
ANALYSIS AND MODELING OF PREVALENCE OF MEASLES IN THE 

ASHANTI REGION OF GHANA 

 

 

A THESIS SUBMITTED TO THE GRADUATE SCHOOL BOARD, 

KWAME NKRUMAH UNIVERSITY OF SCIENCE AND 

TECHNOLOGY, KUMASI, GHANA IN PARTIAL FULFILMENT OF THE 

REQUIREMENTS FOR THE AWARD OF THE DEGREE  

 

OF 

MASTER OF PHILOSOPHY 

 

 IN  

APPLIED MATHEMATICS 

 

 

 

BY 

KWAME ASARE GYASI–AGYEI 

 

JUNE, 2012 



 ii 

DECLARATION 

I hereby declare that this submission is my own work towards the Master of Philosophy 

(M.Phil.) and that, to the best of my knowledge, it contains no material previously published 

by another person, nor material which has been accepted for the award of any other degree, 

except where due acknowledgement has been made in the text. 

 

Kwame Asare Gyasi-Agyei              

       (PG 5070510)                           ….……………………… …………………….. 

Student Name and ID                 Signature                         Date 

 

 

 

Rev. W. Obeng Denteh            ….……………………… ……………………..  

Supervisor’s Name                    Signature                            Date 

 

 

 

Mr. Kwaku F. Darkwa              ….……………………… …………………….. 

Head of Dept. Name                      Signature                           Date 



 iii 

DEDICATION 

I dedicate this thesis to my mother, Madam Adwoa Twumwaa Gyasi-Agyei, my wife, 

Philomena Gyasi-Agyei and my children, Nicholas Gyasi-Agyei, Adelaide Gyasi-Agyei, 

Kingsley Gyasi-Agyei and Jessica Gyasi-Agyei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 iv 

ACKNOWLEDGEMENTS 

My deepest gratitude goes to God the Father and the Lord Jesus Christ for His guidance and 

protection that have enabled me to complete this thesis.  

I most heartily wish to express my warm appreciation to Nana Kena Frimpong and Rev. W. 

Obeng Denteh, my supervisors, for their detailed painstaking attention to read through this 

thesis and the consequent feedback which improved the thesis‟ quality.  

I wish to acknowledge my particular indebtedness to all my lecturers at Kwame Nkrumah 

University of Science and Technology for their support and the good education that they 

provided to us.  

Special thanks go to my headmaster, Very Rev. Isaac Osei Boadi, of Juaben Senior High 

School and all the teachers at Juaben Senior High School for their advice and support.  

I am also grateful to all the authors whose works I have directly or indirectly made use of. 

My profound thanks go to my brothers and sisters for their moral and financial support which 

have made this thesis possible, especially Dr. N. Gyasi-Agyei, Prof. Y. Gyasi-Agyei and Prof. 

A. Gyasi-Agyei. Also deserving mention are Mr. Omane Adjepong Maurice, Mr. Kofi Ababio 

Kicupson, Mr. James K. Agyen, Mr. George Agblenowo, of Juaben Senior High and the rest of 

my friends who have contributed positively to this thesis. Many people have helped to make 

this thesis possible, and to all of them, I say a sincere thank you.  

Indeed it has been sleepless nights, a long and tedious road to the publication of this thesis, but 

to the glory of God, it has come out to see the light. It is my fervent prayer and hope that 

people will find it just as useful and stimulating as it is intended to be.  



 v 

ABSTRACT 

 In this thesis, autoregressive integrated moving average (ARIMA) model is used to predict the 

prevalence and incidence of measles in the Ashanti Region of Ghana. The Mean Absolute 

Error (MAE) and the Mean Square Error (MSE) are used to compare the in-sample forecasting 

performance of four selected candidates‟ models. The working data from the Ashanti Health 

Services spans from 2001 to 2011. It is evident from the analysis that measles data in the 

Ashanti Region of Ghana could best be modelled with ARIMA(2, 1, 1) and that measles 

prevalence in the Ashanti Region is expected to increase if no preventative measures are taken. 

The forecasting accuracy using MAE for ARIMA(2, 1, 1) is calculated as 28.1141 and the 

forecasting accuracy using MSE for ARIMA(2, 1, 1) is calculated as 2947.15. The results of 

the study recommend to the stakeholders of Ashanti Region that a combination of increased 

vaccination of newborns and immunization of susceptible adults would reduce measles 

prevalence in the region to the minimum and therefore must be taken into consideration in the 

region‟s vaccination programs.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Thesis  

Measles is one of the leading causes of death among young children even though a safe 

and cost-effective anti-measles vaccine is available. In the year 2008 alone 164 000 

measles related deaths were reported globally – nearly 450 deaths every day or 18 deaths 

every hour. More than 95% of measles deaths occur in low-income countries with weak 

health infrastructure. Measles is a human disease and it is not known to occur in animals 

(WHO, 2011). 

1.1-1 Definitions of Measles  

Measles is one of the most contagious but vaccine-preventable diseases which is caused 

by the measles virus.  It is one of the most readily communicable diseases and probably 

the best known, and most deadly of all childhood rash/fever illnesses. It is a childhood 

disease that rarely occurs in adults (Wikipedia, 2008).  

Measles is a respiratory disease caused by a virus. As noted above, the disease of measles 

and the virus that causes it share the same name. Measles virus normally grows in the 

cells that line the back of the throat and lungs (CDC, 2011).  

1.1-2 Causes of Measles 

Measles virus is spread through the respiratory route. This virus is contained in the 

millions of tiny droplets that come out of the nose and mouth when a measles carrier 

coughs or sneezes. One can catch measles by breathing in these droplets or, if the 
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droplets have settled on a surface, by touching the surface and then placing the hands 

near the nose or mouth. The measles virus can survive on surfaces for a few hours. In 

fact, the virus is one of the most contagious viruses known to man. As a result, it can 

spread rapidly in a susceptible population. Infected people carry the virus in their 

respiratory tract before they get sick, so they can spread the disease without being aware 

of it (Nettleman, 2008). 

If people are immune to the virus (either through vaccination or by having had measles in 

the past), they cannot get the disease caused by that virus. For example, someone who 

had measles as a child would not be able to get the disease again.   

1.1-3 Measles Virus Pictures and Images 

Figure 1.1 depicts a selection of measles viruses; these are the way the measles virus 

looks under the microscope. Sources: (CDC, 2011), (Schoenstadt, 2006)    

    
                         (i)                                       (ii)                                         (iii)                           

 

Figure 1.1: Types of Measles Virus.  

 

 

Measles virus resides in the mucus in the nose and throat of the infected person. The 

virus only infects humans. The virus is rapidly inactivated by heat, light, acidic pH, ether, 

and trypsin (an enzyme). It has a short survival time (under 2 hours) in the air or on 
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objects and surfaces. The majority of people infected with the virus recover, but measles 

complications can be dangerous (Schoenstadt, 2006).  

1.1-4 Transmission of Measles 

The measles virus resides in the mucus in the nose and throat of an infected person, so 

transmission typically occurs through coughing and sneezing. Measles is an illness that is 

spread through the coughs and sneezes of infected people. After being infected with the 

virus, a person does not become sick immediately; it takes several days for symptoms to 

appear. Transmission of measles occurs so easily that anyone who is not immunized will 

probably get the disease eventually (Schoenstadt, 2006).  

 

1.1-5 Symptoms, Incubation Period and Rashes of Measles Attack 

Symptoms do not appear immediately when a person becomes infected with the measles 

virus.  When a person becomes infected with the measles virus, it begins to multiply 

within the cells that line the lungs and the back of the throat. The virus can also spread to 

the lymph glands, bone marrow, liver, eyes, thymus, tonsils, spleen, skin and brain.   

The symptoms typically appear ten to fourteen days after a person is infected with the 

measles virus. The period between measles transmission and the start of symptoms is 

called the incubation period. During this period, the virus is multiplying. It includes 

fever, sore throat, cough, sore eyes, red watery eyes, vomiting, runny nose, loss of 

appetite and fatigue. Koplik’s spot is the characteristic symptom of measles. It appears on 

the inside of the mouth. Koplik‟s spots are small white areas that may have bluish-

colored centers. The skin rash appears within three to five days of the onset of symptoms. 

http://measles.emedtv.com/measles-virus/measles-virus.html
http://bones.emedtv.com/bone/bone.html
http://skin.emedtv.com/skin/skin.html
http://measles.emedtv.com/measles/measles-transmission.html
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The rash often begins on the face and spreads downward all over the body. A very high 

fever may develop with the rash. The rash starts to disappear after a few days, and the 

fever resolves. It is better to leave the rashes alone as scratching leaves the patient in 

worse condition (Nettleman, 2008).  

Figure 1.2 shows a few pictures of people under measles attack. As noted below it is 

known that the appearance of measles can differ from the pictures shown, they are just 

for information purpose.  

 

Figure 1.2: Pictures of Measles Images    

 

1.1-6 Prevention from Measles  

Generally two doses of live measles vaccine are recommended; one shot at 15 months of 

age, and the second shot before entering either kindergarten or class one. Measles vaccine 

is administered to children between 12 and 15 months, but can be done from 6 months 
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during an epidemic of measles. Children and adults exposed to measles virus, which have 

not developed immunity to the disease, can be vaccinated within 3 days after exposure. 

The vaccine is prescribed for pregnant women and children less than one year. Instead, 

for these categories of people it is preferred to use immunoglobulin (antibodies), 

administered within 2 days after exposure to the virus. Immunization is recommended 

one time for all persons born after 1956 who lack evidence of immunity to measles. A 

second dose of measles vaccine is recommended for young adults in settings where 

individuals congregate (WHO, 2011). The best way to prevent measles is to get the 

measles vaccine (Schoenstadt, 2006). 

 

1.1-7 Complications and Risk Factors of Measles 

Complications of measles include the following: ear infections, diarrhoea, pneumonia, 

seizures and encephalitis (inflammation of the brain) – this is rare, but can cause 

permanent brain damage or death. Up to 30 percent of people with measles will develop 

complications – usually children under five and adults over the age of 20. Measles during 

pregnancy increases the risk of miscarriage, premature labour and low birth-weight 

babies (WHO, 2011).  

Unvaccinated young children are at highest risk of contracting measles and its 

complications, including death. Any non-immune person (who has not been vaccinated or 

previously recovered from the disease) can become infected. The risk factors include the 

following: lack of immunization with the measles vaccine, travel to, or residence in, a 

country where measles is still prevalent, vitamin A deficiency (WHO, 2011).  
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1.1-8 Treatment of Measles 

There is no treatment that can kill the measles virus, so treatment focuses on supportive 

care, or the relief of symptoms. Supportive care can include the following: 

 Get plenty of rest. 

 Sponge baths with warm water may reduce discomfort due to fever. 

 Medications to control fever or pain, and antibiotics to treat secondary infections. 

 Drink plenty of fluids to help avoid dehydration. 

 A humidifier or vaporizer may ease the cough. 

Remember never to give aspirin to children or teenagers because it may cause a disease 

known as Reye syndrome (Nettleman, 2008).   

 

1.1-9 Vaccination of Measles 

The measles vaccine and the combined Measles Mumps Rubella (MMR) vaccine are very 

safe and effective and generally have few side effects. Mild reactions such as fever, 

redness or swelling at the injection site have been reported. As with any medicine, there 

is a slim chance that serious problems could occur after getting the vaccine. However, the 

potential risks associated with measles disease are much greater than the potential risks 

associated with the measles vaccine. MMR vaccine should not be given to persons who 

are pregnant or severely immuno suppressed patients (WHO, 2011).  

