The Ghana Universities Staff Superannuation Scheme (GUSSS) was established

on 1st January, 1976 by the Public Universities of Ghana namely: University

of Ghana(UG), Legon; Kwame Nkrumah University of Science and Technol-

ogy(KNUST), Kumasi and University of Cape Coast(UCC), Cape Coast which

now include University of Education, Winneba; University for Development Stud-

ies(UDS), Tamale and University of Mines and Technology(UMT), Tarkwa. The

Vice Chancellors of the Universities coordinate the affairs of the scheme.

Ghana Universities Staff Superannuation Scheme, KNUST branch, which is the

focus of this research, provides superannuation scheme for its staff after retire-

ment or when they can no longer work.

Membership of the Scheme includes:

• All existing members of GUSSS as at 1st January, 1976.

• University Teachers and Research Fellows

• University Administrative, Library, and Professional Staff of the status com-

parable with that of University Teachers.

• Any other category of staff permitted by the University Council to be a

member of the scheme.

The Scheme is administered by the Director of Finance under the control and

supervision of a Management Board consisting of the following:

• A Chairman appointed by the University Council from outside the univer-

sity.

• Four(4) members appointed by the University Council two(2) of whom shall

come from the Council and two(2) from outside the university.

• Two(2) members elected by the Academic Board.
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• One(1) non-teaching senior member elected by the senior members.

• One(1) senior staff and one(1) junior staff elected by their members.

• The registrar of the university.

Contributions to the Scheme are recovered directly from members’ salaries every

month by the Director of Finance and paid into the Bank account of the scheme.

Each member contributes a rate determined from time to time by members. No

contribution is received from members during the period of leave of absence with-

out pay. The university also contributes in respect of each member a rate fixed by

government of the basic salary from the date of joining the scheme until retiring

date.

The accounts of the scheme is kept by the Director of Finance of the univer-

sity under the directive of the management board in such a form to show the

state of and condition of the scheme annually.

A member of the scheme qualifies to benefit fully under the scheme if he/she

satisfies the compulsory retirement age or voluntary retirement age of which the

55 years is the minimum. In addition to this, a member should have contributed

to the scheme for a minimum period of fifteen(15) years. In the event where a

member does not qualify for the benefits under the scheme due to the fact that

he/she could not attain the minimum pensionable age or serve the minimum

contribution period he/she will be paid his contribution (both employers and

personal) including interest at a rate equivalent to 91-day Government of Ghana

Treasury Bill.

Pension Fund all over the world has one of the most stable source of funds and

the KNUST branch of GUSSS is no exception. Cash inflows come from two main

sources. The first being the contribution made by members personally and by
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their employer. The second being the revenue generated from the investments

made. In view of this, the sources of funds are stable and extremely predictable.

The scheme like any other pension fund makes some expenditures which is termed

as outflows. Cash outflows are in the form of retirement benefits, gratuities,

management expenses and bank charges. These expenses are also extremely pre-

dictable due to the fact that retirement benefits due members can be estimated

far in advance before the actual payment date. However, payments made out of

the scheme due to dismissal,vacation of post or premature death of a member in

service are unpredictable. Nonetheless, these demands usually represent a small

percentage of the fund outflows.

1.2 Problem Statement

Growing old is a universal, irreversible and inescapable. Because of the changing

demographics, the age expectancy in Ghana is increasing. It is now about sixty-

four (64 years). More and more people are now living longer than before and it

is expected that pensioners will continue to live longer.

In view of this, pension fund in which pensioners draw their pension benefits must

be robust.

Pension fund receives contributions from members and invest the funds received

in order to provide an income for the members in the future.

The fund is to be self-financing and self-sustaining through the contributions of

members.

The success of every pension fund thrives on the strength of the regulatory system

on which it is established. Pension regulations set out specific guidelines as to

how funds are managed and determined investment policies allowed, as well as

the supervisory and regulatory guidelines that are put in place to safeguard the

fund.

The fund receives income in the form of contribution from members and their
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employers, spend them in the form of investment and the payment of pension

benefits. However, whether inflows Granger-cause outflows or outflows Granger-

cause inflows is unknown.

1.3 Objectives of the study

This research aims at investigating:

• the state of the scheme.

• stability and long-term behavior of the scheme.

• Granger-causality analysis of inflows and outflows.

• structural analysis to ascertain the responsiveness of shocks or impulses or

innovations to the model.

1.4 Methodology

1.4.1 Sample Data

This is based on Ghana Universities Staff Superannuation Scheme,KNUST. Pri-

mary and secondary data on inflows and outflows from 1999 to 2009 were taken

for the study.

1.4.2 Statistical Identification of the System

Time series analysis particularly Vector Autoregressive of order one (1) will be

used to identify the system dynamics. The data on funds flow will be fitted to

VAR (1) and the model parameters will be estimated by Ordinary Least Squares

(OLS) method. Granger-causality test will be used to determine the forecast

ability of the model Again, structural analysis will be carried out to identify the

relationship between inflows and outflows when there is a shock to the error term
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in the model. All estimations were carried out by a Statistical Software called

STATA.

1.5 Justification

The constitution of Ghana clearly specifies that the ” state shall provide social

assistance to the aged such as will enable them to maintain a decent standard of

living” (Republic (1992), article 37, section 6b). It is in this line that GUSSS was

instituted to provide a decent retirement benefits to its employees. It is therefore

indisputable fact that the study of the relationship between inflows and outflows

will afford scheme managers the necessary foresight in their investment options

to ensure the sustainability of the scheme.

The findings from the study will also serve as a documentary guide to scheme

managers in future amendment of any provisions of the scheme.

Again, the study will form the basis for further research into the activities of

GUSSS to ensure continuity of the scheme.

1.6 Organization of the study

This study is organized in five chapters. The first chapter deals with background

of the study, problem statement, objectives of the study, methodology, justifi-

cation and organization of the study. Chapter 2 presents the relevant literature

review of the concept of pension, types of pension schemes, risks in pension

scheme and investment policies of pension schemes. Chapter 3 presents appro-

priate methodology for structural and Granger-causality analysis for the funds

flow. It basically provides the means upon which the parameters of the model

are estimated.

Chapter 4 consists of data modeling and analysis. The final chapter discusses the

findings, conclusion and recommendations.
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Chapter 2

Literature Review

This chapter contains review of related literature associated with superannua-

tion(pension) and social security; as well as empirical studies that have been

done relating to the current study.

Superannuation is a regular payment made into a fund by an employee toward

future pension. Thus, a pension is a process by which employers of labour agree

to ease the sufferings of its employees’ in the long run by putting in place a wel-

fare package that would take care of them when they are labour-inactive, retired

or have changed jobs. Olaniyan (2004) takes pension to be a systematic plan by

an employer to give benefits to their employees when they decide to leave the job

either through retirement or change of job.

There are two types of pension scheme: private and public. A public pension

scheme is a social welfare security made to the retired, elderly and those that

have changed jobs in the public sector of the economy. According to Heller

(1998), the aim of public pension programme is not to raise the savings rate, but

rather to provide income security, or at least a minimum income for the elderly.

A private pension scheme is a social security scheme managed and administered

by the private sector in order to provide help and relief to elderly and retired

employees at the time when they are not economically active. This scheme is

defined benefit in nature, as employees save part of their income to receive it

with the returns of its investment by the time they have retired or changed jobs.

Nearly half of all private sector employees participate in a retirement plan, and

the pension costs are approximately 55 per cent of payroll for the sponsoring

firms (US Chamber of Commerce, 1994).
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Different classifications had been given to pension systems in the pension liter-

ature; however, essentially, pension systems ought to be between defined benefit

and defined contribution (DC) systems. Kotlikoff (1996) takes pension systems

to be between Pay-AS-You-Go (PAYG) and defined contribution fully funded

(DCFF) pension programmes.

McGreenvey (1990) also made a distinction between PAYG, DCFF and National

Defined Contribution Accounts. However, a wider viewpoint was brought to this

classification by Linbeck and Persson (2003). They classified pension systems as

being between defined contribution and defined benefit, funded and unfunded,

and acturial and non-acturial pension systems.

Due to these different classifications of pension systems, countries move from

one regime of classification to another in quest for a suitable and appropriate

pension for its employees. All over the world, pension schemes have undergone

reforms in recent years to make the systems more sustainable, equitable and

growth-enhancing.

Chang and Jaegar (1996) opined that it is generally accepted among the members

of the Organization for Economic Cooperation and Development (OECD) that

existing pension regimes may be financially unstable, and that as the population

ages they require substantial reform to forestall the emergence of large public

sector deficits and reductions in national saving. Linbeck and Persson (2003)

believe that pension reforms is a result of concern over the long-term financial

viability of existing government-operated pension systems.

Hu (2005) empirically examined pension reform, economic growth and financial

development. The study used panel data analysis to find a negative relation-

ship in the short run and a positive relationship in the long run, although the

results for OECD countries are not very statistically robust. Another empirical
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test focused on pension fund assets and economic growth. A positive relationship

between these two variables is found by the standard economic growth specifica-

tion; in addition, evidence exists that pensions are a good predictor of economic

growth. The panel Granger causality test confirmed this result. The final test

deals with the relationship between pension assets and financial development.

Hence, the panel correction model and panel Granger causality test suggest that

pension fund growth leads to financial development, although some sub-group

estimations are not strong.

Khorasanee (1996) used deterministic and stochastic models to assess the risks

and benefits of obtaining a pension from a retirement fund by means of

• the purchase of life annuity providing a level monetary income.

• the withdrawal of income from a fund invested in equities.