1.1-10 Recovery after measles 

As in any viral infection, measles-infected patients should be encouraged to drink plenty 

of water, fruit juices, tea or lemonade. These will be used to replace fluids lost through 

sweat and heat during febrile episodes. Feed measles patients with mashed vegetable, 
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soup, pilaf, mashed meat, perris and food prepared using steam cooking. You may also 

give him yogurt, bananas, apples and carrots lynx. Children with measles need more rest 

to recover. Usually the child can safely return to school after 7-10 days after the fever and 

the rash have disappeared. However, a medical consultation may be necessary to 

diagnose the exact state of the episode (WHO, 2011).                                                                                                     

 

1.2 The Studied Geographical Area: Ashanti Region of Ghana  

The Ashanti Region is the third largest of 10 administrative regions in Ghana, occupying 

a total land surface of 24,389 square kilometers or 10.2 per cent of the total land area of 

Ghana. In terms of population, however, it is the most populated region with a population 

of 3,612,950 in 2000, accounting for 19.1 per cent of Ghana‟s total population. The 

Ashanti region also harbors the capital city of Kumasi. The Ashanti region is centrally 

located in the middle belt of Ghana. It lies between longitudes 0.15W and 2.25W, and 

latitudes 5.50N and 7.46N. The region shares boundaries with four of the ten political 

regions, Brong - Ahafo Region in the north, Eastern region in the east, Central region in 

the south and Western region in the South west. The region is divided into 27 districts, 

each headed by a district chief executive (Wikipedia, 2011).  

 

The center of population of the Ashanti Region is located in the Kumasi Metropolitan 

District. According to the 2000 census, the region had a population of 3,612,950, making 

it the most populous region. However, its density (148.1 per square km) is lower than 

those of the Greater Accra (895.5/km
2
) and Central (162.2/km

2
) Region. Majority of the 

region‟s population are Ghanaians by birth (87.3%) with about five per cent naturalized 

http://en.wikipedia.org/wiki/Ghana
http://en.wikipedia.org/wiki/Center_of_population
http://en.wikipedia.org/wiki/Kumasi
http://en.wikipedia.org/wiki/Kumasi
http://en.wikipedia.org/wiki/Kumasi
http://en.wikipedia.org/wiki/Greater_Accra_Region
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Ghanaians. A smaller proportion (5.8%) of the population originate from outside Ghana, 

made up of 3.7 per cent mainly from the five English-speaking countries of ECOWAS 

and 2.1 per cent from other African countries. The non-African population living in the 

region is 1.8 per cent of the total population. Akans are the predominant ethnic group in 

the region, representing 77.9% of Ghanaians by birth. A high proportion (78.9%) of the 

Akan population is the Asantes. The non-Akan population in the region comprises the 

Mole- Dagbon (9.0%), the Ewe (3.2%), the Grusi (2.4%), the Mande-Busanga (1.8%) 

and the Ga- Dangme (1.4%). The other smaller ethnic groups form about 1.3 per cent of 

the population of the region (Wikipedia, 2011). 

 

Farming is the predominant occupation in the Ashanti Region. Crops cultivated include 

cocoa and foodstuffs; gold mining is also a major economic activity engaged in owing to 

the high amounts of gold deposits. Gold mining is said to be the oldest industry in the 

region as it stated long before the first European set foot on the Ashanti land. Timber 

haulage is done on a large scale. The region consists of deciduous and tropical rain forest. 

The extreme west of the region receives the highest amount of rainfall. It has tropical 

climate characterized by moderate temperatures all year round (Wikipedia, 2011).       

 

Unfortunately, at the time of completion of this thesis, the population and housing census 

data of Ghana for 2010 was not made available so I used that of 2000.    

 
 

 

 
. 

 
 

http://en.wikipedia.org/wiki/Economic_Community_of_West_African_States
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1.3 Motivation for the Thesis (Problem Statement) 

Measles is one of the leading causes of death among young children even though a safe 

and cost-effective vaccine is available. It is so serious that Dillner (2001) stated that in 

the developing world, mothers say, "never count your children until after the measles." 

(WHO, 2011). 

Measles can also make a pregnant woman have a miscarriage, give birth prematurely and 

low birth-weight babies (WHO, 2011).                                                                                                                                               

The major problem of measles is that Measles weakens the immune system and opens the 

door to secondary health problems, such as pneumonia, blindness, diarrhoea, encephalitis 

etc. (WHO, 2011).  

 

When one person has measles, 90 percent of the people they come into close contact with 

will become infected, if they are not already immune to it (Schoenstadt, 2006).   

 
 

1.4 Objective of the Thesis 

The following were the objectives of the thesis: 

i. to observe the pattern of measles infections in the Ashanti Region of Ghana 

from January, 2001 to November, 2011.  

 

ii. to model the prevalence of measles in the Ashanti Region of Ghana using the       

Box-Jenkins ARIMA process.       

 

iii.  to evaluate the impact of AIC on in-sample forecasting performance of the 

selected ARIMA models.   
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1.5 Significance of the Thesis 

      i. This thesis provides a method for assessing the effectiveness of measles in the       

             Ashanti Region of Ghana for the near future. 

 

ii. This thesis contributes to the research information on measles in the country, 

so that it can help in further work in the area of research to instigate the effects 

of the disease on Ghanaians. 

 

iii.  The thesis attempts to present both application and theory at a level accessible to a 

wide variety of students and researchers.    

 

1.6 Materials and Methodology 

The data used for the modeling and analysis was obtained from the Ministry of Health in 

the Ashanti Region of Ghana. It was a secondary data. The data on monthly bases consist 

of the measles cases from various hospitals in the Ashanti Region for the period of 

January 2001 to December 2011. The model used to analyze the collected data is the 

Auto-Regressive Integrated Moving Average (ARIMA) which was developed by Box 

and Jenkins in 1970. The R software package has been used in addition to manual 

calculations to model the given data. The Internet and Kwame Nkrumah University of 

Science and Technology school library are among the resources exploited. Details of this 

section can be found in chapter 3.        
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1.7 Structure of the Thesis 

This thesis is organized as follows: Chapter 1 reviews the background of the subject 

matter of the thesis. Topics discussed include the biological background, problem 

statement, objectives of the thesis, as well as the significance and the structure of the 

thesis. Chapter 2 consists of the review of relevant literature governing the theory of 

prevalence of measles. Chapter 3 consists of the discussion of the methods used for the 

thesis. All the formulae used in this study are discussed thoroughly in this chapter. The 

Box–Jenkins method for identifying a plausible ARIMA model is given in this chapter 

along with techniques for parameter estimation and forecasting for these models. A 

partial theoretical justification of the use of ARMA models is also discussed in this 

chapter. Chapter 4 deals with data analysis, modeling and forecasting. In this chapter, R 

codes of modeling time series were applied; that is, all of the plots and numerical output 

displayed in this thesis have been produced with the R software. Most of the numerical 

outputs have been edited for additional clarity or for simplicity. Actual measles data 

drawn from various hospitals in the Ashanti Region of Ghana are used throughout in this 

chapter to illustrate the methodology explained in chapter 3. Chapter 5 contains the 

summary and findings, conclusions and the recommendations of the thesis.  It also deals 

with the discussion of the results obtained from the R codes approach in chapter 4. 
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CHAPTER 2 

            REVIEW OF RELATED LITERATURE  

2.0 Introduction 

This chapter reviews the work of other researchers related to the objectives of this thesis.   

  

2.1 Sample Abstracts Relevant to this Thesis 

Many measles researchers have attempted to model epidemiology of measles epidemic in 

various countries. However, Mathematical models have not yet been used to study the 

prevalence of measles in the Ashanti Region of Ghana.  

  

First of all, considering the topic “A discrete-time model with vaccination for measles 

epidemic” which is the work of Allen et al. (1991). They used a discrete-time, age-

independent SIR-type epidemic model. The effects of vaccination were also included in 

the model.  They verified three mathematically important properties for the model. Their 

solutions were non-negative, the population size was time-invariant, and the epidemic 

concluded with all individuals either remaining susceptible or becoming immune. They 

applied their model to measles epidemic on a university campus. The simulated results 

were in good agreement with the actual data. The results of the simulations indicated that 

a rate of immunity greater than 98% might be required to prevent an epidemic in a 

university population. Their model had applications to other contagious diseases of SIR type.   

                                                                                                

Allen et al. (1993) stated that an epidemic of rubella occurred on the campus of Texas 

Tech University in January, February and March of 1989. A vaccination programme was 
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initiated as soon as the epidemic was confirmed. Extensive case histories of all confirmed 

cases were collected by the Lubbock City Health Department and given an exhaustive 

statistical analysis by a group from the Department of Mathematics at Texas Tech 

University. The data and statistical analysis were used to formulate stochastic and 

deterministic models of the measles epidemic based on the standard SEIR model. The 

analysis and the simulations indicated that in order to prevent measles outbreak on a 

university campus a high rate of immunity above 98 per cent might be required.   

 

Rhodes and Anderson (1996) presented a detailed analysis of the pattern of measles 

outbreaks in the small isolated community of the Faroe Islands. Measles outbreaks in that 

population was characterized by frequent fade-out of infection resulting in long intervals 

when the disease was absent from the islands. Using an analysis of the distribution of 

epidemic sizes and epidemic durations they proposed that the dynamical structure 

observed in the measles case returns reflected the existence of an underlying scaling 

mechanism. Consequently the dynamics were not as purely stochastic as is usually 

thought for epidemiological systems of that sort. They used a Lattice-Based Epidemic 

Model to provide a theoretical estimate of the scaling exponents and showed that a 

conventional compartmental SEIR model was unable to reproduce that result.   

 

A Mathematical model of the dynamics of measles in New Zealand was developed in 

1996. The model successfully predicted an epidemic in 1997 and was instrumental in the 

decision to carry out an intensive MMR (measles-mumps rubella) immunization 

campaign in that year. While the epidemic began some months earlier than anticipated, it 
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was rapidly brought under control, and its impact on the population was much reduced. In 

order to prevent the occurrence of further epidemics in New Zealand, an extended version 

of the model had since been developed and applied to the critical question of the optimal 

timing of MMR immunization (Tobias and Roberts, 2000). 

 

Also deserving mention is the work of Ellner et al. (1998). They presented and evaluated 

an approach to analyzing population dynamics data. They used semi-mechanistic models. 

They used historical data on measles epidemics as a case study and showed how that 

approach could lead to better forecasts, better characterizations of the dynamics, and a 

better understanding of the factors causing complex population dynamics relative to 

either mechanistic models or purely descriptive statistical time series models. The semi-

mechanistic models were found to have better forecasting accuracy than either of the 

model types used in previous analyses when tested on data not used to fit the models. The 

dynamics were characterized as being both non-linear and noisy. The dynamics oscillate 

between strong short-term stability and strong short-term chaos. There was statistically 

significant evidence for short term chaos in all data sets examined.   

 

 Stamp et al. (1990) presented a Mathematical model for the simulation of a localized 

measles epidemic. Their work was presented along with a computer simulation based on 

this model. The simulation results were compared with the results of a measles outbreak 

which occurred at Texas Tech University. The effectiveness of the vaccination program 

undertaken during the Texas Tech epidemic and the effect of altering the level of herd 

immuninity were also considered. 
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A simple stochastic Mathematical model was developed and investigated for the 

dynamics of measles epidemic by Kassem and Ndam (2010). Their model, which was a 

multi-dimensional diffusion process, included susceptible individuals, latent (exposed), 

infected and removed individuals. Stochastic effects were assumed to arise in the process 

of infection of susceptible individuals. Using the best currently available parameter 

values, the intrinsic variability in response to a given initial infection was examined by 

solving the stochastic system numerically. The results of the simulation seemed to agree 

with the historical pattern of measles in Nigeria. 

 

Bharti et al. (2008) stated that Mathematical models could help elucidate the spatio-

temporal dynamics of epidemics as well as the impact of control measures. The model of 

gravity for directly transmitted diseases is currently one of the most parsimonious models 

for spatial epidemic spread. They used distance-weighted, population size-dependent 

coupling model to estimate host movement and disease incidence in meta-populations. 

Their model captured overall measles dynamics in terms of underlying human movement 

in pre-vaccination England and Wales. In spatial models, edges often present a special 

challenge. Therefore, to test the model's robustness, they analyzed gravity model incidence 

predictions for coastal cities in England and Wales. Their Results showed that, although 

predictions were accurate for inland towns, they significantly underestimated coastal 

persistence. They examined incidence, outbreak seasonality, and public transportation 

records, to show that the model's inaccuracies stem from an underestimation of total 

contacts per individual along the coast. They rescued this predicted „edge effect‟ by 
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increasing coastal contacts to approximate the number of per capita inland contacts. 

Those results illustrated the impact of „edge effects‟ on epidemic Meta-populations in 

general and illustrated directions for the refinement of spatiotemporal epidemic models.  

  

Chen et al. (2007) proved that vaccination has a powerful defense against measles. They 

reappraised measles sero-epidemiological data in Taiwan from 1974 to 2004 having 

robust age-stratified serological information on exposure and immunity to quantitatively 

characterize measles vaccination programmes. They dynamically modeled measles sero-

epidemiology to estimate age-dependent intensity of infection associated with the effects 

of different contact patterns on pre- and post-vaccination. The contact matrix was 

employed to describe the transmission between and within each age group.  They used a 

deterministic Susceptible–Exposed–Infected–Recovery (SEIR) model to capture sub-

population dynamics. Their study showed that mass regional or nationwide vaccination 

programmes could greatly reduce the potential for a major measles epidemic and have 

strong direct effects on the potential impact of childhood vaccination. They 

parameterized a predictive model that should reduce the socio-economic costs of measles 

surveillance in Taiwan and thereby encourage its continuance, especially for pre-school 

children. 

Wallinga et al. (2005) estimated the measles reproduction ratio for eight Western 

European vaccination programmes. Because many plausible age-structured transmission 

patterns result in a similar description of the observations, it is not possible to estimate a 

unique value of the reproduction ratio. They developed a method to estimate bounds and 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wallinga%20J%22%5BAuthor%5D
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confidence intervals for plausible values of the reproduction ratios. They used maximum 

likelihood methods. Lower and upper bounds for plausible values of the basic 

reproduction ratio were estimated to be 7.17 (95% CI 7.14-7.20) and 45.41 (95% CI 9.77-

49.57), corresponding to lower and upper bounds on critical vaccine coverage of 86.6% 

and 98.1%. Of the eight evaluated vaccination programmes, four have vaccine coverage 

below the lower bound and allow measles to persist, and four have vaccine coverage at 

the upper bound and may eventually eliminate measles. 

 

 

 Trottier and Philippe (2006) presented univariate time series analysis of pertussis, 

mumps, measles and rubella based on Box-Jenkins or Auto-Regressive Integrated 

Moving Average (ARIMA) modeling. The objective of their paper was to analyze the 

stochastic dynamics of childhood infectious disease using time series analysis. Their 

method, which enables the dependency structure embedded in time series data to be 

modeled, had potential research applications in studies of infectious disease dynamics. 

Canadian chronological series of pertussis, mumps, measles and rubella, before and after 

mass vaccination, were analyzed to characterize the statistical structure of those diseases. 

Despite the fact that those infectious diseases were biologically different, it was found 

that they were all represented by simple models with the same basic statistical structure. 

Aside from seasonal effects, the number of new cases was given by the incidence in the 

previous period and by periodically recurrent random factors. It was also shown that mass 

vaccination did not change that stochastic dependency. They concluded that the Box-

Jenkins methodology identified the collective pattern of the dynamics, but not the 

specifics of the diseases at the biological individual level.  
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 Cliff and Haggett (1993) reviewed the application of statistical models to the outbreaks 

of measles epidemic. They looked first at its epidemiological characteristics and assessed 

the extent to which those either aid or hinder modeling. They then turned to the models 

that had been developed to simulate geographical spread. A distinction was drawn 

between process-based and time series models. They provided applications from work, 

by using Icelandic data. Finally they considered the forecasting potential of the models 

described. 

 

Greefell (1992) examined the impact of seasonality and chaotic dynamics in simple 

models for the population dynamics of measles on the probability of fade-out of 

infection. Monte Carlo simulations of the seasonally forced SEIR model was used, with 

parameters appropriate to a city of 1 million people. The incidence of fade-out in a 

spatially homogeneous model was compared with simple spatial models involving 

various degrees of coupling between sub-areas. His results indicated a significant degree 

of fade-out of infection, which was not consistent with previously derived criteria for the 

persistence of measles. Lowering the degree of spatial coupling did not substantially 

reduce the extent of fade-out. A simple non-linear analysis of the simulated series was 

presented, and the epidemiological implications of those results were discussed. 

 

Glass et al. (2003) presented the effect of Heterogeneity in Measles Vaccination on 

Population Immunity. They adopted a meta-population framework to model local 

aggregation of populations, and used that to investigate the effects of vaccination 
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heterogeneity. A recent survey of antibody levels in a community with low vaccination 

levels in The Netherlands enabled them to assess the relative importance of local and 

long-range infective contacts. They identified feasible levels of aggregation in the meta-

population model. In the aggregated model, they found that heterogeneity in vaccination 

coverage could lead to a much increased rate of infection among unvaccinated 

individuals, with a simultaneous drop in the average age at infection. 

 

Tarwater and Martin (2001) evaluated the effect of population density on the epidemic 

outbreak of measles. They used average-number contacts with susceptible individuals per 

infectious individual as a measure of population density, an analytical model for the 

distribution of the non-stationary stochastic process of susceptible contact was presented. 

They used a 5-dimensional lattice simulation model of disease spread to evaluate the 

effects of four different population densities. They also used a zero-inflated Poisson 

probability model to quantify the non-Stationarity of the contact rate in the stochastic 

epidemic process. Analysis of the simulation results identified a decrease in a susceptible 

contact rate from four to three, resulted in a dramatic effect on the distribution of contacts 

over time, the magnitude of the outbreak, and, ultimately, the spread of disease.   

 

Keeling and Grenfell (2002) revealed that the use of constant infectious and incubation 

periods, rather than the more convenient exponential forms, had been presented as a 

simple means of obtaining realistic persistence levels. They considered the persistence of 
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measles: reconciling theory, simulation and observation. They used a deterministic 

approach to parameterize a variety of models to fit the observed biennial attractor that 

determined the level of seasonality by the choice of model. They used „best-fit‟ 

parameters to compare fairly the persistence of the stochastic versions of those models. 

Finally, they considered the differences between the observed fade-out pattern and the 

more theoretically appealing „first passage time‟. 

 

Lloyd (2000) illustrated how detailed dynamical properties of a model might depend in 

an important way on the assumptions made in the formulation of the model. According to 

his study most mathematical models used to understand the dynamical patterns seen in 

the incidence of childhood viral diseases, such as measles, employ a simple, but 

epidemiologically unrealistic, description of the infection and recovery process. The 

inclusion of more realistic descriptions of the recovery process was shown to cause a 

significant destabilization of the model. When there was seasonal variation in disease 

transmission that destabilization leads to the appearance of complex dynamical patterns 

with much lower levels of seasonality than previously predicted.   

 

From Lloyd (2001), most mathematical models used to study the epidemiology of 

childhood viral diseases, such as measles. He described the period of infectiousness by an 

exponential distribution. He used Susceptible Infectious Recovered (SIR) model in his 

study.  He reviewed that less dispersed distributions were seen to have two important 
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epidemiological consequences. First, less stable behaviour was seen within the model: 

incidence patterns became more complex. Second, disease persistence was diminished: in 

models with a finite population, the minimum population size needed to allow disease 

persistence increased. The assumption made concerning the infectious period distribution 

was of a kind routinely made in the formulation of mathematical models in population 

biology. He detected that a major effect on the central issues of population persistence 

and dynamics were observed. The results of his study have broad implications for 

mathematical modelers of a wide range of biological systems. 

 

According to Zaman et al. (2007), almost all mathematical models of diseases start from 

the same basic premise. The population could be subdivided into a set of distinct classes 

dependent upon experience with respect to the relevant disease. They used Susceptible 

Infected Recovered (SIR). In their paper, they described an SIR epidemic model with 

three components; S, I and R. They described their study of stability analysis theory to 

find the equilibria for the model. In order to achieve control of the disease, they 

considered a control problem relative to the SIR model. A percentage of the susceptible 

populations was vaccinated in that model. They showed that an optimal control exists for 

the control problem and they used Runge-Kutta fourth order procedure to describe the 

numerical simulations. They finally described a real example showing the efficiency of 

that optimal control.  
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London and Yorke (1973) stated that recurrent outbreaks of measles, chickenpox and 

mumps in cities were studied using a mathematical model of ordinary differential delay 

equations. They estimated the mean contact rate from the monthly reported cases over a 

30- to 35-year period. The mean monthly contact rate for each disease was 1.7 to 2 times 

higher in the winter months than in the summer months.  They showed that the seasonal 

variation was attributed primarily to the gathering of children in school. Computer 

simulations that use the seasonally varying contact rates reproduce the observed pattern 

of un damped recurrent outbreaks: annual outbreaks of chickenpox and mumps and 

biennial outbreaks of measles. The two-year period of measles outbreaks was the 

signature of an endemic infectious disease that would exhaust itself and become non-

endemic if there were a minor increase in infectivity or a decrease in the length of the 

incubation period. For populations in which most members were vaccinated, simulations 

showed that the persistence of the biennial pattern of measles outbreaks implies that the 

vaccine was not being used uniformly throughout the population.  

 

 

Liverpool, U.K., 1863--1900, has been used as a model to explore the interaction between 

measles epidemics and the population dynamics in an overcrowded community with 

inadequate nutrition. They used a non-linear model that allowed the estimation of certain 

underlying demographic parameters. Their results were consistent with a system that was 

driven by an oscillation in the transmission parameter that was compounded of an 

oscillation in autumn and also by an oscillation in wheat prices (Duncan et al., 1999). 
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Infectious diseases provide a particularly clear illustration of the spatiotemporal 

underpinnings of consumer-resource dynamics. The paradigm was provided by extremely 

contagious, acute, immunizing childhood infections. Partially synchronized, unstable 

oscillations were punctuated by local extinctions. That, in turn, could result in spatial 

differentiation in the timing of epidemics and, depending on the nature of spatial 

contagion, might result in traveling waves. They used the basis of a gravity coupling 

model and a Time series Susceptible Infected- Recovered (TSIR) model for local 

dynamics. They proposed a meta-population model for regional measles dynamics. Their 

model could capture all the major spatiotemporal properties in pre-vaccination epidemics 

of measles in England and Wales (Yingcun et al., 2004). 

 

Trottier and Philippe (2001) also presented a deterministic modeling as applied to the 

population dynamics of infectious diseases. They used SEIR deterministic model to 

provide useful insights into the mechanic of many common childhood diseases such as 

measles. They showed that deterministic models exhibit damped oscillations, showed 

random variations and predicted the spread of infectious diseases. Their paper provided 

an introduction to the theory and methods of deterministic modeling and would be 

followed by two other articles that would show how sensitivity analysis could be helpful 

for the forecast and control of common infectious diseases at the population scale.  