In each case the projected cash-flows are compared with those from a life annuity

providing an income linked to price inflation. He concluded that although each

of the two options considered involve significant risks, they may nevertheless be

attractive to certain groups of pensioners, in particular those with additional sav-

ings held outside the retirement fund.

Higgs and Worthington (2012) estimated economies of scale and scope for 200

large Australian superannuation (pension) funds using a a multiple-output cost

function. They separately defined costs in terms of investment expenses - in-

cluding investment, custodian and asset management fees and operating ex-

penses - comprising management, administration, actuarial, director and trustee

fee/charges. The four investment outputs are cash flow-adjusted net asset, the

number of investment options, the proportion of total assets in the default strat-

egy and the 5-year rate of return for investment costs, whereas the four operating

outputs are cash flow-adjusted net assets, the number of members, net contri-

bution flows and net rollovers of operating costs. They found that economies
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of scale hold up to at least 300 per cent of current mean fund output in both

investment and operating costs. There was very little evidence that economies of

scope prevail, generally reflected in the proclivity for many superannuation funds

to contract out aspects of both investments and operations.

Dixion (2000) ranked the social security systems in 45 African countries using

a comparative evaluation methodology that enables an assessment to be made of

the country’s statutory social security intention. He concluded that the spread of

African social security system design standards are comparable to those of Latin

American countries, although the poorest designed African systems are somewhat

superior to their Latin American counterparts. They very best designed African

social security systems are in North Africa: Tunisia (with its world-class family

support program), Algeria and Libya, although Mauritius also stands out.

Palacios and Whitehouse (2006) compared civil pension schemes across coun-

tries in terms of benefit provision and cost. They found that in many developing

countries, these expenditures have greater fiscal burden than in higher income

countries where the tax base is larger. They also compared schemes within the

same country covering private sector workers. They finally reviewed key policy

issues related to pension schemes covering civil servants as well as other public

sector workers, and found that there is particularly little justification for main-

taining parallel schemes in the long run.

Iglesias and Palacios (2000) studied how publicly-managed pension funds invested

and how their returns compare to relevant benchmarks. The management of these

funds have a direct effect on financial sustainability and potential benefit levels.

It also has important indirect effects on the overall economy when the funds are

large. They found out that publicly managed pension funds (i) are often used to

achieve objectives other than providing pensions (ii) are difficult to insulate from
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political interference and (iii) tend to earn poor rates of return relative to relevant

indices. Their findings were consistent across countries of all types, but returns

are especially dismal in countries with poor governance. The experience to date

suggests that the rationale for prefunding have been seriously undermined by

public management of pension reserves. Countries with serious governance prob-

lems should probably avoid funding altogether.

Bruinshooted and Grob (2006) studied how changes in pension incentives af-

fect retirement in the Netherlands. The study used stated rather than a reviewed

preference approach, and conducted a field survey questionnaire in the Dutch De

Nederlandsche Bank (DNB) Household Survey to derive empirical estimates of

pension adjustment and pension wealth effect. They found out that retrench-

ments of pensions arrangement to the effect of rising the standard retirement age

by 1 year induced people to postpone retirement by approximately half a year on

average. Retirement postponement varies across people, depending prominently

on earnings and non-pension wealth; wealth through earlier retirement whereas

they readily accept a lower benefit in case of decrease in pension wealth.

Borsch-Supan et al. (2005) used a multi-economic stimulation model to show the

relationship among ageing, pension reform and capital flows. In order to quan-

tify the effects, the study developed a computational general equilibrium model

by feeding a multi-country overlapping generation model with detailed long-term

demographic projection for seven world regions. The outcome of the simulation

indicates that capital flows from fast-ageing regions to the rest of the world will

initially be substantial, but that the trend is reversed decumulated savings. They

concluded that closed economic models of pension reform missed quantitatively

important effects of international capital mobility.

Berkel and Borsch-Supan (2003) investigated the effect of pension reform on
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retirement decisions in Germany , and focused particularly on the long-term

implication of the changes implemented in pension legislation since 1992 and the

reform discussed by the Germany Social Security Reform Commission. The re-

sults of the simulations indicate that the early retirement pension adjustment

factors introduced by the 1992 pension reform will, in the long run, raise the

average effective age of retirement for men by somewhat less than 2 years. The

across-the-board, 2-year increase in all the relevant age limits proposed would

raise the effective average age of retirement of men by approximately 8 months.

If the actual adjustment factor is increased from 3.65 to 65 percent year, the

effective average retirement age rises by approximately 2 years, the effects are

considerably weaker for women.

Jaag et al. (2007) investigated the impact four often-proposed policy measures

for sustainable pension: strengthening the tax benefits link, moving from wage

to price indexation of benefits, lengthening calculation periods, and introducing

more actuarial fairness in pension assessment. The study provided some analyt-

ical results and used a computational model to demonstrate the economic and

welfare impact of recent pension reform in Australia.

In addition, Stensnesss and Stolen (2007) studied the effects of pension reform on

fiscal sustainability, labour supply and equity in Norway. The study used Statis-

tics Norway’s dynamic micro-simulation model, MOSART. The result showed

that the reform will simulate labour supply and improve public budgets, but will

also lead to an increase in inequality in received pension benefit.

In the same vein, Fisher and Keuschnigg (2006) evaluated the effects of pen-

sion reform on labour market incentives. They also showed parametric reform

in Pay-As-You-Go pension with tax benefit link effects retirement incentives and

work incentives of prime-age workers in the presence of a tax benefit link thereby
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creating a policy trade-off in simulating aggregate labour supply. The article

shows how several popular reform scenarios are geared either toward young or

old workers, or indeed both groups under appropriate conditions. They also pro-

vide a strong characterization of the excess burden of pension insurance and show

how it depends on the behavioral supply elasticities on the extensive and inten-

sive margins and the effective tax rates implicit in contribution rates.

Bonin (2009) surveyed the state of the German pension system after a sequence

of reforms aimed at achieving long-term sustainability. He argued that in princi-

ple, the latest reforms have moved pension provision in Germany from a defined

benefit to a defined contribution scheme, and that this move has stabilized pen-

sion finances to a great extent. The article further argued that the real economic

consequences of the global financial crisis poses threat to the care success fac-

tors of the reforms, which are cutting pension levels and raising the mandatory

pension age. Finally, the article discussed possible reform measures, including

the option to install a fourth pillar providing income retirement through working

after pension age.

Salen and Stahlberg (2007) studied the reason why the Swedish pension reform

was able to be successively implemented. They argued that governments that do

not reform Pay-As-You-Go pension systems will eventually face a pension crisis.

In a democracy, reform requires majority support. The problem is that pensions

require today’s generation to bear the burden for tomorrow’s generation. Sweden

passed pension legislation that specifies a gradual transition from a public defined

benefit plan to a defined contribution plan. They found that a political-economic

perspective helps to solve this problem that there are more winners who would

vote in favour of the reform than non-winners who would vote against it. The net

effect (present value of expected benefits minus present value remaining contri-

butions) of the new and old system contributions of the working generation (age
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< 53 years) are reduced by more than expected benefits.

Finseraas (2007) analyzed pension policies in 21 OECD countries in the period

1994-2003, using the OECD’s reform intensity score in the area of early retire-

ment with the old-age pension scheme as the dependent variable. The importance

of left strength parliament, institutional veto points and corporation is assessed

through the use of scatter plots based on ordinary least squares regression. The

empirical results show that reform intensity is driven by initial conditions rather

than political and institutional variables. Hence, the political elites appear to

be able to overcome obstacles to reform and implement necessary changes when

there is sufficient pressure for reform.

Olanike and Idowu (2010) used error correction model to evaluate the effect of

public pension reform on civil servants in Nigeria. The principal aim of the article

was to test the effect and show the long-run relationship that exists between pen-

sion scheme reforms and employees’ welfare using panel data. They discovered

that different reforms had been made to Nigeria’s pension scheme over the years,

but not all have been able to meet the expectations of the employees in terms of

social security and risk aversion in old age. Also, many countries have adopted

different pension plans that have resulted in increased social security and wealth

of retired and aged employees, but that of Nigeria has been problematic owing

to the inadequate disbursement of pension funds and corruption of government

officials. They further found that there has been an inverse relationship between

pensions and the welfare of employees, and that the same negative relationship

exist between years of service of employees and welfare. However, the gratuity

paid to public sector employees has a direct relationship with employees’ welfare.

They subsequently concluded that the pension scheme adopted by Nigeria is not a

welfare-enhancing scheme, and that there should be an adjustment to the scheme

in terms of its implementation, administration and coordination.
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In view of the aforementioned, it is evident that the various studies conducted on

pension schemes have affected pension provisions in both developed and develop-

ing countries. It is expected that the current study would contribute the above

studies and would also improve pension provision on Ghana.
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Chapter 3

Methodology

3.1 Introduction

The main aim of this chapter is to explain the basic concepts of difference equa-

tion, vector difference equation, eigenvalues and eigenvectors, stability analysis

of vector difference equation of order one(1) and ultimately vector autoregressive

models.

3.1.1 Difference Equation

Difference equation is an equation involving differences. It also refers to a specific

type of recurrence relation. Again, it is a formula for computing an output at a

time t based on past and present input samples and past output samples in the

time domain.

Difference equation can been seen from at least three points of views: as a se-

quence of numbers, discrete dynamical system and iterated function. They are

all the same but we look at them from different perspective.

1. Difference equation is a sequence of numbers that are generated repeatedly

using a rule to relate each number in the sequence to previous numbers in

the sequence. For example, the sequence {1, 1, 2, 3, 5, 8, 13, 21, ...} is called

Fibonacci sequence, generated with the rule Fk+2 = Fk+1 + Fk for k =

0, 1, 2, 3, ... and initial values F0 = F1 = 1.

2. Difference equation is a discrete dynamical system that takes some discrete

input signal and produces output signal. For example, the dynamical sys-

tem Dk = 2Dk−1 − 1.5uk take a unit step input
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uk =


0 for k = −1,−2,−3, · · ·

1 for k = 1, 2, 3, 4, 5, · · ·

will produce output of

Dk =
3

2
(1− 2k+1)

.

3. Difference equation is an iterated map Ik+1 = f(Ik) if we see the sequence

as iterated function: I0,f(I0),f(f(I0)),f(f(f(I0))), ... The f(I0) is the first

iterate of I0 under f.The notation fm(I0) is the mth iterate of I0 under f.

For example, f 3(I0) = f(f(f(I0))). The set of all iterates of I0 is called the

orbit of I0. For instance, the iterated function Ik+1 = f(Ik) = I2k for I0 = 1

will produce orbit {1, 1, 1, 1, ...}. If I0 = 2, the iterated function generated

will be {2, 4, 16, 256, 65536, 4294967296...}. It is clear that knowing only

the rule is not sufficient to know how the sequence behaves. The initial is

also very important.

3.1.2 Homogeneous Equation

Equations of the form

Xt = αXt−1 (3.1)

where α is a constant are called homogeneous equations. They involve the terms

Xt and Xt−1.

3.1.3 Non-Homogeneous Equation

Non-Homogeneous are of the form

Xt = αXt−1 + c (3.2)

17



where α and c are constants. They are called non-homogeneous due to the extra

term c, but α and c are still constants.

3.1.4 Solutions to Difference Equation

A solution of a difference equation is an expression (or formula) that makes the

difference equation true for all values of the integer variable t. The nature of a

difference equation allows the solution to be calculated recursively. It is easier

to see the solution of the difference equation through algebraic equation. For

example, if we have a difference equation

Xt = aXt−1 + b (3.3)

with initial value X0 = c, then we can determine the:

t = 0;X0 = c

t = 1;X1 = aX0 + b = ac+ b

t = 2;X2 = aX1 + b

X2 = a(ac+ b) + b

X2 = a2c+ b(1 + a)

t = 3;X3 = aX2 + b

X3 = a(a2c+ b(1 + a) + b)

X3 = a3c+ ab+ a2b+ b

X3 = a3c+ b(1 + a+ a2)

t = 4;X4 = aX3 + b

X4 = a(a3c+ b(1 + a+ a2) + b

X4 = a4c+ ab+ a2b+ a3b+ b

X4 = a4c+ b(1 + a+ a2 + a3)

...

t = n;Xn = anc+ b(1 + a+ a2 + ...+ an−1).
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There is an exponential sequence

1 +a+a2 +a3 + ...+an−1 to be summed. This sequence has first term of 1, n− 1

terms and a common ratio of a.

However, the series
n−1∑
i=0

ai = 1 + a+ a2 + ...+ an−1

has a closed form
n−1∑
i=0

ai =
1− an

1− a
,

for a 6= 1.

Thus, the solution of the difference equation

Xt = aXt−1 + b,X0 = c

is

Xn = anc+ b(
1− an

1− a
), (3.4)

if a 6= 1.

Stability Criteria of Equation (3.4):

Xn,will be stable if |a| < 1.

Xn,will be unstable if |a| > 1.

Xn,will oscillate if a < 0.

Xn,will change monotonically if a > 0.

3.1.5 Vector Difference Equation

A vector difference equation is a difference equation in which the value of a vector

(or matrix) of variables at one point in time is related to its own value at one or

more previous points in time using matrices. Sometimes, the time-varying object

may itself be a matrix. The order of the equation is the maximum time gap

between any two indicated values of the variable vector. For example, Yt = AYt−1

is an example of first-order matrix equation, in which Y is an (n × 1) vector of
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variables and A is (n × n) matrix. The equation Yt = AYt−1 + BYt−2 is also an

example of a second-order matrix equation in which Y is an (n × 1) vector of

variables, and A and B are (n× n) matrices.

3.1.6 Homogeneous Vector Difference Equation

The equations Yt = AYt−1 and Yt = AYt−1 + BYt−2 are homogeneous vector (or

matrix) equations because there are no constant terms added to the end of the

equations.

3.1.7 Non-Homogeneous Vector Difference Equation

The equations Yt = AYt−1 + b and Yt = AYt−1 +BYt−2 + b with additive constant

vector b are examples of non-homogeneous vector equations.

3.1.8 Solution of Vector Difference Equation

Let us assume that we have a homogeneous vector difference equation of the form

Yt = AYt−1, then we can iterate and substitute recursively from the initial con-

dition, say Y0 = k, which is the initial value of the vector Y and which must be

known in order to find the solution:

t=1; Y1 = AY0 = Ak

t=2; Y2 = AY1 = AAk = A2k

t=3; Y3 = AY3 = AAAk = A3k, and so forth.

By induction, we obtain in terms of t:

Yt = Atk = DQtD−1k (3.5)
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where D is an (n× n) matrix whose columns are the eigenvalues of A (assuming

the eigenvalues are all distinct) and Q is an (n× n) diagonal matrix whose diag-

onal elements are the eigenvalues of A.

At shrinks to zero matrix over time if and only if the eigenvalues of A are less

than unity in absolute value.

3.2 Eigenvalues and Eigenvectors

Definition 1 The number λ is an eigenvalue of a square matrix A if and only if

A− λI is singular, that is,

det(A− λI) = 0 (3.6)

where det is determinant.

Definition 2 A singular matrix is an n× n) matrix whose determinant is equal

to zero.

3.2.1 Determination of the Eigenvalues of a Matrix

To solve the eigenvalue problem for an (n× n) matrix A, we fellow these steps:

1. Calculate the determinant of A−λI. With λ subtracted along the diagonal,

this determinants starts with λn or −λn. It is a polynomial in λ of degree

n.

2. Find the roots of this polynomial, by solving det(A− λI) = 0. The n roots

are the eigenvalues of matrix A. They make A− λI singular.

3. For each eigenvalue λ, solve

(A− λI)v = 0 (3.7)
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to find an eigenvector.

Definition 3 A non-zero vector v which satisfies the equation (A− λI)v = 0 is

said to be an eigenvector of A corresponding to λ.

3.2.2 Determination of the Eigenvectors of a Matrix

To calculate the eigenvectors of a matrix, you must first determine the eigenvalues.

Substitute one eigenvalue λ into the equation (A− λI)v = 0 and solve for v; the

resulting non-zero solutions form a set of eigenvectors of A corresponding to the

selected eigenvalue. This process is repeated for each of the remaining eigenvalues.

Example 3.2.1 Given

A =

 2 −1

−1 2

 .

The eigenvalues of A come from det(A− λI) = 0:

det(A− λI) =

∣∣∣∣∣∣∣
2− λ −1

−1 2− λ

∣∣∣∣∣∣∣ = λ2 − 4λ+ 3 = 0.

This factors into (λ− 1)(λ− 3) = 0, so the eigenvalues of A are λ1 = 1

and λ2 = 3.

The eigenvectors come separately by solving (A− λI)v = 0 which is Av = λv:

λ1 = 1 : (A − λI)v =

 1 −1

−1 1


 v1

v2

 =

 0

0

 gives the eigenvector

v1 =

 1

1


λ2 = 3 : (A− λI)v =

 −1 −1

−1 −1


 v1

v2

 =

 0

0


gives the eigenvector v2 =

 1

−1

 .
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3.3 Stability Analysis of Vector Difference Equa-

tion of Order One(1)

The stability of a vector difference equation of a homogeneous system could be

summarized in the theorem below.

Let Xt be an (n× 1) vector at time t and A be a known (n×n) matrix, then the

stability of the homogeneous equation this, Xt = AXt−1 depends on the nature

of the eigenvalues of A. Thus,

Xt = AXt−1 (3.8)

is

1. Stable if all eigenvalues of A satisfy |λi| < 1, i = 1, 2, ...

2. Neutrally Stable if some |λi| = 1 and other |λi| < 1, i = 1, 2, ...

3. Unstable if at least one eigenvalue has |λi| > 1, i = 1, 2, ...

In the case of stable, the powers At approach zero and so does the solution

Xt = AtX0.

3.4 Vector Autoreggressive Models

3.4.1 Introduction

One of the most effective, adaptable, and easy to use models, in the three decades,

for the analysis of multivariate and bivariate time series is the vector autoregres-

sive (VAR) models. In the past,multivariate simultaneous equation models were

used for macroeconometric analysis until Sims (1980) analysis, and the resulting

casual impacts of unexpected shocks or innovations to specified variables on the
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variables in the model are summarized. Impulse response analysis and forecast

error variance decompositions are normally used to summarized these casual im-

pacts.

Sims (1980) encouraged the use of vector autoregressive models as an alternatives

for describing the dynamic behaviour of economic and financial time series, and

for forecasting.

Beside data description and forecasting, VAR models provide a consistent and

reliable method for structural inference and policy analysis. Certain assumptions

are imposed in structural

3.4.2 Terminology, Notation and General Assumptions

The time series variable Yt is called integrated of order d, that is, I(d) if stochastic

trends can be removed by differencing the variable d times and a stochastic trend

stills remains after differencing only d− 1 times.

Johansen (1995) describes the differencing operator ∆ such that ∆Yt = Yt−Yt−1,

the variable Yt is I(d) if ∆dYt is stationary whereas ∆d−1Yt still has a stochastic

trend.

The symbols I(0) and I(1) denote all variables that are assumed to have no

stochastic trend and variables assumed to have stochastic trends respectively.