 

The objective of Perez and Dragicevic (2009) study was to develop an agent-based 

modeling approach to integrate geographic information systems (GIS) to simulate the 
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spread of a communicable disease in an urban environment, as a result of individuals' 

interactions in a geospatial context. They used measles outbreak in an urban environment 

as a case study. Their results provided insights into the application of the model to 

calculate ratios of Susceptible - Infected in specific time frames and urban environments, 

due to its ability to depict the disease progression based on individuals' interactions. It 

was demonstrated that the dynamic spatial interactions within the population led to high 

numbers of exposed individuals who performed stationary activities in areas after they 

had finished commuting. The sick individuals were concentrated in geographical 

locations like schools and universities.   

 

Souza (1982) proposed a new approach to forecasting based on the Bayesian principles of 

information theory and called the Poisson - gamma single - state model. In his paper, a 

two-state version of the Poisson - gamma model was formulated by considering the 

uncertainty not only in the parameters but also in the model itself. That model was 

particularly useful for modeling epidemic data such as measles by considering two 

different situations of the generating process at each time point.   

 

Thacker and Millar (1991) stated that in 1983, 5 years after the inception of an aggressive 

national measles elimination strategy, the United States experienced its lowest level of 

reported numbers of cases of measles. That accomplishment was the result of an effective 

vaccination strategy coupled with surveillance and control efforts by local, state and 

national public health agencies. After 1983, however, the reported number of measles 



 25 

cases slowly increased until 1989 and the number exceeded that of 1979. In 1990, they 

were experiencing epidemics throughout the United States and expected the reported 

number of cases of measles to exceed that of 1989. They felt it was timely to reflect on 

that experience in the light of previous measles control efforts. They looked back to the 

contributions of Professor George Macdonald, which were critical to the successful 

elimination of measles from The Gambia in 1969. As they enter the last decade of that 

century, the sensible merging of mathematics and epidemiology in useful models and the 

appropriate use of such models for planning, offered the best hope for achieving the 

elimination of measles either in that or the next century.  

 

Bolker and Greefell (1995) presented a Space, Persistence and Dynamics of Measles 

Epidemic. Their paper explored the relations between persistence and dynamics in 

measles epidemics. Most current models, including the stochastic seasonally forced and 

age-structured models examined in their paper failed to capture simultaneously the 

observed dynamics and persistent characteristics of epidemics in large urban populations 

before vaccination. Summary measures of persistence and triennially allowed them to 

compare epidemics in England, New York and Copenhagen with results of non-spatial 

and spatial stochastic models. Spatial (meta-population) structure allowed persistence and 

triennial dynamics to coexist in that class of models. The spatial dynamics of measles, for 

which detailed spatiotemporal data were available, might serve as a useful test of ideas 

applicable to other epidemiological and ecological systems with an important spatial 

component.  
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Earn et al. (2000) showed that dramatic changes in patterns of epidemics had been 

observed throughout that century. They reviewed that for childhood infectious diseases 

such as measles, the major transitions were between regular cycles and irregular, possibly 

chaotic epidemics and from regionally synchronized oscillations to complex, spatially 

incoherent epidemics. A simple model could explain both kinds of transitions as the 

consequences of changes in birth and vaccination rates. Measles was a natural ecological 

system that exhibits different dynamic transitions at different times and places, yet all of 

those transitions could be predicted as bifurcations of a single nonlinear model.  

 

Georgette and Allen (2009) researched sought to improve the cost effectiveness of Pre-

Outbreak Immunization (POI). That end was achieved through the development of a 

novel quantification for cost effectiveness, the Morbidity Avoidance Ratio (MAR) that 

could be widely applied in impoverished nations most affected by vaccine preventable 

diseases. They used a simulation for disease spread programmed into MS Excel and 

calculated the MAR for idealized cases of measles, mumps, and rubella. They also 

determined based upon that analysis that the most cost effective POI rate was the herd 

immunity threshold. They found that as the POI rate increased, the cost effectiveness 

increased until the threshold was reached. Their research demonstrated a novel approach 

to analyzing POI and could help improve the cost effectiveness of outbreak control. 

 



 27 

Sattenspiel and Dietz (1995) presented a model for the spread of infectious diseases 

among discrete geographic regions that incorporate a mobility process that describes how 

contact occurs between individuals from different regions. They described the general 

formulation of the mobility process and it was shown that the formulation encapsulates a 

range of mobility behavior from complete isolation of all regions to permanent migration 

between regions. They also showed how that mobility process fits into an SIR epidemic 

model. Their examples included a model for disease transmission in a population with 

two distinct mobility patterns operating and a model developed to describe a 1984 

measles epidemic on the Caribbean island of Dominica. 

 

Stone et al. (2000) based on a theory of population dynamics in perturbed environments. 

It was hypothesized that measles epidemics could be more efficiently controlled by pulse 

vaccination. They analyzed the rationale of the pulse vaccination strategy in the simple 

SIR epidemic model. It was possible to eradicate the measles infection from the entire 

model population. They derived the conditions for epidemic eradication under various 

constraints and showed their dependence on the parameters of the epidemic model.  

 

Bauch (2008) presented the Role of Mathematical Models in Explaining Recurrent 

Outbreaks of Infectious Childhood Diseases. Childhood diseases such as measles were 

characterized by recurrent outbreaks. Mathematicians had long used models in an effort 

to better understand and predict those recurrent outbreak patterns. That paper summarized 

and commented upon those efforts, providing a historical outline of childhood disease 

models that had been developed since the start of the twentieth century. The paper also 

http://ukpmc.ac.uk/abstract/MED/7606146/?whatizit_url=http://ukpmc.ac.uk/search/?page=1&query=%22infectious%20diseases%22
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discussed the influence of data analysis techniques, such as spectral analysis, on the 

understanding and modeling of childhood disease dynamics. 

Grais et al. (2006) stated that the current World Health Organization recommendations 

for response during measles epidemics focus on case management rather than outbreak 

response vaccination (ORV) campaigns, which may occur too late to impact morbidity 

and mortality and have a high cost per case prevented. They explored the potential impact 

of an ORV campaign conducted during the 2003–2004 measles epidemic in Niamey, 

Niger. They measured the impact of this intervention and also the potential impact of 

alternative strategies. They used a unique geographical, epidemiologic and demographic 

dataset collected during the epidemic to develop an individual-based simulation model. 

They estimated that a median of 7.6% [4.9–8.9] of cases were potentially averted as a 

result of the outbreak response, which vaccinated approximately 57% (84 563 of an 

estimated 148 600) of children in the target age range (6–59 months), 23 weeks after the 

epidemic started. They found that intervening early (up to 60 days after the start of the 

epidemic) and expanding the age range to all children aged 6 months to 15 years may 

lead to a much larger (up to 90%) reduction in the number of cases in a West African 

urban setting like Niamey.  

   

From the revealed analysis above no research work has been extended to model cases of 

prevalence of measles in the Ashanti Region of Ghana. I therefore, introduced a 

Statistical model which applies to measles cases in the Ashanti Region of Ghana.     
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CHAPTER 3 

METHODOLOGY 

3.0 Introduction  

This chapter discusses the methods used to obtain the results presented in this thesis. All 

the formulae used in the study are discussed thoroughly in this chapter. The Box–Jenkins 

method for identifying a plausible ARIMA model is given in this chapter, along with 

techniques for parameter estimation and forecasting for these models. A partial 

theoretical justification of the use of ARMA models is also discussed in this chapter. 

 

3.1 Definitions of Time Series  

A time series is a collection of observations of well-defined data items obtained through 

repeated measurements over time. For example, measuring the value of retail sales each 

month of the year for a particular product in a particular geographical location results in a  

time series. This is because sales revenue is well defined, and consistently measured at 

equally-spaced intervals. Data collected irregularly or only once are not time series. Time 

series is therefore, defined mathematically as a time dependent sequence  

1X , 2X , 3X , …, NX  or { tX }, t {1, 2, 3, …, N}, where 1, 2, 3, …, N depicts time 

steps and assumed to be equally spaced (Cryer and Kung, 2008). 

 

Time Series can be classified into: deterministic time series and stochastic time series. 

- Time series which can be expressed as a known function, such as  tX  = )(tf ,  is said to    

    be deterministic time series.  
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The sequence of random variables { tX  : t = 0, ±1, ±2, ±3, …} is called a stochastic 

process and serves as a model for an observed time series. Time series is said to be 

stochastic time series if it can be expressed as  tX  = )(tX , where X is a random variable. 

Here the mean function is defined by )( tt XE     for t = 0, ±1, ±2, ±3, …  

(Cryer and Kung, 2008).  

 

3.2 Objective of Time Series Analysis 

There are several possible objectives in analyzing a time series. These objectives may be 

classified as description, explanation, prediction and control. Below, we briefly describe 

each of them sequentially. 

 

3.2-1 Description  

For time series, the most obvious graphical form is a time plot in which the data are 

plotted over time. A time plot immediately reveals any trends over time, any regular 

seasonal behavior, and other systematic features of the data. These need to be identified 

so they can be incorporated into the Statistical model. Apart from trend and seasonal 

variation, the outlier to look for in the graph of the time series is the possible presence of 

turning point, where for example, a downward trend suddenly changes to an upward 

trend. An important step in selecting an appropriate forecasting method is to consider the 

types of data patterns, so that the methods most appropriate to those patterns can be 

utilized. Four types of time series data patterns can be identified in the literature:  

horizontal, seasonal, cyclical and trend (Gottman, 1981). 
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3.2-2 Explanation 

When observations are taken on two or more variables, it may be possible to use the 

variation in one time series variable to explain the variation in the other time series 

variable. This may lead to a deeper understanding of the mechanism which generated a 

given time series (Gottman, 1981). 

 

3.2-3 Prediction 

When an observed time series is given, one may want to predict the future values of the 

series. This is an important task in sales forecasting and in the analysis of economic and 

industrial time series. Prediction is closely related to control problem in many situations. 

For example, if one can predict that measles epidemic in the Ashanti Region of Ghana is 

going to increase, then appropriate corrective measures can be taken ahead of time to 

confront the situation (Gottman, 1981) 

 

3.2-4 Control 

When a time series is generated which measures the quality of a manufacturing process, 

the aim of the analysis may be to control the process. Control procedures are of several 

different kinds. In statistical quality control, for instance, the observations are plotted on 

control charts and the controller takes action as a result of studying the charts. Box and 

Jenkins have described a more sophisticated control strategy which is based on fitting a 

stochastic model to the series, from which future values of the series are predicted. The 

values of process variables predicted by the model are taken as target values and the 

variables conform to the target values (Gottman, 1981). 
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3.3 Components of a Time Series 

The four components of time series are secular trend, seasonal variation, cyclical 

variation and irregular variation. We describe these briefly below. 

                                                                                                     

3.3-1 Secular Trend 

A time series data may show upward trend or downward trend for a period of years and 

this may be due to factors such as increase in population, change in technological 

progress, large scale shift in consumer demands, etc. For example, population increases 

over a period of time, price increases over a period of years, production of goods on the 

capital market of the country increases over a period of years. These are the examples of 

upward trend. The sales of a commodity may decrease over a period of time because 

better products coming have been released into the market. This is an example of 

declining trend or downward trend. The increase or decrease in the movements of a time 

series is called Secular trend (Blog, 2008). 

 

3.3-2 Seasonal Variation  

Seasonal variations are short-term fluctuation in a time series which occur periodically in 

a year. This continues to repeat year after year. The major factors that are responsible for 

the repetitive pattern of seasonal variations are weather conditions and customs of people. 

More woolen clothes are sold in winter than in the season of summer. Regardless of the 

trend we can observe that in each year more ice creams are sold in summer and very little 

in winter season. The sales in the departmental stores are more during festive seasons 

than in the normal days. In general seasonality is defined as a pattern that repeats itself 

over fixed intervals of time (Blog, 2008). 
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3.3-3 Cyclical Variations 

Cyclical variations are recurrent upward or downward movements in a time series but the 

period of cycle is greater than a year. Also, these variations are not regular as seasonal 

variation. There are different types of cycles of varying in length and size. The ups and 

downs in business activities are the effects of cyclical variation. A business cycle 

showing these oscillatory movements has to pass through the four phases: prosperity, 

recession, depression and recovery. In a business, these four phases are completed by 

passing one to another in this order (Blog, 2008). 