A K-dimensional vector of time series variables Yt = (y1t, ...yKt)
′ is called I(d)

or Yt ∼ I(d) for short, if at least one of its elements is I(d). Making use of this

terminology,it is possible that some elements of Yt may be I(0) independently if

Yt ∼ I(1).

A set of I(d) variables is called cointegrated if a linear combination exists which

is of lower integration order, then the variables have elements of common trend.

The I(d) is a term which only refers to the stochastic properties of the variables.

To simplify matters, we assume that deterministic elements will normally be at

most linear trends of the form E(Yt) = µt = µ0 + µ1t. There is just a constant

term in the process if µ1 = 0. We sometimes assumed that there is no determin-
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istic term if µt = 0.

The transpose, inverse, trace, determinant and rank of the matrix A are denoted

by A
′
, A−1, tr(A), det(A), and rk(A) respectively. The matrix (n × (m + k))

denotes the matrices A(n×m) and B(n× k).

For a matrix A(n × m) where n > m, A⊥ denotes an orthogonal complement,

that is, A
′

⊥A = 0 and [A : A⊥] is a nonsingular square matrix.

The symbols vec, ⊗ and In denote the column vectorization operator, the Kro-

necker product and an (n× n) identity matrix respectively.

The set of all positive integers, natural numbers and complex numbers are de-

noted by Z, N, C respectively.

For a time series variable Yt, the lag operator L shifts the time index backwards

by one period i.e. LYt = Yt−1 and |x| denotes the absolute value for the number

x.

With regard to distribution and stochastic processes, the following conventions

are used. The symbol ‘ ∼ (µ,
∑

)′ is the abbreviation for ‘has a distribution

with mean (vector) µ and (co)variance matrix
∑

’ and N(µ,
∑

) denotes a (mul-

tivariate) normal distribution with mean (vector) µ and (co)variance matrix
∑

.

Convergence in distribution is denoted by→d and plim stands for the probability

limit. Independently and identically distributed is represented by iid. A stochas-

tic process µt with t ∈ Z or t ∈ N is called white noise if the u′ts are iid with

mean zero, E(ut) = 0 and positive definite covariance matrix
∑

u = E(utu
′
t).

The following abbreviation are also used. DGP, VAR, SVAR, and MA for data

generation process, vector autoregression, structural vector autoregression and

moving average respectively. Also ML, OLS, GLS, LM, LR, MSE and RMSE

stand maximum likelihood, ordinary least squares, generalized least squares, La-

grange multiplier, likelihood ratio, mean squared error and root mean squared

error respectively. The natural log is abbreviated as log.
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3.4.3 Vector Autoregressive Processes

The Reduced Form Model

Let Yt = (Y1t, Y2t, ...YKt)
′

denote (K×1) vector of K related time series variables.

The reduced VAR model is of the form

Yt = µt +Xt (3.9)

where µt is the deterministic part and Xt is entirely the stochastic process with

zero mean.

The deterministic term µt has at most a linear trend if µt = µ0 +µ1t. It may also

be zero (µ0 = 0) or just a constant (µt = µ0). It therefore raises doubts when

used in the context of forecasting. Because of this, they are not recommendable

in applied VAR analysis.

Assuming Xt is a VAR process of order p,then Xt, which is the stochastic part,

is of the form

Xt = B1xt−1 +B2xt−2 + ...+Bpxt−p + ut (3.10)

whereBi are (K×K) parameter matrices for i = 1, .., p and ut = (u1t, u2t, ..., uKt)
′
,

which is the error process, is a K-dimensional zero mean white noise with (co)variance

matrix E(utu
′
t) =

∑
u.

In lag operator notation, the VAR(p) can be written as

B(L)Xt = ut (3.11)

where B(L) = IK −B1L−B2L
2 − ...−BpL

p.

The VAR(p) is stable if

det(IK −B1z −B2z
2 − ...−Bpz

p) 6= 0 (3.12)
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for z ∈ C, |z| ≤ 1.

Equivalently, if the eigenvalues of the companion matrix have modulus less than

one, then the VAR(p) process is stable.

Assuming the VAR(p) process has been initialized in the infinite past, the a sta-

ble VAR(p) process is stationary and has time invariant means, variances and

covariance structure.

However, if det(IK −B1z −B2z
2 − ...−Bpz

p) = 0 for z = 1, then the VAR(p) is

non-stationary and the variable may be cointegrated.

Structural VAR Form

Kilian (2011) proposed as structural model of the form

BYt = v∗0 + v∗1t+B∗1yt−1 + ...+B∗pyt−p + vt (3.13)

where (K ×K) matrix B indicates the direct relations, v∗i = Bvi for i = 0, 1 and

B∗j = BBj for j = 1, ..., p.

vt = But, which is the error term, is iid white noise with covariance matrix∑
v = B

∑
uB

′
. The matrix B sometimes has ones on its main diagonal. Natu-

rally, matrix B is chosen such that
∑

v is a diagonal matrix.

A major concern of structural VAR analysis is to identify the relations between

the variables or the structural shocks.
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3.4.4 Estimation of VAR Models

Stationarity Test Before VAR Estimation

A shock is usually used to describe an unexpected change in a variable or in the

value of the error terms at a particular time period.

When we have a stationary system, effect of a shock will die out gradually. But,

when we have a non-stationary system, effect of a shock is permanent.

Unit root test is one of the tests used to verify whether or not a time series

variable is stationary. There are three(3) common unit root test, namely:

1. Augmented Dickey-Fuller (ADF)

2. Philips-Perron (PP)

3. Dickey-Fuller-GLS (DF-GLS)

The Augmented Dickey-Fuller(ADF) Test

Consider the AR(1) regression model

Yt = θYt−1 + εt (3.14)

The unit root null hypothesis against the stationary alternative corresponds to

H0 : θ = 1

against

HA : θ < 1

The Dickey-Fuller(DF) test is simply the t-test for H0:

T̂ =
θ̂ − 1

SE(θ̂)

where θ̂ is the ordinary least square estimate and the SE(θ̂) is the usual standard

error estimate.
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The DF unit root tests initially assumed that under the unit root null hypothesis,

the first difference in the series are serially uncorrelated. Since the first difference

of most macroeconomic time series are serially correlated, these tests were of

limited value in empirical macroeconomics.

Augmented Dickey-Fuller test was developed to address the problem of serial

correlation. The solution is to augment” the test using p lags of the dependent

variable. The alternative mode of

Yt = θYt−1 + εt

is now written:

δYt = θYt−1 +

p∑
i=1

αiδYt−i + εt (3.15)

with p > 0.

The Philips-Perron(PP) Test

This test is similar to the ADF test, but it incorporates an automatic correction

to the DF procedure to allow for autocorrelated residuals.

The PP test involves fitting

Yt = θYt−1 + εt

and the results are used to calculate the test statistics. PP uses nonparametric

transformations to the t-statistics from the original DF regressions such that

under the unit root null hypothesis, the transformed statistics (the ”z” statistics)

have DF distribution. The procedure is is simply:

• regress Yt on Yt−1

• compute t

• ”modify” t to get z

• under the null hypothesis, z’s asymptotic distribution is the DF distribution

for t
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The Dickey-Fuller Generalized Least Squares(DF-GLS) Test

Df-GLS test is essentially a modified ADF test using GLS rationale. All the

three(3) tests above give the same result and a rejection of the null hypothesis is

always desirable

Classical Estimation of Reduced Form VARs

Let us consider a VAR(p) of the form Yt = v0 + v1t+B1yt−1 + ...+Bpyt−p + ut,

where v0 = (IK −
∑p

j=1Bj)µ0 + (
∑p

j=1 jBj)µ1 and v1 = (IK −
∑p

j=1Bj)µ1.

This can be written in a more compressed form as

Yt = [v0, v1, B1, B2, ..., Bp]Zt−1 + ut (3.16)

where Zt−1 = (1, t, yt−1, ..., yt−p)
′
.

Assume that the VAR(p) model is covariance stationary, and given a sample of

size T, y1, ...yT and p presample vector,y−p+1, ..., y0, then the parameters can be

estimated efficiently by OLS for each equation separately. The estimator is simply

[v̂0, v̂1, B̂1, ...B̂p] = (
T∑
t=1

YtZ
′
t−1)(

T∑
t=1

ZtZ
′
t−1)

−1 (3.17)

The maximum likelihood estimator can also be used to estimate the parameters

if Yt is normally distributed with ut ∼ N(0,
∑

u).

On the other hand, if restrictions are imposed on the parameters, the param-

eters can be estimated by GLS since the OLS may be ineffective. Let θ =

vec[v1, v2, B1, ..., Bp] and assuming there is a linear restriction of the form

θ = Rλ (3.18)

where R is ((K2p + 2K) ×M) restriction matrix with rank M which consist of

zeros and ones, and λ is the (M ×1) vector of unrestricted parameters. The GLS
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estimator for λ is given as

λ̂ = [R′(
T∑
t=1

ZtZ
′
t−1 ⊗

∑−1

u
)R]−1R′vec(

∑−1

u

T∑
t=1

ytZ
′
t−1) (3.19)

The GLS estimator λ̂ is consistent and asymptotically normally distributed. Prac-

tically, the white noise covariance matrix is normally unknown and has to be

substituted by an estimator based on an unrestricted estimation of the model.

Bayesian Estimation of Reduced Form VARs

Standard Bayesian methods that are used to estimate linear regression models can

also be used to estimate the parameters of the reduced form VAR model. Canova

(2007) gave a more thorough description of Bayesian methods VAR analysis.

The method will not be discussed here because of its little or no relevance to this

present study.

Estimation of Structural VARs

Structural VAR models, properly identified are normally estimated by least squares,

maximum likelihood or Bayesian methods. For instance, a properly identified

model of the form

BYt = v∗0 + v∗1t+B∗1yt−1 + ...+B∗pyt−p + vt (3.20)

can be estimated by the OLS method.
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3.4.5 Model Specification

Model specification involves the selection of the VAR order and perhaps imposing

restrictions on the VAR parameters. The VAR order may be determined using

sequential testing procedures or model selection criteria.

Sequential testing proceeds by specifying a maximum reasonable lag order, say

Pmax, and subsequently testing the following sequence of null hypothesis: H0 :

BPmax = 0, H0 : BPmax−1 = 0, and so on. The process stops when the null

hypothesis is rejected for the first time, and the appropriate order chosen.

Alternatively model selection criteria can be used. Some of them have the general

form

C(m) = log det(
∑̂

m
) + cTϕ(m) (3.21)

where
∑̂
m = T−1

∑T
t=1 ûtû

′
t is the OLS residual covariance matrix estimator for

a reduced form VAR model of order m, ϕ(m) is a function of the order m which

penalizes large VAR orders, and cT is a sequence which may depend on the sam-

ple size and identifies the specific criterion.

The three most common information criteria are the Akaike’s information crite-

rion (Akaike (1973) and Akaike (1974)) which is given by

AIC(m) = log det(
∑̂

m) +
2

T
mK2 (3.22)

where cT = 2
T

.,

The Hannan-Quinn criterion (Hannan and Quinn (1979),Quinn (1980)) is given

by

HQ(m) = log det(
∑̂

m) +
2 log log T

T
mK2 (3.23)

where cT = 2 log log T
T

, and

Schwarz(or Rissanen) information criterion (Schwarz (1978)),Rissanen (1978)) is

given by

SC(m) = log det(
∑̂

m) +
log T

T
mK2 (3.24)
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where cT = log T
T

.

In all these criteria ϕ(m) = mK2 is the number of VAR parameters in the model

with order m, K is the number of equations and T is the number of observation.

According to Lutkepohl (2005), AIC always suggests the largest order, SC chooses

the smallest order and HQ is in between but all three criterion may suggest the

same log order.

Paulsen (1984) also argues that the order HQ and SC criteria are both consistent

with order but AIC tends to overestimate the order asymptotically with a small

probability.

The order obtained with sequential testing or model selection criteria is depen-

dent on the choice of Pmax. A choice of small Pmax indicates an appropriate model

may not be in the set of possibilities and a choice of large Pmax may result in a

large value which may be false.

3.4.6 Model Checking

Formal and informal procedures are used to check whether or not the variables

in a VAR model sufficiently represent the DGP. It focuses on the reduced form

VAR since the reduced form underlie every structural form, and so any specific

reduced form that do not adequately represents DGP, the structural form based

on it cannot represent the DGP well. Some of the test are briefly summarized

below.

Test For Residual Autocorrelation

The traditional tools for checking residual autocorrelation in VAR models are the

Portmanteau and Breusch-Godfrey-LM tests.
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Portmanteau Test

The hypothesis of the Portmanteau test is stated as Follows:

H0: all residual autocovariances are zero i.e. E(utu
′
t−i) for i = 1, 2, ...

H1: at least one autocovariances and consequently one autocorrelation is not

zero.

The residual autocovariances is,

Ĉj = T−1
T∑

t=j+1

ûtû′t−j (3.25)

where the ût′s are the mean adjusted residual. The Portmanteau statistics is

given by

Qh = T
h∑

j=1

tr(Ĉ ′jĈ0

−1
ĈjĈ0

−1
) (3.26)

or the revised version

Q∗h = T 2

h∑
j=1

1

T − j
tr(Ĉ ′jĈ0

−1
ĈjĈ0

−1
)

may also be used.

Breusch-Godfrey-LM Test

The LM test may be seen as a test for zero coefficient matrices in a VAR model

for the residuals

ut = A1ut−1 + ...+ Ahut−h + et (3.27)

where et is a white noise error term. Consequently, a test hypothesis of

H0 : A1 = ... = Ah = 0

versus

H1 : Ai 6= 0

for at least one i ∈ 1, · · · , h may be used for checking that the ut is white noise.
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(see Lutkepohl (2005),section 4.4.4 for test statistic).

The Portmanteau test is applied mainly to test for autocorrelation of high order

whilst the Breusch-Godfrey-LM test is appropriate for testing autocorrelation of

low order. Again, for VAR processes with unknown cointegrating rank, the LM

test is more appropriate than the Portmanteau test.

Other Popular Tests For Model Adequacy

Nonnormality test are often used for model checking, even though normality is

not a necessary condition for the validity of many statistical methods associated

with VAR models.

Multivariate normality tests are often used to check residual vector of the VAR

model and univariate tests are to investigate normality of the errors of the indi-

vidual equations.

Appropriate univariate and multivariate tests are available to check conditional

heteroskedasticity in the residuals of the VAR models based on data with monthly

or higher frequency.

There are also a number of test available to check structural stability if there are

changes in the VAR parameters throughout the sample period. Major examples

are the so-called Chow tests in which one possible test version considers the null

hypothesis of time invariant parameters throughout the sample period versus the

likelihood of a change in the parameter values in some period, say TA (...details

in (Lutkepohl, 2005), section 4.6).

After the VAR model has passed through the adequacy tests, it can be used for

forecasting and structural analysis subsequently.
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3.4.7 Forecasting

Forecasting is one of the main objectives of multivariate/bivariate time series

analysis. Forecasting for known VAR processes and later extended to estimated

processes are presented.

Forecasting Known VAR Processes

If Yt is produced by a VAR(p) process of the form

Yt = v0 + v1t+B1yt−1 + ...+Bpyt−p + ut,

the conditional expectation of YT+h given Yt for t ≤ T is

YT+h|T = E(yT+h|yT , yT−1, ...) = v0 + v1(T + h) +B1yT+h−1|T + ...+BpyT+h−p|T

(3.28)

where YT+j|T = yT+j for j ≤ 0.

If the white noise ut is iid, YT+h|T is the optimal, minimum mean squared er-

ror (MSE) h-step ahead forecast in period T. The forecasts can be calculated

repeatedly for h = 1, 2, 3, ... without difficulty. The h-step forecast error may be

expressed as

YT+h − YT+h|T = uT+h + φ1uT+h−1 + ...+ φh−1uT+1 (3.29)

where the matrices φi are determined by repeated substitution

φi =
i∑

j=1

φi−jBj (3.30)

for i = 1, 2, 3, ... with φ0 = IK and Bj = 0 for j > p (e.g.Lutkepohl (2005)

,chap.2)). Clearly, the reduced form VAR residual is ut and is the forecast error

for 1-step forecast in period t − 1. The forecasts are unbiased since the errors
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have mean zero and forecast error covariance or MSE matrix is

∑
Y

(h) = E[(YT+h − YT+h|T )(YT+h − YT+h|T )′] =
h−1∑
j=0

φj

∑
u
φ′j (3.31)

that is YT+h − YT+h|T ∼ (0,
∑

Y (h)).

It is a fact that, the conditional expectation in (3.28) is obtained whenever the

conditional expectation of uT+h is zero. Even if the u′ts are just uncorrelated

and do not have conditional mean zero, the forecasts obtained recursively from

(3.28) are still best linear forecasts but may do not be minimum MSE forecasts

in a larger class which includes nonlinear forecasts. Again, the deterministic time

trend in (3.28) does not add to the inaccuracy of the forecasts in this frame-

work, where no estimation uncertainty is present, while stochastic trends have a

substantial effect on the forecast uncertainty.

Forecasting Estimated VAR Processes

If the DGP is unknown and subsequently the VAR model only approximates the

true DGP, the forecasts discussed previously will not be available. Let ŶT+h|T

denote a forecast based on a VAR model which is specified and estimated based

on the data available, then the forecast error is

YT+h − ŶT+h|T = (YT+h − YT+h|T ) + (YT+h|T − ŶT+h|T ) (3.32)

The first term on the right hand side is
∑h−1

j+0 φjuT+h−1 if the true DGP is a

VAR process. It includes residuals ut with t > T only. The second term also

involves just YT , YT−1, ... if only variables up to T have been used for model

specification and estimation. Consequently, the two terms are independent or at

least uncorrelated so that the MSE matrix is

∑
Ŷ

(h) = E[(YT+h−ŶT+h|T )(YT+h−ŶT+h|T )′] =
∑

Y
(h)+MSE(YT+h|T−ŶT+h|T )

(3.33)
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If the VAR model specified for Yt properly represents the DGP, the last term on

the right-hand side gets closer to zero as the sample size gets larger since the

difference YT+h|T − ŶT+h|T vanishes asymptotically in probability under standard

assumptions. Thus, if the theoretical model fully captures the DGP, specification

and estimation uncertainty is not important asymptotically. In finite samples,

on the other hand, the precision of the forecasts depend on the precision of the

estimators ((Lutkepohl, 2005)

3.4.8 Granger-Causality Analysis

One of the main uses of VAR models is forecasting. The structure of the VAR

model provides information about a variables’ forecasting ability for other vari-

ables. The following intuitive idea of a variable’s forecasting ability is due to

Granger (1969) and is known as Granger-causality. Granger called a variable Y2t

causal for a variable Y1t if the information in past and present values of Y2t is help-

ful for predicting the variable Y1t, then Y2t is said to Granger-cause Y1t; otherwise

it is said to fail to Granger-cause Y1t. This idea is especially easy to implement

in a VAR framework. Assuming Y1t and Y2t are produced by a bivariate VAR(p)

process,  Y1t

Y2t

 =

p∑
i=1

 a11,i a12,i

a21,i a22,i


 y1,t−i

y2,t−i

+

 u1t

u2t

 (3.34)

Then Y2t is not Granger-causal for Y1t if and only if a12,i = 0 for i = 1, 2, ..., p.