 

3.3-4 Irregular Variation  

Irregular variations are fluctuations in time series that are short in duration, erratic in 

nature and follow no regularity in the occurrence pattern. These variations are also 

referred to as residual variations since, by definition, they represent what is left out in a 

time series after trend, cyclical and seasonal variations. Irregular fluctuations results due 

to the occurrence of unforeseen events such as floods, earthquakes, wars, famines, 

etc. (Blog, 2008). 

  

3.4-1 Stationary Time Series 

Stationarity means that there is no growth or decline in the data. The data fluctuate 

around a constant mean, independent of time, and the variance of the fluctuation remains 

essentially constant over time. A time series is said to be strictly stationary if the joint 

distribution of 
nttt XXX ,...,,

21
is the same as the joint distribution of TtTtTt n

XXX  ,...,,
21

 

for all TnTT ttt  ,...,, 21 . We can usually assess stationarity using a time plot (Cryer, 2008). 



 34 

3.4-2 Achieving Stationarity (Differencing)  

It is important to remove the non-stationarity in data to be analyzed so that other 

correlation structure can be seen before proceeding with time series model building. If 

there is a trend in the mean then differencing the time series data will remove the trend 

and stationarity will be achieved. For non-seasonal data, first differencing is usually 

sufficient to attain stationarity.  

        The first difference is denoted as  1 ttt XXX                                               (3.1)      

        For second differencing we have  )(2

tt XX  212   ttt XXX              (3.2) 

                                                                           

From the above definitions, we can see that the first difference eliminates a linear trend, 

the second difference eliminates a quadratic trend and so on (Shumway and Stoffer, 

2006). 

We define the backshift operator as   1 tt XBX   and extend it to powers      

              21

2 )()(   tttt XXBBXBXB ,   

             3

3

 tt XXB  

                  . 

                  . 

             ktt

k XXB                    

We may then rewrite 1 ttt XXX   as  tt XBX )1(    and the notion can be 

extended further as follows.  

The second difference becomes:                    

                   tt XBX 22 )1(   tXBB )21( 2   

                             ttt XBBXX 22                                                                        (3.3)                                                  
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 Differences of order d are defined as dd B)1(    where the operator dB)1(   may be 

expanded algebraically to evaluate for higher integer values of d. When d = 1, we drop it 

from the notation (Shumway and Stoffer, 2006). 

 

3.5 Autocorrelation and Partial Autocorrelation Functions  

3.5-1 Autocorrelation Function (ACF) 

The autocorrelation function measures the degree of correlation between neighboring 

observations in a time series.           

The autocorrelation function (ACF), st , , is given by the formula  

 
)()(

),(
),(,

st

st
stst

XVarXVar

XXCov
XXCorr       t, s   {0, ±1, ±2, ±3,… }                  (3.4) 

  where )])([(),( tsttst XXEXXCov   = stst XXE ),(   

 

The autocorrelation coefficient estimated from sample observations at lag k is        
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                (Spyros et al., 1998).                        (3.5) 

 

3.5-2 The Sample Distribution of Autocorrelation Function Coefficients 

The autocorrelation coefficients of a random data are approximately normal with 

mean 0
k

  and 
n

k

1
 , where n is the size of the sample (Cryer and Kung, 2008). 
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3.5-3 Partial Autocorrelation Function (PACF) 

Partial autocorrelation function (PACF) measures the degree of association between tX  

and ktX   when the effects of other time lags on X are held constant. The partial 

autocorrelation function (PACF) at lag k is then defined to be the correlation between the 

prediction errors: that is, 

),...( 112211212211   tkktktkttktttkk XXXXXXXXCorr        

      
||

|| *

P

P k
    , where kP  is the k × k autocorrelation matrix, and kP*  is kP  with the last 

column replaced by T

k ],...,,[ 21  and      

 

 

kP                                                                                                                                (3.8) 

 

For convenience, we take 111   and obtain 
2

1
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12

1

1
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1

1

22
1

1

1

1



















                          (3.9) 

3.5-5 White Noise 

A very important example of a stationary process is the so-called white noise process, 

which is defined as a sequence of independent, identically-distributed random variables 

{ tX }. Its importance stems not from the fact that it is an increasing model itself, but 

from the fact that many useful processes can be constructed from white noise.  

 1       1     2    3  …. 1k  

1      1     1     2  …. 2k  

 . 

 . 

 . 

1k     2k    3k  ….      1 
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A stationary time series analysis for which tX  and ktX   are uncorrelated is called 

“White Noise”, where k = 1, 2, 3,…. Such a process will have autocorrelation function kr     

                                    









0,0

0,1

k

k
rk     ,                                                                      (3.10) 

A white noise process is sometimes called a purely random process (Nagpaul, 2005). 

 

3.6 Autoregressive Integrated Moving Average Models (ARIMA) 

The autoregressive integrated moving average (ARIMA) models have assumed great 

importance in modeling real-world processes. The introduction of correlation as a 

phenomenon that may be generated through lagged linear relations leads to the 

autoregressive (AR) and autoregressive moving average (ARMA) models.   

 

3.6-1 An Autoregressive Model of Order p, AR (p) 

An autoregressive model of order p, denoted by AR (p), is of the form 

                 tptptttt eXXXXX    ...332211                                         (3.11) 

where tX  is stationary random process/variable, p ,...,,, 321   are parameters or 

constants ( 0p ).  

Unless otherwise stated, we assume that te  is a Gaussian white noise series with mean 

zero and variance
2

e . The mean of tX in equation (3.11) is zero.              

If the mean,  , of tX  is not zero, then we replace tX  by tX  in equation (3.11). 

 

That is tptptttt eXXXXX   )(...)()()( 332211   
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          tptptttt eXXXXX    ...332211  

                = t

p

k

ktk eX 


 
1

                                                                                     (3.12) 

          where )...1( 321 p          (Shumway and Stoffer, 2006). 

The order of an AR(p) process is determined by the partial autocorrelation function 

(PACF). An AR (p) process has its PACF cutting off after lag p and the ACF decays. 

 

 

3.6-2 Autoregressive Process of Order 2 Denoted by AR(2) 

Assume the series is stationary then autoregressive process of second order is given by                                          

                                tttt eXXX   2211                                                               (3.13) 

   

3.6-3 Moving Average Model of Order q, MA(q) 

As an alternative to the autoregressive representation in which the tX  on the left-hand 

side of the equation are assumed to be combined linearly, the moving average model of 

order q, denoted by MA(q), assumes the white noise t  on the right-hand side of the 

defining equation are combined linearly to form the observed data. The moving average 

model of order q, denoted by MA (q) model, is defined as 

             tqtqttttX    ...332211                                               (3.14) 

Where there are q lags in the moving average and q ,....,,, 321     ( 0q ) are 

parameters. The noise t   is assumed to be Gaussian white noise with mean zero and 

variance
2

 (Shumway and Stoffer, 2006).                                       
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3.6-4 Autoregressive Moving Average Model (ARMA) 

We now proceed with the general development of autoregressive, moving average, 

and mixed autoregressive moving average (ARMA), models for stationary time series. 

A time series { tX ; t = 0, ±1, ±2, ±3, . . .} is ARMA(p, q) if it is stationary and 

        tqtqttptttt XXX    ...... 22112211                     (3.15) 

with 0p , 0q  and 0
2
 . The parameters p and q are called the 

autoregressive and the moving average orders, respectively. If tX  has a non-zero 

mean  , we set )...1( 21 p   and write the model as 

       tqtqttptttt XXX    ...... 22112211               (3.16) 

{ t ; t = 0, ±1, ±2, . . .} is a Gaussian white noise sequence (Shumway and Stoffer, 2006). 

 

3.6-5 ARMA(2, 1) Model 

An example of an ARMA(p, q) model is the ARMA(2, 1) model given by         

                    ttttt XXX    112211                                                    (3.17) 

The ARMA(2, 1) model is stationary if 121  , 112   and 12  , and it is 

invertible if 11 1   . In an ARMA(2, 1) model ACF cuts of after lag 1 and the PACF 

cuts off after lag 2.  

 

 

 

. 
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3.7 The AR and MA Polynomials  

The AR polynomial is defined as 0,...1)( 2

21  p

p

p zzzz   and the MA 

polynomial is defined as q

q zzzz   ...1)( 2

21 , where 0q  and z is a 

complex number. To address the first problem, we will henceforth refer to an   

ARMA(p ,q) model to mean that it is in its simplest form. That is, in addition to the 

original definition given in equation (3.18).     

    tqtqttptttt XXX    ...... 22112211 ,                       (3.18) 

We will also require that )(z  and )(z  have no common factors. So, the process,  

tttt XX    11 7.07.0  is not referred to as an ARMA(1, 1) process because, in its 

reduced form, tX  is white noise. To address the problem of future-dependent models, we 

formally introduce the concept of causality and Invertibility (Shumway and Stoffer, 2006). 

 

 

3.8 Causality and Invertibility of an ARMA(p, q) Model  

An ARMA(p, q) model is causal and stationary if and only if 0)( z  for 1z .   

In other words, an ARMA process is causal and stationary only when the roots of )(z lie 

outside the unit circle; that is, )(z = 0 only when 1z .    

 

An ARMA (p, q) model is invertible if and only if 0)( z  for 1z .  In other words, an 

ARMA process is invertible only when the roots of )(z lie outside the unit circle; that is, 

)(z = 0 only when 1z  (Shumway and Stoffer, 2006). 
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Table 3.1: Causality and Invertibility Conditions of Specific Time Series Model 

ARMA     Causality     Invertibility   ACF      PACF  

Model     Condition     Condition  Coefficient       Coefficient    

(1, d, 0)  11 1      None   Tails off   Cuts off    

            After lag 1 

(2, d, 0)  121            Cuts off    

  112    None  Tails off  After lag 2 

  1// 2                

(0, d, 1)  None  11 1     Cuts off  Tails off  

      After lag 1   

(0, d, 2)  None   121     Cuts off   Tails off   

    112    After lag 2   

     12             

(2, d, 1)  121        Cuts off   Cuts off   

  112    11 1     After lag 1 After lag 2 

  12                 

 

Table 3.1 depicts the Causality and Invertibility conditions of specific time series models 

and the behavior of their theoretical ACF and PACF functions.  

 

3.9 Estimating the Parameters of an ARMA Model 

The process for estimating the parameters of the ARMA model is like the one for the MA 

model, it is an iterative method. Like the MA the residual sum of squares is calculated at 

every point on a suitable grid of the parameter values, and the values which give the 

minimum sum of squares are the estimates. For an ARMA(1, 1) the model is given by  

 

                      tttt XX    1111 )(                                                        (3.19) 

Given N observations NXXXX ,.......,,, 321 , we guess values for ,,, 11  set 00   
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and 0X  and then calculate the residuals recursively by 

         11 X  

      111122 )(   XX     

       :    

1111 )(   NNNN XX   

It follows that the residual sum of squares 


N

t

t

1

2
 is calculated. The other values of 1,  

and 1  are tried until the minimum residual sum of squares is found (Cryer and Kung, 

2008). 

 

 

3.10 The Autoregressive Integrated Moving Average Model (ARIMA)   

A time series { tX } is said to follow an integrated autoregressive moving average 

model, if the thd  difference t

d

t

d

t XBXW )1(   is a stationary ARMA process. If 

{ tW } follows an ARMA(p, q) model, we say that { tX } is an ARIMA(p, d, q) process. 

Fortunately, for practical purposes, we can usually take d = 1 or at most 2. Consider then 

an ARIMA(p, 1, q) process. With 1 ttt XXW , we have 

            qttttptpttt qeeeeWWWW    ...... 22112211 + te  

      






 
q

j

tjt

p

i

itit eeWW
1

1

1

                                                                     (3.20)                                                                                                                                           
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3.10-1 ARIMA(1, 1, 1) Process 

An example of ARIMA(p, d, q) is the ARIMA(1, 1, 1) which has one autoregressive 

(AR) parameter, one level of differencing and one moving average (MA) parameter is 

given by  

                                tttt XW    1111  

             tttt XBXB    1111 )1()1(  

which can be simplified as tttttt XXXX    1121111  

          tttttt XXXX    112111 )(                                                (3.21) 

 

3.11 Seasonal Autoregressive Integrated Moving Average Model     

For multiplicative Seasonal Autoregressive Integrated Moving Average (SARIMA) 

model, we have the general notation (p, d, q), (P, D, Q) S  where (p, d, q) is the non-

seasonal part and (P, D, Q) S  is the seasonal part with p, d, q having their usual meaning 

and P is the order of the seasonal AR process. D is the differencing of the seasonal 

process, Q is the order of seasonal MA process of the time series, and S is the order of 

seasonality.  For the purpose of identifying a seasonal ARMA process, we divide the 

process into two parts. To identify the seasonal pattern, we ignore the non-seasonal 

process and determine whether the seasonality is determined by an AR or an MA process 

by focusing on the coefficients of the seasonal terms. Suppose that the non-seasonal part 

is an ARIMA(1, 0, 1) and the time series shows a yearly seasonal pattern, then the 

complete model becomes 

ttX  )1()1)(1( 1

12

121  , if seasonality is on the AR portion, and 

ttX  )1)(1()1( 12

1211  , if seasonality is on the MA portion, where 

               ttt XXX ))1( 12

12

12

12    
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It can also be written as     44

12

12

12

12 )1(  ttttt   

An MA (2) seasonal process with one level of differencing is expressed by  

              ttX  )1()1)(1( 2

2112   

One level of differencing seasonal pattern in AR = MA (2) non-seasonal. OR 

       ttX  )1()1( 2

21          t )1( 12

12  (Shumway and Stoffer, 2006). 

 

Table 3.2:  Causality and Invertibility conditions of Purely Seasonal Time Series Model  

ARMA     Causality     Invertibility   ACF  PACF  

Model     Condition     Condition  Coefficient   Coefficient    

(1, D, 0) S   11 1      None   Tails off   Cuts off after   

            one seasonal lag  

(2, D, 0) S   121            Cuts off after   

  112    None  Tails off  two seasonal lags 

  1// 2                

(0, D, 1) S   None  11 1     Cuts off after  Tails off  

      one seasonal lag   

(0, D, 2) S   None   121     Cuts off after   Tails off   

    112    two seasonal lags   

     12             

(2, D, 1) S   121        Cuts off after   Cuts off after   

  112    11 1     one seasonal lag  two seasonal lags 

  12                 

 

Table 3.2 depicts the Causality and Invertibility conditions of specific purely seasonal 

time series models and the behavior of their theoretical ACF and PACF functions. 

 

3.11-1 Purely Seasonal Model 

A purely seasonal time series is one that has only seasonal AR or MA parameters. 

Seasonal autoregressive models are built with parameter called seasonal autoregressive 
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(SAR) parameters. The SAR parameters represent autoregressive relationships that exist 

between time series data separated by multiples of the number of periods per season. For 

example, a model with one SAR parameter is written as                                              

                                       tstst XX                                                                       (3.22) 

That is  ARIMA(P, D, Q) S  = ARIMA(1, 0, 0) S  

where S is the number of periods per season. The parameter is called the SAR parameter 

with order s. A general seasonal autoregressive model with P SAR parameters is written 

as follows:      tist

p

i

ist XX   




1

                                                                            (3.23) 

where stX   is order s, stX 2 is of order 2s, ., and pstX   is of order ps (Spyros et al., 1998)    

 

3.11-2 Seasonal Moving Average Models 

The Seasonal Moving Average (SMA) Model with Q parameters is given by  

                        tist

Q

i

ist eeX  




1

                                                                                (3.24) 

Considering ARIMA(0, 0, 1) 4 , the model is a quarterly seasonal moving average of order 

one, that is it has one seasonal moving average parameter. A model with one seasonal 

moving average parameter is written as tstst eeX                                               (3.25) 

 

3.12-3 Mixed SAR and SMA Models 

A mixed Seasonal Autoregressive (SAR) and Seasonal Moving Average (SMA) model is 

given by;          tist

q

i

isist

p

i

ist XX   








11

                                                       (3.26) 

The order of the seasonal ARMA model is expressed in terms of both PS and QS. 
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3.13 The Box–Jenkins Methodology for ARIMA Models 

The basis of the Box-Jenkins approach to modeling time series is summarized in Figure 

3.1 and consists of three phases: identification, estimation and testing, and application 

(Spyros et al., 1998).                                                                                                 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Schematic Representation of the Box-Jenkins Methodology for Time 

                    Series Modeling (Spyros et al., 1998).  

DATA PREPARATION 

1. Transform data to stabilize variance. 

2. Difference data to obtain stationary series. 

MODEL SELECTION 

        Examine data, ACF and PACF to identify  

        potential models. 

ESTIMATION 

1. Estimate parameters in potential models. 

2. Select best model using suitable criterion. 

DIAGNOSTICS 

1. Check ACF/PACF of residuals. 

2. Do portmanteau test of residuals? 

3. Are the residuals white noise? 

FORECASTING 

Use selected model to forecast. 

PHASE III 

Application 

                            

PHASE II 

Estimation 

and testing 

                            

PHASE I 

Identification 

                            

NO 

YES 
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Box and Jenkins effectively put together in a comprehensive manner the relevant 

information required to understand and use univariate time series ARIMA models. The 

theoretical underpinnings described by Box and Jenkins and later by Box, Jenkins, and 

Reinsell (1994) are quite sophisticated, but it is possible for the non-specialist to get a 

clear understanding of the essence of ARIMA methodology. Application of a general 

class of forecasting methods involves two basic tasks:   

                      (a) analysis of the data series and  

                      (b) selection of the forecasting model that best fits the data series.  

Thus, in using a smoothing method, analysis of the data series for seasonality, aids in 

selection of a specific smoothing method that can handle the seasonality.  

(Spyros et al., 1998)   

3.13 Other Specification Methods 

A number of other approaches to model specification have been proposed since Box and 

Jenkins‟ seminal work. Some of the most studied are Akaike‟s (1974) Information 

Criterion (AIC), AICc and Bayesian Information Criterion (BIC). Others include the 

Augmented Dickey Fuller (ADF) unit root test and Kwiatkowski-Phillips-Schmidt-Shin 

(KPSS) Tests. We describe these briefly below sequentially. 

 

Augmented Dickey-Fuller (ADF) Test                                                                      

The hypotheses 0H :  tX  is non – Stationary and 1H :  tX  is Stationary can be tested in 

the regression equation tit

p

i

itt XXtX   



 
1

110                               (3.27)                                                                     

                 Accept 0H  if 05.0 valueP , else accept 1H . 
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Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test                                                                                                                     

An alternative approach to the ADF test is the KPSS test. A hypotheses of 0H :  tX  is 

level or trend stationary is tested against 1H : tX  is non- stationary in the regression 

equation in (3.28). 

                  ttt tX                                                                                          (3.28) 

where a random walk, ttt   1  is allowed.                

               Accept 0H  if 05.0 valueP , else accept 1H . 

 

3.13-1 The Akaike’s Information Criteria (AIC) 

The Akaike‟s Information Criteria (AIC) provides a measure of the goodness-of-fit of a 

model which takes into account the number of terms in the model. It is commonly used 

with ARIMA models to determine the appropriate model order. The AIC is equal to twice 

the number of parameters in the model minus twice the logarithm of the likelihood 

function. Mathematically, AIC is calculated as follows: 

                    log(22),(  kqpAIC Maximum Likelihood)                                       (3.29)     

where k = p + q + 1 if the model contains an intercept or constant term and k = p + q 

otherwise. Given two or more competing models, the one with the smaller AIC value will 

be deemed more appropriate (Spyros et al., 1998).                       

 

Thus the AIC is a biased estimator, and the bias can be appreciable for large parameter 

per data ratios. Hurvich and Tsai showed that the bias can be approximately eliminated 
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by adding another non-stochastic penalty term to the AIC, resulting in the corrected AIC, 

denoted by AICc and defined by the formula 

 

                                   
2

)2)(1(2






kn

kk
AICAICc                                                    (3.30) 

Here n is the (effective) sample size and again k is the total number of parameters as 

above excluding the noise variance. Simulation results by Hurvich and Tsai suggest that 

for cases with k/n greater than 10%, the AICc outperforms many other models selection 

criteria, including both the AIC and BIC (Spyros et al., 1998).    

 

3.13-2 The Schwartz’s Bayesian Information Criteria (BIC) 

Another approach to determining the ARMA orders is to select a model that minimizes 

the Schwarz Bayesian Information Criterion (BIC). BIC like the AIC, the BIC is an order 

selection criteria for ARIMA models. It was invented by Schwarz and sometimes leads to 

less complex models than AIC. It is defined mathematically as 

 

       log(2)log(),(  nkqpBIC Maximum Likelihood)                                      (3.31) 

                         

If the true process follows an ARMA (p, q) model, then it is known that the orders 

specified by minimizing the BIC are consistent; that is, they approach the true orders as 

the sample size increases. However, if the true process is not a finite-order ARMA 

process, then minimizing AIC among an increasingly large class of ARMA models 

enjoys the appealing property that it will lead to an optimal ARMA model that is closest 
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to the true process among the class of models under study. The BIC imposes a greater 

penalty for the number of estimated model parameters than does AIC. The use of 

minimum BIC for model selection results in a chosen model whose number of parameters 

is less than that chosen under AIC (Spyros et al., 1998).    

 

3.13-3 Estimation of the Parameters of the Tentative Models  

Once a model is identified, the next stage of the Box-Jenkins approach is to estimate the 

parameters. In this study, all the coefficients of the estimated parameters were done using 

the R statistical software package.  

 

3.13-4 Testing the Model for Adequacy (Portmanteau Test) 

After identifying an appropriate model for a time series data, it is very important to check 

that the model is adequate. The error terms te are examined and for the model to be 

adequate, the errors should be random. Ljung and Box  provided a modified portmanteau 

test statistic for checking the randomness of the error terms. Their statistic is given by 

equation (3.32), 
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which is approximately distributed as a 2 with qph   degrees of freedom, where n is 

the length of the time series, h is the first h autocorrelations being checked, p is the order 

of the AR process and q is the order of the MA process and r is the estimated 

autocorrelation coefficient of the k th  residual term. If the calculated value of *Q  is 



 51 

greater than 2 for qph   degrees of freedom, then the model is considered 

inadequate and the model is adequate if *Q  calculated is less than 2 for qph   

degrees of freedom. If the model is tested inadequate, then the forecaster should select an 

alternative model and test for the adequate of the model (Spyros et al., 1998). 

 

3.14 Measuring Forecasting Accuracy (Error Metrics) 

 

Mean Absolute Error (MAE) 

The Mean Absolute Error (MAE) is defined mathematically by equation (3.33). 