In other words, Y2t is not Granger-causal for Y1t if Y2t does not appear in the

(Y1t) equation of the model. The idea of Granger causality does not imply true

causality. It only implies forecasting ability (see Lutkepohl (2005), section 2.3.1

for details).

3.4.9 Structural Analysis

The general VAR(p) model has many parameters, and they may be difficult to

interpret due to complex interaction and feedback between the variables in the
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model. The main types of structural analysis summaries are impulse response

analysis, forecast error variance decomposition, historical decomposition of time

series and analysis of forecast scenarios. The following sections briefly describe

them.

3.4.10 Impulse Response Analysis

Impulses, innovations or shocks enter the model of the form

Yt = v0 + v1t+B1yt−1 + ...+Bpyt−p + ut

through the residual vector ut = (u1t, ..., uKt)
′. A change in the non-zero compo-

nent ut will bring about the same changes in the other variables of the system

in the next periods. The marginal effect of a single nonzero element in ut can be

studied conveniently by inverting the VAR representation, and considering the

moving average (MA) representation. If the deterministic terms can be ignored

since they are not important for impulse response analysis gives

Yt = B(L)−1ut = Θ(L)ut =
∞∑
j=0

Θjut−j (3.35)

where Θ(L) =
∑∞

j=0 ΘjL
j = B(L)−1. The (K × K) coefficient matrices may

be obtained recursively as Θi =
∑i

j=1 Θi−jBj for i = 1, 2, ... with Θ0 = IK and

Bj = 0 for j > p.

The marginal response of Yn,t+j to a unit impulse umt is given by the (n,m)th

elements of the matrices Θj, viewed as a function of j. For this reason, the

element of Θj represent responses to ut innovations.

According to Lutkepohl (2005) because the ut are just the 1 − step forecast

errors, the impulse responses are sometimes forecast error impulse responses and

the corresponding MA is called Wold representation.
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The presence of the representation (3.35) makes sure that if the VAR process is

stable, then Yt consists of stationary variables assuming there are no stochastic

trends. In that case, Θj → 0 as j →∞ and the effect of an impulse is transitory.

If Yt has stochastic trend elements, then the Wold MA representation in (3.35)

does not exist. For any finite j, Θj can be calculated as in the stationary case

using the formula in (3.30)

Impulse responses can also be calculated for VAR processes with stochastic trends.

For such processes, the marginal effects of a single shock may lead to permanent

changes in some or all of the variables.

If an identified structural model of the form

BYt = v∗0 + v∗1t+B∗1yt−1 + ...+B∗pyt−p + Avt

is available, then the corresponding residuals are the structural shocks. For sta-

tionary process, their corresponding impulse responses can again be obtained by

inverting the VAR representation,

Yt = (B −B∗1L− ...−B∗pLp)−1Avt =
∞∑
j=1

ΘjB
−1Avt−j =

∞∑
j=1

ψjvt−j (3.36)

where the ψj = ΘjB
−1A contain the structural impulse responses. The latter

formulas can also be used for computing structural impulse responses for process

with stochastic trend even if the representation (3.36) does not exist.

Forecast Error Variance Decompositions

Another tool for investigating the effects of shocks in VAR models are the forecast

error variance decompositions. The task of the variance decomposition is to

separate the variation in an endogenous variables into the component shocks

to the VAR. Thus, the variance decomposition provides information about the
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relative importance of each random innovation in affecting the variables in the

VAR.

In terms of the structural residuals the h-step forecast error of

YT+h − YT+h|T = uT+h + Θ1uT+h−1 + Θh−1uT+1,

can be represented as

YT+h − YT+h|T = ψ0vT+h + ψ1vT+h−1 + ...+ ψh−1vT+1.

Using
∑

v = IK , the forecast error variance of the Kth element of YT+h can be

shown to be

σ2
k(h) =

h−1∑
j=0

(Ψ2
k1,j + ...+ Ψ2

kK,j) =
K∑
j=1

(Ψ2
kj,0 + ...+ Ψ2

kj,h−1) (3.37)

where Ψnm,j denotes the (n,m)th element of ψj. The quantity (Ψ2
kj,0+...+Ψ2

kj,h−1)

represents the contribution of the jth shock of the h-step forecast error variance of

the variable k. Practically, the relative contributions (Ψ2
kj,0 + ...+ Ψ2

kj,h−1)/σ
2
k(h)

are reported and interpreted for various variables and forecast horizons. A mean-

ingful interpretation of these quantities require that the shocks considered in the

decomposition are economically meaningful.

3.4.11 Historical Decomposition of Time Series

Another way of looking at the contributions of the structural shocks to the ob-

served series is opened up by decomposing the series as proposed by (Burbidge

and Harrison, 1985). They argue that abandoning deterministic terms and con-

sidering the structural MA of equation (3.36), the jth variable can be represented
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as

Yt =
∞∑
i=0

(Ψj1,iv1,t−i + ...+ ΨjK,ivK,t−i),

where Ψjk,i is the (j, k)th element of the structural MA matrix ψi, as previously.

Hence,

Y
(k)
jt =

∞∑
i=0

Ψjk,ivk,t−i (3.38)

is the effect of the kth structural shock to the jth variable Yjt. Someone may also

prefer to explain the effects of the different structural shocks to the jth variable by

plotting the Y
(k)
jt for k = 1, 2, ..., K and t = 1, 2, ..., T . In practice, because of the

non-availability of these structural shocks, historical decomposition is obviously

not possible.

Analysis of Forecast Scenarios

Structural VAR models have also been used for the analysis of different forecast

scenarios or conditional forecasts given restrictions for the future values of some

of the variables.

In models where all variables are endogenous, fixing the future values of one or

more variables may be difficult and one has to assess thoroughly how far the

model can be stretched without being nullified. That is, the structural VAR

models cannot be expected to reflect the changes induced in the future paths of

the variables for arbitrary forecast scenarios (for details, see (Waggoner and Zha,

1999)).

3.4.12 Conclusion

This chapter deals specifically with difference equation, eigenvalues and eigenvec-

tors, stability analysis of vector difference equations of order one(1) and finally

vector autoregressive models. Finite order VAR models are popularly used for

macroeconomics analysis because they are easy to use. There are several soft-

ware packages which can be used in performing a VAR analysis and it includes
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S-PLUS, Eviews, Stata, etc. The next chapter discusses the results of the study

in a precise and concise manner.
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Chapter 4

Data Collection, Analysis and Results

4.1 Introduction

In this chapter, we will fit inflows and outflows of the KNUST GUSSS scheme to

a VAR model that relates the dependent variables and the independent variables

from the data gathered. We will first present summary statistics of the data col-

lected after which the data will be fitted to vector autoregressive model of order

one(1). We will then estimate the parameters of the proposed model by ordinary

least squares (OLS) method. This is followed by checking the adequacy of the

model to ascertain whether or not the VAR model sufficiently represents the data

generation process. Granger-causality test will be used to determine the forecast

ability of the model. Finally, structural analysis such as impulse response analysis

will be carried out to determine the responsiveness of the variables when there is

a shock or impulse or innovation to the error terms of the model.

4.2 Data Type and Source

This study mainly depended on secondary data; specifically monthly data was

collected from the KNUST GUSSS office in line with certain accounting princi-

ples. The data covers 84 months from 2003 to 2009. We could have extended

our sample data beyond 2009 but we believe that the introduction of the single

spine salary structure (SSSS) could possibly twist the relationship between the

variables we want to estimate.
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Table 4.1: Categorized Table of Inflows and Outflows
Inflows Outflows

Contribution from members Gratuity
Contribution from the University Investment in Treasury Bills

Interest on Housing Loans Investment in GUSSS Hostels
Interest on Treasury Bills Wages and Salaries
Rent from GUSSS Hostels Audit fees

Interest on Banks Accounts Bank Charges
Benefits paid

Management Expenses
Running cost of GUSSS

Table 4.2: Summary Statistics of the Variables
Variable Observation Mean Std. Dev. Minimum Maximum
Inflows 84 62,954.70 9,648.395 42,017.75 90,698.37

Outflows 84 54,169.76 10,471.49 34,358.72 80,054.21

4.3 Categorization of Variables

We have categorized the variables selected for the study of the GUSSS system

into inflow and outflow in the table above.

From table 4.1 above, it is obvious that the GUSSS fund can be viewed

as a system of inflows and outflows and therefore the resulting net inflows and

net outflows are chosen as our state variables.

4.4 Summary Statistics of the Variables

Table 4.2 below illustrates the summary statistics of the variables. Between 2003

and 2009, the KNUST GUSSS scheme has 84 months of inflows and outflows.

Within the same period, the average inflows and outflows recorded were 62, 954.70

and 54, 169.76 Ghana Cedis respectively. The minimum and maximum inflows

were 42, 017.75 and 90, 698.57 Ghana Cedis and that of outflows were 34, 358.72

and 80, 054.21 Ghana Cedis respectively within the same period.
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4.5 Statistical Identification of the System

In this section, we construct our model and fit the categorized data to the

model. We then estimate the model parameters by Ordinary Least Squares

(OLS)method. It is important to note however that the parameters estimation is

preceded by pre-estimation test and optimal lag length selection.