                                   
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
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t

te
n

MAE
1

1
                                                             (3.33) 

where tX is the actual observation for time period t, tF  is the forecast value for the same 

period and ttt FXe   is the error term and n is the number of forecasting values 

(Spyros et al., 1998).                                                                                                        

 

Mean Square Error (MSE) 

Symbolically, the Mean Square Error (MSE) is defined by equation (3.34) 

                                   

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te
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MSE
1

21
                                                                        (3.34) 

 where tX  is the actual observation for time period t, tF  is the forecast value for the same 

period and ttt FXe   is the error term and n is the number of forecasting values 

(Spyros et al., 1998).                       
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3.15 The Diebold-Mariano Statistic for Comparing Predictive Accuracy 

Let  tX  denote the series to be forecast and let thtX /
1
  and thtX /

2
  denote two 

competing forecasts of thtX /  based on tI .  

For example, thtX /
1
 could be computed from an AR(p) model and thtX /

2
  could be 

computed from an ARMA(p, q) model. The forecast errors from the two models are 

                          ththttht XX /
1

/
1

    

                          ththttht XX /
2

/
2

   

The h-step forecasts are assumed to be computed for t = 0t , . . . , T for a total of 0T  

forecasts giving  T

ttht
0

/
1
 ,   T

ttht
0

/
2
 . 

Because the h-step forecasts use overlapping data the forecast errors in   T

ttht
0

/
1
 and 

  T

ttht
0

/
2
  will be serially correlated (Zivot, 2004). 

The accuracy of each forecast is measured by a particular loss function 

    tht
i

tht
i

ht LXXL //,    , i = 1, 2. Some popular loss functions are 

             • Squared error loss:    2// tht
i

tht
i LL      

             • Absolute error loss:   tht
i

tht
iL //      

To determine if one model predicts better than another we may test null hypotheses 

                             thttht LELEH /
2

/
1

0 :      

against the alternative 

                             thttht LELEH /
2

/
1

1 :          (Zivot, 2004) 

 

 Accept 0H  if 05.0 valueP , else accept 1H . 
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CHAPTER 4 

ANALYSIS AND RESULTS 

4.0 Introduction 

This chapter discusses the data analysis and modeling the data collected on measles cases 

in the Ashanti Region‟s time series. Here we applied the R Statistical Package in 

modeling the time series. That is, all the plots and numerical output displayed in this 

thesis have been produced with the R software. Most of the numerical outputs have been 

edited for additional clarity or for simplicity. Actual measles data drawn from various 

hospitals in the Ashanti Region of Ghana are used throughout in this chapter to illustrate 

the methodology explained in chapter 3.  

   

 

4.1 Time Plot of Prevalence of Measles in the Ashanti Region of Ghana  

 
Figure 4.1 displays the time series plot of the measles data from January 2001 to 

November 2011. It can be observed that measles increased sharply by a large amount 

from January to April 2001, but decreased from May to December 2002. A gradual 

increase in measles was observed from January to March 2003 followed by an irregular 

pattern in measles (that is upward and downward trends of the measles cases). In general, 

the trend in measles prevalence in the Ashanti Region of Ghana seams to be decreasing, 

but not always the case.  The annual measles time plot in Figure 4.1 does not exhibit 

seasonal variation, and it is no-stationary due to the trend component. Looking at the end 

of Figure 4.1, decrease in measles was observed from September to November 2011.  
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Figure 4.1: Time plot of measles prevalence in the Ashanti-Region of Ghana from   

                   January 2001 to November 2011. 

 

 

Most of the data points are a little bit far apart from the mean. This indicates that there is 

a clear case of non-stationarity in the mean. It follows that the measles series is non- 

stationary in the mean.  

 

4.2 Stationarity checks using the ACF, PACF, KPSS and Dickey-Fuller      

Figure 4.2 depicts the autocorrelation function (ACF) of the measles data which describes 

the correlation between values of the measles at different points in time, as a function of 

the two times or of the time difference.  
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      Figure 4.2: The Autocorrelation Function (ACF) of Prevalence of Measles 

 

The lags from 1 to 18 autocorrelation exceed two standard errors above zero (they are 

significantly far from zero). The autocorrelation function is decreasing gradually with 

time and that shows that there is a non-stationarity in the measles data. The ACF plot 

confirms non-stationarity in the measles series.   

 

Figure 4.3 exhibits the partial autocorrelation function (PACF) of the measles data. The 

first lag is almost unity which confirms that the measles time series is non-stationary.               
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     Figure 4.3: The Partial Auto-Correlation Function (PACF) of prevalence of measles 

 

 

Table 4.1: Augmented Dickey-Fuller (ADF) and KPSS Tests 

 
                   Augmented   Dickey – Fuller Test 

Dickey-Fuller       Lag Order P-Value 

        -2.7315  5   0.2723   

                                            

                                       KPSS Test 

KPSS Level      Lag Parameter  P-Value 

2.0023   2   0.01   

 

Table 4.1 shows both Augmented Dickey-Fuller and KPSS test results. There was no 

stationarity in the original measles data; since p-value for ADF test was greater than 0.05 

and that of KPSS was less than 0.05 using a 5% significant level. The two tests  

confirmed that there was non-stationarity in the original measles data which needs to be 

differenced to achieve mean stationarity.   



 57 

4.3 First-Order Difference of Prevalence of Measles in the Ashanti   

      Region from January 2001 to November 2011.   
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Figure 4.4:  First-Order Differencing of Prevalence of Measles in the Ashanti Region    

 

Figure 4.4 shows the first-order difference of the measles data. A transformation of the 

measles data using first-order difference was performed to remove the non-stationarity in 

the original measles data. The data fluctuate around a constant mean, independent of 

time, and the variance of the fluctuation remains essentially constant over time. There 

was not any seasonal behavior in the time plot, and the measles data now looks to be 

approximately stable for further investigations.   

  

 
 

. 
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4.4 Objective Test for Stationarity for the First-Order Differenced Series             

 

Table 4.2: Augmented Dickey-Fuller (ADF) and KPSS Tests 

                   Augmented   Dickey – Fuller Test 

Dickey-Fuller       Lag Order   P-Value 

        -7.003  5   0.01   

                                                

                              KPSS Test 

KPSS Level      Lag Parameter  P-Value 

0.0273   2   0.1   

 

From Table 4.2 we can observe that there is a stationarity in the measles data, since  

p-value for ADF test was less than 0.05 and that of KPSS was greater than 0.05. The 

measles data now looks to be approximately stationary in the mean for further 

investigations. 

 

 

4.5 Selecting Competing Models Using ACF and PACF of the First-  

        Order Differencing of Measles Prevalence  
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 Figure 4.5:  ACF of the first-order differencing of prevalence of measles   
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                     Figure 4.6:  PACF of first-order differencing of prevalence of measles   

 

  

Figure 4.5 shows the sample Auto-Correlation Function (ACF) of the first order 

differencing of the prevalence of measles. Except for marginal significance at lags 2, 6 

and 8, the model seems to have captured the essence of the dependence in the series. 

Inspecting the sample ACF, we see that PACF is tailing off and the ACF is cutting off at 

lags 2, 6 and 8. This would suggest that the prevalence of measles follows an MA (2) 

model, MA (6) model or MA (8) model.  

 

Figure 4.6 shows the sample Partial Auto-Correlation Function (PACF) of the first order 

differencing of the prevalence of measles in the Ashanti Region of Ghana at different 

lags. Inspecting the sample PACF, we see that the ACF is tailing off and the PACF is 

cutting off at lags 2 and 6. Except for marginal significance at lags 2 and 6, the model 

seems to have captured the essence of the dependence in the series. This suggests an  
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AR(2) or AR(6) model for the measles prevalence. As a preliminary analysis, we will fit 

both models. It follows that, in both the ACF and the PACF of the first order differencing 

of the measles data, the following models were suggested: 

                                                  (i) ARIMA (0, 1, 2)  

                                                  (ii) ARIMA (2, 1, 0)  

                                                  (iii) ARIMA (1, 1, 0)  

                                                  (iv) ARIMA (2, 1, 1)                                                 

 

4.6 Estimation of Tentative Models 

4.6.1 Parameter estimate and diagnostics of ARIMA (0, 1, 2) model 

         Table 4.3: Parameter estimate for ARIMA (0, 1, 2) with non-zero mean 

  

       Coefficient      Estimate  Standard Error |t – Value|   

             ma1        0.1311  0.0947  1.3844  

             ma2       -0.2968  0.1122  2.6453  

               

            AIC          AICc           BIC Constant  

1419.93          1420.25   1431.40   -1.8115   

  

The coefficients of the estimated MA (2) parameters are within the invertibility condition 

bounds. The estimated ARMA(0, 2) model can be written as shown in equation (4.1):                        

ttttX    8115.12968.01311.0 21                                   (4.1)                                   
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Figure 4.7: Diagnostic plot (ts-diagram) of the fitted ARIMA (0, 1, 2) 

 

Figure 4.7 shows the diagnostics of the residuals of ARIMA (0, 1, 2). Figure 4.7 (i) is the 

time plot of the residuals against time. There is no obvious pattern in the plot except for a 

possible outlier, and looks like an independently and identically distributed (i. i. d) 

sequence of zero mean with a constant variance. Figure 4.7 (ii) is the plot of the ACF of 

the residuals. Here, there was not enough evidence of significant spikes which clearly 

shows that the residuals are white noise. 

(i) 

(ii) 

(iii) 
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Figure 4.7 (iii) is the plot of the PACF of the residuals. Here, there was not enough 

evidence of significant spikes which clearly shows that the residuals are white noise. 

 

Table 4.4: Box-Ljung test and Forecasts from ARIMA (0, 1, 2) with non- zero mean  

                       Box - Ljung Test       

X Squared           Degrees of Freedom     P-Value 

17.0893                    20     0.6472 

 

Results from Table 4.4 showed that the model‟s residuals were non - significant with 

Ljung Box test statistic of 17.0893 and a p-value of 0.6472. Hence the model was 

adequate for forecasting.    

    

4.6.2 Parameter estimate and diagnostics of ARIMA(2, 1, 0) model 

           Table 4.5: Parameter estimate for ARIMA(2, 1, 0) with non-zero mean 

  

       

Coefficient      Estimate  Standard Error |t – Value|   

             ar1        0.1703  0.0852  1.9988  

             ar2       -0.2311  0.0861  2.6841  

               

             AIC          AICc           BIC Constant  

1421.28          1421.60   1432.75   -1.7820   

     

The coefficients of the estimated AR(2) parameters are within the causality condition 

bounds. The estimated model for ARMA(2) was given by equation (4.2):          

tttt eXXX   7820.12311.01703.0 21                                        (4.2)  
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Figure 4.9: Diagnostic plot (ts-diagram) of the fitted ARIMA(2, 1, 0) 

 

Figure 4.9 shows the diagnostics of the residuals of ARIMA(2, 1, 0). Figure 4.9 (i) is the 

time plot of the residuals against time. There is no obvious pattern in the plot except for a 

possible outlier, and looks like an independently and identically distributed (i. i. d) 

sequence of zero mean with a constant variance. Figure 4.9 (ii) is the plot of the ACF of 

the residuals. Here, there was not enough evidence of significant spikes which clearly 

shows that the residuals are white noise. Figure 4.9 (iii) is the plot of the PACF of the 

(i) 

(ii) 

(iii) 
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residuals. Here, there was not enough evidence of significant spikes which clearly shows 

that the residuals are white noise. 

 

 

Table 4.6: Box-Ljung test and Forecasts from ARIMA(2, 1, 0) with non- zero mean  

  

                       Box - Ljung Test       

X Squared           Degrees of Freedom     P-Value 

18.4227                    20     0.5596 

 

Results from Table 4.6 shows that the model‟s residuals were non-significant with Ljung 

Box test statistic of 18.4227 and a p-value of 0.5596. Hence the model was adequate for 

forecasting.   