4.5.1 Construction of Model

The model of the GUSSS system can be expressed in the form

Xt = AXt−1 + εt (4.1)

where

Xt = state vector at tth month

A =system matrix

εt =error term

As we have already indicated above, the GUSSS system has inflow and outflow

as state variables and therefore our state vector Xt can be written as

Xt =

 It

Ot


where

It = Inflow at the tth month

Ot = Outflow at the tth month

We begin the identification of the system by fitting the inflow and outflow data

to

Xt = AXt−1 + εt (4.2)
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where

Xt = state vector at tth month

A = system matrix

If

A =

 α11 α12

α21 α22



is an (n× n) matrix, then equation 4.2 can be written as:

 It

Ot

 =

 α11 α12

α21 α22


 It−1

Ot−1

+

 ε1t

ε2t

 (4.3)

The exclusion of a constant term in equations 4.1 and 4.2 mean that the

system is a homogeneous model.

Thus, equation 4.3 can be written in two separate equations as:

Inflowst = α11Inflowst−1 + α12Outflowst−1 + ε1t (4.4)

Outflowst = α21Inflowst−1 + α22Outflowst−1 + ε2t (4.5)

The parameters of the equations 4.4 and 4.5 are computed by ordinary

least squares (OLS) method built in Stata after which the system matrix A will

be subjected to stability analysis in later section.

4.5.2 Testing Stationarity

In fitting the VAR(1) model, the variables in the model ought to be stationary.

The stationarity of the variables (i.e. inflow and outflow) is checked using unit

root test. Under this test, we shall employ the following methods.

1. Augmented Dickey-Fuller (ADF)

2. Philips-Perron (PP)
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Table 4.3: Unit Root Tests of Model Variables at Level
VARIABLE ADF PP DF-GLS

Test 5% Critical Test 5% Critical Test 5% Critical
Statistic Value Statistic Value Statistic Value

Inflow 0.006 1.950 0.008 1.950 7.801 3.065
Outflow 0.048 1.950 0.261 1.950 8.231 3.065

3. Dickey-Fuller-GLS (DF-GLS)

Augmented Dickey-Fuller Unit Root Test Method

Under this test, there are three(3) model equations namely: (i) model with in-

tercept only (ii) model with trend and intercept (iii) model with no trend and no

intercept. All these models give the same results but we will limit ourselves to

the third model since the model we intend to fit has no intercept and no trend

The table below summarizes all the three(3) methods.

HYPOTHESIS:

H0: The variable has unit root (non stationary)

H1: The variable does not have unit root (stationary)

GUIDELINES:

When the value of the test statistic is more than 5 % critical value, we reject

the null hypothesis and accept the alternate hypothesis but when the absolute

value of the test statistic is less than 5 % critical value, we cannot reject the null

hypothesis, rather we accept the null hypothesis.

From table(4.2) above, both Augmented Dickey-Fuller and Philips-Perron tests

suggest non-stationary of the variables but Dickey-Fuller-GLS suggests station-

ary variables.

The figures below exhibit the trends of our model variables for the period 2003

to 2009.
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Figure 4.1: Log of Inflows from 2003-2009
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Figure 4.2: Log of Outflows from 2003-2009
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Table 4.4: Unit Root Tests of Model Variables after first Differencing

VARIABLE ADF PP DF-GLS

Test 5% Critical Test 5% Critical Test 5% Critical
Statistic Value Statistic Value Statistic Value

Inflow 12.445 1.950 16.452 1.950 12.216 3.067
Outflow 11.891 1.950 16.854 1.950 10.799 3.067

Figures (4.1) and (4.2) above show trends of our variable (inflows and

outflows). They do not revolve around a constant mean and therefore variables

are non-stationary.

When the variables are non-stationary, they became stationary after taking the

first differences.

The table below shows the stationary state of the variables after first differencing.

In table(4.4), our variables look stationary now after first differencing.

All the test statistics from all the three(3) unit root tests are more 5% critical

value.

Figures (4.3) and (4.4) below show stationary variables after first difference.

In these figures, you would find that variables revolve around a constant mean of

zero.

All the tests we have performed have shown that the variables (i.e. inflow

and outflow) in our model are stationary. But before we estimate our VAR(1)

model we need to select the lag length we intend to use.

4.5.3 Optimum Lag Length Selection

Before we estimate our VAR(1) model, we need to select the number of lags that

can be used. Some information criteria are used to select the the optimum lag

length. In selecting the optimal lag length, there are some guidelines. We use the

value of the Akaike Information Criterion (AIC) because of the fact that the AIC
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Figure 4.3: Log of Differenced Inflows from 2003-2009

52



Figure 4.4: Log of Differenced Outflows from 2003-2009
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Table 4.5: Lag Length Selection Criteria
Lag LL LR dF P FPE AIC HQIC SBIC

0 -1698.96 4 1.0× 1016 42.524 42.5479 42.5836
1 -1688.98 19.969 4 0.001 8.7× 1015 42.3744 42.4461 42.5531
2 -1676.99 23.97 4 0.000 7.1 ×1015 42.1742 42.2942 42.4726∗

3 -1669.48 15.025 4 0.005 6.5 ×1015 42.087 42.2541 42.5038
4 -1659.59 19.781∗ 4 0.001 5.5 ×1015∗ 41.9397∗ 42.1546∗ 42.4757

Endogenous Variables : Inflow Outflow
Exogenous Variable : Constant

method is powerful and efficient with monthly data. The lower the AIC value,

the better the model all the time. The table below is the output of the lag length

selection.

KEY: LL: Log Likelihood; LR: Likelihood Ratio; dF: Degree of Freedom;

P: Probability Value; FPE: Final Prediction Error; AIC: Akaike Information Cri-

terion; HQIC: Hannan-Quinn Information Criterion; SBIC: Schwarz Information

Criterion.

In table 4.5 above, it can be seen that at lag 1 the AIC value is 42.3744,

at lag 2 the AIC value is 42.1742. It can also be seen that at lag 3 the AIC value

is 42.087 and at lag 4 the AIC value is 41.9397.

In line with the guidelines, the Software suggests lag length of 4 for our model.

That notwithstanding, outflow of the current month depends on the inflow of the

previous month in the model we intend developing. Comparing the AIC values

at lags 1 and 4, they are approximately the same and it will not be out of place

to settle on lag 1 for our model estimation.

4.5.4 Parameter Estimation

The system (i.e. equation 4.3) is a bivariate vector autoregressive process of order

one (VAR(1)). The line representation of equation (4.2) forms exogenous autore-

gressive models in which the inflow equation has Ot−1 as its exogenous variable

and the outflow equation has It−1 as its exogenous variable. These equations

were run separately in Stata by Ordinary Least Squares (OLS) for the parameter

54



Table 4.6: VAR(1) Model Output
Equation Parameters RMSE R-Square Chi-Square Prob > Chi-Square

Inflow 2 0.156673 0.1863 18.77357 0.0001
Outflow 2 0.213474 0.0929 8.39336 0.0150

Coefficient Standard
Error

z P-value [95 % Conf. Interval]

Inflow
Inflow
L1 -0.2776697 0.1013237 -2.74 0.006 [-0.4762605,-0.790788]
Outflow
L1 -0.2392825 0.0816276 -2.93 0.003 [-0.3992697,-0.0792954]

Outflow
Inflow
L1 0.0365306 0.1380578 0.26 0.791 [-0.2340577,0.307119]
Outflow
L1 -0.3217942 0.111221 -2.89 0.040 [-0.5397834,-0.103805]

estimates.

VAR(1) Model Estimation Output

The table below shows STATA output of our VAR(1) model of inflow and outflow.

In table 4.6 above, there are two(2) models. The first is Inflow-Outflow

model and the second is Outflow-Inflow model. In the first model, the dependent

variable is inflow and the independent variables are inflow(L1) and outflow(L1).

Inflow(L1) is significant to explain the dependent variable in this model because

of the fact that the p-value 0.006 is less than 0.05 level of significance. In the

same model, outflow(L1) is also significant because its p-value is 0.003, less than

the 0.05 level of significance.

In the second model, the dependent variable is outflow and inflow(L1) and out-

flow(L1) are the independent variables. Inflow(L1) has p-value 0.791 and it’s not

significant to explain the dependent variable. Outflow(L1) is significant since its

p-value 0.040 is less than 0.05 level of significance.
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The z statistic is obtained by the formula:

z =
Coefficient

Standard Error

For example,

z =
−0.2776697

0.1013237
= −2.74

In reference to equations (4.4) and (4.5),our model can be written as:

Inflowst = −0.2776697Inflowst−1 − 0.2392825Outflowst−1 + ε1t (4.6)

Outflowst = −0.3217942Outflowst−1 + ε2t (4.7)

The system matrix A is thus

A =

 −0.27766971 −0.2392825

0 −0.3217942



4.6 Model Adequacy

We now check whether or not the VAR(1) model of inflows and outflows suffi-

ciently represent the data generation process. If the model passes the adequacy

test, it can be used for forecasting and structural analysis.

4.6.1 Check of Stability Condition Of VAR(1) Estimates

GUIDELINES:

• The VAR(1) process is stationary if the eigenvalues of the system matrix

are less one.

• The process is also stable if the eigenvalues of the system matrix have

modulus less than one.
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Table 4.7: Eigenvalue Stability Condition
Eigenvalue Modulus

-0.2997319+0.09.85374i 0.313199
-0.2997319-0.09085374i 0.313199

Figure 4.5: Stability Condition of the Estimated VAR Model

All the eigenvalues lie inside the unit circle and therefore the VAR(1) satisfies

stability condition.

From table 4.7, the VAR(1) process of inflows and outflows of the KNUST

GUSSS scheme is stationary and stable.