                

4.6.3 Parameter estimates and diagnostics of ARIMA(1, 1, 0) model 

The coefficient of the estimated AR(1) parameter is within the causality condition 

bounds. The estimated ARMA(1, 0) model can be written as shown in equation (4.3).                                 

    ttt eXX   0022.21399.0 1                                                (4.3) 

                                     

 

 

Table 4.7: Parameter estimate for ARIMA(1, 1, 0) with non-zero mean  

 

        Coefficient   Estimate Standard Error |t – Value| 

              ar1     0.1399         0.0867   1.6136 

        

AIC  AICc  BIC   Constant 

1426.28   1426.47   1434.88     -2.0022 
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Figure 4.11: Diagnostic plot (ts-diagram) of the fitted ARIMA(1, 1, 0) 

 

Figure 4.11 depicts the diagnostics of the residuals of ARIMA(1, 1, 0). Figure 4.11 (i) is 

the time plot of the residuals with time. There is no obvious pattern in the plot except for 

a possible outlier, and looks like an independently and identically distributed (i. i. d) 

sequence of zero mean with a constant variance. Figure 4.11 (ii) is the plot of the ACF of 

the residuals. Here, there was not enough evidence of significant spikes which clearly 

shows that the residuals are white noise. Figure 4.11 (iii) is the plot of the PACF of the 

residuals. Here, there was not enough evidence of significant spikes which clearly shows 

that the residuals are white noise. 

(i) 

(ii) 

(iii) 
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Table 4.8: Box-Ljung test and Forecasts from ARIMA (1, 1, 0) with non- zero mean 

 

                       Box - Ljung Test       

X Squared           Degrees of Freedom     P-Value 

29.0519                    20     0.0864 

 

Results from Table 4.8 shows that the model‟s residuals were non - significant with 

Ljung Box test statistic of 29.0519 and a p-value of 0.0864. Hence the model was 

adequate for forecasting.      

 

  

4.6.4 Parameter estimate and diagnostics of ARIMA(2, 1, 1) model 

Table 4.9: Parameter estimate for ARIMA(2, 1, 1) with non-zero mean 

  

       Coefficient      Estimate  Standard Error |t – Value|   

             ar1        0.9800  0.1051  9.3245  

             ar2       -0.2693  0.0890  3.0258  

            ma1       -0.9107  0.0781  11.6607  

               

             AIC          AICc           BIC Constant  

1417.05          1417.53   1431.39   -1.9980   

   

 The coefficients of the estimated ARMA (2, 1) parameters are within the causality and 

invertibility condition bounds. The estimated ARMA(2, 1) model can be written as 

shown in equation (4.4).                          

  ttttt XXX    9980.19107.02693.098.0 121                         (4.4) 
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Figure 4.13: Diagnostic plot (ts-diagram) of the fitted ARIMA(2, 1, 1) 

 

Figure 4.13 exhibits the diagnostics of the residuals of ARIMA (2, 1, 1). Figure 4.13 (i) is 

the time plot of the residuals against time. There is no obvious pattern in the plot except 

for a possible outlier, and looks like an independently and identically distributed (i. i. d) 

sequence of zero mean with a constant variance. Figure 4.13 (ii) is the plot of the ACF of 

the residuals. Here, there was not enough evidence of significant spikes which clearly 

shows that the residuals are white noise. Figure 4.13 (iii) is the plot of the PACF of the 

residuals. Here, there was not enough evidence of significant spikes which clearly shows 

that the residuals are white noise.  

(i) 

(ii) 

(iii) 
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Table 4.10: Box-Ljung test and Forecasts from ARIMA (2, 1, 1) with non- zero mean  

 

 

 

 

Results from Table 4.10 showed that the model‟s residuals were non - significant with 

Ljung Box test statistic of 18.0093 and a p-value of 0.5868. Thus the model was adequate 

for forecasting.   

 

4.7  Forecasting From ARIMA (2, 1, 1) 

Table 4.11: Point Forecasts from ARIMA (2, 1, 1) with non-zero mean 

 

 

 

 

 

 
Results from Table 4.11 shows that measles prevalence in the Ashanti Region will 

increase from December 2011 to May 2012.  

 

 

From Figure 4.14, the yellow line depicts the 95% confidence interval, the red line is the 

85% confidence interval and the blue line is the forecasting points. The model was used 

to forecast six months ahead and showed that the measles prevalence in the Ashanti 

Region will be increased as shown in the blue line. 

                       Box - Ljung Test       

X Squared           Degrees of Freedom     P-Value 

18.0093                    20     0.5868 

                            Point Forecast From ARIMA (2, 1, 1)   

Dec-2011 Jan-2012 Feb-2012 Mar-2012 Apr-2012 May-2012 

15.9037 20.6717 23.5551 24.9658 25.053 25.6206 
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             Figure 4.14: Forecasts from ARIMA (2, 1, 1) with non-zero mean 

 

 

 

4.8 The Error Metrics 

 
Table 4.12: The Mean Absolute Error (MAE) and the Mean Squared Error (MSE)    

 

                                Mean Absolute Error (MAE)       

ARIMA(1, 1, 0) ARIMA(2, 1, 0)     ARIMA(2, 1, 0) ARIMA(0, 1, 2) 

29.39361   28.44202   28.1141   27.98298   

        

    Mean Squared Error (MSE)    

ARIMA(1, 1, 0) ARIMA(2, 1, 0)    ARIMA(0, 1, 2) ARIMA(2, 1, 1) 

3277.671   3103.249   3069.110   2947.151   
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Forecasting accuracy based on the Mean Absolute Error (MAPE) of the forecasted values 

was checked for each fitted model as shown in Table 4.12. It highly favored the 

forecasted value of ARIMA(0, 1, 2). This means that, the ARIMA(0, 1, 2) forecast error 

of 27.98298 out-performed all the forecast errors so far as the MAE is concerned.   

Similarly, the forecasting accuracy based on the Mean Square Error (MSE) of the 

forecasted values also favored ARIMA(2, 1, 1), the best selected model.   This means 

that, the ARIMA(2, 1, 1) forecast error of 2947.151 out-performed all the forecast errors 

so far as the MSE is concerned. Hence ARIMA(2, 1, 1) was confirmed to be the best 

model. 

 
 

4.9 Diebold – Mariano (DM) Test  

 
Table 4.13: Diebold – Mariano Test for Comparing MAE from each Model 

DATA  DM   FORECAST HORIZON P - VALUE  

e1 verses e2 -1.4418   2     0.9253 (0.05) 

e1 verses e3 -1.1685  2   0.8787 (0.05) 

e1 verses e4 -0.0784  2   0.5312 (0.05) 

e2 verses e3 -0.8730  2   0.8087 (0.05) 

e2 verses e4 0.1810  2   0.4282 (0.05) 

e3 verses e4 0.6404   2     0.2610 (0.05) 

 

From Table 4.13, e1 is the in-sample error from ARIMA(0, 1, 2) model, e2 is the in-

sample error from ARIMA(2, 1, 0) model, e3 is the in-sample error from ARIMA(1, 1, 0) 

model and e4 is the in-sample error from ARIMA(2, 1, 1) model. The test rejected the 

null hypotheses of the pairs of errors compared for the models selected. The results show 

that all the models predict equally.  
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4.10 Time plot of actual measles data and the fitted Models 
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                  Figure 4.15: Time plot of actual measles data and the fitted Models  

 

Figure 4.15 exhibits the time plot of actual measles data and the fitted ARIMA models. 

All the models seem to fit the data quite well.   
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CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 
 

This chapter contains the conclusion, summary and findings and the recommendation of 

the thesis.    

 

5.1 Conclusion 

Results from this thesis shows that increasing use of measles vaccine is having a 

significant impact on the rate of measles transmission and its related complications in the 

Ashanti region of Ghana. Increasing the measles vaccination coverage rate in the region 

will further decrease the prevalence of measles in the region and decreasing the 

vaccination coverage will increase the rate of transmission of measles in the region which 

will affect the development of human resources in the country. 

 

This model did not consider mass vaccination as one of the methods to prevent the 

prevalence of measles in the region. It concentrated on herd immunity due to the huge 

sum of money that needs to be spent in carrying out mass vaccination. The results of this 

thesis can be used as a tool to facilitate the introduction of measles vaccine and improve 

measles vaccination in the country as a whole. 

 

 

 

 

 

. 
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Table 5.1: Summary of Diagnostics Tests  

MODEL ARIMA(0, 1, 2) ARIMA(2, 1, 0) ARIMA(1, 1, 0) ARIMA(2, 1, 1) 

         

AIC 1419.93  1421.28  1426.28  1417.05  

         

AICc 1420.25   1421.6   1426.47   1417.53   

 

From Table 5.1 ARIMA(2, 1, 1) had the lowest AIC value of 1417.05. It was the best 

model so far as the AIC was concerned.  Hence the best selected model was          

                  ttttt XXX    9980.19107.02693.098.0 121     

 The Mean Absolute Error (MAE) for ARIMA(0, 1, 2) of 27.98298 was the lowest. Its 

forecast error of 27.98298 out-performed all the forecast errors. However, the forecasting 

accuracy based on the Mean Squared Error (MSE) for ARIMA(2, 1, 1), the best selected 

model, was the lowest. Its forecast error of 2947.151 out-performed all the forecast 

errors.   

In conclusion, the research study reported in this monograph has found that measles data 

in the Ashanti Region of Ghana could best be modelled with ARIMA(2, 1, 1). The study 

again found out that measles prevalence in the Ashanti Region is expected to increase if 

no preventative measures are taken. 

 

5.2 Recommendations 

The following recommendation is being made to the stakeholders of Ashanti Region: 

 Ghana Health Service should continue the mass measles vaccination in the region 

to possibly eradicate the disease.      
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 APPENDIX 

Table 1: Measles data in the Ashanti Region from January, 2001 to December, 2011. 

Period Cases   Period Cases   Period Cases  Period Cases 

1 223  34 64  67 20  100 1 

2 264  35 31  68 15  101 3 

3 369  36 13  69 16  102 0 

4 324  37 94  70 10  103 5 

5 259  38 44  71 13  104 3 

6 216  39 55  72 11  105 5 

7 203  40 88  73 18  106 10 

8 174  41 67  74 29  107 4 

9 128  42 53  75 42  108 17 

10 179  43 56  76 62  109 8 

11 134  44 36  77 30  110 3 

12 177  45 48  78 11  111 7 

13 289  46 26  79 9  112 8 

14 379  47 17  80 24  113 4 

15 793  48 16  81 15  114 4 

16 663  49 14  82 2  115 4 

17 483  50 19  83 0  116 8 

18 377  51 33  84 6  117 5 

19 328  52 33  85 8  118 3 

20 287  53 14  86 49  119 13 

21 205  54 13  87 139  120 21 

22 253  55 14  88 60  121 8 

23 406  56 41  89 21  122 63 

24 325  57 31  90 16  123 120 

25 100  58 23  91 1  124 66 

26 44  59 20  92 6  125 25 

27 101  60 13  93 10  126 42 

28 78  61 7  94 15  127 11 

29 56  62 16  95 4  128 22 

30 53  63 20  96 9  129 62 

31 44  64 23  97 4  130 7 

32 53  65 15  98 10  131 10 

33 55   66 6   99 1  132 16 
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Figure 1: Histogram plot and the Normal Q-Q plot  of the fitted ARIMA(0, 1, 2) 
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Figure 2: Histogram plot and the Normal Q-Q plot  of the fitted ARIMA(2, 1, 0) 
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Figure 3: Histogram plot and the Normal Q-Q plot  of the fitted ARIMA(1, 1, 0) 
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Figure 4: Histogram plot and the Normal Q-Q plot of the fitted ARIMA(2, 1, 1) 