A confirmation of the stable VAR is shown in figure (4.5) below.
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Table 4.8: Jarque-Bera Test
Equation Chi-Square Degree of Freedom Prob >Chi-Square

Inflow 3.221 2 0.19975
Outflow 8.704 2 0.01288

ALL 11.926 4 0.01791

Table 4.9: Lagranger-Multiplier Test
Lag Chi-Square Degree of Freedom Prob >Chi-Square

1 0.7593 4 0.94382
2 2.3070 4 0.67949
3 6.1416 4 0.18882

Test for Normally Distributed Disturbances

We also check if the residuals of the variables in the VAR(1) model is normally

distributed or not.

HYPOTHESIS:

H0: The residuals are not normally distributed

H1: The residuals are normally distributed

GUIDELINES:

When the probability value is more than 5%, we cannot reject H0.

From table (4.8) above, the residuals of inflow are not normally distributed whilst

outflow is normally distributed. However, considering all variables in the model,

we can say that the residuals of the variables are normally distributed.

Lagranger-Multiplier Test for Residual Autocorrelation

Again, we test whether the residuals of the variables in the VAR model are cor-

related or uncorrelated.

HYPOTHESIS:

H0: There is no autocorrelation at lag order

H1: There is autocorrelation at lag

GUIDELINES:
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Table 4.10: Granger-Causality Wald Tests
Equation Excluded Chi-Square Degree of Freedom Prob > Chi-Square
Inflow Outflow 8.5931 1 0.003
Inflow ALL 8.5931 1 0.003
Outflow Inflow 0.07002 1 0.791
Outflow ALL 0.07002 1 0.791

When the probability value is more than 5%, we cannot reject H0.

In table(4.9) above, there are no autocorrelation in the residuals of the variables

at lag lengths of 1 to 3. This pattern is always desirable for a good model.

After showing that the VAR(1) process is stationary and stable, and that the

residuals are normally distributed with no autocorrelation, we are now in a bet-

ter position to use our model for forecasting in the next section.

4.6 Forecasting the VAR(1) Process By Granger-Causality Analysis

Our main aim of this study is to determine whether inflows cause outflows or

outflows cause inflows. Since our variables are stationary, we can apply Granger-

causality test.

A look at our model again.

Inflowt = −0.2776697Inflowt−1 − 0.2392825Outflowt−1 + ε1t (4.8)

Outflowt = −0.3217942Outflowt−1 + ε2t (4.9)

In equations (4.8) and (4.9), Inflowt and Outflowt are dependent variables

of the current period respectively. Inflowt−1 and Outflowt−1 are independent vari-

ables. We want to investigate whether outflow in the previous month can cause

inflow on the current month or inflow in the previous month can cause outflow

in the current month or not.
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Hypothesis for Model One:

H0: Outflows in previous month cannot Granger cause inflow in current month

H1: Outflow in previous month can Granger cause inflows in current month.

Guidelines:

When the probability value is more the 5 %, we cannot reject H0.

In table(4.10) above, since the p-value 0.003 is less than 0.05, we can reject the

null hypothesis and conclude that outflows in previous month can Granger cause

inflows in the current month.

Hypothesis for Model Two:

H0: Inflows in previous month cannot Granger cause outflows in the current

month

H1: Inflows in previous month can Granger cause outflows in the current month.

Guidelines:

When the probability value is more the 5 %, we cannot reject H0.

Again in table (4.10), the p-value 0.791 is more than 0.05 level of significance,we

cannot reject the null hypothesis and conclude that inflows in previous month

cannot Granger cause outflows in the current month.

4.7 Structural Analysis By Impulse Response

Function

Impulse response function is a shock to the VAR system. It identifies the re-

sponsiveness of the dependent variables(endogenous variables) in the VAR when

a shock is put to the error terms such ε1t and ε2t in the equations below.

Inflowt = −0.2776697Inflowt−1 − 0.2392825Outflowt−1 + ε1t (4.10)
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Figure 4.6: Impulse Response Function of Inflows and Outflows

Outflowt = −0.3217942Outflowt−1 + ε2t (4.11)

In the equations 4.10 and 4.11 above, a change or shock in ε1t will bring a

change in inflows. It will also bring a change in outflows and ultimately a change

inflows.

In the same manner, a shock or innovation in ε2t will bring about a change in

outflows, a change in inflows and subsequently a change in outflows. So a change

or shock in ε1t or ε2t will bring about a change in the whole model.

Our target is to investigate the reaction of the variables(inflows and outflows)

when a positive shock of one standard deviation is put to ε1t and ε2t. The im-

pulse response function is represented in figure 4.6

In figure 4.6, Dlninfl and Dlnout represent log of first difference of inflows
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and outflows respectively. IRF represents impulse response function and steps

represents the number of months into the future.

When one standard deviation shock is put to inflows, the response of outflows is

that it rises and falls in the first few months of the first year but becomes positive

and steady for the next 60 months.

In the same way, when one standard deviation shock is put to outflows, there will

be a fall and rise of inflows in the first few months as response but the fluctuation

will die out soon and become positive and steady in the next 60 months into the

future.
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Chapter 5

Summary of Findings, Conclusion and

Recommendation

5.1 Introduction

This chapter summarizes the results of the study and explains any conclusion

that have resulted from the statistical analysis of the data. It also covers the

recommendations the researcher wishes to put across for further studies which

will be essential for stakeholders.

5.2 Summary of Findings

It should be well noted that the findings arrived in this study were based solely

on the data obtained from KNUST GUSSS office for the period 2003 to 2009.

The results indicate that, all the variables in our system exhibit trends, and

therefore non-stationary. But when we took the first difference, the variables

became stationary, which is a prerequisite for VAR model estimation.

The system was found to be stable. This is because the eigenvalues of our system

matrix

A =

 −0.27766971 −0.2392825

0 −0.3217942


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are less than one and lie inside the unit circle. This is always desirable for Granger

causality analysis.

The Granger causality test showed that, during the period under consideration,

outflows in the previous Granger cause inflows in the current month. On the

other hand, inflows in the previous month does not Granger cause outflows in the

current month.

The impulse response analysis also revealed that when one standard deviation

shock is put to inflows, outflows rises and falls initially but became positive and

steady after fews months. In the same way, when one standard deviation shock

is put to outflows, inflows falls and rises initially but became steady and positive

thereafter.

5.3 Conclusion

The primary objective of this study was to determine whether inflows in the pre-

vious month has influence on outflows of the current month or whether outflows

of the previous month has the ability of influencing inflows in the current month

of the GUSSS scheme at KNUST.

To be able to determine this, monthly data of inflows and outflows were taken

from the GUSSS office at KNUST for the period 2003 to 2009.

The data was fitted to vector autoregressive model of order one(1) and the pa-

rameters of the model were estimated by ordinary least squares (OLS) method.

Granger-causality test was performed to determine the direction of causality of

the model variables (i.e. inflows and outflows). It was found that outflows in the
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previous month Granger-cause inflows of the current month during the period

under consideration. This means that investments in the form of treasury bills

and hostels are prudent measures and must be encouraged since these investments

bring in the necessary inflows needed for the scheme’s expenditures.

5.4 Recommendation

Based on our findings we therefore recommend that:

• management of the GUSSS scheme at KNUST should continue to invest

in treasury bills and hostels as their returns are worthwhile. We therefore

recommend that optimal investment portfolios must be adopted.

• future research into KNUST GUSSS scheme should be directed towards

finding other investment options that will bring in funds needed to meet

the scheme’s future expenditures.
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Appendix A

Stata 12 Do File

Getting the Data into Stata 12.

you can use the command insheet using ”G:gusssdata.xls” OR

the copy and paste procedure for small data

Transformation of Model Variables Using Logarithms

gen lninfl=log(infl)

gen lnout=log(out)

Plots of Model Variables at Levels

twoway(line lninfl mon),ytitle(Log of Inflows)xtitle(Months(2003-2009))xlabel(none)

title(Log of Inflows)

twoway(line lnout mon),ytitle(Log of Outflows)xtitle(Months(2003-2009)) xla-

bel(none)title(Log of Outflows)

Plots of Model Variables After First Difference

twoway(line Dlninfl mon),ytitle(Log of Differenced Inflows)xtitle(Months(2003-

2009))xlabel(none)title(Log of Differenced Inflows)

twoway(line Dlnout mon),ytitle(Log of Differenced Outflows)xtitle(Months(2003-

2009))xlabel(none)title(Log of Differenced Outflows)

Stationarity Test of Model Variables at Levels Using Unit Root Method

dfuller lninfl,noconstant regress lags(0)

dfuller lnout,noconstant regress lags(0)

pperron lninfl,noconstant regress

pperron lnout,noconstant regress
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dfgls lninfl,maxlag(0)

dfgls lnout,maxlag(0)

Stationarity Test of Model Variables After First Difference Using Unit

Root Method

dfuller Dlninfl,noconstant regress lags(0)

dfuller Dlnout,noconstant regress lags(0)

pperron Dlninfl,noconstant regress

pperron Dlnout,noconstant regress

dfgls Dlninfl,maxlag(0)

dfgls Dlnout,maxlag(0)

Summary Statistics

summarize infl out

VAR Model Estimation

var Dlninfl Dlnout,noconstant lags(1/1)

varstable,amat(SM) gragh dlabel

varnorm,jbera

varlmar,mlag(3)

vargranger

varbasic Dlninfl Dlnout,lags(1/1)step(60)irf
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Appendix B

Figure 5.1: Cross-Correlogram for Inflows and Outflows
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Figure 5.2: Inflows Sample Spectral Density Function
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Figure 5.3: Outflows Sample Spectral Density Function
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